Sample records for copper mining area

  1. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland)

    NASA Astrophysics Data System (ADS)

    Burtan, Zbigniew

    2017-11-01

    The current level of rockburst hazard in copper mines of the (LGOM) Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.

  2. Mineral Resources of the Wabayuma Peak Wilderness Study Area, Mohave County, Arizona

    USGS Publications Warehouse

    Conway, Clay M.; Hassemer, Jerry R.; Knepper, Daniel H.; Pitkin, James A.; Jachens, Robert C.; Chatman, Mark L.

    1990-01-01

    The Wabayuma Peak Wilderness Study Area (AZ-020-037/043), for which a mineral survey was requested by the U.S. Bureau of land Management, encompasses 40,118 acres in northwestern Arizona. Fieldwork was carried out in 1986-88 by the U.S. Bureau of Mines and the U.S. Geological Survey to appraise the identified (known) resources and assess the mineral resource potential (undiscovered) of the wilderness study area. Within the Wabayuma Peak Wilderness Study Area are 14 private parcels of land totaling 1,315 acres. The Wabayuma Peak Wilderness Study Area, including the 14 private parcels of land, is herein referred to as the 'wilderness study area' or the 'study area'. The Boriana, Antler, and Copper World mines lie near the east boundary of the study area. The Boriana mine was a major tungsten-producing mine of the United States during World War II. The Antler and Copper World mines produced relatively small amounts of copper and zinc prior to 1970. Copper and zinc were mined within 100 ft of the study area at the Antler mine. The Antler mine contains subeconomic resources of 350,000 to 400,000 short tons of copper-zinc ore; a minimum of 2,000 short tons, at grades of 1 to 4 percent copper and 1 to 2 percent zinc, lie within the study area. No other mineral resources were identified within the study area. Four small tracts in the eastern part and one in the central part of the study area have high resource potential for copper, zinc, and minor lead, silver, and gold in massive sulfide deposits. A large central tract and two eastern tracts have moderate resource potential for the same metals. An eastern and a western tract within the wilderness study area have high resource potential for tungsten, copper, and combinations of beryllium, gold, silver, arsenic, bismuth, molybdenum, tin, indium, thorium, niobium, yttrium, lanthanum, scandium, tantalum, rhenium, lead, zinc, and iron in granite-related tungsten-polymetallic vein deposits. Most of the rest of the study area has moderate resource potential for these metals. A northern tract in the study area has moderate resource potential for gold, copper, and combinations of silver, zinc, lead, tungsten, and molybdenum in polymetallic vein deposits of several types.

  3. Mineral resources of the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas, San Bernardino County, California

    USGS Publications Warehouse

    Marsh, Sherman P.; Raines, Gary L.; Diggles, Michael F.; Howard, Keith A.; Simpson, Robert W.; Hoover, Donald B.; Ridenour, James; Moyle, Phillip R.; Willett, Spencee L.

    1988-01-01

    At the request of the U.S. Bureau of Land Management, approximately 85,100 acres of the Whipple Mountains Wilderness Study Area (CDCA-312) and 1,380 acres of the Whipple Mountains Addition Wilderness Study Area (AZ-050-010) were evaluated for identified mineral resources (known) and mineral resource potential (undiscovered). In this report, the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas are referred to as simply "the study area." Most of the mines and prospects with identified resources in the Whipple Mountains Wilderness Study Area are within areas designated as having mineral resource potential. The area in and around the Turk Silver mine and the Lucky Green group and the area near the northwest boundary of the study area have high mineral resource potential for copper, lead, zinc, gold, and silver. An area along the west boundary of the study area has moderate resource potential for copper lead, zinc, gold, and silver. An area in the east adjacent to the Whipple Mountains Addition Wilderness Study Area has moderate resource potential for copper, gold, and silver resources. One area on the north boundary and one on the southeast boundary of the study area have low mineral resource potential for copper, lead, zinc, gold, and silver. Two areas, one on the north boundary and one inside the east boundary of the study area, have moderate resource potential for manganese. A small area inside the south boundary of the study area has high resource potential for decorative building stone, and the entire study area has low resource potential for sand and gravel and other rock products suitable for construction. Two areas in the eastern part of the study area have low resource potential for uranium. There is no resource potential for oil and gas or geothermal resources in the Whipple Mountains Wilderness Study Area. Sites within the Whipple Mountains Wilderness Study Area with identified resources of copper, gold, silver, manganese and (or) decorative building stone are located at the Stewart mine, New American Eagle mine, Turk Silver mine, Twin Lode mine, decorative stone property, Lucky Green group, Blue Cloud mine, Nickel Plate mine, Crescent mine, Quadrangle Copper group, and the Copper Basin mine. The Whipple Mountains Addition Wilderness Study Area has moderate resource potential for copper, gold, and silver resources and low resource potential for sand and gravel and other rock products. There is no resource potential for oil and gas or for geothermal energy in the Whipple Mountains Addition Wilderness Study Area. Although there are no identified resources in the Whipple Mountains Addition Wilderness Study Area, sites within and immediately adjacent warrant further study because of gold assays from widespread, numerous samples.

  4. Excelsior Mining Arizona, Inc. Gunnison Copper Project Class III UIC Area Permit and Aquifer Exemption

    EPA Pesticide Factsheets

    UIC Area Permit R9UIC-AZ3-FY16-1 and supporting documents for Class III In-Situ Production of Copper: Gunnison Copper Project, Cochise County, AZ, issued to Excelsior Mining Arizona Inc., Concord Place, Suite 300, 2999 North 44th Street, Phoenix, AZ 85018.

  5. Small mammal-heavy metal concentrations from mined and control sites

    USGS Publications Warehouse

    Smith, G.J.; Rongstad, O.J.

    1982-01-01

    Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.

  6. Geochemical Characteristics of TP3 Mine Wastes at the Elizabeth Copper Mine Superfund Site, Orange County, Vermont

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.; Briggs, Paul H.; Meier, Allen L.; Muzik, Timothy L.

    2003-01-01

    Remediation of the Elizabeth mine Superfund site in the Vermont copper belt poses challenges for balancing environmental restoration goals with issues of historic preservation while adopting cost-effective strategies for site cleanup and long-term maintenance. The waste-rock pile known as TP3, at the headwaters of Copperas Brook, is especially noteworthy in this regard because it is the worst source of surface- and ground-water contamination identified to date, while also being the area of greatest historical significance. The U.S. Geological Survey (USGS) conducted a study of the historic mine-waste piles known as TP3 at the Elizabeth mine Superfund site near South Strafford, Orange County, VT. TP3 is a 12.3-acre (49,780 m2) subarea of the Elizabeth mine site. It is a focus area for historic preservation because it encompasses an early 19th century copperas works as well as waste from late 19th- and 20th century copper mining (Kierstead, 2001). Surface runoff and seeps from TP3 form the headwaters of Copperas Brook. The stream flows down a valley onto flotation tailings from 20th century copper mining operations and enters the West Branch of the Ompompanoosuc River approximately 1 kilometer downstream from the mine site. Shallow drinking water wells down gradient from TP3 exceed drinking water standards for copper and cadmium (Hathaway and others, 2001). The Elizabeth mine was listed as a Superfund site in 2001, mainly because of impacts of acid-mine drainage on the Ompompanoosuc River.

  7. Broadband Seismic Recordings of Mining Explosions and Earthquakes in South America.

    DTIC Science & Technology

    1997-02-04

    mineralization in Chile are closely linked to the development of the Andean cordillera since late Paleozoic time. The porphyry copper deposits occupy a...sinuous belt over 2000 km long and 30 km wide that overlap with parts of the present day active volcanic arc. The porphyry copper deposits are... porphyry copper mine. The Pliocene age Disputada stock has a mineralized area covering about 12km2 (Bernstein, 1990). The Andina mines Sur-Sur (open

  8. Heavy metals in eggs and chicken and the associated human health risk assessment in the mining areas of Singhbhum copper belt, India.

    PubMed

    Giri, Soma; Singh, Abhay Kumar

    2017-12-13

    Metal contamination was studied in locally rearing chicken and eggs in the environs of mining areas of Singhbhum copper belt. Concentrations of metals were below Indian standards except for Cu, Ni and Zn in the case of chicken at some locations. Estimated daily intake (EDI) and target hazard quotient (THQ) suggested that the metals did not pose risk individually. However, considering the geometric mean of the metals, hazard index (HI) was above unity. Cu, Pb and Co were the key components contributing to a potential noncarcinogenic risk. The HI varied from 0.62 to 1.66 among the locations indicating a considerable heath risk to the consumers of locally reared chicken and eggs around the mining areas. Higher HIs were found at the locations in close vicinity to copper mining and processing units compared to other locations.

  9. Weathering of sulfidic shale and copper mine waste: Secondary minerals and metal cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Jackson, J.C.

    2003-01-01

    Metal cycling via physical and chemical weathering of discrete sources (copper mines) and regional (non-point) sources (sulfide-rich shale) is evaluated by examining the mineralogy and chemistry of weathering products in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. The elements in copper mine waste, secondary minerals, stream sediments, and waters that are most likely to have negative impacts on aquatic ecosystems are aluminum, copper, zinc, and arsenic because these elements locally exceed toxicity guidelines for surface waters or for stream sediments. Acid-mine drainage has not developed in streams draining inactive copper mines. Acid-rock drainage and chemical weathering processes that accompany debris flows or human disturbances of sulfidic rocks are comparable to processes that develop acid-mine drainage elsewhere. Despite the high rainfall in the mountain range, sheltered areas and intermittent dry spells provide local venues for development of secondary weathering products that can impact aquatic ecosystems.

  10. Chiquicamata Mine, Chile

    NASA Image and Video Library

    2016-08-24

    Chuquicamata, in Chile's Atacama Desert, is the largest open pit copper mine in the world, by excavated volume. The copper deposits were first exploited in pre-Hispanic times. Open pit mining began in the early 20th century when a method was developed to work low grade oxidized copper ores. The image was acquired September 2, 2007, covers an area of 19.5 by 29.3 km, and is located at 22.1 degrees south, 68.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20973

  11. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  12. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area].

    PubMed

    Qu, Yong-hua; Jiao, Si-hong; Liu, Su-hong; Zhu, Ye-qing

    2015-11-01

    Heavy metal mining activities have caused the complex influence on the ecological environment of the mining regions. For example, a large amount of acidic waste water containing heavy metal ions have be produced in the process of copper mining which can bring serious pollution to the ecological environment of the region. In the previous research work, bare soil is mainly taken as the research target when monitoring environmental pollution, and thus the effects of land surface vegetation have been ignored. It is well known that vegetation condition is one of the most important indictors to reflect the ecological change in a certain region and there is a significant linkage between the vegetation spectral characteristics and the heavy metal when the vegetation is effected by the heavy metal pollution. It means the vegetation is sensitive to heavy metal pollution by their physiological behaviors in response to the physiological ecology change of their growing environment. The conventional methods, which often rely on large amounts of field survey data and laboratorial chemical analysis, are time consuming and costing a lot of material resources. The spectrum analysis method using remote sensing technology can acquire the information of the heavy mental content in the vegetation without touching it. However, the retrieval of that information from the hyperspectral data is not an easy job due to the difficulty in figuring out the specific band, which is sensitive to the specific heavy metal, from a huge number of hyperspectral bands. Thus the selection of the sensitive band is the key of the spectrum analysis method. This paper proposed a statistical analysis method to find the feature band sensitive to heavy metal ion from the hyperspectral data and to then retrieve the metal content using the field survey data and the hyperspectral images from China Environment Satellite HJ-1. This method selected copper ion content in the leaves as the indicator of copper pollution level, using stepwise multiple linear regression and cross validation on the dataset which is consisting of 44 groups of copper ion content information in the polluted vegetation leaves from Dexing Copper Mine in Jiangxi Province to build up a statistical model by also incorporating the HJ-1 satellite images. This model was then used to estimate the copper content distribution over the whole research area at Dexing Copper Mine. The result has shown that there is strong statistical significance of the model which revealed the most sensitive waveband to copper ion is located at 516 nm. The distribution map illustrated that the copper ion content is generally in the range of 0-130 mg · kg⁻¹ in the vegetation covering area at Dexing Copper Mine and the most seriously polluted area is located at the South-east corner of Dexing City as well as the mining spots with a higher value between 80 and 100 mg · kg⁻¹. This result is consistent with the ground observation experiment data. The distribution map can certainly provide some important basic data on the copper pollution monitoring and treatment.

  13. Copper tolerance in clones of Agrostis gigantea from a mine waste site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, G.D.; Courtin, G.M.; Rauser, W.E.

    1977-04-15

    A mine waste site from Sudbury, Ontario, contaminated with heavy metals is described. The dominant vegetative cover was formed by two grasses: Agrostis gigantea Roth. and Agrostis scabra Willd. Testing of 10 clones of A. gigantea from the roast bed and an adjoining area for copper tolerance showed that two clones collected from the roast bed were tolerant to increased copper levels. Copper tolerance was found in clones growing on soils with high copper contents and low pHs. The combination of high copper content and low pH brought about a high level of extractable copper within the soil. Soils withmore » equally high copper levels but higher pHs and therefore low extractable-copper levels did not support copper-tolerant clones.« less

  14. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4) and H(2)SO(4) promoted bioleaching in the soils and can be employed ex situ to remediate copper-impacted soils.

  15. Chemical analyses of stream sediment in the Tar Creek basin of the Picher mining area, northeast Oklahoma

    USGS Publications Warehouse

    Parkhurst, David L.; Doughten, Michael; Hearn,, Paul P.

    1988-01-01

    Chemical analyses are presented for 47 sediment samples from the Tar Creek drainage in the Picher mining area of northeast Oklahoma. The samples were taken in December 1983, June 1984, and June 1985. All of the samples were taken downstream from mine-water discharge points of abandoned lead and zinc mines. The 34 samples taken in December 1983 and June 1984 were analyzed semiquantitatively by emission spectrography for 64 elements and quantitatively for cadmium, copper, iron, manganese, nickel, lead, sulfur, zinc, and organic carbon. The 13 samples taken in June 1985 were analyzed quantitatively for aluminum, cadmium, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, phosphorus, lead, sulfur, silicon, titanium, vanadium, zinc, and organic carbon.

  16. Long-Term Changes In The Shallow Water Table In A Mining Area: The Lubin-Glogow Copper Region, Southwestern Poland

    NASA Astrophysics Data System (ADS)

    Bochenska, T.; Limisiewicz, P.; Loprawski, L.

    1995-03-01

    In regions of intense mining, shortages of water are common. Increased water demand is normally associated with industry in mining areas, and mine unwatering has negative effects on the natural groundwater balance. The study area occupies 3,300 square kilometers within the copper mining region of Lubin-Glogow, southwestern Poland. Pumping of groundwater to drain mines has created a cone of depression that underlies 2,500 square kilometers. The lowering of potentiometric surfaces has occurred in deep aquifers, which are isolated from the surface by thick confining units (loams and clays). Changes of hydraulic head in the shallow aquifer have not previously been observed. In this study, the authors analyzed the water-table changes in the shallow aquifer. The statistical analysis of the water table was based on two sets of water-level measurements in about 1,200 farm wells during dry seasons. The first set was done in the fall of 1986, the second in the fall of 1991. In addition to these measurements, multi-seasonal observations were made by the mining survey in several tens of wells. During five years, the head declined an average of 0.4 meter. Locally, the lowering was as great as five meters. The regional decline of head resulted in a loss of water resources about 2×108 cubic meters. Regionally, this loss is not directly related to the dewatering of copper mines. Locally, however, mining activity strongly influences the water table. The general trend of the decline is probably an effect of decreasing precipitation.

  17. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-02

    ISS013-E-63766 (2 Aug. 2006) --- Berkeley Pit and Butte, Montana are featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The city of Butte, Montana has long been a center of mining activity. Underground mining of copper began in Butte in the 1870s, and by 1901 underground workings had extended to the groundwater table. Thus began the creation of an intricate complex of underground drains and pumps to lower the groundwater level and continue the extraction of copper. Water extracted from the mines was so rich in dissolved copper sulfate that it was also "mined" (by chemical precipitation) for the copper it contained. In 1955, the Anaconda Copper Mining Company began open-pit mining for copper in what is now know as the Berkeley Pit (dark oblong area in center). The mine took advantage of the existing subterranean drainage and pump network to lower groundwater until 1982, when the new owner ARCO suspended operations at the mine. The groundwater level swiftly rose, and today water in the Pit is more than 900 feet deep. Many features of the mine workings are visible in this image such as the many terraced levels and access roadways of the open mine pits (gray and tan sculptured surfaces). A large gray tailings pile of waste rock and an adjacent tailings pond are visible to the north of the Berkeley Pit. Color changes in the tailings pond are due primarily to changing water depth. The Berkeley Pit is listed as a federal Superfund site due to its highly acidic water, which contains high concentrations of metals such as copper and zinc. The Berkeley Pit receives groundwater flowing through the surrounding bedrock and acts as a "terminal pit" or sink for these heavy metal-laden waters. Ongoing efforts include regulation of water flow into the pit to reduce filling of the Pit and potential release of contaminated water into local aquifers or surface streams.

  18. Earth Observations taken by the Expedition 16 Crew

    NASA Image and Video Library

    2008-03-05

    ISS016-E-031056 (3 March 2008) --- Cananea Copper Mine, Sonora, Mexico is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. One of the largest open-pit copper mines in the world, the Cananea mine produced over 164,000 tons of copper in 2006. The mine is located approximately 40 kilometers south of the border between the USA (Arizona) and Mexico (Sonora). Copper and gold ores at Cananea are found in a porphyry copper deposit, a geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. A porphyry - an igneous rock with large crystals in a fine-grained matrix -- is formed as the magma cools and crystallizes. While crystallization is occurring, hot fluids can circulate through the magma and surrounding rocks via fractures. This hydrothermal alteration of the rocks typically forms copper-bearing and other minerals. Much of the Cananea mine's ore is concentrated in breccia pipes -- mineralized rod or chimney-shaped bodies that contain broken rock fragments. The active, two-kilometers-in-diameter Colorada Pit (top right) is recognizable in this image by the concentric steps or benches cut around its perimeter. These benches allow for access into the pit for extraction of ore and waste materials. Water (black) is visible filling the bottom of the pit, and several other basins in the surrounding area. The city of Cananea -- marked by its street grid -- is located to the northeast of the mine workings. A leachate reservoir is located to the east of the mine (lower left) for removal and evaporation of water pumped from the mine workings -- the bluish-white coloration of deposits near the reservoir suggests the high mineral content of the leachate. A worker strike halted mine operations in 2007.

  19. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2009-12-09

    ISS022-E-008282 (9 Dec. 2009) --- One of the world?s leading copper mines, Escondida, in the Atacama Desert of Chile, is featured in this image photographed by an Expedition 22 crew member on the International Space Station. The copper mining industry is a major part of the Chilean economy. The mine is located 170 kilometers southeast of Chile?s port city of Antofagasta, in the hyper arid northern Atacama Desert at an elevation of 3,050 meters (approximately 10,000 feet) above sea level. Escondida produces mainly copper concentrates; assisted by gravity, the concentrates are piped as slurry down to the smaller port of Coloso just south of Antofagasta where they are dewatered for shipping. The photograph features a large light tan and gray waste or ?spoil? materials impoundment area (center) of the mine complex. The copper-bearing waste, which is a large proportion of the material excavated from open pits to the north (not in frame), is poured into the impoundment area as a liquid (green region at photo?s center), and dries to the lighter-toned spoil seen in the image. The spoil is held behind a retaining dam, just a little more than one kilometer in length, visible as a straight line at lower left. ?Escondida? means ?hidden? in Spanish, and refers to the fact that the copper ore body was buried beneath hundreds of meters of barren rock and had to be located by a laborious drilling program following a geologic trend established from other copper occurrences.

  20. Relations of benthic macroinvertebrates to concentrations of trace elements in water, streambed sediments, and transplanted bryophytes and stream habitat conditions in nonmining and mining areas of the upper Colorado River basin, Colorado, 1995-98

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2002-01-01

    Intensive mining activity and highly mineralized rock formations have had significant impacts on surface-water and streambed-sediment quality and aquatic life within the upper reaches of the Uncompahgre River in western Colorado. A synoptic study by the U.S. Geological Survey National Water-Quality Assessment Program was completed in the upper Uncompahgre River Basin in 1998 to better understand the relations of trace elements (with emphasis on aluminum, arsenic, copper, iron, lead, and zinc concentrations) in water, streambed sediment, and aquatic life. Water-chemistry, streambed-sediment, and benthic macroinvertebrate samples were collected during low-flow conditions between October 1995 and July 1998 at five sites on the upper Uncompahgre River, all downstream from historical mining, and at three sites in drainage basins of the Upper Colorado River where mining has not occurred. Aquatic bryophytes were transplanted to all sites for 15 days of exposure to the water column during which time field parameters were measured and chemical water-quality and benthic macroinvertebrate samples were collected. Stream habitat characteristics also were documented at each site. Certain attributes of surface-water chemistry among streams were significantly different. Concentrations of total aluminum, copper, iron, lead, and zinc in the water column and concentrations of dissolved aluminum, copper, and zinc were significantly different between nonmining and mining sites. Some sites associated with mining exceeded Colorado acute aquatic-life standards for aluminum, copper, and zinc and exceeded Colorado chronic aquatic-life standards for aluminum, copper, iron, lead, and zinc. Concentrations of copper, lead, and zinc in streambed sediments were significantly different between nonmining and mining sites. Generally, concentrations of arsenic, copper, lead, and zinc in streambed sediments at mining sites exceeded the Canadian Sediment Quality Guidelines probable effect level (PEL), except at two mining sites where concentrations of copper and zinc were below the PEL. Concentrations of arsenic, copper, iron, and lead in transplanted bryophytes were significantly different between nonmining and mining sites. Bioconcentration factors calculated for 15-day exposure using one-half of the minimum reporting level were significantly different between nonmining and mining sites. In general, concentrations of trace elements in streambed sediment and transplanted bryophytes were more closely correlated than were the concentrations of trace elements in the water column with streambed sediments or concentrations in the water column with transplanted bryophytes. Stream habitat was rated as optimal to suboptimal using the U.S. Environmental Protection Agency Rapid Bioassessment Protocols for all sites in the study area. Generally, stream habitat conditions were similar at nonmining compared to mining sites and were suitable for diverse macroinvertebrate communities. All study sites had optimal instream habitat except two mining sites with suboptimal instream habitat because of disturbances in stream habitat. The benthic macroinvertebrate community composition at nonmining sites and mining sites differed. Mining sites had significantly lower total abundance of macroinvertebrates, fewer numbers of taxa, and lower dominance of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), and a larger percentage of tolerant species than did nonmining sites. The predominance of Baetis sp. (mayflies), Hydropsychidae (caddisflies), and large percentage of Orthocladiinae chironomids (midges) at mining sites indicated that these species may be tolerant to elevated trace-element concentrations. The absence of Heptageniidae (mayflies), Chloroperlidae (stoneflies), and Rhyacophila sp. (caddisflies) at mining sites indicated that these species may be sensitive to elevated trace-element concentrations. Comparison of field parameters and

  1. Structural and Textural Characteristics of Selected Copper-Bearing Rocks as One of the Elements Aiding in the Assessment of Gasogeodynamic Hazard

    NASA Astrophysics Data System (ADS)

    Pajdak, Anna; Kudasik, Mateusz

    2017-06-01

    The characteristics of copper-bearing rocks that include the structural and textural parameters are an important factor determining a possible gas accumulation in those rocks. In September 2009, in the Rudna copper mine in Poland, an outburst of gases and dolomite occurred. The analysis of the outburst mass showed that one of the main causes of the outburst was the different structural properties such as high porosity and presence of gas in the pores. This paper presents data from the structural analysis of dolomite from the Polkowice-Sieroszowice copper mine and the Rudna copper mine. Seven rock samples from various areas of the mines were tested by the following methods: mercury porosimetry (MIP), low pressure gas adsorption (LPNA), scanning electron microscopy (SEM), computed microtomography (micro-CT). The SEM analyses of the rock samples allowed pores of various sizes and shapes to the observed. The porosity (MIP) of the dolomite changed in the range of 3-15%. The total micro and mesopore volume (LPNA) was from 0.002 cm3/g to 0.005 cm3/g. The macropore volume (MIP) was from 0.01 cm3/g to 0.06 cm3/g and the mean macropore diameter was from 0.09 μm to 0.18 μm. The dolomite samples varied in the surface area (LPNA) (0.7-1.5 m2/g) and the pore distribution. The structure of dolomite determines the possibility of the occurrence of gasogeodynamic phenomena and hence it is urgent that research be conducted into its changeability. To better understand the gasogeodynamic processes in copper-bearing rocks, it is necessary to constantly monitor and analyse in detail those areas that have different structural properties.

  2. Impact on sediments and water by release of copper from chalcopyrite bearing rock due to acidic mine drainage

    NASA Astrophysics Data System (ADS)

    Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath

    2018-04-01

    Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.

  3. Health and ecological hazards due to natural radioactivity in soil from mining areas of Nasarawa State, Nigeria.

    PubMed

    Aliyu, Abubakar Sadiq; Ibrahim, Umar; Akpa, Chidozie Timothy; Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi

    2015-01-01

    Nasarawa State is located in north central Nigeria and it is known as Nigeria's home of solid minerals. It is endowed with barite, copper, zinc, tantalite and granite. Continuous releases of mining waste and tailings into the biosphere may result in a build-up of radionuclides in air, water and soil. This work therefore aims to measure the activity concentration levels of primordial radionuclides in the soil/sediment samples collected from selected mines of the mining areas of Nasarawa State. The paper also assesses the radiological and radio ecological impacts of mining activities on the residents of mining areas and their environment. The activity concentrations of primordial radionuclides ((226)Ra, (232)Th and (40)K) in the surface soils/sediment samples were determined using sodium iodide-thallium gamma spectroscopy. Seven major mines were considered with 21 samples taken from each of the mines for radiochemistry analysis. The human health hazard assessment was conducted using regulatory methodologies set by the United Nations Scientific Committee on the Effects of Atomic Radiation, while the radio ecological impact assessment was conducted using the ERICA tool v. 1.2. The result shows that the activity concentrations of (40)K in the water ways of the Akiri copper and the Azara barite mines are 60 and 67% higher than the world average value for (40)K, respectively. In all mines, the annual effective dose rates (mSv y(-1)) were less than unity, and a maximum annual gonadal dose of 0.58 mSv y(-1) is received at the Akiri copper mine, which is almost twice the world average value for gonadal dose. The external hazard indices for all the mines were less than unity. Our results also show that mollusc-gastropod, insect larvae, mollusc-bivalve and zooplankton are the freshwater biotas with the highest dose rates ranging from 5 to 7 µGy h(-1). These higher dose rates could be associated with zinc and copper mining at Abuni and Akiri, respectively. The most exposed terrestrial reference organisms are lichen and bryophytes. In all cases, the radio ecological risks are not likely to be discernible. This paper presents a pioneer data for ecological risk from ionizing contaminants due to mining activity in Nasarawa State, Nigeria. Its methodology could be adopted for future work on radioecology of mining.

  4. Geology of the Copper King Mine area, Prairie Divide, Larimer County, Colorado (Part 1)

    USGS Publications Warehouse

    Sims, Paul Kibler; Phair, George

    1952-01-01

    The Copper King mine, in Larimer County, Colo., in the northern part of the Front Range of Colorado, was operated for a short time prior to World War II for copper and zino, but since 1949, when pitchblende was discovered on the mine dump, it has been worked for uranium. The bedrock in the mine area consists predominantly of pre-Cambrian (Silver Plums) granite with minor migmatite and metasediments--biotite-quartz-plagioclase gneiss, biotite schist, quartzite, amphibolite, amphibole skarn, and biotite skols. The metasediments occur as inclusions that trend northeast in the granite. This trend is essentially parallel to the prevailing foliation in the granite. At places the metasediments are crosscut sharply by the granite to form angular, partly discordant, steep-walled bodies in the granite. Faults, confined to a narrow zone that extends through the mine, cut both the pre-Cambrian rocks and the contained sulfide deposits. The Copper King fault, a breccia zone, contains a deposit of pitchblende; the other faults are believed to be later than the ore. The two types of mineral deposits--massive sulfide and pitchblende deposits--in the mine area, are of widely different mineralogy, age, and origin. The massive sulfide deposits are small and consist of pyrite, sphalerite, chalcopyrite, pyrrhotite, and in places magnetite in amphibole skarn, mice skols, and quartzite. The deposit at the Copper King mine has yielded small quantities of high-grade sphalerite ore. The massive sulfides are pyrometasomatic deposits of pre-Cambrian age. The pitchblende at the Copper King mine is principally in the Copper King vein, a tight, hard breccia zone that cuts through both granite and the massive sulfide deposit. A small part of the pitchblende is in small fractures near the vein and in boxwork pyrite adjacent to the vein; the post-ore faults, close to their intersection with the Copper King vein, contain some radioactive material, but elsewhere, so far as is known, they are barren. The pitchblende in the deposit forms a steeply plunging ore shoot that has a horizontal length of more than 50 feet and a vertical height of about 85 feet. The thickness of the ore shoot averages about 2 feet, but it ranges from a feather edge to about 4 feet. The hard pitch-blende is intimately intergrown with siderite; other gangue minerals include pyrite, quartz, and finely comminuted fragments of the wall rocks. The vein was repeatedly reopened during mineral deposition as shown by several stages of brecciation and recommended by the vein matter. The pitchblende deposit probably formed at intermediate temperatures and depths and, according to the Pb/U ratio, is about 60 million years old--an early Tertiary age.

  5. Water requirements of the copper industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration was higher in dissolved solids and was harder than the water used in smelting and refining. Water used in mining and ore concentration had a median dissolved solids content of about 400 ppm and a median hardness (as CaCO3) of about 200 ppm. The median values for water used in smelting and refining were only half these amounts.

  6. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species have adapted on such stress. The aim of this study is to investigate the behaviour of copper in plants and to assess its potential effect on the surrounding environment. To detect copper in biological samples electrochemical methods were employed particularly differential pulse voltammetry (DPV). Copper gave signals at 0.02 V measured by DPV. The obtained calibration dependence was linear (R2 = 0.995). Further, this method was utilized for determination of copper in real soil samples obtained from previously mentioned heavy-metal-polluted mining area. The content varied within range from tens to hundreds of mg of copper per kg of the soil. Moreover, we focused on investigation of copper influence on seedlings of Norway spruce. The seedlings were treated with copper (0, 0.1, 10 and 100 mM) for four weeks. We observed anatomical-morphological changes and other biochemical parameters in plants. We determined that seedlings synthesized more than 48 % protective thiols (glutathione and phytochelatins) compared to control ones. We investigated copper distribution in plant tissues by diphenylcarbazide staining. We found out that copper is highly accumulated in parenchymal stalk cells. In needles, change in auto-fluorescence of parenchymal cells of mesoderm similarly to endodermis cells. Besides, we analyzed samples of plants from the polluted area (spruce, pin, birch). The data obtained well correlated with previously mentioned. Acknowledgement The work on this experiment was supported by grant: INCHEMBIOL MSM0021622412.

  7. [Distribution characteristics of copper in soil and rape around Tongling mining area].

    PubMed

    Shen, Chang-Gao; Gao, Chao; Wang, Deng-Feng; Wang, Lei; Chen, Fu-Rong

    2007-10-01

    Soil and rape samples around Tongling mining area were collected, and their copper (Cu) contents were investigated. The results showed that the upland soil developed on the slope deposit around the mining area as well as the paddy soil distributed in lower reaches was heavily polluted by Cu, while the fluvo-aquic soil further from the mining area was less contaminated. Though the Cu content in paddy soil and upland soil was nearly the same, its bioavailability was higher in paddy soil, due to the Cu pollution of irrigated water. There was a significant correlation between available and total Cu in these three types of soil. The activation rate of soil Cu (percentage of available Cu in total Cu) was 15.0% on average, which was positively correlated with soil total Cu and organic matter while negatively correlated with soil pH and Mn. The average Cu content in rape seed and stalk was 4.0 and 5.8 mg x kg(-1), respectively. The rape Cu content increased obviously with increasing soil available Cu content when the soil available Cu content was relatively low, but the Cu absorption and accumulation by rape decreased gradually when the soil available copper content was higher than 30 mg x kg(-1).

  8. KALMIOPSIS WILDERNESS, OREGON.

    USGS Publications Warehouse

    Page, Norman J; Miller, Michael S.

    1984-01-01

    Geologic, geochemical, geophysical field and laboratory, and mine and prospect studies conducted in the Kalmiopsis Wilderness, Oregon indicate that areas within and immediately adjacent to the wilderness have substantiated mineral-resource potential. The types of mineral resources which occur in these areas include massive sulfide deposits containing copper, zinc, lead, silver and gold; podiform chromite deposits; laterite deposits containing nickel, cobalt, and chromium; lode gold deposits; and placer gold deposits. Past production from existing mines is estimated to have been at least 7000 troy oz of gold, 4000 long tons of chromite, and few tens of tons of copper ore.

  9. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes.

    PubMed

    Perlatti, Fabio; Otero, Xosé Luis; Macias, Felipe; Ferreira, Tiago Osório

    2014-12-01

    The potentially hazardous effects of rock wastes disposed at open pit in three different areas (Pr: Ore processing; Wr: Waste rock and Bd: Border) of an abandoned copper mine were evaluated in this study, with emphasis on acid drainage generation, metal contamination and copper geochemical dynamics in soils. Samples of waste rock were analyzed by Energy dispersive X-ray fluorescence (XRF), scanning electron microscopy with microanalysis (SEM-EDS) and X-ray diffraction (XRD). Soil samples were analyzed to determine the total metal contents (XRF), mineralogy (XRD), pH (H2O and H2O2), organic and inorganic carbon, % of total N, S and P, particle size, and a sequential extraction procedure was used to identify the different copper fractions. As a result of the prevalence of carbonates over sulphides in the wastes, the soil pH remained close to neutral, with absence of acid mine drainage. The geochemical interaction between these mineral phases seems to be the main mechanism to release Cu(2)(+) ions. Total Cu in soils from the Pr area reached 11,180mg.kg(-1), while in Wr and Bd areas the values reached, on average, 4683 and 1086mg.kg(-1), respectively, indicating a very high level of soil contamination. In the Pr and Wr, the Cu was mainly associated with carbonates and amorphous iron oxides. In the Bd areas, the presence of vegetation has influenced the geochemical behavior of copper by increasing the dissolution of carbonates, affecting the buffer capacity of soils against sulphide oxidation, reducing the pH levels and enhancing the proportion of exchangeable and organic bound Cu. The present findings show that the use of plants or organic amendments in mine sites with high concentration of Cu carbonate-containing wastes should be viewed with caution, as the practice may enhance the mobilization of copper to the environment due to an increase in the rate of carbonates dissolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Mine drainage water from the Sar Cheshmeh porphyry copper mine, Kerman, IR Iran.

    PubMed

    Shahabpour, J; Doorandish, M

    2008-06-01

    This paper presents the results of a study on stream and mine waters in the area of one of the world largest porphyry copper deposit located in the southeastern Iran, the Sar Cheshmeh porphyry copper mine. Trace metals are present as adsorption on Fe and Mn oxide and hydroxide particles, as sulfate, simple metal ions, and scarcely as adsorption on clay particles and hydrous aluminium oxides. Mean pH decreases and the mean concentration of trace elements, EC and SO4(2-) increases from the maximum discharge period (MXDP) during snow melt run off (May), through the moderate discharge period (MDDP; March and July) to the minimum discharge period (MNDP; September). Water samples have sulfatic character essentially, however, from the MNDP through the MDDP towards the MXDP they show a bicarbonate tendency. This study indicates that the surface waters draining the Sar Cheshmeh open pit have a higher pH and lower concentration of trace metals compared with some other porphyry copper deposits.

  11. Production Quality, Value and Revenue in Polish Copper Mines

    NASA Astrophysics Data System (ADS)

    Malewski, Jerzy

    2016-10-01

    Polish copper ore deposits, located in the Legnica-Głogów Copper District (LGOM) documented an area of over 200 km2, at a depth of 600-1400 meters. The estimated resources equal to 22.7 million tonnes of copper (proven and probable), or 44.4 million t (measured and indicated), or 8.7 million t (infered), at the criterion of profitability at a cost less than 50 cents per ton of ore. Organization of production takes place in the combine of mining and metallurgy (KGHM). Ore is extracted in three mines: Lubin, Polkowice-Sieroszowice and Rudna. The total production of these mines is about 31 million tonnes/year of ore, from which it receives a 576000 t/y of copper, 1152 t/y of silver, 1066 kg/y of gold, and certain amounts of Pb, Zn, Se, Re, Ni, SO4, H2SO4. The quality (grading) of the ore in exploited deposits is varied, affecting the quality and quantity of produced concentrates, what influence on its market value. The paper presents a brief description of ore deposit and estimates mines revenues and production profit. Calculations show that at today's (June 2016) metal prices each of the mine can expect the following net smelter revenue: Lubin ∼⃒41, P-S ∼⃒70, Rudna ∼⃒75 /t of ore. But estimated cost production differs less, i.e.: 45, 56 and 65/t of ore respectively, because of mining depth.

  12. The Nature and Use of Copper Reserve and Resource Data

    USGS Publications Warehouse

    Cox, Dennis P.; Wright, Nancy A.; Coakley, George J.

    1981-01-01

    Copper reserve, resource, and production data can be combined to produce disaggregated resource estimates and trends and, when combined with demand forecasts, can be used to predict future exploration and development requirements. Reserve estimates are subject to uncertainties due mainly to incomplete exploration and rapidly changing economic conditions. United States' reserve estimates in the past have been low mainly because knowledge of the magnitude of very large porphyry-copper deposits has been incomplete. Present estimates are considerably more reliable because mining firms tend to drill out deposits fully before mining and to release their reserve estimates to the public. The sum of reserves and past production yields an estimate of the total ore, total metal contained in ore, and average grade of ore originally in each of the deposits known in the United States. For most deposits, estimates of total copper in ore are low relative to the total copper in mineralized rock, and many estimates are strongly affected by the economic behavior of mining firms. A better estimate of the real distribution of copper contained in deposits can be obtained by combining past production data with resource estimates. Copper resource data are disaggregated into categories that include resources in undeveloped deposits similar to those mined in the past, resources in mines closed because of unfavorable economic conditions, resources in deep deposits requiring high-cost mining methods, arid resources in deposits located in areas where environmental restrictions have contributed to delays in development. The largest resource is located in the five largest porphyry deposits. These deposits are now being mined but the resources are not included in the present mining plan. Resources in this last category will not contribute to supply until some future time when ores presently being mined are depleted. A high correlation exists between total copper contained in deposits and annual production from deposits. This correlation can be used to predict roughly the potential production from undeveloped deposits. Large deposits annually produce relatively less metal per ton of copper contained than do medium and small deposits. Dividing reserves by annual production gives a depletion date for each copper mine. The sum of annual production capacity of all mines not yet depleted at any year of interest gives the minimum production capacity for that year. A graph of minimum production capacity by year combined with curves representing potential capacity from undeveloped identified resources can be compared with various demand scenarios to yield a measure of copper requirements from new sources. Since 1950 reserves have been developed in the United States at a rate of about 1 million tons of copper per year. Since 1960 the number of deposits developed per 10-year period has greatly increased without a commensurate increase in tonnage of copper. This is in part due to the fact that recent exploration successes have been increasingly represented by smaller and (or) lower grade deposits containing less metal.

  13. Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruckeberg, A.L.; Wu, L.

    1992-06-01

    Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population,more » and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.« less

  14. Geochemical prospecting for copper and nickel in the Wulgai and Tor Tangi areas southeast of Hindubagh, Quetta Division, Pakistan

    USGS Publications Warehouse

    Stanin, S. Anthony; Wahid, M.A.; Khan, Shamsher

    1975-01-01

    Showings of magnetite, copper, and possible nickel mineralization in the Hindubagh chromite mining district are near Wulgai and Tor Tangi. Several hundred samples of clastic material from dry streambeds in these areas were sieved for the minus-80-mesh fraction and analyzed for copper using 2, 2'-biquinoline and for nickel using alpha-furildioxime. The copper threshold is 75 ppm, and the nickel threshold is 400 ppm. A geochemical map has been prepared that shows nine areas of anomalously high copper and six areas of high nickel. The nickel anomalies may represent secondary dispersion patterns derived from the erosion of nickeliferous ultramafic rocks of the Hindubagh intrusive complex. Copper showings in and near four of the anomalous copper areas indicate that detailed geological investigation and detailed geochemical sampling of rocks, soil, and unconsolidated clastic material are required to determine the source of the anomalies.

  15. Metal contamination in environmental media in residential areas around Romanian mining sites

    EPA Science Inventory

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary co...

  16. Mineral resource potential map of the Benton Range Roadless Area, Mono County, California

    USGS Publications Warehouse

    Donahoe, James L.; McKee, Edwin D.; Rains, Richard L.; Barnes, Donald J.; Campbell, Harry W.; Denton, David K.; Iverson, Stephen R.; Jeske, Rodney E.; Stebbins, Scott A.

    1983-01-01

    Tungsten-bearing rocks in the Benton Range Roadless Area occur in tactite lenses within the Paleozoic metasedimentary units that surround and are intruded by Triassic granodiorite of the Benton Range. High anomalous tungsten values were found in the southern part of the study area. Quartz-vein deposits with copper, lead, zinc, and silver may occur within the Jurassic granitic rock in the northwestern part of the area. Stream-sediment and panned-concentrate samples from the northwestern part of the roadless area, reveal anomalous values in a number of elements. Some of these elements are indicative of mineral suites that form by hydrothermal alteration and are potential metallic-ore producers. Metals having anomalous values are antimony, copper, lead, molybdenum, tin, and zinc; their presence suggests the potential for deposits of the lead-zinc-silver or copper-molybdenum type. Molybdenum and lead were identified by geochemical sampling as having low to moderate potential in the roadless area. An estimated 190,000 tons (172,000 t) of subeconomic gold and silver resources are inside the roadless area at the Gold Crown, Gold Webb, and Gold Wedge mines; another 60,000 tons (54,000 t) of subeconomic gold and silver resources are just outside the area at the Tower, Gold Webb, and Gold Wedge mines (table 1). Most of the lode gold and silver deposits are in quartz veins and shear zones. Minor amounts of copper, lead, and zinc occur in some gold deposits. About 2,240 oz (70 kg) of gold, 8,450 oz (260 kg) of silver, and 4,600 lb of lead (2,090 kg) have been produced from the roadless area. In addition, 7,257 oz (226 kg) of gold and 350 oz (11 kg) silver were produced at the Tower mine, near the area.

  17. WHETSTONE ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Wrucke, Chester T.; McColly, Robert A.

    1984-01-01

    A mineral survey conducted has shown that areas in and adjacent to the Whetstone Roadless Area, Arizona have a substantiated resource potential for copper, lead, gold, silver, and quartz, and a probable mineral-resource potential for copper silver, lead, gold, molybdenum, tungsten, uranium, and gypsum. Copper and silver occur in a small vein deposit in the southwestern part of the roadless area. Copper, lead, silver, gold, and molybdenum are known in veins associated with a porphyry copper deposit in a reentrant near the southern border of the roadless area. Vein deposits of tungsten and uranium are possible in the northeast part of the roadless area near areas of known production of these commodities. Demonstrated resources of quartz for smelter flux extend into the roadless area from the Ricketts mine. Areas of probable potential for gypsum resources also occur within the roadless area. No potential for fossil fuel resources was identified in the study.

  18. NORTH FORK SMITH RIVER ROADLESS AREA, CALIFORNIA AND OREGON.

    USGS Publications Warehouse

    Gray, Floyd; Hamilton, Michael

    1984-01-01

    Geologic, geochemical, and geophysical investigations and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the North Fork Smith River Roadless Area, California. The area has probable and sustantiated resource potential for nickel, chromium, copper, and mercury and approximately 2300 mining claims exist in or adjacent to the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  19. Geochemical data for environmental studies of mineral deposits at Nabesna, Kennecott, Orange Hill, Bond Creek, Bremner, and Gold Hill, Wrangell-St. Elias National Park and Preserve, Alaska

    USGS Publications Warehouse

    Eppinger, R.G.; Briggs, P.H.; Rosenkrans, D.S.; Ballestrazze, Vanessa; Aldir, Jose; Brown, Z.A.; Crock, J.G.; d'Angelo, W. M.; Doughten, M.W.; Fey, D.L.; Hageman, P.L.; Hopkins, R.T.; Knight, R.J.; Malcolm, M.J.; McHugh, J.B.; Meier, A.L.; Motooka, J.M.; O'Leary, R. M.; Roushey, B.H.; Sultley, S.J.; Theodorakos, P.M.; Wilson, S.A.

    1999-01-01

    Environmental geochemical investigations were carried out between 1994 and 1997 in Wrangell-St. Elias National Park and Preserve (WRST), Alaska. Mineralized areas studied include the historic Nabesna gold mine/mill and surrounding areas; the historic Kennecott copper mill area and nearby Bonanza, Erie, Glacier, and Jumbo mines; the historic mill and gold mines in the Bremner district; the active gold placer mines at Gold Hill; and the unmined copper-molybdenum deposits at Orange Hill and Bond Creek. The purpose of the study was to determine the extent of possible environmental hazards associated with these mineralized areas and to establish background and baseline levels for selected elements. Thus, concentrations of a large suite of trace elements were determined to assess metal loadings in the various sample media collected. This report presents the methodology, analytical results, and sample descriptions for water, leachate, sediment, heavy-mineral concentrate, rock, and vegetation (willow) samples collected during these geochemical investigations. An interpretive U.S. Geological Survey Professional Paper incorporating these geochemical data will follow.

  20. Mining activities and arsenic in a Baja California Sur watershed

    Treesearch

    Alejandro Naranjo-Pulido; Alfredo Ortega-Rubio; Baudillo Acost-Vargas; Lia Rodriguez-Mendez; Marcos Acevedo-Beltran; Cerafina Arguelles-Mendez

    2000-01-01

    Mining is one of the most important sources of income for the Baja California Sur state. This state is the second most important area for mineral (gold, silver, copper) and non-mineral (salt) mining activities in the Mexican Republic. In the San Antonio-El Triunfo region, mineral-mining activities flourished during the 19th century. Tons of debris containing a high...

  1. Quantitative assessment of future development of cooper/silver resources in the Kootenai National Forest, Idaho/Montana: Part I-Estimation of the copper and silver endowments

    USGS Publications Warehouse

    Spanski, G.T.

    1992-01-01

    Faced with an ever-increasing diversity of demand for the use of public lands, managers and planners are turning more often to a multiple-use approach to meet those demands. This approach requires the uses to be mutually compatible and to utilize the more valuable attributes or resource values of the land. Therefore, it is imperative that planners be provided with all available information on attribute and resource values in a timely fashion and in a format that facilitates a comparative evaluation. The Kootenai National Forest administration enlisted the U.S. Geological Survey and U.S. Bureau of Mines to perform a quantitative assessment of future copper/silver production potential within the forest from sediment-hosted copper deposits in the Revett Formation that are similar to those being mined at the Troy Mine near Spar Lake. The U.S. Geological Survey employed a quantitative assessment technique that compared the favorable host terrane in the Kootenai area with worldwide examples of known sediment-hosted copper deposits. The assessment produced probabilistic estimates of the number of undiscovered deposits that may be present in the area and of the copper and silver endowment that might be contained in them. Results of the assessment suggest that the copper/silver deposit potential is highest in the southwestern one-third of the forest. In this area there is an estimated 50 percent probability of at least 50 additional deposits occurring mostly within approximately 260,000 acres where the Revett Formation is thought to be present in the subsurface at depths of less than 1,500 meters. A Monte Carlo type simulation using data on the grade and tonnage characteristics of other known silver-rich, sediment-hosted copper deposits predicts a 50 percent probability that these undiscovered deposits will contain at least 19 million tonnes of copper and 100,000 tonnes of silver. Combined with endowments estimated for identified, but not thoroughly explored deposits, and deposits that might also occur in the remaining area of the forest, the endowment potential increases to 23 million tonnes of copper and 190,000 tonnes of silver. ?? 1992 Oxford University Press.

  2. Long term monitoring of water basin of an abandoned copper open pit mine

    NASA Astrophysics Data System (ADS)

    Nikolov, H.; Borisova, D.

    2012-04-01

    Nonoperating open pit mines, very often as a matter of fact abandoned, create serious ecological risk for the region of their location especially for the quality of the water since the rainfall fills the bottom of the pit forming water body having different depth. This water as a rule has very high concentration of the metals in it and is highly toxic. One example for such opencast, idle copper mine is Medet located in the central part of Bulgaria who was started for exploitation in 1964 and at that moment being the largest in Europe for production of copper concentrate. In the vicinity of it after autumn and spring rains there are many cases reported for water contamination by heavy metals such as arsenic, copper, cadmium in the rivers running close to this open pit mine. This justifies the need for long term and sustainable monitoring of the area of the water basin of this idle mine in order to estimate its acid drainage and imaging spectroscopy combined with is-situ investigations is proved to provide reliable results about the area of the water table. In the course of this study we have investigated historical data gathered by remote sensing which allowed us to make conclusions about the year behavior of this area. Our expectations are that the results of this research will help in the rehabilitation process of this idle mine and will provide the local authorities engaged in water quality monitoring with a tool to estimate the possible damage caused to the local rivers and springs. With this research we also would like to contribute to the fulfillment of the following EU Directives: Directive 2006/21/°C on the Management of Waste from the Extractive Industries and Directive 2004/35/ °C on Environmental Liability with regard to the Prevention and Remedying of Environmental Damage.

  3. WEST NEEDLE WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Van Loenen, Richard E.; Scott, David C.

    1984-01-01

    The West Needle Wilderness Study Area, southwestern Colorado, was evaluated for mineral-resource potential. An area extending westward into the wilderness near the Elk Park mine, has a probable mineral-resource potential for uranium. Uranium resources, and associated silver, nickel, cobalt, and copper, are located at the Elk Park mine, directly adjacent to the eastern study area boundary. No potential for other mineral or energy resources was identified in this study.

  4. Heavy metal concentrations in Squilla mantis (L.) (Crustacea, Stomatopoda) from the gulf of cadiz evaluation of the impact of the Aznalcollar mining spill.

    PubMed

    Blasco, J; Arias, A M; Sáenz, V

    2002-04-01

    After the Aznalcóllar mining spill (25th April 1998), considerable social concern arose amongst the inhabitants of the SW Iberian Peninsula concerning the consumption of local seafood. Squilla mantis was collected in four regions of the Gulf of Cádiz with a dual objective: to analyze the heavy metal levels for human consumption and as part of biomonitoring program. Heavy metal concentrations (Fe, Mn, Zn, Cu, Cd and Pb) were analyzed in soft tissues and cuticle. The highest values were found in the soft tissues for zinc, copper and cadmium and in the cuticle for iron, manganese and lead. The mean copper concentration in the soft tissue, corresponding to the edible part, was 27.1 microg x g(-1) wet weight. Approximately 80% of stations showed values higher than 20 microg x g(-1) wet weight of copper, the Spanish legal limit for the concentration of this metal in the crustacean for human consumption. For Zn and Cu no significant differences were found between regions, probably related with the capacity for regulation of S. mantis. The highest values found for copper in the Gulf of Cádiz compared to other areas is likely to be related with contamination from terrestrial mining activities (copper and pyrites) in the region, dating back to the times of Tartessians and Romans, rather than the effects of mining spill which was shown not to create any significant increases in heavy metal concentrations of organisms of the Guadalquivir River or the adjacent coastal area.

  5. Implications of Competition for Strategic Minerals in Africa

    DTIC Science & Technology

    2011-02-15

    In September, 2010, the DRC government banned mining in the Congo’s eastern provinces. Furthermore, rebel activity complicates mining operations...in those areas. Also, production at Canadian miner First Quantum’s Frontier copper mine in the DRC was halted by the DRC government pending legal...action by a DRC state-owned mining company Sodimico. Furthermore, DRC government review of an exploration contract for development of the Kolwezi

  6. Combined mine tremors source location and error evaluation in the Lubin Copper Mine (Poland)

    NASA Astrophysics Data System (ADS)

    Leśniak, Andrzej; Pszczoła, Grzegorz

    2008-08-01

    A modified method of mine tremors location used in Lubin Copper Mine is presented in the paper. In mines where an intensive exploration is carried out a high accuracy source location technique is usually required. The effect of the flatness of the geophones array, complex geological structure of the rock mass and intense exploitation make the location results ambiguous in such mines. In the present paper an effective method of source location and location's error evaluations are presented, combining data from two different arrays of geophones. The first consists of uniaxial geophones spaced in the whole mine area. The second is installed in one of the mining panels and consists of triaxial geophones. The usage of the data obtained from triaxial geophones allows to increase the hypocenter vertical coordinate precision. The presented two-step location procedure combines standard location methods: P-waves directions and P-waves arrival times. Using computer simulations the efficiency of the created algorithm was tested. The designed algorithm is fully non-linear and was tested on the multilayered rock mass model of the Lubin Copper Mine, showing a computational better efficiency than the traditional P-wave arrival times location algorithm. In this paper we present the complete procedure that effectively solves the non-linear location problems, i.e. the mine tremor location and measurement of the error propagation.

  7. Accumulation of heavy metals and As in liver, hair, femur, and lung of Persian jird (Meriones persicus) in Darreh Zereshk copper mine, Iran.

    PubMed

    Khazaee, Manoochehr; Hamidian, Amir Hossein; Alizadeh Shabani, Afshin; Ashrafi, Sohrab; Mirjalili, Seyyed Ali Ashghar; Esmaeilzadeh, Esmat

    2016-02-01

    Rodents frequently serve as bioindicator to monitor the quality of the environment. Concentrations of 11 elements (Cd, Co, Ti, Fe, Mn, Cu, Sb, As, Sr, Ni, and Cr) were investigated and compared in liver, hair, femur, and lung of the Persian jird (Meriones persicus) from Darreh Zereshk copper mine, Iran. Metals were determined in different tissues of 39 individuals of Persian jird, collected by snap trap in 2014 from five areas of Darreh Zereshk copper mine. Samples were prepared by wet digestion method, and the contents of elements were analyzed with ICP-OES (VARIAN, 725-ES) instrument. Cadmium, Sb, and Co were below the limit of detection, and Mn and As were found only in hair and liver tissues. We detected the highest concentration of Cu, As, Ti, Fe, Mn, Cr, and Ni in hair in comparison with other tissues. Significant higher levels of Ti in femur and hair; Fe in liver and hair; Mn in liver; As in hair; Sr in lung; Cr in lung, hair, femur, and liver; Cu in femur; and Ni in liver and lung tissues were observed in females. Nearly all element concentrations in the tissues of Persian jird from flotation site, Darreh Zereshk and Hasan Abad villages and leaching site (mining areas) were higher than those from tailing dump site (reference site). We found the highest concentrations of As in liver and hair; Ni and Cr in liver, hair, and lung; and Sr in lung and hair tissues of Persian jird in leaching site. We tried to specify the status of elements before fully exploitation of Darreh Zereshk copper mine by using bioindicator species. Based on our achievements, initial activities did not strongly pollute the surrounded environment of the mine. The high abundance of Persian jird as well as their several proper features makes them a suitable species for biomonitoring programs especially for further studies will be performed after full exploitation of Darreh Zereshk copper mine.

  8. Earth observation taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-06-25

    ISS011-E-09620 (26 June 2005) --- Grasberg Mine, Indonesia is featured in this image photographed by an Expedition 11 crewmember on the International Space Station. Located in the Sudirman Mountains of the Irian Jaya province of Indonesia, the Grasberg complex (also known as the Freeport Mine) is one of the largest gold and copper mining operations in the world. The Sudirman Mountains form the western portion of the Maoke Range that extend across Irian Jaya from west to the east-southeast. According to scientists, these ranges were formed by ongoing collision of the northward-moving Australian and westward-moving Pacific tectonic plates. Intrusion of hot magma into sedimentary rock layers during uplift of the mountains resulted in the formation of copper- and gold-bearing ore bodies. Rich copper ore bodies were discovered in the area in 1936, and the Grasberg gold-bearing ore bodies were discovered in 1988. This image illustrates the approximately 4 kilometers-wide open-pit portion of the mine complex; there are also extensive underground mine workings. Access roads for trucks hauling ore and waste rock are visible along the sides of the pit.

  9. Geological and geochemical studies in the Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Smith, C.W.; Waters, B.C.; Naqvi, M.; Worl, R.G.; Helaby, A.M.; Flanigan, V.J.; Sadek, H.S.; Samater, R.M.

    1983-01-01

    Geological and geochemical followup studies of airborne electromagnetic anomalies in the Wadi Bidah district, southwestern Saudi Arabia, did not reveal metals of economic grade. Investigation of an anomaly enclosing the Rabathan ancient mine disclosed tightly folded and sheared Proterozoic tuffaceous rocks interlayered mostly with chert, dolomite, carbonaceous rocks, and volcanic wacke including cherty iron-manganese formations slightly anomalous in copper and zinc. Three drill holes placed to test anomalies within these formations yielded negative results. Studies of a long, narrow anomaly north of the Rabathan area indicated a similar geological environment. This northern area also contains limited zones that are highly anomalous in copper and zinc and extensive zones that are slightly anomalous in those metals. Drilling was not undertaken in this area. The Bilajimah airborne electromagnetic anomaly west of Wadi Bidah coincides with a broad synclinorium of layered felsic turfs and gossans. Geochemical studies indicated slightly anomalous copper, zinc, and silver values in gossans within the anomaly area. Two drill holes intersected carbonaceous rock that contained approximately 15 percent pyrrhotite and traces of sphalerite and chalcopyrite. Two geophysically anomalous areas west of Wadi Bidah surround ancient mines at Mahawiyah and Khayal al Masna'ah. Results of geochemical sampling at these workings were positive. An airborne electromagnetic anomaly located in the Assifar area in the southwestern corner of the Wadi Bidah district is underlain principally by metasedimentary rocks that include large linear zones of cherty iron-manganese formation and a few gossans .containing secondary base metal minerals. Detailed mapping and sampling of the Mulhal ancient mine, located west of Wadi Bidah, revealed two types of polymetallic gossans : (1) stratiform deposits interlayered with ignimbrites and mafic volcanic rocks and (2) barite-bearing gossanous material in shear zones that grade into hydrothermally altered shear zones and extend beyond the mine area. The gossans and gossanous shear zones contain anomalous amounts of gold, silver, lead, copper, zinc, barium, and selenium. Two gossans west of Wadi Bidah were mapped and sampled in detail; both gossans are interlayered, with siliceous volcanic rocks. Although the gossan at Jabal Mohr covers a large area, it contains low amounts of precious and base metals. The gossan at Mulhal No. 2 contains moderate to high amounts of gold, silver, copper, lead, and zinc.

  10. Geologic map of the Wrangell-Saint Elias National Park and Reserve, Alaska

    USGS Publications Warehouse

    Richter, Donald H.; Preller, Cindi C.; Labay, Keith A.; Shew, Nora B.

    2006-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest national park within the U.S. National Park Service system, extends from the northern Pacific Ocean to beyond the eastern Alaska Range into interior Alaska. It features impressively spectacular scenery such as high and craggy mountains, active and ancient volcanoes, expansive ice fields, immense tidewater glaciers, and a myriad of alpine glaciers. The park also includes the famous Kennecott Mine, a world-class copper deposit that was mined from 1911 to 1938, and remnant ghost town, which is now a National Historic Landmark. Geologic investigations encompassing Wrangell-Saint Elias National Park and Preserve began in 1796, with Dmitriv Tarkhanov, a Russian mining engineer, who unsuccessfully ventured up the Copper River in search of rumored copper. Lieutenant H.T. Allen (1897) of the U.S. Army made a successful epic summer journey with a limited military crew up the Copper River in 1885, across the Alaska Range, and down the Tanana and Yukon Rivers. Allen?s crew was supported by a prospector named John Bremner and local Eyak and Ahtna native guides whose tribes controlled access into the Copper River basin. Allen witnessed the Ahtnas? many uses of the native copper. His stories about the copper prompted prospectors to return to this area in search of the rich copper ore in the years following his journey. The region boasts a rich mining and exploration history prior to becoming a park in 1980. Several U.S. Geological Survey geologists have conducted reconnaissance surveys in the area since Allen?s explorations. This map is the result of their work and is enhanced by more detailed investigations, which began in the late 1950s and are still continuing. For a better understanding of the processes that have shaped the geology of the park and a history of the geologic investigations in the area, we recommend U.S. Geological Survey Professional Paper 1616, ?A Geologic Guide to Wrangell-Saint Elias National Park and Preserve, Alaska,? an exceptionally well illustrated and informative book by Gary R. Winkler, 2000. Geologically, the park consists of a collage of seven tectonostratigraphic terranes that formed south in the equatorial Pacific Ocean and rafted northward on oceanic plates, eventually accreting to Alaska and the North American continent. Each terrane features a distinct stratigraphy and is separated from neighboring terranes by major strike-slip or thrust faults.

  11. WILD ROGUE WILDERNESS, OREGON.

    USGS Publications Warehouse

    Gray, Floyd; Miller, Michael S.

    1984-01-01

    A geologic, geochemical, and geophysical investigation and a survey of mines, prospects, and quarries were conducted to evaluate the mineral-resource potential of the Wild Rogue Wilderness, Oregon. Approximately 800 mining claims, one-third of which are placer gold locations, exist in or adjacent to the area. The Wild Rogue Wilderness has one area of probable resource for copper, lead, zinc, silver, and gold and two area of probable resource potential for gold.

  12. Active and legacy mining in an arid urban environment: challenges and perspectives for Copiapó, Northern Chile.

    PubMed

    Carkovic, Athena B; Calcagni, Magdalena S; Vega, Alejandra S; Coquery, Marina; Moya, Pablo M; Bonilla, Carlos A; Pastén, Pablo A

    2016-08-01

    Urban expansion in areas of active and legacy mining imposes a sustainability challenge, especially in arid environments where cities compete for resources with agriculture and industry. The city of Copiapó, with 150,000 inhabitants in the Atacama Desert, reflects this challenge. More than 30 abandoned tailings from legacy mining are scattered throughout its urban and peri-urban area, which include an active copper smelter. Despite the public concern generated by the mining-related pollution, no geochemical information is currently available for Copiapó, particularly for metal concentration in environmental solid phases. A geochemical screening of soils (n = 42), street dusts (n = 71) and tailings (n = 68) was conducted in November 2014 and April 2015. Organic matter, pH and elemental composition measurements were taken. Notably, copper in soils (60-2120 mg/kg) and street dusts (110-10,200 mg/kg) consistently exceeded international guidelines for residential and industrial use, while a lower proportion of samples exceeded international guidelines for arsenic, zinc and lead. Metal enrichment occurred in residential, industrial and agricultural areas near tailings and the copper smelter. This first screening of metal contamination sets the basis for future risk assessments toward defining knowledge-based policies and urban planning. Challenges include developing: (1) adequate intervention guideline values; (2) appropriate geochemical background levels for key metals; (3) urban planning that considers contaminated areas; (4) cost-effective control strategies for abandoned tailings in water-scarce areas; and (5) scenarios and technologies for tailings reprocessing. Assessing urban geochemical risks is a critical endeavor for areas where extreme events triggered by climate change are likely, as the mud flooding that impacted Copiapó in late March 2015.

  13. Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Bačeva, Katerina

    2015-01-01

    Bioavailability of metals occurring in soil is the basic source of its accumulation in vegetables and herbs. The impact of soil pollution (due to urban and mining areas) on the food chain presents a challenge for many investigations. Availability of metals in a potentially polluted soil and their possible transfer and bioaccumulation in sorrel (Rumex acetosa), spinach (Spinacia oleracea) and common nettle (Urtica dioica), were examined. Microwave digestion was applied for total digestion of the plant tissues, while on the soil samples open wet digestion with a mixture of acids was applied. Three extraction methods were implemented for the bioavailable metals in the soil. Atomic emission spectrometry with inductively coupled plasma was used for determination of the total contents of 21 elements. Significant enrichments in agricultural soil for As, Pb and Zn (in urban area), Cd, Cu and Ni (in a copper mine area), compared with the respective values from European standards were detected. On the basis of three different extraction methods, higher availability was assumed for both lithogenic and anthropogenic elements. Translocation values >1 were obtained for As, Cd, Cu, Ni, Pb and Zn. Higher bioconcentrating value was obtained only for Cd, while the bioaccumulation values vary from 0.17 for Cd to 0.82 for Zn. The potential availability of hazardous metals in urban and mining soils is examined using DTPA-TEA-CaCl2 (urban) and HCl (Cu-mines areas). Our results suggested that S. oleracea and R. acetosa have a phytostabilization potential for Cd, Cu, Ni and Pb, while U. dioica only for Cu. R. acetosa has a potential for phytoextraction of Cd in urban and copper polluted areas.

  14. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.

  15. UNCOMPAHGRE PRIMITIVE AREA, COLORADO.

    USGS Publications Warehouse

    Luedke, R.G.; Sheridan, M.J.

    1984-01-01

    A mineral-resource study was made of that part of the Uncompahgre National Forest, Colorado constituting the officially designated primitive area. Because the primitive area and its southern border zone contained operating mines producing gold, silver, copper, lead, zinc, and minor amounts of a few other metals, and had been a part of a highly productive mining region, the area was concluded to have large segments of both probable and substantiated mineral-resource potential. No energy resources were identified in the study.

  16. Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2013-01-01

    The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM-based criteria are commonly lower values than the hardness-based criteria and thus suggest a greater degree or magnitude of impairment at the sampling locations. The riffle-habitat benthic invertebrate richness and abundance data correlate strongly with the extent of impact based on water quality for both brooks. Similarly, the fish community assessments document degraded conditions throughout most of Pike Hill Brook, whereas the data for the tributary to Cookville Brook suggest less degradation to this brook. The sediment environment shows similar extents of impairment to the surface-water environment, with most sampling locations in Pike Hill Brook, including the wetland areas, and the tributary to Cookville Brook affected. Sediment impairment is caused by elevated copper concentrations, although localized degradation due to elevated cadmium and zinc concentrations was documented on the basis of exceedances of probable effects concentrations (PECs). In contrast to impairment determined by exceedances of PECs, equilibrium-partitioning sediment benchmarks (based on simultaneously extracted metals, acid volatile sulfides, and total organic carbon) predict no toxic effects in sediments at the background locations and uncertain toxic effects throughout Pike Hill Brook and the tributary to Cookville Brook, with the exception of the most downstream Cookville Brook location, which indicated no toxic effects. Acute laboratory toxicity testing using the amphipod Hyalella azteca and the midge Chironomus dilutus on pore waters extracted from sediment in situ indicate impairment (based on tests with H. azteca) at only one location in Pike Hill Brook and no impairment in the tributary to Cookville Brook. Chronic laboratory sediment toxicity testing using H. azteca and C. dilutus indicated toxicity in Pike Hill Brook at several locations in the lower reach and two locations in the tributary to Cookville Brook. Toxicity was not indicated for either species in sediment from the most acidic metal-rich location, likely due to the low lability of copper in that sediment, as indicated by a low proportion of extractable copper (simultaneously extracted metal (SEM) copper only 5 percent of total copper) and due to the flushing of acidic metal-rich pore water from experimental chambers as overlying test water was introduced before and replaced periodically during the toxicity tests. Depositional habitat invertebrate richness and abundance data generally agreed with the results of toxicity tests and with the extent of impact in the watersheds on the basis of sediment and pore waters. The information was used to develop an overall assessment of the impact of mine drainage on the aquatic system downstream from the Pike Hill copper mines. Most of Pike Hill Brook, including several wetland areas that are all downstream from the Eureka and Union mines, was found to be impaired on the basis of water-quality data and biological assessments of fish or benthic invertebrate communities. In contrast, only one location in the tributary to Cookville Brook, downstream from the Smith mine, is definitively impaired. The biological community begins to recover at the most downstream locations in both brooks due to natural attenuation from mixing with unimpaired streams. On the basis of water quality and biological assessment, the reference locations were of good quality. The sediment toxicity, chemistry, and aquatic community survey data suggest that the sediments could be a source of toxicity in Pike Hill Brook and the tributary to Cookville Brook. On the basis of water quality, sediment quality, and biologic communities, the impacts of mine drainage on the aquatic ecosystem health of the watersheds in the study area are generally consistent with the toxicity suggested from laboratory toxicity testing on pore water and sediments.

  17. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    PubMed

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  18. IDAHO WILDERNESS, IDAHO.

    USGS Publications Warehouse

    Cater, Fred W.; Weldin, R.D.

    1984-01-01

    Mineral surveys conducted in the Idaho Wilderness identified 28 areas with probable or substantiated mineral-resource potential, and 5 mines with demonstrated or inferred resources. Metals including gold, silver, copper, lead, zinc, and tungsten, have been extracted from deposits inside the wilderness. Current studies indicate additional areas of probable mineral-resource potential for gold, tungsten, mercury, rare-earth elements, and base metals related to intrusive rocks that follow structures formed by cauldron subsidence. These on-going studies also indicate that there is probable and substantiated resource potential for cobalt with copper, silver, and gold in the Precambrian rocks in the northeastern part of the wilderness in a geologic environment similar to that of the Blackbird mine that lies outside the area. The nature of the geologic terrane precludes the potential for organic fuels.

  19. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    NASA Astrophysics Data System (ADS)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  20. Diving in Contaminated Water: Health Risk Matrix

    DTIC Science & Technology

    2006-10-01

    health effects if they are present in high concentrations. Some of the metals are insoluble ( mercury , lead) and are associated with particles. Therefore...risk associated with that parameter is really low (for example, copper and mercury ). However, divers have to keep in mind that they may encounter higher...levels if they dive in special areas (areas severely affected by mining activities in the case of copper and mercury ). As research and monitoring

  1. 77 FR 1080 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Copper Flat Mine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ...] Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Copper Flat Mine Plan of... the Draft EIS. ADDRESSES: You may submit comments related to the Copper Flat EIS Project by any of the... New Mexico Copper Corp. to re-start the Copper Flat Mine located in Sierra County, New Mexico. The...

  2. Chemical analyses of water samples from the Picher mining area, northeast Oklahoma and southeast Kansas

    USGS Publications Warehouse

    Parkhurst, David L.

    1987-01-01

    Chemical analyses are presented for 169 water samples from Tar Creek drainage and the Picher lead-zinc mining area of northeast Oklahoma and southeast Kansas. Water samples were taken from November 1983 through February 1986 from the abandoned mines, from points of mine-water discharge, and from surface-water locations upstream and downstream from mine discharge area. The pH, temperature, alkalinity, dissolved oxygen, and specific conductance were measured in the field. Laboratory analyses routinely included the major ions plus aluminum, cadmium, copper, iron, lead, manganese, nickel, and zinc. Non-routine analyses of dissolved gases and tritium are presented. Stable carbon-isotope ratios for 11 mine-water samples and three carbonate-rock samples are reported. Miscellaneous stream-discharge measurements made at the time of sampling or taken from gaging-station records are included in the report.

  3. Environmental geochemical studies of selected mineral deposits in Wrangell-St. Elias National Park and Preserve, Alaska

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Rosenkrans, Danny; Ballestrazze, Vanessa

    2000-01-01

    Environmental geochemical investigations at Wrangell-St. Elias National Park and Preserve, Alaska, between 1994 and 1997 included studies of the Kennecott stratabound copper mines and mill area; historic mines and mill in the Bremner District, gold placer mines at Gold Hill; the undisturbed porphyry, Cu-Mo deposits at Orange Hill and Bond Creek, and the historic mines and mill at Nabesna, The study was in cooperation with the National Park Service and focused on sample media including surface water, bedload sediment, rock, mine waste, and mill tailings samples. Results demonstrate that bedrock geology and mineral deposit type must be considered when environmental geochemical effects of historic or active mine areas are evaluated.

  4. Soil management of copper mine tailing soils--sludge amendment and tree vegetation could improve biological soil quality.

    PubMed

    Asensio, Verónica; Covelo, Emma F; Kandeler, Ellen

    2013-07-01

    Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hydrology and water quality of the copper-nickel study region, northeastern Minnesota

    USGS Publications Warehouse

    Siegel, Donald I.; Ericson, Donald W.

    1980-01-01

    Data were collected on the hydrology of the Copper-Nickel study region to identify the location and nature of groundwater resources, determine the flow characteristics and general quality of the major streams, and determine the potential effects of mining copper and nickel on the hydrologic stream. Groundwater generally occurs in local flow systems within surficial deposits and in fractures in the upper few hundred feet of bedrock. Yields commonly range from 1 to 5 gallons per minute from wells in surficial materials and bedrock, but can be as much as 1,000 gallons per minute from wells in the sand and gravel aquifer underlying the Embarrass River valley. Groundwater generally is calcium-magnesium bicarbonate types. Over a mineralized zone, groundwater has concentrations of copper and nickel greater than 5 micrograms per liter. The average annual runoff from streams in the study area is about 10 inches. About 60% of the annual runoff occurs during snowmelt in spring. Flood peaks are reduced in streams that have surface storage available in on-channel lakes and wetlands. Specific conductance in streams can exceed 250 micromhos per centimeter at 25 Celsius where mine dewatering supplements natural discharge. Estimated groundwater discharge to projected copper-nickel mines ranges from less than 25 to about 2,000 gallons per minute. The introduction of trace metals from future mining activities to the groundwater system can be reduced if tailings basins and stockpiles are located on material which has low permeability, such as till, peat, or bedrock. (USGS)

  6. Geophysical model of the Cu-Mo porphyry ore deposit at Copper Flat Mine, Hillsboro, Sierra County, New Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez, Adrian Emmanuel Gutierrez

    A 3D gravity model of the Copper Flat Mine was performed as part of the exploration of new resources in at the mine. The project is located in the Las Animas Mining District in Sierra County, New Mexico. The mine has been producing ore since 1877 and is currently owned by the New Mexico Copper Corporation, which plans o bringing the closed copper mine back into production with innovation and a sustainable approach to mining development. The Project is located on the Eastern side of the Arizona-Sonora-New Mexico porphyry copper Belt of Cretaceous age. Copper Flat is predominantly a Cretaceous age stratovolcano composed mostly of quartz monzonite. The quartz monzonite was intruded by a block of andesite alter which a series of latite dikes creating veining along the topography where the majority of the deposit. The Copper Flat deposit is mineralized along a breccia pipe where the breccia is the result of auto-brecciation due to the pore pressure. There have been a number of geophysical studies conducted at the site. The most recent survey was a gravity profile on the area. The purpose of the new study is the reinterpretation of the IP Survey and emphasizes the practical use of the gravity geophysical method in evaluating the validity of the previous survey results. The primary method used to identify the deposit is gravity in which four Talwani models were created in order to created a 3D model of the ore body. The Talwani models have numerical integration approaches that were used to divide every model into polygons. The profiles were sectioned into polygons; each polygon was assigning a specific density depending on the body being drawn. Three different gridding techniques with three different filtering methods were used producing ten maps prior to the modeling, these maps were created to establish the best map to fit the models. The calculation of the polygons used an exact formula instead of the numerical integration of the profile made with a Talwani approach. A least squared comparison between the calculated and observed gravity is used to determine the best fitting gravity vectors and the best susceptibility for the assemblage of polygonal prisms. The survey is expected to identify the geophysical anomalies found at the Copper Flat deposit in order to identify the alteration that surrounds that part of the ore body. The understanding of the anomalies needs to be reevaluated in order to have a sharper model of Copper Flat, and to understand the relations of the different structures that shaped this copper porphyry deposit.

  7. Economic booms and risky sexual behavior: evidence from Zambian copper mining cities.

    PubMed

    Wilson, Nicholas

    2012-12-01

    Existing studies suggest that individual and household level economic shocks affect the demand for and supply of risky sex. However, little evidence exists on the effects of an aggregate shock on equilibrium risky sexual behavior. This paper examines the effects of the early twenty-first century copper boom on risky sexual behavior in Zambian copper mining cities. The results suggest that the copper boom substantially reduced rates of transactional sex and multiple partnerships in copper mining cities. These effects were partly concentrated among young adults and copper boom induced in-migration to mining cities appears to have contributed to these reductions. Copyright © 2012. Published by Elsevier B.V.

  8. Application and research of block caving in Pulang copper mine

    NASA Astrophysics Data System (ADS)

    Ge, Qifa; Fan, Wenlu; Zhu, Weigen; Chen, Xiaowei

    2018-01-01

    The application of block caving in mines shows significant advantages in large scale, low cost and high efficiency, thus block caving is worth promoting in the mines that meets the requirement of natural caving. Due to large scale of production and low ore grade in Pulang copper mine in China, comprehensive analysis and research were conducted on rock mechanics, mining sequence, undercutting and stability of bottom structure in terms of raising mine benefit and maximizing the recovery mineral resources. Finally this study summarizes that block caving is completely suitable for Pulang copper mine.

  9. Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China.

    PubMed

    Shi, Gao Ling; Lou, Lai Qing; Zhang, Shuai; Xia, Xue Wei; Cai, Qing Sheng

    2013-12-01

    Field studies were conducted to investigate arsenic (As), copper (Cu), and zinc (Zn) contamination in agricultural soils and wheat crops at two areas in Huaibei, China. Area A is in the proximity of Shuoli coal mine. In area B, three coal mines and a coal cleaning plant were distributed. The potential health risk of As, Cu, and Zn exposure to the local inhabitants through consumption of wheat grains was also estimated. The results showed that significantly higher (p<0.05) concentrations of As, Cu, and Zn were found in soils collected from area B than in those from area A. Arsenic concentrations in wheat sampled from area A were negatively correlated with the distance from the coal mine (p<0.001). Concentrations of Cu and Zn in wheat seedlings and grains collected from area B were significantly higher (p<0.05) than in those collected from area A, with the exception of Zn in wheat seedlings. Concentrations of Cu and Zn in most wheat grain samples were above the permissible limits of Cu and Zn in edible plants set by the Food and Agriculture Organization/World Health Organization. The hazard index of aggregate risk through consumption of wheat grains was 2.3-2.4 for rural inhabitants and 1.4-1.5 for urban inhabitants. The average intake of inorganic As for rural inhabitants in Huaibei was above 10 μg day(-1). These findings indicated that the inhabitants around the coal mine are experiencing a significant potential health risk due to the consumption of locally grown wheat.

  10. Effects of acid mine drainage from an abandoned copper mine, Britannia Mines, Howe Sound, British Columbia, Canada, on transplanted blue mussels (Mytilus edulis).

    PubMed

    Grout, J A; Levings, C D

    2001-04-01

    Juvenile mussels (Mytilus edulis) were transplanted to Howe Sound, British Columbia, Canada, along an apparent pollution gradient of acid mine drainage (AMD) from an abandoned copper (Cu) mine. Cages containing 75 mussels each were placed at a total of 15 stations and were exposed to concentrations of dissolved Cu in surface waters ranging from 5 to 1009 micrograms/l for a period of 41 days. Mussels located at stations closer to the source of AMD at the mouth of Britannia Creek bioaccumulated higher concentrations of Cu and zinc (Zn) in their tissues. Mussel growth was adversely affected by Cu tissue concentrations above 20 micrograms/g dry wt., while declines in survival and condition index occurred in mussels that bioaccumulated greater than 40 micrograms/g dry wt. Cu. Tissue Zn concentrations (117-192 micrograms/g dry wt.) were likely not high enough to have a direct impact on mussel health. Reduced survival of transplanted mussels was supported by an absence of natural mussels in contaminated areas. Phytoplankton was also severely reduced in areas contaminated by mine waters. Based on the weight of evidence, AMD from the Britannia mine had a deleterious impact on mussel survival in a zone extending at least 2.1 km to the north and 1.7 km to the south of Britannia Creek on the east shore of Howe Sound.

  11. Quantification of metal loads by tracer injection and synoptic sampling in Daisy Creek and the Stillwater River, Park County, Montana, August 1999

    USGS Publications Warehouse

    Nimick, David A.; Cleasby, Thomas E.

    2001-01-01

    A metal-loading study using tracer-injection and synoptic-sampling methods was conducted in Daisy Creek and a short reach of the Stillwater River during baseflow in August 1999 to quantify the metal inputs from acid rock drainage in the New World Mining District near Yellowstone National Park and to examine the downstream transport of these metals into the Stillwater River. Loads were calculated for many mainstem and inflow sites by combining streamflow determined using the tracer-injection method with concentrations of major ions and metals that were determined in synoptic water-quality samples. Water quality and aquatic habitat in Daisy Creek have been affected adversely by drainage derived from waste rock and adit discharge at the McLaren Mine as well as from natural weathering of pyrite-rich mineralized rock that comprises and surrounds the ore zones. However, the specific sources and transport pathways are not well understood. Knowledge of the main sources and transport pathways of metals and acid can aid resource managers in planning and conducting effective and cost-efficient remediation activities. The metals cadmium, copper, lead, and zinc occur at concentrations that are sufficiently elevated to be potentially lethal to aquatic life in Daisy Creek and to pose a toxicity risk in part of the Stillwater River. Copper is of most concern in Daisy Creek because it occurs at higher concentrations than the other metals. Acidic surface inflows had dissolved concentrations as high as 20.6 micrograms per liter (?g/L) cadmium, 26,900 ?g/L copper, 76.4 ?g/L lead, and 3,000 ?g/L zinc. These inflows resulted in maximum dissolved concentrations in Daisy Creek of 5.8 ?g/L cadmium, 5,790 ?g/L copper, 3.8 ?g/L lead, and 848 ?g/L zinc. Significant copper loading to Daisy Creek occurred only in the upper half of the stream. Sources included subsurface inflow and right-bank (mined side) surface inflows. Copper loads in left-bank (unmined side) surface inflows were negligible. Most (71 percent) of the total copper loading in the study reach occurred along a 341-foot reach near the stream?s headwaters. About 53 percent of the total copper load was contributed by five surface inflows that drain a manganese bog and the southern part of the McLaren Mine. Copper loading from subsurface inflow was substantial, contributing 46 percent of the total dissolved copper load to Daisy Creek. More than half of this subsurface copper loading occurred downstream from the reaches that received significant surface loading. Flow through the shallow subsurface appears to be the main copper-transport pathway from the McLaren Mine and surrounding altered and mineralized bedrock to Daisy Creek during base-flow conditions. Little is known about the source of acid and copper in this subsurface flow. However, possible sources include the mineralized rocks of Fisher Mountain upgradient of the McLaren Mine area, the surficial waste rock at the mine, and the underlying pyritic bedrock.

  12. Distribution of copper and other metals in gully sediments of part of Okanogan County, Washington

    USGS Publications Warehouse

    Fox, Kenneth F.; Rinehart, C. Dean

    1972-01-01

    A geochemical exploration program aimed at determining regional patterns of metal distribution as well as pinpointing areas likely to contain undiscovered ore deposits was carried out in north-central Okanogan County, Washington. About 1,000 gully and stream sediment samples were collected from a rectangular area of about 800 square miles. The area includes two contiguous, virtually dormant, mining districts that had yielded nearly $1.4 million in gold, silver, lead, copper, and zinc prior to the end of World War I, mostly from quartz lodes.

  13. Geochemistry of Mine Waste and Mill Tailings, Meadow Deposits, Streambed Sediment, and General Hydrology and Water Quality for the Frohner Meadows Area, Upper Lump Gulch, Jefferson County, Montana

    USGS Publications Warehouse

    Klein, Terry L.; Cannon, Michael R.; Fey, David L.

    2004-01-01

    Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and zinc typically are adsorbed to the surface coatings of streambed-sediment grains. Mine waste and mill tailings contain high concentrations of arsenic, cadmium, copper, lead, and zinc in a quartz-rich matrix. Most of the waste sites that were sampled had low acid-generating capacity, although one site (fine-grained mill tailings from the Nellie Grant mine deposited in the upper part of lower Frohner Meadows) had extremely high acid-generating potential because of abundant fine-grained pyrite. Two distinct sites were identified as metal sources based on streambed-sediment samples, cores in the meadow substrate, and mine and mill-tailings samples. The Frohner mine and mill site contribute material rich in arsenic and lead; similar material from the Nellie Grant mine and mill site is rich in cadmium and zinc.

  14. BEARTOOTH PRIMITIVE AREA AND VICINITY, MONTANA AND WYOMING.

    USGS Publications Warehouse

    Simons, Frank S.; Van Noy, Ronald M.

    1984-01-01

    The Beartooth area comprises about 600 sq mi in the central part of the Beartooth Mountains in South-central Montana and northwestern Wyoming just northeast of Yellowstone National Park. A mineral-resource survey concluded that one area of probable and one of substantiated mineral-resource potential are present in the Beartooth area. Three small mining districts (Red Lodge, Stillwater, and Independence) and one possibly major district (Cooke City) adjoin the Beartooth area but lie almost entirely outside it; the northern part of the Cooke City mining district, around Goose Lake, is within the area. This area has substantiated resource potential for copper, silver, gold, and platinum-group elements. The Red Lodge mining district extends into the eastern part of the area and has a probable chrome resource potential. There is little promise for the discovery of energy resources in the area.

  15. The Afghanistan National Railway: A Plan of Opportunity

    DTIC Science & Technology

    2014-01-01

    surface. Seven iron and copper mining “areas of interest” would produce the majority of the country’s export earn- ings: Haji Gak, Syadara, and Zarkashan...and 2040. Minerals from Haji Gak, acclaimed as one of the world’s largest iron reserves, account for most of the anticipated freight demand for a...proposed southern line. Haji Gak’s output is expected to be four times that of all the other mining areas combined. Afghanistan offers many

  16. Estimating the Causal Impact of Proximity to Gold and Copper Mines on Respiratory Diseases in Chilean Children: An Application of Targeted Maximum Likelihood Estimation

    PubMed Central

    Herrera, Ronald; Berger, Ursula; von Ehrenstein, Ondine S.; Díaz, Iván; Huber, Stella; Moraga Muñoz, Daniel; Radon, Katja

    2017-01-01

    In a town located in a desert area of Northern Chile, gold and copper open-pit mining is carried out involving explosive processes. These processes are associated with increased dust exposure, which might affect children’s respiratory health. Therefore, we aimed to quantify the causal attributable risk of living close to the mines on asthma or allergic rhinoconjunctivitis risk burden in children. Data on the prevalence of respiratory diseases and potential confounders were available from a cross-sectional survey carried out in 2009 among 288 (response: 69%) children living in the community. The proximity of the children’s home addresses to the local gold and copper mine was calculated using geographical positioning systems. We applied targeted maximum likelihood estimation to obtain the causal attributable risk (CAR) for asthma, rhinoconjunctivitis and both outcomes combined. Children living more than the first quartile away from the mines were used as the unexposed group. Based on the estimated CAR, a hypothetical intervention in which all children lived at least one quartile away from the copper mine would decrease the risk of rhinoconjunctivitis by 4.7 percentage points (CAR: −4.7; 95% confidence interval (95% CI): −8.4; −0.11); and 4.2 percentage points (CAR: −4.2; 95% CI: −7.9;−0.05) for both outcomes combined. Overall, our results suggest that a hypothetical intervention intended to increase the distance between the place of residence of the highest exposed children would reduce the prevalence of respiratory disease in the community by around four percentage points. This approach could help local policymakers in the development of efficient public health strategies. PMID:29280971

  17. Estimating the Causal Impact of Proximity to Gold and Copper Mines on Respiratory Diseases in Chilean Children: An Application of Targeted Maximum Likelihood Estimation.

    PubMed

    Herrera, Ronald; Berger, Ursula; von Ehrenstein, Ondine S; Díaz, Iván; Huber, Stella; Moraga Muñoz, Daniel; Radon, Katja

    2017-12-27

    In a town located in a desert area of Northern Chile, gold and copper open-pit mining is carried out involving explosive processes. These processes are associated with increased dust exposure, which might affect children's respiratory health. Therefore, we aimed to quantify the causal attributable risk of living close to the mines on asthma or allergic rhinoconjunctivitis risk burden in children. Data on the prevalence of respiratory diseases and potential confounders were available from a cross-sectional survey carried out in 2009 among 288 (response: 69 % ) children living in the community. The proximity of the children's home addresses to the local gold and copper mine was calculated using geographical positioning systems. We applied targeted maximum likelihood estimation to obtain the causal attributable risk (CAR) for asthma, rhinoconjunctivitis and both outcomes combined. Children living more than the first quartile away from the mines were used as the unexposed group. Based on the estimated CAR, a hypothetical intervention in which all children lived at least one quartile away from the copper mine would decrease the risk of rhinoconjunctivitis by 4.7 percentage points (CAR: - 4.7 ; 95 % confidence interval ( 95 % CI): - 8.4 ; - 0.11 ); and 4.2 percentage points (CAR: - 4.2 ; 95 % CI: - 7.9 ; - 0.05 ) for both outcomes combined. Overall, our results suggest that a hypothetical intervention intended to increase the distance between the place of residence of the highest exposed children would reduce the prevalence of respiratory disease in the community by around four percentage points. This approach could help local policymakers in the development of efficient public health strategies.

  18. The Idaho cobalt belt

    USGS Publications Warehouse

    Bookstrom, Arthur A.

    2013-01-01

    The Idaho cobalt belt (ICB) is a northwest-trending belt of cobalt (Co) +/- copper (Cu)-bearing deposits and prospects in the Salmon River Mountains of east-central Idaho, U.S.A. The ICB is about 55 km long and 10 km long in its central part, which contains multiple strata-bound ore zones in the Blackbird mine area. The Black Pine and Iron Creek Co-Cu prospects are southeast of Blackbird, and the Tinkers Pride, Bonanza Copper, Elk Creek, and Salmon Canyon Copper prospects are northwest of Blackbird.

  19. 77 FR 46091 - Notice of Proposed Administrative Settlement Pursuant to the Comprehensive Environmental Response...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Copper Mine Site AGENCY: Environmental Protection Agency. ACTION: Notice, request for public comments... concerning the ANACONDA COPPER MINE SITE (the ``Site''), located in Yerington, Lyon County, Nevada. The... Peak Services Agreement for the Anaconda Copper Mine Site, and Region IX Docket No. 9-2012-07. FOR...

  20. Map showing mineral resource potential of the Paiute Instant (Primitive) Study Area, Mohave County, Arizona

    USGS Publications Warehouse

    Villalobos, Hector A.; Hamm, Louis W.

    1981-01-01

    Several areas in the Paiute Instant Study Area are judged to have at best a low mineral potential. These include areas of copper, lead, manganese, molybdenum, nickel, silver, tungsten, and zinc mineralization, as well as occurrences of dumortierite, beryllium, arsenic, barium, gypsum, gem minerals, sand, gravel, and limestone. The metallic deposits and dumortieri te, beryllium, and arsenic occur over small surface areas. Significant production has not resulted from mining activity in mineralized areas. Sand, gravel, limestone, gem minerals, gypsum, and barium occurrences are far from major markets. Currently, there are no active mining operations in the study area.

  1. Platinum and associated elements at the New Rambler mine and vicinity, Albany and Carbon Counties, Wyoming

    USGS Publications Warehouse

    Theobald, P.K.; Thompson, Charles Emmet

    1968-01-01

    Platinum-group metals in the Medicine Bow Mountains were first identified by W. C. Knight in 1901. In the Medicine Bow Mountains, these metals are commonly associated with copper, silver, or gold in shear zones that cut a series of mafic igneous and metamorphic rocks. At the New Rambler mine, where the initial discovery was made, about 50,000 tons of mine and mill waste contain an average of 0.3 percent copper, 7 ppm (parts per million) silver, 1 ppm platinum plus palladium, and 0.7 ppm gold. This material is believed to be from a low-grade envelope around the high-grade pod of complex ore that was mined selectively in the old workings. Soil samples in the vicinity of the New Rambler mine exhibit a wide range of content of several elements associated with the ore. Most of the variation can be attributed to contamination, from the mine workings. Even though soil samples identify a low-level copper anomaly that persists to the limit of the area sampled, soils do not offer a promising medium for tracing mineralization owing to the blanket of transported overburden. Stream sediments, if preconcentrated for analysis, do reveal anomalies not only in the contaminated stream below the New Rambler mine, but in adjacent drainage and on Dave Creek. Examination of a spectrum of elements in heavy-mineral concentrates from stream sediment may contribute to knowledge of the nature of the mineralization and of the basic geology of the environment. The sampling of bedrock exposures is not particularly fruitful because outcrops are sparse and the exposed rocks are the least altered and mineralized. Bedrock sampling does, however, provide information on the large size and provincial nature of the platinum-rich area. We feel that a properly integrated program of geological, geophysical, and geochemical exploration in the Medicine Bow Mountains and probably in the Sierra Madre to the west has a reasonable probability of successfully locating a complex ore body.

  2. Natural radiation and its hazard in copper ore mines in Poland

    NASA Astrophysics Data System (ADS)

    Chau, Nguyen; Jodłowski, Paweł; Kalita, Stefan; Olko, Paweł; Chruściel, Edward; Maksymowicz, Adam; Waligórski, Michał; Bilski, Paweł; Budzanowski, Maciej

    2008-06-01

    The doses of gamma radiation, concentrations of radium isotopes in water and sediments, radon concentration and concentration of alpha potential energy of radon decay products in the copper ore mine and in the mining region in the vicinity of Lubin town in Poland are presented. These data served as a basis for the assessment of radiological hazard to the mine workers and general public. The results of this assessment indicate that radiological hazard in the region does not differ substantially from typical values associated with natural radiation background. The calculated average annual effective dose for copper miners is 1.48 mSv. In general, copper ore mines can be regarded as radiologically safe workplaces.

  3. An evaluation of problems arising from acid mine drainage in the vicinity of Shasta Lake, Shasta County, California

    USGS Publications Warehouse

    Fuller, Richard H.; Shay, J.M.; Ferreira, R.F.; Hoffman, R.J.

    1978-01-01

    Streams draining the mined areas of massive sulfide ore deposits in the Shasta Mining Districts of northern California are generally acidic and contain large concentrations of dissolved metals, including iron, copper, and zinc. The streams, including Flat, Little Backbone, Spring, West Squaw, Horse, and Zinc Creeks, discharge into Shasta Reservoir and the Sacramento River and have caused numerous fish kills. The sources of pollution are discharge from underground mines, streams that flow into open pits, and streams that flow through pyritic mine dumps where the oxidation of pyrite and other sulfide minerals results in the production of acid and the mobilization of metals. Suggested methods of treatment include the use of air and hydraulic seals in the mines, lime neutralization of mine effluent, channeling of runoff and mine effluent away from mine and tailing areas, and the grading and sealing of mine dumps. A comprehensive preabatement and postabatement program is recommended to evaluate the effects of any treatment method used. (Woodard-USGS)

  4. Preliminary report on the Apex and Paymaster mines, Washington County, Utah

    USGS Publications Warehouse

    Kinkel, Arthur R.

    1951-01-01

    The Apex and Paymaster mines in the Tutsagubet mining district, 25 miles southwest of St. George, Utah, are at an elevation of about 5,000 feet in the Beaver Dam Mountains. The ore was deposited in a steeply dipping fault zone which cuts a thick series of gently dipping limestones of Pennsylvanian age with minor interbedded shales and sandstones. The ore now consists primarily of copper oxides, but is reported to contain small quantities of lead and sine oxides. Complete oxidation extends to the 1,400 level of the Apex mine, the deepest level in this mine. Lead oxides are reported to have been more plentiful in the workings near surface, but the stoped area is now caved to the 1,330 level. The ore bodies probably formed largely as a filling in the fault fissure, and in crushed zones along the fault, with only minor replacement extending for short distances along the bedding. The sulfides oxidized essentially in place and migration of the oxidized copper ores is believed to be limited to a few feet. Additional exploration below the known ore shoots in the Apex and Paymaster mines and along the fissure between the two mines may disclose new ore bodies.

  5. Utilization of Seismic and Infrasound Signals for Characterizing Mining Explosions

    DTIC Science & Technology

    2001-10-01

    different types of mining operations exist, ranging from surface coal cast blasting to hard rock fragmentation blasting in porphyry copper mines. The study...both seismic and infrasound signals. The seismic coupling of large-scale cast blasts in Wyoming, copper fragmentation blasts in Arizona and New Mexico...mining explosions from the copper fragmentation blasts in SE Arizona were observed at Los Alamos. Detected events were among the largest of the blasts

  6. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    PubMed

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  7. Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today.

    PubMed

    Camizuli, Estelle; Scheifler, Renaud; Garnier, Stéphane; Monna, Fabrice; Losno, Rémi; Gourault, Claude; Hamm, Gilles; Lachiche, Caroline; Delivet, Guillaume; Chateau, Carmela; Alibert, Paul

    2018-02-21

    Throughout history, ancient human societies exploited mineral resources all over the world, even in areas that are now protected and considered to be relatively pristine. Here, we show that past mining still has an impact on wildlife in some French protected areas. We measured cadmium, copper, lead, and zinc concentrations in topsoils and wood mouse kidneys from sites located in the Cévennes and the Morvan. The maximum levels of metals in these topsoils are one or two orders of magnitude greater than their commonly reported mean values in European topsoils. The transfer to biota was effective, as the lead concentration (and to a lesser extent, cadmium) in wood mouse kidneys increased with soil concentration, unlike copper and zinc, providing direct evidence that lead emitted in the environment several centuries ago is still bioavailable to free-ranging mammals. The negative correlation between kidney lead concentration and animal body condition suggests that historical mining activity may continue to play a role in the complex relationships between trace metal pollution and body indices. Ancient mining sites could therefore be used to assess the long-term fate of trace metals in soils and the subsequent risks to human health and the environment.

  8. Hydrology and erosion impacts of mining derived coastal sand dunes, Chanaral Bay, Chile

    Treesearch

    Daniel G. Neary; Pablo Garcia-Chevesich

    2008-01-01

    Chile has an economy strongly based on the exploitation of its natural resources. Copper mining represents the main export monetary income, employing thousands of people all along the country. The Chilean Copper Corporation (CODELCO), El Salvador branch, has been the primary mining company, but it will be ending most of its activities by 2011 unless copper prices stay...

  9. INDIAN PEAKS WILDERNESS, COLORADO.

    USGS Publications Warehouse

    Pearson, Robert C.; Speltz, Charles N.

    1984-01-01

    The Indian Peaks Wilderness northwest of Denver is partly within the Colorado Mineral Belt, and the southeast part of it contains all the geologic characteristics associated with the several nearby mining districts. Two deposits have demonstrated mineral resources, one of copper and the other of uranium; both are surrounded by areas with probable potential. Two other areas have probable resource potential for copper, gold, and possibly molydenum. Detailed gravity and magnetic studies in the southeast part of the Indian Peaks Wilderness might detect in the subsurface igneous bodies that may be mineralized. Physical exploration such as drilling would be necessary to determine more precisely the copper resources at the Roaring Fork locality and uranium resources at Wheeler Basin.

  10. Metals transport in the Sacramento River, California, 1996-1997; Volume 2: Interpretation of metal loads

    USGS Publications Warehouse

    Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury.Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ≈ cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15 percent. During irrigation drainage season from rice fields (May-June 1997) loads were cadmium, 53 percent; copper, 42 percent; lead, 20 percent; and zinc, 75 percent. These estimates must be qualified by the following factors: (1) metal loads at Colusa in December 1996 and at Verona in May-June 1997 generally exceeded those determined at Freeport during those sampling periods. Therefore, the above percentages represent maximum estimates of the apparent total proportion of metals from mineralized areas upstream of Keswick Dam; and (2) for logistics reasons, the Sacramento River was sampled at Tower Bridge instead of at Freeport during January 1997.Available data suggest that trace metal loads from agricultural drainage may be significant during certain flow conditions in areas where metals such as copper and zinc are added as agricultural amendments. Copper loads for sampling periods in July and September 1996 and in May-June 1997 show increases of dissolved and colloidal copper and in colloidal zinc between Colusa and Verona, the reach of the Sacramento River along which the Colusa Basin Drain, the Sacramento Slough, and other agricultural return flows are tributaries. Monthly sampling of these two agricultural drains by the USGS National Water-Quality Assessment Program shows seasonal variations in metal concentrations, reaching maximum concentrations of 4 to 6 micrograms per liter in "dissolved" (0.45-micrometer filtrate) copper concentrations in May 1996, December 1996, and June 1997. The total (dissolved plus colloidal) load of copper from the Colusa Basin Drain in June 1997 was 18 kilograms per day, whereas the copper load in Spring Creek, which drains the inactive mines on Iron Mountain, was 20 kilograms per day during the same sampling period. For comparison, during the January 1997 flood, the copper load in Spring Creek was about 1,100 kilograms per day and the copper load in the Yolo Bypass was about 7,300 kilograms per day. The data clearly indicate that most copper and zinc loads during the January 1997 flood entered the Sacramento River upstream of Colusa, and upstream of the influence of the most intense agricultural drainage return flows in the Sacramento River watershed.This study has demonstrated that some trace metals of environmental significance (cadmium, copper, and zinc) in the Sacramento River are transported largely in dissolved form at upstream sites (below Shasta Dam, below Keswick Dam, and at Bend Bridge) proximal to the mineralized areas of the West Shasta and East Shasta mining districts. In contrast, these trace metals are transported largely in colloidal form at downstream sites (Colusa, Verona, Freeport, and Yolo Bypass). Aluminum, iron, and lead were observed to be transported predominantly in the colloidal phase at all mainstem Sacramento River sampling sites during all sampling periods in this study. Despite continuous water treatment, which has removed 85 to 90 percent of the cadmium, copper, and zinc from the mine drainage at Iron Mountain, Spring Creek remains a significant source of these metals to the Sacramento River system.

  11. Mineral Mapping with Imaging Spectroscopy: The Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Vance, J. Sam; Livo, K. Eric; Green, Robert O.

    1998-01-01

    Mineral maps generated for the Ray Mine, Arizona were analyzed to determine if imaging spectroscopy can provide accurate information for environmental management of active and abandoned mine regions. The Ray Mine, owned by the ASARCO Corporation, covers an area of 5700 acres and is situated in Pinal County, Arizona about 70 miles north of Tucson near Hayden, Arizona. This open-pit mine has been a major source of copper since 1911, producing an estimated 4.5 million tons of copper since its inception. Until 1955 mining was accomplished by underground block caving and shrinkage stope methods. (excavation by working in stepped series usually employed in a vertical or steeply inclined orebody) In 1955, the mine was completely converted to open pit method mining with the bulk of the production from sulfide ore using recovery by concentrating and smelting. Beginning in 1969 a significant production contribution has been from the leaching and solvent extraction-electrowinnowing method of silicate and oxide ores. Published reserves in the deposit as of 1992 are 1.1 billion tons at 0.6 percent copper. The Environmental Protection Agency, in conjunction with ASARCO, and NASA/JPL obtained AVIRIS data over the mine in 1997 as part of the EPA Advanced Measurement Initiative (AMI) (Tom Mace, Principal Investigator). This AVIRIS data set is being used to compare and contrast the accuracy and environmental monitoring capabilities of remote sensing technologies: visible-near-IR imaging spectroscopy, multispectral visible and, near-IR sensors, thermal instruments, and radar platforms. The goal of this effort is to determine if these various technologies provide useful information for envirorunental management of active and abandoned mine sites in the arid western United States. This paper focuses on the analysis of AVIRIS data for assessing the impact of the Ray Mine on Mineral Creek. Mineral Creek flows to the Gila River. This paper discusses our preliminary AVIRIS mineral mapping and environmental findings.

  12. Impacts of mining activities on water and soil.

    PubMed

    Warhate, S R; Yenkie, M K N; Chaudhari, M D; Pokale, W K

    2006-04-01

    Seven coal mines are situated in Wardha River Valley. These mines are located at Wani (Dist. Yavatmal of Maharashtra). Out of these, 5 open cast coal mines are run by Western Coal Field Ltd. India. The present study has been undertaken to assess the impacts of mining activities in the adjacent areas. Total 25 samples of water and 19 samples of soil from Nilapur, Bramhani, Kolera, Gowari, Pimpari and Aheri were analyzed for pH, TDS, hardness, alkalinity, fluoride, chloride, nitrite, nitrate, phosphate, sulfate, cadmium, lead, zinc, copper, nickel, arsenic, manganese, sodium and potassium, and the results were compared with the limits of Indian Standards: 10500.

  13. Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India.

    PubMed

    Giri, Soma; Singh, Abhay Kumar

    2017-06-01

    The study was intended to investigate heavy metal contamination levels in the rice grown in the vicinity of the mining areas of Singhbhum Copper Belt, India. The concentrations of the metals were below the Indian maximum allowable concentrations for food except for Pb, Ni, and Zn at some locations. Principal component analysis extracted three factors explaining 79.1% of the data variability. The extracted factors suggested that the sources of metals in the rice can be attributed to soil, irrigating water, and atmospheric dust deposition. High potential health risks of metal exposure from rice consumption were illustrated based on estimated daily intake (EDI) and target hazard quotient (THQ). The daily intakes of heavy metals for local adults were higher than the tolerable daily intakes provided by WHO in some samples for Cr, Fe, Ni, and V. Considering the geometric mean of the metals in rice samples of the study area, the hazard index (HI) for adult was above unity (3.09). Pb, Cu, and Cr were the key components contributing to potential non-carcinogenic risk. The HI varied from 2.24 to 12.7 among the locations indicating an appreciable heath risk to the consumers of the locally grown rice around the mining areas.

  14. Field investigation of a 100-year-old timber crib foundation at a historic copper mine

    Treesearch

    James Wacker; Xiping Wang; Douglas R. Rammer

    2010-01-01

    In June 2009, the authors conducted a comprehensive on-site evaluation of the timber crib foundation at Alaska’s Historic Kennecott Mine Concentration Mill Building. The primary goal of the 6-day inspection was to assess the physical conditions of the existing timber crib foundation and identify timber members and areas that have structural deficiencies. The inspection...

  15. Effectively Engaging in Tribal Consultation to protect Traditional Cultural Properties while navigating the 1872 Mining Law - Tonto National Forest, Western Apache Tribes, & Resolution Copper Mine

    NASA Astrophysics Data System (ADS)

    Nez, N.

    2017-12-01

    By effectively engaging in government-to-government consultation the Tonto National Forest is able to consider oral histories and tribal cultural knowledge in decision making. These conversations often have the potential to lead to the protection and preservation of public lands. Discussed here is one example of successful tribal consultation and how it let to the protection of Traditional Cultural Properties (TCPs). One hour east of Phoenix, Arizona on the Tonto National Forest, Resolution Copper Mine, is working to access a rich copper vein more than 7,000 feet deep. As part of the mining plan of operation they are investigating viable locations to store the earth removed from the mine site. One proposed storage location required hydrologic and geotechnical studies to determine viability. This constituted a significant amount of ground disturbance in an area that is of known importance to local Indian tribes. To ensure proper consideration of tribal concerns, the Forest engaged nine local tribes in government-government consultation. Consultation resulted in the identification of five springs in the project area considered (TCPs) by the Western Apache tribes. Due to the presence of identified TCPs, the Forest asked tribes to assist in the development of mitigation measures to minimize effects of this project on the TCPs identified. The goal of this partnership was to find a way for the Mine to still be able to gather data, while protecting TCPs. During field visits and consultations, a wide range of concerns were shared which were recorded and considered by Tonto National Forest. The Forest developed a proposed mitigation approach to protect springs, which would prevent (not permit) the installation of water monitoring wells, geotechnical borings or trench excavations within 1,200 feet of perennial springs in the project area. As an added mitigation measure, a cultural resources specialist would be on-site during all ground-disturbing activities. Diligent work on behalf of the tribes and the forest resulted in finding mutually acceptable means to allow this project work to commence while respecting the cultural values of the tribes.

  16. IRISH WILDERNESS ROADLESS AREA, MISSOURI.

    USGS Publications Warehouse

    Heyl, Allen V.; Ryan, George S.

    1984-01-01

    Based on surveys, parts of the Irish Wilderness Roadless Area, Missouri are considered to have a probable mineral-resource potential for the occurrence of lead, zinc, and silver deposits. The same Upper Cambrian formations that contain economic deposits of lead, zinc, silver, copper, and, in places, cobalt and nickel in the Viburnum Trend of the Southeast Missouri mining district occur in the deep subsurface within the roadless area. Further, buried hills and wide fault zones, known to be unusually good host areas for deposits in the Southeast Missouri mining district, have been identified by geophysical surveys in the roadless area. There is little promise for the occurrence of other mineral and energy resources in the roadless area.

  17. Assessment of geochemical and hydrologic conditions near Old Yuma Mine in Saguaro National Park, Arizona, 2014–17

    USGS Publications Warehouse

    Beisner, Kimberly R.; Gray, Floyd

    2018-03-13

    The Old Yuma Mine is an abandoned copper, lead, zinc, silver, and gold mine located within the boundaries of Saguaro National Park, Tucson Mountain District, Arizona. This study analyzed the geochemistry of sediments associated with the Old Yuma Mine and assessed hydrologic and geochemical conditions of groundwater to evaluate the area surrounding the Old Yuma Mine. The purpose of the study was to establish the geochemical signature of material associated with the Old Yuma Mine and to compare it with background material and groundwater in the area. Few groundwater samples exceeded the U.S. Environmental Protection Agency (EPA) drinking water standards. Concentrations of several elements were elevated in the waste rock and mine tailings compared with concentrations in sediments collected in background areas. A subset of 15 sediment samples was leached to simulate precipitation interacting with the solid material. Analysis of leachate samples compared to groundwater samples suggests that groundwater samples collected in this study are distinct from leachate samples associated with mining related material. Results suggest that at this time groundwater samples collected during this investigation are not influenced by elements leached from Old Yuma Mine materials.

  18. 170. Credit SHS. Northern California Power Company substation, Bully Hill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    170. Credit SHS. Northern California Power Company substation, Bully Hill Mine area. Note lack of vegetation, caused by nearby copper smelting works. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  19. Copper: Its Environmental Impacts. AIO Red Paper #22.

    ERIC Educational Resources Information Center

    Boutis, Elizabeth; Jantzen, Jonathan Landis, Ed.

    Although copper is a widespread and useful metal, the process of mining and refining copper can have severe detrimental impacts on humans, plants, and animals. The most serious impacts from copper production are the release of sulphur dioxide and other air pollutants and the poisoning of water supplies. These impacts occur in both the mining and…

  20. Geological and geochemical studies in the Robinson Mining District, White Pine County, Nevada, using Skylab S190A imagery

    NASA Technical Reports Server (NTRS)

    Jensen, M. L. (Principal Investigator); Rogers, R. J.; Erickson, M. P.

    1973-01-01

    The author has identified the following significant results. In the Robinson mining district which included the Ruth porphyry copper mines, three large positive aeromagnetic anomalies exist over a Tertiary volcanic area north west of Ruth. Prior studies of this area have suggested that the volcanics may or may not be the cause of the anomalies. Skylab Sl90A imagery, however, indicates possible outcrops in the volcanic area of the Paleozoic sediments. Field studies or ground truth verify the existence of these inliers suggesting that the magnetic anomaly may be the result of a buried intrusive body for which potential mineralization has been covered by the post-ore blanket of volcanics. The area is being mapped in more detail and samples of mercury-bearing soil-gas area being collected within and outside the area.

  1. Ancient mines of the Farah Garan area, southwestern Saudi Arabia

    USGS Publications Warehouse

    Smith, C.W.; Blank, H. Richard

    1979-01-01

    Ancient miners, in quest of oxidized copper minerals, gold, silver, and possibly zinc, mined gossans to approximately 20 m depth in an area 1.1 by 0.5 km in extent at Farah Garan. The gossans, derived from sulfides, are ordinarily found at contacts between marble lenses and metavolcanic-metasedimentary rocks, but in the southern part of the mined area, gossans are also within marbles. The gossans are generally lensoidal and discontinuous along strike. The same type of metallization, in similar rocks, was found at the Hemair ancient workings, about 3 km southeast. Both deposits are thought to be of epigenetic origin, and ore deposition was controlled by shearing along marble contacts. Drilling is recommended at Farah Garan. Al Ashyab is 4 km south of Farah Garan, and similar rocks and structures extend through both areas but there are no ancient workings at Al Ashyab. The dominant geologic feature in the area is a high, narrow, light-colored ridge consisting of intensely silicified quartz porphyry. Pyritized metavolcanic rocks envelope the silicified rock, and geochemical sampling revealed weakly anomalous, erratically spaced concentrations of copper and zinc within these rocks. No further work is recommended for the area. Quartz-filled fractures containing gold were mapped at Al Asharfat, Lejourah, and other locations where ancient miners worked the veins. The gold-bearing quartz veins are narrow and have short strike lengths, and potential tonnages are thought to be small. The veins are in younger, more massive rocks than the enclosing metamorphic rocks and are thought to be younger than the adjacent sulfide deposits. No further work is recommended. Pyritized zones and associated sparse copper oxides extend intermittently about 6 km south of Hemair in metasedimentary rocks of the Jiddah group. Similar zones, associated quartz vein swarms, and minor magnetite and gold are found in mafic metavolcanic rocks adjacent to the contact with quartz porphyry about 1 km west of Al Asharfat. Further study of these areas is recommended.

  2. Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia.

    PubMed

    van der Ent, Antony; Edraki, Mansour

    2018-02-01

    The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu-Au mine that operated in the country. During its operation (1975-1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.

  3. Comparison of exposure to trace elements through vegetable consumption between a mining area and an agricultural area in central Chile.

    PubMed

    Aguilar, Marcelo; Mondaca, Pedro; Ginocchio, Rosanna; Vidal, Kooichi; Sauvé, Sébastien; Neaman, Alexander

    2018-05-03

    Human exposure to trace elements has been a large concern due to the potential health issues. Accordingly, this study aimed to compare the concentrations of arsenic, copper, and zinc in the edible parts of vegetables grown in a mining-agricultural area and in an exclusively agricultural area and to compare the potential human health risks of consuming vegetables from both areas. The consumption habits of the studied population were extracted from the 2010 National Alimentary Survey of Chile. In most cases, the concentrations of trace elements in the edible tissues of vegetables (lettuce, spinach, garlic, onion, carrot, potato, sweet corn, and tomato) were higher in the mining-agricultural area than those in the control area. This difference was most pronounced for leafy vegetables, with arsenic being the trace element of concern. Specifically, the arsenic concentrations in the edible tissues of lettuce and spinach were 8.2- and 5.4-fold higher, respectively, in the mining-agricultural area than in the control area. Lettuce was the vegetable of concern due to its relatively high consumption and relatively high concentration of trace elements. Nevertheless, there was no health risk associated with vegetable consumption in either the mining area or the control area because none of the HQ values surpassed 1.0.

  4. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids

    USDA-ARS?s Scientific Manuscript database

    This study evaluates the effect of surface application of dried Class A biosolids on microbial populations within copper mine tailings. Methods and Results: Mine tailing sites were established at ASARCO Mission Mine close to Sahuarita, Arizona. Site 1 (Dec. 1998) was amended with 248 tons ha-1 of C...

  5. The application of PGNAA borehole logging for copper grade estimation at Chuquicamata mine.

    PubMed

    Charbucinski, J; Duran, O; Freraut, R; Heresi, N; Pineyro, I

    2004-05-01

    The field trials of a prompt gamma neutron activation (PGNAA) spectrometric logging method and instrumentation (SIROLOG) for copper grade estimation in production holes of a porphyry type copper ore mine, Chuquicamata in Chile, are described. Examples of data analysis, calibration procedures and copper grade profiles are provided. The field tests have proved the suitability of the PGNAA logging system for in situ quality control of copper ore.

  6. Determination of instream metal loads using tracer-injection and synoptic-sampling techniques in Wightman Fork, southwestern Colorado, September 1997

    USGS Publications Warehouse

    Ortiz, Roderick F.; Bencala, Kenneth E.

    2001-01-01

    Spatial determinations of the metal loads in Wightman Fork can be used to identify potential source areas to the stream. In September 1997, a chloride tracer-injection study was done concurrently with synoptic water-quality sampling in Wightman Fork near the Summitville Mine site. Discharge was determined and metal concentrations at 38 sites were used to generate mass-load profiles for dissolved aluminum, copper, iron, manganese, and zinc. The U.S. Environmental Protection Agency had previously identified these metals as contaminants of concern.Metal loads increased substantially in Wightman Fork near the Summitville Mine. A large increase occurred along a 60-meter reach that is north of the North Waste Dump and generally corresponds to a region of radial faults. Metal loading from this reach was equivalent to 50 percent or more of the dissolved aluminum, copper, iron, manganese, and zinc load upstream from the outfall of the Summitville Water Treatment Facility (SWTF). Overall, sources along the entire reach upstream from the SWTF were equivalent to 15 percent of the iron, 33 percent of the copper and manganese, 58 percent of the zinc, and 66 percent of the aluminum load leaving the mine site. The largest increases in metal loading to Wightman Fork occurred as a result of inflow from Cropsy Creek. Aluminum, iron, manganese, and zinc loads from Cropsy Creek were equivalent to about 40 percent of the specific metal load leaving the mine site. Copper, iron, and manganese loads from Cropsy Creek were nearly as large or larger than the load from sources upstream from the SWTF.

  7. Disposal and improvement of contaminated by waste extraction of copper mining in chile

    NASA Astrophysics Data System (ADS)

    Naranjo Lamilla, Pedro; Blanco Fernández, David; Díaz González, Marcos; Robles Castillo, Marcelo; Decinti Weiss, Alejandra; Tapia Alvarez, Carolina; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    This project originated from the need of a mining company, which mines and processes copper ore. High purity copper is produced with an annual production of 1,113,928 tons of concentrate to a law of 32%. This mining company has generated several illegal landfills and has been forced by the government to make a management center Industrial Solid Waste (ISW). The forecast volume of waste generated is 20,000 tons / year. Chemical analysis established that the studied soil has a high copper content, caused by nature or from the spread of contaminants from mining activities. Moreover, in some sectors, soil contamination by mercury, hydrocarbons and oils and fats were detected, likely associated with the accumulation of waste. The waters are also impacted by mining industrial tasks, specifically copper ores, molybdenum, manganese, sulfates and have an acidic pH. The ISW management center dispels the pollution of soil and water and concentrating all activities in a technically suitable place. In this center the necessary guidelines for the treatment and disposal of soil contamination caused by uncontrolled landfills are given, also generating a leachate collection system and a network of fluid monitoring physicochemical water quality and soil environment. Keywords: Industrial solid waste, soil contamination, Mining waste

  8. Investigation of the mineral potential of the Clipper Gap, Lone Mountain-Weepah, and Pipe Spring plutons, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingley, J.V.; Maldonado, F.

    1983-09-15

    The Clipper Gap pluton, composed mostly of quartz monzonite with minor granite, granodiorite, and crosscutting alaskite dikes, intrudes Paleozoic western facies strata. A narrow zone of contact metamorphism is present at the intrusive-sediment contact. No mineral production has been recorded from Clipper Gap, but quartz veins containing gold-silver-copper mineral occurrences have been prospected there from the late 1800's to the present. Areas of the Lone Mountain-Weepah plutons that were studied are located in Esmeralda County about 14 km west of Tonopah, Nevada. At Lone Mountain, a Cretaceous intrusive cuts folded Precambrian and Cambrian sediments. Lead-zinc ores have been mined frommore » small replacement ore bodies in the Alpine district, west of Lone Mountain. Copper and molybdenum occurrences have been found along the east flank of Lone Mountain, and altered areas were noted in intrusive outcrops around the south end of Lone Mountain. Mineral occurrences are widespread and varied with mining activity dating back to the 1860's. The Pipe Spring pluton study area is flanked by two important mining districts, Manhattan to the north and Belmont to the northeast. Mining activity at Belmont dates from 1865. Activity at Manhattan was mainly between 1907 and 1947, but the district is active at the present time (1979). Four smaller mining areas, Monarch, Spanish Springs, Baxter Spring, and Willow Springs, are within the general boundary of the area. The Pipe Spring pluton study area contains numerous prospects along the northern contact zone of the pluton. Tungsten-bearing veins occur within the pluton near Spanish Springs, with potential for gold-tungsten placer in the Ralston Valley. Nickel and associated metals occur at Willow Spring and Monarch Ranch, where prospects may be associated with the margin of the Big Ten Peak Caldera.« less

  9. Environmental protection problems in the vicinity of the Zelazny most flotation wastes depository in Poland.

    PubMed

    Lasocki, Stanislaw; Antoniuk, Janusz; Moscicki, Jerzy

    2003-08-01

    The Zelazny Most depository of wastes from copper-ore processing, located in southwest Poland, is the largest mineral wastes repository in Europe. Moreover, it is located in a seismically active area. The seismicity is induced and is connected with mining works in the nearby underground copper mines. Any release of the contents of the repository to the environment could have devastating and even catastrophic consequences. For this reason, geophysical methods are used for continuous monitoring the state of the repository containment dams. The article presents examples of the application of geoelectric methods for detecting sites of leakage of contaminated water and a sketch of the seismic hazard analysis, which was used to predict future seismic vibrations of the repository dams.

  10. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    PubMed Central

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575

  11. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1953-01-01

    The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.

  12. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP–AES and Portable XRF Instruments: A Comparative Study

    PubMed Central

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-01-01

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP–AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP–AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP–AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP–AES analysis data, PXRF analysis data, both ICP–AES and transformed PXRF analysis data by considering the correlation between the ICP–AES and PXRF analysis data, and co-kriging to both the ICP–AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP–AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP–AES and PXRF analysis data. PMID:27043594

  13. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.

    PubMed

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-03-30

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data.

  14. RAINBOW LAKE WILDERNESS AND FLYNN LAKE WILDERNESS STUDY AREA, WISCONSIN.

    USGS Publications Warehouse

    Cannon, W.F.; Dunn, Maynard L.

    1984-01-01

    The Rainbow Lake Wilderness and Flynn Lake Wilderness study area in Wisconsin are contiguous and were studied as a unit. The rainbow Lake Wilderness contains a demonstrated resource of about 210,000 tons of commercial-quality peat in an area of substantiated peat resource potential. The Flynn Lake Wilderness study area contains a demonstrated resource of about 300,000 tons of commercial-quality peat in an area of substantiated peat resource potential. These deposits, however, are of limited importance because larger deposits of similar material are abundant outside the areas, closer to present markets. Rocks in the subsurface contain a low-grade copper resource identified by mining company exploration drilling. Although this is an area of substantiated copper resource potential, it is a low-grade resource, thin and generally at great depth.

  15. Detection of induced seismicity effects on ground surface using data from Sentinel 1A/1B satellites

    NASA Astrophysics Data System (ADS)

    Milczarek, W.

    2017-12-01

    Induced seismicity is the result of human activity and manifests itself in the form of shock and vibration of the ground surface. One of the most common factors causing the occurrence of induced shocks is underground mining activity. Sufficiently strong high-energy shocks may cause displacements of the ground surface. This type of shocks can have a significant impact on buildings and infrastructure. Assessment of the size and influence of induced seismicity on the ground surface is one of the major problems associated with mining activity. In Poland (Central Eastern Europe) induced seismicity occurs in the area of hard coal mining in the Upper Silesian Coal Basin and in the area of the Legnica - Głogów Copper Basin.The study presents an assessment of the use of satellite radar data (SAR) for the detection influence of induced seismicity in mining regions. Selected induced shocks from the period 2015- 2017 which occurred in the Upper Silesian Coal Basin and the Legnica - Głogów Copper Basin areas have been analyzed. In the calculations SAR data from the Sentinel 1A and Sentinel 1B satellites have been used. The results indicate the possibility of quickly and accurate detection of ground surface displacements after an induced shock. The results of SAR data processing were compared with the results from geodetic measurements. It has been shown that SAR data can be used to detect ground surface displacements on the relative small regions.

  16. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2010-01-14

    ISS022-E-026137 (14 Jan. 2010) --- Open Pit Mines in southern Arizona are featured in this image photographed by an Expedition 22 crew member on the International Space Station. The State of Arizona is the United States? largest producer of the metal copper, primarily mined from ore bodies known as porphyry copper deposits. Copper is a good conductor of electricity and heat, and is a vital element of virtually all of our electronic devices and components. A porphyry copper deposit is a geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes, it forms an igneous rock with large crystals embedded in a fine-grained matrix, known as porphyry. Hot fluids circulate through the magma and surrounding rocks via fractures, depositing copper-bearing and other minerals in characteristic spatial patterns that signal the nature of the ore body to a geologist. The most common approach to extracting metal-bearing ore from a porphyry copper deposit is by open-pit mining. For more details, please refer to http://earth.jsc.nasa.gov/EarthObservatory/OpenPitMinesSouthernArizona.htm.

  17. Production of Copper as a Complex Mining and Metallurgical Processing System in Polish Copper Mines of the Legnica-Glogów Copper Belt

    NASA Astrophysics Data System (ADS)

    Malewski, Jerzy

    2017-12-01

    Geological and technological conditions of Cu production in the Polish copper mines of the Legnica-Glogów Copper Belt are presented. Cu production is recognized as a technological fractal consisting of subsystems for mineral exploration, ore extraction and processing, and metallurgical treatment. Qualitative and quantitative models of these operations have been proposed, including estimation of their costs of process production. Numerical calculations of such a system have been performed, which allow optimize the system parameters according to economic criteria under variable Cu mineralization in the ore deposit. The main objective of the study is to develop forecasting tool for analysis of production efficiency in domestic copper mines based on available sources of information. Such analyses are primarily of social value, allowing for assessment of the efficiency of management of local mineral resources in the light of current technological and market constraints. At the same time, this is a concept of the system analysis method to manage deposit exploitation on operational and strategic level.

  18. Mining legacy across a wetland landscape: high mercury in Upper Peninsula (Michigan) rivers, lakes, and fish.

    PubMed

    Kerfoot, W Charles; Urban, Noel R; McDonald, Cory P; Zhang, Huanxin; Rossmann, Ronald; Perlinger, Judith A; Khan, Tanvir; Hendricks, Ashley; Priyadarshini, Mugdha; Bolstad, Morgan

    2018-04-25

    A geographic enigma is that present-day atmospheric deposition of mercury in the Upper Peninsula of Michigan is low (48%) and that regional industrial emissions have declined substantially (ca. 81% reduction) relative to downstate. Mercury levels should be declining. However, state (MDEQ) surveys of rivers and lakes revealed elevated total mercury (THg) in Upper Peninsula waters and sediment relative to downstate. Moreover, Western Upper Peninsula (WUP) fish possess higher methyl mercury (MeHg) levels than Northern Lower Peninsula (NLP) fish. A contributing explanation for elevated THg loading is that a century ago the Upper Peninsula was a major industrial region, centered on mining. Many regional ores (silver, copper, zinc, massive sulfides) contain mercury in part per million concentrations. Copper smelters and iron furnace-taconite operations broadcast mercury almost continuously for 140 years, whereas mills discharged tailings and old mine shafts leaked contaminated water. We show that mercury emissions from copper and iron operations were substantial (60-650 kg per year) and dispersed over relatively large areas. Moreover, lake sediments in the vicinity of mining operations have higher THg concentrations. Sediment profiles from the Keweenaw Waterway show that THg accumulation increased 50- to 400-fold above modern-day atmospheric deposition levels during active mining and smelting operations, with lingering MeHg effects. High MeHg concentrations are geographically correlated with low pH and dissolved organic carbon (DOC), a consequence of biogeochemical cycling in wetlands, characteristic of the Upper Peninsula. DOC can mobilize metals and elevate MeHg concentrations. We argue that mercury loading from mining is historically superimposed upon strong regional wetland effects, producing a combined elevation of both THg and MeHg in the Western Upper Peninsula.

  19. [RESULTS OF DUST FACTOR IN COPPER PYROMETALLURGY].

    PubMed

    Adrianovskiy, V I; Lipatov, G Ya; Zebzeeva, N V; Kuzmina, E A

    2016-01-01

    The dust entering the air of the working zone of metallurgical shops was shown to be presented by a disintegration aerosols originating in crushing and transporting ore materials and condensation occurring in the course of smelting, converting and fire-refining copper. The overwhelming majority of the grains have a size of 2.1-5.0 mm, which determines a fixed condition of the presence of given dust in the working area, its long presence in the deeper parts of the respiratory system. At the preparatory stages in the composition of the dust there are presented significant amounts of crystalline silicon dioxide possessing of the fibrogenic impact on the body. In the dust the presence of the crystalline silicon dioxide, arsenic, nickel, cadmium determines its carcinogenic hazard. The elevated dustiness of the air is noted with the reflective and especially mine melting, due to the imperfection of the technological equipment and sanitary technical devices. Autogenous smelting processes have demonstrated their hygienic advantage over outdated methods of producing blister copper mining and smelting reflectivity.

  20. Selected Water- and Sediment-Quality, Aquatic Biology, and Mine-Waste Data from the Ely Copper Mine Superfund Site, Vershire, VT, 1998-2007

    USGS Publications Warehouse

    Argue, Denise M.; Kiah, Richard G.; Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Hathaway, Edward; Coles, James F.

    2008-01-01

    The data contained in this report are a compilation of selected water- and sediment-quality, aquatic biology, and mine-waste data collected at the Ely Copper Mine Superfund site in Vershire, VT, from August 1998 through May 2007. The Ely Copper Mine Superfund site is in eastern, central Vermont (fig. 1) within the Vermont Copper Belt (Hammarstrom and others, 2001). The Ely Copper Mine site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2001. Previous investigations conducted at the site documented that the mine is contributing metals and highly acidic waters to local streams (Hammarstrom and others, 2001; Holmes and others, 2002; Piatak and others, 2003, 2004, and 2006). The U.S. Geological Survey (USGS), in cooperation with the USEPA, compiled selected data from previous investigations into uniform datasets that will be used to help characterize the extent of contamination at the mine. The data may be used to determine the magnitude of biological impacts from the contamination and in the development of remediation activities. This report contains analytical data for samples collected from 98 stream locations, 6 pond locations, 21 surface-water seeps, and 29 mine-waste locations. The 98 stream locations are within 3 streams and their tributaries. Ely Brook flows directly through the Ely Copper Mine then into Schoolhouse Brook (fig. 2), which joins the Ompompanoosuc River (fig. 1). The six pond locations are along Ely Brook Tributary 2 (fig. 2). The surface-water seeps and mine-waste locations are near the headwaters of Ely Brook (fig. 2 and fig. 3). The datasets 'Site_Directory' and 'Coordinates' contain specific information about each of the sample locations including stream name, number of meters from the mouth of stream, geographic coordinates, types of samples collected (matrix of sample), and the figure on which the sample location is depicted. Data have been collected at the Ely Copper Mine Superfund site by the USEPA, the Vermont Department of Environmental Conservation (VTDEC), and the USGS. Data also have been collected on behalf of USEPA by the following agencies: Arthur D. Little Incorporated (ADL), U.S. Army Cold Region Research and Engineering Laboratory (CRREL), URS Corporation (URS), USEPA, and USGS. These data provide information about the aquatic communities and their habitats, including chemical analyses of surface water, pore water, sediments, and fish tissue; assessments of macroinvertebrate and fish assemblages; physical characteristics of sediments; and chemical analyses of soil and soil leachate collected in and around the piles of mine waste.

  1. [Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province and evaluation of its ecological risk].

    PubMed

    Jin, Shu-Lan; Huang, Yi-Zong; Wang, Fei; Xu, Feng; Wang, Xiao-Ling; Gao, Zhu; Hu, Ying; Qiao Min; Li, Jin; Xiang, Meng

    2015-03-01

    Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi.

  2. Rhenium

    USGS Publications Warehouse

    John, David A.; Seal, Robert R.; Polyak, Désirée E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Rhenium is one of the rarest elements in Earth’s continental crust; its estimated average crustal abundance is less than 1 part per billion. Rhenium is a metal that has an extremely high melting point and a heat-stable crystalline structure. More than 80 percent of the rhenium consumed in the world is used in high-temperature superalloys, especially those used to make turbine blades for jet aircraft engines. Rhenium’s other major application is in platinum-rhenium catalysts used in petroleum refining.Rhenium rarely occurs as a native element or as its own sulfide mineral; most rhenium is present as a substitute for molybdenum in molybdenite. Annual world mine production of rhenium is about 50 metric tons. Nearly all primary rhenium production (that is, rhenium produced by mining rather than through recycling) is as a byproduct of copper mining, and about 80 percent of the rhenium obtained through mining is recovered from the flue dust produced during the roasting of molybdenite concentrates from porphyry copper deposits. Molybdenite in porphyry copper deposits can contain hundreds to several thousand grams per metric ton of rhenium, although the estimated rhenium grades of these deposits range from less than 0.1 gram per metric ton to about 0.6 gram per metric ton.Continental-arc porphyry copper-(molybdenum-gold) deposits supply most of the world’s rhenium production and have large inferred rhenium resources. Porphyry copper mines in Chile account for about 55 percent of the world’s mine production of rhenium; rhenium is also recovered from porphyry copper deposits in the United States, Armenia, Kazakhstan, Mexico, Peru, Russia, and Uzbekistan. Sediment-hosted strata-bound copper deposits in Kazakhstan (of the sandstone type) and in Poland (of the reduced-facies, or Kupferschiefer, type) account for most other rhenium produced by mining. These types of deposits also have large amounts of identified rhenium resources. The future supply of rhenium is likely to depend largely on the capacity of the specialized processing facilities needed to recover rhenium from molybdenite concentrates.The environmental consequences of rhenium recovery are closely linked to the consequences of mining large porphyry copper and strata-bound copper deposits; no additional environmental impact from recovery of rhenium from these deposits has been identified. No information is available regarding the potential toxic effects of rhenium on humans, partly because of the low natural abundance of rhenium.

  3. Flambeau Mining Corporation, Ladysmith, Rusk County, Wisconsin. Proposed Open Pit Copper Mine and Waste Containment Area, Draft Environmental Impact Statement.

    DTIC Science & Technology

    1976-08-01

    American elm Lonicera tatarica - tartarian honeysuckle Ulmus rubra - slippery elm Siiibucus canadenis - common elder Ulmus thoiii~sii - cork elm ...community borders the marshes and swamps. 2.060 The predominant species are the trembling aspen (Populus tremuloides), red maple (Acer rubrum), the elms ...succession. The most numerous trees (in descending order) are: white birch, red maple, aspen, sugar maple, black ash, basswood, elm (Ulmus sp.), hemlock

  4. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation.

    PubMed

    Murguía, Diego I; Bringezu, Stefan; Schaldach, Rüdiger

    2016-09-15

    Biodiversity loss is widely recognized as a serious global environmental change process. While large-scale metal mining activities do not belong to the top drivers of such change, these operations exert or may intensify pressures on biodiversity by adversely changing habitats, directly and indirectly, at local and regional scales. So far, analyses of global spatial dynamics of mining and its burden on biodiversity focused on the overlap between mines and protected areas or areas of high value for conservation. However, it is less clear how operating metal mines are globally exerting pressure on zones of different biodiversity richness; a similar gap exists for unmined but known mineral deposits. By using vascular plants' diversity as a proxy to quantify overall biodiversity, this study provides a first examination of the global spatial distribution of mines and deposits for five key metals across different biodiversity zones. The results indicate that mines and deposits are not randomly distributed, but concentrated within intermediate and high diversity zones, especially bauxite and silver. In contrast, iron, gold, and copper mines and deposits are closer to a more proportional distribution while showing a high concentration in the intermediate biodiversity zone. Considering the five metals together, 63% and 61% of available mines and deposits, respectively, are located in intermediate diversity zones, comprising 52% of the global land terrestrial surface. 23% of mines and 20% of ore deposits are located in areas of high plant diversity, covering 17% of the land. 13% of mines and 19% of deposits are in areas of low plant diversity, comprising 31% of the land surface. Thus, there seems to be potential for opening new mines in areas of low biodiversity in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    PubMed

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  6. Somatic and Functional Status of Boys from Various Social and Environmental Categories

    ERIC Educational Resources Information Center

    Domaradzki, Jaroslaw; Ignasiak, Zofia; Slawinska, Teresa

    2009-01-01

    Study aim: To assess the somatic and fitness status of adolescent boys from polluted industrial areas. Material and methods: A group of 313 boys aged 11-15 years from 5 villages located in the copper mine area in South-Western Poland were classified by the degree of lead and cadmium pollution (high--very high) and by parents' education…

  7. Lake sediments record prehistoric lead pollution related to early copper production in North America.

    PubMed

    Pompeani, David P; Abbott, Mark B; Steinman, Byron A; Bain, Daniel J

    2013-06-04

    The mining and use of copper by prehistoric people on Michigan's Keweenaw Peninsula is one of the oldest examples of metalworking. We analyzed the concentration of lead, titanium, magnesium, iron, and organic matter in sediment cores recovered from three lakes located near mine pits to investigate the timing, location, and magnitude of ancient copper mining pollution. Lead concentrations were normalized to lithogenic metals and organic matter to account for processes that can influence natural (or background) lead delivery. Nearly simultaneous lead enrichments occurred at Lake Manganese and Copper Falls Lake ∼8000 and 7000 years before present (yr BP), indicating that copper extraction occurred concurrently in at least two locations on the peninsula. The poor temporal coherence among the lead enrichments from ∼6300 to 5000 yr BP at each lake suggests that the focus of copper mining and annealing shifted through time. In sediment younger than ∼5000 yr BP, lead concentrations remain at background levels at all three lakes, excluding historic lead increases starting ∼150 yr BP. Our work demonstrates that lead emissions associated with both the historic and Old Copper Complex tradition are detectable and can be used to determine the temporal and geographic pattern of metal pollution.

  8. Retention of atmospheric Cu, Ni, Cd and Zn in an ombrotrophic peat profile near the Outokumpu Cu-Ni mine, SE-Finland

    NASA Astrophysics Data System (ADS)

    Rausch, N.; Nieminen, T. M.; Ukonmaanaho, L.; Cheburkin, A.; Krachler, M.; Shotyk, W.

    2003-05-01

    Peat cores taken from ombrotrophic bogs are widely used to reconstruct historical records of atmospheric lead and mercury déposition[1, 2]. In this study, the retention of copper, nickel, cadmium and zinc in peat bogs are studied by comparing high resolution, age dated concentration profiles with emissions from the main local source, the Outokumpu copper-nickel mine. An ombrotrophic peat core was taken from the vicinity of Outokumpu, E Finland. Copper and zinc concentrations of dry peat were measured by XRF, cadmium and nickel by GF-AAS, and sample ages by 210Pb. Only copper and nickel show enhanced concentrations in layers covering the mining period, indicating a retention of these elements. However, the more detailed comparison of ore production rates and concentrations in age-dated samples show clearly that only copper is likely to be permanently fixed, while nickel doesn't reflect the mining activity. Even though copper is retained in the upper part of the profile, a possible redeposition of this element by secondary processes (e.g., water table fluctuations) can not be excluded. This question will be resolved by further investigations, e.g. by pore water profiles.

  9. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    PubMed Central

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  10. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.

    2006-01-01

    The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was potentially acid generating because of paste-pH values of less than 4 and negative net-neutralization potentials (NNP). The processed flotation-mill tailings, however, had a near neutral paste pH, positive NNP, and a few weight percent calcite. Leachate tests indicated that elements and compounds such as Al, Cd, Cu, Fe, Mn, Se, SO4, and Zn were leached from mine waste in concentrations that exceeded aquatic ecosystem and drinking-water standards. Mine waste from the Pike Hill mines was chemically and mineralogically similar to that from the Elizabeth and Ely mines. In addition, metals were leached and acid was produced from mine waste from the Pike Hill mines in comparable concentrations to those from the Elizabeth and Ely mines, although the host rock of the Pike Hill deposits contains significant amounts of carbonate minerals and, thus, a greater acid-neutralizing capacity when compared to the host rocks of the Elizabeth and Ely deposits. Water samples collected from unimpacted parts of the Waits River watershed generally contained lower amounts of metals compared to water samples from mine drainage, were alkaline, and had a neutral pH, which was likely because of calcareous bedrock. Seeps and mine pools at the mine site had acidic to neutral pH, ranged from oxic to anoxic, and generally contained concentrations of metals, for example, aluminum, cadmium, copper, iron, and zinc, that exceeded aquatic toxicity standards or drinking-water standards, or both. Surface waters directly downstream of the Eureka and Union mines were acidic, as indicated by pH values from 3.1 to 4.2, and contained high concentrations of some elements including as much as 11,400 micrograms per liter (?g/L) Al, as much as 22.9 ?g/L Cd, as much as 6,790 ?g/L Cu, as much as 23,300 ?g/L Fe, as much as 1,400 ?g/L Mn, and as much as 3,570 ?g/L Zn. The concentrations of these elements exceeded water-quality guidelines. Generally, in surface waters, the pH increased and the concentrations of these elemen

  11. Charcoal from a prehistoric copper mine in the Austrian Alps: dendrochronological and dendrological data, demand for wood and forest utilisation.

    PubMed

    Pichler, Thomas; Nicolussi, Kurt; Goldenberg, Gert; Hanke, Klaus; Kovács, Kristóf; Thurner, Andrea

    2013-02-01

    During prehistory fire-setting was the most appropriate technique for exploiting ore deposits. Charcoal fragments found in the course of archaeological excavations in a small mine called Mauk E in the area of Schwaz/Brixlegg (Tyrol, Austria) are argued to be evidence for the use of this technology. Dendrochronological analyses of the charcoal samples yielded calendar dates for the mining activities showing that the exploitation of the Mauk E mine lasted approximately one decade in the late 8th century BC. Dendrological studies show that the miners utilised stem wood of spruce and fir from forests with high stand density for fire-setting and that the exploitation of the Mauk E mine had only a limited impact on the local forests.

  12. Toxic metal tolerance in native plant species grown in a vanadium mining area.

    PubMed

    Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Li, Tianran; Zhang, Wenjie; Ding, Xutong

    2017-12-01

    Vanadium (V) has been extensively mined in China and caused soil pollution in mining area. It has toxic effects on plants, animals and humans, posing potential health risks to communities that farm and graze cattle adjacent to the mining area. To evaluate in situ phytoremediation potentials of native plants, V, chromium, copper and zinc concentrations in roots and shoots were measured and the bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. The results showed that Setaria viridis accumulated greater than 1000 mg kg -1 V in its shoots and exhibited TF > 1 for V, Cr, Zn and BAF > 1 for Cu. The V accumulation amount in the roots of Kochia scoparia also surpassed 1000 mg kg -1 and showed TF > 1 for Zn. Chenopodium album had BAF > 1 for V and Zn and Daucus carota showed TF > 1 for Cu. Eleusine indica presented strong tolerance and high metal accumulations. S. viridis is practical for in situ phytoextractions of V, Cr and Zn and phytostabilisation of Cu in V mining area. Other species had low potential use as phytoremediation plant at multi-metal polluted sites, but showed relatively strong resistance to V, Cr, Cu and Zn toxicity, can be used to vegetate the contaminated soils and stabilise toxic metals in V mining area.

  13. Chalcopyrite—bearer of a precious, non-precious metal

    USGS Publications Warehouse

    Kimball, Bryn E.

    2013-01-01

    The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.

  14. Arsenic exposure levels in relation to different working departments in a copper mining and smelting plant

    NASA Astrophysics Data System (ADS)

    Sun, Qingshan; Song, Yingli; Liu, Shengnan; Wang, Fei; Zhang, Lin; Xi, Shuhua; Sun, Guifan

    2015-10-01

    The investigation was carried out to evaluate arsenic exposure and the urine metabolite profiles of workers with different working departments, including administration (Group1), copper ore mining (Group2), copper ore grinding (Group3), electrolytic procession (Group4) and copper smelting (Group5) in a Copper mining and processing plant in China. Information about characteristics of each subject was obtained by questionnaire and inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The highest urinary levels of iAs, MMA and DMA all were found in the Group 5. Group 4 workers had a higher iAs% and a lower PMI compared to Group 3. The urinary total As (TAs) levels of 54.7% subjects exceeded 50 μg/g Cr, and the highest percentage (93.3%) was found in Group 5, smelters. The results of the present study indicate that workers in copper production plant indeed exposed to As, especially for smelters and workers of electrolytic process.

  15. Anaconda Copper Mine, Yerington, NV; Proposed Settlement Agreement and Order on Consent

    EPA Pesticide Factsheets

    This notice announces the availability for review and comment of an administrative Settlement Agreement and Order on Consent under CERCLA between the EPA and Atlantic Richfield Company regarding the Anaconda Copper Mine Site in Yerington, Nevada.

  16. The Role of Ground Truth in Improved Identification of Mining Explosion Signals Utilization of Calibration Explosions and Acoustic Signals

    DTIC Science & Technology

    2000-09-01

    and the Porphyry Copper District (PCD) of east central Arizona and south west New Mexico were used in gathering ground truth ranging from mine records...previous studies of large coal cast blasting operations in Wyoming that trigger the IMS (Hedlin et al. 2000), the porphyry copper region of Arizona and...local mines producing the sources. Close cooperation has been developed with the Phelps Dodge mines in Morenci, Arizona and Tyrone, New Mexico where in

  17. Assessment of mineral resource tracts in the Chugach National Forest, Alaska

    USGS Publications Warehouse

    Nelson, Steven W.; Miller, Marti L.

    2000-01-01

    Locatable minerals have been produced from the Chugach National Forest (CNF) for nearly 100 years. Past gold production has come from the Kenai Peninsula and the Girdwood, Port Wells, and Valdez areas. Copper and by-product gold and silver have been produced from mines at Ellamar, on Latouche Island, and near Valdez. Many of the past-producing properties were not mined out and contain significant inferred reserves of gold, copper, lead, zinc, and silver. This report outlines mineral resource areas (tracts) that contain both identified and undiscovered mineral resources. These tracts were drawn on the basis of one or more of the following criteria: (1) geochemical anomalies, (2) favorable geologic units, (3) presence of mines, prospects or mineral occurrences, and (4) geophysical anomalies. Bliss (1989) used six mineral deposit models to describe the types of deposits known from the CNF. Of these deposit types, only four are sufficiently known and defined in the CNF to be suitable for consideration in outlining and ranking of mineral resource tracts; these deposit types are: (1) Cyprus-type massive sulfide, (2) Chugach-type low-sulfide goldquartz veins, (3) placer gold, and (4) polymetallic vein. The U.S. Bureau of Mines indicated that most of the inferred mineral reserves in the CNF would not be economic to produce under current prices. Small-scale placer gold operations are a possible exception. Other known resources that have recorded past production (oil, coal, rock, sand, and gravel) are not addressed in this report.

  18. Liquid Loss From Advancing Aqueous Foams With Very Low Water Content

    DTIC Science & Technology

    2011-01-14

    fractionation used by pharmaceutical and food industries for protein separation, and froth flotation used by the mining industry for mineral separation...SureShotsSprayer.com) onto a copper screen with a diameter of 6.4 cm and 30x30 mesh cells per inch (40.8% open area) held in place by a rubber gasket. The N2 pressure...distribution over the copper screen. Air flow rates of 8 L/min and 20 L/min, as determined by a mass-flow controller (Sierra Control Flo-Box Model

  19. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    NASA Astrophysics Data System (ADS)

    Stanojlović, Rodoljub D.; Sokolović, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  20. Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites.

    PubMed

    Guo, Pan; Wang, Ting; Liu, Yanli; Xia, Yan; Wang, Guiping; Shen, Zhenguo; Chen, Yahua

    2014-01-01

    A field investigation, field experiment, and hydroponic experiment were conducted to evaluate feasibility of using Oenothera glazioviana for phytostabilization of copper-contaminated soil. In semiarid mine tailings in Tongling, Anhui, China, O. glazioviana, a copper excluder, was a dominant species in the community, with a low bioaccumulation factor, the lowest copper translocation factor, and the lowest copper content in seed (8 mg kg(-1)). When O. glazioviana was planted in copper-polluted farmland soil in Nanjing, Jiangsu, China, its growth and development improved and the level of γ-linolenic acid in seeds reached 17.1%, compared with 8.73% in mine tailings. A hydroponic study showed that O. glazioviana had high tolerance to copper, low upward transportation capacity of copper, and a high γ-linolenic acid content. Therefore, it has great potential for the phytostabilization of copper-contaminated soils and a high commercial value without risk to human health.

  1. Heavy metal effects on the biodegradation of fluorene by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated mine soil

    NASA Astrophysics Data System (ADS)

    Nam, I.; Chon, C.; Jung, K.; Kim, J.

    2012-12-01

    Polycyclic aromatic hydrocarbon compounds (PAHs) are widely distributed in the environment and occur ubiquitously in fossil fuels as well as in products of incomplete combustion and are known to be strongly toxic, often with carcinogenic and mutagenic properties. Fluorene is one of the 16 PAHs included in the list of priority pollutants of the Environmental Protection Agency. The fluorene-degrading bacterial strain Sphingobacterium sp. KM-02 was isolated from PAHs-contaminated soil near an abandoned mine impacted area by selective enrichment techniques. Fluorene added to the Sphingobacterium sp. KM-02 culture as sole carbon and energy source was 78.4% removed within 120 h. A fluorene degradation pathway is tentatively proposed based on mass spectrometric identification of the metabolic intermediates 9-fluorenone, 4-hydroxy-9-fluorenone, and 8-hydroxy-3,4-benzocoumarin. Further the ability of Sphingobacterium sp. KM-02 to bioremediate 100 mg/kg fluorene in mine soil was examined by composting under laboratory conditions. Treatment of microcosm soil with the strain KM-02 for 20 days resulted in a 65.6% reduction in total amounts. These results demonstrate that Sphingobacterium sp. KM-02 could potentially be used in the bioremediation of fluorene from contaminated soil. Mine impacted area comprises considerable amounts of heavy metals such as cadmium, lead, mercury, arsenic, and copper. Although some of these metals are necessary for biological life, excessive quantities often result in the inhibition of essential biological reactions via numerous pathways. A number of reports collectively show that various metals, such as Al, Co, Ni, Cu, Zn, Pb, and Hg at a range of concentrations have adverse effects on the degradation of organic compounds. However, at present there is only limited information on the effect of individual heavy metals on the biological degradation of polyaromatic hydrocarbons (PAHs) including fluorene. Moreover, heavy metal effects were not considered during biodegradation in mine impacted areas. The heavy metal effects on the degradation of fluorene by Sphingobacterium sp. KM-02 was determined in liquid cultures. The results showed that 10 mg/L cadmium, mercury and copper not only affected the growth of KM-02 with fluorene but also the ability of resting cells to degrade this compound. Growth and degradation were strongly inhibited by mercury, even at 1 mg/L, while the inhibitory effect of cadmium and copper at the same concentration or at 5 mg/L were negligible. In contrast, arsenic and lead did not affect degradation or growth, even at very high concentrations of 100 mg/L. Subsequent analyses additionally revealed that concentrations of arsenic and lead remained unchanged following incubation, while those of cadmium, mercury and copper decreased significantly. These data suggest the potential inhibition of fluorene degradation in mine soil, the major source of PAHs degradation, but which also would limit the applicability of a slurry-based fermentation reactor for PAHs degradation. Therefore, further study should be performed to elucidate whether these conditions are effectively imitating those of contaminated mine impacted soil, which are very complicated chemical and physical phenomena.

  2. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    USGS Publications Warehouse

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    One implication of the economic filter results for undiscovered copper resources is that global copper supply will continue to be dominated by production from a small number of giant deposits. This domination of resource supply by a small number of producers may increase in the future, because an increasing proportion of new deposit discoveries are likely to occur in remote areas and be concealed deep beneath covering rock and sediments. Extensive mineral exploration activity will be required to meet future resource demand, because these deposits will be harder to find and more costly to mine than near-surface deposits located in more accessible areas. Relatively few of the new deposit discoveries in these high-cost settings will have sufficient tonnage and grade characteristics to assure positive economic returns on development and exploration costs.

  3. Mining for metals in society's waste

    USGS Publications Warehouse

    Smith, Kathleen S.; Plumlee, Geoffrey S.; Hageman, Philip L.

    2015-01-01

    Metals and minerals are natural resources that human beings have been mining for thousands of years. Contemporary metal mining is dominated by iron ore, copper and gold, with 2 billion tons of iron ore, nearly 20 million tons of copper and 2,000 tons of gold produced every year. Tens to hundreds of tons of other metals that are essential components for electronics, green energy production, and high-technology products are produced annually.

  4. Effects of coal spoil amendment on heavy metal accumulation and physiological aspects of ryegrass (Lolium perenne L.) growing in copper mine tailings.

    PubMed

    Chu, Zhaoxia; Wang, Xingming; Wang, Yunmin; Liu, Guijian; Dong, Zhongbing; Lu, Xianwen; Chen, Guangzhou; Zha, Fugeng

    2017-12-21

    Copper mine tailings pose many threats to the surrounding environment and human health, and thus, their remediation is fundamental. Coal spoil is the waste by-product of coal mining and characterized by low levels of metals, high content of organic matter, and many essential microelements. This study was designed to evaluate the role of coal spoil on heavy uptake and physiological responses of Lolium perenne L. grown in copper mine tailings amended with coal spoil at rates of 0, 0.5, 1, 5, 10, and 20%. The results showed that applying coal spoil to copper mine tailings decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, and Zn contents in tailings and reduced those metal contents in both roots and shoots of the plant. However, application of coal spoil increased the DTPA-extractable Cr concentration in tailings and also increased Cr uptake and accumulation by Lolium perenne L. The statistical analysis of physiological parameters indicated that chlorophyll and carotenoid increased at the lower amendments of coal spoil followed by a decrease compared to their respective controls. Protein content was enhanced at all the coal spoil amendments. When treated with coal spoil, the activities of superoxide dismutases (SOD), peroxidase (POD), and catalase (CAT) responded differently. CAT activity was inhibited, but POD activity was increased with increasing amendment ratio of coal spoil. SOD activity increased up to 1% coal spoil followed by a decrease. Overall, the addition of coal spoil decreased the oxidative stress in Lolium perenne L., reflected by the reduction in malondialdehyde (MDA) contents in the plant. It is concluded that coal spoil has the potential to stabilize most metals studied in copper mine tailings and ameliorate the harmful effects in Lolium perenne L. through changing the physiological attributes of the plant grown in copper mine tailings.

  5. The interbelic Germans from the Banat Highland. Coal, steel, mines and forges

    NASA Astrophysics Data System (ADS)

    Rudolf, C.; Micliuc, D. M.; Nedeloni, M. D.; Birtarescu, E.; Varga, A.

    2018-01-01

    The difficulties of the reconstruction era, following World War I had been increased by the cessation of some activities in the industrial centres of the Banat Highland. For instance, the copper mines were closed in 1921, the Romanian state forbidding the extraction of this ore. Only in Ocna de Fier a special dispensation had been given. The copper mines from Moldova Nouă, Sasca Montană, Ciclova, Dognecea had also been shut down. This fact caused the acid reaction of some writers. We recall that one of the main ways for improving the material condition, embraced by the ethnic Germans, was working abroad. Many German workers of the Banat Highland had emigrated, taking up an offer of well-paid work during the crisis years: 1929-1933. The miners of the Banat Highland, especially those of German origin, travelled to the areas rich in iron ore and coal of France, namely Alsace and Loraine. Considering that German was spoken there by a significant percentage of the population, the integration into the new working environment did not represent a problem.

  6. Norilsk, Siberia

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Norilsk is a major city in Krasnoyarsk Krai, Russia, and the northernmost city in Siberia. The city was founded in the 1930s as a settlement for the Norilsk mining-metallurgic complex, sitting near the largest nickel-copper-palladium deposits on Earth. Mining and smelting of nickel, copper, cobalt, platinum, palladium are the major industries. The nickel ore is smelted on site at Norilsk. The smelting is directly responsible for severe pollution, generally acid rain and smog. By some estimates, 1 percent of the entire global emissions of sulfur dioxide comes from this one city. Heavy metal pollution near Norilsk is so severe that it is now economically feasible to mine the soil, which has been polluted so severely that it has economic grades of platinum and palladium.

    The image was acquired July 21, 2000, covers an area of 36.9 x 37.6 km, and is located at 69.3 degrees north latitude, 88.2 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  7. Children's personal exposure to PM10 and associated metals in urban, rural and mining activity areas.

    PubMed

    Hinwood, Andrea; Callan, Anna C; Heyworth, Jane; McCafferty, Peter; Sly, Peter D

    2014-08-01

    There has been limited study of children's personal exposure to PM10 and associated metals in rural and iron ore mining activity areas where PM10 concentrations can be very high. We undertook a small study of 70 children where 13 children were recruited in an area of iron ore mining processing and shipping, 15 children from an area in the same region with no mining activities, and 42 children in an urban area. Each child provided a 24h personal exposure PM10 sample, a first morning void urine sample, a hair sample, time activity diary, and self administered questionnaire. Children's 24h personal PM10 concentrations were low (median of 28 μg m(-3) in the mining area; 48 μg m(-3) in the rural area and 45 μg m(-3) in the urban area) with corresponding outdoor PM10 concentrations also low. Some very high personal PM10 concentrations were recorded for individuals (>300 μg m(-3)) with the highest concentrations recorded in the mining and rural areas in the dry season. PM10 concentrations were highly variable. Hair aluminium, cadmium and manganese concentrations were higher in the iron ore activity area, while hair mercury, copper and nickel concentrations were higher in the urban area. Factors such as season and ventilation appear to be important but this study lacked power to confirm this. These results need to be confirmed by a larger study and the potential for absorption of the metals needs to be established along with the factors that increase exposures and the potential for health risks arising from exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1954-01-01

    The geology of the Shinarump No. 1 uranium mine, located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah, was studied to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permian, Triassic, and Jurassic age crop out in the area mapped, and uranium deposits are found in three zones in the lower 25 feet of the Chinle formation of Late Triassic age. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uraninite, impregnate the rock. High-grade ore seams of uraninite and chalcocite occur along bedding planes. Uraninite formed later than, or simultaneous with, most sulfides, and the chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the more poorly sorted parts of siltstones. In the Seven Mile Canyon area guides to ore inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, carbonaceous matter, and copper sulfides. Results of spectrographic analysis indicate that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper, as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal.

  9. Metal contamination in environmental media in residential areas around Romanian mining sites.

    PubMed

    Neamtiu, Iulia A; Al-Abed, Souhail R; McKernan, John L; Baciu, Calin L; Gurzau, Eugen S; Pogacean, Anca O; Bessler, Scott M

    2017-03-01

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in the SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg (2 mg/kg), and the alert thresholds in case of Pb (50 mg/kg) and Cd (3 mg/kg)]. Average metal concentrations in drinking water did not exceed the maximum contaminant level (MCL) imposed by the Romanian legislation, but high metal concentrations were found in surface water from Rosia creek, downstream from the former mining area.

  10. Radionuclides and trace metals in Canadian moose near uranium mines: comparison of radiation doses and food chain transfer with cattle and caribou.

    PubMed

    Thomas, Patricia; Irvine, James; Lyster, Jane; Beaulieu, Rhys

    2005-05-01

    Tissues from 45 moose and 4 cattle were collected to assess the health of country foods near uranium mines in northern Saskatchewan. Bone, liver, kidney, muscle and rumen contents were analyzed for uranium, radium-226 (226Ra), lead-210 (210Pb), and polonium-210 (210Po). Cesium-137 (137Cs), potassium-40 (40K), and 27 trace metals were also measured in some tissues. Within the most active mining area, Po in liver and muscle declined significantly with distance from tailings, possibly influenced by nearby natural uranium outcrops. Moose from this area had significantly higher 226Ra, 210Pb, 210Po, and 137Cs in some edible soft tissues vs. one control area. However, soil type and diet may influence concentrations as much as uranium mining activities, given that a) liver levels of uranium, 226Ra, and 210Po were similar to a second positive control area with mineral-rich shale hills and b) 210Po was higher in cattle kidneys than in all moose. Enhanced food chain transfer from rumen contents to liver was found for selenium in the main mining area and for copper, molybdenum and cadmium in moose vs. cattle. Although radiological doses to moose in the main mining area were 2.6 times higher than doses to control moose or cattle, low moose intakes yielded low human doses (0.0068 mSv y(-1)), a mere 0.3% of the dose from intake of caribou (2.4 mSv y(-1)), the dietary staple in the area.

  11. Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis.

    PubMed

    Alonzo, Michael; Van Den Hoek, Jamon; Ahmed, Nabil

    2016-10-11

    The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world's largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to "peer through" atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km 2 of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson's r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events.

  12. Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis

    PubMed Central

    Alonzo, Michael; Van Den Hoek, Jamon; Ahmed, Nabil

    2016-01-01

    The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world’s largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to “peer through” atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km2 of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson’s r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events. PMID:27725748

  13. Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis

    NASA Astrophysics Data System (ADS)

    Alonzo, Michael; van den Hoek, Jamon; Ahmed, Nabil

    2016-10-01

    The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world’s largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to “peer through” atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km2 of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson’s r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events.

  14. Physical, chemical and antimicrobial characterization of copper-bearing material

    NASA Astrophysics Data System (ADS)

    Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan

    2010-12-01

    Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.

  15. Geochemical behavior of heavy metals in a Zn-Pb-Cu mining area in the State of Mexico (central Mexico).

    PubMed

    Lizárraga-Mendiola, L; González-Sandoval, M R; Durán-Domínguez, M C; Márquez-Herrera, C

    2009-08-01

    The geochemical behavior of zinc, lead and copper from sulfidic tailings in a mine site with potential to generate acidic drainage (pyrite (55%) and sphalerite (2%)) is reported in this paper. The mining area is divided in two zones, considering the topographic location of sampling points with respect to the tailings pile: (a) outer zone, out of the probable influence of acid mine drainage (AMD) pollution, and (b) inner zone, probably influenced by AMD pollution. Maximum total ions concentrations (mg/L) measured in superficial waters found were, in the outer zone: As (0.2), Cd (0.9), Fe (19), Mn (39), Pb (5.02), SO4(2-) (4650), Zn (107.67), and in the inner zone are As (0.1), Cd (0.2), Fe (88), Mn (13), Pb (6), SO4(2-) (4,880), Zn (46). The presence of these ions that exceeding the permissible maximum limits for human consume, could be associated to tailings mineralogy and acid leachates generated in tailings pile.

  16. Metal contamination in environmental media in residential ...

    EPA Pesticide Factsheets

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  17. Mineral resources of the Mormon Mountains Wilderness Study Area, Lincoln County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawe, D.R.; Blank, H.R. Jr.; Wernicke, B.P.

    1988-01-01

    The U.S. Bureau of Mines and the U.S. Geological Survey conducted investigations to appraise the identified resources and to assess the potential for undiscovered resources of the Mormon Mountains Wilderness Study Area, southeastern Nevada. There are no identified resources in or near the study area; however, there are no occurrences of commercial-grade limestones and sand gravel. The study area has high mineral resource potential for copper, lead, zinc, silver, and (or) gold in its southern part and copper, lead, zinc, silver, gold, arsenic, and (or) antimony in its northern part. Part of the study area has moderate mineral resource potentialmore » for antimony. Two areas in the central part of the study area have moderate mineral resource potential for molybdenum, tungsten, and (or) tin. The study area has moderate energy resource potential for oil and gas, except for areas of low potential where significant hydrothermal activity has occurred. It has low mineral and energy resource potential for manganese, barite, vermiculite, coal, and geothermal energy.« less

  18. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings.

    PubMed

    Shi, Xiang; Chen, Yi-Tai; Wang, Shu-Feng; Pan, Hong-Wei; Sun, Hai-Jing; Liu, Cai-Xia; Liu, Jian-Feng; Jiang, Ze-Ping

    2016-11-01

    Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.

  19. TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials)

    MedlinePlus

    ... and Titanium Mining Wastes Rare Earths Mining Wastes Uranium Mining Wastes Copper Mining and Production Wastes Bauxite and Alumina Production Wastes Energy production Oil and Gas Production Wastes Coal Combustion Residuals ​Water ...

  20. Study on characteristics of EMR signals induced from fracture of rock samples and their application in rockburst prediction in copper mine

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofei; Wang, Enyuan

    2018-06-01

    A rockburst is a dynamic disaster that occurs during underground excavation or mining which has been a serious threat to safety. Rockburst prediction and control are as important as any other underground engineering in deep mines. For this paper, we tested electromagnetic radiation (EMR) signals generated during the deformation and fracture of rock samples from a copper mine under uniaxial compression, tension, and cycle-loading experiments, analyzed the changes in the EMR intensity, pulse number, and frequency corresponding to the loading, and a high correlation between these EMR parameters and the applied loading was observed. EMR apparently reflects the deformation and fracture status to the loaded rock. Based on this experimental work, we invented the KBD5-type EMR monitor and used it to test EMR signals generated in the rock surrounding the Hongtoushan copper mine. From the test results, it is determined the responding characteristics of EMR signals generated by changes in mine-generated stresses and stress concentrations and it is proposed that this EMR monitoring method can be used to provide early warning for rockbursts.

  1. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area.

    PubMed

    Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Liu, Nuo; Yang, Meng; Meng, Yuan; Zou, Quan

    2018-05-29

    High demand of Vanadium (V) in high-strength steel and battery manufacturing industry led to extensive V mining activity in China, and caused multi-metal pollution of soil around V mining area. To understand the phytoremediation potentials of native plants grown in V mining area, and the effect of soil properties and soil metal concentrations on toxic metal accumulations of native plants. Setaria viridis, Kochia scoparia and Chenopodium album were sampled from different sites in V mining area, soil properties, soil metal concentrations and metal accumulation amount of investigated plants were measured, bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. Soil pH, cation exchange capacity (CEC) and available phosphorous (P) can significantly affect V and copper (Cu) uptake in the shoots of Setaria viridis while soil metal contents were lower than the permissible limits. Soil pH can significantly affect V accumulations in the roots and shoots of Kochia scoparia grown in slightly V polluted soils. Setaria viridis exhibited TF > 1 for moderately V and slightly chromium (Cr) polluted soils, and BAF>1 for slightly Cu contaminated soils respectively. Kochia scoparia and Chenopodium album showed TF > 1 and BAF>1 for slightly V polluted soils, respectively. Setaria viridis was practical for in situ phytoextractions of moderately V and slightly Cr polluted soils, and phytostabilization of slightly Cu contaminated soils. Kochia scoparia and Chenopodium album could be used as phytoextractor and phytostablizer in slightly V polluted soils in V mining area. Metal uptake of native plants grown in slightly multi-metal contaminated sites in V mining area can be manipulated by altering soil properties. Copyright © 2018. Published by Elsevier Ltd.

  2. SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Budding, Karin E.; Kluender, Steven E.

    1984-01-01

    A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.

  3. Effects of Alder Mine on the Water, Sediments, and Benthic Macroinvertebrates of Alder Creek, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplow, Dan

    1999-05-28

    The Alder Mine, an abandoned gold, silver, copper, and zinc mine in Okanogan County, Washington, produces heavy metal-laden effluent that affects the quality of water in a tributary of the Methow River. The annual mass loading of heavy metals from two audits at the Alder Mine was estimated to exceed 11,000 kg per year. In this study, water samples from stations along Alder Creek were assayed for heavy metals by ICP-AES and were found to exceed Washington State's acute freshwater criteria for cadmium (Cd), copper (Cu), selenium (Se), and zinc (Zn).

  4. A 24 h investigation of the hydrogeochemistry of baseflow and stormwater in an urban area impacted by mining: Butte, Montana

    USGS Publications Warehouse

    Gammons, Christopher H.; Shope, Christopher L.; Duaime, Terence E.

    2005-01-01

    Changes in water quality during a storm event were continuously monitored over a 24 h period at a single location along an urban stormwater drain in Butte, Montana. The Butte Metro Storm Drain (MSD) collects groundwater baseflow and stormwater draining Butte Hill, a densely populated site that has been severely impacted by 130 years of mining, milling, and smelting of copper-rich, polymetallic mineral deposits. On the afternoon of 26 June 2002, a heavy thunderstorm caused streamflow in the MSD to increase 100-fold, from 0·2 ft3 s−1 to more than 20 ft3 s−1. Hourly discharge and water quality data were collected before, during, and following the storm. The most significant finding was that the calculated loads (grams per hour) of both dissolved and particulate copper passing down the MSD increased more than 100-fold in the first hour following the storm, and remained elevated over baseline conditions for the remainder of the study period. Other metals, such as zinc, cadmium, and manganese, showed a decrease in load from pre-storm to post-storm conditions. In addition to the large flush of copper, loads of soluble phosphorus increased during the storm, whereas dissolved oxygen dropped to low levels (<2 mg l−1). These results show that infrequent storm events in Butte have the potential to generate large volumes of runoff that exceed Montana water quality standards for acute exposure of aquatic life to copper, as well as depressed levels of dissolved oxygen. This study has important implications to ongoing reclamation activities in the upper Clark Fork Superfund site, particularly with respect to management of storm flow, and may be applicable to other watersheds impacted by mining activities.

  5. Removal of copper in leachate from mining residues using electrochemical technology.

    PubMed

    Lambert, Andréa; Drogui, Patrick; Daghrir, Rimeh; Zaviska, François; Benzaazoua, Mostafa

    2014-01-15

    This research is related to a laboratory study on the performance of a successive mining residues leaching and electrochemical copper recovery process. To clearly define the experimental region for response surface methodology (RSM), a preliminary study was performed by applying a current intensity varying from 0.5 A to 4.0 A for 60 min. By decreasing the current intensity from 4.0 A to 0.5 A, a good adhesion and a very smooth and continuous interface of copper was formed and deposited on the cathode electrode. However, the removal rate of Cu decreased from 83.7% to 37.9% when the current intensity passed from 4.0 A to 0.5 A, respectively. Subsequently, the factorial design and central composite design methodologies were successively employed to define the optimal operating conditions for copper removal in the mining residues leachate. Using a 2(3) factorial matrix, the best performance for copper removal (97.7%) was obtained at a current intensity of 2.0 A during 100 min. The current intensity and electrolysis time were found to be the most influent parameters. The contribution of current intensity and electrolysis time was around 65.8% and 33.9%, respectively. The treatment using copper electrode and current intensity of 1.3 A during 80 min was found to be the optimal conditions in terms of cost/effectiveness. Under these conditions, 86% of copper can be recovered for a total cost of 0.56 $ per cubic meter of treated mining residues leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Investigating waste rock, tailings, slag and coal ash clinker as adsorbents for heavy metals: Batch and column studies

    NASA Astrophysics Data System (ADS)

    Letina, D.; Letshwenyo, W. M.

    2018-06-01

    Wastewater from the mining industry is a concern because most of the time it contains heavy metals with concentrations above permissible levels, posing a threat to terrestrial and aquatic life. The study was conducted to evaluate the effectiveness of locally available waste materials (waste rock, tailings, coal ash clinker, and slag) generated by BCL (Ltd) mine, a copper and nickel mining and smelting company in Botswana, for removal of nickel and copper from the real mining wastewater. Batch adsorption studies were conducted to establish the adsorptive efficiency and kinetics of each media with respect to nickel and copper ions. The best media was further evaluated through fixed bed column studies at 24 and 48 h empty bed contact time. The results indicate that the percentage removal for coal ash clinker, waste rock, smelter slag and tailings was 98%, 15%, 3% and -3% with respect to copper ions, and 46%, 9%, 7% and 2% with respect to nickel ions for each media respectively. Coal ash clinker followed pseudo first order kinetic model and Langmuir isotherm model with respect to nickel ions indicating the dominance of physisorption and mono layer coverage respectively. The Langmuir separation factor (RL) was 0.37 suggesting favourable adsorption onto the media. Fixed bed column studies revealed that copper was completely retained in the bed at both 24 and 48 h contact times. In the case of nickel, removal efficiency ranged between 83% and 99% when contact time was 48 h and between 68% and 99% when the contact time was reduced to 24 h. Breakthrough was not reached after 19 bed volumes. It can be concluded that coal ash clinker is a better candidate for the removal of copper and nickel ions from mining wastewater.

  7. Mineral resource assessment of the Iron River 1 degree x 2 degrees Quadrangle, Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, William F.

    1983-01-01

    The Iron River 1? x 2? quadrangle contains identified resources of copper and iron. Copper-rich shale beds in the north part of the quadrangle contain 12.2 billion pounds (5.5 billion kilograms) of copper in well-studied deposits including 9.2 billion pounds (4.2 billion kilograms) that are economically minable by 1980 standards. At least several billion pounds of copper probably exist in other parts of the same shale beds, but not enough data are available to measure the amount. A small amount, about 250 million pounds (113 million kilograms), of native copper is known to remain in one abandoned mine, and additional but unknown amounts remain in other abandoned mines. About 13.25 billion tons (12.02 billion metric tons) of banded iron-formation averaging roughly 30 percent iron are known within 500 feet (152.4 meters) of the surface in the Gogebic, Marquette, and Iron River-Crystal Falls districts. A small percentage of that might someday be minable as taconite, but none is now believed to be economic. Some higher grade iron concentrations exist in the same iron-formations. Such material was the basis of former mining of iron in the region, but a poor market for such ore and depletion of many deposits have led to the decline of iron mining in the quadrangle. Iron mines of the quadrangle were not being worked in 1980. Many parts of the quadrangle contain belts of favorable host rocks for mineral deposits. Although deposits are not known in these belts, undiscovered deposits of copper, zinc, lead, silver, uranium, phosphate, nickel, chromium, platinum, gold, and diamonds could exist.

  8. Pollution by Arsenic, Mercury and other Heavy Metals in Sunchulli mining district of Apolobamba (Bolivia)

    NASA Astrophysics Data System (ADS)

    Terán Mita, Tania; Faz Cano, Angel; Muñoz, Maria Angeles; Millán Gómez, Rocio; Chincheros Paniagua, Jaime

    2010-05-01

    In Bolivia, metal mining activities since historical times have been one of the most important sources of environmental pollution. This is the case of the National Area of Apolobamba Integrated Management (ANMIN of Apolobamba) in La Paz, Bolivia, where intense gold mining activities have been carried out from former times to the present, with very little gold extraction and very primitive mineral processing technology; in fact, mercury is still being used in the amalgam processes of the gold concentration, which is burned outdoors to recover the gold. Sunchullí is a representative mining district in ANMIN of Apolobamba where mining activity is mainly gold extraction and its water effluents go to the Amazonian basin; in this mining district the productivity of extracted mineral is very low but the processes can result in heavy-metal contamination of the air, water, soils and plants. Due to its high toxicity, the contamination by arsenic and mercury create the most critical environmental problems. In addition, some other heavy metals may also be present such as lead, copper, zinc and cadmium. These heavy metals could be incorporated in the trophic chain, through the flora and the fauna, in their bio-available and soluble forms. Inhabitants of this area consume foodcrops, fish from lakes and rivers and use the waters for the livestock, domestic use, and irrigation. The aim of this work was to evaluate the heavy metals pollution by gold mining activities in Sunchullí area. In Sunchullí two representative zones were distinguished and sampled. Zone near the mining operation site was considered as affected by mineral extraction processes, while far away zones represented the non affected ones by the mining operation. In each zone, 3 plots were established; in each plot, 3 soil sampling points were selected in a random manner and analysed separately. In each sampling point, two samples were taken, one at the surface, from 0-5 cm depth (topsoil), and the other between 5 and 15 cm (subsurface). In addition, surface soils from mercury burn areas were also taken. Arsenic, mercury, lead, copper, zinc and cadmium total, DTPA and water extractable metals were determined. In both zones, the results show that mining activities do not increase heavy metals levels except for arsenic (17.20 - 69.25 mg/kg) that presents high concentrations surpassing the Belgium reference levels (19.00 mg/kg), in some cases stands out the high mercury values in the affected zone (2.07 mg/kg, 1.18 mg/kg, 1.93 mg/kg). The most polluted soils are mercury burn areas with high levels of mercury (4.21 - 21.79 mg/kg) surpassing levels according to the Holland regulation (0.3 mg/kg). Workers and population are in close contact with these soils without any type of protection.

  9. Stratabound copper-silver deposits of the Mesoproterozoic Revett formation, Montana and Idaho

    USGS Publications Warehouse

    Boleneus, David E.; Appelgate, Larry M.; Stewart, John H.; Zientek, Michael L.

    2005-01-01

    The western Montana copper belt in western Montana and northern Idaho contains several large stratabound copper-silver deposits in fine- to medium-grained quartzite beds of the Revett Formation of the Mesoproterozoic (1,470-1,401 Ma) Belt Supergroup. Production from the deposits at the Troy Mine and lesser production from the Snowstorm Mine has yielded 222,237 tons Cu and 1,657.4 tons Ag. Estimates of undeveloped resources, mostly from the world-class Rock Creek-Montanore deposits, as well as lesser amounts at the Troy Mine, total more than 2.9 million tons Cu and 2,600 tons Ag in 406 million tons of ore.The Rock Creek-Montanore and Troy deposits, which are currently the most significant undeveloped resources identified in the copper belt, are also among the largest stratabound copper-silver deposits in North America and contain about 15 percent of the copper in such deposits in North America. Worldwide, stratabound copper-silver deposits contain 23 percent of all copper resources and are the second-most important global source of the metal after porphyry copper deposits.The Revett Formation, which consists of subequal amounts of argillite, siltite, and quartzite, is informally divided into lower, middle, and upper members on the basis of the proportions of the dominant rock types. The unit thickness increases from north to south, from 1,700 ft near the Troy Mine, 55 mi north of Wallace, Idaho, to more than 5,300 ft at Wallace, Idaho, in the Coeur d'Alene Trough south of the Osburn Fault, a major right-lateral strike-slip fault.Mineral deposits in the Revett Formation occur mostly in the A-D beds of the lower member and in the middle quartzite of the upper member. The deposits are concentrated along a preore pyrite/hematite interface in relatively coarse grained, thick quartzite beds that acted as paleoaquifers for ore fluids. The deposits are characterized by mineral zones (alteration-mineral assemblages) that are a useful guide to the locations of mineral deposits. In particular, the gradational zone between the chalcopyrite-ankerite and pyrite-calcite zones is the site of most mineral deposits. Detailed information on the geology and mineral deposits of the Revett Formation is presented in the accompanying files that include (1) a tab-delimited text file providing details of the geologic and mineral-resource data for 57 Revett-subtype stratabound copper-silver deposits, occurrences, and prospects; (2) the stratigraphic records of 40 diamond-drill cores and 86 measured sections, totaling 150,752 ft of true thickness, which are provided in Excel spreadsheet and Adobe Portable Document Format files; and (3) spatial geologic data consisting of geologic maps of the Revett Formation, the subsurface locations of resources in Revett-subtype stratabound copper-silver deposits based on diamond-drill-core data, and the locations of diamond-drill holes and measured sections. The spatial data are contained in Arc/Info interchange files. Spatial information derived from these data includes the locations of mineral zones, a digital database showing untested exploration areas, and a digital database of permissive tracts for undiscovered mineral deposits.

  10. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents.

    PubMed

    Bendell, L I

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Effect of an acid mine drainage effluent on phytoplankton biomass and primary production at Britannia Beach, Howe Sound, British Columbia.

    PubMed

    Levings, C D; Varela, D E; Mehlenbacher, N M; Barry, K L; Piercey, G E; Guo, M; Harrison, P J

    2005-12-01

    We investigated the effect of acid mine drainage (AMD) from an abandoned copper mine at Britannia Beach (Howe Sound, BC, Canada) on primary productivity and chlorophyll a levels in the receiving waters of Howe Sound before, during, and after freshet from the Squamish River. Elevated concentrations of copper (integrated average through the water column >0.050 mgl(-1)) in nearshore waters indicated that under some conditions a small gyre near the mouth of Britannia Creek may have retained the AMD from Britannia Creek and from a 30-m deep water outfall close to shore. Regression and correlation analyses indicated that copper negatively affected primary productivity during April (pre-freshet) and November (post-freshet). Negative effects of copper on primary productivity were not supported statistically for July (freshet), possibly because of additional effects such as turbidity from the Squamish River. Depth-integrated average and surface chlorophyll a were correlated to copper concentrations in April. During this short study we demonstrated that copper concentrations from the AMD discharge can negatively affect both primary productivity and the standing stock of primary producers in Howe Sound.

  12. Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (D.R. Congo).

    PubMed

    Squadrone, S; Burioli, E; Monaco, G; Koya, M K; Prearo, M; Gennero, S; Dominici, A; Abete, M C

    2016-10-15

    The concentrations of 14 essential and nonessential trace elements were determined in fish from Lake Tshangalele, Katanga province, Democratic Republic of Congo. This province has been a place of intensive mining activities for centuries, which have increased in recent years, due to the use of metals such as copper and cobalt for the industries of fast-growing countries. Lake Tshangalele, which receives effluents from metallurgical and mining plants in Likasi, is home to several fish species that are an important part of the diet of the local population, and, therefore, it constitutes a relevant site for documenting the human exposure to metals as a result of a fish diet. The highest concentrations (median levels, dry weight) of cobalt (7.25mgkg(-1)), copper (88.1mgkg(-1)), iron (197.5mgkg(-1)), manganese (65.35mgkg(-1)), zinc (122.9mgkg(-1)) and aluminum (135.4mgkg(-1)) were found in fish collected closest to the copper mining plant, with decreasing concentrations along the lake, up to the dam. In the most contaminated fish samples, values of up to 270.1mgkg(-1) for Al, 173.1mgkg(-1) for Cu, 220.9mgkg(-1) for Zn, 211.0mgkg(-1) for Mn, 324.2mgkg(-1) for Fe, 15.1mgkg(-1) for Co, 4.2mgkg(-1) for Cr, 1.6mgkg(-1) for Cd, 1.9mgkg(-1) for Pb, and 1.8mgkg(-1) for Ni were found. Metal contamination from mining activity resulted in being of great concern because of potential health risks to the local inhabitants due to the consumption of heavily contaminated fish. High levels of metals, especially cobalt, aluminum, iron, manganese, zinc and cadmium were found in fish from Tshangalele water system. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of metal mining and milling on boundary waters of Yellowstone National Park, USA

    USGS Publications Warehouse

    Nimmo, D.R.; Willox, M.J.; Lafrancois, T.D.; Chapman, P.L.; Brinkman, S.F.; Greene, J.C.

    1998-01-01

    Aquatic resources in Soda Butte Creek within Yellowstone National Park, USA, continue to be threatened by heavy metals from historical mining and milling activities that occurred upstream of the park's boundary. This includes the residue of gold, silver, and copper ore mining and processing in the early 1900s near Cooke City, Montana, just downstream of the creek's headwaters. Toxicity tests, using surrogate test species, and analyses of metals in water, sediments, and macroinvertebrate tissue were conducted from 1993 to 1995. Chronic toxicity to test species was greater in the spring than the fall and metal concentrations were elevated in the spring with copper exceeding water quality criteria in 1995. Tests with amphipods using pore water and whole sediment from the creek and copper concentrations in the tissue of macroinvertebrates and fish also suggest that copper is the metal of concern in the watershed. In order to understand current conditions in Soda Butte Creek, heavy metals, especially copper, must be considered important factors in the aquatic and riparian ecosystems within and along the creek extending into Yellowstone National Park.

  14. Cobalt mineral exploration and supply from 1995 through 2013

    USGS Publications Warehouse

    Wilburn, David R.

    2011-01-01

    The global mining industry has invested a large amount of capital in mineral exploration and development over the past 15 years in an effort to ensure that sufficient resources are available to meet future increases in demand for minerals. Exploration data have been used to identify specific sites where this investment has led to a significant contribution in global mineral supply of cobalt or where a significant increase in cobalt production capacity is anticipated in the next 5 years. This report provides an overview of the cobalt industry, factors affecting mineral supply, and circumstances surrounding the development, or lack thereof, of key mineral properties with the potential to affect mineral supply. Of the 48 sites with an effective production capacity of at least 1,000 metric tons per year of cobalt considered for this study, 3 producing sites underwent significant expansion during the study period, 10 exploration sites commenced production from 1995 through 2008, and 16 sites were expected to begin production by 2013 if planned development schedules are met. Cobalt supply is influenced by economic, environmental, political, and technological factors affecting exploration for and production of copper, nickel, and other metals as well as factors affecting the cobalt industry. Cobalt-rich nickel laterite deposits were discovered and developed in Australia and the South Pacific and improvements in laterite processing technology took place during the 1990s and early in the first decade of the 21st century when mining of copper-cobalt deposits in Congo (Kinshasa) was restricted because of regional conflict and lack of investment in that country's mining sector. There was also increased exploration for and greater importance placed on cobalt as a byproduct of nickel mining in Australia and Canada. The emergence of China as a major refined cobalt producer and consumer since 2007 has changed the pattern of demand for cobalt, particularly from Africa and Australasia. Chinese companies are increasingly becoming involved in copper and cobalt exploration and mining in Congo (Kinshasa) and Zambia as well as nickel, copper, and other mining in Australia and the South Pacific. Between 2009 and 2013, mines with a cumulative capacity of more than 100,000 metric tons per year of cobalt were proposed to come into production if all sites came into production as scheduled. This additional capacity corresponds to 175 percent of the 2008 global refinery production level. About 45 percent of this cobalt would be from primary nickel deposits, about 32 percent from primary copper deposits, and about 21 percent from primary cobalt deposits. By 2013, about 40 percent of new capacity was expected to come from the African Copperbelt; 38 percent, from Australia and the South Pacific countries of Philippines, Indonesia, New Caledonia, and Papua New Guinea; 11 percent, from other African countries; 5 percent, from North America; and 6 percent, from other areas.

  15. General health status of residents of the Selebi Phikwe Ni-Cu mine area, Botswana.

    PubMed

    Ekosse, Georges

    2005-10-01

    Residents of the Selebi Phikwe area, Botswana where nickel-copper (Ni-Cu) is being exploited often exhibit symptoms of varied degrees of ailments, sicknesses and diseases. A need to investigate their general health status was therefore eminent. Primary data was obtained by means of a questionnaire and structured interviews conducted with individuals, health service providers, business enterprises and educational Institutions. The generated data revealed common ailments, sicknesses and diseases in the area with the four most frequent health complaints being frequent coughing headaches, influenza/common colds and rampant chest pains. Research findings indicated that residents had respiratory tract-related problems, suspected to be linked to the effects of air pollution caused by the emission of sulphur dioxide (SO2) from mining and smelting activities. Residents were frequently in contact with SO2 and related gases and fumes, mineral and silica dust generated from the mining processes. No clearly demarcating differences were noticed in the health status of residents living in the control site from those in the main study area. However, sites most affected were those close to where Ni-Cu is exploited. Environmental factors resulting from mining and smelting activities, among others, could be contributory to the negative health effects occurring at Selebi Phikwe.

  16. MOUNT NAOMI ROADLESS AREA, UTAH AND IDAHO.

    USGS Publications Warehouse

    Dover, James H.; Bigsby, Philip R.

    1984-01-01

    Geologic, geophysical, and geochemical surveys, and an examination of mines and prospects were made in the Mount Naomi Roadless Area, Utah and Idaho. No significant precious-metal, base-metal, other trace-metal, or uranium anomalies are apparent in the geochemical data from the Mount Naomi Roadless Area, and no exploration targets were detected. However, a belt of probable resource potential for stratabound copper, lead, and zinc occurrences exists on the west side of the area in limestone and shale. The possibility that oil and gas concentration lie deeply buried beneath the roadless area cannot be evaluated from available data.

  17. Identification of water-quality trends using sediment cores from Dillon Reservoir, Summit County, Colorado

    USGS Publications Warehouse

    Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2001-01-01

    Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's. Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.

  18. Radon exhalation and radiometric prospecting on rocks associated with Cu-U mineralizations in the Singhbhum shear zone, Bihar.

    PubMed

    Sengupta, D; Kumar, R; Singh, A K; Prasad, R

    2001-12-01

    The Singhbhum thrust belt is a 200 km long arcuate orogenic belt in Bihar, eastern India. The huge mineral resources, viz. copper, uranium, magnetite, apatite and molybdenite, etc., make it significant from an economic as well as a geological point of view. The belt hosts three types of mineralization: sulphides of copper and other metals, uranium oxides and apatite-magnetite. Several distinct geological episodes are responsible for the evolution of mineralization and the thrust zone itself. Extensive and reliable radiometric prospecting and assaying have been carried out by us for the past 5 years from Dhobani in the east to Turamdih in the west of the Singhbhum shear zone. The present work indicates uranium mineralization in the Pathargora-Rakha area presently being mined for copper and also within areas in the vicinity of Bhatin. Studies on radon emanation have also been undertaken in some parts of the shear zone which indicate reasonably high radon emanation of the soils and rocks studied. This suggests the need for regular monitoring and suitable controls on the mine environment (air quality) and its vicinity. Radon emanation studies coupled with gamma-ray spectrometry and the subsequent modelling of the radiometric and radon measurements will help in the application of radon as a geophysical tracer in exploration of radioactive ore bodies and in radon risk assessment as well as in delineating active and passive faults and even in petroleum exploration.

  19. Hydrogeology and geochemistry of acid mine drainage in ground water in the vicinity of Penn Mine and Camanche Reservoir, Calaveras County, California; first-year summary

    USGS Publications Warehouse

    Hamlin, S.N.; Alpers, Charles N.

    1995-01-01

    Acid drainage from the Penn Mine in Calaveras County, California, has caused contamination of ground water between Mine Run Dam and Camanche Reservoir. The Penn Mine was first developed in the 1860's primarily for copper and later produced lesser amounts of zinc, lead, silver, and gold from steeply dipping massive sulfide lenses in metamorphic rocks. Surface disposal of sulfidic waste rock and tailings from mine operations has produced acidic drainage with pH values between 2.3 and 2.7 and elevated concentrations of sulfate and metals, including copper, zinc, cadmium, iron, and aluminum. During the mine's operation and after its subsequent abandonment in the late 1950's, acid mine drainage flowed down Mine Run into the Mokelumne River. Construction of Camanche Dam in 1963 flooded part of the Mokelumne River adjacent to Penn Mine. Surface-water diversions and unlined impoundments were constructed at Penn Mine in 1979 to reduce runoff from the mine, collect contaminated surface water, and enhance evaporation. Some of the contaminated surface water infiltrates the ground water and flows toward Camanche Reservoir. Ground- water flow in the study area is controlled by the local hydraulic gradient and the hydraulic characteristics of two principal rock types, a Jurassic metavolcanic unit and the underlying Salt Spring slate. The hydraulic gradient is west from Mine Run impoundment toward Camanche Reservoir. The median hydraulic conductivity was about 10 to 50 times higher in the metavolcanic rock (0.1 foot per day) than in the slate (0.002 to 0.01 foot per day); most flow occurs in the metavolcanic rock where hydraulic conductivity is as high as 50 feet per day in two locations. The contact between the two rock units is a fault plane that strikes N20?W, dips 20?NE, and is a likely conduit for ground-water flow, based on down-hole measurements with a heatpulse flowmeter. Analyses of water samples collected during April 1992 provide a comprehensive characterization of ground water below Mine Run Dam at the Penn Mine. Specific conductance of the samples ranged from 1,810 to 18,000 microsiemens per centimeter. pH values of sampled ground water ranged from 3.7 to 7.8. Dissolved constituents in ground water ranged from less than 0.010 to 86 milligrams per liter for copper, from less than 0.010 to 240 milligrams per liter for iron, from less than 0.01 to 250 milligrams per liter for aluminum, and from 0.020 to 600 milligrams per liter for zinc. A contaminated ground-water plume appears to originate in the metavolcanic unit along the north abutment of Mine Run Dam. The plume is characterized by low pH, high concentrations of sulfate and dissolved metals, and enrichment of the heavy stable isotopes of hydrogen and oxygen. Dissolved iron and sulfate correlate positively, suggesting pyrite as the probable source of these elements. The concentrations of some dissolved constituents apparently are controlled by equilibrium with solid mineral phases. Poorly crystalline hydrous ferric oxide and microcrystalline gibbsite are close to saturation in ground water with pH values between 4 and 7.8 and probably control the solubility of Fe3+ and Al3+, respectively. Using a range of bulk hydraulic conductivity values for the metavolcanic unit from the median value (0.1 foot per day) to the highest values (50 feet per day), together with a representative cross-sectional area (3,000 square feet) for the contaminated ground-water plume and a hydraulic gradient of 0.14 from August 1992, the following range in ground-water flow rates is estimated by Darcy's law: 42 to 21,000 cubic feet per day, or 105 to 5x107 gallons per year. Multiplying this estimated range in ground-water flow by representative metal concentrations from the contaminated plume gives the following estimates for annual metal transport to Camanche Reservoir by ground water: 86 to 42,000 pounds of copper; 310 to 150,000 pounds of zinc; and 1.5 to 750 pounds of cadmium. These crude preliminary es

  20. Economic and toxicological aspects of copper industry in Katanga, DR Congo.

    PubMed

    Kalenga, John Ngoy

    2013-02-01

    The Katanga province is well known for its copper and cobalt reserves. During the early 2000s a boom of mining projects in Katanga brought again hope for better future to Congolese people. The paper aims to evaluate the impact of recent production recovery on economy and environment. We collected primary and secondary sources on copper industry for economic analysis. We use results of laboratory analysis conducted at the Congolese Office of Control by provincial division of environment for toxicological analysis. The comparison of heavy metal concentration to standards shows that mining industry is the main source of environmental pollution in Katanga. Copper industry generates income for economic growth of the region.

  1. Mineral resources of Elko County, Nevada

    USGS Publications Warehouse

    Smith, Roscoe Maurice

    1976-01-01

    Of the 66 named mining districts in Elko County, 56 have been productive of one or more of 19 different commodities: 11 metals--copper, gold, silver, lead, zinc, mercury, tungsten, manganese, iron, uranium, and antimony; 8 nonmetals--sand and gravel, stone, barite, diatomite, gems, oil shale, volcanic ash, and clay. In addition to the commodities produced, at least 5 others--beryllium, molybdenum, tin, phosphorite, and petroleum, occur in amounts sufficient to warrant exploration. The other districts have been explored, but no production has been recorded. Total value-when-sold of production recorded through 1969 was nearly $91 million; actual production was considerably greater, especially if sand and gravel, barite, and other nonmetallic products before 1953 are included. In value of metals produced, the five highest districts are Mountain City ($26 million), Tuscarora ($11 million), Jarbidge ($10 million), Aura ($6 million), and Railroad (nearly $5 million). The Rio Tinto copper mine in the Mountain City district yielded $21 million. Of the 17 districts that produced nonmetallic minerals, Bootstrap .is the largest producer, containing the Rossi mine, one of the two largest barite mines in the United States. Most of /he metals produced name from veins and replacement deposits in limestone or dolomite near granitic stocks; exceptions are manganese and mercury, which are not associated with known or inferred stocks; mercury is further excepted because it occurs in volcanic rocks, as do a few deposits of the major metals. The largest deposit--the Rio Tinto lode--was a combination of fissure filling and replacement along a bedding plane shear zone 150 ft wide and 1,200 ft long in carbonaceous shale of the Valmy Formation; this deposit is apparently older than the Mountain City stock and its mineralization may be related to Paleozoic mafic volcanism later than a major thrust fault, inferred to underlie the area at a depth of about 5,000 ft. Most of the nonmetallic minerals mined were sedimentary bedded deposits, but mica was mined from pegmatite deposits, and turquoise from both placer and hydrothermal deposits. The largest known reserves of metals (1973) are of porphyry copper in the Dolly Varden district and gold in the Bootstrap district. Reserves of barite also are presumed to be large. The greatest potential for future production of metals, notably copper and gold, appears to be in the known districts or extensions of them and peripheral to deposits that are related to known or concealed plutons and thrust faults. Potential resources in deposits too low in grade to be worked profitably at the present time include all commodities that have been produced and, in addition, known, deposits of beryllium, molybdenum, tin, and phosphorite. Speculative resources in undiscovered deposits may reasonably be predicted to include all known commodities as well as others that are unsuspected. Petroleum may yet be produced from the Elko Formation and geothermal energy from the Ruby Valley and Elko areas.

  2. SELWAY-BITTERROOT WILDERNESS, IDAHO AND MONTANA.

    USGS Publications Warehouse

    Toth, Margo I.; Zilka, Nicholas T.

    1984-01-01

    Mineral-resource studies of the Selway-Bitterroot Wilderness in Idaho County, Idaho, and Missoula and Ravalli Counties, Montana, were carried out. Four areas with probable and one small area of substantiated mineral-resource potential were recognized. The areas of the Running Creek, Painted Rocks, and Whistling Pig plutons of Tertiary age have probable resource potential for molybdenum, although detailed geochemical sampling and surface investigations failed to recognize mineralized systems at the surface. Randomly distributed breccia zones along a fault in the vicinity of the Cliff mine have a substantiated potential for small silver-copper-lead resources.

  3. Geochemical, aeromagnetic, and generalized geologic maps showing distribution and abundance of gold and copper, Golconda and Iron Point quadrangles, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, R.L.; Marsh, S.P.

    1971-01-01

    Detailed geologic and geochemical studies of the four 7 1/2-minute quadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun during the 1969 summer field season.  The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals.  Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks, base-metal and barite deposits in Paleozoic sedimentary rocks, and copper-molybdenum in granodiorite plutons of Cretaceous age occur in the Edna Mountain area.  None of these deposits have been of much economic signigicance, although tungsten was mined from the hot-spring deposits during World War II.

  4. Geothermal development plan: Cochise/Santa Cruz Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The regional market potential for utilizing geothermal energy was evaluated. Three potential geothermal resource areas with potential for resource temperatures less than 900C (1940F) were identified. Population growth rates are expected to average 3% per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy use analysis is included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan identifies potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

  5. Mines and mineral processing facilities in the vicinity of the March 11, 2011, earthquake in northern Honshu, Japan

    USGS Publications Warehouse

    Menzie, W. David; Baker, Michael S.; Bleiwas, Donald I.; Kuo, Chin

    2011-01-01

    U.S. Geological Survey data indicate that the area affected by the March 11, 2011, magnitude 9.0 earthquake and associated tsunami is home to nine cement plants, eight iodine plants, four iron and steel plants, four limestone mines, three copper refineries, two gold refineries, two lead refineries, two zinc refineries, one titanium dioxide plant, and one titanium sponge processing facility. These facilities have the capacity to produce the following percentages of the world's nonfuel mineral production: 25 percent of iodine, 10 percent of titanium sponge (metal), 3 percent of refined zinc, 2.5 percent of refined copper, and 1.4 percent of steel. In addition, the nine cement plants contribute about one-third of Japan's cement annual production. The iodine is a byproduct from production of natural gas at the Miniami Kanto gas field, east of Tokyo in Chiba Prefecture. Japan is the world's second leading (after Chile) producer of iodine, which is processed in seven nearby facilities.

  6. [Phytoplankton's community structure and its relationships with environmental factors in the rivers of Tongling City, Anhui Province of East China in winter].

    PubMed

    Wang, Li; Wei, Wei; Zhou, Ping; Li, Yang; Sun, Qing-Ye

    2013-01-01

    Tongling is one of the main non-ferrous metal mining areas in China, and the biodiversity in the river ecosystem of this area is seriously affected by heavy metals as a result of mining activities. In the winter in 2010, an investigation was conducted on the community structure of phytoplankton and its relationships with environmental factors in the main sections of the rivers in Tongling. A total of 203 phytoplankton species were identified, belonging to 96 genera and 8 phyla. The community structure of the phytoplankton differed obviously in different river sections, but the communities were all dominated by Bacillariophyta, Chlorophyta and Cyanophyta. The phytoplankton abundance ranged from 9.1 x 10(3) to 6.5 x 10(7) cells x L(-1), and the quantity of the phytoplankton in the river sections directly carried with mining waste water was significantly low. The Shannon index of the phytoplankton community at different sampling sites ranged from 0 to 3.45, with a significant discrepancy in different river sections. There existed significant correlations between the density and group number of phytoplankton and the COD(Cr) and cadmium, copper and zinc concentrations in the rivers, and the concentrations of river total nitrogen, NH4(+)-N, NO3(-)-N, and copper, COD(Cr) and pH were the main environmental variables affecting the phytoplankton' s community structure and its spatial distribution. Although the nutritional status of the river waters had greater effects on the community structure of phytoplankton, the effects of the heavy metals there from mining enterprises could not be neglected.

  7. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    USGS Publications Warehouse

    Bambic, D.G.; Alpers, Charles N.; Green, P.G.; Fanelli, E.; Silk, W.K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage.

  8. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran

    NASA Astrophysics Data System (ADS)

    Pour, Amin Beiranvnd; Hashim, Mazlan

    2011-11-01

    The NW-SE trending Central Iranian Volcanic Belt hosts many well-known porphyry copper deposits in Iran. It becomes an interesting area for remote sensing investigations to explore the new prospects of porphyry copper and vein type epithermal gold mineralization. Two copper mining districts in southeastern segment of the volcanic belt, including Meiduk and Sarcheshmeh have been selected in the present study. The performance of Principal Component Analysis, band ratio and Minimum Noise Fraction transformation has been evaluated for the visible and near infrared (VNIR) and, shortwave infrared (SWIR) subsystems of ASTER data. The image processing techniques indicated the distribution of iron oxides and vegetation in the VNIR subsystem. Hydrothermal alteration mineral zones associated with porphyry copper mineralization identified and discriminated based on distinctive shortwave infrared (SWIR) properties of the ASTER data in a regional scale. These techniques identified new prospects of porphyry copper mineralization in the study areas. The spatial distribution of hydrothermal alteration zones has been verified by in situ inspection, X-ray diffraction (XRD) analysis, and spectral reflectance measurements. Results indicated that the integration of the image processing techniques has a great ability to obtain significant and comprehensive information for the reconnaissance stages of porphyry copper exploration in a regional scale. The results of this research can assist exploration geologists to find new prospects of porphyry copper and gold deposits in the other virgin regions before costly detailed ground investigations. Consequently, the introduced image processing techniques can create an optimum idea about possible location of the new prospects.

  9. Mineral resources of the southern half of Zone III Santander, Norte de Santander and Boyaca, Colombia

    USGS Publications Warehouse

    Ward, Dwight Edward; Goldsmith, Richard; Cruz, Bruna B.; Restrepo, Jaime; Hernan, A.

    1970-01-01

    The areas covered by this report lies in the eastern Cordillera of the Colombian Andes in the region around Bucaramanga. This part of the eastern Cordillera consists of a structurally complex core of metamorphic and igneous rocks of Precambrian to Mesozoic age, flanked to east and west by faulted and folded sedimentary strata of late Paleozoic to Tertiary age. Infaulted blocks of sedimentary rocks are locally present in the massif. Unconsolidated deposits of Quaternary age, primarily terraced alluvium, are 10cally extensive in valleys on the flanks of the range. The crystalline central core of the range is called the Santander massif. In it are located the principal sold deposits and scattered deposits of copper, lead, zinc, and fluorite. The sedimentary rocks flanking the massif contain significant deposits of phosphate rock and gypsum, as well as other nonmetallic industrial minerals such as limestone, barite, glass sand, and coal. A belt of lead-zinc prospects in carbonate and sandstone beds of Cretaceous age on the east side of the range warrants further investigation. Gold and silver are the only important metallic minerals that have been produced in the Santander massif. Mining dates back to colonial and possibly to pre-colonial times and continues on a small scale at present. The California and Vetas district was the main area of investigation of metallic minerals during the present project. Results of geochemical sampling of stream sediments and assays of vein material indicate that the main potential of the area is in gold with lesser potentials in copper, lead, zinc, and silver. Mineralization of the district is probably younger than Early Cretaceous. Although no copper minerals have been mined elsewhere in the massif, small amounts of copper minerals in various rocks in scattered areas is revealed by green and blue stains of copper carbonates and sulfates. Deposits of greatest areal extent are in arkosic conglomeratic beds of the Giron Formation. These are being explored and sampled at the present time (1969). A little lead has been mined and smelted in the past but operations were on a very small scale and of short duration. Small amounts of lead, zinc, and copper minerals accompany dolomite replacement of Cretaceous limestone in a few scattered places, and several promising prospects are being investigated by means of trenches and drilling. One magnetite and several hematite prospects were examined but none offers any potential for economic development. Thick beds of gypsum in Lower Cretaceous limestone on Mesa de Los Santos, south of Bucaramanga are being quarried from outcrops for use in cement manufacture. The deposit was discovered shortly before the present project began, and although its extent beneath overlying strata is not yet determined by drilling, it appears to be in a small evaporite basin of about three kilometers in radius. Reserves of gypsum are large, but future development will have to be by underground mining. Outcrops of Cretaceous limestone of high purity are widespread and are more than adequate to meet all demands, which at present are for cement and calcined lime, road construction material, and to a small extent for agricultural lime and polished decorative stone. Upper Paleozoic limestone of the Diamante Formation crops out in a few places; it has been used near Bucaramanga for cement manufacture. Marble is present in several localities of the Santander massif in Lower Paleozoic and Devonian rocks. Impurities, fractures, and solution cavities render most of it unsuitable for decorative purposes, but selected parts are used in floor tile and terrazo. Recrystallized limestone of the Diamante Formation in the same area, usually referred to as marble, is of uniform high purity throughout a thick and uninterrupted section, and offers a good source of limestone raw material. A little is now used for agricultural lime. The potential of this resource has not been fully evalua

  10. Membrane technology applied to acid mine drainage from copper mining.

    PubMed

    Ambiado, K; Bustos, C; Schwarz, A; Bórquez, R

    2017-02-01

    The objective of this study is to evaluate the treatment of high-strength acid mine drainage (AMD) from copper mining by nanofiltration (NF) and reverse osmosis (RO) at pilot scale. The performances of two commercial spiral-wound membranes - NF99 and RO98pHt, both from Alfa Laval - were compared. The effects of pressure and feed flow on ion rejection and permeate flux were evaluated. The results showed high ion removal under optimum pressure conditions, which reached 92% for the NF99 membrane and 98% for the RO98pHt membrane. Sulfate removal reached 97% and 99% for NF99 and RO98pHt, respectively. In the case of copper, aluminum, iron and manganese, the removal percentage surpassed 95% in both membranes. Although concentration polarization limited NF performance at higher pressures, permeate fluxes observed in NF were five times greater than those obtained by RO, with only slightly lower divalent ion rejection rates, making it a promising option for the treatment of AMD.

  11. Distribution of heavy metals and radionuclides in sediments, water, and fish in an area of Great Bear Lake contaminated with mine wastes.

    PubMed

    Moore, J W; Sutherland, D J

    1981-01-01

    The concentrations of heavy metals and radionuclides in the sediments and water of Great Bear Lake were determined during 1978 near an operating silver mine and an abandoned uranium mine. Additional information on the level of mercury in fish tissues were also collected. The mines, situated on the same site, deposited tailings and other waste material directly into the lake. The concentrations of mercury, lead, manganese, and nickel in the sediments were highest near the tailings deposit and decreased significantly as the distance from the mine increased. Although there were also significant positive correlations between these metals and the organic content of the sediments, water depth and slope of the bottom had no impact on metal distribution. Since the concentrations of arsenic, cobalt, copper, 226radium, 210lead and 230thorium varied inconsistently throughout the study area, the distribution of these substances could not be related to any of the environmental factors that were measured. There were, however, significant negative correlations between the concentrations of 232thorium and 228thorium and distance from the mine and organic content of the sediments. Heavy metal and radionuclide levels in water were generally below detectable limits, reflecting the strong chemical bonding characteristics of the sediments. The low concentrations of mercury in the tissues of lake trout Salvelinus namaycush were probably related to low uptake rates and the ability of this species to move into uncontaminated areas of the lake.

  12. SAN PEDRO PARKS WILDERNESS, NEW MEXICO.

    USGS Publications Warehouse

    Santos, Elmer S.; Weisner, Robert C.

    1984-01-01

    The San Pedro Parks Wilderness occupies 62. 7 sq mi of the Santa Fe National Forest in north-central New Mexico. Several copper mines, many copper prospects, and a few uranium prospects occur in sedimentary units in the vicinity of the wilderness. These units, where they extend into the wilderness, constitute only a small volume of rock and, judging from analyses of samples and from field observations, are devoid of copper and uranium concentration. Prospects on several of about 65 mining claims within the wilderness revealed concentrations of manganese or barite but only in volumes too small to be considered a demonstrated resource.

  13. Geology and regional setting of the Al Masane ancient mine area, southeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Conway, Clay M.

    1985-01-01

    Chemical characteristics of volcanic rocks at Al Masane and elsewhere, along with features such as zinc-copper-iron sulfide mineralization, rhyolite-basalt bimodality, and the quartz phenocryst-rich nature of the felsic rocks, are compatible with an unusually primitive tholeiitic island-arc origin for the strata and mineral deposits of the Habawnah mineral belt.

  14. Copper, zinc and lead biogeochemistry in aquatic and land plants from the Iberian Pyrite Belt (Portugal) and north of Morocco mining areas.

    PubMed

    Durães, Nuno; Bobos, Iuliu; Ferreira da Silva, Eduardo; Dekayir, Abdelilah

    2015-02-01

    The ability of aquatic (Juncus effusus L., Scirpus holoschoenus L., Thypha latifolia L. and Juncus sp.) and land (Cistus ladanifer L., Erica andevalensis C.-R., Nerium oleander L., Isatis tinctoria L., Rosmarinus officinalis L., Cynodon dactylon L. and Hordeum murinum L.) plants from Portugal (Aljustrel, Lousal and São Domingos) and Morocco (Tighza and Zeida) mining areas to uptake, translocate and tolerate heavy metals (Cu, Zn and Pb) was evaluated. The soils (rhizosphere) of the first mining area are characterized by high acidity conditions (pH 2-5), whereas from the second area, by alkaline conditions (pH 7.0-8.5). Physicochemical parameters and mineralogy of the rhizosphere were determined from both areas. Chemical analysis of plants and the rhizosphere was carried out by inductively coupled plasma emission spectrometry. The sequential chemical extraction procedure was applied for rhizosphere samples collected from both mining areas. In the acid conditions, the aquatic plants show a high capacity for Zn bioaccumulation and translocation and less for Pb, reflecting the following metal mobility sequence: Zn > Cu > Pb. Kaolinite detected in the roots by infrared spectroscopy (IR) contributed to metal fixation (i.e. Cu), reducing its translocation to the aerial parts. Lead identified in the roots of land plants (e.g. E. andevalensis) was probably adsorbed by C-H functional groups identified by IR, being easily translocated to the aerial parts. It was found that aquatic plants are more efficient for phytostabilization than bioaccumulation. Lead is more bioavailable in the rhizosphere from Morocco mining areas due to scarcity of minerals with high adsorption ability, being absorbed and translocated by both aquatic and land plants.

  15. Concentrations of metals and trace elements in aquatic biota associated with abandoned mine lands in the Whiskeytown National Recreation Area and nearby Clear Creek watershed, Shasta County, northwestern California, 2002-2003

    USGS Publications Warehouse

    Hothem, Roger L.; May, Jason T.; Gibson, Jennifer K.; Brussee, Brianne E.

    2015-01-01

    Compared with other recently evaluated mine-impacted watersheds in northern California, invertebrates, amphibians, and fish from sites within the Upper Clear Creek watershed tended to have significantly lower concentrations of Hg than at most other sites. For other metals and trace elements, Upper Clear Creek sites were only compared with the Deer Creek watershed, Nevada County, California. Copper from both Willow Creek sites (WLCC and WLTH) in the Clear Creek watershed was the only metal with concentrations in biota that were significantly higher than biota from Deer Creek

  16. CHARACTERIZATION OF MINE LEACHATES AND THE DEVELOPMENT OF A GROUNDWATER MONITORING STRATEGY FOR MINE SITES

    EPA Science Inventory

    The total number of mining sites, both active and inactive, in the United States has been estimated to be as high as 82,000. Approximately 80 percent of the current mining activity in this country is associated with the recovery of gold and copper. The quantity of mine wastes p...

  17. Monitoring of Selected Health Indicators in Children Living in a Copper Mine Development Area in Northwestern Zambia

    PubMed Central

    Knoblauch, Astrid M.; Divall, Mark J.; Owuor, Milka; Archer, Colleen; Nduna, Kennedy; Ng’uni, Harrison; Musunka, Gertrude; Pascall, Anna; Utzinger, Jürg; Winkler, Mirko S.

    2017-01-01

    The epidemiology of malaria, anaemia and malnutrition in children is potentially altered in mining development areas. In a copper extraction project in northwestern Zambia, a health impact assessment (HIA) was commissioned to predict, manage and monitor health impacts. Two cross-sectional surveys were conducted: at baseline prior to project development (2011) and at four years into development (2015). Prevalence of Plasmodium falciparum, anaemia and stunting were assessed in under-five-year-old children, while hookworm infection was assessed in children aged 9–14 years in communities impacted and comparison communities not impacted by the project. P. falciparum prevalence was significantly higher in 2015 compared to 2011 in both impacted and comparison communities (odds ratio (OR) = 2.51 and OR = 6.97, respectively). Stunting was significantly lower in 2015 in impacted communities only (OR = 0.63). Anaemia was slightly lower in 2015 compared to baseline in both impacted and comparison communities. Resettlement due to the project and migration background (i.e., moving into the area within the past five years) were generally associated with better health outcomes in 2015. We conclude that repeated cross-sectional surveys to monitor health in communities impacted by projects should become an integral part of HIA to deepen the understanding of changing patterns of health and support implementation of setting-specific public health measures. PMID:28335490

  18. Monitoring of Selected Health Indicators in Children Living in a Copper Mine Development Area in Northwestern Zambia.

    PubMed

    Knoblauch, Astrid M; Divall, Mark J; Owuor, Milka; Archer, Colleen; Nduna, Kennedy; Ng'uni, Harrison; Musunka, Gertrude; Pascall, Anna; Utzinger, Jürg; Winkler, Mirko S

    2017-03-19

    The epidemiology of malaria, anaemia and malnutrition in children is potentially altered in mining development areas. In a copper extraction project in northwestern Zambia, a health impact assessment (HIA) was commissioned to predict, manage and monitor health impacts. Two cross-sectional surveys were conducted: at baseline prior to project development (2011) and at four years into development (2015). Prevalence of Plasmodium falciparum , anaemia and stunting were assessed in under-five-year-old children, while hookworm infection was assessed in children aged 9-14 years in communities impacted and comparison communities not impacted by the project. P . falciparum prevalence was significantly higher in 2015 compared to 2011 in both impacted and comparison communities (odds ratio (OR) = 2.51 and OR = 6.97, respectively). Stunting was significantly lower in 2015 in impacted communities only (OR = 0.63). Anaemia was slightly lower in 2015 compared to baseline in both impacted and comparison communities. Resettlement due to the project and migration background (i.e., moving into the area within the past five years) were generally associated with better health outcomes in 2015. We conclude that repeated cross-sectional surveys to monitor health in communities impacted by projects should become an integral part of HIA to deepen the understanding of changing patterns of health and support implementation of setting-specific public health measures.

  19. Chemical Data for Rock, Sediment, Biological, Precipitate, and Water Samples from Abandoned Copper Mines in Prince William Sound, Alaska

    USGS Publications Warehouse

    Koski, Randolph A.; Munk, LeeAnn

    2007-01-01

    In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing investigation of sulfide oxidation in Prince William Sound are in press. Koski and others (2008) provide an overview of rock alteration, surface water chemistry, and the distribution of metals at the Ellamar, Threeman, and Beatson mine sites. Based on a 60-day, stream-discharge experiment at Beatson in 2005, Stillings and others (2008) analyze changes in water chemistry during storm events and the flux of metals to the shoreline. Foster and others (2008) investigate the biomass and diversity of microbial communities present in surface waters (streams, seeps, pore waters) using fatty acid methyl ester (FAMES) data and principal component analysis. The publications cited above contain a subset of the total chemical data for rock, sediment, biological, precipitate, and water samples collected from the three mine sites in 2003 and 2005. The purpose of this report is the presentation of complete chemical data sets for all samples collected during the two field periods of fieldwork. Data for a small number of samples collected at two other mines (Schlosser and Fidalgo, fig. 1), visited in 2003, are also included in the tables.

  20. Chemical Data for Rock, Sediment, Biological, Precipitate, and Water Samples from Abandoned Copper Mines in Prince William Sound, Alaska

    USGS Publications Warehouse

    Koski, Randolph A.; Munk, LeeAnn

    2007-01-01

    Introduction In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing investigation of sulfide oxidation in Prince William Sound are in press. Koski and others (2008) provide an overview of rock alteration, surface water chemistry, and the distribution of metals at the Ellamar, Threeman, and Beatson mine sites. Based on a 60-day, stream-discharge experiment at Beatson in 2005, Stillings and others (2008) analyze changes in water chemistry during storm events and the flux of metals to the shoreline. Foster and others (2008) investigate the biomass and diversity of microbial communities present in surface waters (streams, seeps, pore waters) using fatty acid methyl ester (FAMES) data and principal component analysis. The publications cited above contain a subset of the total chemical data for rock, sediment, biological, precipitate, and water samples collected from the three mine sites in 2003 and 2005. The purpose of this report is the presentation of complete chemical data sets for all samples collected during the two field periods of fieldwork. Data for a small number of samples collected at two other mines (Schlosser and Fidalgo, fig. 1), visited in 2003, are also included in the tables.

  1. Sequential Extraction Results and Mineralogy of Mine Waste and Stream Sediments Associated With Metal Mines in Vermont, Maine, and New Zealand

    USGS Publications Warehouse

    Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.; Adams, M.

    2007-01-01

    We report results from sequential extraction experiments and the quantitative mineralogy for samples of stream sediments and mine wastes collected from metal mines. Samples were from the Elizabeth, Ely Copper, and Pike Hill Copper mines in Vermont, the Callahan Mine in Maine, and the Martha Mine in New Zealand. The extraction technique targeted the following operationally defined fractions and solid-phase forms: (1) soluble, adsorbed, and exchangeable fractions; (2) carbonates; (3) organic material; (4) amorphous iron- and aluminum-hydroxides and crystalline manganese-oxides; (5) crystalline iron-oxides; (6) sulfides and selenides; and (7) residual material. For most elements, the sum of an element from all extractions steps correlated well with the original unleached concentration. Also, the quantitative mineralogy of the original material compared to that of the residues from two extraction steps gave insight into the effectiveness of reagents at dissolving targeted phases. The data are presented here with minimal interpretation or discussion and further analyses and interpretation will be presented elsewhere.

  2. Gold, nickel and copper mining and processing.

    PubMed

    Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley

    2010-01-01

    Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors.

  3. Assessing the Influence of Copper-Nickel-Bearing Bedrock on Baseline Water Quality in Filson Creek Watershed, Northeast Minnesota

    NASA Astrophysics Data System (ADS)

    Runkel, R. L.; Jones, P. M.; Elliott, S. M.; Woodruff, L. G.

    2017-12-01

    Mining sulfide-bearing copper (Cu), nickel (Ni), and platinum-group-elements (PGE) deposits in the Duluth Complex of northeast Minnesota could have detrimental effects on surrounding water resources and associated ecosystems. A study was conducted to 1) assess copper, nickel, and other metal concentrations in surface water, bedrock, streambed sediments, and soils in watersheds where the basal part of the Duluth Complex is exposed or near the land surface; and 2) determine if these concentrations, and metal-bearing deposits, are currently influencing regional water quality in areas of potential base-metal mining. One of the watersheds that was assessed was the Filson Creek watershed, where shallow Cu-Ni-PGE deposits are present. Field water-quality, streambed sediments, soils, bedrock, and streamflow data set were collected in Filson Creek and it's watershed in 2014 and 2015. Surface-water samples were analyzed for 12 trace metals (dissolved and total concentrations), 14 inorganic constituents (dissolved concentrations), alkalinity, 18 O /16O and 2H/1H isotopes, and total and dissolved organic carbon. Background total Cu and Ni concentrations in the creek in 2014 and 2015 ranged from 1.2 to 10.8 micrograms per liter (µg/L), and 1.7 to 8.4 µg/L, respectively. The concentrations of copper, nickel, and other trace metals in surface waters and streambed sediments reflects the geochemistry of underlying rock types and glacially transported unconsolidated material, establishing baseline conditions prior to any mining. Dissolved and total organic carbon (DOC and TOC) concentrations in surface waters are very high compared to most surface waters in Minnesota, ranging from 21.3 to 43.2 milligrams per liter (mg/L), and 22.4 and 53.5 mg/L. Synoptic water-quality and flow data from a tracer test conducted over a stream segment of Filson Creek above a shallow Cu-Ni-PGE deposit (Spruce Road Deposit) was used with the 2014-15 water-quality and synthetic flow data to calibrate the reactive transport model. Results from transport modeling suggest that the high DOC content exert control on copper and other trace metal transport.

  4. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine.

    PubMed

    Cerqueira, Beatriz; Vega, Flora A; Silva, Luis F O; Andrade, Luisa

    2012-04-01

    Open cast mining has a strong impact on the environment, the intensity depending on the morphology of the deposit and on the nature of the minerals. At Touro mine (NW Spain) there is a large area covered by tailings, one of which, called the "sedimentation bank", was used to deposit sludge resulting from the extraction of copper in the flotation plant. Three zones were selected and the soils were sampled to analyse the changes brought about by vegetation on the chemical and mineralogical properties of the soils developed over the sedimentation bank and its development over time. The vegetation increased the pH, contents of organic material, nitrogen, clay and free oxides of Fe and Al, and the cationic exchange capacity of the soils. The decrease in the sulphide content, benefited by the vegetation process, led to a reduction in the total content of Cr and Cu. The vegetation also contributed towards the alteration of the primary minerals. The transformation of jarosite, the formation of nanocrystals of hematite, goethite, hydroxypolymers, and amorphous minerals that contained Cu, Cr and Pb were observed. Nevertheless the high Cu and Cr contents indicate that it is advisable to change the restoration process. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Heavy metal contamination in the river toad, Bufo juxtasper (Inger), near a copper mine in East Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yook Heng; Stuebing, R.B.

    1990-08-01

    Mining of metals creates a potential source of heavy metal contamination in the environment. An open pit copper mine situated in the Northwest of Sabah, East Malaysia has been known to pollute its surroundings especially with discharges involving heavy metals. Although extensive investigations of heavy metal pollution has been carried out, none of the studies performed so far has included amphibians as indicator of heavy metal contamination in the area. As amphibians live both on land and in water, a study on the heavy metal content of these animals will thus enable a more extensive evaluation of the degree ofmore » contamination by heavy metals. Bufo juxtasper was chosen since it inhabits the rocky streams and rivers which exist in both a polluted and non-polluted condition in Sabah. Its' tadpoles are herbivorous feeding mainly on plant detritus, while adults feed principally on ants (which are polyphagous). Furthermore the large adult size of Bufo juxtasper, in which the size of the liver has an allometric relationship with body size, may allow for differentiation between larval and adult uptake through regression analysis. Thus concentration of pollutants acquired only during the larval phase should show a declining or negative slope as a function of body size in adults.« less

  6. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Verdejo, José; Ginocchio, Rosanna; Sauvé, Sébastien; Salgado, Eduardo; Neaman, Alexander

    2015-12-01

    It has been argued that the identification of the phytotoxic metal thresholds in soil should be based on field-collected soil rather than on artificially-contaminated soils. However, the use of field-collected soils presents several difficulties for interpretation because of mixed contamination and unavoidable covariance of metal contamination with other soil properties that affect plant growth. The objective of this study was to estimate thresholds of copper phytotoxicity in topsoils of 27 agricultural areas historically contaminated by mining activities in Chile. We performed emergence and early growth (21 days) tests (OECD 208 and ISO 11269-2) with perennial ryegrass (Lolium perenne L.). The total Cu content in soils was the best predictor of plant growth and shoot Cu concentrations, while soluble Cu and pCu(2+) did not well correlate with these biological responses. The effects of Pb, Zn, and As on plant responses were not significant, suggesting that Cu is a metal of prime concern for plant growth in soils exposed to copper mining activities in Chile. The effects of soil nutrient availability and shoot nutrient concentrations on ryegrass response were not significant. It was possible to determine EC10, EC25 and EC50 of total Cu in the soil of 327 mg kg(-1), 735 mg kg(-1) and 1144 mg kg(-1), respectively, using the shoot length as a response variable. However, the derived 95% confidence intervals for EC10, EC25 and EC50 values of total soil Cu were wide, and thus not allowing a robust assessment of metal toxicity for agricultural crops, based on total soil Cu concentrations. Thus, plant tests might need to be performed for metal toxicity assessment. This study suggests shoot length of ryegrass as a robust response variable for metal toxicity assessment in contaminated soils with different nutrient availability. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Macroscopic Streamer Growths in Acidic, Metal-Rich Mine Waters in North Wales Consist of Novel and Remarkably Simple Bacterial Communities

    PubMed Central

    Hallberg, Kevin B.; Coupland, Kris; Kimura, Sakurako; Johnson, D. Barrie

    2006-01-01

    The microbial composition of acid streamers (macroscopic biofilms) in acidic, metal-rich waters in two locations (an abandoned copper mine and a chalybeate spa) in north Wales was studied using cultivation-based and biomolecular techniques. Known chemolithotrophic and heterotrophic acidophiles were readily isolated from disrupted streamers, but they accounted for only <1 to 7% of the total microorganisms present. Fluorescent in situ hybridization (FISH) revealed that 80 to 90% of the microbes in both types of streamers were β-Proteobacteria. Terminal restriction fragment length polymorphism analysis of the streamers suggested that a single bacterial species was dominant in the copper mine streamers, while two distinct bacteria (one of which was identical to the bacterium found in the copper mine streamers) accounted for about 90% of the streamers in the spa water. 16S rRNA gene clone libraries showed that the β-proteobacterium found in both locations was closely related to a clone detected previously in acid mine drainage in California and that its closest characterized relatives were neutrophilic ammonium oxidizers. Using a modified isolation technique, this bacterium was isolated from the copper mine streamers and shown to be a novel acidophilic autotrophic iron oxidizer. The β-proteobacterium found only in the spa streamers was closely related to the neutrophilic iron oxidizer Gallionella ferruginea. FISH analysis using oligonucleotide probes that targeted the two β-proteobacteria confirmed that the biodiversity of the streamers in both locations was very limited. The microbial compositions of the acid streamers found at the two north Wales sites are very different from the microbial compositions of the previously described acid streamers found at Iron Mountain, California, and the Rio Tinto, Spain. PMID:16517651

  8. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa.

    PubMed

    Kamunda, Caspah; Mathuthu, Manny; Madhuku, Morgan

    2016-06-30

    The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10(-4) implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10(-4)). These carcinogenic risk values were both higher than acceptable values.

  9. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa

    PubMed Central

    Kamunda, Caspah; Mathuthu, Manny; Madhuku, Morgan

    2016-01-01

    The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >>1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10−4 implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10−4). These carcinogenic risk values were both higher than acceptable values. PMID:27376316

  10. Heavy metal concentrations in plants growing on a copper mine spoil in the Grand Canyon, Arizona. [Thlaspi montanum; Phlox austromontana; Juniperus osteosperma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, R.J.; Streit, B.

    1986-05-01

    Concentrations of metals including manganese, nickel, copper and zinc were measured in soil from a copper mine spoil heap in the Grand Canyon, Arizona, and in three plant species growing on the spoil. The soil had high concentrations of available copper and zinc, and the herbaceous perennial Thlaspi montanum var fendleri contained amounts of Ni, Cu and Zn in direct proportion to the soil concentrations (EDTA extractable). Another herbaceous perennial, Phlox austromontana, and the woody perennial Juniperus osteosperma had considerably lower amounts of these elements. These findings are discussed in relation to other studies, and it is suggested that figuresmore » for metal accumulation by plants should always be related to plant-available soil concentrations.« less

  11. ARNOLD MESA ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Wolfe, Edward W.; McColly, Robert A.

    1984-01-01

    Geologic geochemical, and aeromagnetic investigations and a survey of mines and prospects in the Arnold Mesa Roadless Area, Arizona, provide little evidence for the occurrence of mineral or energy resources. Buried Proterozoic basement rocks are possible hosts of porphyry-type copper and massive sulfide deposits but the thick cover of Paleozoic sedimentary rocks and upper Cenozoic volcanic rocks precluded assessment of this possibility. Chemistry and temperature of spring and well waters suggest that a geothermal resource may exist near the eastern margin of the roadless area, but the anomaly has not been tested by drilling and this resource remains unverified. No other energy resources were identified.

  12. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    USGS Publications Warehouse

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these that deposited pitchblende.

  13. Mineral resources of the Mount Tipton Wilderness Study Area, Mohave County, Arizona

    USGS Publications Warehouse

    Greene, Robert C.; Turner, Robert L.; Jachens, Robert C.; Lawson, William A.; Almquist, Carl L.

    1989-01-01

    The Mount Tipton Wilderness Study Area (AZ-020-012/ 042) comprises 33,950 acres in Mohave County, Ariz. At the request of the U.S. Bureau of Land Management, this area was evaluated for identified mineral resources (known) and mineral resource potential (undiscovered). This work was carried out by the U.S. Bureau of Mines and the U.S. Geological Survey in 1984-87. In this report, the area studied is referred to as the "wilderness study area" or simply "the study area." There are no identified mineral resources in the study area. The southernmost part of the study area is adjacent to the Wallapai (Chloride) mining district and has low mineral resource potential for gold, silver, copper, lead, zinc, and molybdenum in hydrothermal veins. This area also has a low mineral resource potential for tungsten in vein deposits and for uranium in vein deposits or pegmatites. In the central part of the wilderness study area, one small area has low mineral resource potential for uranium in vein deposits or pegmatites and another small area has low resource potential for thorium in vein deposits. The entire study area has low resource potential for geothermal energy but no potential for oil or gas resources.

  14. The Study of Geotechnical Properties of Sediment in C-C Zone in the Northeastern Pacific for Deep-sea Mining

    NASA Astrophysics Data System (ADS)

    Chi, S.; Kim, K.; Lee, H.; Ju, S.; Yoo, C.

    2007-12-01

    Recently the market price of valuable metals are rapidly increased due to the high demand and limited resources. Therefore, manganese (Mn)-nodules (Polymetallic nodules) in the Clarion-Clipperton fracture zone have stimulated economic interest. Nickel, copper, cobalt and manganese are the economically most interesting metals of Mn-nodules. In order to mine Mn-nodules from sea floor, understanding the geotechnical properties of surface sediment are very important for two major reasons. First, geotechnical data are required to design and build the stable and environmentally acceptable mining vehicles. Second, deep-sea mining activity could significantly effect on the surface layer of deep sea floor. For example, surface sediments will be redistributed through the resuspension and redeposition. Reliable sedimentological and soil mechanical baseline data of the undisturbed benthic environment are essential to assess and evaluate these environmental impacts by mining activity using physical and numerical modeling. The 225 times deployments of the multiple corer guaranteed undisturbed sediment samples in which geotechnical parameters were measured including sediment grain size, density, water content, shear strength. The sea floor sediments in this study area are generally characterized into three different types as follow. The seabed of the middle part (8-12° N) of this study area is mainly covered with biogenic siliceous sediment compared with pelagic red clays in the northern part (16-17° N). However, the southern part (5-6° N) is dominant with calcareous sediments because its water depth is shallower than the carbonate compensation depth (CCD). This result suggests that middle area, covered with siliceous sediment, is more feasible for commercial mining than northern area, covered with pelagic red clay, with the consideration of the nodule miner maneuverability and the environmental impact. Especially, middle part with the highest nodule abundance and valuable metal contents is mainly (more than 90% of area) covered with consolidated sediments, which are expected to be appropriate for effective miner movement. Furthermore, middle part with coarse siliceous sediments could be less environmentally disturbed by the mining activity. It makes middle part more plausible site than other sites in this study area for the commercial mining.

  15. Evaluation of stream sediments in areas of known mineralization, San Jose and Talamanca Quadrangles, Costa Rica: An orientation survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arauz, A.J.

    1986-12-01

    Costa Rica's compressional island arc-type tectonic setting and considerable geologic diversity hold great promise for future discovery of economic metallic deposits. The study constitutes an orientation investigation of stream sediment sampling techniques to establish optimum survey specifications for the regional geochemical survey coverage of the country. The study was conducted in two separate areas of known mineralization which represent distinctive tropical environments and different metallogenic provinces within Costa Rica: (1) the Esparza Area, which contains the Santa Clara Gold Mine, the largest in the country, and (2) the San Isidro Area, which contains a major copper prospect.

  16. Monitoring of the stability of underground workings in Polish copper mines conditions

    NASA Astrophysics Data System (ADS)

    Fuławka, Krzysztof; Mertuszka, Piotr; Pytel, Witold

    2018-01-01

    One of the problems associated with the excavation of deposit in underground mines is the local disturbance in a state of unstable equilibrium results in the sudden release of energy, mainly in the form of roof falls. The scale and intensity of this type of events depends on a number of factors. To minimize the risk of instability occurrence, continuous observations of the roof strata condition are recommended. Different roof strata observation methods used in the Polish copper mines have been analysed within the framework of presented paper. In addition, selected prospective methods, which could significantly increase efficiency of rock fall prevention are presented.

  17. Using remote sensing imagery to monitoring sea surface pollution cause by abandoned gold-copper mine

    NASA Astrophysics Data System (ADS)

    Kao, H. M.; Ren, H.; Lee, Y. T.

    2010-08-01

    The Chinkuashih Benshen mine was the largest gold-copper mine in Taiwan before the owner had abandoned the mine in 1987. However, even the mine had been closed, the mineral still interacts with rain and underground water and flowed into the sea. The polluted sea surface had appeared yellow, green and even white color, and the pollutants had carried by the coast current. In this study, we used the optical satellite images to monitoring the sea surface. Several image processing algorithms are employed especial the subpixel technique and linear mixture model to estimate the concentration of pollutants. The change detection approach is also applied to track them. We also conduct the chemical analysis of the polluted water to provide the ground truth validation. By the correlation analysis between the satellite observation and the ground truth chemical analysis, an effective approach to monitoring water pollution could be established.

  18. Mining Company Involved in Environmental Disaster Now Advises Sustainability Institute at University of Michigan

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    2007-01-01

    In the 1990s, the giant mining company now known as BHP Billiton drew worldwide condemnation for the environmental damage caused by its copper and gold mine in Papua, New Guinea. Its mining practices destroyed the way of life of thousands of farming and fishing families who lived along and subsisted on the rivers polluted by the mine, and it was…

  19. Geochemical characterization of slags, other mines wastes, and their leachates from the Elizabeth and Ely mines (Vermont), the Ducktown mining district (Tennessee), and the Clayton smelter site (Idaho)

    USGS Publications Warehouse

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Meier, Allen L.; Briggs, Paul H.

    2003-01-01

    Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements. Two types of mine waste were examined in this study: sintered waste rock and slag. The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits), from the Copper Basin mining district near Ducktown, Tennessee (Besshi-type massive sulfide deposits), and from the Clayton silver mine in the Bayhorse mining district, Idaho (polymetallic vein and replacement deposits). The data in this report are presented as a compilation with minimal interpretation or discussion. A detailed discussion and interpretation of the slag data are presented in a companion paper. Data collected from sintered waste rock and slag include: (1) bulk rock chemistry, (2) mineralogy, (3) and the distribution of trace elements among phases for the slag samples. In addition, the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States.

  20. Geochemistry of Standard Mine Waters, Gunnison County, Colorado, July 2009

    USGS Publications Warehouse

    Verplanck, Philip L.; Manning, Andrew H.; Graves, Jeffrey T.; McCleskey, R. Blaine; Todorov, Todor I.; Lamothe, Paul J.

    2009-01-01

    In many hard-rock-mining districts water flowing from abandoned mine adits is a primary source of metals to receiving streams. Understanding the generation of adit discharge is an important step in developing remediation plans. In 2006, the U.S. Environmental Protection Agency listed the Standard Mine in the Elk Creek drainage basin near Crested Butte, Colorado as a superfund site because drainage from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to the stream. Elk Creek flows into Coal Creek, which is a source of drinking water for the town of Crested Butte. In 2006 and 2007, the U.S. Geological Survey undertook a hydrogeologic investigation of the Standard Mine and vicinity and identified areas of the underground workings for additional work. Mine drainage, underground-water samples, and selected spring water samples were collected in July 2009 for analysis of inorganic solutes as part of a follow-up study. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 2 and 3 of the Standard Mine, two spring samples, and an Elk Creek sample. Reported analyses include field measurements (pH, specific conductance, water temperature, dissolved oxygen, and redox potential), major constituents and trace elements, and oxygen and hydrogen isotopic determinations. Overall, water samples collected in 2009 at the same sites as were collected in 2006 have similar chemical compositions. Similar to 2006, water in Level 3 did not flow out the portal but was observed to flow into open workings to lower parts of the mine. Many dissolved constituent concentrations, including calcium, magnesium, sulfate, manganese, zinc, and cadmium, in Level 3 waters substantially are lower than in Level 1 effluent. Concentrations of these dissolved constituents in water samples collected from Level 2 approach or exceed concentrations of Level 1 effluent suggesting that water-rock interaction between Levels 3 and 1 can account for the elevated concentration of metals and other constituents in Level 1 portal effluent. Ore minerals (sphalerite, argentiferous galena, and chalcopyrite) are the likely sources of zinc, cadmium, lead, and copper and are present within the mine in unmined portions of the vein system, within plugged ore chutes, and in muck piles.

  1. Composition and fate of mine- and smelter-derived particulates in soils from humid subtropical and semiarid areas

    NASA Astrophysics Data System (ADS)

    Ettler, Vojtech; Kribek, Bohdan; Mihaljevic, Martin; Vanek, Ales; Penizek, Vit; Sracek, Ondra; Mapani, Ben; Kamona, Fred; Nyambe, Imasiku

    2017-04-01

    Soils in the vicinity of non-ferrous metal smelters are often highly polluted by inorganic contaminants released from particulate emissions, which undergo weathering processes and release contaminants when deposited in soils. We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area in the Zambian Copperbelt and a hot semi-arid area in the northern Namibia. High concentrations of metal(loid)s were detected in the studied soils: up to 1450 ppm As, 8980 ppm Cu, 4640 ppm Pb, 2620 ppm Zn. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles either have geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [CuFeO2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). This study was supported by the Czech Science Foundation projects (GACR 13-17501S and 16-13142S).

  2. Soil quality changes in response to their pollution by heavy metals, Georgia.

    PubMed

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  3. Assessment of Potential Health Hazards During Emission of Hydrogen Sulphide from the Mine Exploiting Copper Ore Deposit - Case Study.

    PubMed

    Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir; Gromiec, Jan P; Konieczko, Katarzyna

    2015-06-01

    The aim of this study was to determine hydrogen sulphide concentration emitted from the mine extracting copper ore, to evaluate potential adverse health effects to the population living in four selected villages surrounding the exhaust shaft. Maximum measured concentration of hydrogen sulphide in the emitter is 286 µg/m³. Maximum emission calculated from the results of determinations of concentrations in the emitter is 0.44 kg/h. In selected villages hydrogen sulphide at concentrations exceeding 4 µg/m³ was not detected in any of the 5-hour air samples. In all locations, the estimated maximum 1-hour concentrations of hydrogen sulphide were below 1 µg/m³, and the estimated mean annual concentrations were below 0.53 µg/m³. Any risk to the health of people in the selected area is not expected. As indicated by the available data on the threshold odour, the estimated concentrations of hydrogen sulphide may be sensed by humans. Copyright© by the National Institute of Public Health, Prague 2015.

  4. Source and Assessment of Metal Pollution at Khetri Copper Mine Tailings and Neighboring Soils, Rajasthan, India.

    PubMed

    Punia, Anita; Siddaiah, N Siva; Singh, Saurabh K

    2017-11-01

    We present here the results of the study on metal pollution by identifying source, abundance and distribution in soil and tailings of Khetri copper complex (KCC) mines, Rajasthan India. The region is highly contaminated by copper (Cu) with higher values in the soil near overburden material (1224 mg/kg) and tailings (111 mg/kg). The average Cu (231 mg/kg) concentration of soil is ~9, 5 and 32 times higher than upper crust, world average shale (WAS) and local background soil (LS), respectively. However this reaches to ~82, 46 and 280 times higher in case of tailing when compared. The correlation and principal component analysis for soil reveals that the source of Cu, Zn, Co, Ni, Mn and Fe is mining and Pb and Cd could be result of weathering of parent rocks and other anthropogenic activities. The source for Cr in soil is both mining activities and weathering of parent rocks. The values of index of geo-accumulation (I geo ) and pollution load index for soil using LS as background are higher compared to values calculated using WAS. The metal rich sulphide bearing overburden material as well as tailings present in the open environment at KCC mines region warrants a proper management to minimize their impact on the environment.

  5. The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geochemical, remote sensing, and mineral resources maps of the Butte 1 degree x 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, James E.; Trautwein, C.M.; Wallace, C.A.; Lee, G.K.; Rowan, L.C.; Hanna, W.F.

    1993-01-01

    The Butte 1?x2 ? quadrangle in west-central Montana was investigated as part of the U.S. Geological Survey's Conterminous United States Mineral Assessment Program (CUSMAP). These investigations included geologic mapping, geochemical surveys, gravity and aeromagnetic surveys, examinations of mineral deposits, and specialized geochronologic and remote-sensing studies. The data collected during these studies were compiled, combined with available published and unpublished data, analyzed, and used in a mineral-resource assessment of the quadrangle. The results, including data, interpretations, and mineral-resource assessments for nine types of mineral deposits, are published separately as a folio of maps. These maps are accompanied by figures, tables, and explanatory text. This circular provides background information on the Butte quadrangle, summarizes the studies and published maps, and lists a selected bibliography of references pertinent to the geology, geochemistry, geophysics, and mineral resources of the quadrangle. The Butte quadrangle, which includes the world-famous Butte mining district, has a long history of mineral production. Many mining districts within the quadrangle have produced large quantities of many commodities; the most important in dollar value of production were copper, gold, silver, lead, zinc, manganese, molybdenum, and phosphate. At present, mines at several locations produce copper, molybdenum, gold, silver, lead, zinc, and phosphate. Exploration, mainly for gold, has indicated the presence of other mineral deposits that may be exploited in the future. The results of the investigations by the U.S. Geological Survey indicate that many areas of the quadrangle are highly favorable for the occurrence of additional undiscovered resources of gold, silver, copper, molybdenum, tungsten, and other metals in several deposit types.

  6. Distribution of uranium in the Bisbee district, Cochise County, Arizona

    USGS Publications Warehouse

    Wallace, Stewart R.

    1956-01-01

    The Bisbee district has been an important source of copper for many years, and substantial amounts of lead and zinc ore and minor amounts of manganese ore have been mined during certain periods. The copper deposits occur both as low-grade disseminated ore in the Sacramento Hill stock and as massive sulfide (and secondary oxide and carbonate) replacement bodies in Paleozoic limestones that are intruded by the stock and related igneous bodies. The lead-zinc production has come almost entirely from limestone replacement bodies. The disseminated ore exhibits no anomalous radioactivity, and samples from the Lavender pit contain from 0.002 to less than 0.001 percent equivalent uranium. The limestone replacement ores are distinctly radioactive and stoping areas can be readily distinguished from from unmineralized ground on the basis of radioactivity alone. The equivalent uranium content of the copper replacement ores ranges from 0.002 to 0.014 percent and averages about 0.005 percent; the lead-zinc replacement ores average more than 0.007 percent equivalent uranium. Most of the uranium in the copper ores of the district is retained in the smelter slag of a residual concentrate; the slag contains about 0.009 percent equivalent uranium. Uranium carried off each day by acid mine drainage is roughly equal to 1 percent of that being added to the slag dump. Although the total amount of uranium in the district is large, no minable concentrations of ore-grade material are known; samples of relatively high-grade material represent only small fractions of tons at any one locality.

  7. Mineral resources of the Turtle Mountains Wilderness Study Area, San Bernardino County, California

    USGS Publications Warehouse

    Howard, Keith A.; Nielson, Jane E.; Simpson, Robert W.; Hazlett, Richard W.; Alminas, Henry V.; Nakata, John K.; McDonnell, John R.

    1988-01-01

    At the request of the U.S. Bureau of Land Management, approximately 105,200 acres of the Turtle Mountains Wilderness Study Area (CDCA-307) were evaluated for mineral resources (known) and resource potential (undiscovered). In this report, the area studied is referred to as "the wilderness study area" or simply "the study area"; any reference to the Turtle Mountain Wilderness Study Area refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management.The wilderness study area is in southeastern San Bernardino County, Calif. Gold, silver, copper, and lead have been mined within and adjacent to the study area. Copper-zinc-silver-gold mineral occurrences are found in the southern part and gold-silver mineral occurrences are found in the northern part of the study area; identified low- to moderate-grade gold-silver resources occur adjacent to the study area along the western boundary. Six areas in the south-central and northwestern parts of the study area have high resource potential, two broad areas have moderate resource potential, and part of the southwest corner has low resource potential for lode gold, silver, and associated copper, lead, zinc, molybdenum, and tungsten. Alluvium locally within one of these areas has moderate resource potential for placer gold and silver, and the entire area has low resource potential for placer gold and silver. There is low resource potential for perlite, ornamental stone (onyx marble and opal), manganese, uranium and thorium, pegmatite minerals, and oil and gas within the study area. Sand and gravel are abundant but are readily available outside the wilderness study area.

  8. BOULDER-PIONEER WILDERNESS STUDY AREA, IDAHO.

    USGS Publications Warehouse

    Simons, Frank S.; Tuchek, Ernest T.

    1984-01-01

    A mineral-resource survey of the Boulder-Pioneer Wilderness study area in the Pioneer and Boulder Mountains of south-central Idaho, was made. The area has demonstrated resources of about 1. 7 million tons of lead-zinc-silver ore, mostly in the Phi Kappa mine, and an additional 2. 5 million tons of demonstrated resources in areas of substantiated potential for these metals and for tungsten, molybdenum, and fluorite. The survey indicates substantiated resource potential in eight areas and probable mineral-resource potential in seven. Mineral commodities of greatest intertest include tungsten, copper, lead, zinc, silver, gold, molybdenum, vanadium, and barite. There is little likelihood for the occurrence of oil, gas, coal, or geothermal resources.

  9. [Distribution characteristics of soil nematodes in reclaimed land of copper-mine-tailings in different plant associations].

    PubMed

    Zhu, Yong-heng; Li, Ke-zhong; Zhang, Heng; Han, Fei; Zhou, Ju-hua; Gao, Ting-ting

    2015-02-01

    A survey was carried out to investigate soil nematode communities in the plant associations of gramineae (Arthraxon lanceolatus, AL; Imperata cylindrica, IC) and leguminosae (Glycine soja, GS) in reclaimed land of copper-mine-tailings and in the plant associations of gramineae (Digitaria chrysoblephara, DC-CK) of peripheral control in Fenghuang Mountain, Tongling City. A total of 1277 nematodes were extracted and sorted into 51 genera. The average individual density of the nematodes was 590 individuals · 100 g(-1) dry soil. In order to analyze the distribution character- istics of soil nematode communities in reclaimed land of copper-mine-tailings, Shannon community diversity index and soil food web structure indices were applied in the research. The results showed that the total number of nematode genus and the Shannon community diversity index of soil nematode in the three plant associations of AL, IC and GS were less than that in the plant associations of DC-CK. Compared with the ecological indices of soil nematode communities among the different plant associations in reclaimed land of copper-mine-tailings and peripheral natural habitat, we found that the structure of soil food web in the plant associations of GS was more mature, with bacterial decomposition being dominant in the soil organic matter decomposition, and that the soil ecosystem in the plant associations of GS was not stable with low interference. This indicated that the soil food web in the plant associations of leguminosae had a greater development potential to improve the ecological stability of the reclaimed land of copper-mine-tailings. On the other hand, the structure of soil food web in the plant associations of AL and IC were relatively stable in a structured state with fungal decomposition being dominant in the decomposition of soil organic matter. This indicated that the soil food web in the plant associations of gramineae was at a poor development level.

  10. Determination of instream metal loads using tracer-injection and synoptic-sampling techniques, Wightman Fork, southwestern Colorado, July 1999

    USGS Publications Warehouse

    Ortiz, Roderick F.

    2001-01-01

    In July 1999, a tracer-injection study was conducted concurrently with synoptic sampling to generate mass-load profiles in Wightman Fork near the Summitville Mine site. The mine site is located in the San Juan Mountains of southwestern Colorado at an elevation of about 3,500 meters above sea level. Metal loads increased substantially along the 2,815-meter study reach along the boundary of the mine site. Spatial determinations of dissolved aluminum, copper, iron, manganese, and zinc loads were used to identify potential source areas to the stream. Overall, four source areas appeared to contribute most of the specific load at the end of the study reach. One source area was along a 60-meter reach downgradient from the toe of the North Waste Dump that generally corresponded to a region of radial faults. Another source area was a short reach that included inputs from the Summitville Water Treatment Facility and the Pump House Fault. In July 1999, seepage from the Summitville Dam Impoundment was a substantial contributor of metal load at the end of the study reach. Finally, the metal load contributed along a 60-meter reach that included Cropsy Creek is considered a substantial source of metal load to Wightman Fork.

  11. Benthic foraminifera (Protista) as indicators of metal pollution in areas of historic mining: examples from southwest England

    NASA Astrophysics Data System (ADS)

    Hart, Malcolm; Smart, Christopher

    2016-04-01

    Southwest England has been, from Roman times, an important mining area supplying a range of important metals, including copper, tin, tungsten, arsenic, zinc, silver, etc. This mining activity virtually disappeared in the twentieth century, although one tungsten mine near Plymouth has recently re-opened. Large areas of Cornwall and West Devon are now inscribed as the 'Cornish Mining World Heritage Site' on the cultural list of UNESCO. Many of the old mines with their spoil heaps and tailings dams are now protected and, together with the mineral-rich local geology, provide many catchments with on-going metal pollution. In January 1992, after a period of prolonged, heavy rainfall Wheal Jane mine flooded and discharged heavily polluted, acidic, water into Restonguet Creek and the Fal Estuary. This event provided the setting for a detailed investigation of the immediate impact of the pollution and the resulting environmental improvements caused by engineering interventions and natural re-adjustment. Benthic foraminifera disappeared from Restronguet Creek for a number of years and while there is now an abundant, though low diversity, estuarine assemblage of foraminifera living in the creek there are still high levels (<15% in 2004) of test deformity recorded (Olugbode et al., 2005). In other parts of the Fal Estuary (a Special Area of Conservation under the EU Habitats Directive, 2000), deformed foraminifera are very rare and the measured levels of pollution can be used to compare with the test deformity data. In other estuarine systems in southwest England, such as the River Fowey and the River Tamar, levels of deformity are less, though still significant for areas no longer being actively mined. This demonstrates that polluted sediments in all these estuaries, which can be disturbed during floods or times of stormy weather, and the background levels of metal elements in the catchments that supply these estuaries, are sufficient to maintain these levels of deformity in the long term. OLUGBODE, O.I., HART, M.B. & STUBBLES, S.J. 2005. Foraminifera from Restronguet Creek: monitoring recovery from the Wheal Jane pollution incident. Geoscience in south-west England, 11, 82-92.

  12. Arizona Copper

    NASA Image and Video Library

    2014-03-19

    Arizona produces 60% of the total copper mined in the US; in 2007, 750,000 tons of copper came out of the state. One of the major mining districts is located about 30 km south of Tucson. Starting around 1950, open-pit mining replaced underground operations, and the ASARCO-Mission complex, Twin Buttes, and Sierrita mines became large open pit operations. Accompanying copper mineralization, silver, molybdenum, zinc, lead and gold are extracted. In addition to the pits themselves, enormous leach ponds and tailings piles surround the pits. The image was acquired May 31, 2012, covers an area of 22 by 28 km, and is located at 31.9 degrees north, 111 degrees west. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/ Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Application of 57Fe Mössbauer spectroscopy as a tool for mining exploration of bornite (Cu5FeS4) copper ore

    NASA Astrophysics Data System (ADS)

    Gainov, R. R.; Vagizov, F. G.; Golovanevskiy, V. A.; Ksenofontov, V. A.; Klingelhöfer, G.; Klekovkina, V. V.; Shumilova, T. G.; Pen'kov, I. N.

    2014-04-01

    Nuclear resonance methods, including Mössbauer spectroscopy,are considered as unique techniques suitable for remote on-line mineralogical analysis. The employment of these methods provides potentially significant commercial benefits for mining industry. As applied to copper sulfide ores, Mössbauer spectroscopy method is suitable for the analysis noted. Bornite (formally Cu5FeS4) is a significant part of copper ore and identification of its properties is important for economic exploitation of commercial copper ore deposits. A series of natural bornite samples was studied by 57Fe Mössbauer spectroscopy. Two aspects were considered: reexamination of 57Fe Mössbauer properties of natural bornite samples and their stability irrespective of origin and potential use of miniaturized Mössbauer spectrometers MIMOS II for in-situ bornite identification. The results obtained show a number of potential benefits of introducing the available portative Mössbauer equipment into the mining industry for express mineralogical analysis. In addition, results of some preliminary 63,65Cu nuclear quadrupole resonance (NQR) studies of bornite are reported and their merits with Mössbauer techniques for bornite detection discussed.

  14. China Report, Economic Affairs, No. 397

    DTIC Science & Technology

    1983-11-10

    porphyry copper have also been discovered, together with molybdenum, tungsten, gold, silver and iron. Tibet’s potential reserve of copper is...abroad aimed at using optical fibres instead of copper and aluminum wires for the relaying of information. According to statistics, the energy required...to produce this kind of fibre is only one-thousandth of the energy required to mine, smelt, and process the same length of copper wire. After the

  15. 75 FR 16179 - Notice of Affirmative Decisions on Petitions for Modification Granted in Whole or in Part

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ...-013-C FR Notice: 74 FR 27185 (June 8, 2009). Petitioner: Wolf Run Mining Company, Rt. 3, Box 146... FR 23745 (May 20, 2009). Petitioner: Excel Mining, LLC, Box 4126, State Highway 194 West, Pikeville... Heights, P.O. Box 1944, Superior, Arizona 85273. Mine: Resolution Copper Mine, MSHA I.D. No. 02-00152...

  16. Contamination of potentially toxic elements in streams and water sediments in the area of abandoned Pb-Zn-Cu deposits (Hrubý Jesenník, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Lichnovský, J.; Kupka, J.; Štěrbová, V.; Andráš, P.; Midula, P.

    2017-10-01

    The deposits, located in Nová Ves and Zlaté Hory were well known and important sources of metal ore in Jesenniky region in the past. Especially the one in Nová Ves, which is recently the most important hydrothermal deposit of venous type in the whole area. The mining activity, aimed on lead and zinc minerals was practically permanent here from the middle-age to 1959. On the other hand, the site in Zlaté Hory is the most important ore deposit in Czech Silesia. The non-venous types of polymetallic, copper and gold deposits, evolved in the complex of metamorphic devon rocks are located on south and south-west directions of the area. Long and permanent mining industry caused remarkable changes in the local environment, creating mine heaps and depressions. The probability, that dump material contains potentially toxic substances that could be possibly leaked into surrounded environment is high. This contribution presents the part of complex study results, aimed on evaluating of potential environmental impacts in above mentioned locations. It aims on contamination, caused by potentially toxic heavy metals (Pb, Zn, Cu, Ni, Fe, Mn, Co, Cd, Cr and As) at the sites, exposed to mining activity in the past. The study focus on the contamination of these sites and evaluate them as potential risk for surrounded environment.

  17. A geochemical record of the mining history of the Erme Estuary, south Devon, UK.

    PubMed

    Price, Gregory D; Winkle, Karen; Gehrels, W Roland

    2005-12-01

    The concentration of selected trace metals (Cu, Pb and Zn) in salt-marsh sediments from within the Erme Estuary have been measured in order to assess possible historical sources of pollution. The Erme Estuary, south Devon, UK is an Area of Outstanding Natural Beauty and has remained largely unaffected by industrialisation, although a number of small silver-lead mines were in operation in the 1800s. Five cores reveal comparable geochemical profiles. An increase of lead at approximately 40 cm depth is observed, reaching maximum values of 427 ppm. Less distinct trends are revealed by zinc and copper, probably reflecting the lack of widespread mining for ores of these elements within the catchment and possible post-depositional mobility rendering the metal concentrations non-contemporaneous with the chemostratigraphy of lead. The geochemical analysis of the salt-marsh sediments provides a fairly robust chemostratigraphic scheme and the likely sources of mine waste can be pinpointed within the catchment. Based upon reference to the historical mining record of these mines chemostratigraphic dating of the sediments can be achieved in order to provide an estimate of salt-marsh accretion rates and sea-level rise.

  18. Derivation of soil screening thresholds to protect chisel-toothed kangaroo rat from uranium mine waste in northern Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.

    2013-01-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.

  19. A sediment quality triad assessment of the impact of copper mine tailings disposal on the littoral sedimentary environment in the Atacama region of northern Chile.

    PubMed

    Lee, Matthew R; Correa, Juan A; Seed, Ray

    2006-11-01

    A sediment quality triad (SQT) assessment was made of the impact of copper mine tailings disposal on littoral meiofaunal assemblages in the Atacama region of northern Chile. This situation is unusual in that the disposal is direct into the high-energy coastal system and not via a river estuary or other low-energy environment. This situation also allows for the examination of the impact of copper mine tailings in the absence of confounding effects from other pollutants. The three components of the SQT were: 1. an analysis of the bioavailable metals in both the sedimentary porewater and the adjacent seawater, 2. a microcosm bioassay of both sediments and seawaters using meiofaunal assemblages, and 3. quantitative field samples of the meiofaunal assemblages. Twelve study sites with varying degrees of impact were used, including three reference sites. The study identified that both the meiofaunal assemblage densities and taxa diversities decrease with increasing levels of bioavailable copper, that the Foraminifera and Harpacticoida are sensitive to copper, and that otoplanid Turbellaria are often characteristic of impacted sites; tailings also have both chemical and physical impacts on the environment. In some cases the physical impact of tailings is more important in excluding some organisms e.g. the interstitial polychaete, Saccocirrus sonomacus, from a site than is their chemical impact.

  20. Progress report on the Happy Jack mine, Which Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Trites, Albert F.; Chew, Randall T.

    1954-01-01

    The Happy Jack mine is in the White Canyon area, San Juan county, Utah. Production is from high-grade uranium deposits in the Shinarump conglomerate of the Triassic age. In this area the Shinarump beds range from about 16 to 40 feet in thickness and the lower part of these beds fills an east-trending channel this is note than 750 feet wide and 10 feet deep. The Shinarump conglomerate consists of beds of coarse- to fine-grained quartzose sandstone, conglomerate, siltstone, and claystone. Carbonized wood is abundant in these beds, and in the field it was classified as mineral charcoal and coal. Intra-Shinarump channels, cross-stratification, current lineation, and slumping and compaction structures have been recognized in the mine. Steeply dipping fractures have dominant trends in four directions -- N 65°W, N 60°E, N 85°E, and due north. Uranium occurs as bedded deposits, as replacement bodies in accumulations of "trash", and as replacements of larger fragments of wood. An "ore shoot" is formed where the three types of uranium deposits occur together; these ore shoots appear to be elongate masses with sharp boundaries. Uranium minerals include uraninite, sooty pitchblende(?), and the sulfate--betazippeite, johannite, and uranopilite. Associated with the uraninite are the sulfide minerals covellite, bornite, chalcopyritw, and pyrite. Galena and sphalerite have been found in close association with uranium minerals. The gaunge minerals include: limonite and hematite present in most of the sandstone beds throughout the deposit, jarosite that impregnates much of the sandstone in the outer parts of the mine workings, gypsum that fills many of the fractures, and barite that impregnates the sandstone in at least one part of the mine. Secondary copper minerals, mainly copper sulfates, occur throughout the mine, but most abundant near the adits in the outermost 30 feet of the workings. The minerals comprising the bulk of the country rock include quartz, feldspar, and clay minerals. The amount of uranium minerals deposited in a sandstone bed is believed to have been determined by the position of the bed in the channel, the permeability of the sandstone in the bed, and the amount of carbonized wood and plant remains within the bed. The beds considered most favorable for uranium deposition contain an abundance of claystone and siltstone both as matrix filling and as fragments and pebbles. Suggested exploration guides from uranium ore bodies include the following: (1) interbedded siltstone lenses, (2) claystone and siltstone cement and pabbles, (3) concentrations of "trash", (4) covelllite and bornite, (5) chalcopyrite, and (6) carbonized wood.

  1. [Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].

    PubMed

    Chen, Zheng; Yang, Gui-de; Sun, Qing-ye

    2009-09-01

    Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.

  2. Photointerpretation of Skylab 2 multispectral camera (S-190A) data: Advance report of significant results

    NASA Technical Reports Server (NTRS)

    Jensen, M. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A significant and possible major economic example of the practical value of Skylab photographs was provided by locating on Skylab Camera Station Number 4, frame 010, SL-2, an area of exposures of limestone rocks which were thought to be completely covered by volcanic rocks based upon prior mapping. The area is located less than 12 miles north of the Ruth porphyry copper deposit, White Pine County, Nevada. This is a major copper producing open pit mine owned by Kennecott Copper Corporation. Geophysical maps consisting of gravity and aeromagnetic studies have been published indicating three large positive magnetic anomalies located at the Ruth ore deposits, the Ward Mountain, not a mineralized area, and in the area previously thought to be completely covered by post-ore volcanics. Skylab photos indicate, however, that erosion has removed volcanic cover in specific sites sufficient to expose the underlying older rocks suggesting, therefore, that the volcanic rocks may not be the cause of the aeromagnetic anomaly. Field studies have verified the initial interpretations made from the Skylab photos. The potential significance of this study is that the large positive aeromagnetic anomaly suggests the presence of cooled and solidified magma below the anomalies, in which ore-bearing solutions may have been derived forming possible large ore deposits.

  3. Comparative toxicity of inorganic contaminants released by placer mining to early life stages of salmonids

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, Steven J.

    1990-01-01

    The acute toxicities of four trace inorganics associated with placer mining were determined, individually and in environmentally relevant mixtures, to early life stages of Arctic grayling (Thymallus arcticus) from Alaska and Montana, coho salmon (Oncorhynchus kitsutch) from Alaska and Washington, and rainbow trout (Oncorhynchus mykiss) from Montana. The descending rank order of toxicity to all species and life stages was copper > zinc > lead > arsenic. For each of the three species, sensitivity to the inorganics was greater in juveniles than in alvenins or in swim-up fry. Arctic grayling from Alaska were more sensitive than the other species tested, including Arctic grayling from Montana. For Arctic grayling, sensitivity to all four inorganics was significantly greater in swim-up fry from Alaska than in alevins from Montana, and sensitivity to arsenic and copper was significantly greater in juveniles from Alaska than in juveniles from Montana. In tests with environmentally relevant mixtures (based on ratios of concentrations measured in streams with placer mining) of these four inorganics, copper was identified as the major toxic component because it accounted for ⩾97% of the summed toxic units of the mixture, and an equitoxic mixture of these inorganics showed less-than-additive toxicity. Total and total recoverable copper concentrations reported in five Alaskan streams with active placer mines were higher than the acutely toxic concentrations, either individually or in mixtures, that the authors found to be acutely toxic to Arctic grayling and coho salmon from Alaska. However, caution should be used when comparing our results obtained in “clear” water to field situations, because speciation and toxicity of these inorganics may be altered in the presence of sediments suspended by placer mining activities.

  4. Mineral commodity profiles: Silver

    USGS Publications Warehouse

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the United States, about 30 companies accounted for more than 90 percent of the silver fabricated. The consumption of silver for all fabrication uses is expected to grow slowly through the decade ending in 2010 at about 1.3 percent per year for the world and 2.4 percent per year for the United States. World and U.S. reserves and reserve bases are more than adequate to satisfy the demand for newly mined silver through 2010. The other components of supply will be silver recovered from scrap, silver from industrial stocks, and silver bullion that is sold into the market from commodity exchange and private stocks.

  5. Iowa State Mining and Mineral Resources Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-01

    This final report describes the activities of the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) at Iowa State University for the period July 1, 1989, to June 30, 1990. Activities include research in mining- and mineral-related areas, education and training of scientists and engineers in these fields, administration of the Institute, and cooperative interactions with industry, government agencies, and other research centers. During this period, ISMMRRI has supported research efforts to: (1) Investigate methods of leaching zinc from sphalerite-containing ores. (2) Study the geochemistry and geology of an Archean gold deposit and of a gold-telluride deposit. (3) Enchancemore » how-quality aggregates for use in construction. (4) Pre-clean coal by triboelectric charging in a fluidized-bed. (5) Characterize the crystal/grain alignment during processing of yttrium-barium-copper-perovskite (1-2-3) superconductors. (5) Study the fluid inclusion properties of a fluorite district. (6) Study the impacts of surface mining on community planning. (7) Assess the hydrophobicity of coal and pyrite for beneficiation. (8) Investigate the use of photoacoustic absorption spectroscopy for monitoring unburnt carbon in the exhaust gas from coal-fired boilers. The education and training program continued within the interdepartmental graduate minor in mineral resources includes courses in such areas as mining methods, mineral processing, industrial minerals, extractive metallurgy, coal science and technology, and reclamation of mined land. In addition, ISMMRRI hosted the 3rd International Conference on Processing and Utilization of High-Sulfur Coals in Ames, Iowa. The Institute continues to interact with industry in order to foster increased cooperation between academia and the mining and mineral community.« less

  6. Reconnaissance of acid drainage sources and preliminary evaluation of remedial alternatives at the Copper Bluff mine, Hoopa Valley Reservation, California

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.; Hamlin, Scott N.; Zierenberg, Robert A.

    2003-01-01

    Acidic drainage from the inactive Copper Bluff mine cascades down a steep embankment into the Trinity River, on the Hoopa Valley Reservation in northern California. The Copper Bluff mine produced about 100,000 tons of sulfide-bearing copper-zinc-gold-silver ore during 1957–1962. This report summarizes the results of a water-resources investigation begun by the U.S. Geological Survey in 1994 with the overall objective of gathering sufficient geochemical, hydrologic, and geologic information so that a sound remediation strategy for the Copper Bluff mine could be selected and implemented by the Hoopa Valley Tribe. This study had the following specific objectives: (1) monitor the quality and quantity of the mine discharge, (2) determine seasonal variability of metal concentrations and loads, (3) map and sample the underground mine workings to determine sources of flow and suitability of mine plugging options, and (4) analyze the likely consequences of various remediation and treatment options.Analysis of weekly water samples of adit discharge over parts of two wet seasons (January to July 1995 and October 1995 to May 1996) shows that dissolved copper (Cu) and zinc (Zn) concentrations (in samples filtered with 0.20-micrometer membranes) varied systematically in a seasonal pattern. Metal concentrations increased dramatically in response to the first increase in discharge, or first flush, early in the wet season. The value of Zn/Cu in the adit discharge exhibited systematic seasonal variations; an annual Zn/Cu cycle was observed, beginning with values between 3 and 5 during the main part of the wet season, rising to values between 6 and 10 during the period of lowest discharge late in the dry season, and then dropping dramatically to values less than 3 during the first-flush period. Values of pH were fairly constant in the range of 3.1 to 3.8 throughout the wet season and into the beginning of the dry season, but rose to values between 4.5 and 5.6 during the period of lowest discharge, from October to early December 1995.Underground reconnaissance was conducted once during dry-season conditions (September 1995) and twice during wet-season conditions (March 1995 and March 1996). The main tunnel was accessed to a distance of about 600 feet from the portal entrance. Water samples were collected at nine locations along the floor of the main tunnel and from several ore shoots to evaluate the contributions of water and dissolved constituents from different portions of the mine. Values of pH ranged from 2.5 to 6.4 at different underground locations, concentrations of copper ranged from 0.020 to 44 mg/L (milligram per liter), zinc from 6.3 to 160 mg/L, and cadmium from 0.010 to 0.47 mg/L. Discharge from the ore shoots ranged from less than 1 gallon per minute to more than 30 gallons per minute and was always a small component of the total mine flow compared with the tunnel floor drainage. During March 1996, the main flow originated in the northernmost portion of the underground workings (inaccessible) and mixed with an unknown quantity of water upwelling from flooded lower workings. High-water marks observed on the tunnel walls indicate that past blockages impounded more than 100,000 gallons of water. Sudden release of a large volume of metal-rich water could have serious effects on fish and other aquatic resources in the Trinity River.Because of the hydrogeologic setting, mine plugging is not likely to offer an effective long-term solution to the problem of acid mine drainage at the Copper Bluff mine. The underground workings are close to a state highway and underlie a 500-foot-high bluff with highly fractured rocks that seep during the wet season. Total plugging likely would result in additional uncontrolled seepage and could potentially destabilize the highway. Partial plugging to restrict flow during periods of highest discharge may provide benefits in terms of reduced risk of catastrophic release without the additional risks associated with total plugging. Passive water treatment methods such as wetlands or anoxic limestone drains are unlikely to succeed at the Copper Bluff mine because of the lack of available space. A covered conveyance for the discharge directly from the mine portal to the Trinity River is a low-cost remedial alternative that would not reduce metal loadings to the Trinity River, but would reduce pathways of metal exposure to humans and wildlife. Lime neutralization or innovative, active water treatment methods such as bioreactors represent high-cost remedial alternatives that likely would be successful if sufficient resources were available for adequate design, testing, construction, long-term maintenance, and sludge disposal.

  7. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.

    PubMed

    Haferburg, Götz; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2007-12-01

    The concentration of metals in microbial habitats influenced by mining operations can reach enormous values. Worldwide, much emphasis is placed on the research of resistance and biosorptive capacities of microorganisms suitable for bioremediation purposes. Using a collection of isolates from a former uranium mining area in Eastern Thuringia, Germany, this study presents three Gram-positive bacterial strains with distinct metal tolerances. These strains were identified as members of the genera Bacillus, Micrococcus and Streptomyces. Acid mine drainage (AMD) originating from the same mining area is characterized by high metal concentrations of a broad range of elements and a very low pH. AMD was analyzed and used as incubation solution. The sorption of rare earth elements (REE), aluminum, cobalt, copper, manganese, nickel, strontium, and uranium through selected strains was studied during a time course of four weeks. Biosorption was investigated after one hour, one week and four weeks by analyzing the concentrations of metals in supernatant and biomass. Additionally, dead biomass was investigated after four weeks of incubation. The maximum of metal removal was reached after one week. Up to 80% of both Al and Cu, and more than 60% of U was shown to be removed from the solution. High concentrations of metals could be bound to the biomass, as for example 2.2 mg/g U. The strains could survive four weeks of incubation. Distinct and different patterns of rare earth elements of the inoculated and non-inoculated AMD water were observed. Changes in REE patterns hint at different binding types of heavy metals regarding incubation time and metabolic activity of the cells. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determining Prehistoric Mining Practices in Southeastern Europe Using Copper Isotopes

    NASA Astrophysics Data System (ADS)

    Powell, Wayne; Mathur, Ryan; Bankoff, H. Arthur; Bulatović, Aleksandar; Filipović, Vojislav

    2017-04-01

    Copper was first smelted from malachite at 5000 BCE in Serbia. There the Eneolithic (Copper Age) began with the production of small jewelry pieces and progressed to the casting of massive copper tools near its end, approximately 2000 years later. However, copper metallurgy in southeastern Europe ceased or significantly decreased in the later third millennium, several centuries before the Bronze Age began. Whether this metallurgical hiatus was the result a cultural shift or depletion of natural resources remains an ongoing subject of debate. It has been speculated that the marked reduction in metal production at the Eneolithic-Bronze Age transition was due to the exhaustion of surficial weathered oxide ores and the technical inability to smelt the underlying sulfide minerals. The behavior of copper isotopes in near-surface environments allows us to differentiate highly weathered oxide ores that occur at Earth's surface from non-weathered sulfide ores that occur at greater depth. The oxidation of copper generates fluids and associated minerals that are enriched in the 65Cu isotope. Thus, oxidative weathering of sulfide ores leads to the development of three stratified isotopic reservoirs for copper: 1) oxides above the water table that are enriched in 65Cu; 2) residual weathered sulfides minerals at the water table that are depleted in 65Cu; and 3) non-fractionated, non-weathered sulfide ore below the water table. And so, the transformative shift to sulfide-based metallurgy will be delineated by a significant decrease in δ65Cu in copper artifacts corresponding to the first use of 65Cu-depleted residual ore. The degree of variability of primary ore composition from numerable ore deposits would likely result in the overlap of copper isotope composition between populations of artifacts. Therefore, shifts in the mean copper isotope values and associated standard deviations would best reflect changes in ores use. A baseline value of -0.2‰ ±0.5 (1) was determined from an average of 164 published measurements from chalcopyrite and bornite from 8 epithermal and massive sulfide deposits. Twenty-two (88%) of Eneolithic artifacts (n=25) have values greater than this, whereas eight (73%) of the Early Bronze age artifacts (n=11) yield compositions less than -0.2‰. The mean of Middle Bronze Age, Late Bronze Age and Early Iron Age (n=86) cluster near -0.2‰. This pattern is consistent with a progression to the mining of ore assemblages from increasing depths through prehistory. The shift from 65Cu-enriched to 65Cu-depleted copper in artifacts across the Eneolithic-Bronze Age boundary at 2500 BCE indicates that accessible near-surface oxide ore reserves were depleted after approximately two millennia of mining, and that the beginning of the Bronze Age in the Balkans corresponded to the acquisition of pyrotechnology which allowed for the extraction of metals from sulfide minerals and the resumption of copper mining activity in the region.

  9. Statistical methods of estimating mining costs

    USGS Publications Warehouse

    Long, K.R.

    2011-01-01

    Until it was defunded in 1995, the U.S. Bureau of Mines maintained a Cost Estimating System (CES) for prefeasibility-type economic evaluations of mineral deposits and estimating costs at producing and non-producing mines. This system had a significant role in mineral resource assessments to estimate costs of developing and operating known mineral deposits and predicted undiscovered deposits. For legal reasons, the U.S. Geological Survey cannot update and maintain CES. Instead, statistical tools are under development to estimate mining costs from basic properties of mineral deposits such as tonnage, grade, mineralogy, depth, strip ratio, distance from infrastructure, rock strength, and work index. The first step was to reestimate "Taylor's Rule" which relates operating rate to available ore tonnage. The second step was to estimate statistical models of capital and operating costs for open pit porphyry copper mines with flotation concentrators. For a sample of 27 proposed porphyry copper projects, capital costs can be estimated from three variables: mineral processing rate, strip ratio, and distance from nearest railroad before mine construction began. Of all the variables tested, operating costs were found to be significantly correlated only with strip ratio.

  10. Mineral resources of the Meadow Valley Range Wilderness Study Area, Lincoln and Clark counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pampeyan, E.H.; Blank, H.R. Jr.; Campbell, H.W.

    1988-01-01

    The authors report that no mines or active prospects are located within the study area. The only identified resource is perlite. The northern part of the study area has moderate resource potential for zeolites,marekanite (Apache tears), agate, and opaline rock associated with the perlite, and tin. The southern part of the study area has low resource potential for sediment-hosted gold, silver, zinc, copper, and lead. The study area has moderate potential for oil and gas resources. Identified resources of vanadium are present outside the study area and about 800,000 tons of subeconomic metalliferous resources are inferred in the outcrop area,more » however the potential for undiscovered vanadium resources within the immediately adjacent study area is unknown.« less

  11. Biomineralization of copper: Solutions for waste remediation and biomining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, C.R.; Thompson, S.A.; Crusberg, T.C.

    1997-12-31

    The fungus Penicillium ochro-chloron is able to extract copper from aqueous solutions and form insoluble copper precipitates within the matrix of fungal mycelia. The formation of these complexes is probably a detoxification mechanism used by the organism to deal with the potentially lethal concentrations of heavy metals. Metal immobilization occurs external to the cells but within the mycelia when the solubility products of copper phosphate and copper oxalate are exceeded. This process may be exploited in biomining to remove and recover copper and perhaps other heavy metals that have become solubilized in pit mine lakes.

  12. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  13. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  14. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  15. Factors Affecting the Supply of Strategic Raw Materials with Particular Reference to the Aerospace Manufacturing Industry

    DTIC Science & Technology

    1984-04-01

    element, recovered from the working of many porphyry copper deposits. As copper capacity i» now far beyond requirements, molybdenum should not be in...Source» Cobalt is mostly recovered aa a by-product of copper and nickel mining but world production is highly localised. Total annual production is...aluminium alloy containing lithium, copper and magnesium is under test. Por corrosion resistance there can be an Interchange with niobium. However

  16. Heavy metals in soils from Baia Mare mining impacted area (Romania) and their bioavailability

    NASA Astrophysics Data System (ADS)

    Roba, Carmen; Baciu, Calin; Rosu, Cristina; Pistea, Ioana; Ozunu, Alexandru

    2015-04-01

    Keywords: heavy metals, soil contamination, bioavailability, Romania The fate of various metals, including chromium, nickel, copper, manganese, mercury, cadmium, and lead, and metalloids, like arsenic, antimony, and selenium, in the natural environment is of great concern, particularly in the vicinity of former mining sites, dumps, tailings piles, and impoundments, but also in urban areas and industrial centres. Most of the studies focused on the heavy metal pollution in mining areas present only the total amounts of metals in soils. The bioavailable concentration of metals in soil may be a better predictor for environmental impact of historical and current dispersion of metals. Assessment of the metal bioavailability and bioaccessibility is critical in understanding the possible effects on soil biota. The bioavailability of metals in soil and their retention in the solid phase of soil is affected by different parameters like pH, metal amount, cation-exchange capacity, content of organic matter, or soil mineralogy. The main objectives of the present study were to determine the total fraction and the bioavailable fraction of Cu, Cd, Pb and Zn from soil in a well-known mining region in Romania, and to evaluate the influence of soil pH on the metal bioavailability in soil. The heavy metal contents and their bioavailability were monitored in a total of 50 soil samples, collected during June and July 2014 from private gardens of the inhabitants from Baia-Mare area. The main mining activities developed in the area consisted of non-ferrous sulphidic ores extraction and processing, aiming to obtain concentrates of lead, copper, zinc and precious metals. After 2006, the metallurgical industry has considerably reduced its activity by closing or diminishing its production capacity. The analysed soil samples proved to have high levels of Pb (50 - 830 mg/kg), Cu (40 - 600 mg/kg), Zn (100 - 700 mg/kg) and Cd (up to 10 mg/kg). The metal abundance in the total fraction is following the sequence Zn > Pb > Cu > Cd, while the bioavailable fractions were considerably lower and their sequence was as follows: Cd > Cu > Pb > Zn. Higher proportions of mobile fractions of metals were detected in samples taken from soils with acidic pH. Acknowledgments: This paper is a result of a post-doctoral research made possible by the financial support of the Sectorial Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project POSDRU/159/1.5/S/133391 - "Doctoral and postdoctoral excellence programs for training highly qualified human resources for research in the fields of Life Sciences, Environment and Earth".

  17. Gold Mining in Papua New Guinea: A Curricular Omission?

    ERIC Educational Resources Information Center

    Palmer, W. P.

    1989-01-01

    What criteria should be used to include or exclude particular topics within a country's science curriculum? It will be argued here that gold/gold mining is a suitable and relevant topic for inclusion in PNG's science curricula and suggestions towards achieving that end will be offered. The teaching of the mining of copper ore and the metal's…

  18. Water-quality data for two surface coal mines reclaimed with alkaline waste or urban sewage sludge, Clarion County, Pennsylvania, May 1983 through November 1989

    USGS Publications Warehouse

    Dugas, D.L.; Cravotta, C.A.; Saad, D.A.

    1993-01-01

    Water-quality and other hydrologic data for two surface coal mines in Clarion County, Pa., were collected during 1983-89 as part of studies conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources. Water samples were collected from streams, seeps, monitor wells, and lysimeters on a monthly basis to evaluate changes in water quality resulting from the addition of alkaline waste or urban sewage sludge to the reclaimed mine-spoil surface. The mines are about 3.5 miles apart and were mined for bituminous coal of the upper and lower Clarion seams of the Allegheny Group of Pennsylvanian age. The coal had high sulfur (greater than 2 weight percent) concentrations. Acidic mine drainage is present at both mines. At one mine, about 8 years after mining was completed, large quantities (greater than 400 tons per acre) of alkaline waste consisting of limestone and lime-kiln flue dust were applied on two 2.5-acre plots within the 65-acre mine area. Water-quality data for the alkaline-addition plots and surrounding area were collected for 1 year before and 3 years after application of the alkaline additives (May 1983-July 1987). Data collected for the alkaline-addition study include ground-water level, surface-water discharge rate, temperature, specific conductance, pH, and concentrations of alkalinity, acidity, sulfate, iron (total and ferrous), manganese, aluminum, calcium, and magnesium. At the other mine, about 3.5 years after mining was completed, urban sewage sludge was applied over 60 acres within the 150-acre mine area. Waterquality data for the sludge-addition study were collected for 3.5 years after the application of the sludge (June 1986-December 1989). Data collected for the sludge-addition study include the above constituents plus dissolved oxygen, redox potential (Eh), and concentrations of dissolved solids, phosphorus, nitrogen species, sulfide, chloride, silica, sodium, potassium, cyanide, arsenic, barium, boron, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, strontium, and zinc. Climatic data, including monthly average temperature and cumulative precipitation, from a nearby weather station for the period January 1983 through December 1989 also are reported.

  19. Quantifying Forest and Coastal Disturbance from Industrial Mining Using Satellite Time Series Analysis Under Very Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Van Den Hoek, J.; Ahmed, N.

    2015-12-01

    The open-pit Grasberg mine, located in the highlands of Western Papua, Indonesia, and operated by PT Freeport Indonesia (PT-FI), is among the world's largest in terms of copper and gold production. Over the last 27 years, PT-FI has used the Ajkwa River to transport an estimated 1.3 billion tons of tailings from the mine into the so-called Ajkwa Deposition Area (ADA). The ADA is the product of aggradation and lateral expansion of the Ajkwa River into the surrounding lowland rainforest and mangroves, which include species important to the livelihoods of indigenous Papuans. Mine tailings that do not settle in the ADA disperse into the Arafura Sea where they increase levels of suspended particulate matter (SPM) and associated concentrations of dissolved copper. Despite the mine's large-scale operations, ecological impact of mine tailings deposition on the forest and estuarial ecosystems have received minimal formal study. While ground-based inquiries are nearly impossible due to access restrictions, assessment via satellite remote sensing is promising but hindered by extreme cloud cover. In this study, we characterize ridgeline-to-coast environmental impacts along the Ajkwa River, from the Grasberg mine to the Arafura Sea between 1987 and 2014. We use "all available" Landsat TM and ETM+ images collected over this time period to both track pixel-level vegetation disturbance and monitor changes in coastal SPM levels. Existing temporal segmentation algorithms are unable to assess both acute and protracted trajectories of vegetation change due to pervasive cloud cover. In response, we employ robust, piecewise linear regression on noisy vegetation index (NDVI) data in a manner that is relatively insensitive to atmospheric contamination. Using this disturbance detection technique we constructed land cover histories for every pixel, based on 199 image dates, to differentiate processes of vegetation decline, disturbance, and regrowth. Using annual reports from PT-FI, we show that the changing extent and spatial patterns of riparian vegetation disturbance directly correlate with yearly tailings production rates. While the rate of vegetation disturbance decreased after 1998, SPM levels along the Arafura coast increased, suggesting the failure of PT-FI to fully confine tailings to the ADA.

  20. Perfection Of Methods Of Mathematical Analysis For Increasing The Completeness Of Subsoil Development

    NASA Astrophysics Data System (ADS)

    Fokina, Mariya

    2017-11-01

    The economy of Russia is based around the mineral-raw material complex to the highest degree. The mining industry is a prioritized and important area. Given the high competitiveness of businesses in this sector, increasing the efficiency of completed work and manufactured products will become a central issue. Improvement of planning and management in this sector should be based on multivariant study and the optimization of planning decisions, the appraisal of their immediate and long-term results, taking the dynamic of economic development into account. All of this requires the use of economic mathematic models and methodsApplying an economic-mathematic model to determine optimal ore mine production capacity, we receive a figure of 4,712,000 tons. The production capacity of the Uchalinsky ore mine is 1560 thousand tons, and the Uzelginsky ore mine - 3650 thousand. Conducting a corresponding analysis of the production of OAO "Uchalinsky Gok", an optimal production plan was received: the optimal production of copper - 77961,4 rubles; the optimal production of zinc - 17975.66 rubles. The residual production volume of the two main ore mines of OAO "UGOK" is 160 million tons of ore.

  1. Mining-impacted sources of metal loading to an alpine stream based on a tracer-injection study, Clear Creek County, Colorado

    USGS Publications Warehouse

    Fey, David L.; Wirt, Laurie

    2007-01-01

    The largest sources of copper and zinc to the creek were from surface inflows from the adit, diffuse inflows from wetland areas, and leaching of dispersed mill tailings. Major instream processes included mixing between mining- and non-mining-impacted waters and the attenuation of iron, aluminum, manganese, and othermetals by precipitation or sorption. One year after the rerouting, the Zn and Cu loads in Leavenworth Creek from the adit discharge versus those from leaching of a large volume of dispersed mill tailings were approximately equal to, if not greater than, those before. The mine-waste dump does not appear to be a major source of metal loading. Any improvement that may have resulted from the elimination of adit flow across the dump was masked by higher adit discharge attributed to a larger snow pack. Although many mine remediation activities commonly proceed without prior scientific studies to identify the sources and pathways of metal transport, such strategies do not always translate to water-quality improvements in the stream. Assessment of sources and pathways to gain better understanding of the system is a necessary investment in the outcome of any successful remediation strategy.

  2. Contamination of wells completed in the Roubidoux aquifer by abandoned zinc and lead mines, Ottawa County, Oklahoma

    USGS Publications Warehouse

    Christenson, Scott C.

    1995-01-01

    The Roubidoux aquifer in Ottawa County Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Water in the Roubidoux aquifer in eastern Ottawa County has relatively low dissolved-solids concentrations (less than 200 mg/L) with calcium, magnesium, and bicarbonate as the major ions. The Boone Formation is stratigraphically above the Roubidoux aquifer and is the host rock for zinc and lead sulfide ores, with the richest deposits located in the vicinity of the City of Picher. Mining in what became known as the Picher mining district began in the early 1900's and continued until about 1970. The water in the abandoned zinc and lead mines contains high concentrations of calcium, magnesium, bicarbonate, sulfate, fluoride, cadmium, copper, iron, lead, manganese, nickel, and zinc. Water from the abandoned mines is a potential source of contamination to the Roubidoux aquifer and to wells completed in the Roubidoux aquifer. Water samples were collected from wells completed in the Roubidoux aquifer in the Picher mining district and from wells outside the mining district to determine if 10 public supply wells in the mining district are contaminated. The chemical analyses indicate that at least 7 of the 10 public supply wells in the Picher mining district are contaminated by mine water. Application of the Mann-Whitney test indicated that the concentrations of some chemical constituents that are indicators of mine-water contamination are different in water samples from wells in the mining area as compared to wells outside the mining area. Application of the Wilcoxon signed-rank test showed that the concentrations of some chemical constituents that are indicators of mine-water contamination were higher in current (1992-93) data than in historic (1981-83) data, except for pH, which was lower in current than in historic data. pH and sulfate, alkalinity, bicarbonate, magnesium, iron, and tritium concentrations consistently indicate that the Cardin, Commerce 1, Commerce 3, Picher 2, Picher 3, Picher 4, and Quapaw 2 wells are contaminated.

  3. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    USGS Publications Warehouse

    Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.

    2009-01-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4.7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  4. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.

    PubMed

    Romero, F M; Núñez, L; Gutiérrez, M E; Armienta, M A; Ceniceros-Gómez, A E

    2011-02-01

    In the Taxco mining area, sulfide mineral oxidation from inactive tailings impoundments and abandoned underground mines has produced acid mine drainage (AMD; pH 2.2-2.9) enriched in dissolved concentrations (mg l⁻¹) sulfate, heavy metals, and arsenic (As): SO₄²⁻ (pH 1470-5454), zinc (Zn; 3.0-859), iron (Fe; pH 5.5-504), copper (Cu; pH 0.7-16.3), cadmium (Cd; pH 0.3-6.7), lead (Pb; pH < 0.05-1.8), and As (pH < 0.002-0.6). Passive-treatment systems using limestone have been widely used to remediate AMD in many parts of the world. In limestone-treatment systems, calcite simultaneously plays the role of neutralizing and precipitating agent. However, the acid-neutralizing potential of limestone decreases when surfaces of the calcite particles become less reactive as they are progressively coated by metal precipitates. This study constitutes first-stage development of passive-treatment systems for treating AMD in the Taxco mine area using indigenous calcareous shale. This geologic material consists of a mixture of calcite, quartz, muscovite, albite, and montmorillonite. Results of batch leaching test indicate that calcareous shale significantly increased the pH (to values of 6.6-7.4) and decreased heavy metal and As concentrations in treated mine leachates. Calcareous shale had maximum removal efficiency (100%) for As, Pb, Cu, and Fe. The most mobile metals ions were Cd and Zn, and their average percentage removal was 87% and 89%, respectively. In this natural system (calcareous shale), calcite provides a source of alkalinity, whereas the surfaces of quartz and aluminosilicate minerals possibly serve as a preferred locus of deposition for metals, resulting in the neutralizing agent (calcite) beings less rapidly coated with the precipitating metals and therefore able to continue its neutralizing function for a longer time.

  5. MIRANDA PINE, HORSESHOE SPRINGS, TEPUSQUET PEAK, LA BREA, SPOOR CANYON, FOX MOUNTAIN, AND LITTLE PINE ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Kuizon, Lucia

    1984-01-01

    The Miranda Pine, Horseshoe Springs, Tepusquet Peak, La Brea, Spoor Canyon, Fox Mountain and Little Pine Roadless Areas together occupy about 246 sq mi in the Los Padres National Forest, California. Mineral-resource surveys indicate demonstrated resources of barite, copper, and zinc at two localities in the La Brea Roadless Area and demonstrated resources of phosphate at a mine in the Fox Mountain Roadless Area. A building stone quarry is present on the southern border of the Horseshoe Spring Roadless Area and an area of substantiated resource potential extends into the area. The Miranda Pine, Tepusquet Peak, Spoor Canyon, and Little Pine Roadless Areas have little promise for the occurrence of mineral resources and there is little promise for the occurrence of energy resources in any of the roadless areas.

  6. Analytical results for Bullion Mine and Crystal Mine waste samples and bed sediments from a small tributary to Jack Creek and from Uncle Sam Gulch, Boulder River watershed, Montana

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    2000-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana affect water quality as a result of acid-generation and toxic-metal solubilization. Mine waste and tailings in the unnamed tributary to Jack Creek draining the Bullion mine area and in Uncle Sam Gulch below the Crystal mine are contributors to water quality degradation of Basin Creek and Cataract Creek, Montana. Basin Creek and Cataract Creek are two of three tributaries to the Boulder River in the study area. The bed sediment geochemistry in these two creeks has also been affected by the acidic drainage from these two mines. Geochemical analysis of 42 tailings cores and eleven bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb, and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms in the aquatic food chain. Suites of one-inch cores of mine waste and tailings material were taken from two breached tailings impoundments near the site of the Bullion mine and from Uncle Sam Gulch below the Crystal mine. Forty-two core samples were taken and divided into 211 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid (HC1-HNO3-HC1O4-HF) digestion. Results of the core analyses show that some samples contain moderate to very high concentrations of arsenic (as much as 13,000 ppm), silver (as much as 130 ppm), cadmium (as much as 260 ppm), copper (as much as 9,000 ppm), lead (as much as 11,000 ppm), and zinc (as much as 18,000 ppm). Eleven bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HC1-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of the Jack Creek tributary are impacted by past mining at the Bullion and Crystal mines. The contaminating metals are mostly contained in the 2M HC1-1% H2O2 leachable phase, which are the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.

  7. Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile.

    PubMed

    Medina, M; Andrade, S; Faugeron, S; Lagos, N; Mella, D; Correa, J A

    2005-04-01

    Copper mine tailings have been discharged around the city of Chanaral, in northern Chile, for more than 60 years. This report summarizes a 17-month long monitoring study of species richness and biodiversity at five intertidal sites around the point of the tailing discharge. Total dissolved copper in sites close to the point of discharge varied between 8.72 microg/l and 34.15 microg/l, showing that there has not been a significant reduction since 1994. However, species richness has increased, suggesting a possible recovery of the system. While diversity of sessile organisms correlates negatively with dissolved copper, diversity of mobile invertebrates did not correlate with the metal concentration. To explain the observed results we discuss the role of algal turf interference on the distribution of mobile invertebrates at reference sites, a top-down effect caused by the absence of carnivores at impacted sites, and an avoidance strategy by some species to reduce their contact with contaminated seawater.

  8. Geologic report and recommendations for the cobalt mission to Morocco sponsored by The Trade and Development Program of the International Development Cooperation Agency

    USGS Publications Warehouse

    Foose, M.P.; Rossman, D.L.

    1982-01-01

    A mission sponsored by the Trade and Development Program (TDP) of the International Development Cooperation Agency (IDCA) went to Morocco to evaluate the possibility of finding additional sources of cobalt in that country, as well as other types of mineralization. Information obtained during this trip shows Morocco to be a country for which much geologic information is available and in which there are many favorable target areas for future exploration. Work in the Bou Azzer district (Morocco's principal cobalt district) shows that much excellent geologic work has been done in searching for additional deposits. However, a number of useful approaches to locate cobalt have not been tried, and their use might be successful. The potential for undiscovered deposits in the Bou Azzer region seems very high. The cobalt mineralization in the Siroua uplift is different from that in the Bou Azzer district. However, geologic similarities between the two areas suggest that a genetic link may exist between the two types of mineralization. This further indicates that cobalt deposits of the Bou Azzer types might be present in the Siroua region. Examination of the Bleida copper mine shows it to be a well-exposed volcanic hosted stratabound copper deposit. Large unexplored areas containing similar rocks occur near this deposit and may contain as yet undiscovered copper mineralization.

  9. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavymore » metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.« less

  10. NDE investigation of the timber foundation in the historic Kennecott Mine Concentration Mill Building

    Treesearch

    James P. Wacker; Xiping Wang; Douglas R. Rammer; Bessie M. Woodward

    2011-01-01

    The U.S. National Park Service acquired the National Historic Copper Mine at Kennecott, Alaska, in 1998. There was uncertainty about the condition of the timber-cribbing foundation supporting the concentration mill, the largest building in the mine complex. A comprehensive on-site evaluation of the timber cribbing foundation was performed in summer 2009. The inspection...

  11. Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining.

    PubMed

    Zeng, Xianlai; Mathews, John A; Li, Jinhui

    2018-04-17

    Stocks of virgin-mined materials utilized in linear economic flows continue to present enormous challenges. E-waste is one of the fastest growing waste streams, and threatens to grow into a global problem of unmanageable proportions. An effective form of management of resource recycling and environmental improvement is available, in the form of extraction and purification of precious metals taken from waste streams, in a process known as urban mining. In this work, we demonstrate utilizing real cost data from e-waste processors in China that ingots of pure copper and gold could be recovered from e-waste streams at costs that are comparable to those encountered in virgin mining of ores. Our results are confined to the cases of copper and gold extracted and processed from e-waste streams made up of recycled TV sets, but these results indicate a trend and potential if applied across a broader range of e-waste sources and metals extracted. If these results can be extended to other metals and countries, they promise to have positive impact on waste disposal and mining activities globally, as the circular economy comes to displace linear economic pathways.

  12. A simplified economic filter for open-pit mining and heap-leach recovery of copper in the United States

    USGS Publications Warehouse

    Long, Keith R.; Singer, Donald A.

    2001-01-01

    Determining the economic viability of mineral deposits of various sizes and grades is a critical task in all phases of mineral supply, from land-use management to mine development. This study evaluates two simple tools for estimating the economic viability of porphyry copper deposits mined by open-pit, heap-leach methods when only limited information on these deposits is available. These two methods are useful for evaluating deposits that either (1) are undiscovered deposits predicted by a mineral resource assessment, or (2) have been discovered but for which little data has been collected or released. The first tool uses ordinary least-squared regression analysis of cost and operating data from selected deposits to estimate a predictive relationship between mining rate, itself estimated from deposit size, and capital and operating costs. The second method uses cost models developed by the U.S. Bureau of Mines (Camm, 1991) updated using appropriate cost indices. We find that the cost model method works best for estimating capital costs and the empirical model works best for estimating operating costs for mines to be developed in the United States.

  13. The spatial-temporal evolution law of microseismic activities in the failure process of deep rock masses

    NASA Astrophysics Data System (ADS)

    Yuan-hui, Li; Gang, Lei; Shi-da, Xu; Da-wei, Wu

    2018-07-01

    Under high stress and blasting disturbance, the failure of deep rock masses is a complex, dynamic evolutionary process. To reveal the relation between macroscopic failure of deep rock masses and spatial-temporal evolution law of micro-cracking within, the initiation, extension, and connection of micro-cracks under blasting disturbance and the deformation and failure mechanism of deep rock masses were studied. The investigation was carried out using the microseismic (MS) monitoring system established in the deep mining area of Ashele Copper Mine (Xinjiang Uygur Autonomous Region, China). The results showed that the failure of the deep rock masses is a dynamic process accompanied with stress release and stress adjustment. It is not only related to the blasting-based mining, but also associated with zones of stress concentration formed due to the mining. In that space, the concentrated area in the cloud chart for the distribution of MS event density before failure of the rocks shows the basically same pattern with the damaged rocks obtained through scanning of mined-out areas, which indicates that the cloud chart can be used to determine potential risk areas of rocks in the spatial domain. In the time domain, relevant parameters of MS events presented different changes before the failure of the rocks: the energy index decreased while the cumulative apparent volume gradually increased, the magnitude distribution of microseismic events decreased rapidly, and the fractal dimension decreased at first and then remained stable. This demonstrates that the different changes in relevant MS parameters allow researchers to predict the failure time of the rocks. By analysing the dynamic evolution process of the failure of the deep rock masses, areas at potential risk can be predicted spatially and temporally. The result provides guidance for those involved in the safe production and management of underground engineering and establishes a theoretical basis for the study on the stability of deep rock masses.

  14. Changes in the Bacterial Community of Soil from a Neutral Mine Drainage Channel

    PubMed Central

    Pereira, Letícia Bianca; Vicentini, Renato; Ottoboni, Laura M. M.

    2014-01-01

    Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments. PMID:24796430

  15. An overview of mining-related environmental and human health issues, Marinduque Island, Philippines: observations from a joint U.S. Geological Survey - Armed Forces Institute of Pathology reconnaissance field evaluation, May 12-19, 2000

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Morton, Robert A.; Boyle, Terence P.; Medlin, Jack H.; Centeno, Jose A.

    2000-01-01

    This report summarizes results of a visit by the report authors to Marinduque Island, Philippines, in May 2000. The purpose of the visit was to conduct a preliminary examination of environmental problems created by a 1996 tailings spill from the Marcopper open-pit copper mine. The mine was operated from 1969-1996 by Macropper Mining Corperation, under 39.9% ownership, and design and management control of Placer Dome, Inc. Our trip expenses to and from the Philippines were funded by the USGS. In-country expenses were paid by the offices of Congressman Reyes and the Governor of Marinduque, Carmencita O. Reyes. This report includes observations we made based on our relatively short visit to the island, and observations based upon a preliminary review of the literature available on the islanda??s mining-environmental issues. In addition, we have included preliminary interpretations and analytical results of some water, sediment, and mine waste samples collected during our trip. We also highlight the environmental and human health issues we fell are in need of further study and consideration for mitigation or remediation. This report is preliminary and is not intended to be a comprehensive or final review of the islanda??s mining-environmental issues; many areas of further study are clearly neededa?|

  16. Population exposure to trace elements in the Kilembe copper mine area, Western Uganda: A pilot study.

    PubMed

    Mwesigye, Abraham R; Young, Scott D; Bailey, Elizabeth H; Tumwebaze, Susan B

    2016-12-15

    The mining and processing of copper in Kilembe, Western Uganda, from 1956 to 1982 left over 15 Mt. of tailings containing cupriferous and cobaltiferous pyrite dumped within a mountain river valley. This pilot study was conducted to assess the nature and extent of risk to local populations from metal contamination arising from those mining activities. We determined trace element concentrations in mine tailings, soils, locally cultivated foods, house dust, drinking water and human biomarkers (toenails) using ICP-MS analysis of acid digested samples. The results showed that tailings, containing higher concentrations of Co, Cu, Ni and As compared with world average crust values had eroded and contaminated local soils. Pollution load indices revealed that 51% of agricultural soils sampled were contaminated with trace elements. Local water supplies were contaminated, with Co concentrations that exceeded Wisconsin (US) thresholds in 25% of domestic water supplies and 40% of Nyamwamba river water samples. Zinc exceeded WHO/FAO thresholds of 99.4mgkg -1 in 36% of Amaranthus vegetable samples, Cu exceeded EC thresholds of 20mgkg -1 in 19% of Amaranthus while Pb exceeded WHO thresholds of 0.3mgkg -1 in 47% of Amaranthus vegetables. In bananas, 20% of samples contained Pb concentrations that exceeded the WHO/FAO recommended threshold of 0.3mgkg -1 . However, risk assessment of local foods and water, based on hazard quotients (HQ values) revealed no potential health effects. The high external contamination of volunteers' toenails with some elements (even after a washing process) calls into question their use as a biomarker for metal exposure in human populations where feet are frequently exposed to soil dust. Any mitigation of Kilembe mine impacts should be aimed at remediation of agricultural soils, regulating the discharge of underground contaminated water but also containment of tailing erosion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Traversella mining site as Piedmont geosite

    NASA Astrophysics Data System (ADS)

    Costa, Emanuele; Benna, Piera; Antonella Dino, Giovanna; Rossetti, Piergiorgio

    2017-04-01

    The multidisciplinary research project PROGEOPiemonte, started in 2012, selected nine strategic geothematic areas that have been and are still investigated as representative of the geodiversity of Piedmont region. The dissemination of the knowledge connected to geological history, climate and environmental changes, natural hazards, soil processes, and georesources, not only of the geosites but also of the museum collections, has been and will be spread, evidencing the mining and quarrying activities, and by means of science exhibits and Nature trails. Among the nine selected geosites, there is the Traversella mining area, object of the present research. Traversella mine is located nearly 50 km north of Torino, and it was (together with the neighbor site of Brosso) one of the most important mining location for iron exploitation. The Traversella orebody was exploited from late medieval age up to the middle XX century. It is a representative contact-metasomatic deposit at the border between granodiorite and preexisting host rocks (micaschists, gneisses and marbles of the Sesia-Lanzo Zone), and the mining district represents the only exploited skarn-type mineralization in the Alps. The iron mineral, exploited from different veins and mass (pertaining to the contact aureola) was primarily magnetite, an iron oxide easy to treat in cast iron even employing the technology locally available before 1900. After the beginning of XX century the extraction involved also pyrite and chalcopyrite (iron and copper-iron sulfide), used mainly for the production of sulfuric acid. The mine, after some interruptions and re-openings, was officially closed in the second half of the XX century, due to the high exploitation costs and the competition of the foreign mine deposits interested by iron extraction. The area still presents several signs of mining and dressing activities (underground pits, explorable under severe restrictions, traces of dressing plant, offices, and miners changing room and canteens, etc..); such signs are the tangible trace of a remarkable industrial activity, which can be considered as cultural heritage of historical industrial activities ("industrial archeology"). To enrich such cultural heritage, a museum for minerals and mining tools exposition is still active. Furthermore, to evidence the importance of Traversella mining site, outstanding mineralogical samples coming from Traversella area are displayed in the most famous museum all over the world. The present research aims at emphasize the extraordinary importance of this mining site both from a scientific and a historical point of view, examining the methods and the amount of production during the last three centuries, and highlighting how these activities contributed to the industrial development of the surrounding area and of the whole Piedmont Region. We also want to illustrate the sociological and environmental impact of mining activities at regional level, highlighting the importance of the site from a geoturistic point of view, thanks to of the cultural exploitation of the mining site remains, the developing and upgrade of the already existing mining museum, and the organization of geoturistic itinerary.

  18. Anomalous concentrations of gold, silver, and other metals in the Mill Canyon area, Cortez quadrangle, Eureka and Lander Counties, Nevada

    USGS Publications Warehouse

    Elliott, James E.; Wells, John David

    1968-01-01

    The Mill Canyon area is in the eastern part of the Cortez window of the Roberts Mountains thrust belt in the Cortez quadrangle, north-central Nevada. Gold and silver ores have been mined from fissure veins in Jurassic quartz monzonite and in the bordering Wenban Limestone of Devonian age. Geochemical data show anomalies of gold, silver, lead, zinc, copper, arsenic, antimony, mercury, and tellurium. Geologic and geochemical studies indicate that a formation favorable for gold deposition, the Roberts Mountains Limestone of Silurian age, may be found at depth near the mouth of Mill Canyon.

  19. Megabenthic Community Structure Within and Surrounding the DISCOL Experimental Area 26 Years After Simulated Manganese Nodule Mining Disturbance.

    NASA Astrophysics Data System (ADS)

    Purser, A.; Marcon, Y.; Boetius, A.

    2016-02-01

    The current supplies of many high technology elements from land-based sources are at capacity, such as copper, nickel and yttrium. Potential future sources of some of these elements include the deep sea manganese nodule fields of the Atlantic, Indian and Pacific oceans. Large swathes of deep-sea seafloor are covered with high densities of 5 - 25 cm diameter nodules - agglomerations of manganese, iron and trace metals. In the 1980's these manganese fields were first seriously considered as mining targets, and the ''DISturbance and reCOLonization (DISCOL) experiment was started in the South Pacific, to simulate the likely environmental impacts of mining. In September 1989, 'RV Sonne', deploying a custom-built plough device, removed manganese nodules from the seafloor surface by ploughing them down into the sediment. This removal of nodules (and therefore hard substrate) was considered to likely be the most significant environmental impact of any future mining efforts. 78 plough tracks of 8 - 16m width were made across a 10.8 km diameter circular area centered on 7°04.4´S 88°27.6´W. Megafauna abundances were assessed prior and post ploughing, both within the disturbed area and at reference stations 6 km from the disturbed area. Research cruises in the 1990s investigated the short-term temporal impact ploughing had on the faunal community in the DISCOL area. Cruises conducted 3 and 7 years after disturbance showed that megafaunal communities within ploughed areas remained quite distinct from those observed pre-disturbance or in the reference areas. In 2016 the 'RV Sonne' revisited the DISCOL site with two research cruises, as part of the 'JPI-Oceans' programme. Here we report the current megafaunal community structures observed by SO242-2 within the DISCOL area, and the slow recovery rates of many taxa 26 years after the initial experimental disturbance, and provide images of the long term impact of experimental disturbances at the seafloor.

  20. Proximity to mining industry and respiratory diseases in children in a community in Northern Chile: A cross-sectional study.

    PubMed

    Herrera, Ronald; Radon, Katja; von Ehrenstein, Ondine S; Cifuentes, Stella; Muñoz, Daniel Moraga; Berger, Ursula

    2016-06-07

    In a community in northern Chile, explosive procedures are used by two local industrial mines (gold, copper). We hypothesized that the prevalence of asthma and rhinoconjunctivitis in the community may be associated with air pollution emissions generated by the mines. A cross-sectional study of 288 children (aged 6-15 years) was conducted in a community in northern Chile using a validated questionnaire in 2009. The proximity between each child's place of residence and the mines was assessed as indicator of exposure to mining related air pollutants. Logistic regression, semiparametric models and spatial Bayesian models with a parametric form for distance were used to calculate odds ratios and 95 % confidence intervals. The prevalence of asthma and rhinoconjunctivitis was 24 and 34 %, respectively. For rhinoconjunctivitis, the odds ratio for average distance between both mines and child's residence was 1.72 (95 % confidence interval 1.00, 3.04). The spatial Bayesian models suggested a considerable increase in the risk for respiratory diseases closer to the mines, and only beyond a minimum distance of more than 1800 m the health impact was considered to be negligible. The findings indicate that air pollution emissions related to industrial gold or copper mines mainly occurring in rural Chilean communities might increase the risk of respiratory diseases in children.

  1. Sources and management of hazardous waste in Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises;more » it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.« less

  2. The dispersion of heavy metals in the vicinity of Britannia Mine, British Columbia, Canada.

    PubMed

    Wilson, Bob; Lang, Brennan; Pyatt, F Brian

    2005-03-01

    Britannia Mine in British Columbia, Canada, is a major source of copper and other heavy metal pollutants, which enter the sea at Howe Sound. This investigation aims to determine whether there is sufficient Cd, Cu, Pb, and Zn, in the terrestrial environment surrounding the mine to suggest that dispersion and subsequent bioaccumulation has occurred in the past and continues. Samples of spoil, vegetation, and water were collected in January 2003 from areas at sea level and up to an altitude of 790 m. The samples of soil and vegetation were digested with aqua regia. The subsequent extracts and water samples were analyzed using flame atomic absorption spectrophotometry. The target metal concentrations were found to be much higher on the hillside spoil tips than on the seashore where the ore concentrators had formerly been located. The dispersion of heavy metals into the surrounding biosphere is discussed and further investigations into dispersion and partitioning within organisms including humans are suggested.

  3. Survivorship and growth of Fucus gardneri after transplant to an acid mine drainage-polluted area.

    PubMed

    Marsden, A Dale; DeWreede, Robert E; Levings, Colin D

    2003-01-01

    Acid mine drainage (AMD) from an abandoned copper mine at Britannia Beach, British Columbia, Canada, enters the marine environment through Britannia Creek. The surrounding intertidal zone is devoid of rockweed, Fucus gardneri Silva, a seaweed that dominates nearby shores. Rockweed plants were transplanted to the intertidal zone near Britannia Creek and monitored for changes in percent cover, survivorship, growth rate and Cu content. Autumn and winter transplants to within 100 m of Britannia Creek resulted in negative growth rates and high mortality within 57 days of exposure to AMD, with Cu levels in rockweed surpassing 2,300 ppm in dry tissue. Summer transplants to sites 300-700 m from Britannia Creek showed no consistent differences between AMD-exposed rockweed and control plants, possibly because the plants were stressed by desiccation. The results are consistent with ecological effects observed in other studies, and provide strong evidence for the role of AMD in excluding rockweed from the shores near Britannia Creek.

  4. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    PubMed Central

    El Baz, Soraia; Baz, Mohamed; El Gharmali, Abdelhay; Imziln, Boujamâa

    2015-01-01

    Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC) recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S) revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3). PMID:25763383

  5. Metals transport in the Sacramento River, California, 1996-1997; Volume 1, Methods and data

    USGS Publications Warehouse

    Alpers, Charles N.; Taylor, Howard E.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, was evaluated on the basis of samples of water, suspended colloids, streambed sediment, and caddisfly larvae that were collected on one to six occasions at 19 sites in the Sacramento River Basin from July 1996 to June 1997. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions; respectively. Tangential-flow ultrafiltration with 10,000 nominal molecular weight limit, or daltons (0.005 micrometer equivalent), pore-size membranes was used to separate metals in streamwater into ultrafiltrate (operationally defined dissolved fraction) and retentate (colloidal fraction) components, respectively. Conventional filtration with capsule filters (0.45 micrometer pore-size) and membrane filters (0.40 micrometer pore-size) and total-recoverable analysis of unfiltered (whole-body) samples were done for comparison at all sites. Because the total-recoverable analysis involves an incomplete digestion of particulate matter, a more reliable measurement of whole-water concentrations is derived from the sum of the dissolved component that is based on the ultrafiltrate plus the suspended component that is based on a total digestion of colloid concentrates from the ultra-filtration retentate. Metals in caddisfly larvae were determined for whole-body samples and cytosol extracts, which are intercellular solutions that provide a more sensitive indication of the metals that have been bioaccumulated. Trace metals in acidic, metal-rich drainage from abandoned and inactive sulfide mines were observed to enter the Sacramento River system (specifically, into both Shasta Lake and Keswick Reservoir) in predominantly dissolved form, as operationally defined using ultrafiltrates. The predominant source of acid mine drainage to Keswick Reservoir is Spring Creek, which drains the Iron Mountain mine area. Copper concentrations in filtered samples from Spring Creek taken during December 1996, January 1997, and May 1997 ranged from 420 to 560 micrograms per liter. Below Keswick Dam, copper concentrations in conventionally filtered samples ranged from 0.5 micrograms per liter during September 1996 to 9.4 micrograms per liter during January 1997; the latter concentration exceeded the applicable water-quality standard. The proportion of trace metals that was dissolved (versus colloidal) in samples collected at Shasta and Keswick dams decreased in the order cadmium zinc > copper > aluminum iron lead mercury. At four sampling sites on the Sacramento River at various distances downstream of Keswick Dam (Bend Bridge, 71 kilometers; Colusa, 256 kilometers; Verona, 360 kilometers; and Freeport, 412 kilometers) concentrations of these seven metals were predominantly colloidal during both high- and low-flow conditions. Because copper compounds are used extensively as algaecides in rice farming, agricultural drainage at the Colusa Basin Drain was sampled in June 1997 during a period shortly after copper applications to newly planted rice fields. Copper concentrations ranged from 1.3 to 3.0 micrograms per liter in filtered samples and from 12 to 13 micrograms per liter in whole-water samples (total recoverable analysis). These results are consistent with earlier work by the U.S. Geological Survey indicating that copper in rice-field drainage likely represents a detectable, but relatively minor source of copper to the Sacramento River. Lead isotope data from suspended colloids and streambed sediments collected during October and November 1996 indicate that lead from acid mine drainage sources became a relatively minor component of the total lead at the site located 71 kilometers downstream of Keswick Dam and beyond. Cadmium, copper, and zinc concentrations in caddisfly larvae were elevated at several sites downstream of Keswick Dam,

  6. Biomining of metals: how to access and exploit natural resource sustainably.

    PubMed

    Jerez, Carlos A

    2017-09-01

    Mining activities have been carried out for thousands of years and nowadays have an enormous worldwide use to obtain important metals of industrial use. These include copper, iron, gold and several others. Although modern mining companies have sustainable mining programs that include tailings management and external verifications, it is recognized that these industrial activities are responsible for a significant damage to the environment. Specially, technologies such as smelting and roasting generate very toxic emissions, including solid particles in the air, very large tailings and contribute to generate acid mine drainage (AMD) that affects humans health and all kinds of living plants, animals and microorganisms. Consequently, due to environmental restrictions, these methods are being replaced in many countries by less contaminating processes. On the other hand, the microbial solubilization of metals by bioleaching or biomining is successfully used in industrial operations, to extract several metals such as copper, gold and uranium. © 2017 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco.

    PubMed

    Nouri, Mohamed; Haddioui, Abdelmajid

    2016-01-01

    The goal of this paper is to investigate metal pollution in food chain and assess the resulting health risks to native citizens in Ait Ammar village. The results showed that cadmium (Cd), lead (Pb), and copper (Cu) concentrations in animal organs were above the metal concentration safety limit. Nevertheless, soils and plants from mining area were contaminated with iron (Fe), chromium (Cr), zinc (Zn), and Cr, Cu, Zn respectively. Cd concentrations in almost animal organs were higher than the acceptable daily upper limit, suggesting human consumption of this livestock meat and offal may pose a health risk. The estimated intake of Pb and Cd for Ait Ammar population could be a cause of concern because it exceeded the Provisional Tolerable Weekly Intake (PTWI) proposed by Joint Expert Committee on Food Additives (JECFA) in this area. Thus, conducting regular periodic studies to assess the dietary intake of mentioned elements are recommended.

  8. Mineral resource potential map of the Selway-Bitterroot Wilderness, Idaho County, Idaho, and Missoula and Ravalli counties, Montana

    USGS Publications Warehouse

    Toth, Margo I.; Coxe, Berton W.; Zilka, Nicholas T.; Hamilton, Michael M.

    1983-01-01

    Mineral resource studies by the U.S. Bureau of Mines and the U.S, Geological Survey indicate that five areas within the Selway-Bitterroot Wilderness have mineral resource potential. Regional studies suggest that three granitic plutons within the wildemess, the Running Creek pluton on the southwestern border of the wildemess, the Painted Rocks pluton on the southern border of the wildemess, and the Whistling Pig pluton in the west-central portion of the wildemess, have low potential for molybdenite deposits, but detailed surface investigations failed to recognize a deposit. Placer deposits in the Elk Summit area on the north side of the wildemess contain subeconomic resources of niobium- (columbium-) bearing ilmenite. A vein on the northeast side of the wildemess at t~e Cliff mine at Saint Joseph Peak contains subeconomic silver-copper-lead resources. The wilderness has no known potential for oil and gas, coal, geothermal resources, or other energy-related commodities.

  9. Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms

    NASA Astrophysics Data System (ADS)

    Ivǎnuş, D.; ǎnuş, R. C., IV; Cǎlmuc, F.

    2010-06-01

    A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs) samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations of scrap. The copper extraction increases obviously in bioleaching of scrap with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L scrap after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%, respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%, respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from electronic scrap effectively.

  10. The carbonaceous phyllite rock-hosted Pedra Verde copper mine, Borborema Province, Brazil: Stable isotope constraints, structural controls and metallogenic evolution

    NASA Astrophysics Data System (ADS)

    da Silva Nogueira de Matos, José Henrique; Saraiva dos Santos, Ticiano José; Virgínia Soares Monteiro, Lena

    2017-12-01

    The Pedra Verde Copper Mine is located in the Viçosa do Ceará municipality, State of Ceará, NE Brazil. The copper mineralization is hosted by the Pedra Verde Phyllite, which is a carbonaceous chlorite-calcite phyllite with subordinate biotite. It belongs to the Neoproterozoic Martinópole Group of the Médio Coreaú Domain, Borborema Province. The Pedra Verde deposit is stratabound and its ore zoning is conspicuous, according to the following sequence, from bottom to top: marcasite/pyrite, native silver, chalcopyrite, bornite, chalcocite, native copper and hematite. Barite and carbonaceous material are reported in ore zones. Zoning reflects the ore formation within a redox boundary developed due to the interaction between oxidized copper- and sulfate-bearing fluids and the reduced phyllite. Structural control on mineralization is evidenced by the association of the ore minerals with veins, hinge folds, shadow pressures, and mylonitic foliation. It was mainly exercised by a dextral transcurrent shear zone developed during the third deformational stage identified in the Médio Coreaú Domain between 590 Ma and 570 Ma. This points to the importance of epigenetic, post-metamorphic deformational events for ore formation. Oxygen isotopic composition (δ18OH2O = 8.94 to 11.28‰, at 250 to 300 °C) estimated for the hydrothermal fluids in equilibrium with calcite indicates metamorphic or evolved meteoric isotopic signatures. The δ13CPDB values (-2.60 to -9.25‰) obtained for hydrothermal calcite indicate mixing of carbon sources derived from marine carbonate rocks and carbonaceous material. The δ34SCDT values (14.88 to 36.91‰) of sulfides suggest evaporites as sulfate sources or a closed system in relation to SO42- availability to form H2S. Carbonaceous matter had a key role in thermochemical sulfate processes and sulfide precipitation. The Pedra Verde Copper Mine is considered the first stratabound meta-sedimentary rock-hosted copper deposit described in Brazil and shares similarities with the syn-orogenic copper deposits of the Congo-Zambian Copperbelt formed during the Gondwana amalgamation.

  11. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Kornfeld, J.M.

    2005-01-01

    Weathering of metal-sulfide minerals produces suites of variably soluble efflorescent sulfate salts at a number of localities in the eastern United States. The salts, which are present on mine wastes, tailings piles, and outcrops, include minerals that incorporate heavy metals in solid solution, primarily the highly soluble members of the melanterite, rozenite, epsomite, halotrichite, and copiapite groups. The minerals were identified by a combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron-microprobe. Base-metal salts are rare at these localities, and Cu, Zn, and Co are commonly sequestered as solid solutions within Fe- and Fe-Al sulfate minerals. Salt dissolution affects the surface-water chemistry at abandoned mines that exploited the massive sulfide deposits in the Vermont copper belt, the Mineral district of central Virginia, the Copper Basin (Ducktown) mining district of Tennessee, and where sulfide-bearing metamorphic rocks undisturbed by mining are exposed in Great Smoky Mountains National Park in North Carolina and Tennessee. Dissolution experiments on composite salt samples from three minesites and two outcrops of metamorphic rock showed that, in all cases, the pH of the leachates rapidly declined from 6.9 to 30 mg L-1), Fe (>47 mg L-1), sulfate (>1000 mg L-1), and base metals (>1000 mg L-1 for minesites, and 2 mg L-1 for other sites). Geochemical modeling of surface waters, mine-waste leachates, and salt leachates using PHREEQC software predicted saturation in the observed ochre minerals, but significant concentration by evaporation would be needed to reach saturation in most of the sulfate salts. Periodic surface-water monitoring at Vermont minesites indicated peak annual metal loads during spring runoff. At the Virginia site, where no winter-long snowpack develops, metal loads were highest during summer months when salts were dissolved periodically by rainstorms following sustained evaporation during dry spells. Despite the relatively humid climate of the eastern United States, where precipitation typically exceeds evaporation, salts form intermittently in open areas, persist in protected areas when temperature and relative humidity are appropriate, and contribute to metal loadings and acidity in surface waters upon dissolution, thereby causing short-term perturbations in water quality.

  12. Soil contamination in the impact zone of mining enterprises in the Bashkir Transural region

    NASA Astrophysics Data System (ADS)

    Opekunova, M. G.; Somov, V. V.; Papyan, E. E.

    2017-06-01

    The results of long-term studies of the contents of bulk forms of metals (Cu, Zn, Fe, Ni, Pb, Mn, Co, and Cd) and their mobile compounds in soils of background and human-disturbed areas within the Krasnoural'sk-Sibai-Gai copper-zinc and Baimak-Buribai mixed copper mineralization zones in the Bashkir Transural region are discussed. It is shown that soils of the region are characterized by abnormally high natural total contents of heavy metals (HMs) typomorphic for ore mineralization: Cu, Zn, and Fe for the Sibai province and Cu, Zn, and Ni for the Baimak province. In the case of a shallow depth of the ores, the concentrations of HMs in the soils are close to or higher than the tentative permissible concentration values. The concentrations of mobile HM compounds in soils of background areas and their percentage in the total HM content strongly vary from year to year in dependence on weather conditions, position in the soil catenas, species composition of vegetation, and distance from the source of technogenic contamination. The high natural variability in the content of mobile HM compounds in soils complicates the reliable determination of the regional geochemical background and necessitates annual estimation of background parameters for the purposes of the ecological monitoring of soils. The bulk content of Cu and Zn content in soils near mining enterprises exceeds the regional geochemical background values by 2-12 times and the tentative permissible concentrations of these metals by 2-4 times. Anthropogenic contamination results in a sharp rise in the content of mobile HM compounds in soils. Their highest concentrations exceed the maximum permissible concentrations by 26 times for Cu, 18 times for Zn, and 2 times for Pb. Soil contamination in the impact zone of mining enterprises is extremely dangerous or dangerous. However, because of the high temporal variability in the migration and accumulation of HMs in the soils, the recent decline in the ore mining activities, and the construction of purification facilities, no definite temporal trends in the contents of HMs in the soils have been found in the studied region for the period from 1998 to 2015.

  13. Recent progress of geological investigations in Indonesia

    NASA Astrophysics Data System (ADS)

    Prijosoesilo, Purnomo; Sunarya, Yaya; Wahab, A.

    Geologically, the Indonesian archipelago was formed as a result of the interaction and collision of the gigantic crustal blocks, i.e. the Eurasian, Indian, Australian and the Pacific plates. This process caused the formation of extensively distributed ultrabasic rocks in Eastern Indonesia, containing rich mineral resources. In Western Indonesia most ore bodies found are associated with the active volcano-plutonic arc or the stable mass of the Sunda Shelf. There are 60 known Tertiary sedimentary basins in Indonesia and only 36 of them have been "failry" explored, of which 14 basins have had hydrocarbon commercial production. Most of the hydrocarbon exploration and production during the last 100 years have been carried out in Western Indonesia. Many of the "unexplored" basins in Indonesia are located in the offshore areas with water depth over 200 m. Coal and geothermal resources are mostly found in Western Indonesia, particularly Sumatra, Java and Kalimantan. Coal production in 1990 has reached 11 million tons. The steady growth of production was primarily due to the establishment of the coal contract agreement with foreign contractors as well as the re-growth of the State coal mines in Bukit Asam and Sawahlunto, Sumatra. Aside from coal, geothermal is one of the alternative energy resources that have been developed in recent years. From some 16,000 MW resources potential estimated, presently only 140 MW geothermal generating power units have been commercially put on production in Kamojang, West Java. The most important minerals mined in Indonesia are tin (Sn), nickel (Ni), copper (Cu) and bauxite. Most of the gold (Au) and silver (Ag) production are mined in association with copper (Cu) such as those in Tembagapura, Irian Jaya, with the exception of a few epithermal gold mines in other areas in the country. Between 1984 and 1990, Indonesia produced around 1.3-1.5 MMBPD crude oil and condensate plus 1.6-2.2 TSCF natural gas. Most of the natural gas production was processed as LNG (liquified natural gas) and exported to Japan, Korea and Taiwan. Indonesia has approximately 11 billion barrels proven and probable oil reserves plus 67.5 TSCF proven gas reserves.

  14. Heavy metal contamination from gold mining recorded in Porites lobata skeletons, Buyat-Ratototok district, North Sulawesi, Indonesia.

    PubMed

    Edinger, Evan N; Azmy, Karem; Diegor, Wilfredo; Siregar, P Raja

    2008-09-01

    Shallow marine sediments and fringing coral reefs of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of tailings from industrial gold mining and by small-scale gold mining using mercury amalgamation. Between-site variation in heavy metal concentrations in shallow marine sediments was partially reflected by trace element concentrations in reef coral skeletons from adjacent reefs. Corals skeletons recorded silicon, manganese, iron, copper, chromium, cobalt, antimony, thallium, and lead in different concentrations according to proximity to sources, but arsenic concentrations in corals were not significantly different among sites. Temporal analysis found that peak concentrations of arsenic and chromium generally coincided with peak concentrations of silica and/or copper, suggesting that most trace elements in the coral skeleton were incorporated into detrital siliciclastic sediments, rather than impurities within skeletal aragonite.

  15. TRACY ARM-FORDS TERROR WILDERNESS STUDY AREA AND VICINITY, ALASKA.

    USGS Publications Warehouse

    Brew, David A.; Kimball, A.L.

    1984-01-01

    The Tracy Arm-Fords Terror Wilderness study area lies on the southwest flank of the Coast Range about 45 mi southeast of Juneau, Alaska. A mineral-resource survey of the area identified two areas with substantiated mineral-resource potential: the Sumdum Glacier mineral belt with gold, copper, and zinc potential; and the Endicott Peninsula area with zinc, silver, and gold potential. The Sumdum Glacier belt is estimated to contain between 3 and 15 mineral deposits and there are 5 known mining areas in the Endicott Peninsula. Further work, particularly in the southern part of the belt, would be of significant help in refining the evaluation of that area. Relatively little activity has occurred in the Endicott Peninsula area; intense geochemical and geophysical work would remove many of the present uncertainties and probably would refine the present limit of the favorable areas. 2 refs.

  16. RESPIROMETRY AS A TOOL TO DETERMINE METAL TOXICITY IN A SULFATE REDUCING BACTERIAL CULTURE

    EPA Science Inventory

    A novel method under development for treatment of acid mine drainage waste uses biologically- generated hydrogen sulfide (H2S) to precipitate the metals in acid mine drainage (principally zinc, copper, aluminum, nickel, cadmium, arsenic, manganese, iron, and cobalt). The insolub...

  17. Mining Agreements with Indian Tribes

    ERIC Educational Resources Information Center

    Luebben, Tom

    1976-01-01

    The article discusses aspects of negotiating agreements for exploration, development, and mining of hard minerals on Indian Reservations. The agreements discussed are typical of copper agreements, but the general points under discussion are applicable to most hard minerals except for uranium, coal, and oil which are substantially different.…

  18. Post-blasting seismicity in Rudna copper mine, Poland - source parameters analysis.

    NASA Astrophysics Data System (ADS)

    Caputa, Alicja; Rudziński, Łukasz; Talaga, Adam

    2017-04-01

    The really important hazard in Polish copper mines is high seismicity and corresponding rockbursts. Many methods are used to reduce the seismic hazard. Among others the most effective is preventing blasting in potentially hazardous mining panels. The method is expected to provoke small moderate tremors (up to M2.0) and reduce in this way a stress accumulation in the rockmass. This work presents an analysis, which deals with post-blasting events in Rudna copper mine, Poland. Using the Full Moment Tensor (MT) inversion and seismic spectra analysis, we try to find some characteristic features of post blasting seismic sources. Source parameters estimated for post-blasting events are compared with the parameters of not-provoked mining events that occurred in the vicinity of the provoked sources. Our studies show that focal mechanisms of events which occurred after blasts have similar MT decompositions, namely are characterized by a quite strong isotropic component as compared with the isotropic component of not-provoked events. Also source parameters obtained from spectral analysis show that provoked seismicity has a specific source physics. Among others, it is visible from S to P wave energy ratio, which is higher for not-provoked events. The comparison of all our results reveals a three possible groups of sources: a) occurred just after blasts, b) occurred from 5min to 24h after blasts and c) not-provoked seismicity (more than 24h after blasting). Acknowledgements: This work was supported within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  19. Material flows generated by pyromet copper smelting

    USGS Publications Warehouse

    Goonan, T.G.

    2005-01-01

    Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.

  20. Quantitative mapping of elemental distribution in leaves of the metallophytes Helichrysum candolleanum, Blepharis aspera, and Blepharis diversispina from Selkirk Cu-Ni mine, Botswana

    NASA Astrophysics Data System (ADS)

    Koosaletse-Mswela, Pulane; Przybyłowicz, Wojciech J.; Cloete, Karen J.; Barnabas, Alban D.; Torto, Nelson; Mesjasz-Przybyłowicz, Jolanta

    2015-11-01

    Multi-element profiling is essential in understanding the metal-tolerant behavior of metallophytes. Although previous reports using multi-elemental analyses show that the metallophytes Blepharis aspera, Blepharis diversispina (Acanthaceae) and Helichrysum candolleanum (Asteraceae) take up metals, no information exists on elemental spatial distribution and concentrations in specific tissues of these plants. The aim of this study therefore was to assess the spatial distribution and concentration of copper, nickel and other elements in leaf tissues of these plants using micro-PIXE. Whole plants were collected with soil in pots from an operational copper and nickel mine (i.e., a copper and nickel mineralized area), Selkirk, about 40 km north-east of Francistown, Botswana. On the same day the samples were transported by air to iThemba LABS in South Africa. Leaf specimens were cryofixed in liquid propane cooled by LN2. Parallel samples were embedded in resin for anatomical studies to facilitate interpretation of elemental maps. The distribution and concentration of copper, nickel, and other elements in leaf tissues were determined using micro-PIXE and proton backscattering spectrometry. Data evaluation was performed using GeoPIXE II software. Micro-PIXE showed that H. candolleanum had the highest whole leaf content of copper (70 ± 3 μg g-1 DW) and nickel (168 ± 5 μg g-1 DW), followed by B. aspera (Cu: 25 ± 1 μg g-1 DW; Ni: 166 ± 4 μg g-1 DW) and B. diversispina (Cu: 3 ± 1 μg g-1 DW; Ni, below detection limit). For specific leaf tissues, the highest levels of copper were found in the vascular bundle for H. candolleanum (167 ± 7 μg g-1 DW) and the lower epidermis for B. aspera (70 ± 9 μg g-1 DW). The highest levels of nickel were present in the vascular bundle of B. aspera (479 ± 10 μg g-1 DW) and H. candolleanum (90 ± 5 μg g-1 DW). Elemental maps showed a similar distribution pattern for copper and nickel in B. aspera and B diversispina, with these elements concentrated in the upper and lower epidermal regions. However, for H. candolleanum, both copper and nickel were concentrated in the mesophyll. The difference in concentration and accumulation patterns between B. aspera, B. diversispina and H. candolleanum suggests that the metal-tolerant adaptation of these metallophytes may differ.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.J.

    Mining activity in the vicinity of Lynn Lake in north-west Manitoba resulted in development of a number of tailings ponds that are potential sources of acid drainage. Observations such as the presence of dead trees in the vicinity of tailings pond dikes and a distinctive green coloration in one effluent pond raised concerns that confinement of acid drainage in the tailings area may be compromised and causing renewed detrimental impacts to the Lynn River and surrounding area. This report presents results of water quality and sediment surveys conducted in the Lynn Lake area. Parameters studied include pH, conductivity, calcium, sulfate,more » iron, nickel, zinc, copper, cyanide, and presence of benthos. Comparisons of the results are made with results from earlier surveys in order to determine temporal trends.« less

  2. Survey of nine surface mines in North America. [Nine different mines in USA and Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, L.G.; Brackett, R.D.; Floyd, F.D.

    This report presents the information gathered by three mining engineers in a 1980 survey of nine surface mines in the United States and Canada. The mines visited included seven coal mines, one copper mine, and one tar sands mine selected as representative of present state of the art in open pit, strip, and terrace pit mining. The purpose of the survey was to investigate mining methods, equipment requirements, operating costs, reclamation procedures and costs, and other aspects of current surface mining practices in order to acquire basic data for a study comparing conventional and terrace pit mining methods, particularly inmore » deeper overburdens. The survey was conducted as part of a project under DOE Contract No. DE-AC01-79ET10023 titled The Development of Optimal Terrace Pit Coal Mining Systems.« less

  3. Integrated management of organic wastes for remediation of massive tailings storage facilities under semiarid mediterranean climate type: efficacy of organic pork residues as study case

    NASA Astrophysics Data System (ADS)

    Ginocchio, Rosanna; Arellano, Eduardo; España, Helena; Gardeweg, Rosario; Bas, Fernando; Gandarillas, Mónica

    2016-04-01

    Remediation of large surface areas of massive mine wastes, such as tailings storage facilities (TSFs) is challenging, particularly when no topsoils have been stored for the mine closure stage. Worldwide, it has been demonstrated that the use of organic wastes as substrate amendments for remediation of hard rock mine wastes is a useful alternative to topsoils material. In the case of semi-arid climate conditions of north-central Chile, the copper mining industry has generated massive TSF (between 400 ha and 3,000 ha) which needs now to be properly closed according to recently established mine closure regulations. However, in most of the cases, there have been no topsoils savage that facilitate the initial stage of the site remediation. Industrial organic wastes (i.e. biosolids) are found in the area, but their availability is normally below the demand needed for remediation of TSFs and salt content is normally elevated, thus posing salinization risks to the substrate and negative plant growth. We focused on a large organic waste producing industry, the pork industry, whose growth has been restricted due to the limited possibilities for using pig slurries as amendments for croplands in north-central Chile and the strong odor generated, resulting in conflicts with local communities. Incorporation of pig slurries as amendments to post-operative TSFs has been scarcely evaluated at international level (i.e. Spain) and no evaluation at all exists for the solid organic fraction generated from pig slurry treatment plants (PSTP). In the present study, we evaluated the efficacy of both pig slurries (PS) and the solid fraction of PSTP (SF-PSTP) as tailings amendment for creating good plant productivity on TSFs located under semi-arid Mediterranean climate conditions in north-central Chile. A short-term greenhouse study was developed. Copper mine tailings were mixed either with PS (0, 40, 80, and 120 m3 ha-1) or SF-PSTP (0, 25, 50 and 75 t ha-1), distributed in 3 L pots, and seeded with Lolium perenne. Experimental pots were kept under controlled conditions and irrigated up to 70% field water capacity for 42 days. After this period, chemical characteristics of the substrate and productive plant variables were determined and contrasted. Results showed that both pig wastes evaluated had significant (positive) and dose-dependent effects on plant productivity (both aerial and root biomass), but an increase in copper and zinc contents in aerial tissues occurred. Metal increments in aerial plant tissues were, however, below plant toxicity thresholds and represent no risk for cattle consumption. Application of any pork waste to mine tailings increased organic matter and macronutrient contents, besides raising pH. No substrate salinization was detected under the evaluated doses. These promising results show that organic pork residues are useful amendments for remediation of TSFs in north-central Chile. Furthermore, a twofold solution for environmental problems generated by two very relevant industrial sectors of the country is thus possible. Further studies are, however needed. Study funded by Project DIP-FAIF of P. Universidad Católica de Chile and by Project FB 0002-2014 of CONICYT. CICAP is also acknowledged.

  4. Geochemical and Hydrologic Controls of Copper-Rich Surface Waters in the Yerba Loca-Mapocho System

    NASA Astrophysics Data System (ADS)

    Pasten, P.; Montecinos, M.; Coquery, M.; Pizarro, G. E.; Abarca, M. I.; Arce, G. J.

    2015-12-01

    Andean watersheds in Northern and Central Chile are naturally enriched with metals, many of them associated to sulfide mineralizations related to copper mining districts. The natural and anthropogenic influx of toxic metals into drinking water sources pose a sustainability challenge for cities that need to provide safe water with the smallest footprint. This work presents our study of the transformations of copper in the Yerba Loca-Mapocho system. Our sampling campaign started from the headwaters at La Paloma Glacier and continues to the inlet of the San Enrique drinking water treatment plant, a system feeding municipalities in the Eastern area of Santiago, Chile. Depending on the season, total copper concentrations go as high as 22 mg/L for the upper sections, which become diluted to <5 mg/L downstream. pH ranged from 3 to 5.6 while suspended solids ranged from <10 to 100 mg/L. We used Geochemist Workbench to assess copper speciation and to evaluate the thermodynamic controls for the formation and dissolution of solid phases. A sediment trap was used to concentrate suspended particulate matter, which was analyzed with ICP-MS, TXRF (total reflection X ray fluorescence) and XRD (X-ray diffraction). Major elements detected in the precipitates were Al (200 g/kg), S (60 g/kg), and Cu (6 g/kg). Likely solid phases include hydrous amorphous phases of aluminum hydroxides and sulfates, and copper hydroxides/carbonates. Efforts are undergoing to find the optimal mixing ratios between the acidic stream and more alkaline streams to maximize attenuation of dissolved copper. The results of this research could be used for enhancing in-stream natural attenuation of copper and reducing treatment needs at the drinking water facility. Acknowledgements to Fondecyt 1130936 and Conicyt Fondap 15110020

  5. [Features of health disorders in miners employed at northern copper-nickel mines].

    PubMed

    Siurin, S V; Shilov, V V

    2016-01-01

    The aim of the study was to assess the influence of different working conditions on the health of 1523 copper-nickel miners of the Kola High North. The low degree of mechanization of mining operations was established to be related to more higher levels of vibration, noise and physical overloads. The working in such conditions, when compared with high mining mechanization, leads to a decrease in the number of conditionally healthy workers (12% and 20.7%, p <0.001) an increase in the number of diseases in the one worker (2,94 ± 0,10 and 2.13 ± 0.07 cases, p <0,001), the increase of the risk of occupational diseases (OD) of the musculoskeletal (RR = 2.31) and nervous (RR = 2.07) systems, vibration disease (RR = 1.70), neuro-sensory hearing loss (RR = 1.90). Both at low and high degree of mechanization of mining operations the greatest risk of occupational diseases in noted in drifters (OR = 5.68), at that it was higher at hand mining than at mechanized mining (RR = 1.44). There was made a conclusion about the need to improve the complex of measures for the preservation of health in this group of workers, especially engaged in the performance of tunnel works.

  6. ANTHROPOGENIC COPPER INVENTORIES AND MERCURY PROFILES FROM LAKE SUPERIOR: EVIDENCE FOR MINING IMPACTS

    EPA Science Inventory

    During the past 150 years, the mining indstry discharged more than a billion tons of tailings along Lake Superior shorelines and constructed numerous smelters in the watershed. Given the vast size of Lake Superior, were sediment profiles at locations far offshore impacted by near...

  7. Waste Controls at Base Metal Mines

    ERIC Educational Resources Information Center

    Bell, Alan V.

    1976-01-01

    Mining and milling of copper, lead, zinc and nickel in Canada involves an accumulation of a half-million tons of waste material each day and requires 250 million gallons of process water daily. Waste management considerations for handling large volumes of wastes in an economically and environmentally safe manner are discussed. (BT)

  8. TREATMENT OF ACID MINE DRAINAGE: I. EQUILIBRIUM BIOSORPTION OF ZINC AND COPPER ON NON-VIABLE ACTIVATED SLUDGE

    EPA Science Inventory

    Biosorption is potentially attractive technology for treament of acid mine drainage for separation/recovery of metal ions and mitigation of their toxicity to sulfate reducing bacteria. This study describes the equilibrium biosorptio of Zn(II) and CU(II) by nonviable activated slu...

  9. 40 CFR 440.104 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... Molybdenum Ores Subcategory § 440.104 New source performance standards (NSPS). Except as provided in subpart... technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...

  10. 40 CFR 440.104 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... Molybdenum Ores Subcategory § 440.104 New source performance standards (NSPS). Except as provided in subpart... technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...

  11. Trace metals associated with deep-sea tailings placement at the Batu Hijau copper-gold mine, Sumbawa, Indonesia.

    PubMed

    Angel, Brad M; Simpson, Stuart L; Jarolimek, Chad V; Jung, Rob; Waworuntu, Jorina; Batterham, Grant

    2013-08-15

    The Batu Hijau copper-gold mine on the island of Sumbawa, Indonesia operates a deep-sea tailings placement (DSTP) facility to dispose of the tailings within the offshore Senunu Canyon. The concentrations of trace metals in tailings, waters, and sediments from locations in the vicinity of the DSTP were determined during surveys in 2004 and 2009. In coastal and deep seawater samples from Alas Strait and the South Coast of Sumbawa, the dissolved concentrations of Ag, As, Cd, Cr, Hg, Pb and Zn were in the sub μg/L range. Dissolved copper concentrations ranged from 0.05 to 0.65 μg/L for all depths at these sites. Dissolved copper concentrations were the highest in the bottom-water from within the tailings plume inside Senunu Canyon, with up to 6.5 μg Cu/L measured in close proximity to the tailings discharge. In general, the concentrations of dissolved and particulate metals were similar in 2004 and 2009. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development of Test Rig for Robotization of Mining Technological Processes - Oversized Rock Breaking Process Case

    NASA Astrophysics Data System (ADS)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Production chain (PCh) in underground copper ore mine consists of several subprocesses. From our perspective implementation of so called ZEPA approach (Zero Entry Production Area) might be very interesting [16]. In practice, it leads to automation/robotization of subprocesses in production area. In this paper was investigated a specific part of PCh i.e. a place when cyclic transport by LHDs is replaced with continuous transport by conveying system. Such place is called dumping point. The objective of dumping points with screen is primary classification of the material (into coarse and fine material) and breaking oversized rocks with hydraulic hammer. Current challenges for the underground mining include e.g. safety improvement as well as production optimization related to bottlenecks, stoppages and operational efficiency of the machines. As a first step, remote control of the hydraulic hammer has been introduced, which not only transferred the operator to safe workplace, but also allowed for more comfortable work environment and control over multiple technical objects by a single person. Today literature analysis shows that current mining industry around the world is oriented to automation and robotization of mining processes and reveals technological readiness for 4th industrial revolution. The paper is focused on preliminary analysis of possibilities for the use of the robotic system to rock-breaking process. Prototype test rig has been proposed and experimental works have been carried out. Automatic algorithms for detection of oversized rocks, crushing them as well as sweeping and loosening of material have been formulated. Obviously many simplifications have been assumed. Some near future works have been proposed.

  13. Understanding Cu release into environment from Kure massive sulfide ore deposits, Kastamonu, NW Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Sonmez, Seref; Balci, Nurgul

    2014-05-01

    Covering a wide range on the earth's crust, oxidation of metal sulfide minerals have vital environmental impacts on the aquatic environment, causing one of the major environmental problems known as acid mine drainage (AMD). Located in the Kastamonu province of the Western Black Sea region, Kure district is one of the major copper mining sites in Turkey. Mining activities in the area heads back to ancient times, such that operation is thought to be started with the Roman Empire. Currently, only the underground mining tunnels of Bakibaba and Asikoy are being operated. Thus, mining heaps and ores of those pyritic deposits have been exposed to the oxidative conditions for so long. As a result of weathering processes of past and recent heaps of the Kure volcanic massive sulfide deposits in addition to the main ore mineral (chalcopyrite), significant amount of metals, especially Cu, are being released into the environment creating undesirable environmental conditions. In order to elucidate Cu release mechanisms from Kure pyritic ore deposits and mining wastes, field and laboratory approaches were used. Surface water and sediment samples from the streams around the mining and waste sites were collected. Groundwater samples from the active underground mining site were also collected. Physical parameters (pH, Eh, T°C, and EC) of water samples were determined in situ and in the laboratory using probes (WTW pH 3110, WTW Multi 9310 and CRISON CM 35). Metal and ion concentrations of the water samples were analysed using ICP-MS and DR 2800 spectrophotometer, respectively. High Cu, Co, Zn and Fe concentrations were determined in the water samples with pH values ranging from 2.9- 4. Cu concentrions ranges from 345 ppm to 36 ppm in the water samples. Consistent with the water samples, high Cu, Fe, Zn and Co were also determined in the sediment samples. Laboratory chalcopyrite oxidation experiments under the conditions representing the field site were set up as biological and abiotic in order to elucidate Cu release from ore and wastes. Greater Cu release were measured from the biological experiments carried out with S and Fe oxidizers compared to those from the chemical experiments. Fe-oxide precipitation experiments carried out in the laboratory showed high Cu absorbtion into Fe-oxides produced by biological reactions carried out with Fe oxidizers. Overall, these preliminary experimental results showed that Cu release and migration from the source can be controlled by various microorganims which regulate S and Fe cycles in the field. Key words: Metal sulfide oxidation, Kure pyritic copper mines, AMD, Bioleaching, Secondary Fe-oxide precipitation

  14. Trace metals in the hair of habitants of the Ok Tedi region, Papua New Guinea.

    PubMed

    Jones, G L; Willy, D; Lumsden, B; Taufa, T; Lourie, J

    1987-01-01

    It has long been known that mining activity can markedly change the level and distribution of certain heavy metals in the adjacent environment. This pollution can be quite widespread and long lasting and often has deleterious effects on the health of local populations. In the present study scalp hair was used as the biopsy material because of its ease of collection and long history of use in this connection. Hair was collected from all the local villages in the vicinity of the mine site, as well as from Papua New Guinean nationals from other provinces, and European expatriates who were employed by the mining company and who were resident in the area. Hair from local people showed a remarkably high iron content by comparison with previously studied populations. The extreme variations in hair iron levels were reflected in the differential distribution of levels according to location, age and sex. Hair cadmium was also high in the population studied. Hair copper, lead, zinc and mercury all appeared to be within 'normal' limits by comparison with other general populations. These results are discussed in the context of the environmental and social impact of the mining operations on the local people.

  15. Effects of biosolids and compost amendment on chemistry of soils contaminated with copper from mining activities.

    PubMed

    Sidhu, Virinder; Sarkar, Dibyendu; Datta, Rupali

    2016-03-01

    Several million metric tons of mining wastes, called stamp sands, were generated in the Upper Peninsula of Michigan during extensive copper (Cu) mining activities in the past. These materials, containing large amounts of Cu, were discharged into various offshoots of Lake Superior. Due to evidences of Cu toxicity on aquatic organisms, in due course, the materials were dredged and dumped on lake shores, thus converting these areas into vast, fallow lands. Erosion of these Cu-contaminated stamp sands back to the lakes is severely affecting aquatic life. A lack of uniform vegetation cover on stamp sands is facilitating this erosion. Understanding the fact that unless the stamp sands are fertilized to the point of sustaining vegetation growth, the problem with erosion and water quality degradation will continue, amending the stamp sands with locally available biosolids and composts, was considered. The purpose of the reported study was to assess potential effects of such organic fertilizer amendments on soil quality. As the first step of a combined laboratory and greenhouse study, a 2-month-long incubation experiment was performed to investigate the effects of biosolids and compost addition on the soil nutrient profile of stamp sands and organic matter content. Results showed that both biosolids and compost amendments resulted in significant increase in nitrogen and phosphorus concentrations and organic matter contents of stamp sands. Sequential extraction data demonstrated that Cu was mostly present as bound forms in stamp sands, and there was no significant increase in the plant available fraction of Cu because of fertilizer application.

  16. Plant Type Selection for Reclamation of Sarcheshmeh Copper Mine Using Fuzzy-Topsis Approach / Wybór Gatunków Roślin Do Wykorzystania W Projekcie Rekultywacji Terenów Kopalni Miedzi Sarcheshmeh Z Wykorzystaniem Metod Logiki Rozmytej Topsis

    NASA Astrophysics Data System (ADS)

    Ebrahimabadi, Arash; Alavi, Iraj

    2013-09-01

    Plant species selection is a multi-criteria evaluation decision and has a strategic importance for many companies. The conventional methods for plant species selection are inadequate for dealing with the imprecise or vague nature of linguistic assessment. To overcome this difficulty, fuzzy multi-criteria decision-making methods are proposed. The aim of this study is to use the fuzzy technique for order preference by similarity to ideal solution (F.TOPSIS) methods for the selection of plant species in mine reclamation plan. Plant type selection and planting to protect the environment and the reclamation of the mine are some of the most important solutions. Therefore, the objective of the current research study is to choose the proper plant types for reclamation of Sarcheshmeh Copper Mine using Fuzzy-topsis method. In this regard, primarily, surrounding area of Sarcheshmeh copper mine, one of the world's 10 biggest copper mine which is located near Kerman city of Iran, are surveyed, to choose the best plant type for reclamation of disturbance area. With this respect, based on reclamation plan, primary criteria were consisted of kinds of post mining land use, climate, and nature of soil. Comparison matrixes were then obtained based on experts' opinion and plant types were subsequently prioritized using the Fuzzy Topsis method. Secondary factors considered through the analysis were as follows: perspective of the region, resistance against disease and insects, strength and method of growth, availability to plant type, economic efficiency, protection of soil, storing water, and prevention of pollution. Finally, suitable plant types in the mining perimeter were prioritized as: Amygdalus scoparia, Tamarix, Pistachio Wild, Ephedra, Astragalus, Salsola, respectively. Wybór gatunków roślin jest decyzją podejmowaną w oparciu o wiele kryteriów i stanowi poważne wyzwanie strategiczne dla wielu firm. Konwencjonalne metody wyboru gatunków roślin okazują się niewystarczające w przypadku nieprecyzyjnej oceny i nie w pełni zdefiniowanych określeń językowych. W celu przezwyciężenia tych trudności, zaproponowano wielo-kryterialną metodę decyzyjną wykorzystującą logikę rozmytą. Celem tego opracowania jest ukazanie zastosowania podejścia rozmytego do uzyskania kolejnych przybliżeń do rozwiązania idealnego (F.TOPSIS) przy wyborze odpowiednich gatunków roślin do użycia w projekcie rekultywacji terenów kopalni. Wybór gatunków roślin i ich kultywacja dla zapewnienia ochrony środowiska i projektu rekultywacji terenu pogórniczego to bardzo ważne zagadnienia. Głównym celem obecnego studium jest wybór odpowiednich gatunków roślin do wykorzystania projekcie rekultywacji terenów kopalni miedzi Sarcheshmeh z wykorzystaniem metod logiki rozmytej TOPSIS. W pierwszym rzędzie przeprowadzono badania gruntów wokół kopalni miedzi Sarchesmeh, w pobliżu miejscowości Kerman w Iranie (jednej z dziesięciu największych na świecie kopalni miedzi) w celu wyboru najlepszych typów roślin do wykorzystania do rekultywacji naruszonych działalnością górniczą terenów. Określono podstawowe kryteria wyboru, biorąc pod uwagę plan rekultywacji: sposoby wykorzystania terenu, klimat oraz rodzaje gleb. Otrzymano macierze porównawcze uzyskane na podstawie opinii ekspertów, następnie dokonano określenia priorytetów dla poszczególnych roślin przy pomocy metody TOPSIS, wykorzystującej logikę rozmytą. W analizie uwzględniono następujące czynniki drugorzędne: perspektywy dla regionu, odporność na choroby i owady szkodniki, wytrzymałość i sposób uprawy, dostępność danego gatunku roślin, wydajność ekonomiczna, ochrona gleb, zdolność zatrzymywania wody, zapobieganie zanieczyszczeniom. W końcowym etapie dokonano wyboru najkorzystniejszych dla danego terenu górniczego gatunków roślin, podając kolejno: Amygdalus scoparia, Tamarix, Pistachio Wild, Ephedra, Astragalus, Salsola.

  17. Geochemistry, geochronology, mineralogy, and geology suggest sources of and controls on mineral systems in the southern Toquima Range, Nye County, Nevada; with geochemistry maps of gold, silver, mercury, arsenic, antimony, zinc, copper, lead, molybdenum, bismuth, iron, titanium, vanadium, cobalt, beryllium, boron, fluorine, and sulfur; and with a section on lead associations, mineralogy and paragenesis, and isotopes

    USGS Publications Warehouse

    Shawe, Daniel R.; Hoffman, James D.; Doe, Bruce R.; Foord, Eugene E.; Stein, Holly J.; Ayuso, Robert A.

    2003-01-01

    Geochemistry maps showing the distribution and abundance of 18 elements in about 1,400 rock samples, both mineralized and unmineralized, from the southern Toquima Range, Nev., indicate major structural and lithologic controls on mineralization, and suggest sources of the elements. Radiometric age data, lead mineralogy and paragenesis data, and lead-isotope data supplement the geochemical and geologic data, providing further insight into timing, sources, and controls on mineralization. Major zones of mineralization are centered on structural margins of calderas and principal northwest-striking fault zones, as at Round Mountain, Manhattan, and Jefferson mining districts, and on intersections of low-angle and steep structures, as at Belmont mining district. Paleozoic sedimentary rocks, mostly limestones (at Manhattan, Jefferson, and Belmont districts), and porous Oligocene ash-flow tuffs (at Round Mountain district) host the major deposits, although all rock types have been mineralized as evidenced by numerous prospects throughout the area. Principal mineral systems are gold-silver at Round Mountain where about 7 million ounces of gold and more than 4 million ounces of silver has been produced; gold at Gold Hill in the west part of the Manhattan district where about a half million ounces of gold has been produced; gold-mercury-arsenic-antimony in the east (White Caps) part of the Manhattan district where a few hundred thousand ounces of gold has been produced; and silver-lead-antimony at Belmont where more than 150,000 ounces of silver has been produced. Lesser amounts of gold and silver have been produced from the Jefferson district and from scattered mines elsewhere in the southern Toquima Range. A small amount of tungsten was produced from mines in the granite of the Round Mountain pluton exposed east of Round Mountain, and small amounts of arsenic, antimony, and mercury have been produced elsewhere in the southern Toquima Range. All elements show unique distribution patterns that suggest specific sources and lithologic influences on deposition, as well as multiple episodes of mineralization. Principal episodes of mineralization are Late Cretaceous (molybdenum and tungsten in and near granite; silver at Belmont and Silver Point mines), early Oligocene [tourmaline and base- and precious-metals around the granodiorite of Dry Canyon stock as well as at Manhattan(?)], late Oligocene (gold at Round Mountain and Jefferson), and Miocene (gold at Manhattan). Most likely principal sources of molybdenum, tungsten, silver, and bismuth are Cretaceous granites; of antimony, arsenic, and mercury are intermediate-composition early Oligocene intrusives; and of gold are early and late Oligocene and early Miocene magmas of the volcanic cycle. Lead may have been derived principally from Cretaceous granitic magma and Paleozoic sedimentary rocks. Several areas prospective for undiscovered mineral deposits are suggested by spatial patterns of element distributions related to geologic features. The Manhattan district in the vicinity of the White Caps mine may be underlain by a copper-molybdenum porphyry system related to a buried stock; peripheral high-grade gold veins and skarn deposits may be present below deposits previously mined. The Jefferson district also may be underlain by a copper-molybdenum porphyry system related to a buried stock, it too with peripheral high-grade gold deposits. The Bald Mountain Canyon belt of small gold veins has potential for deeper deposits in buried porous ash-flow tuff similar to the huge Round Mountain low-grade gold-silver deposit. Several other areas have potential for a variety of mineral deposits. Altogether the geochemical, geochronologic, mineralogic, and geologic evidence suggests recurring mineralizing episodes of varied character, from Late Cretaceous to late Tertiary time, related to a long-lived hot spot deep in the crust or in the upper mantle. Granite plutons of Late Cretaceous age were minerali

  18. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    NASA Astrophysics Data System (ADS)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in the tailings include gypsum, quartz, pyrite, mica, talc, amphiboles, and feldspars. Oxidation products identified include copiapite as well as various iron oxides. Future results are expected to reveal most of the heavy metals to be adsorbed by or coprecipitate with iron oxides, with most of the oxidized arsenic staying in the soluble form. The mobility of the colloidal form of the oxides and associated heavy metals within the carbonate mineral-rich tailings need additional study.

  19. Composition and spectra of copper-carotenoid sediments from a pyrite mine stream in Spain.

    PubMed

    Garcia-Guinea, Javier; Furio, Marta; Sanchez-Moral, Sergio; Jurado, Valme; Correcher, Virgilio; Saiz-Jimenez, Cesareo

    2015-01-25

    Mine drainages of La Poderosa (El Campillo, Huelva, Spain), located in the Rio Tinto Basin (Iberian Pyrite Belt) generate carotenoid complexes mixed with copper sulfates presenting good natural models for the production of carotenoids from microorganisms. The environmental conditions of Rio Tinto Basin include important environmental stresses to force the microorganisms to accumulate carotenoids. Here we show as carotenoid compounds in sediments can be analyzed directly in the solid state by Raman and Luminescence spectroscopy techniques to identify solid carotenoid, avoiding dissolution and pre-concentration treatments, since the hydrous copper-salted paragenesis do not mask the Raman emission of carotenoids. Raman spectra recorded from one of these specimens' exhibit major features at approximately 1006, 1154, and 1520 cm(-1). The bands at 1520 cm(-1) and 1154 cm(-1) can be assigned to in-phase C=C (γ(-1)) and C-C stretching (γ(-2)) vibrations of the polyene chain in carotenoids. The in-plane rocking deformations of CH3 groups linked to this chain coupled with C-C bonds are observed in the 1006 cm(-1) region. X-irradiation pretreatments enhance the cathodoluminescence spectra emission of carotenoids enough to distinguish organic compounds including hydroxyl and carboxyl groups. Carotenoids in copper-sulfates could be used as biomarkers and useful proxies for understanding remote mineral formations as well as for terrestrial environmental investigations related to mine drainage contamination including biological activity and photo-oxidation processes. Copyright © 2014. Published by Elsevier B.V.

  20. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  1. Anomalously high arsenic concentration in a West Antarctic ice core and its relationship to copper mining in Chile

    NASA Astrophysics Data System (ADS)

    Schwanck, Franciele; Simões, Jefferson C.; Handley, Michael; Mayewski, Paul A.; Bernardo, Ronaldo T.; Aquino, Francisco E.

    2016-01-01

    Arsenic variability records are preserved in snow and ice cores and can be utilized to reconstruct air pollution history. The Mount Johns ice core (79°55‧S; 94°23‧W and 91.2 m depth) was collected from the West Antarctic Ice Sheet in the 2008/09 austral summer. Here, we report the As concentration variability as determined by 2137 samples from the upper 45 m of this core using ICP-SFMS (CCI, University of Maine, USA). The record covers approximately 125 years (1883-2008) showing a mean concentration of 4.32 pg g-1. The arsenic concentration in the core follows global copper mining evolution, particularly in Chile (the largest producer of Cu). From 1940 to 1990, copper-mining production increased along with arsenic concentrations in the MJ core, from 1.92 pg g-1 (before 1900) to 7.94 pg g-1 (1950). In the last two decades, environmental regulations for As emissions have been implemented, forcing smelters to treat their gases to conform to national and international environmental standards. In Chile, decontamination plants required by the government started operating from 1993 to 2000. Thereafter, Chilean copper production more than doubled while As emission levels declined, and the same reduction was observed in the Mount Johns ice core. After 1999, arsenic concentrations in our samples decreased to levels comparable to the period before 1900.

  2. Contamination of houses by workers occupationally exposed in a lead-zinc-copper mine and impact on blood lead concentrations in the families.

    PubMed Central

    Chiaradia, M; Gulson, B L; MacDonald, K

    1997-01-01

    OBJECTIVE: To evaluate the pathway of leaded dust from a lead-zinc-copper mine to houses of employees, and the impact on blood lead concentrations (PbB) of children. METHODS: High precision lead isotope and lead concentration data were obtained on venous blood and environmental samples (vacuum cleaner dust, interior dustfall accumulation, water, paint) for eight children of six employees (and the employees) from a lead-zinc-copper mine. These data were compared with results for 11 children from occupationally unexposed control families living in the same city. RESULTS: The median (range) concentrations of lead in vacuum cleaner dust was 470 (21-1300) ppm. In the houses of the mine employees, vacuum cleaner dust contained varying higher proportions of mine lead than did airborne particulate matter measured as dustfall accumulated over a three month period. The median (range) concentrations of lead in soil were 30 (5-407) ppm and these showed no evidence of any mine lead. Lead in blood of the mine employees varied from 7 to 25 micrograms/dl and was generally dominated by mine lead (> 60%). The mean (SD) PbB in the children of the mine employees was 5.7 (1.7) micrograms/dl compared with 4.1 (1.4) micrograms/dl for the control children (P = 0.02). The PbB of all children was always < 10 micrograms/dl, the Australian National Health and Medical Research Council goal for all Australians. Some of the control children had higher PbB than the children of mine employees, probably from exposure to leaded paint as six of the eight houses of the control children were > 50 years old. In five of the eight children of mine employees > 20% of PbB was from the lead mine. However, in the other three cases of children of mine employees, their PbB was from sources other than mine lead (paint, petrol, background sources). CONCLUSIONS: Houses of employees from a lead mine can be contaminated by mine lead even if they are not situated in the same place as the mine. Delineation of the mine to house pathway indicates that lead is probably transported into the houses on the clothes, shoes, hair, skin, and in some cases, motor vehicles of the workers. In one case, dust shaken from clothes of a mine employee contained 3000 ppm lead which was 100% mine lead. The variable contamination of the houses was not expected given the precautions taken by mine employees to minimise transportation of lead into their houses. Although five out of the eight children of mine employees had > 20% mine lead in their blood, in no case did the PbB of a child exceed the Australian National Health and Medical Research Council goal of 10 micrograms/dl. In fact, some children in the control families had higher PbB than children of mine employees. In two cases, this was attributed to a pica habit for paint. The PbB in the children of mine employees and controls was independent of the source of lead. The low PbB in the children of mine employees may reflect the relatively low solubility (bioavailability) of the mine dust in 0.1 M hydrochloric acid (< 40 %), behaviour--for example, limited mouthing activity--or diet. PMID:9072019

  3. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    Kříbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevič, M.; Ettler, V.; Sracek, O.

    2014-11-01

    The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard of ingesting dangerous levels of copper, lead and arsenic if dishes are prepared with poorly washed foliage.

  4. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals.

    PubMed

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  5. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River.

    PubMed

    Đorđievski, Stefan; Ishiyama, Daizo; Ogawa, Yasumasa; Stevanović, Zoran

    2018-06-22

    Bor, Krivelj, and Bela Rivers belong to the watershed of Timok River, which is a tributary of transboundary Danube River. These rivers receive metal-rich acidic wastewater from metallurgical facilities and acid mine drainage (AMD) from mine wastes around Bor copper mines. The aim of this study was to determine the mobility and natural attenuation of metals and arsenic in rivers from Bor copper mines to Danube River during the year 2015. The results showed that metallurgical facilities had the largest impact on Bor River by discharging about 400 t of Cu per year through highly acidic wastewater (pH = 2.6). The highest measured concentrations of Cu in river water and sediments were 40 mg L -1 and 1.6%, respectively. Dissolution of calcite from limestone bedrock and a high concentration of bicarbonate ions in natural river water (about 250 mg L -1 ) enhanced the neutralization of acidic river water and subsequent chemical precipitation of metals and arsenic. Decreases in the concentrations of Al, Fe, Cu, As, and Pb in river water were mainly due to precipitation on the river bed. On the other hand, dilution played an important role in the decreases in concentrations of Mn, Ni, Zn, and Cd. Chemically precipitated materials and flotation tailings containing Fe-rich minerals (fayalite, magnetite, and pyrite) were transported toward Danube River during the periods of high discharge. This study showed that processes of natural attenuation in catchments with limestone bedrock play an important role in reducing concentrations of metals and arsenic in AMD-bearing river water.

  6. Medical Experts and Agnotology in the Fumes Controversy of the Huelva Copper Mines (1888–1890)

    PubMed Central

    Guillem-Llobat, Ximo

    2017-01-01

    Huelva’s copper mines (Spain) have been active for centuries but in the second half of the nineteenth century extractive activities in Riotinto, Tharsis, and other mines in the region were intensified in order to reach world leadership. The method used in these mines for copper extraction from low grade ores generated continuous emissions of fumes that were extremely controversial. The inhabitants had complained about the fumes for decades but as activity intensified so did complaints. The killing of anti-fumes demonstrators in 1888 led to the passing of a Royal Decree banning the open-air roasting of ore and to the drafting of numerous reports on the hazards of the fumes. Major state and provincial medical institutions, as well as renowned hygienists and engineers, took part in the assessment, contributing to a scientific controversy especially rich in content. In my paper I will analyse the production and circulation of knowledge and ignorance about the impact of fumes on public health, as well as the role of medical experts and expertise in the controversy. The analysis will focus on the reports drafted between the 1888 ban and its 1890 repeal, and will show the changing nature of the expert assessment and the numerous paths followed by experts in producing ignorance. The paper will conclude by considering other stakeholders, who may shed some light on the reasons behind the performance of the medical experts. PMID:28604295

  7. Using Copulas in the Estimation of the Economic Project Value in the Mining Industry, Including Geological Variability

    NASA Astrophysics Data System (ADS)

    Krysa, Zbigniew; Pactwa, Katarzyna; Wozniak, Justyna; Dudek, Michal

    2017-12-01

    Geological variability is one of the main factors that has an influence on the viability of mining investment projects and on the technical risk of geology projects. In the current scenario, analyses of economic viability of new extraction fields have been performed for the KGHM Polska Miedź S.A. underground copper mine at Fore Sudetic Monocline with the assumption of constant averaged content of useful elements. Research presented in this article is aimed at verifying the value of production from copper and silver ore for the same economic background with the use of variable cash flows resulting from the local variability of useful elements. Furthermore, the ore economic model is investigated for a significant difference in model value estimated with the use of linear correlation between useful elements content and the height of mine face, and the approach in which model parameters correlation is based upon the copula best matched information capacity criterion. The use of copula allows the simulation to take into account the multi variable dependencies at the same time, thereby giving a better reflection of the dependency structure, which linear correlation does not take into account. Calculation results of the economic model used for deposit value estimation indicate that the correlation between copper and silver estimated with the use of copula generates higher variation of possible project value, as compared to modelling correlation based upon linear correlation. Average deposit value remains unchanged.

  8. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-09-20

    ISS015-E-29867 (20 Sept. 2007) --- Bingham Canyon Mine, Utah is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. The Bingham Canyon Mine (center) located approximately 32 kilometers to the southeast of Salt Lake City, UT is one of the largest open-pit mines in the world, measuring over 4 kilometers wide and 1,200 meters deep. The mine exploits a porphyry copper, a type of geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes (forming an igneous rock with large crystals in a fine-grained matrix, known as a porphyry), hot fluids circulate through the magma and surrounding rocks via fractures. This process of hydrothermal alteration typically forms copper-bearing and other minerals in spatial patterns that a geologist recognizes as a potential porphyry copper deposit. Parallel benches (stepped terraces), visible along the western pit face (center left), range from 16 to 25 meters high - these provide access for equipment to work the rock face, as well as maintaining stability of the sloping pit walls. A dark, larger roadway is also visible directly below the benches. Brown to gray, flat topped hills of gangue (waste rock) surround the pit, and are thrown into sharp relief by shadows and the oblique viewing angle of this image. Leachate reservoirs associated with ore processing are visible to the south of the city of Bingham Canyon, UT (right).

  9. Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality.

    PubMed

    Abraham, Mwesigye R; Susan, Tumwebaze B

    2017-02-01

    The mining and processing of copper in Kilembe, Western Uganda, from 1956 to 1982 left over 15 Mt of cupriferous and cobaltiferous pyrite dumped within a mountain river valley, in addition to mine water which is pumped to the land surface. This study was conducted to assess the sources and concentrations of heavy metals and trace elements in Kilembe mine catchment water. Multi-element analysis of trace elements from point sources and sinks was conducted which included mine tailings, mine water, mine leachate, Nyamwamba River water, public water sources and domestic water samples using ICP-MS. The study found that mean concentrations (mg kg -1 ) of Co (112), Cu (3320), Ni (131), As (8.6) in mine tailings were significantly higher than world average crust and were being eroded and discharged into water bodies within the catchment. Underground mine water and leachate contained higher mean concentrations (μg L -1 ) of Cu (9470), Co (3430) and Ni (590) compared with background concentrations (μg L -1 ) in un contaminated water of 1.9, 0.21 and 0.67 for Cu, Co and Ni respectively. Over 25% of household water samples exceeded UK drinking water thresholds for Al of 200 μg L -1 , Co exceeded Winsconsin (USA drinking) water thresholds of 40 μg L -1 in 40% of samples while Fe in 42% of samples exceeded UK thresholds of 200 μg L -1 . The study however found that besides mining activities, natural processes of geological weathering also contributed to Al, Fe, and Mn water contamination in a number of public water sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 40 CFR 440.104 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... provided in subpart L of this part any new source subject to this subsection must achieve the following... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that...

  11. 40 CFR 440.104 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... provided in subpart L of this part any new source subject to this subsection must achieve the following... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that...

  12. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  13. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  14. 77 FR 38351 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change To List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... mines to upgraded copper products--is highly dependent on global trade. According to CPM Group, a... roughly 55% of global output in 2011, while roughly 46% production is performed in Asia. BILLING CODE 8011... global industrial activity, given copper's prominence in major economic sectors such as construction...

  15. Rhenium: a rare metal critical in modern transportation

    USGS Publications Warehouse

    John, David A.

    2015-01-01

    Rhenium rarely occurs as a native element or as its own sulfide mineral—rheniite (ReS2)—and often occurs as a substitute for molybdenum in molybdenite (MoS2). Most extracted rhenium is a byproduct of copper mining, with about 80 percent recovered from flue dust during the processing of molybdenite concentrates from porphyry copper deposits.

  16. Mineral resources accounting: A technique formonitoring the Philippine mining industry for sustainable development

    NASA Astrophysics Data System (ADS)

    Santos, Teodoro M.; Zaratan, May L.

    Mining which extracts exhaustible mineral resources has been condemned by certain sectors as promoting social inequity and underdevelopment. This is so because once a tonne of copper, say, is mined it is forever lost to the future generation. Such perception translates into policies that are usually disadvantageous or even hostile to the industry. Despite this adverse criticism, recent developments in natural resources accounting indicate that mining can truly contribute to the sustainable economic development of a society. True worth of mining in economic development can be assessed and monitored on a continuing basis through an appropriate system of natural accounts (SNA). If the industry is found deficient, such SNA can also point out how the industry can be made to constribute to sustainable growth. The prevailing SNA is criticized as having failed to capture the adverse effects on the welfare of society of producing a nonrenewable resource such as minerals. For instance, the production of copper for a particular year registers an increase in gross national product equivalent to its monetary value. However, the concomitant depletion of the country's natural wealth due to such production is nowhere recorded in the SNA. This faulty accounting gives rise to policies that result in nonsustainable economic growth. In order to address the preceding problem, this paper presents an accounting formula applicable to any nonrenewable resource whereby revenue is decomposed into income and capital components. To achieve sustainable economic growth, it states that the capital component must be invested to generate future incomes. However, investments need not be confined to the same sector. Application of the accounting scheme to the Philippine copper and gold sectors during the 1980-1990 period leads to the following conclusions: (a) by and large, gold and copper mining operations have indeed contributed positively to national income, contrary to allegations of certain sectors of society; (b) level of reserves, metal prices, level of production and interest rates are the major determinants of mineral depletion; as (c) given the results of the accounting exercise, policies can be formulated to enhance sustainable growth. One important constraint of the exercise is the failure to include the environmental effects which are usually considered (though not necessarily so) detrimental to society's welfare mainly because they are not being monitored.

  17. Nickel-cobalt-iron-copper sulfides and arsenides in solution-collapse breccia pipes, northwestern Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenrich, K.J.; Hlava, P.F.

    An extensive suite of Ni-Co-Fe-Cu sulfides and arsenides lies within the matrix of solution-collapse breccias buried deep within the plateaus of the Grand Canyon region. Ceilings over large caverns in the Redwall collapsed, brecciating the overlying sandstone and forming cylindrical breccia pipes up to 300 ft in diameter that extend vertically as much as 3,000 ft. These highly permeable breccias served as a host for the precipitation of a suite of over 100 minerals, including uraninite, sphalerite, galena and various copper phases, in addition to the Ni-Co-bearing-phase discussed here. Intricately zoned crystals of small (<1 mm), euhedral Ni-Co-Fe-As-S minerals weremore » the first to form during the second major episode of mineralization in these pipes. Several of these phases replace minerals, such as barite and anhydrite, from the first episode. Extensive microprobe work has been done on samples from two breccia pipe mines, the Hack 2 and Orphan, which are about 50 miles apart. Mineral compositions are similar except that no copper is found in the Ni-Co-Fe phases from the Hack 2 mine, while pyrites containing 1 wt % Cu are common from the Orphan, which was mined for copper. In some of these pyrites', Cu is dominant and the mineral is actually villamaninite. Pyrites from both mines characteristically contain 0.5 to 3 wt % As. Metal contents in zones pyrite-bravoite-vaesite (M[sub 1]S[sub 2]) crystals at the Hack 2 mine range from Fe[sub 1] to Fe[sub .12], Ni[sub 0] to Ni[sub .86], and Co[sub 0] to Co[sub .10]. The metal content for polydymite-siegenite-violarite averages about (Ni[sub 2.33]Co[sub .39]Fe[sub .23])(S[sub 3.9]As[sub .1]). Orphan mine pyrite-bravoite-vaesite-villamaninite ranges in composition from pure FeS[sub 2] to (Ni[sub .6]Fe[sub .21]Co[sub .17])S[sub 2], and (Cu[sub .46]Ni[sub .27]Fe[sub .21]Co[sub .13])S[sub 2]. Of all the sulfides or arsenides found in these breccia pipes, only nickeline consistently occurs as the pure end member.« less

  18. [Bronchopulmonary diseases in workers engaged in deep-mined extraction of copper-nickel ore].

    PubMed

    Siurin, S A; Derevoedov, A A; Nikanov, A N

    2008-01-01

    Examinations were made in 220 male workers exposed to dust-gas (low-silicon dioxide, nitric oxides, and carbon oxide) mixture, physical exercises, and cooling microclimate on deep-mined output of copper-nickel ore. Twenty-eight per cent of the workers were found to have evolving chronic bronchitis that did not substantially affect the patients' working capacity; 3.2% had chronic obstructive pulmonary disease and 1.4% had asthma that had developed before the onset of professional activity. 32.3% of the examinees were ascertained to have individual clinicofunctional disorders that permit their identification as a bronchopulmonary disease risk group to carry out early preventive and rehabilitative measures.

  19. Effects of land use on ground-water quality in central Florida; preliminary results, US Geological Survey Toxic Waste-Ground Water Contamination Program

    USGS Publications Warehouse

    Rutledge, A.T.

    1987-01-01

    Groundwater is the principal source of drinking water in central Florida. The most important hydrogeologic unit is the Floridan aquifer system, consisting of fractured limestone and dolomite limestone. Activities of man in areas of recharge to the Floridian aquifer system that may be affecting groundwater quality include: (1) the use of drainage wells for stormwater disposal in urban areas, (2) the use of pesticides and fertilizers in citrus groves, and (3) the mining and processing of phosphate ore in mining areas. Preliminary findings about the impacts of these land uses on ground-water quality by comparison with a fourth land use representing the absence of human activity in another area of recharge are presented. Drainage wells convey excess urban stormwater directly to the Upper Floridian aquifer. The volatile organic compounds are the most common contaminants in ground water. Trace elements such as chromium and lead are entering the aquifer but their movement is apparently attenuated by precipitation reactions associated with high pH or by cation-exchange reactions. Among the trace elements and organic chemicals, most ground-water contamination in citrus production areas is caused by pesticides, which include the organic compounds simazine, ametryne, chlordane, DDE , bromacil, aldicarb, EDB, trifluralin, and diazinon, and the trace elements zinc and copper; other contaminants include benzene, toluene, napthalene, and indene compounds. In the phosphate mining area, constituents of concern are arsenic, selenium, and mercury, and secondarily lead, chromium, cadmium, and others. Organic compounds such as fluorene, naphthalene, di-n-butyl phthalate, alkylated benzenes and naphthalenes, and indene compounds also are entering groundwater. (Author 's abstract)

  20. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA

    PubMed Central

    Lapakko, Kim A.; Wenz, Zachary J.; Olson, Michael C.; Roepke, Elizabeth W.; Novak, Paige J.; Bailey, Jake V.

    2017-01-01

    ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. PMID:28600313

  1. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA.

    PubMed

    Jones, Daniel S; Lapakko, Kim A; Wenz, Zachary J; Olson, Michael C; Roepke, Elizabeth W; Sadowsky, Michael J; Novak, Paige J; Bailey, Jake V

    2017-08-15

    The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula , as well as from diverse clades of uncultivated Chloroflexi , Acidobacteria , and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. Copyright © 2017 American Society for Microbiology.

  2. Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials

    NASA Astrophysics Data System (ADS)

    Gitari, M. W.; Akinyemi, S. A.; Thobakgale, R.; Ngoejana, P. C.; Ramugondo, L.; Matidza, M.; Mhlongo, S. E.; Dacosta, F. A.; Nemapate, N.

    2018-01-01

    The mining industries in South Africa generates huge amounts of mine waste that includes tailings; waste rocks and spoils. The tailings materials are dumped in surface impoundments that turn to be sources of hazards to the environment and the surrounding communities. The main environmental hazards posed by these tailings facilities are associated with their chemical constituents. Exposure to chemical constituents can occur through windblown dust, erosion to surface water bodies, inhalation by human beings and animals and through bioaccumulation and bio magnification by plants. Numerous un-rehabilitated tailings dumps exist in Limpopo province of South Africa. The communities found around these mines are constantly exposed to the environmental hazards posed by these tailing facilities. Development of a cost-effective technology that can beneficially utilize these tailings can reduce the environmental hazards and benefit the communities. This paper presents the initial evaluation of the copper and gold mine tailings in Limpopo, South Africa with a view to assessing the suitability of conversion into beneficial geopolymeric materials. Copper tailings leachates had alkaline pH (7.34-8.49) while the gold tailings had acidic pH. XRD confirmed presence of aluminosilicate minerals. Geochemical fractionation indicates that majority of the major and trace species are present in residual fraction. A significant amount of Ca, Cu and K was available in the mobile fraction and is expected to be released on tailings contacting aqueous solutions. Results from XRF indicates the tailings are rich in SiO2, Al2O3 and CaO which are the main ingredients in geopolymerization process. The SiO2/Al2O3 ratios indicates the tailings would require blending with Al2O3 rich feedstock for them to develop maximum strength. Moreover, the tailings have particle size in the range of fine sand which indicates potential application as aggregates in conventional brick manufacture.

  3. Screening for Autochthonous Phytoextractors in a Heavy Metal Contaminated Coal Mining Area

    PubMed Central

    Li, Kuangjia; Lun, Zijian; Zhao, Lin; Zhu, Qilong; Gu, Yansheng; Li, Manzhou

    2017-01-01

    In order to protect public health and crops from soil heavy metal (HM) contamination at a coal mining area in Henan, central China, HM pollution investigation and screening of autochthonous HM phytoextractors were conducted. The concentrations of cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) in surface soils exceeded the corresponding local background values and the China National Standard (CNS). The maximum potential ecological risk (RI) was 627.30, indicating very high ecological risk. The monomial risk of Cd contributed the most to the RI, varying from 85.48% to 96.48%. The plant community structure in the study area was simple, and was composed of 24 families, 37 genera and 40 species. B. pilosa, A. roxburghiana, A. argyi, A. hispidus were found to be the most dominant species at considerable risk sites. Based on the comprehensive analysis of Cd concentration, bioconcentration factor, translocation factor and adaptability factor, B. pilosa and A. argyi had potential for phytoextraction at considerable risk sites. A. roxburghiana had potential for Cd phytoextraction at moderately risk sites and A. hispidus seemed suitable for phytostabilization. The results could contribute to the phytoremediation of the similar sites. PMID:28914778

  4. The USGS Abandoned Mine Lands Initiative: Protecting and restoring the environment near abandoned mine lands

    USGS Publications Warehouse

    ,

    1999-01-01

    The Abandoned Mine Lands (AML) Initiative is part of a larger strategy of the U.S. Department of the Interior and the U.S. Department of Agriculture to clean up Federal lands contaminated by abandoned mines.Thousands of abandond hard-rock metal mines (such as gold, copper, lead, and zinc) have left a dual legacy across the Western United States. They reflect the historic development of the west, yet at the same time represent a possible threat to human health and local ecosystems.Abandoned Mine Lands (AML) are areas adjacent to or affected by abandoned mines. AML's often contain unmined mineral deposits, mine dumps (the ore and rock removed to get to the ore deposits), and tailings (the material left over from the ore processing) that contaminate the surrounding watershed and ecosystem. For example, streams near AML's can contain metals and (or) be so acidic that fish and aquatic insects cannot live in them.Many of these abandoned hard-rock mines are located on or adjacent to public lands administered by the Bureau of Land Management, National Park Service, and U.S. Forest Service. These federal land management agencies and the USGS are committed to mitigating the adverse effects that AML's can have on water quality and stream habitats.The USGS AML Initiative began in 1997 and will continue through 2001 in two pilot watersheds - the Boulder River basin in southwestern Montana and the upper Animas River basin in southwestern Colorado. The USGS is providing a wide range of scientific expertise to help land managers minimize and, where possible, eliminate the adverse environmental effects of AML's. USGS ecologists, geologists, water quality experts, hydrologists, geochemists, and mapping and digital data collection experts are collaborating to provide the scientific knowledge needed for an effective cleanup of AML's.

  5. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America.

    PubMed

    Smolders, A J P; Lock, R A C; Van der Velde, G; Medina Hoyos, R I; Roelofs, J G M

    2003-04-01

    From 1997 until 1999 the extent and the ecological effects of zinc, copper, lead, and cadmium pollution were studied in different reaches of the South American Pilcomayo River. A comparison of metal concentrations in water, sediment, and chironomid larvae, as well as the diversity of macroinvertebrate species, was made between sites near the origin of the Pilcomayo River, with hardly any mining activities, sites in the Potosí region, with intensive mining, and sites located 500 km or further downstream of Potosí, in the Chaco plain. Samples were also collected in an unpolluted river (Cachi Mayu River) and in the Tarapaya River, which is strongly contaminated by mine tailings (1000 tons a day). The upper parts of the Pilcomayo River are strongly affected by the release of mine tailings from the Potosí mines where mean concentrations of lead, cadmium, copper, and zinc in water, filtered water, sediment, and chironomid larvae were up to a thousand times higher than the local background levels. The diversity of the benthic macroinvertebrate community was strongly reduced in the contaminated parts; 97% of the benthic macroinvertebrates consisted of chironomid larvae. The degree of contamination in the lower reaches of the river, however, was fairly low because of sedimentation processes and the strong dilution of mine tailings with enormous amounts of clean sediment from erosion processes. Analysis of sediment cores from the Ibibobo floodplain, however, reveal an increase of the heavy metal concentrations in the lower reaches since the introduction of the contaminating flotation process in the mine industry in 1985.

  6. Bedrock geology and mineral resources of the Knoxville 1°x2° quadrangle, Tennessee, North Carolina, and South Carolina

    USGS Publications Warehouse

    Robinson, Gilpin R.; Lesure, Frank G.; Marlowe, J.I.; Foley, Nora K.; Clark, S.H.

    1992-01-01

    Vermiculite produced from a large deposit near Tigerville, S.C., in the Inner Piedmont. Deposit worked out and mine backfilled. Smaller deposits associated with ultramafic rocks in the east flank of the Blue Ridge are now uneconomic and have not been worked in the past 20 years. C. Metals: Copper in three deposits, the Fontana and Hazel Creek mines in the Great Smoky Mountains National Park in the Central Blue Ridge, and the Cullowhee mine in the east flank of the Blue Ridge. D. Organic fuels:  The rocks of the quadrangle contain no coal and probably lie outside the maximum range in thermal maturity permitting the survival of oil. The rocks in the Valley and Ridge and for a short distance eastward below the west flank of the Blue Ridge probably lie within a zone of thermal maturity permitting the survival of natural gas. Consequently the western part of the quadrangle is an area of high risk for hydrocarbon exploration. No exploration drilling has been done in this belt. 

  7. Effects of metals on a montane aquatic system evaluated using an integrated assessment approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltman, D.; Lipton, J.; Cacela, D.

    Surface water, benthic invertebrates, aufwuchs, and sediments were sampled in a Rocky Mountain stream impacted by a cobalt-copper mine. A randomized study design was employed to ensure valid inferences beyond the areas sampled. As, Co, and Cu concentrations in all media downstream of the mine were 1--3 orders of magnitude greater than concentrations upstream, and concentrations in invertebrates were greater than those that adversely affect trout via dietary intake. Correlational analysis shows that bioaccumulation mechanisms and pathways between the different media differ from element to element; the differences are related to geochemical characteristics of the elements. The benthic invertebrate communitymore » is severely impacted for at least 50 km downstream of the mine: Ephemeropteran density, number of taxa, and total biomass are as low as 0.1% of values upstream. Other indices of the effects of metals on invertebrate communities that have been used elsewhere were ineffective in detecting these severe impacts. The integrated assessment approach used in this study provides information on contaminant sources, exposure pathways and mechanisms, and impacts to the stream ecosystem at several organizational levels.« less

  8. Blast from the Past: Pervasive Impact and Landscape-Scale Modification from Historical Mining Over 1000 Years in Central Sweden

    NASA Astrophysics Data System (ADS)

    Hansson, S.; Bindler, R.

    2011-12-01

    In the public consciousness Sweden is often viewed as a largely natural landscape. However, many parts of the landscape have undergone substantial changes. For example, in the historically and culturally important Bergslagen region in central Sweden, which played an important role in the economic development of Sweden since the medieval period, agriculture and mining have greatly transformed the landscape over the past 1000 years. Bergslagen is an ore-rich region characterized as a granite-porphyr belt formed 1900 Ma ago, with thousands of mines and mine pits, hundreds of furnaces, smelters and forges distributed throughout the area. Drawing on data from selected lake sediment records from different historical mining districts in Central Sweden (e.g. Norberg mining district - iron ores and Falun mining district - copper ores) the aim of this presentation is to show how small-scale but pervasively widespread mining and metallurgy, along with associated settlement, have transformed the surrounding landscape. These anthropogenic activities led to changes in sedimentation and erosion rates, forest structure, and also causing large-scale metal pollution and ecological changes in recipient watercourses and lakes. This historical pollution was oftentimes on a scale we associate with modern mining pollution. Our research is based on analyses of lake sediment records, which include multi-element analyses of minor and trace elements using XRF, mercury, carbon, and in some lakes also pollen and diatoms. In two lakes in Norberg, recent catastrophic failure (1991) of a sand magazine below a now closed mine led to significant contamination of the two downstream lakes, with Cu and Hg concentrations up to 1800 ppm and 1400 ppb, respectively. These concentrations are 50 and 20 times greater than natural background values. However, such elevated concentrations are also frequently found in sediments dated to the 16th-18th centuries. For example, in one lake in the Norberg iron mining district, Hg concentrations were as high as 1100 ppb in sediments from the 16th century - about 40 times greater than background level. Although the total concentrations of metals in the lake sediments in these areas have decreased since the peak in the 16th-17th centuries, due to declines in mining and metallurgy, and the complete cessation of activities since the mid-20th century, metal concentrations have remained elevated for more than 500 years. Already 500 years ago land use and mining in some cases led to cultural alkalization of lakes, but ultimately acidification of soils and lakes in areas where sulfide ores were mined and processed. Land use and mining pollution also altered biogeochemical conditions in downstream lakes, which have not returned to natural baseline levels although mining and metallurgy have ceased over the last two centuries. Seeing that these results are symptomatic of changes that potentially affected thousands of lakes in this large region of Sweden, we believe that this has important implications for other environmental and also archaeological studies in the area, particularly those aimed at establishing reference conditions for potential future exploitation of ores.

  9. Heavy metal contamination from mining sites in South Morocco: monitoring metal content and toxicity of soil runoff and groundwater.

    PubMed

    El Khalil, Hicham; El Hamiani, Ouafae; Bitton, Gabriel; Ouazzani, Naaila; Boularbah, Ali

    2008-01-01

    The aim of the present work is the assessment of metal toxicity in runoff, in their contaminated soils and in the groundwater sampled from two mining areas in the region of Marrakech using a microbial bioassay MetPLATE. This bioassay is based on the specific inhibition of the beta-galactosidase enzyme of a mutant strain of Escherichia coli, by the metallic pollutants. The stream waters from all sampling stations in the two mines were all very toxic and displayed percent enzyme inhibition exceeding 87% except SWA4 and SWB1 stations in mine C. Their high concentrations of copper (Cu) and zinc (Zn) confirm the acute toxicity shown by MetPLATE. The pH of stream waters from mine B and C varied between 2.1 and 6.2 and was probably responsible for metal mobilization, suggesting a problem of acid mine drainage in these mining areas. The bioassay MetPLATE was also applied to mine tailings and to soils contaminated by the acidic waters. The results show that the high toxicity of these soils and tailings was mainly due to the relatively concentration of soluble Zn and Cu. The use of MetPLATE in groundwater toxicity testing shows that, most of the samples exhibited low metal toxicity (2.7-45.5% inhibition) except GW3 of the mine B (95.3% inhibition during the wet season and 82.9% inhibition during the dry season). This high toxicity is attributed to the higher than usual concentrations of Cu (189 microg Cu l(-1)) and Zn (1505 microg Zn l(-1)). These results show the potential risk of the contamination of different ecosystems situated to the vicinity of these two metalliferous sites. The general trend observed was an increase in metal toxicity measured by the MetPLATE with increasing total and mobile metal concentrations in the studied matrices. Therefore, the MetPLATE bioassay is a reliable and fast bioassay to estimate the metals toxicity in the aquatic and solids samples.

  10. Mining induced seismic event on an inactive fault in view of local surface and in mine underground networksS

    NASA Astrophysics Data System (ADS)

    Rudzinski, Lukasz; Lizurek, Grzegorz; Plesiewicz, Beata

    2014-05-01

    On 19th March 2013 tremor shook the surface of Polkowice town were "Rudna" mine is located. This event of ML=4.2 was third most powerful seismic event recorded in Legnica Głogów Copper District (LGCD). Citizens of the area reported that felt tremors were bigger and last longer than any other ones felt in last couple years. The event was studied with use of two different networks: underground network of "Rudna" mine and surface local network run by IGF PAS (LUMINEOS network). The first one is composed of 32 vertical seismometers at mining level, except 5 sensors placed in elevator shafts, seismometers location depth varies from 300 down to 1000 meters below surface. The seismometers used in this network are vertical short period Willmore MkII and MkIII sensors, with the frequency band from 1Hz to 100Hz. At the beginning of 2013th the local surface network of the Institute of Geophysics Polish Academy of Sciences (IGF PAS) with acronym LUMINEOS was installed under agreement with KGHM SA and "Rudna" mine officials. This network at the moment of the March 19th 2013 event was composed of 4 short-period one-second triaxial seismometers LE-3D/1s manufactured by Lenartz Electronics. Analysis of spectral parameters of the records from in mine seismic system and surface LUMINEOS network along with broadband station KSP record were carried out. Location of the event was close to the Rudna Główna fault zone, the nodal planes orientations determined with two different approaches were almost parallel to the strike of the fault. The mechanism solutions were also obtained in form of Full Moment Tensor inversion from P wave amplitude pulses of underground records and waveform inversion of surface network seismograms. Final results of the seismic analysis along with macroseismic survey and observed effects from the destroyed part of the mining panel indicate that the mechanism of the event was thrust faulting on inactive tectonic fault. The results confirm that the fault zones are the areas of higher risk, even in case of carefully taken mining operations.

  11. Remediation and rehabilitation of abandoned mining sites in Cyprus

    NASA Astrophysics Data System (ADS)

    Helsen, S.; Rommens, T.; De Ridder, A.; Panayiotou, C.; Colpaert, J.

    2009-04-01

    Due to a particular geological setting, Cyprus is rich in ore deposits, many of them subject to extensive mining. Most of the mines have a long history, sometimes dating back to prehistorical times. These abandoned mines cause severe off-site environmental problems and health risks for the local population. Groundwater supplies are affected by the leaching of pollutants, surface water is contaminated because of water erosion, and harmful dust containing heavy metals or asbestos is spread due to wind erosion. In addition to the environmental risks associated with the abandoned mines, many of these sites are aestethically unattractive, and remain an economic burden to stakeholders and the public in general, due to the downgrading of surrounding areas, non-development and hence loss of revenue. These factors are important in Cyprus where tourism is a significant source of income for local communities. An EUREKA-project addresses the issue of abandoned mine clean-up and restoration. The main objectives of this study are : (1) To develop phytostabilization and -remediation techniques to stabilize and clean up sites characterized by high nickel and copper concentrations in the soil, using endemic plants (Alyssum spp. and mycorrhizal Pinus brutia). In some old mines, efforts were already made to stabilize slopes in an attempt to minimize soil erosion and spreading of pollutants. These restoration efforts, however, remained largely unsuccessful because vegetation that was planted could not cope with the harsh hydrogeochemical soil characteristics. Regeneration of the vegetation cover therefore failed ; (2) to demonstrate the risks associated to the environmental hazard of metal polluted mine spoils and outline a method by which to accomplish this type of risk assessment ; (3) to analyse costs and benefits of phytostabilization- and phytoremediation-based solution for the problem. Results of the first experiments are still preliminary and incomplete. However, it is expected that a better knowledge on growing conditions of the selected plant species will contribute to the development of a phytoremediation technique for a low-cost and sustainable restoration of the old mine sites. Moreover, this will have direct utility to other areas in the Mediterranean region, that are similarly threatened by the presence of heavy metals in the environment.

  12. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  14. Effects of acid-mine wastes on aquatic ecosystems

    Treesearch

    John David Parsons

    1976-01-01

    The Cedar Creek Basin (39th N parallel 92nd W meridian) was studied for the period June 1952 through August 1954 to observe the effects of both continuous and periodic acid effluent flows on aquatic communities. The acid strip-mine effluent contained ferric and ferrous iron, copper, lead, zinc, aluminum, magnesium, titratable acid, and elevated hydrogen ion...

  15. Reactive Transport Modeling Of Remedial Scenarios To Predict Cadmium, Copper, And Zinc In North Fork of Clear Creek, Colorado

    EPA Science Inventory

    The North Fork of Clear Creek (NFCC), Colorado is an acid-mine-drainage-impacted stream typical of many mountain surface waters affected by historic metal mining in the western United States. The stream is devoid of fish primarily because of high metal concentrations in the wate...

  16. Geochemical fractionation of metals and metalloids in tailings and appraisal of environmental pollution in the abandoned Musina Copper Mine, South Africa.

    PubMed

    Gitari, M W; Akinyemi, S A; Ramugondo, L; Matidza, M; Mhlongo, S E

    2018-04-30

    The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average ≈ 8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO 2 /Al 2 O 3 and Na 2 O/(Al 2 O 3  + SiO 2 ) ratios and low plastic index (i.e. PI ≈ 2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase > muscovite > hornblende > calcite > haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process are controlling the elements distribution.

  17. Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States

    USGS Publications Warehouse

    Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert R.; Piatak, Nadine M.; Webb, Samuel M.; Hammarstrom, Jane M.

    2016-01-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  18. Polish Geophysical Solid Earth Infrastructure Contributing to EPOS

    NASA Astrophysics Data System (ADS)

    Debski, W.; Mutke, G.; Suchcicki, J.; Jozwiak, W.; Wiejacz, P.; Trojanowski, J.

    2012-04-01

    In this poster we present the current state of the main polish solid-earth-orientated infrastructures and shortly described history of their development, current state, and some plans for their future development. The presen- tation concentrates only on the classical infrastructure leaving aside for the while the the geodetic-orientated infrastructure, like GPS network and the GPS processing data centers, gravimetric infrastructure and others of this type. Polish broadband seismic infrastructure consists of 7 permanent broadband stations incorporated into the VEBSN initiative running at the polish territory and one operated in collaboration with NORSAR is settled at the Hornsund (Svalbard) polish polar station. All stations are equipped with STS-2 seismometers and polish MK-6 seismic stations providing 120 dB dynamics 100Hz sampling and data transmission in a real time to processing center. Besides this permanent broadband seismic network (PLSN) the Central Institute of Mining is running the permanent regional, short period network at the Upper Silesia area dedicated to the detailed monitoring of seismicity induced by the black coal mining activity in this area. The network consists of As the mining activity is the main source of seismicity in Poland also all mines are running underground short period networks, like for example Rudna-Polkowice copper mine seismic network consisting of 64 underground located short period seimometers. In that area, especially around the Zelazny Most: the huge post-floating artificial lake the, IGF PAS is running the local seismic array consisting of 4 short period seismometers. Besides these permanent network IGF PAN is running the portable seismic network for detailed mapping a possible natural seismic activity in selected regions of Poland. Important contribution to classical geophysical observation in the electro-magnetic field are provided by three permanent geomagnetic observatories (one at Hornsund) and supporting set of 10 portable, high-accuracy magnetoteluric stations.

  19. Quality of water and sediment in streams affected by historical mining, and quality of Mine Tailings, in the Rio Grande/Rio Bravo Basin, Big Bend Area of the United States and Mexico, August 2002

    USGS Publications Warehouse

    Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne

    2008-01-01

    The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of aluminum, cadmium, chromium, nickel, selenium, and zinc exceeded the Texas Surface Water Quality Standards criteria for aquatic life-use protection or human health. The only trace elements detected in the water samples at concentrations exceeding the Texas Surface Water Quality Standards criterion for human health (fish consumption use) was lead at one site and mercury at 10 of 12 sites. Relatively high mercury concentrations distributed throughout the area might indicate sources of mercury in addition to abandoned mining areas. Streambed-sediment samples were collected from 12 sites and analyzed for 44 major and trace elements. In general, the trace elements detected in streambed-sediment samples were low in concentration, interpreted as consistent with background concentrations. Concentrations at two sites, however, were elevated compared to Texas Commission on Environmental Quality criteria. Concentrations of antimony, arsenic, cadmium, lead, silver, and zinc in the sample from San Carlos Creek downstream from La Esperanza (San Carlos) Mine exceeded the Texas Commission on Environmental Quality screening levels for sediment. The sample from Rough Run Draw, downstream from the Study Butte Mine, also showed elevated concentrations of arsenic, cadmium, and lead, but these concentrations were much lower than those in the San Carlos Creek sample and did not exceed screening levels. Elevated concentrations of multiple trace elements in streambed-sediment samples from San Carlos Creek and Rough Run Draw indicate that San Carlos Creek, and probably Rough Run Draw, have been adversely affected by mining activities. Fourteen mine-tailing samples from 11 mines were analyzed for 25 major and trace elements. All trace elements except selenium and thallium were detected in one or more samples. The highest lead concentrations were detected in tailings samples from the Boquillas, Puerto Rico, La Esperanza (San Carlos), and Tres Marias Mines, as might be expected because the tailings ar

  20. Mines and Prospects, Idaho Springs District, Clear Creek and Gilpin Counties, Colorado - Descriptions and Maps

    USGS Publications Warehouse

    Moench, Robert Hadley; Drake, Avery Ala

    1966-01-01

    The Idaho Springs mining district forms an important segment of the Front Range mineral belt, a northeast-trending zone of coextensive intrusive rocks and hydrothermal ore deposits of early Tertiary age. This belt, which is about 50 miles long, extends from the region just west of Boulder southwestward across the Front Range. From 1859, when placer gold was discovered in Idaho Springs and lode gold in Central City, through 1959, ores valued at about $200 million were shipped from a 50-square-mile area that includes the Idaho Springs and adjacent districts to the north, west, and southwest. The adjacent Central City district, which produced ores valued at more than $100 million, is clearly the most important district in the mineral belt. The Idaho Springs district from 1860 to 1959 produced ores valued at about $65 million, and the districts to the west and southwest produced smaller amounts. Gold has accounted for about 60 percent of the value of the ore, but in some areas silver provides the chief values, and copper, lead, and zinc add value to the ores in most areas. Mining activity in the Idaho Springs and adjacent districts was at its 'heyday' in the late 1800's, it declined sharply after 1914, it was somewhat renewed during the 1930's, and it greatly declined during World War II. In the 1950's uranium prospecting stimulated some mining activity. No uranium was produced, however, and at the close of the decade only one mine--the Bald Eagle--was being worked for its precious- and base-metal ores. In this report, 135 mines and prospects are described. The mines and prospects described are those that were accessible at the time of this study, as well as a few inaccessible properties for which some information was available. Most of the data for the inaccessible or unimportant properties were obtained from Bastin and Hill (1917) and Spurr, Garrey, and Ball (1908). The following list shows, in alphabetical order, the names of about 325 openings of mines and prospects, their coordinate location on the district map (fig. 1), the page of this report on which their description starts, and the number of the illustration, if any, referring to them.

  1. Assessment of Cu sub-lethal toxicity (LC50) in the cold-water gorgonian Dentomuricea meteor under a deep-sea mining activity scenario.

    PubMed

    Martins, Inês; Godinho, António; Goulart, Joana; Carreiro-Silva, Marina

    2018-05-21

    Previous aquaria-based experiments have shown dissolution and leaching of metals, especially copper (Cu), from the simulated sediment plumes generated during mining activities resulting in a pronounced increase of Cu contamination in the surrounding seawater. Metals are bioavailable to corals with food, through ingestion (particulate phase) and through tissue-facilitated transport (passive diffusion). With corals being particularly vulnerable to metal contamination, resuspension of metal-bearing sediments during mining activities represents an important ecological threat. This study was undertaken to evaluate the impact of acute copper exposure (LC 50;96 h ) on the survival of the cold-water octocoral Dentomuricea aff. meteor. The experimental design was divided in two stages. In stage one, a Cu range-finding toxicity test was performed using Cu dilutions in filtered seawater with concentrations of 0 (control); 60; 150; 250; 450; 600 μg/L. Coral mortality was investigated visually based on the percent surface area of tissue changing from natural yellow colour to black colour indicative of tissue necrosis and death. In stage two, we used the results obtained in the range-finding experiment, to define sub-lethal Cu exposure treatments and exposed D. meteor to Cu concentration of 0 (control); 50; 100; 150; 200; 250 μg/L for 96 h. The corals physical conditions were inspected daily and seawater conditions recorded. Corals were considered dead when all of their tissue turned black. The LC 50 value was calculated with regression analysis following Probits methodology. Our results indicate that Cu LC 50;96 h for the octocoral D. meteor is 137 μg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Understanding Contaminants Associated with Mineral Deposits

    USGS Publications Warehouse

    Verplanck, Philip L.

    2008-01-01

    Interdisciplinary studies by the U.S. Geological Survey (USGS) have resulted in substantial progress in understanding the processes that control *the release of metals and acidic water from inactive mines and mineralized areas, *the transport of metals and acidic water to streams, and *the fate and effect of metals and acidity on downstream ecosystems. The potential environmental effects associated with abandoned and inactive mines, resulting from the complex interaction of a variety of chemical and physical processes, is an area of study that is important to the USGS Mineral Resources Program. Understanding the processes contributing to the environmental effects of abandoned and inactive mines is also of interest to a wide range of stakeholders, including both those responsible for managing lands with historically mined areas and those responsible for anticipating environmental consequences of future mining operations. The recently completed (2007) USGS project entitled 'Process Studies of Contaminants Associated with Mineral Deposits' focused on abandoned and inactive mines and mineralized areas in the Rocky Mountains of Montana, Colorado, New Mexico, Utah, and Arizona, where there are thousands of abandoned mines. Results from these studies provide new information that advances our understanding of the physical and biogeochemical processes causing the mobilization, transport, reaction, and fate of potentially toxic elements (including aluminum, arsenic, cadmium, copper, iron, lead, and zinc) in mineralized near-surface systems and their effects on aquatic and riparian habitat. These interdisciplinary studies provide the basis for scientific decisionmaking and remedial action by local, State, and Federal agencies charged with minimizing the effects of potentially toxic elements on the environment. Current (2007) USGS research highlights the need to understand (1) the geologic sources of metals and acidity and the geochemical reactions that release them from their sources, (2) the pathways that facilitate transport from those sources, and (3) the processes that control the fate of the elements once released from the sources. Experts in the fields of economic geology, structural geology, mineralogy, geophysics, geochemistry, hydrology, ground-water modeling, microbiology, and toxicology came together for a series of studies that address these relationships on scales ranging from the microscopic to the watershed. This Circular presents results and highlights from the detailed, interdisciplinary studies that include investigations in both mining-affected areas and mineralized but unmined areas. The first section of the Circular describes laboratory and site-scale field investigations that primarily focus on mineralogic and biologic controls on the source and release of metals and acidity from mine-waste rock and hydrothermally altered areas. The second section describes a set of basin- to watershed-scale studies that not only investigate the source and release of metals and acidity but also the transport of these constituents away from the source areas. The third section is a summary of results from postremediation ecosystem monitoring. For more information on these and other project-related studies, please visit the project Web site at http://minerals.cr.usgs.gov/projects/contaminants/index.html. The Web site includes a complete bibliography and detailed descriptions of each interdisciplinary study.

  3. A preliminary report of geochemical investigations in the Blackbird District

    USGS Publications Warehouse

    Canney, F.C.; Hawkes, H.E.; Richmond, G.M.; Vhay, J. S.

    1953-01-01

    This paper reviews an experimental geochemical prospecting survey in the Blackbird cobalt-copper mining district. The district is in east-central Idaho, about 20 miles west-southwest of Salmon. The area is one of deeply weathered nearly flat-topped upland surfaces cut by steep-walled valleys which are tributary to the canyon of Panther Creek. Most of the area has a relatively heavy vegetative cover, and outcrops are scarce except on the sides of the steeper valleys* Because of the importance of the surficial deposits and soils and the physiographic history of the region on the interpretation of the geochemical data, a separate chapter on this subject by Gerald H. Richmond follows the following brief description of the geology of the district.

  4. The potential use of storm water and effluent from a constructed wetland for re-vegetating a degraded pyrite trail in Queen Elizabeth National Park, Uganda

    NASA Astrophysics Data System (ADS)

    Osaliya, R.; Kansiime, F.; Oryem-Origa, H.; Kateyo, E.

    During the operation of the Kilembe Mines (copper mining) a cobaltiferous stockpile was constructed, which began to erode after the closure of the mines in the early 1970s. The erosion of the pyrite stockpile resulted in a large acid trail all the way to Lake George (a Ramsar site). The acid trail contaminated a large area of Queen Elizabeth National Park (QENP) resulting in the death of most of the shallow-rooted vegetation. Processes and conditions created by storm water and effluent from a constructed wetland were assessed for vegetation regeneration in the degraded QENP pyrite trail. Cynodon dactylon, Imperata cylindrica and Hyparrhenia filipendula dominated the regeneration zone (RZ) where storm water and effluent from a constructed wetland was flowing; and the adjacent unpolluted area (UP) with importance value indices of 186.4 and 83.3 respectively. Typha latifolia and C. dactylon formed two distinct vegetation sub-zones within the RZ with the former inhabiting areas with a higher water table. Soil pH was significantly higher in the RZ, followed by UP and bare pyrite trail (BPT) at both 0-15 cm and 16-30 cm depths. Soil electrical conductivity was not significantly different in the RZ and BPT but significantly higher than that in UP for both depths. For 0-15 cm depth, RZ had significantly higher concentrations of copper than BPT and UP which had similar concentrations. Still at this depth (0-15 cm), the unpolluted area had significantly higher concentrations of total phosphorus and total nitrogen than the regeneration zone and the bare pyrite trail which had similar concentrations. The RZ dominated by Typha had significantly higher concentrations of TP and TN compared to the RZ dominated by Cynodon. The concentrations of NH 4-N were significantly lower in Typha regeneration zone than in CRZ at 0-15 cm depth but similar at 16-30 cm depth. At 16-30 cm depth, concentrations of copper were significantly higher in the regeneration zone followed by the bare pyrite trail and the unpolluted zone. The concentration of lead in the regeneration zone and bare pyrite trail were similar but significantly higher in the unpolluted zone. Concentrations of TP and TN were significantly higher in unpolluted zone, followed by regeneration zone and bare pyrite trail. Storm water and effluent from a constructed wetland enhanced the revegetation process by modifying soil pH, making plant growth nutrients available and by providing a steady supply of moisture necessary for plant growth. T. latifolia and C. dactylon which seem to have tolerance of high concentrations of metals were the dominant species in the regeneration zone. If storm water and effluent supply continues, the aforementioned vegetation will colonize the pyrite trail and will eventually protect QENP and Lake George from metal contamination.

  5. Toxicity of mine drainage to embryonic and larval boreal toads (Bufonidae: Bufo boreas)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, K.R.; Hakanson, D.E.

    1976-05-17

    Chemical analyses and bioassays of mine drainage were made to determine if it could be a factor accounting for the absence of amphibians from Clear Creek County, Colorado. The concentrations of hydrogen ion, iron, copper and zinc in the drainage were all individually much greater than the tolerance levels of premetamorphic toads. The lethality of the drainage was found to be of such a magnitude that it required diluting approximately one thousand times before larvae could survive in it. Boreal toad (Bufo boreas) larvae are more resistant to acidity than most fish but are very similar to other anuran larvaemore » and salmonids in their sensitivity to copper and zinc. (auth)« less

  6. [Dust and gas factors in extraction of polymetallic ore in Arctic conditions and their hygienic assessment].

    PubMed

    Borisenkova, R V; Lutsenko, L A; Skriabin, S Iu; Khristenko, P P

    1996-01-01

    Studies of drilling and blasting method of copper and nickel ores extraction at underground Transpolar mines proved that the highest concentrations of dust appeared during dry drilling of vertical blast holes, work of scraper windlass, fragmentation of out-size blocks, preparation of concrete mixture. Presence of aggressive metals, especially nickel, in the ore dust is a main base for planned thorough investigations of fibrogenic, toxic and carcinogenic effects of copper and nickel ore dust, for more precise assessment of its MAC in the air of workplace. Two-step purification of exhaust gases appearing due to mining diesel machines is not quite efficient, as the concentrations of nitrogen oxides (assessed through nitrogen dioxide) continually exceeded the MAC.

  7. Regional geochemical studies in the Patagonia Mountains, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Chaffee, M.A.; Hill, R.H.; Sutley, S.J.; Watterson, J.R.

    1981-01-01

    The Patagonia Mountains in southern Arizona contain the deeply buried porphyry copper system at Red Mountain as well as a number of other base- and precious-metal mines and prospects. The range contains complex Basin and Range geology with units ranging in age from Precambrian to Holocene. Rock types present include igneous intrusive and extrusive units as well as sedimentary and metamorphic units, most of which have been tectonically disturbed. A total of 264 stream-sediment samples were collected and analyzed for 32 elements. Geochemical maps for Sb, Ag, Pb, Te, B, Mn, Au, Zn, Cu (total), Cu (cold-extractable), and Mo, as well as for Cu (cold-extractable)/Cu (total) and Fe/Mn, are presented. Anomaly patterns for these elements generally occur over the Red Mountain deposit and (or) along a north-northwest trend parallel to the major Harshaw Creek Fault. Much of the entire area sampled contains widespread anomalies for Pb, Te, and Cu; the other elements are only locally anomalous. Various plots of ratios of Cu (cold-extractable) to Cu (total) did not produce any new information not readily apparent on either one of the two copper maps. A plot of ratios of Fe to Mn delineated many areas of pyrite mineralization. Several of these areas may represent the pyritic halos around deeply buried porphyry copper systems. The best ore guide for the Red Mountain porphyry system is the coincidence of positive anomalies of Mo, Pb, and Te and a negative anomaly of Mn. Other areas with anomalies of the same suite of elements are present within the Patagonia Mountains. It is concluded that geochemical sampling, even in a highly contaminated area, can be useful in delineating major geologic features, such as porphyry copper belts and major faults. Multielement geochemical surveys on a regional scale can effectively locate large, deeply buried, zoned mineral systems such as that at Red Mountain. Plots of element ratios, where adequately understood, can provide geochemical information not readily discernible from plots of single elements alone. ?? 1981.

  8. Sustainable Mineral-Intensive Growth in Odisha, India

    NASA Astrophysics Data System (ADS)

    Nayak, S.

    2012-04-01

    The focus of the work is to highlight the present environmental and social impacts of extensive mining on the health of the common people of Odisha. The mining activities have created havoc impact to the environment and social life of the state. Odisha has huge deposits of ores and minerals of chromite, nickel, bauxite, iron, coal, copper, manganese, graphite, vanadium etc. The mining activities have encouraged rapid urbanization and at the same time have altered the topography of these areas and extensively degraded the forest land. For long term sustainable development of the society, it is necessary to take a balanced and integrated approach towards environmental protection and economic advancement. Industries should aim at achieving their goals, through a system of permits based on best available techniques, which gives emphasis on integrated prevention and control of consumption of energy and water as well as pollution of water, air and soil. The rapid industrial growth has brought promising opportunities for economic development and poverty reduction in Odisha but at the same time has caused extensive environmental degradation. The best management practices to deal with environmental and social impacts on mineral-intensive growth are suggested in this work. In addition to lean technology, economic implications of the introduction of environmental technologies for mining activities are also discussed.

  9. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...

  10. 40 CFR 440.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines...

  11. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...

  12. 40 CFR 440.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines...

  13. 40 CFR 440.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines operated to...

  14. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...

  15. 40 CFR 440.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines operated to...

  16. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...

  17. Three Sub-Saharan Minerals: US Interests and Responses.

    DTIC Science & Technology

    1983-03-01

    Minnesota, 50 million ounces; Montana, 225 32 million ounces; and others (including copper porphyries ), 5 million ounces. Recycling. Although platinum and...domestic mines and resources are low-grade 18 ores of less than 35 percent metal content. Arizona , Arkansas, Colorado, Maine and Minnesota have...these manganese deposits also contain nickel, copper and cobalt. Because of the prohibitive research and initial operating costs, plus the risk of

  18. Preliminary Report on the White Canyon Area, San Juan County, Utah

    USGS Publications Warehouse

    Benson, William Edward Barnes; Trites, A.F.; Beroni, E.P.; Feeger, J.A.

    1952-01-01

    The White Canyon area in San Juan County, Utah, contains known deposits of copper-uranium ore and is currently being mapped and studied by the Geological Survey. To date, approximately 75 square miles, or about 20 percent of the area, has been mapped on a scale 1 inch=1 mile. The White Canyon area is underlain by more than 2,000 feet of sedimentary rocks, Carboniferous to Jurassic(?) in age. The area is on the flank of the Elk Ridge anticline, and the strata have a regional dip of 1 deg to 2 deg SW. The Shinarump conglomerate of Late Triassic age is the principal ore-bearing formation. The Shinarump consists of lenticular beds of sandstone, conglomeratic sandstone, clay, and siltstone, and ranges in thickness from a feather edge to as much as 75 feet. Locally the sandstones contain silicified and carbonized wood and fragments of charcoal. These vegetal remains are especially common in channel-fill deposits. Jointing is prominent in the western part of the area, and apparently affects all formations. Adjacent to the joints some of the redbeds in the sequence are bleached. Deposits of copper-uranium minerals have been found in the Moenkopi, Shinarump, and Chinle formations, but the only production of ore has been from the Shinarump conglomerate. The largest concentration of these minerals is in the lower third of the Shinarump, and the deposits seem to be controlled in part by ancient channel fills and in part by fractures. Locally precipitation of the copper and uranium minerals apparently has been aided by charcoal and clays. Visible uranium minerals include both hard and soft pitchblende and secondary hydrosulfates, phosphates, and silicates. In addition, unidentified uranium compounds are present in carbonized wood and charcoal, and in veinlets of hydrocarbons. Base-metal sulfides have been identified in all prospects that extend beyond the oxidized zone. Secondary copper minerals in the oxidized zone include the hydrous sulfates and carbonates, and possibly chrysocolla. The principal gangue minerals are quartz, clay minerals, chlorite, oxides of iron and manganese, alunite, calcite, gypsum, pyrite, allophane, gibbsite, opal, and chalcedony. The origin of the copper-uranium ores has not been determined, but the association of many deposits with fractures, the mineralogic assemblage, and a lead-uranium age determination of 50 to 60 million years for the pitchblende in the Happy Jack mine favor the hypothesis that the ores are of hydrothermal origin and were deposited in early Tertiary time. Criteria believed to be the most useful in prospecting for new deposits are (1) visible uranium minerals; (2) visible copper minerals; (3) alunite; (4) hydrocarbons; and (5) bleaching of the underlying Moenkopi formation.

  19. Assessing Heavy and Trace Metal Contamination in Surface Materials near the Ambaji and Zawar mines in Gujurat and Rajasthan, India using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) Data

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.

    2017-12-01

    An investigation has begun into effects on water quality in waters coming from a pair of mines, and their surrounding drainage basins, in western India. The study areas are the Ambaji and Zawar mines in the Indian states of, respectively, Gujurat and Rajasthan. The Ambaji mine is situated in Precambrian-aged metasediments and metavolcanics of the Delhi Supergroup. Sulfide mineralization at Ambaji is hosted by hydrothermally altered felsic metavolcanics rocks with ferric oxide and oxyhydroxide as well as copper carbonate surface indicator minerals. The Zawar zinc mine is part of the Precambrian Aravalli Supergroup and lies amidst surface exposures of dolomites and quartzites. Hyperspectral visible through short-wave infrared (VSWIR) data from the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was collected in February 2016 over these sites as part of a joint campaign between NASA and the Indian Space Research Organization (ISRO). The AVIRIS-NG data is being used to detect, map, and characterize surface mineralogy in the area. Data discovery is being carried out using a self-organizing map (SOM) methodology with mineral endmembers being mapped initially with a support vector machine (SVM) classifier and a planned more comprehensive mapping using the USGS Material Identification and Characterization Algorithm (MICA). Results of the mineral mapping will be field checked and rock, soil, and water samples will be collected and examined for heavy and trace metal contamination. Past studies have shown changes in the shape of the 2.2 mm Al-OH vibrational overtone feature as well as in blue-red spectral ratios that were directly correlated with the concentration of heavy and trace metals that had been adsorbed into the structure of the affected minerals. Early analysis of the Zawar area scenes indicates the presence of Al-OH clay minerals which might have been affected by the adsorption of trace metals. Scenes from the Ambaji area have more extensive surface exposures of carbonate minerals. Future work will focus more closely on detailed spectral feature mapping of absorption features that have been affected by heavy and trace metal adsorption.

  20. The Alaska Mineral Resource Assessment Program; background information to accompany geologic and mineral-resource maps of the Cordova and Middleton Island quadrangles, southern Alaska

    USGS Publications Warehouse

    Winkler, Gary R.; Plafker, George; Goldfarb, R.J.; Case, J.E.

    1992-01-01

    report summarizes recent results of integrated geological, geochemical, and geophysical field and laboratory studies conducted by the U.S. Geological Survey in the Cordova and Middleton Island 1?x3 ? quadrangles of coastal southern Alaska. Published open-file reports and maps accompanied by descriptive and interpretative texts, tables, diagrams, and pertinent references provide background information for a mineral-resource assessment of the two quadrangles. Mines in the Cordova and Middleton Island quadrangles produced copper and byproduct gold and silver in the first three decades of the 20th century. The quadrangles may contain potentially significant undiscovered resources of precious and base metals (gold, silver, copper, zinc, and lead) in veins and massive sulfide deposits hosted by Cretaceous and Paleogene sedimentary and volcanic rocks. Resources of manganese also may be present in the Paleogene rocks; uranium resources may be present in Eocene granitic rocks; and placer gold may be present in beach sands near the mouth of the Copper River, in alluvial sands within the canyons of the Copper River, and in smaller alluvial deposits underlain by rocks of the Valdez Group. Significant coal resources are present in the Bering River area, but difficult access and structural complexities have discouraged development. Investigation of numerous oil and gas seeps near Katalla in the eastern part of the area led to the discovery of a small, shallow field from which oil was produced between 1902 and 1933. The field has been inactive since, and subsequent exploration and drilling onshore near Katalla in the 1960's and offshore near Middleton Island on the outer continental shelf in the 1970's and 1980's was not successful.

  1. WEST AND EAST PALISADES ROADLESS AREAS, IDAHO AND WYOMING.

    USGS Publications Warehouse

    Oriel, Steven S.; Benham, John R.

    1984-01-01

    Studies of the West and East Palisades Roadless Areas, which lie within the Idaho-Wyoming thrust belt, document structures, reservoir formations, source beds, and thermal maturities comparable to those in producing oil and gas field farther south in the belt. Therefore, the areas are highly favorable for the occurrence of oil and gas. Phosphate beds of appropriate grade within the roadless areas are thinner and less accessible than those being mined from higher thrust sheets to the southwest; however, they contain 98 million tons of inferred phosphate rock resources in areas of substantiated phosphate resource potential. Sparsely distributed thin coal seams occur in the roadless areas. Although moderately pure limestone is present, it is available from other sources closer to markets. Geochemical anomalies from stream-sediment and rock samples for silver, copper, molydenum, and lead occur in the roadless areas but they offer little promise for the occurrence of metallic mineral resources. A possible geothermal resource is unproven, despite thermal phenomena at nearby sites.

  2. Predicting toxic effects of copper on aquatic biota in mineralized areas by using the Biotic Ligand Model

    USGS Publications Warehouse

    Smith, Kathleen S.; Ranville, James F.; Adams, M.; Choate, LaDonna M.; Church, Stan E.; Fey, David L.; Wanty, Richard B.; Crock, James G.

    2006-01-01

    The chemical speciation of metals influences their biological effects. The Biotic Ligand Model (BLM) is a computational approach to predict chemical speciation and acute toxicological effects of metals on aquatic biota. Recently, the U.S. Environmental Protection Agency incorporated the BLM into their regulatory water-quality criteria for copper. Results from three different laboratory copper toxicity tests were compared with BLM predictions for simulated test-waters. This was done to evaluate the ability of the BLM to accurately predict the effects of hardness and concentrations of dissolved organic carbon (DOC) and iron on aquatic toxicity. In addition, we evaluated whether the BLM and the three toxicity tests provide consistent results. Comparison of BLM predictions with two types of Ceriodaphnia dubia toxicity tests shows that there is fairly good agreement between predicted LC50 values computed by the BLM and LC50 values determined from the two toxicity tests. Specifically, the effect of increasing calcium concentration (and hardness) on copper toxicity appears to be minimal. Also, there is fairly good agreement between the BLM and the two toxicity tests for test solutions containing elevated DOC, for which the LC50 is 3-to-5 times greater (less toxic) than the LC50 for the lower-DOC test water. This illustrates the protective effects of DOC on copper toxicity and demonstrates the ability of the BLM to predict these protective effects. In contrast, for test solutions with added iron there is a decrease in LC50 values (increase in toxicity) in results from the two C. dubia toxicity tests, and the agreement between BLM LC50 predictions and results from these toxicity tests is poor. The inability of the BLM to account for competitive iron binding to DOC or DOC fractionation may be a significant shortcoming of the BLM for predicting site- specific water-quality criteria in streams affected by iron-rich acidic drainage in mined and mineralized areas.

  3. A multitrophic approach to monitoring the effects of metal mining in otherwise pristine and ecologically sensitive rivers in northern Canada.

    PubMed

    Spencer, Paula; Bowman, Michelle F; Dubé, Monique G

    2008-07-01

    It is not known if current chemical and biological monitoring methods are appropriate for assessing the impacts of growing industrial development on ecologically sensitive northern waters. We used a multitrophic level approach to evaluate current monitoring methods and to determine whether metal-mining activities had affected 2 otherwise pristine rivers that flow into the South Nahanni River, Northwest Territories, a World Heritage Site. We compared upstream reference conditions in the rivers to sites downstream and further downstream of mines. The endpoints we evaluated included concentrations of metals in river water, sediments, and liver and flesh of slimy sculpin (Cottus cognatus); benthic algal and macroinvertebrate abundance, richness, diversity, and community composition; and various slimy sculpin measures, our sentinel forage fish species. Elevated concentrations of copper and iron in liver tissue of sculpin from the Flat River were associated with high concentrations of mine-derived iron in river water and copper in sediments that were above national guidelines. In addition, sites downstream of the mine on the Flat River had increased algal abundances and altered benthic macroinvertebrate communities, whereas the sites downstream of the mine on Prairie Creek had increased benthic macroinvertebrate taxa richness and improved sculpin condition. Biological differences in both rivers were consistent with mild enrichment of the rivers downstream of current and historical mining activity. We recommend that monitoring in these northern rivers focus on indicators in epilithon and benthic macroinvertebrate communities due to their responsiveness and as alternatives to lethal fish sampling in habitats with low fish abundance. We also recommend monitoring of metal burdens in periphyton and benthic invertebrates for assessment of exposure to mine effluent and causal association. Although the effects of mining activities on riverine biota currently are limited, our results show that there is potential for effects to occur with proposed growth in mining activities.

  4. Book review: Hollowed ground—Copper mining and community building on Lake Superior, 1840s–1990s

    USGS Publications Warehouse

    Schulz, Klaus J.

    2010-01-01

    In 1843, six years before the Forty-niners headed west for the goldfields of California, the United States’ first great mineral rush began to a land that was, as Patrick Henry told Congress, “beyond the most distant wilderness and remote as the moon.” He was referring to the Keweenaw Peninsula of northern Michigan. This rush was not for gold or silver, but for copper. And not just any copper, but native copper, so pure it required little refining before use. The early horde of fortune-seekers came with visions of finding mountains of solid copper, spurred on by stories of large masses of “float copper” that included the famous Ontonagon Boulder, a large mass of native copper originally found lying 32 km up the steep and rugged valley of the Ontonagon River (and now gathering dust in the Smithsonian Museum).

  5. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  6. Sediment radioisotope dating across a stratigraphic discontinuity in a mining-impacted lake.

    PubMed

    McDonald, C P; Urban, N R

    2007-01-01

    Application of radioisotope sediment dating models to lakes subjected to large anthropogenic sediment inputs can be problematic. As a result of copper mining activities, Torch Lake received large volumes of sediment, the characteristics of which were dramatically different from those of the native sediment. Commonly used dating models (CIC-CSR, CRS) were applied to Torch Lake, but assumptions of these methods are violated, rendering sediment geochronologies inaccurate. A modification was made to the CRS model, utilizing a distinct horizon separating mining from post-mining sediment to differentiate between two focusing regimes. (210)Pb inventories in post-mining sediment were adjusted to correspond to those in mining-era sediment, and a sediment geochronology was established and verified using independent markers in (137)Cs accumulation profiles and core X-rays.

  7. Distribution of chemical elements in attic dust as reflection of their geogenic and anthropogenic sources in the vicinity of the copper mine and flotation plant.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Sajn, Robert; Bačeva, Katerina

    2011-08-01

    The main aim of this article was to assess the atmospheric pollution with heavy metals due to copper mining Bučim near Radoviš, the Republic of Macedonia. The open pit and mine waste and flotation tailings are continually exposed to open air, which leads to winds carrying the fine particles into the atmosphere. Samples of attic dust were examined as historical archives of mine emissions, with the aim of elucidating the pathways of pollution. Dust was collected from the attics of 29 houses, built between 1920 and 1970. Nineteen elements (Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Li, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were analyzed by atomic emission spectrometry with inductively coupled plasma. The obtained values of the investigated elements in attic dust samples were statistically processed using nonparametric and parametric analysis. Factor analysis revealed three factors governing the source of individual chemical elements. Two of them grouping Ca, Li, Mg, Mn, and Sr (Factor 1) and Co, Cr, and Ni (Factor 2) can be characterized as geogenic. The third factor grouping As, Cu, and Pb is anthropogenic and mirrors dust fallout from mining operation and from flotation tailings. Maps of areal deposition were prepared for this group of elements, from which correlation of these anthropogenic born elements was confirmed.

  8. Processing precious metals in a top-blown rotary converter

    NASA Astrophysics Data System (ADS)

    Whellock, John G.; Matousek, Jan W.

    1990-09-01

    Copper-nickel/platinum-palladium flotation concentrates produced by the Stillwater Mining Company were smelted and refined in an integrated pilot plant consisting of a submerged-arc electric furnace and top-blown rotary converter. The conversion of high-iron electric furnace mattes was achieved with apparent oxygen efficiencies in excess of 100 percent. Platinum and palladium recoveries averaged 99 percent, and copper and nickel recoveries were 94 percent.

  9. Environmental geochemistry of abandoned flotation tailing reservior from the Tonglvshan Fe-Cu sulfide mine in Daye, Central China.

    PubMed

    Guo, Y; Bao, Z Y; Deng, Y M; Ma, Z Z; Yan, S

    2011-07-01

    This study investigated metals of tailings from Tonglvshan mine in Daye and assessed the effect of metal contamination in water and sediment near the tailing reservoir. The concentration of copper, lead, zinc, cadmium, chromium and nickel was measured in deposit samples taken from a profile in an abandoned flotation tailing reservoir, as well as in water and sediment samples near the reservoir. The results of this study indicate that copper concentration ranges from 780 to 4390 mg/kg, 2-10 times higher than the limit values in soil, while the contents of other metals are below the limit values. Metal levels in water and sediments are high and varied widely in different sampling sites. The mean concentrations of copper, lead, zinc, cadmium, chromium and nickel in waters are 27.76, 2.28, 8.20, 0.12, 5.30 and 3.04 mg/L, while those in sediments are 557.65, 96.95, 285.20, 0.92, 94.30 and 4.75 mg/kg, respectively. All of the results indicate that the environment near the tailing reservoir is polluted to some extent by some kinds of metals, especially by copper, lead, zinc and cadmium, which may be caused not only by some discharge sources of metals, but also by life garbage and sewage.

  10. Hygroscopic and Chemical Properties of Aerosols collected near a Copper Smelter: Implications for Public and Environmental Health

    PubMed Central

    Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J.; Sáez, A. Eduardo; Betterton, Eric A.

    2012-01-01

    Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples collected near an active copper smelter were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g. arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18–0.55 µm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10–0.32 µm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles. PMID:22852879

  11. Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana

    USGS Publications Warehouse

    McDougal, Robert R.; Smith, Bruce D.

    2000-01-01

    The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of ground water flow, and with water quality data from monitoring wells in and around the tailings. The electrical geophysical data suggests there has been vertical migration of high dissolved solids. A DC sounding made on a nearby granite outcrop to the north of the mine showed that the shallow conductivity is on the order of 5 millisiemens/m. Granite underlying the mine tailings, with similar electrical properties as the outcropping area, may be more than 30 meters deep.

  12. Impacts of mining on water and soil.

    PubMed

    Warhate, S R; Yenkie, M K N; Pokale, W K

    2007-04-01

    Out of seven coal mines situated in Wardha River Valley located at Wani (Dist. Yavatmal), five open caste coal mines are run by Western Coal Field Ltd, India. The results of 25 water and 19 soil samples (including one over burden) from Nilapur, Bramhani, Kolera, Gowari, Pimpari and Aheri for their pH, TDS, hardness, alkalinity, fluoride, chloride, nitrite, nitrate, phosphate, sulfate, cadmium, lead, zinc, copper, nickel, arsenic, manganese, sodium and potassium are studied in the present work. Statistical analysis and graphical presentation of the results are discussed in this paper.

  13. The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resource maps of the Ajo and Lukeville 1 degree x 2 degrees quadrangles, Arizona

    USGS Publications Warehouse

    Gray, Floyd; Tosdal, R.M.; Peterson, J.A.; Cox, D.P.; Miller, R.J.; Klein, D.P.; Theobald, P.K.; Haxel, G.B.; Grubensky, M.J.; Raines, G.L.; Barton, H.N.; Singer, D.A.; Eppinger, R.G.

    1992-01-01

    Encompassing about 21,000 km 2 in southwestern Arizona, the Ajo and Lukeville 1 ? by 2 ? quadrangles have been the subject of mineral resource investigations utilizing field and laboratory studies in the disciplines of geology, geochemistry, geophysics, and Landsat imagery. The results of these studies are published as a folio of maps, figures, and tables, with accompanying discussions. Past mineral production has been limited to copper from the Ajo Mining District. In addition to copper, the quadrangles contain potentially significant resources of gold and silver; a few other commodities, including molybdenum and evaporites, may also exist in the area as appreciable resources. This circular provides background information on the mineral deposits and on the investigations and integrates the information presented in the folio. The bibliography cites references to the geology, geochemistry, geophysics, and mineral deposits of the two quadrangles.

  14. Progress in Dark Sky Protection in Southern Arizona

    NASA Astrophysics Data System (ADS)

    Green, Richard F.; Allen, L.; Alvarez Del Castillo, E. M.; Brocious, D. K.; Corbally, C. J.; Davis, D. R.; Falco, E. E.; Gabor, P.; Hall, J. C.; Jannuzi, B.; Larson, S. M.; Mighell, K. J.; Nance, C.; Shankland, P. D.; Walker, C. E.; Williams, G.; Zaritsky, D. F.

    2014-01-01

    Arizona has many observatories dedicated to scientific research and a rapidly growing population. Continuous interaction with governmental entities and education of the public are required to take advantage of the good intentions of lighting control ordinances in place around the state. We give several recent examples of active engagement of observatories: * Interaction of Mt. Graham International Observatory with the State prison and major copper mine. * Interaction of Smithsonian Astrophysical Observatory, acting on behalf of MMT Observatory and Steward Observatory, with the US Forest Service on the prospects of developing the Rosemont Copper Mine * Defense of the Outdoor Lighting and Sign Codes in Pima County and the City of Tucson * Coordinated observatory approach to statewide issues, including the establishment of radial zones of protection from LED billboards around observatory sites.

  15. Prosopis pubescens (Screw bean mesquite) seedlings are hyper accumulators of copper

    PubMed Central

    Zappala, Marian N.; Ellzey, Joanne T.; Bader, Julia; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge

    2013-01-01

    Due to health reasons, toxic metals must be removed from soils contaminated by mine tailings and smelter activities. The phytoremediation potential of Prosopis pubescens (screw bean mesquite) was examined by use of inductively-coupled plasma spectroscopy (ICP-OES). Transmission electron microscopy (TEM) was used to observe ultrastructural changes of parenchymal cells of leaves in the presence of copper. Elemental analysis was utilized to localize copper within leaves. A 600 ppm copper sulfate exposure to seedlings for 24 days resulted in 31,000 ppm copper in roots, 17,000 ppm in stems, 11,000 in cotyledons and 20 ppm in the true leaves. In order for a plant to be considered a hyper accumulator, the plant must accumulate a leaf: root ratio of <1. Screw bean mesquite exposed to copper had a leaf: root ratios of 0.355 when cotyledons were included. We showed that Prosopis pubescens grown in soil is a hyper accumulator of copper. We recommend that this plant should be field tested. PMID:23612918

  16. Gamma spectrometric and magnetic interpretation of Cabaçal copper deposit in Mato Grosso (Brazil): Implications for hydrothermal fluids remobilization

    NASA Astrophysics Data System (ADS)

    Ribeiro, Vanessa Biondo; Mantovani, Marta Silvia Maria

    2016-12-01

    The Cabaçal Au-Zn-Cu Deposit, Mato Grosso, Brazil, was explored between 1987 and 1991, when 869,279 tons of ore rich in Au and Cu have been extracted. The hydrothermal alteration in the Cabaçal mine suggests a volcanogenic genetic model in which hydrothermal centers generated sericitization, chloritization and silicification alterations at different stages. The hydrothermal alteration affects the radioelements in different ways, generating a characteristic gamma spectrometric signature for the affected area. The eTh/K ratio map evidenced that the hydrothermalized area extends beyond south limits of the Cabaçal gabbro dykes formation, which host Cabaçal and Santa Helena mines. Magnetic data over the region show the same behavior for this formation, indicating that the magnetic source extends in subsurface. This behavior was recovered by the 3D model inverted for the region, which recovered a positive apparent magnetic contrast associated with this body, with an increasing deepness to south. It is possible that the south subsurface portion of the magnetic source may contain economic concentrations of Au remobilized by hydrothermal fluids. However, to confirm this hypothesis it is necessary to develop geochemical and borehole analysis of the area.

  17. Heavy metal concentrations in growth bands of corals: a record of mine tailings input through time (Marinduque Island, Philippines).

    PubMed

    David, C P

    2003-02-01

    The impact of copper mining along the western coast of Marinduque Island was investigated. Historic input of mine tailings in the coastal region was traced through variations in heavy metal concentrations in Porites growth bands. Five samples were collected from three reefs showing different modes and extent of exposure to mine tailings. Baseline metal concentrations in Porites were established using a coral from a reef that is least exposed to contamination. The lowest mean values of Cu (0.7 microg/g), Mn (0.8 microg/g), and Zn (1.0 microg/g) were calculated from annual skeletal bands representing five years of growth. Conversely, a sample from a reef adjacent to an old tailings stockpile displayed consistently elevated metal values in its growth bands. Mean Cu, Mn, and Zn values for this coral are 3.1, 1.0 and 1.8 microg/g, respectively. Corals from the Ihatub reef showed a distinct metal concentration peak in their 1996 growth ring. These peaks coincide with a documented release of mine tailings in the Ihatub area during that year. Other metal peaks observed in coral samples correlate with years of high precipitation which may have resulted in increased sediment transport in the region. The metals are presumed to be mostly bound to the aragonite lattice of the coral skeleton, however, contribution from incorporated detrital materials to the observed metal signal (mainly of Fe) could not be easily discounted.

  18. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA

    PubMed Central

    Haque, Nazmul; Peralta-Videa, Jose R.; Jones, Gary L.; Gill, Thomas E.; Gardea-Torresdey, Jorge L.

    2008-01-01

    The metal concentrations in a copper mine tailings and Desert broom (Baccharis sarothroides Gray) plants were investigated. The metal concentrations in plants, soil cover, and tailings were determined using ICP-OES. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in tailings was 526.4, 207.4, 89.1, 84.5, 51.7, 49.6, 39.7, and 35.6 mg kg−1, respectively. The concentration of all elements in soil cover was 10~15% higher than that of the tailings, except for molybdenum. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in roots was 818.3, 151.9, 73.9, 57.1, 40.1, 44.6, 96.8, and 26.7 mg kg−1 and 1214.1, 107.3, 105.8, 105.5, 55.2, 36.9, 30.9, and 10.9 mg kg−1 for shoots, respectively. Considering the translocation factor, enrichment coefficient, and the accumulation factor, desert broom could be a potential hyperaccumulator of Cu, Pb, Cr, Zn, As, and Ni. PMID:17964035

  19. Heavy metals in the atmosphere coming from a copper smelter in Chile

    NASA Astrophysics Data System (ADS)

    Romo-Kröger, C. M.; Morales, J. R.; Dinator, M. I.; Llona, F.; Eaton, L. C.

    The Chilean mine El Teniente is the world's largest underground copper mine. It operates a giant smelter at Caletones (34° 7' S, 70° 27' W) and we have found it is the major source of air contamination in the region. In August 1991 a special circumstance occurred due to a labor strike, with total cessation of activities. A time series analysis of airborne particles collected at a site about 13 km from the smelter was performed in a period including the strike. The PIXE method and other techniques were used to analyse fine (<2.5 μm) and coarse (2.5-15 μm) particles on Nuclepore filters. S, Cu, Zn and As were quite enriched in normal working periods relative to the strike period. Elemental characterization of soil samples by radioactive source analysis demonstrated that this group of elements did not come from airborne soil dust. Cluster analyses of the interelement correlation matrices, resulting from PIXE data, showed one group (Si, K, Ca, Fe) with main origin in soil and another group (S, Cu, Zn, As) coming from the copper smelter.

  20. Bedrock geology and mineral resources of the Knoxville 1° x 2° quadrangle, Tennessee, North Carolina, and South Carolina

    USGS Publications Warehouse

    Robinson, Gilpin R.; Lesure, Frank G.; Marlowe, J. I.; Foley, Nora K.; Clark, S.H.

    2004-01-01

    Vermiculite produced from a large deposit near Tigerville, S.C-, in the Inner Piedmont. Deposit worked out and mine backfilled. Smaller deposits associated with ultramafic rocks in the east flank of the Blue Ridge are now uneconomic and have not been worked in the past 20 years. C. Metals: Copper in three deposits, the Fontana and Hazel Creek mines in the Great Smoky Mountains Abstract Figure 1. Location of the Knoxville 1ºx2º quadrangle, with state and county boundaries National Park in the Central Blue Ridge, and the Cullowhee mine in the east flank of the Blue Ridge. D. Organic fuels: The rocks of the quadrangle contain no coal and probably lie outside the maximum range in thermal maturity permitting the survival of oil. The rocks in the Valley and Ridge and for a short distance eastward below the west flank of the Blue Ridge probably lie within a zone of thermal maturity permitting the survival of natural gas. Consequently the western part of the quadrangle is an area of high risk for hydrocarbon exploration. No exploration drilling has been done in this belt.

  1. Biodiversity of freshwater diatom communities during 1000 years of metal mining, land use, and climate change in central Sweden.

    PubMed

    De Laender, F; Verschuren, D; Bindler, R; Thas, O; Janssen, C R

    2012-08-21

    We subjected a unique set of high-quality paleoecological data to statistical modeling to examine if the biological richness and evenness of freshwater diatom communities in the Falun area, a historical copper (Cu) mining region in central Sweden, was negatively influenced by 1000 years of metal exposure. Contrary to ecotoxicological predictions, we found no negative relation between biodiversity and the sedimentary concentrations of eight metals. Strikingly, our analysis listed metals (Co, Fe, Cu, Zn, Cd, Pb) or the fractional land cover of cultivated crops, meadow, and herbs indicating land disturbance as potentially promoting biodiversity. However, correlation between metal- and land-cover trends prevented concluding which of these two covariate types positively affected biodiversity. Because historical aqueous metal concentrations--inferred from solid-water partitioning--approached experimental toxicity thresholds for freshwater algae, positive effects of metal mining on biodiversity are unlikely. Instead, the positive relationship between biodiversity and historical land-cover change can be explained by the increasing proportion of opportunistic species when anthropogenic disturbance intensifies. Our analysis illustrates that focusing on the direct toxic effects of metals alone may yield inaccurate environmental assessments on time scales relevant for biodiversity conservation.

  2. Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia

    NASA Astrophysics Data System (ADS)

    Battogtokh, B.; Lee, J.; Woo, N. C.; Nyamjav, A.

    2013-12-01

    As one of the largest copper-molybdenum (Cu-Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978, and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment. Sampling locations around the Erdenet Mine

  3. Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Donelick, R. A.; Donelick, M. B.

    2016-12-01

    We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as coal combustion products (fly ash, bottom ash, boiler slag, other) that may be put to beneficial use as part of the encapsulating structure; however, coal strip mines have lower volume to surface ratios than mine pits increasing the potential need to use geomembranes.

  4. Quantifying uranium transport rates and storage of fluvially eroded mine tailings from a historic mine site in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.

    2015-12-01

    The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.

  5. Analytical Results for 35 Mine-Waste Tailings Cores and Six Bed-Sediment Samples, and An Estimate of the Volume of Contaminated Material at Buckeye Meadow on Upper Basin Creek, Northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern) end of the tailings area, and heavily impacted at the lower (western) end of the area and downstream. The metals are mostly contained in the 2M HCl-1% H2O2 leachable phase, which are the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.

  6. Role of Mineral Deposits in Global Geochemical Cycles

    NASA Astrophysics Data System (ADS)

    Kesler, S.; Wilkinson, B.

    2009-12-01

    Mineral deposits represent the most extreme degree of natural concentration for most elements and their formation and destruction are important parts of global geochemical cycles. Quantitative estimates of the role that mineral deposits play in these geochemical cycles has been limited, however, by the lack of information on actual amounts of elements that are concentrated in these deposits, and their rates of formation and destruction at geologic time scales. Recent use of a “tectonic diffusion” model for porphyry copper deposits, the most important source of world copper, in conjunction with estimates of their copper content (Kesler and Wilkinson, 2008), allows an assessment of the role of copper deposits in Earth’s global copper cycles. These results indicate that ~4.5*10^8 Gg of Cu have been concentrated in porphyry copper deposits through Phanerozoic time, that deposits containing ~2.8*10^8 Gg of Cu have been removed by uplift and erosion over the same time period, and that deposits containing ~1.7*10^8 Gg remain in Earth’s crust. If styles of formation and destruction of other copper-bearing mineral deposits are similar, then all crustal deposits contain ~3*10^8 Gg of copper. This constitutes about 0.03% of the copper that resides in crustal rocks and provides a first-ever estimate of the rate at which natural geochemical cycles produce the extreme concentrations that constitute mineral deposits. Another ~8*10^8 Gg of copper have been destroyed during the uplift and erosion of mineral deposits over Phanerozoic time, a flux amounting to an annual contribution of about 1.5 Gg of copper to the near-surface environment. This amount is similar in magnitude to copper released by volcanic outgassing, but only ~2.5% of the 56 Gg of copper estimated to be released annually by weathering of average crustal rocks (Rauch and Graedel, 2007). The amount of copper removed from mineral deposits by mining, 1.1*10^4 Gg/year, is much larger than any natural contributions to the near-surface global copper cycle and, for porphyry copper deposits, is approximately 13,000 times larger than the rate at which Earth concentrates copper in them. Preliminary estimates for mineral deposits containing gold yield similar results, suggesting that these relations apply to most metals that are concentrated into hydrothermal mineral deposits. These comparisons indicate that erosion of mineral deposits is a small but important contributor to the natural near-surface flux of metals. Anthropogenic removal and dispersal of metals into the surface environment (mining) is several orders of magnitude larger, and is likely to result in depletion of mineral deposits from the upper few kilometers of Earth’s crust within the next few thousand years.

  7. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on Tuesday or Thursday. There were 119 students in the test group, 522 students in the Shelton control group and 556 students in the McBride control group. Both qualitative data and quantitative data were collected. A t-test was used to test significance.

  8. Geology and geochemistry of the Mammoth breccia pipe, Copper Creek mining district, southeastern Arizona: Evidence for a magmatic-hydrothermal origin

    USGS Publications Warehouse

    Anderson, E.D.; Atkinson, William W.; Marsh, T.; Iriondo, A.

    2009-01-01

    The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead-silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/ 39Ar dates suggest a minimum age of 61.5??0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0??0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1-2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4-35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375??C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469??25??C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2??? to 13.4??? and -60??? to -39???, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe. ?? Springer-Verlag 2008.

  9. Geochemical, aeromagnetic, and generalized geologic maps showing distribution and abundance of antimony and tungsten, Golconda and Iron Point quadrangles, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, R.L.; Marsh, S.P.

    1971-01-01

    Detailed geologic and geochemical studies of the four 7 1/2-minute quadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun during the 1969 summer field season. The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals. Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks , base-metal and barite deposits in Paleozoic sedimentary rocks, and copper molydbenum in granodiorite plutons of Cretaceous age occur in the Edna Mountain area. None of these deposits have been of much economic significance, although tungsten was mined from the hot-spring deposits during World War II. 

  10. BASIC STUDY ON APPLICABILITY OF MODIS DATA FOR VEGETATION MONITORING IN ASHIO AREA

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirokazu; Todate, Hikaru; Tanaka, Hiroshi; Ota, Tametomo

    Ashio Basin was once lushly green until 1800's. However, the forest had been almost lost by copper mine de velopment and forest fire by 1956. From that time on, afforestation has been carried out for over 50 years, and the vegetation is being recovered. Therefore, it is very important to estimate the past afforestation activities, and to propose future directions. There exists an earlier research on vegetation monitoring in Ashio area, but it was performed more than 15 years ago, and used expensive commercial GIS and LANDSAT data. The present study examined a sustainable and inexpensive system with using preferably free data and software. It is shown that, by comparison with aerial photographs and digital national land information, vegetation index (NDVI) by MODIS data, available to download free, are easy to obtain and manipulate, and applicable for vegetation monitoring in Ashio area.

  11. Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents.

    PubMed

    Kobayashi, Naomasa; Okamura, Hideo

    2005-12-01

    Interactive toxic effects between heavy metals were investigated using a sea urchin (Anthocidaris crassispina) bioassay. An effluent from an abandoned mine showed significant inhibitory effects on embryo development as well as producing specific malformations. The effects on the embryos were reproduced by synthetic polluted seawater consisting of eight metals (manganese, lead, cadmium, nickel, zinc, chromium, iron, and copper) at the concentrations detected in the mine effluent. This indicated that the heavy metals were responsible for the effects observed. Five heavy metals were ranked in decreasing order of toxicity as follows: Cu>Zn>Pb>Fe>Mn. Among these, zinc and manganese could cause malformation of the embryos. From bioassay results using 27 combinations of heavy metals, 16 combinations including zinc could produce specific malformations, such as radialized, exo-gastrulal, and spaceship Apollo-like gastrulal embryos. Zinc was one of the elements responsible for causing malformations and its effects were intensified by the presence of the other metals, such as manganese, lead, iron, and copper.

  12. Estimated water requirements for the conventional flotation of copper ores

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water used by a conventional copper flotation plant. Water is required for many activities at a mine-mill site, including ore production and beneficiation, dust and fire suppression, drinking and sanitation, and minesite reclamation. The water required to operate a flotation plant may outweigh all of the other uses of water at a mine site, [however,] and the need to maintain a water balance is critical for the plant to operate efficiently. Process water may be irretrievably lost or not immediately available for reuse in the beneficiation plant because it has been used in the production of backfill slurry from tailings to provide underground mine support; because it has been entrapped in the tailings stored in the TSF, evaporated from the TSF, or leaked from pipes and (or) the TSF; and because it has been retained as moisture in the concentrate. Water retained in the interstices of the tailings and the evaporation of water from the surface of the TSF are the two most significant contributors to water loss at a conventional flotation circuit facility.

  13. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    USGS Publications Warehouse

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  14. 75 FR 66753 - Agency Information Collection Activities; Proposed Collection; Comment Request; Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    .... 115112 Repellent and fertilizer applications. 211111 Natural gas plant. 211111 Oil and gas production. 211112 Fractionation of natural gas liquids. 212234 Copper mining and processing. [[Page 66755

  15. Optical luminosity of the transient luminous phenomena in Hessdalen, Norway

    NASA Astrophysics Data System (ADS)

    Gitle Hauge, Bjørn; Kjøniksen, Anna-Lena; Petter Strand, Erling

    2017-04-01

    Transient luminous phenomena has been observed in the low atmosphere over Hessdalen valley for several decades, first report is claimed to be 200 years old. The area is scattered with old copper, zinc, sulphur and iron mines. The river Hesja divides the valley, running south to north. The river descends from 800 m altitude to 600m. In the middle of the valley, an old copper and sulphur mine feeds the river with its acidic sulphur pollution. Eyewitnesses have reported lights emerging from the river, but most reports are of lights suddenly emerging in low altitudes over the valley, 1000m - 2000m altitude. Common colours are white, yellow, orange and blue. Green is absent. The optical spectrum of the white lights has been obtained several times, indicating a continuous spectrum. The luminosity of the Hessdalen lights has been debated, some speculating that the phenomenońs radiant power reaches up to 1MW. A more moderate calculation done by Teodorani in 2004 suggests 19KW. The cause of the huge difference is due to uncertainty in establishing correct distance to the phenomenon. Recent discoveries done by this team, indicates that the radiant power is usually much lower. For the first time in Hessdalen, pictures with optical spectrums was obtained at a distance not more than 500m. Two similar observations were done from the same position, indicating a possible birthplace. Atmospheric data and spectrum analysis was also coinciding. Data from this short distance observation will be presented.

  16. Complex source mechanisms of mining-induced seismic events - implications for surface effects

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, B.; Cesca, S.; Lasocki, S.; Rudzinski, L.; Lizurek, L.; Wiejacz, P.; Urban, P.; kozlowska, M.

    2012-04-01

    The seismicity of Legnica-Głogów Copper District (LGCD) is induced by mining activities in three mines: Lubin, Rudna and Polkowice-Sieroszowice. Ground motion caused by strong tremors might affect local infrastructure. "Żelazny Most" tailings pond, the biggest structure of this type in Europe, is here under special concern. Due to surface objects protection, Rudna Mine has been running ground motion monitoring for several years. From June 2010 to June 2011 unusually strong and extensive surface impact has been observed for 6 mining tremors induced in one of Rudna mining sections. The observed peak ground acceleration (PGA) for both horizontal and vertical component were in or even beyond 99% confidence interval for prediction. The aim of this paper is analyze the reason of such unusual ground motion. On the basis of registrations from Rudna Mine mining seismological network and records from Polish Seismological Network held by the Institute of Geophysics Polish Academy of Sciences (IGF PAN), the source mechanisms of these 6 tremors were calculated using a time domain moment tensor inversion. Furthermore, a kinematic analysis of the seismic source was performed, in order to determine the rupture planes orientations and rupture directions. These results showed that in case of the investigated tremors, point source models and shear fault mechanisms, which are most often assumed in mining seismology, are invalid. All analyzed events indicate extended sources with non-shear mechanism. The rapture planes have small dip angles and the rupture starts at the tremors hypocenter and propagates in the direction opposite to the plane dip. The tensional component plays here also big role. These source mechanisms well explain such observed strong ground motion, and calculated synthetic PGA values well correlates with observed ones. The relationship between mining tremors were also under investigation. All subsequent tremors occurred in the area of increased stress due to stress transfer caused by previous tremors. This indicates that preceding tremors contributed to the occurrence of later ones in the area. This work was prepared partially within the framework of the research projects No. N N307234937 and 3935/B/T02/2010/39 financed by the Ministry of Education and Science of Poland during the period 2009 to 2011 and 2010 to 2012, respectively, and the project MINE, financed by the German Ministry of Education and Research (BMBF), R&D Programme Geotechnologien, Grant of project BMBF03G0737.

  17. Geologic mapping and mineral resource inventory by ERTS-1 satellite data in South America

    NASA Technical Reports Server (NTRS)

    Carter, W. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 data clearly provide significant contribution of new information on the remote areas of South America. Salar deposits have been measured and compared with those shown on World Navigation Charts; remarkable differences have been found in shape, size, number, and distribution. Repetitive coverage should enable us to develop an index of seasonal and annual environmental trends that can be compared with those of the Northern Hemisphere. New lineations, many of which are probably faults, have been found in Venezuela, Bolivia, and northern Argentina. Circular features, some of volcanic origin, have been recognized that are not shown on existing maps. The courses of several rivers have been revised and our Venezuelan counterparts report that a major new river has been recognized and charted. Large mining operations, such as the open pit copper mine of Chuquicamata in northern Chile, are recognizable and can be studied in their regional context.

  18. Reconnaissance for uraniferous rocks in northwestern Colorado, southwestern Wyoming, and northeastern Utah

    USGS Publications Warehouse

    Beroni, E.P.; McKeown, F.A.

    1952-01-01

    Previous discoveries and studies of radioactive lignites of Tertiary age in North Dakota, South Dakota, Montana, and Wyoming led the Geological Survey in 1950 to do reconnaissance in the Green River and Uinta Basin of Wyoming and Utah, where similar lignites were believed to be present. Because of the common association of uranium with copper deposits and the presence of such deposits in the Uinta Basin, several areas containing copper-uranium minerals were also examined. No deposits commercially exploitable under present conditions were found. Samples of coal from the Bear River formation at Sage, Wyo., assayed 0.004 to 0.013 percent uranium in the ash; in the old Uteland copper mine in Uinta County, Utah, 0.007 to 0.017 percent uranium; in a freshwater limestone, Duchesne County, Utah, as much as 0.019 percent uranium; and in the Mesaverde formation at the Snow and Bonniebell claims near Jensen, Uintah County, Utah, 0.003 to 0.090 percent uranium. Maps were made and samples were taken at the Skull Creek carnotite deposits in Moffat County, Colo. (0.006 to 0.16 percent uranium); at the Fair-U claims in Routt County, Colo. (0.002 to 0.040 percent uranium); and at the Lucky Strike claims near Kremmling in Grand County, Colo. (0.006 to 0.018 percent uranium).

  19. Optimal decision making modeling for copper-matte Peirce-Smith converting process by means of data mining

    NASA Astrophysics Data System (ADS)

    Song, Yanpo; Peng, Xiaoqi; Tang, Ying; Hu, Zhikun

    2013-07-01

    To improve the operation level of copper converter, the approach to optimal decision making modeling for coppermatte converting process based on data mining is studied: in view of the characteristics of the process data, such as containing noise, small sample size and so on, a new robust improved ANN (artificial neural network) modeling method is proposed; taking into account the application purpose of decision making model, three new evaluation indexes named support, confidence and relative confidence are proposed; using real production data and the methods mentioned above, optimal decision making model for blowing time of S1 period (the 1st slag producing period) are developed. Simulation results show that this model can significantly improve the converting quality of S1 period, increase the optimal probability from about 70% to about 85%.

  20. Porphyry copper deposit model: Chapter B in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Ayuso, Robert A.; Barton, Mark D.; Blakely, Richard J.; Bodnar, Robert J.; Dilles, John H.; Gray, Floyd; Graybeal, Fred T.; Mars, John L.; McPhee, Darcy K.; Seal, Robert R.; Taylor, Ryan D.; Vikre, Peter G.; John, David A.

    2010-01-01

    This report contains a revised descriptive model of porphyry copper deposits (PCDs), the world's largest source (about 60 percent) and resource (about 65 percent) of copper and a major source of molybdenum, gold and silver. Despite relatively low grades (average 0.44 percent copper in 2008), PCDs have significant economic and societal impacts due to their large size (commonly hundreds of millions to billions of metric tons), long mine lives (decades), and high production rates (billions of kilograms of copper per year). The revised model describes the geotectonic setting of PCDs, and provides extensive regional- to deposit-scale descriptions and illustrations of geological, geochemical, geophysical, and geoenvironmental characteristics. Current genetic theories are reviewed and evaluated, knowledge gaps are identified, and a variety of exploration and assessment guides are presented. A summary is included for users seeking overviews of specific topics.

  1. The copper-cobalt deposits of the Quartzburg district, Grant County, Oregon

    USGS Publications Warehouse

    Vhay, John Stewart

    1960-01-01

    The copper- and cobalt-bearing veins of part of the Quartzburg district are in fracture zones trending about N. 70 degrees E. in folded Permian (?) metavolcanic rocks on the southwest side of a quartz diorite stock. Along many of the veins fine-grained tourmaline and quartz have replaced the country rock. The primary ore minerals are chalcopyrite, glaucodot, safflorite, and cobaltite. The copper- and cobalt-rich parts of the deposits appear to be in separate ore shoots. Gold content is generally higher in the cobalt-bearing parts of the veins than in the copper-rich parts. The Standard mine has developed part of one vein zone. Several other vein zones that crop out may contain as much copper as the Standard vein zone. Further bulldozing and diamond drilling on the surface, and more geologic mapping, sampling, and diamond drilling underground are suggested as means to explore for more ore deposits.

  2. The bioleaching potential of a bacterial consortium.

    PubMed

    Latorre, Mauricio; Cortés, María Paz; Travisany, Dante; Di Genova, Alex; Budinich, Marko; Reyes-Jara, Angélica; Hödar, Christian; González, Mauricio; Parada, Pilar; Bobadilla-Fazzini, Roberto A; Cambiazo, Verónica; Maass, Alejandro

    2016-10-01

    This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Plunder behind the bamboo curtain. [Environmental effects of mining and deforestation in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denniston, D.

    Significant environmental degradation has occurred in Tibet as China has stripped forests and minerals from the ground. Uranium, borax, lithium, copper, iron, chromite are all being exploited. High pasture is being overgrazed because fertile valleys are being inhabited by workers. Shortages of timber and paper pulp in China have meant cutting of dense stands of spruce, fir, larch, oak maple, and pine. Ground and surface waters are contaminated from mining, severe erosion is increasing from deforestation, overgrazing and mining on the high plateau. Importation of large numbers of Chinese workers has further threatened the Tibetian culture.

  4. Mineral target areas in Nevada from geological analysis of LANDSAT-1 imagery

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M.; Tubbesing, L.

    1975-01-01

    Geological analysis of LANDSAT-1 Scene MSS 1053-17540 suggests that certain known mineral districts in east-central Nevada frequently occur near faults or at faults or lineament intersections and areas of complex deformation and flexures. Seventeen (17) areas of analogous characteristics were identified as favorable targets for mineral exploration. During reconnaissance field trips eleven areas were visited. In three areas evidence was found of mining and/or prospecting not known before the field trips. In four areas favorable structural and alteration features were observed which call for more detailed field studies. In one of the four areas limonitic iron oxide samples were found in the regolith of a brecciated dolomite ridge. This area contains quartz veins, granitic and volcanic rocks and lies near the intersection of two linear fault structures identified in the LANDSAT-1 imagery. Semiquantitative spectroscopic analysis of selected portions of the samples showed abnormal contents of arsenic, molybdenum, copper, lead, zinc, and silver. These limonitic samples found were not in situ and further field studies are required to assess their source and significance.

  5. An overview of the Gold King Mine Release and its Transport ...

    EPA Pesticide Factsheets

    On August 5, 2015, a large acidic mine pool trapped behind a collapsed mine structure and rock debris in the Gold King Mine (GKM) was accidently breached releasing approximately 11.3 million liters (3 million gallons) of low pH (~3) metal contaminated mine drainage into a small tributary in the headwaters of the Animas River in southwestern Colorado. The release introduced approximately 490,000 kg of dissolved and particulate metals over a 12-hour period into the Animas River at Silverton, CO, located 13 km downstream from the mine. The mine effluent contained 2,900 kg of dissolved metals. Most of the released metals were eroded from the old waste pile outside the mine entrance and within Cement Creek by the rushing water. The release introduced large quantities of particulate aluminum, iron, manganese, lead, copper, arsenic and zinc to the Animas River, of which 15,000 kg was in dissolved form To be presented at the New Mexico Water Institute Symposium, 2nd Annual Conference on Environmental Conditionsof the Animas and San Juan Watersheds with Emphasis on Gold King Mine and Other Mine Waste Issues.

  6. Selected water-quality data for the Standard Mine, Gunnison County, Colorado, 2006-2007

    USGS Publications Warehouse

    Verplanck, Philip L.; Manning, Andrew H.; Mast, M. Alisa; Wanty, Richard B.; McCleskey, R. Blaine; Todorov, Todor I.; Adams, Monique

    2007-01-01

    Mine drainage and underground water samples were collected for analysis of inorganic solutes as part of a 1-year, hydrogeologic investigation of the Standard Mine and vicinity. The U.S. Environmental Protection Agency has listed the Standard Mine in the Elk Creek drainage near Crested Butte, Colorado, as a Superfund Site because discharge from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to Coal Creek, which is the primary drinking-water supply for the town of Crested Butte. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 3 and 5 of the Standard Mine, mine effluent from an adit located on the Elk Lode, and two spring samples that emerged from waste-rock material below Level 5 of the Standard Mine and the adit located on the Elk Lode. Reported analyses include field parameters (pH, specific conductance, water temperature, dissolved oxygen, and redox potential) and major constituents and trace elements.

  7. A Social Movements' Perspective on Human Rights Impact of Mining Liberalization in the Philippines.

    PubMed

    Aytin, Andrew

    2016-02-01

    When it comes to minerals like gold, copper, or nickel, the Philippines ranks among the world's richest countries, but it has continued to perform poorly in terms of human and economic development. In the belief that foreign investments will bring development, the government in 1995 liberalized its mining industry allowing full foreign ownership and control of the mining activities. After almost two decades of mining liberalization, the country has never achieved its goal of development but is now reeling from the adverse impacts of large-scale corporate mining on the environment and lives of mining-affected communities. Moreover, human rights violations against anti-mining activists and environmental advocates have escalated at an alarming rate making the country one of the most dangerous places for land and environmental defenders. But social movements are now taking big steps to empower the people, especially the mining-affected communities, to confront the adverse impacts of corporate mining and to reverse the current path of the mining industry to one that aims to achieve national industrialization where national development is prioritized over transnational corporations' interests. © The Author(s) 2016.

  8. Copper uptake by Pteris melanocaulon Fée from a Copper-Gold mine in Surigao del Norte, Philippines.

    PubMed

    De la Torre, Joseph Benjamin B; Claveria, Rene Juna R; Perez, Rubee Ellaine C; Perez, Teresita R; Doronila, Augustine I

    2016-01-01

    The ability of some plants to take up metal contaminants in the soil has been of increasing interest as an environmental approach to pollution clean-up. This study aimed to assess the ability of Pteris melanocaulon for copper(Cu) uptake by determining the Cu levels in the fern vis-à-vis surrounding soil and the location of Cu accumulation within its biomass. It also aimed to add information to existing literature as P. melanocaulon are found to be less documented compared to other fern metal accumulators, such as P. vittata. The P. melanocaulon found in the Suyoc Pit of a Copper-Gold mine in Placer, Surigao del Norte, Philippines exhibited a high Bioaccumulation Factor(BF) of 4.04 and a low Translocation Factor(TF) of 0.01, suggesting more Cu accumulation in the roots (4590.22 ± 385.66 µg g(-1) Cu). Noteworthy was the Cu concentration in the rhizome which was also high (3539.44 ± 1696.35 µg g(-1) Cu). SEM/EDX analyses of the Cu content in the roots indicated high elemental %Cu in the xylem (6.95%) than in the cortex (2.68%). The high Cu content in the roots and rhizomes and the localization of Cu in the xylem manifested a potential utilization of the fern as a metallophyte for rhizofiltration and phytostabilization.

  9. Developing on-site paper colorimetric monitoring technique for quick evaluating copper ion concentration in mineral wastewater

    NASA Astrophysics Data System (ADS)

    Liu, Guokun; Peng, Jingji; Zheng, Hong; Yuan, Dongxing

    2018-05-01

    With the reinforce of the copper mining, the on-site monitoring of the accompanied effluent discharge is highly demanded for the emergency response to minimize the negative effect of the effluent on the surrounding ecosystem. On the basis of the specific interaction between Cu2+ and L-Cysteine (L-Cys), which was modified on gold nanoparticles (Au NPs), and the aggregation dependent surface plasmon resonance (SPR) of Au NPs, we developed an easy-on-going paper colorimetric method for the quick evaluating the copper ion concentration in the waste water excreted from the copper mine. The color change of L-Cys modified Au NPs (L-Cys-Au NPs)immobilized on a filter paper was very sensitive to the Cu2+ concentration and free of interference from other metal ions typically in waste water. The proposed paper colorimetry has the LOD of 0.09 mg/L and the linear range of 0.1-10 mg/L, respectively, with the RSD (n = 5) was 6.6% for 1 mg/L Cu2+ and 3.5% for 5 mg/L Cu2+. The quantitative analysis results for the mineral wastewater is in good agreement the China National Environmental Protection Standards HJ485-2009, which indicates the current method could be developed to the on-site detection technique for the emergency response in monitoring Cu2+ in industrial wastewater or polluted water.

  10. Impact of Mining Development on an Isolated Rural Community: The Case of Cuba, New Mexico. New Mexico Agricultural Experiment Station Research Report 301.

    ERIC Educational Resources Information Center

    Ives, Berry; Eastman, Clyde

    When it commenced operation in 1971, the Nacimiento Copper Mine provided 135 new jobs. This was about half of the 278 new permanent jobs created in Cuba, New Mexico, from 1970 to 1974. Concurrent and independent development of the Checkerboard Health Clinic and expansion of the school system accounted for most of the remaining new employment.…

  11. Grand Traverse Bay, Houghton County, Michigan, Lake Superior, Operation and Maintenance Activities, Environmental Assessment Report.

    DTIC Science & Technology

    1975-05-01

    Paul District, Corps of Engineers St. Paul, Minnesota ENVIRONMENTAL ASSESSMENT REPORT OPERATION AND MAINTENANCE ACTIVITIES GRAND TRAVERSE BAY HARBOR...drift is from north to south. The shoreline north of the harbor is covered with copper mine tailings transported by littoral currents and wave action...from the Gay Mine tailings deposits located about 4 miles north of the harbor. 1.830 Dredge Material Disposal - The U.S. Environmental Protection

  12. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching.

    PubMed

    Antonijević, M M; Dimitrijević, M D; Stevanović, Z O; Serbula, S M; Bogdanovic, G D

    2008-10-01

    The flotation tailings pond of the Bor Copper Mine poses a great ecological problem not only for the town of Bor but also for the surrounding soils and watercourses. Since the old flotation tailings contain about 0.2% of copper on the average, we investigated their leaching with sulphuric acid in the absence and presence of an oxidant. The aim was to determine the leaching kinetics of copper and iron as affected by various factors such as: the pH value of the leach solution, stirring speed, pulp density, particle size, concentration of ferric ions, temperature and time for leaching. The average copper and iron recovery obtained was from 60% to 70% and from 2% to 3%, respectively. These results indicate that the old flotation tailings pond represents an important source of secondary raw material for the extraction of copper and that it should be valorized rather than land reclamation. At the end of the paper, a mechanism of dissolution of copper and iron minerals from the tailings was described.

  13. Effects of rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, D.F.; Brumbaugh, W.G.; DeLonay, A.J.

    1994-01-01

    The upper Clark Fork River in northwestern Montana has received mining wastes from the Butte and Anaconda areas since 1880. These wastes have contaminated areas of the river bed and floodplain with tailings and heavy metal sludge, resulting in elevated concentration of metals in surface water, sediments, and biota. Rainbow trout Oncorhynchus mykiss were exposed immediately after hatching for 91 d to cadmium, copper, lead, and zinc in water at concentrations simulating those in Clark Fork River. From exogenous feeding (21 d posthatch) through 91 d, fry were also fed benthic invertebrates from the Clark Fork River that contained elevatedmore » concentrations of arsenic, cadmium, copper, and lead. Evaluations of different combinations of diet and water exposure indicated diet-borne metals were more important than water-borne metals - at the concentrations we tested - in reducing survival and growth of rainbow trout. Whole-body metal concentrations ([mu]g/g, wet weight) at 91 d in fish fed Clark Fork invertebrates without exposure to Clark Fork water were arsenic, 1.4; cadmium, 0.16; and copper, 6.7. These were similar to concentrations found in Clark Fork River fishes. Livers from fish on the high-metals diets exhibited degenerative changes and generally lacked glycogen vacuolation. Indigenous Clark Fork River invertebrates provide a concentrated source of metals for accumulation into young fishes, and probably were the cause of decreased survival and growth of age-0 rainbow trout in our laboratory exposures. 30 refs., 8 figs., 4 tabs.« less

  14. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

    PubMed

    Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

    2001-12-01

    Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the heavy metals at concentrations below EC100. The 7-d EC50 values obtained from the difference between the dissolved metal concentrations for the control tubes (tubes not containing copper or zinc) and tubes containing metals were found to be 10.5 mg/L for copper and 16.5 mg/L for zinc. Measurements of the turbidity and pH, bacterial population estimations by means of a most-probable number technique, and metal recovery in the sulfide precipitate were found to have only a limited applicability in these determinations.

  15. Preliminary report on the White Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Benson, William E.; Trites, Albert F.; Beroni, Ernest P.; Feeger, John A.

    1952-01-01

    The White Canyon area, in the central part of San Juan County, Utah, consists of approximately two 15-minute quadrangles. Approximately 75 square miles have been mapped by the Geological Survey on a scale of 1 inch equals 1 mile, using a combined aerial photography-plane table method. Structure contours were drawn on top of the Organ Rock member of the Cutler formation. Parts of the Gonway and North Point claims, 1/4 mile east of the Happy Jack mine, were mapped in detail. The principal objectives of the investigations were: (1) to establish ore guides; (2) to select areas favorable for exploration; and (3) to map the general geology and to determine the regional relationships of the uranium deposits. The White Canyon area is comprised of sedimentary rocks of Carboniferous to Jurassic age, more than 2,000 feet thick, having a regional dip of 1° to 2° SW. The nearest igneous rocks are in the Henry Mountains about 7 miles west of the northern part of the area; The Shinarump conglomerate of the late Triassic age, the principal ore horizon in the White Canyon area, consists of lenticular beds of sandstone, conglomeratic sandstone, conglomerate, clay, and siltstone. The Shinarump conglomerate, absent in places, is as much as 75 feet thick. The sandstones locally contain molds of logs and fragments of altered volcanic ash. Some of the logs have been replaced by copper and uranium minerals and iron oxides. The clay and siltstone underlie and are interbedded with the sandstone, and are most common in channels that cut into the underlying Moenkopi formation. The Shinarump conglomerate contains reworked Moenkopi siltstone fragments, clay balls, carbonized wood, and pebbles of quarts, quartzite, and chert. Jointing is prominent in the Western part of the mapped area. The three most prominent joint trends are due east, N. 65°-75° W., and N. 65°-75° E. All joints have vertical dips. The red beds are bleached along some joints, especially those that trend N. 65°-75° W. All uranium ore produced has been from the lower part of the Shinarump conglomerate, where it commonly occurs with copper as disseminations and fracture coatings in sandstone. Uranium and copper minerals also occur in low-grade disseminated deposits in the lower Chinle and in the Moenkopi formation and in veins cutting these formations. Although some uranium deposits occur in Chinarump channels and scours, copper and uranium minerals along fractures suggest that channel control may be secondary. Logs and clay balls apparently have exerted some chemical influences for deposition. The uranium occurs as the oxide in some deposits, and as secondary hydrous sulfates, phosphates, oxides, and silicates in these and several other deposits. Charcoal, iron and manganese oxides, and veinlets of hydrocarbon are abnormally radioactive in most of the deposits. Base-metal sulfides are commonly found inside the oxidized zone. Secondary copper minerals include the hydrous sulfates and carbonate. Gangue minerals include quarts, clay minerals, and manganese oxides, dickite (?), calcite, gypsum, pyrite, and chalcedony (?). Principal wall-rock alteration appears to have been silicification, clay alteration, and bleaching. Most of the shipped ore has contained more than 0.3 percent uranium. The ore also contains copper, commonly in grades lower than 1.0 percent. Criteria believed to be most useful for prospecting for concealed uranium deposits are (1) visible uranium minerals; (2) sulfide minerals; (3) secondary copper minerals; (4) dickite (?); (5) hydrocarbons; and (6) bleaching and alteration of the Moenkopi formation.

  16. Sources of metal loads to the Alamosa River and estimation of seasonal and annual metal loads for the Alamosa River basin, Colorado, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Edelmann, Patrick; Ferguson, Sheryl; Stogner, Robert

    2002-01-01

    Metal contamination in the upper Alamosa River Basin has occurred for decades from the Summitville Mine site, from other smaller mines, and from natural, metal-enriched acidic drainage in the basin. In 1995, the need to quantify contamination from various source areas in the basin and to quantify the spatial, seasonal, and annual metal loads in the basin was identified. Data collection occurred from 1995 through 1997 at numerous sites to address data gaps. Metal loads were calculated and the percentages of metal load contributions from tributaries to three risk exposure areas were determined. Additionally, a modified time-interval method was used to estimate seasonal and annual metal loads in the Alamosa River and Wightman Fork. Sources of dissolved and total-recoverable aluminum, copper, iron, and zinc loads were determined for Exposure Areas 3a, 3b, and 3c. Alum Creek is the predominant contributor of aluminum, copper, iron, and zinc loads to Exposure Area 3a. In general, Wightman Fork was the predominant source of metals to Exposure Area 3b, particularly during the snowmelt and summer-flow periods. During the base-flow period, however, aluminum and iron loads from Exposure Area 3a were the dominant source of these metals to Exposure Area 3b. Jasper and Burnt Creeks generally contributed less than 10 percent of the metal loads to Exposure Area 3b. On a few occasions, however, Jasper and Burnt Creeks contributed a substantial percentage of the loads to the Alamosa River. The metal loads calculated for Exposure Area 3c result from upstream sources; the primary upstream sources are Wightman Fork, Alum Creek, and Iron Creek. Tributaries in Exposure Area 3c did not contribute substantially to the metal load in the Alamosa River. In many instances, the percentage of dissolved and/or total-recoverable metal load contribution from a tributary or the combined percentage of metal load contribution was greater than 100 percent of the metal load at the nearest downstream site on the Alamosa River. These data indicate that metal partitioning and metal deposition from the water column to the streambed may be occurring in Exposure Areas 3a, 3b, and 3c. Metals that are deposited to the streambed probably are resuspended and transported downstream during high streamflow periods such as during snowmelt runoff and rainfall runoff. Seasonal and annual dissolved and totalrecoverable aluminum, copper, iron, and zinc loads> for 1995?97 were estimated for Exposure Areas 1, 2, 3a, 3b, and 3c. During 1995?97, many tons of metals were transported annually through each exposure area. Generally, the largest estimated annual totalrecoverable metal mass for most metals was in 1995. The smallest estimated annual total-recoverable metal mass was in 1996, which also had the smallest annual streamflow. In 1995 and 1997, more than 60 percent of the annual total-recoverable metal loads generally was transported through each exposure area during the snowmelt period. A comparison of the estimated storm load at each site to the corresponding annual load indicated that storms contribute less than 2 percent of the annual load at any site and about 5 to 20 percent of the load during the summer-flow period.

  17. Trace elements and organic compounds in streambed sediment and aquatic biota from the Sacramento River Basin, California, October and November 1995

    USGS Publications Warehouse

    MacCoy, Dorene E.; Domagalski, Joseph L.

    1999-01-01

    Elevated levels of trace elements and hydrophobic organic compounds were detected in streambed sediments and aquatic biota [Asiatic clam (Corbicula fluminea) or bottom-feeding fish] of the Sacramento River Basin, California, during October and November 1995. Trace elements detected included cadmium, copper, mercury, lead, and zinc. Elevated levels of cadmium, copper, and zinc in the upper Sacramento River are attributed to a mining land use, and elevated levels of zinc and lead in an urban stream, and possibly in the lower Sacramento River, are attributed to urban runoff processes. Elevated levels of mercury in streambed sediment are attributed to either past mercury mining or to the use of mercury in past gold mining operations. Mercury mining was an important land use within the Coast Ranges in the past and gold mining was an important land use of the Sierra Nevada in the past. Mercury was the only trace element found in elevated levels in the tissue of aquatic biota, and those levels also could be attributed to either mining or urban runoff. Hydrophobic organic compounds also were detected in streambed sediments and aquatic biota. The most frequently detected compounds were DDT and its breakdown products, dieldrin, oxychlordane, and toxaphene. Differences were found in the types of compounds detected at agricultural sites and the urban site. Although both types of sites had measurable concentrations of DDT or its breakdown products, the urban site also had measurable concentrations of pesticides used for household pest control. Few semivolatile compounds were detected in the streambed sediments of any site. The semivolatile compound p-cresol, a coal-tar derivative associated with road maintenance, was found in the highest concentration.

  18. Application of PAH concentration profiles in lake sediments as indicators for smelting activity.

    PubMed

    Warner, Wiebke; Ruppert, Hans; Licha, Tobias

    2016-09-01

    The ability of lake sediment cores to store long-term anthropogenic pollution establishes them as natural archives. In this study, we focus on the influence of copper shale mining and smelting in the Mansfeld area of Germany, using the depth profiles of two sediment cores from Lake Süßer See. The sediment cores provide a detailed chronological deposition history of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the studied area. Theisen sludge, a fine-grained residue from copper shale smelting, reaches the lake via deflation by wind or through riverine input; it is assumed to be the main source of pollution. To achieve the comparability of absolute contaminant concentrations, we calculated the influx of contaminants based on the sedimentation rate. Compared to the natural background concentrations, PAHs are significantly more enriched than heavy metals. They are therefore more sensitive and selective for source apportionment. We suggest two diagnostic ratios of PAHs to distinguish between Theisen sludge and its leachate: the ratio fluoranthene to pyrene ~2 and the ratio of PAH with logKOW<5.7 to PAH with a logKOW>5.7 converging to an even lower value than 2.3 (the characteristic of Theisen sludge) to identify the particulate input in lake environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Selected indicators and determinants of women's health in the vicinity of a copper mine development in northwestern Zambia.

    PubMed

    Knoblauch, Astrid M; Divall, Mark J; Owuor, Milka; Musunka, Gertrude; Pascall, Anna; Nduna, Kennedy; Ng'uni, Harrison; Utzinger, Jürg; Winkler, Mirko S

    2018-05-01

    Large projects in the extractive industry sector can affect people's health and wellbeing. In low- and middle-income countries (LMICs), women's health is of particular concern in such contexts due to potential educational and economic disadvantages, vulnerability to transactional sex and unsafe sex practices. At the same time, community health interventions and development initiatives present opportunities for women's and maternal health. Within the frame of the health impact assessment (HIA) of the Trident copper mining project in Zambia, two health surveys were conducted (baseline in 2011 and follow-up in 2015) in order to monitor health and health-related indicators. Emphasis was placed on women residing in the mining area and, for comparison, in settings not impacted by the project. All measured indicators improved over time, regardless of whether communities were affected by the project or not. Additionally, the percentage of mothers giving birth in a health facility, the percentage of women who acknowledge that HIV cannot be transmitted by witchcraft or other supernatural means and the percentage of women having ever tested for HIV showed a significant increase in the impacted sites but not in the comparison communities. In 2015, better health, behavioural and knowledge outcomes in women were associated with employment by the project (or a sub-contractor thereof), migration background, increased wealth and higher educational attainment. Our study reveals that natural resource development projects can positively impact women's health, particularly if health risks are adequately anticipated and managed. Hence, the conduct of a comprehensive HIA should be a requirement at the feasibility stage of any large infrastructure project, particularly in LMICs. Continued monitoring of health outcomes and wider determinants of health after the initial assessment is crucial to judge the project's influence on health and for reducing inequalities over time.

  20. Radon dynamics and reduction in an underground mine in Brazil. Implications for workers' exposure.

    PubMed

    Evangelista, H; Pereira, E B; Fernandes, H M; Sampaio, M

    2002-01-01

    This work was aimed at studying the behaviour of 222Rn in an experimental underground copper mine in Brazil with a single entrance. The 222Rn concentrations, meaured by using a dynamic radon measuring technique. varied between 30.5 Bq.m(-3), during ventilated conditions applied to the mine galleries, and 19.4 x 10(3) Bq.(-3) for non-ventilated conditions and when operational mining activities were conducted inside. High radon concentration surges were observed after blasting and drilling activities. In the cases of inadequate ventilation, it was estimated that workers could be subjected to exposures as high as 10 microSv.h(-1), only due to 222Rn and its short-lived progeny. The results show the importance of real-time measurements to evaluate radon dynamics during mining operations.

  1. Non-communicable disease risk factor patterns among mining industry workers in Papua, Indonesia: longitudinal findings from the Cardiovascular Outcomes in a Papuan Population and Estimation of Risk (COPPER) Study.

    PubMed

    Rodriguez-Fernandez, Rodrigo; Rahajeng, Ekowati; Viliani, Francesca; Kushadiwijaya, Haripurnomo; Amiya, Rachel M; Bangs, Michael J

    2015-10-01

    Non-communicable diseases (NCDs) constitute an increasing slice of the global burden of disease, with the South-East Asia region projected to see the highest increase in NCD-related deaths over the next decade. Mining industry employees may be exposed to various factors potentially elevating their NCD risk. This study aimed to assess the distribution and 5-year longitudinal trends of key metabolic NCD risk factors in a cohort of copper-gold mining company workers in Papua, Indonesia. Metabolic indicators of NCD risk were assessed among employees (15 580 at baseline, 6496 prospectively) of a large copper-gold mining operation in Papua, Indonesia, using routinely collected 5-year medical surveillance data. The study cohort comprised individuals aged 18-68 years employed for ≥1 year during 2008-2013. Assessed risk factors were based on repeat measures of cholesterol, blood glucose, blood pressure and body weight, using WHO criteria. Metabolic risk indicator rates were markedly high and increased significantly from baseline through 5-year follow-up (p<0.001). Adjusting for gender and age, longer duration of employment (≥10 years) predicted raised cholesterol (adjusted OR (AOR)=1.13, p=0.003), raised blood pressure (AOR=1.16, p=0.009) and overweight/obesity (AOR=1.14, p=0.001) at baseline; and persistent raised cholesterol (AOR=1.26, p=0.003), and both incident (AOR=1.33, p=0.014) and persistent raised blood glucose (AOR=1.62, p=0.044) at 3-year follow-up. Individuals employed for longer periods in a mining operations setting in Papua, Indonesia, may face elevated NCD risk through various routes. Workplace health promotion interventions and policies targeting modifiable lifestyle patterns and environmental exposures present an important opportunity to reduce such susceptibilities and mitigate associated health risks. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    PubMed

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  3. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    USGS Publications Warehouse

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  4. NASA MISR Views Kruger National Park

    NASA Image and Video Library

    2010-10-06

    This nadir camera view was captured by NASA Terra spacecraft around Kruger National Park in NE South Africa. The bright white feature is the Palabora Copper Mine, and the water body near upper right is Lake Massingir in Mozambique.

  5. 40 CFR 440.105 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...

  6. 40 CFR 440.105 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...

  7. 40 CFR 440.105 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...

  8. 40 CFR 440.105 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations representing...

  9. Geothermal Potential of Marine Corps Air Station, Yuma, Arizona, and the Western Portion of Luke-Williams Gunnery Range

    DTIC Science & Technology

    1988-01-01

    region appears to be a temporal as well as a spatial transition zone between the emplacement of the majority of the Arizona porphyry coppers during... Porphyry Copper Deposits of the Western Hemisphere. American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., 1978, 219 pp. 30. U.S...NWC TP 6827 S Geothermal Potential of Marine Corps Air Station, Yuma, Arizona , and the Western Portion of Luke-Williams Gunnery Range by Steven C

  10. Use of the Biotic Ligand Model to predict metal toxicity to aquatic biota in areas of differing geology

    USGS Publications Warehouse

    Smith, Kathleen S.

    2005-01-01

    This work evaluates the use of the biotic ligand model (BLM), an aquatic toxicity model, to predict toxic effects of metals on aquatic biota in areas underlain by different rock types. The chemical composition of water, soil, and sediment is largely derived from the composition of the underlying rock. Geologic source materials control key attributes of water chemistry that affect metal toxicity to aquatic biota, including: 1) potentially toxic elements, 2) alkalinity, 3) total dissolved solids, and 4) soluble major elements, such as Ca and Mg, which contribute to water hardness. Miller (2002) compiled chemical data for water samples collected in watersheds underlain by ten different rock types, and in a mineralized area in western Colorado. He found that each rock type has a unique range of water chemistry. In this study, the ten rock types were grouped into two general categories, igneous and sedimentary. Water collected in watersheds underlain by sedimentary rock has higher mean pH, alkalinity, and calcium concentrations than water collected in watersheds underlain by igneous rock. Water collected in the mineralized area had elevated concentrations of calcium and sulfate in addition to other chemical constituents. Miller's water-chemistry data were used in the BLM (computer program) to determine copper and zinc toxicity to Daphnia magna. Modeling results show that waters from watersheds underlain by different rock types have characteristic ranges of predicted LC 50 values (a measurement of aquatic toxicity) for copper and zinc, with watersheds underlain by igneous rock having lower predicted LC 50 values than watersheds underlain by sedimentary rock. Lower predicted LC 50 values suggest that aquatic biota in watersheds underlain by igneous rock may be more vulnerable to copper and zinc inputs than aquatic biota in watersheds underlain by sedimentary rock. For both copper and zinc, there is a trend of increasing predicted LC 50 values with increasing dissolved organic carbon (DOC) concentrations. Predicted copper LC 50 values are extremely sensitive to DOC concentrations, whereas alkalinity appears to have an influence on zinc toxicity at alkalinities in excess of about 100 mg/L CaCO 3 . These findings show promise for coupling the BLM (computer program) with measured water-chemistry data to predict metal toxicity to aquatic biota in different geologic settings and under different scenarios. This approach may ultimately be a useful tool for mine-site planning, mitigation and remediation strategies, and ecological risk assessment.

  11. SIMPL: A Simplified Model-Based Program for the Analysis and Visualization of Groundwater Rebound in Abandoned Mines to Prevent Contamination of Water and Soils by Acid Mine Drainage

    PubMed Central

    Kim, Sung-Min

    2018-01-01

    Cessation of dewatering following underground mine closure typically results in groundwater rebound, because mine voids and surrounding strata undergo flooding up to the levels of the decant points, such as shafts and drifts. SIMPL (Simplified groundwater program In Mine workings using the Pipe equation and Lumped parameter model), a simplified lumped parameter model-based program for predicting groundwater levels in abandoned mines, is presented herein. The program comprises a simulation engine module, 3D visualization module, and graphical user interface, which aids data processing, analysis, and visualization of results. The 3D viewer facilitates effective visualization of the predicted groundwater level rebound phenomenon together with a topographic map, mine drift, goaf, and geological properties from borehole data. SIMPL is applied to data from the Dongwon coal mine and Dalsung copper mine in Korea, with strong similarities in simulated and observed results. By considering mine workings and interpond connections, SIMPL can thus be used to effectively analyze and visualize groundwater rebound. In addition, the predictions by SIMPL can be utilized to prevent the surrounding environment (water and soil) from being polluted by acid mine drainage. PMID:29747480

  12. Determination of an organic-acid analog of DOC for use in copper toxicity studies on salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacRae, R.K.; Meyer, J.S.; Hansen, J.A.

    1995-12-31

    Concentrations of dissolved copper in streams draining mine sites often exceed concentrations shown to cause acute and chronic mortality in salmonids. However, toxicity and impaired behaviors may be modified by dissolved organic carbon (DOC) and other inorganic components present in the site water. The effects of DOC on copper speciation, and thus bioavailability and toxicity, were determined by titrating stream waters with copper, using a cupric ion-specific electrode to detect free copper concentrations. Effects of various competing cations (e.g., Ca{sup +2}, Co{sup +2}) on copper-DOC binding were also evaluated. Titration results were evaluated using Scatchard and non-linear regression analyses tomore » quantify the strength and capacity of copper-DOC binding. Inorganic speciation was determined using the geochemical model MINEQL{sup +}. Results of these titrations indicated the presence of two or three distinct copper binding components in site water DOC. Three commercially available organic acids where then chosen to mimic the binding characteristics of natural DOC. This DOC-analog was used successfully in fish toxicity studies to evaluate the influence of DOC on copper bioavailability. Geochemical models were developed to predict copper speciation in both laboratory test waters and site waters, for any typical combination of water chemistry parameters (pH, alkalinity, [DOC], etc.). A combined interpretation of fish toxicity and modeling results indicate that some DOC-bound copper was bioavailable.« less

  13. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  14. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  15. Geology of the Mackay 30-minute quadrangle, Idaho

    USGS Publications Warehouse

    Nelson, Willis H.; Ross, Clyde Polhemus

    1969-01-01

    The Jefferson Dolomite, Grand View Dolomite, and Three Forks Limestone, all of Devonian age, are the oldest rocks exposed in the quadrangle. Rocks that range from Mississippian to Permian in age are widespread; they are represented by the White Knob Limestone in the eastern part of the quadrangle and the Copper Basin Formation in the western part. The Copper Basin Formation, which is composed of non-carbonate detrital rocks, is interlayered with the White Knob Limestone near the middle of the quadrangle. This interlayering is herein interpreted to be the result of depositional interbedding, but it could be in part due to juxtaposition by faulting. The Challis Volcanics, of Tertiary age, cover much of the quadrangle, and except for a conspicuous basal conglomerate, lack distinctive subdivisions similar to those in neighboring areas. Alluvial deposits which may be in part as old as Pliocene are scattered through the quadrangle. Glaciation affected all higher parts of the quadrangle, and locally glacial deposits of at least three ages can be distinguished The latest two of these are probably of late Wisconsin Bull Lake and Pinedale ages. Basalt flows of probable Recent age extend into the southernmost part of the quadrangle and originate in part from vents there. Intrusive rocks, including plutons and related dikes of Tertiary age, are scattered throughout the quadrangle. They range from granite to quartz diorite in composition. The intrusive rocks seem to be related to the Challis Volcanics. The rocks of the quadrangle were strongly deformed and eroded prior to the deposition of the Challis Volcanics. No thrust faults have been recognized although such faults are plentiful in the adjacent region. Deformation has continued until recent times. All or parts of five mining districts are included in the quadrangle, and the total production probably exceeded $10,000,000. Mining has been quiet since World War II but activity has been renewed at times in the past and possibilities for the discovery of substantial new deposits seem promising. The mineral deposits formed largely by replacement, partly in areas of contact metamorphism. The metals present are varied but copper has been the main product. All of the deposits are believed to be related to the intrusions of Tertiary age.

  16. Cu-Zn slags from Røros (Norway): a case study of rapid cooling and crystal nucleation

    NASA Astrophysics Data System (ADS)

    Warchulski, Rafał; Szopa, Krzysztof

    2014-09-01

    The mining town of Røros located in central Norway was established in 1644 and it is known of historical mining industry related to copper. Røros was designated as an UNESCO World Heritage Site in 1980 on the base of mining culture represented by, e.g., unique wooden architecture. Slag pieces are composed of three parts differing in glass to crystallites ratio. Røros slags are composed of olivine- and pyroxene- group minerals accompanied by sulphides, with glass in the interstices. Temperature gradient and volatiles content were determined as the main factor influencing crystallization process in this material

  17. Cu-Zn Slags from R⊘ros (Norway): A Case Study of Rapid Cooling and Crystal Nucleation

    NASA Astrophysics Data System (ADS)

    Warchulski, Rafał; Szopa, Krzysztof

    2014-09-01

    The mining town of R⊘ros located in central Norway was established in 1644 and it is known of historical mining industry related to copper. R⊘ros was designated as an UNESCO World Heritage Site in 1980 on the base of mining culture represented by, e.g., unique wooden architecture. Slag pieces are composed of three parts differing in glass to crystallites ratio. R⊘ros slags are composed of olivine- and pyroxene- group minerals accompanied by sulphides, with glass in the interstices. Temperature gradient and volatiles content were determined as the main factor influencing crystallization process in this material.

  18. Mine Winder Drives in Integrated Copper Complex

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2018-04-01

    This paper describes various features required to be evaluated before selecting mine winder drives. In handling such project, the selection of proper equipments is necessary at the initial design stage of planning and how the electrical system design considers all aspects to protect the grid from unwarranted influence of the connected loads and minimize the generation of harmonics due to network configurations adopted to keep it within the stipulated value dictated by the supply authorities has been discussed. The design should cover all aspects to provide quality power with effective braking system required as per the mining statute for operational safety. It also emphasizes on the requirement of quality maintenance.

  19. Evaluation of metal mobility from copper mine tailings in northern Chile.

    PubMed

    Lam, Elizabeth J; Gálvez, M E; Cánovas, M; Montofré, I L; Rivero, D; Faz, A

    2016-06-01

    This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4. Our objectives were to (1) compare the physicochemical properties of the tailing with surrounding soils of the mine under study, and (2) evaluate the effect of two amendments (CaCO3 and compost) and their mixtures on Cu(2+), Mn, Fe, Zn, Mg(2+), and K(+) and Ca(2+), SO4 (2-), NO3 (-), and PO4 (3-) leaching. The data obtained were submitted to variance and covariance analysis. The results from the comparison between both substrates showed that in general, the tailing presented greater content of metals. Regarding tailing leaching, pH, electrical conductivity (EC), and concentration of the elements of interest were measured. The statistical analysis showed that Cu(2+) leaching and immobilization of Fe occurred to the greatest extent with compost. The EC decreased throughout the experiment with irrigation and increased upon treatment with compost. The major interactions found among the chemical parameters were (1) tailings without treatment, Cu(2+)/Fe and NO3 (-)/SO4 (2-); (2) tailings treated with CaCO3, Cu(2+)/K(+); (3) tailings treated with compost, NO3 (-)/SO4 (-2) and EC/Cu(2+); and (4) tailings treated with both amendments, EC/Fe and Cu(2+)/Fe. The ANOVA showed that the number of irrigations and the amendments statistically significantly affected the copper mobility and the organic amendment significantly influenced the iron mobility.

  20. Prediction of AMD generation potential in mining waste piles, in the Sarcheshmeh porphyry copper deposit, Iran.

    PubMed

    Modabberi, Soroush; Alizadegan, Ali; Mirnejad, Hassan; Esmaeilzadeh, Esmat

    2013-11-01

    This study investigates the possibility of acid mine drainage (AMD) generation in active and derelict mine waste piles in Sarcheshmeh Copper Mine produced in several decades, using static tests including acid-base accounting (ABA) and net acid-generating pH (NAGpH). In this study, 51 composite samples were taken from 11 waste heaps, and static ABA and NAGpH tests were carried out on samples. While some piles are acid producing at present and AMD is discharging from the piles, most of them do not show any indication on their AMD potential, and they were investigated to define their acid-producing potential. The analysis of data indicates that eight waste piles are potentially acid generating with net neutralization potentials (NNPs) of -56.18 to -199.3, net acid generating of 2.19-3.31, and NPRs from 0.18 to 0.44. Other waste piles exhibited either a very low sulfur, high carbonate content or excess carbonate over sulfur; hence, they are not capable of acid production or they can be considered as weak acid producers. Consistency between results of ABA and NAGpH tests using a variety of classification criteria validates these tests as powerful means for preliminary evaluation of AMD/ARD possibilities in any mining district. It is also concluded that some of the piles with very negative NNPs are capable to produce AMD naturally, and they can be used in heap leaching process for economic recovery of trace amounts of metals without applying any biostimulation methods.

  1. Metals

    ERIC Educational Resources Information Center

    Kirkemo, Harold; Goudarzi, Gus H.

    1978-01-01

    There has been a general lag in minerals-exploration activity in the past few years. Government concern is reviewed in this article, along with significant developments that included the discovery of additional bauxite, copper, and molybdenum deposits and the reopening of different mining operations. (MA)

  2. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas.

    PubMed

    Kurth, Laura M; McCawley, Michael; Hendryx, Michael; Lusk, Stephanie

    2014-07-01

    People who live in Appalachian areas where coal mining is prominent have increased health problems compared with people in non-mining areas of Appalachia. Coal mines and related mining activities result in the production of atmospheric particulate matter (PM) that is associated with human health effects. There is a gap in research regarding particle size concentration and distribution to determine respiratory dose around coal mining and non-mining areas. Mass- and number-based size distributions were determined with an Aerodynamic Particle Size and Scanning Mobility Particle Sizer to calculate lung deposition around mining and non-mining areas of West Virginia. Particle number concentrations and deposited lung dose were significantly greater around mining areas compared with non-mining areas, demonstrating elevated risks to humans. The greater dose was correlated with elevated disease rates in the West Virginia mining areas. Number concentrations in the mining areas were comparable to a previously documented urban area where number concentration was associated with respiratory and cardiovascular disease.

  3. Safety survey of Iran's mines and comparison to some other countries.

    PubMed

    Bagherpour, Raheb; Yarahmadi, Reza; Khademian, Amir; Almasi, Seied Najmedin

    2017-03-01

    The increasing development of mining activities in Iran makes it necessary to have a closer look at the safety issues. Analysis of different incidents and damages in mines can be helpful for the adoption of suitable approaches to prevent the incidents. In this study, safety statistics of Iran's mines in 2011 and 2012 were assessed and important incidents and injuries happening to employees for 12 different groups of minerals were evaluated and eventually compared to the situation of some other countries. According to the obtained results, the average incidence probability in Iran's mines was calculated to be 0.18 for 2011 and the incidence probability of coal, copper and iron ore mines was greater than others. The injury rate of Iran's mines was 106 and 164 out of 10,000 persons for 2011 and 2012, respectively, and the maximum values of injury rate belonged to coal, dimension stone and aggregate mines. Also, it turned out that the fatal rate per 100 tons of production had the highest values in chromite and coal mines. Besides, comparison of injury rate and the fatal rate in Iran and some countries showed that the safety situation in Iran's mines was in a fair condition.

  4. Using Satellite Data for Environmental Impact Analysis in Economic Growth: the Case of Mongolia

    NASA Astrophysics Data System (ADS)

    Tungalag, A.; Tsolmon, R.; Ochirkhuyag, L.; Oyunjargal, J.

    2016-06-01

    The Mongolian economy is based on the primary and secondary economic sectors of agriculture and industry. In addition, minerals and mining become a key sector of its economy. The main mining resources are gold, copper, coal, fluorspar and steel. However, the environment and green economy is one of the big problems among most of the countries and especially for countries like Mongolia where the mining is major part of economy; it is a number one problem. The research of the work tested how environmental elements effect to current Mongolian economic growth, which is growing economy because of mining sector. The study of economic growth but the starting point for any study of economic growth is the neoclassical growth model emphasizing the role of capital accumulation. The growth is analysed either in terms of models with exogenous saving rates (the Solow-Swan model), or models where consumption and hence savings are determined by optimizing individuals. These are the so-called optimal growth or Ramsey-Cass-Koopmans. The study extends the Solow model and the Ramsey-Cass-Koopmans model, including environmental elements which are satellite data determine to degraded land and vegetation value from 1995 to 2013. In contrast, we can see the degraded land area increases from 1995 (4856 m2) to 2013 (10478 m2) and vegetation value decrease at same time. A description of the methodology of the study conducted follows together with the data collected and econometric estimations and calibration with environmental elements.

  5. Durability of metals from archaeological objects, metal meteorites, and native metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteoritesmore » are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.« less

  6. Raster Images of Geologic Maps of Middle Proterozoic Belt strata in parts of Benewah, Bonner, Kootenai and Shoshone Counties, Idaho and Lincoln, Mineral and Sanders Counties, Montana

    USGS Publications Warehouse

    Boleneus, David E.; Appelgate, Larry M.; Joseph, Nancy L.; Brandt, Theodore R.

    2001-01-01

    Geologic maps of the western part of the Belt Basin of western Montana and northern Idaho were converted into digital raster (TIFF image) format to facilitate their manipulation in geographic information systems. The 85-mile x 100-mile map area mostly contains rocks belonging to the lower and middle Belt Supergroup. The area is of interest as these Middle Proterozoic strata contain vein-type lead-zinc-silver deposits in the Coeur d?Alene Mining District in the St. Regis and Revett formations and strata-bound copper-silver deposits, such as the Troy mine, within the Revett Formation. The Prichard Formation is also prospective for strata-bound lead-zinc deposits because equivalent Belt strata in southern British Columbia, Canada host the Sullivan lead-zinc deposit. Map data converted to digital images include 13 geological maps at scales ranging from 1:48,000 to 1:12,000. Geologic map images produced from these maps by color scanning were registered to grid tick coverages in a Universal Transverse Mercator (North American Datum of 1927, zone 11) projection using ArcView Image Analysis. Geo-registering errors vary from 10 ft to 114 ft.

  7. Production of Ultrafine, High-purity Ceramic Powders Using the US Bureau of Mines Developed Turbomill

    NASA Technical Reports Server (NTRS)

    Hoyer, Jesse L.

    1993-01-01

    Turbomilling, an innovative grinding technology developed by the U.S. Bureau of Mines in the early 1960's for delaminating filler-grade kaolinitic clays, has been expanded into the areas of particle size reduction, material mixing, and process reaction kinetics. The turbomill, originally called an attrition grinder, has been used for particle size reduction of many minerals, including natural and synthetic mica, pyrophyllite, talc, and marble. In recent years, an all-polymer version of the turbomill has been used to produce ultrafine, high-purity, advanced ceramic powders such as SiC, Si3N4, TiB2, and ZrO2. In addition to particle size reduction, the turbomill has been used to produce intimate mixtures of high surface area powders and whiskers. Raw materials, TiN, AlN, and Al2O3, used to produce a titanium nitride/aluminum oxynitride (TiN/AlON) composite, were mixed in the turbomill, resulting in strength increases over samples prepared by dry ball milling. Using the turbomill as a leach vessel, it was found that 90.4 pct of the copper was extracted from the chalcopyrite during a 4-hour leach test in ferric sulfate versus conventional processing which involves either roasting of the ore for Cu recovery or leaching of the ore for several days.

  8. Ground-dwelling ant fauna of sites with high levels of copper.

    PubMed

    Diehl, E; Sanhudo, C E; Diehl-Fleig, Ed

    2004-02-01

    Richness and diversity of ant species are related to environmental factors such as vegetation, soil, presence of heavy metals, and insecticides, which allow the use of the assemblage members as terrestrial indicators of environmental conservation status. This study presents the results of ground ants surveyed in Minas do Camaquã in the municipality of Cacapava do Sul (Camaquã Basin), State of Rio Grande do Sul. Collections were performed in four sites, which high levels of copper in the soil, three of which--a mine, a liquid reject, and a solid reject-, had sparse or no plant cover, and one site where Pinus has been used for rehabilitation. Parque das Guaritas was the control site, since it presented normal levels of copper and a dense savanna cover. For each site, three transect lines extending 100 m were draw, and at each 10 m sardine baits were distributed; after two hours the ants present were collected. Hand collections in all five sites were performed during one hour (capture effort). A total of 51 species belonging to 17 genera were collected. The control site was the richest in ant species (r = 45). Sites with high level of copper and poor plant cover presented the lowest richness: mine (r = 14), solid reject (r = 15), and liquid reject (r = 16). In contrast, the site planted with Pinus presented an increment in richness (r = 24) of ground-dwelling ants, suggesting a reahabilitation process.

  9. Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats.

    PubMed

    Cantonati, Marco; Angeli, Nicola; Virtanen, Laura; Wojtal, Agata Z; Gabrieli, Jacopo; Falasco, Elisa; Lavoie, Isabelle; Morin, Soizic; Marchetto, Aldo; Fortin, Claude; Smirnova, Svetlana

    2014-03-15

    In the presence of different environmental stressors, diatoms can produce frustules presenting different types of deformities. Metals and trace elements are among the most common causes of these teratological forms. Metal enrichment in water bodies can be attributed to the geological setting of the area or to pollution. The widespread benthic diatom Achnanthidium minutissimum (ADMI) is one of the most metal-tolerant species. In the present study, ADMI teratologies were defined from samples taken from eight very diverse, widely-distributed inland-water habitats: streams affected by active and abandoned mining areas, a metal-contaminated stream, a spring in an old chalcopyrite mine, a mineral-water fountain, and a sediment core taken from a lake affected by metal contamination in the past. Deformed frustules of ADMI were characterised mainly by one (sometimes two) more or less bent off ending, conferring to the specimens a cymbelloid outline (cymbelliclinum-like teratology, CLT). Marked teratologies were distinguished from slight deformities. Hydrochemical analyses, including metals and trace elements, were carried out and enrichment factors (EF) relative to average crustal composition were calculated. To improve our knowledge on the potential of different metals and trace elements to trigger the occurrence of ADMI CLT, we carefully selected 15 springs out of 110 (CRENODAT dataset) where both ADMI and above-average metal or metalloid concentrations occurred, and re-analysed these samples. The results from the eight widely-distributed core sites as well as from the 15 selected CRENODAT springs led to the hypothesis that two metals (copper and zinc) and a metalloid (antimony) were the most likely triggers of ADMI CLT formation. From a quantitative point of view, it is worth noting that the lowest concentrations triggering ADMI CLT can be fairly low, particularly in the case of copper contamination. The antimony-rich site was characterised by a marked-teratology variant where both ends of ADMI were bent off. © 2013 Elsevier B.V. All rights reserved.

  10. Relations among rainstorm runoff, streamflow, pH, and metal concentrations, Summitville Mine area, upper Alamosa River basin, southwest Colorado, 1995-97

    USGS Publications Warehouse

    Rupert, Michael G.

    2001-01-01

    The upper Alamosa River Basin contains areas that are geochemically altered and have associated secondary sulfide mineralization. Occurring with this sulfide mineralization are copper, gold, and silver deposits that have been mined since the 1870's. Weathering of areas with sulfide mineralization produces runoff with anomalously low pH and high metal concentrations; mining activities exacerbate the condition. Summer rainstorms in the upper Alamosa River Basin produce a characteristic relation between streamflow and pH; streamflow suddenly increases and pH suddenly decreases (commonly by more than 1 pH unit). This report evaluates changes in pH in the upper Alamosa River Basin during July, August, and September 1995, 1996, and 1997 to examine possible adverse environmental effects due to rainstorm runoff. Ninety-three percent of the rainstorms occurring during 1995?97 produced runoff throughout the entire basin. Out of 54 storms, only 3 storms were isolated to the river reach upstream from the streamflow-gaging station Alamosa River above Wightman Fork, and only 1 storm was isolated to the river reach between the streamflow-gaging stations Alamosa River below Jasper and Alamosa River above Terrace Reservoir. Although most rainstorm runoff events occurred throughout the entire basin, pH changes were highest in parts of the basin that receive runoff from hydrothermally altered areas. The three principal altered areas within the basin are the Jasper, Stunner, and Summitville areas. Only limited mining occurred in the Stunner altered area, and yet significant decreases in pH values occur due to runoff from this area. Even after environmental restoration activities are completed at the Summitville Mine, the main stem of the Alamosa River may continue to be adversely affected by runoff from the Stunner and Jasper altered areas. A comparison of measured pH with Federal and State of Colorado water-quality standards and Toxicological Reference Values indicates pH was too low to support aquatic life in many parts of the basin for extended periods of time. Added stresses from sudden decreases in pH due to rainstorm runoff compound the adverse effects. Discharge of effluent from the Summitville Mine impoundment can significantly decrease pH in the Alamosa River downstream to Terrace Reservoir. A release of only 3 cubic feet per second from the impoundment decreased pH by at least 1 standard unit at all downstream sites. Low-flow years may pose a substantial risk to aquatic organisms within and downstream from Terrace Reservoir. During 1996, the basin had a low-flow year, and water storage and pool size of Terrace Reservoir were significantly reduced. The pH of water discharging from Terrace Reservoir was anomalously low during late August and September 1996, possibly due to geochemical interactions between sediment and the water column within the reservoir. In general, an inverse log-log relation exists between pH and the logarithm of dissolved metal concentrations, but the relations generally are not significant enough to confidently predict metal concentrations based upon measured pH values.

  11. 40 CFR Table 1 to Subpart Zzzzzz... - Applicability of General Provisions to Aluminum, Copper, and Other Nonferrous Foundries Area Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Aluminum, Copper, and Other Nonferrous Foundries Area Sources 1 Table 1 to Subpart ZZZZZZ of Part 63... Standards for Hazardous Air Pollutants: Area Source Standards for Aluminum, Copper, and Other Nonferrous... Provisions to Aluminum, Copper, and Other Nonferrous Foundries Area Sources As required in § 63.11555, “What...

  12. 40 CFR Table 1 to Subpart Zzzzzz... - Applicability of General Provisions to Aluminum, Copper, and Other Nonferrous Foundries Area Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Aluminum, Copper, and Other Nonferrous Foundries Area Sources 1 Table 1 to Subpart ZZZZZZ of Part 63... Standards for Hazardous Air Pollutants: Area Source Standards for Aluminum, Copper, and Other Nonferrous... Provisions to Aluminum, Copper, and Other Nonferrous Foundries Area Sources As required in § 63.11555, “What...

  13. Multiple metals exposure in a small-scale artisanal gold mining community.

    PubMed

    Basu, Niladri; Nam, Dong-Ha; Kwansaa-Ansah, Edward; Renne, Elisha P; Nriagu, Jerome O

    2011-04-01

    Urinary metals were characterized in 57 male residents of a small-scale gold mining community in Ghana. Chromium and arsenic exceeded health guideline values for 52% and 34%, respectively, of all participants. About 10-40% of the participants had urinary levels of aluminum, copper, manganese, nickel, selenium, and zinc that fell outside the U.S. reference range. Exposures appear ubiquitous across the community as none of the elements were associated with occupation, age, and diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Geology and mineral resources of the Port Moller region, western Alaska Peninsula, Aleutian arc: A section in USGS research on mineral resources - 1989: Program and abstracts

    USGS Publications Warehouse

    Wilson, Frederic H.; White, Willis H.; Detterman, Robert L.

    1988-01-01

    Geologic mapping of the Port Moller, Stepovak Bay, and Simeonof Island quadrangles was begun under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP) in 1983 . Two important mineral deposits are located in the Port Moller quadrangle; the Pyramid prospect is the largest copper porphyry system in the Aleutian Arc, and the Apollo Mine is the only gold mine to reach production status in the Aleutian Arc.

  15. Mineral Oils: Untreated and Mildly Treated

    Cancer.gov

    Learn about mineral oils, which can raise the risk of nonmelanoma skin cancer, particularly of the scrotum. Workers in a variety of manufacturing industries are most commonly exposed to mineral oils, as are workers in engine repair, copper mining, and commercial printing.

  16. 40 CFR 440.101 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum...

  17. 40 CFR 440.101 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum...

  18. 40 CFR 440.101 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum...

  19. 40 CFR 440.101 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores...

  20. 40 CFR 440.101 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores...

  1. Manganese nodule resources in the northeastern equatorial Pacific

    USGS Publications Warehouse

    McKelvey, V.E.; Wright, Nancy A.; Rowland, Robert W.

    1979-01-01

    Recent publication of maps at scale 1:1,000,000 of the northeastern equatorial Pacific region showing publicly available information on the nickel plus copper content of manganese nodules has made it possible to outline the prime area between the Clarion and Clipperton fracture zones which has been the focus of several recent scientific and commercial studies. The area, defined as that in which the nodules contain more than 1.8 percent nickel plus copper, is about 2o5 million km2. The available evidence suggests that about half of it contains nodules in concentration (reported in wet weight units) greater than 5 kg/m2 and averaging 11.9 kg/m2. If we assume that 20 percent of the nodules in this area of 1.25 million km2 are recoverable, its potential recoverable resources are about 2.1 billion dry metric tons of nodules averaging about 25 percent Mn, 1.3 percent Ni, 1.0 percent Cu, 0.22 percent Co, and 0.05 percent Mo—enough to support about 27 mining operations each producing an average of 75 million metric tons of nodules over their lifetimes. Estimates based on other plausible assumptions would be higher or lower, but of the same order of magnitude. Thus it seems probable that the magnitude of the potentially recoverable nodule resources of the Clarion-Clipperton prime area—the most promising now known—is at most in the range of several tens of the average-size operations postulated.

  2. Stochastic production phase design for an open pit mining complex with multiple processing streams

    NASA Astrophysics Data System (ADS)

    Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen

    2014-08-01

    In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

  3. Geochemical, aeromagnetic, and generalized geologic maps showing distribution and abundance of mercury and arsenic, Golconda and Iron Point quadrangles, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, R.L.; Marsh, S.P.

    1971-01-01

    Detailed geologic and geochemical studies of the four 7 1/2-minute wuadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun druring the 1969 summer field season. The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals. Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks, base-metal and barite deposits in Paleozoic sedimentary rocks, and copper-molybdenum in granodiorite plutons of Creataceous age occur in the Edna Mountain dare. None of these deposits have been of much economic significance, although tungsten was mined from the hot-spring deposits during World War II. 

  4. Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects.

    PubMed

    Kobayashi, Naomasa; Okamura, Hideo

    2004-06-01

    The toxicity of the polluted waters originating from a disused lead mine was evaluated using both sea urchin bioassays and heavy metal analysis. Samples from three polluted waters (a seawater and two freshwaters) were collected from the mine area and one seawater sample was taken from a non-contaminated reference site. The test waters contained higher concentrations of heavy metals such as manganese, lead, cadmium, zinc, chromium, nickel, iron, and copper than did ambient seawater. The three test waters had inhibitory effects, in a dose-dependent manner, on the first cleavage of sea urchin embryos and on pluteus formation during the development. Some malformations, such as a radialized pluteus, exo-gastrula, and spaceship Apollo-like embryos were induced by the test waters without dilution. Zinc alone also induced the same anomaly. Zinc in the test seawater was ascertained as one of the metals that caused the anomalies, but not all of the toxicity was caused by zinc. It was speculated that interactive effects, involving zinc and possibly manganese and nickel, were occurring.

  5. Preliminary Model of Porphyry Copper Deposits

    USGS Publications Warehouse

    Berger, Byron R.; Ayuso, Robert A.; Wynn, Jeffrey C.; Seal, Robert R.

    2008-01-01

    The U.S. Geological Survey (USGS) Mineral Resources Program develops mineral-deposit models for application in USGS mineral-resource assessments and other mineral resource-related activities within the USGS as well as for nongovernmental applications. Periodic updates of models are published in order to incorporate new concepts and findings on the occurrence, nature, and origin of specific mineral deposit types. This update is a preliminary model of porphyry copper deposits that begins an update process of porphyry copper models published in USGS Bulletin 1693 in 1986. This update includes a greater variety of deposit attributes than were included in the 1986 model as well as more information about each attribute. It also includes an expanded discussion of geophysical and remote sensing attributes and tools useful in resource evaluations, a summary of current theoretical concepts of porphyry copper deposit genesis, and a summary of the environmental attributes of unmined and mined deposits.

  6. Wilderness study area, mineral resources of the Sleeping Giant, Lewis and Clark County, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tysdal, G.; Reynold, M.W.; Carlson, R.R.

    1991-01-01

    A Mineral resource survey was conducted in 1987 by the U.S. Geological Survey and the U.S. Bureau of Mines to evaluate mineral resources (known) and mineral resource potential (undiscovered) of the Sleeping Giant Wilderness Study Area (MT-075-111) in Lewis and Clark County, Montana. The only economic resource in the study area is an inferred 1.35-million-ton reserve of decorative stone (slate); a small gold placer resource is subeconomic. A high resource potential for decorative slate exists directly adjacent to the area of identified slate resource and in the northeastern part of the study area. The rest of the study area hasmore » a low potential for decorative slate. The westernmost part of the study area has a moderate resource potential for copper and associated silver in state-bound deposits in green beds and limestone; potential is low in the rest of the study are. The study area has a low resource potential for sapphires in placer deposits, gold in placer deposits (exclusive of subeconomic resource mentioned above), phosphate in the Spokane Formation, diatomite in lake deposits, uranium, oil, gas, geothermal energy, and no resource potential for phosphate in the Phosphoria Formation.« less

  7. An eco-friendly method for heavy metal removal from mine tailings.

    PubMed

    Arab, Fereshteh; Mulligan, Catherine N

    2018-06-01

    One of the serious environmental problems that society is facing today is mine tailings. These byproducts of the process of extraction of valuable elements from ores are a source of pollution and a threat to the environment. For example, mine tailings from past mining activities at Giant Mines, Yellowknife, are deposited in chambers, stopes, and tailing ponds close to the shores of The Great Slave Lake. One of the environmentally friendly approaches for removing heavy metals from these contaminated tailing is by using biosurfactants during the process of soil washing. The objective of this present study is to investigate the effect of sophorolipid (SL) concentration, the volume of washing solution per gram of medium, pH, and temperature on the efficiency of sophorolipids in removing heavy metals from mine tailings. It was found that the efficiency of the sophorolipids depends on its concentration, and is greatly affected by changes in pH, and temperature. The results of this experiment show that increasing the temperature from 15 to 23 °C, while using sophorolipids, resulted in an increase in the removal of iron, copper, and arsenic from the mine tailing specimen, from 0.25, 2.1, and 8.6 to 0.4, 3.3, and 11.7%. At the same time, increasing the temperature of deionized water (DIW) from 15 to 23 °C led to an increase in the removal of iron, copper, and arsenic from 0.03, 0.9, and 1.8 to 0.04, 1.1, and 2.1%, respectively. By increasing temperature from 23 to 35 °C, when using sophorolipids, 22% reduction in the removal of arsenic was observed. At the same time while using DI water as the washing solution, increasing temperature from 23 to 35 °C resulted in 6.2% increase in arsenic removal. The results from this present study indicate that sophorolipids are promising agents for replacing synthetic surfactants in the removal of arsenic and other heavy metals from soil and mine tailings.

  8. Geochemical characteristics of Au in the water systemfrom abandoned gold mines area

    NASA Astrophysics Data System (ADS)

    Cho, Kanghee; Kim, Bongju; Kim, Byungjoo; Park, Cheonyoung; Choi, Nagchoul

    2013-04-01

    The AMD (acid mine drainage) poses a threat not only to the aquatic life in mountain streams and rivers, but can also contaminate groundwater and downstream water bodies. Besides pyrite, sulfides of copper, zinc, cadmium, lead and arsenic in the drainage tunnels and tailings piles also undergo similar geochemical reactions, releasing toxic metals and more H+ into the mine drainage. The fate of gold in the AMD system is reduced and precipitated with iron oxides by oxidation-reduction reaction between ferrous/ferric iron and Au3+/Au0. The objective of this study was to investigate the influence of the transport characteristic on the distance through distribution of heavy metals and gold on the interrelation between acid mine drainage and sediments in the abandoned Gwang-yang gold mine, Korea. We conducted to confirm the chemical (chemical analysis and sequential extraction) and mineralogical property (XRD, SEM-EDS and polarization microscope) from AMD, sediments and tailing samples. The result of chemical analysis showed that Fe contents in the AMD and sediments from the upstream to the downstream ranged of 10.99 to 18.60 mg/L and 478.74 to 542.98 mg/kg, respectively. Also the contents of Au and As in the sediment were respectively ranged from 14.06 to 22.85 g/t and 0.245 to 0.612 mg/kg. In XRD analysis of the sediments, x-ray diffracted d-value belong to quartz, geothite was observed. The results of SEM-EDS analysis revealed that iron hydroxide were observed in the sediment and tailing. The result of sequential extraction for Au from the sediment showed that Au predominated in 26 to 27% of Organic matter fraction(STEP 4), and 24 to 25% of Residual fraction(STEP 5).

  9. High-quality draft genome sequence of Kocuria marina SO9-6, an actinobacterium isolated from a copper mine

    PubMed Central

    Castro, Daniel B.A.; Pereira, Letícia Bianca; Silva, Marcus Vinícius M. e; Silva, Bárbara P. da; Palermo, Bruna Rafaella Z.; Carlos, Camila; Belgini, Daiane R.B.; Limache, Elmer Erasmo G.; Lacerda, Gileno V. Jr; Nery, Mariana B.P.; Gomes, Milene B.; Souza, Salatiel S. de; Silva, Thiago M. da; Rodrigues, Viviane D.; Paulino, Luciana C.; Vicentini, Renato; Ferraz, Lúcio F.C.; Ottoboni, Laura M.M.

    2015-01-01

    An actinobacterial strain, designated SO9-6, was isolated from a copper iron sulfide mineral. The organism is Gram-positive, facultatively anaerobic, and coccoid. Chemotaxonomic and phylogenetic properties were consistent with its classification in the genus Kocuria. Here, we report the first draft genome sequence of Kocuria marina SO9-6 under accession JROM00000000 (http://www.ncbi.nlm.nih.gov/nuccore/725823918), which provides insights for heavy metal bioremediation and production of compounds of biotechnological interest. PMID:26484219

  10. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    USGS Publications Warehouse

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.

  11. Fen Wetland Hydrology and Constraints on the Fate and Transport of Heavy Metals in the San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    McClenning, B. K.; Marcantonio, F.; Giardino, J. R.

    2009-12-01

    The interactions of a variety of geomorphic processes and a complex geology have produced spectacular landscapes throughout the San Juan Mountains. This complex geology abounds in mineral deposits that were mined from the mid 1800s through the 1990s. Unfortunately, much of this early mining impacted the streams, lakes, groundwater, and fens in this environment. Today, mining is waning and interest in restoration of this alpine environment is growing. Thus, sustainable restoration requires understanding dynamic interactions in this environment, which mandates an evaluation of the geomorphic and hydrologic processes that shape the present landscape. Fen wetlands, which have developed in geologic niches produced by the intense glaciation of the San Juans, occur throughout the area. The San Juans primarily exhibit a radial drainage pattern, which continue to feed the wetlands. The hydrology of these wetlands controls the chemical and biological processes and may be the most important factor regulating fen wetland function and development. Hydrological models can be used to simulate these processes and to evaluate management scenarios for fen restoration. Five fens, located along glaciated valley floors at elevations of greater than 3,000 m, range in area from 0.4 km2 to 0.7 km2. These fens were compared to determine the influence of their morphometry on runoff and evapotranspiration. The fen hydrology is dominated by irregularly located and poorly linked pools. We are attempting to combine saturated-unsaturated groundwater flow and transport models to study each fen. Hydrological conditions within the fens, which act as a sink or filter for heavy metals, also play a major role in determining the fate of transport of contaminants associated with prior mining activities. Indeed, preliminary studies have found higher than normal concentrations of aluminum, cadmium, copper, iron, manganese, and zinc occurring throughout the San Juan wetlands. Lead is also thought to occur in high concentrations, but less is known about exact levels of lead, and how various competing contaminant sources contribute to its deposition. Mining was prevalent in this area in the late nineteenth century, thus the five fens studied here have a range in contamination history due to proximity of each fen to past mining activities. Heavy metal concentration and Pb isotope ratio profiles (~35-cm depths) were measured at high resolution (2-cm intervals). The profiles provide a history of the fate and transport of the various heavy metal contaminants and, together with the hydrologic transport model, will help guide management scenarios for future restoration.

  12. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that ~125,895 porphyrycopper deposits were formed during Phanerozoic time, that only~47,789 of these remain at various crustal depths, and that thesecontain ~1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, ~0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  13. Risk Assessment of Heavy Metals in Abandoned Mine Lands as Signifcant Contamination Problem in Romania

    NASA Astrophysics Data System (ADS)

    Horvath, E.; Jordan, G.; Fugedi, U.; Bartha, A.; Kuti, L.; Heltai, G.; Kalmar, J.; Waldmann, I.; Napradean, I.; Damian, G.

    2009-04-01

    INTRODUCTION Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Pollution by acid mine drainage (AMD) from ore and coal mining is the outstanding and most important source of mining-induced environmental pollution. Younger et al. (2002) estimates that watercourses polluted by coal mine drainage could be in the order of 2,000 to 3,000 km, and 1,000 to 1,500 km polluted by metal mine discharges for the EU 15 Member States (Younger et al. 2002). Significance of contamination risk posed by mining is also highlighted by mine accidents such as those in Baia Mare, Romania in 2002 and in Aznalcollar, Spain in 1999 (Jordan and D'Alessandro 2004). The new EU Mine Waste Directive (Directive 2006/21/EC) requires the risk-based inventory of abandoned mines in the EU. The cost-effective implementation of the inventory is especially demanding in countries with extensive historic mining and great number of abandoned mine sites, like Romania. The problem is further complicated in areas with trans-boundary effects. The objective of this investigation to carry out the risk-based contamination assessment of a mine site with possible trans-boundary effects in Romania. Assessment follows the source-pathway-receptor chain with a special attention to heavy metal leaching from waste dumps as sources and to transport modelling along surface water pathways. STUDY AREA In this paper the Baiut mine catchment located in the Gutai Mts., Romania, close to the Hungarian border is studied. The polymetallic deposites in the Tertiary Inner-Carpathian Volcanic Arc are exposed by a series of abandoned Zn and Pb mines first operated in the 14th century. Elevation in the high relief catchment ranges from 449m to 1044m. Geology is characterised by andesites hosting the ore deposits and paleogene sediments dominating at the lower topographic elevations. Several mine adits, waste rock dumps are located along the main stream and a large tailings dump is found next to village Baiut just above the receiving floodplain. Predominant land cover is coniferous and mixed forests with agricultural lands on the downstream floodplain. METHODS Six samples at vaious depths were collected from the two major waste rock dumps in the headwater area, and the large tailings dump was also sampled for heavy metal source characterisation. 11 stream sediment samples were collected along the main surface water contamination transport pathway, and a further 11 soil samples were collected in 2 boreholes in the receptor floodplain in October 2008. Besides background stream sediment samples, samples from the exposed rock formations were also collected in order to capture natural background geochemistry in the studied mineralised area. The collected waste rock, stream sediment, soil and rock samples are analysed for total chemical composition (major elements and heavy metals) by ICP-MS spectroscopy, and XRD is used for the determination of mineralogical composition. Rock sample mineralogy is further investigated in thin-sections by petrological microscopy. According to EU legislation expectations, a special emphasis is taken on the determination of metal mobility from the waste rock dumps and various leaching tests are performed and compared including US EPA, USGS and ISO methods. A simple cathcment-based distributed sediment transport model (Jordan et al, 2005; Jordan et al. 2005, 2008) is used to decribe the pathways and quantities of particle-bound contamination. RESULTS AND CONCLUSIONS Results show that (1) sediments are an efficient means for the preliminary inventory of mine contamination as a preparation for the more detailed hydrological sampling and assessment, and (2) the risk-based contamination assessment of mining sites often located in diverse geological, hydrological and landcover environment requires careful and successive sampling design and a tiered assessment approach. Leaching tests are shown cost-efficient and informative methods for source (hazard) characterisation. REFERENCES Directive 2006/21/EC the European Parliament and of the Council on the management of waste from extractive industries and amending Directive 2004/35/EC. Commission of the European Communities, Brussels. Jordan G. and D'Alessandro M. (eds) (2004) Mining, Mining Waste and Related Environmental Issues: Problems and Solutions in the Central and Eastern European Candidate Countries. Joint Research Centre of the European Commission, Ispra. LB-NA-20868-EN-C. Jordan G., van Rompaey A., Szilassi P., Csillag G., Mannaerts C. and Woldai T. (2005) Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agriculture, Ecosystems and Environment, 108, 119-133. Jordan G., van Rompaey A., Somody A., Fügedi U., Bats M. and Farsang A. (2008) Spatial Modelling of Contamination in a Catchment Area Impacted by Mining: a Case Study for the Recsk Copper Mines, Hungary. Journal of Land Contamination and Reclamation (in press). Younger P.L., Banwart S.A., Hedin R.S. (2002) Mine water. Hydrology, pollution, remediation. Kluwer Academic Publishers, Dodrecht.

  14. Typical Geo-Hazards and Countermeasures of Mines in Yunnan Province, Southwest China

    NASA Astrophysics Data System (ADS)

    Cheng, Xianfeng; Qi, Wufu; Huang, Qianrui; Zhao, Xueqiong; Fang, Rong; Xu, Jun

    2016-10-01

    Mining-induced geo-hazards have caused enormous destruction and threat to mines. Known as the "kingdom of nonferrous metals" and located in Southwest China, Yunnan Province developed mining-induced geo-hazards well with characteristics of multiple types, widespread distribution and serious damage. Landslides and debris flows are two common sub-types of geohazards causing most serious damage in Yunnan, and some of them were very representative in the world. Two landslides and two debris flows were chosen to analyze deeply. Both Laojinshan Landslide and Sunjiaqing Landslide possess the characteristic of rock avalanches. The high sliding speed and long distance made the landslides translate into clastic flows with impact force and caused enormous destruction. Rainstorm and mining waste rock were two main factors to induce debris flows in Yunnan mines. Heishan valley debris flow of Dongchuan copper mine was a super large rainstorm type viscose debris flow with very low frequency, which brought a good caution to utilize valleys which looked an unlikely debris flow. Nandagou Valley of Jinding lead-zinc mine in Lanping County was a rainstorm stimulating, gully-type, high frequency and large scale debris flow, which was induced by mining activities. Many countermeasures have been used for Yunnan mines, including engineering treatment technology and ecological remediation, monitoring and forecasting, relocation and public administration.

  15. Discussion of ``relationships between mineralization and silicic volcanism in the Central Andes'' by P.W. Francis, C. Halls and M.C.W. Baker

    NASA Astrophysics Data System (ADS)

    Clark, A. H.; Farrar, E.; Zentilli, M.

    1985-05-01

    In their stimulating paper, Francis et al. (1983) present convincing evidence for the association of several Central Andean tin and copper vein/stockwork deposits with felsic volcanic domes, rather than with stratovolcanoes (ef. Sillitoe, 1973). They also reexamine the problem of the relationships between caldera formation (and voluminous ash-flow tuff eruption) and large-scale hydrothermal activity (see e.g., McKee, 1979; Sillitoe, 1980), concluding that protracted cooling histories of sub-caldera plutons may be reflected in the long time lags (1-10 m.y.) documented between caldera collapse and superimposed mineralization. They cite, inter alia, the El Salvador porphyry copper deposit, northern Chile (lat. 26°17'S) as revealing such a sequence of events, and provide LANDSAT evidence for the presence of an extensively dissected, ca. 15 km wide, caldera in the mine area. We consider the authors' case to be persuasive in general, but suggest that their argument regarding El Salvador is weakened by an apparent mis-reading of Gustafson and Hunt's (1975) brief description of the pre-mineralization geological evolution of the Indio Muerto complex. In particular, they conflate two distinct episodes of subaerial volcanism. Because Mercado (1978) also in part misinterprets the regional and local stratigraphic relationships in her 1 : 25,000 geological map of the area, there is considerable potential for confusion.

  16. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    PubMed

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling

    2014-05-01

    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper in sediments and the contents of copper in overlying water. And there was also significant positive correlation between the contents of copper in sediments and the contents of copper in the surface soils. And the correlation analysis showed that there were significant positive correlations among the contents of cadmium in sediments and the contents of cadmium in surface soils. The above results reflected that the copper pollution or cadmium sources of water, soil and sediments were consistent, which were mainly from heavy metal acidic waste of mining emissions. The correlations between other components were not very obvious, which reflected the sources of pollutants were different.

  17. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    USGS Publications Warehouse

    Wynn, Jeffrey C.

    2000-01-01

    INTRODUCTION AND BACKGROUND: Prince William Forest Park is situated at the northeastern end of the Virginia Gold-Pyrite belt northwest of the town of Dumfries, VA. The U. S. Marine Corps Reservation at Quantico borders the park on the west and south, and occupies part of the same watershed. Two abandoned mines are found within the park: the Cabin Branch pyrite mine, a historic source of acid mine drainage, and the Greenwood gold mine, a source of mercury contamination. Both are within the watershed of Quantico Creek (Fig.1). The Cabin Branch mine (also known as the Dumfries mine) lies about 2.4 km northwest of the town of Dumfries. It exploited a 300 meter-long, lens-shaped body of massive sulfide ore hosted by metamorphosed volcanic rocks; during its history over 200,000 tons of ore were extracted and processed locally. The site became part of the National Capitol Region of the National Park Service in 1940 and is currently managed by the National Park Service. In 1995 the National Park Service, in cooperation with the Virginia Department of Mines, Minerals, and Energy reclaimed the Cabin Branch site. The Virginia Gold-Pyrite belt, also known as the central Virginia volcanic-plutonic belt, is host to numerous abandoned metal mines (Pavlides and others, 1982), including the Cabin Branch deposit. The belt itself extends from its northern terminus near Cabin Branch, about 50 km south of Washington, D.C., approximately 175 km to the southwest into central Virginia. It is underlain by metamorphosed volcanic and clastic (non-carbonate) sedimentary rocks, originally deposited approximately 460 million years ago during the Ordovician Period (Horton and others, 1998). Three kinds of deposits are found in the belt: volcanic-associated massive sulfide deposits, low-sulfide quartz-gold vein deposits, and gold placer deposits. The massive sulfide deposits such as Cabin Branch were historically mined for their sulfur, copper, zinc, and lead contents, but also yielded byproduct gold and silver. The environmental impact of massive sulfide deposits can be substantial. These deposits are characterized by high concentrations of heavy-metal sulfide minerals, hosted by silicate rocks. Thus, weathering of these deposits and their mine wastes has the potential to generate heavy-metal laden sulfuric acid that can have negative impacts on aquatic ecosystems. In addition, lead associated with solid mine wastes has the potential for human health impacts through ingestion. The heavy metals that are encountered in these deposits and are most likely to cause environmental impacts include copper, zinc, lead, cadmium, and arsenic. In addition, the weathering of pyrite releases large amounts of iron, and the acid generated attacks the country rocks and causes the release of large amounts of aluminum, which also can severely impact aquatic ecosystems. A reclamation attempt was made at the site in 1995, including construction of storm-water diversion trenches around the abandoned mine area, grading tailings away from the stream bank, addition of pulverized limestone and topsoil, and revegetation. The post-reclamation chemistry of shallow groundwaters (<3 meters deep) shows a neutral pH on the southwestern bank of the stream but pH of 4.1 to 4.5 on the northeastern bank. The dominant ions are Fe2+ and SO42- (Seal, Haffner, Meier, and Pollio, 1999) A ground electromagnetic survey was conducted over the site in 1999 as part of a wider study ( Seal, Haffner, and Meier, 1998a,b, 1999). It was hoped that a 3-D map of the soil conductivity derived from the survey could provide insight into the distribution of the mobilized sulfides present under the ground. This study was conducted in cooperation with the National Park Service

  18. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium.

    PubMed

    Vardanyan, Narine; Sevoyan, Garegin; Navasardyan, Taron; Vardanyan, Arevik

    2018-05-28

    Possibilities for the recovery of non-ferrous and precious metals from Kapan polymetallic mine tailings (Armenia) were studied. The aim of this paper was to study the possibilities of bioleaching of samples of concentrated tailings by the natural microbial consortium of drainage water. The extent of extraction of metals from the samples of concentrated tailings by natural microbial consortium reached 41-55% and 53-73% for copper and zinc, respectively. Metal leaching efficiencies of pure culture Leptospirillum ferrooxidans Teg were higher, namely 47-93% and 73-81% for copper and zinc, respectively. The content of gold in solid phase of tailings increased about 7-16% and 2-9% after bio-oxidation process by L. ferrooxidans Teg and natural microbial consortium, respectively. It was shown that bioleaching of the samples of tailings could be performed using the natural consortium of drainage water. However, to increase the intensity of the recovery of valuable metals, natural consortium of drainage water combined with iron-oxidizing L. ferrooxidans Teg has been proposed.

  19. Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus.

    PubMed

    Pyatt, F B

    2001-09-01

    Aspects of the industrial archaeology of the northwestern part of the island of Cyprus are outlined. Wastes resultant from copper mining activities of approximately two millennia ago continue to exert an important influence on organisms. Detailed chemical analysis of two tree species growing on archaeologically important metalliferous spoil tips has indicated their ability to bioaccumulate heavy metals and sulfur primarily from the substratum; the bioaccumulation and biomagnification of lead and sulfur are particularly marked in both Acacia and Eucalyptus. The concentrations of elements in different parts of the two tree species are discussed and partitioning is noted together with the fact that while the pod of Acacia and the fruit capsule of Eucalyptus may have an enhanced metal loading, the values in the seeds are much reduced; the importance of this is discussed. The seeds of Acacia differ chemically from those of Eucalyptus. The importance of these plants as biomonitors of environmental quality is noted. Copyright 2001 Academic Press.

  20. Trace metal enrichments in nearshore sediments and accumulation in mussels (Modiolus capax) along the eastern coast of Baja California, Mexico: environmental status in 1995.

    PubMed

    Muñoz-Barbosa, Albino; Huerta-Diaz, Miguel Angel

    2013-12-15

    The biogeochemistry of trace metals in nearshore sediments and mussel was studied at 15 stations along a 1000 km long transect paralleling the west coast of the Gulf of California (GOC). Total trace metal (Me) and enrichment factor (EF(Me)) values in sediments were low due to negligible anthropogenic influence in the region. Past copper mining, however, near Santa Rosalia caused concentrations of Pb, Mn, Co, Zn and Cu which were 10-3.3×10(3) times greater than the average for the rest of the transect. Mussels also showed relatively high trace metal concentrations at the Santa Rosalia stations, but the variability in the spatial distribution was low and had undefined trends. Our results show that, with the exception of Co and Cu, the contamination caused by the copper mine affected sediments to a greater extent than mussels. Copyright © 2013 Elsevier Ltd. All rights reserved.

Top