NASA Astrophysics Data System (ADS)
Darezereshki, E.; Schaffie, M.; Lotfalian, M.; Seiedbaghery, S. A.; Ranjbar, M.
2011-04-01
Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.
Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie
2014-01-01
An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.
Code of Federal Regulations, 2013 CFR
2013-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Code of Federal Regulations, 2014 CFR
2014-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite
Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.
2013-01-01
The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251
Solvent extraction of Cu, Mo, V, and U from leach solutions of copper ore and flotation tailings.
Smolinski, Tomasz; Wawszczak, Danuta; Deptula, Andrzej; Lada, Wieslawa; Olczak, Tadeusz; Rogowski, Marcin; Pyszynska, Marta; Chmielewski, Andrzej Grzegorz
2017-01-01
Flotation tailings from copper production are deposits of copper and other valuable metals, such as Mo, V and U. New hydrometallurgical technologies are more economical and open up new possibilities for metal recovery. This work presents results of the study on the extraction of copper by mixed extractant consisting p -toluidine dissolved in toluene. The possibility of simultaneous liquid-liquid extraction of molybdenum and vanadium was examined. D2EHPA solutions was used as extractant, and recovery of individual elements compared for the representative samples of ore and copper flotation tailings. Radiometric methods were applied for process optimization.
Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.
Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta
2011-10-01
Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.
Bioleaching of copper oxide ore by Pseudomonas aeruginosa
NASA Astrophysics Data System (ADS)
Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.
2013-12-01
Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.
Chalcopyrite—bearer of a precious, non-precious metal
Kimball, Bryn E.
2013-01-01
The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.
Borisenkova, R V; Lutsenko, L A; Skriabin, S Iu; Khristenko, P P
1996-01-01
Studies of drilling and blasting method of copper and nickel ores extraction at underground Transpolar mines proved that the highest concentrations of dust appeared during dry drilling of vertical blast holes, work of scraper windlass, fragmentation of out-size blocks, preparation of concrete mixture. Presence of aggressive metals, especially nickel, in the ore dust is a main base for planned thorough investigations of fibrogenic, toxic and carcinogenic effects of copper and nickel ore dust, for more precise assessment of its MAC in the air of workplace. Two-step purification of exhaust gases appearing due to mining diesel machines is not quite efficient, as the concentrations of nitrogen oxides (assessed through nitrogen dioxide) continually exceeded the MAC.
Method for extracting copper, silver and related metals
Moyer, B.A.; McDowell, W.J.
1987-10-23
A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.
Method for extracting copper, silver and related metals
Moyer, Bruce A.; McDowell, W. J.
1990-01-01
A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.
Potential for improved extraction of tellurium as a byproduct of current copper mining processes
NASA Astrophysics Data System (ADS)
Hayes, S. M.; Spaleta, K. J.; Skidmore, A. E.
2016-12-01
Tellurium (Te) is classified as a critical element due to its increasing use in high technology applications, low average crustal abundance (3 μg kg-1), and primary source as a byproduct of copper extraction. Although Te can be readily recovered from copper processing, previous studies have estimated a 4 percent extraction efficiency, and few studies have addressed Te behavior during the entire copper extraction process. The goals of the present study are to perform a mass balance examining Te behavior during copper extraction and to connect these observations with mineralogy of Te-bearing phases which are essential first steps in devising ways to optimize Te recovery. Our preliminary mass balance results indicate that less than 3 percent of Te present in copper ore is recovered, with particularly high losses during initial concentration of copper ore minerals by flotation. Tellurium is present in the ore in telluride minerals (e.g., Bi-Te-S phases, altaite, and Ag-S-Se-Te phases identified using electron microprobe) with limited substitution into sulfide minerals (possibly 10 mg kg-1 Te in bulk pyrite and chalcopyrite). This work has also identified Te accumulation in solid-phase intermediate extraction products that could be further processed to recover Te, including smelter dusts (158 mg kg-1) and pressed anode slimes (2.7 percent by mass). In both the smelter dusts and anode slimes, X-ray absorption spectroscopy indicates that about two thirds of the Te is present as reduced tellurides. In anode slimes, electron microscopy shows that the remaining Te is present in an oxidized form in a complex Te-bearing oxidate phase also containing Pb, Cu, Ag, As, Sb, and S. These results clearly indicate that more efficient, increased recovery of Te may be possible, likely at minimal expense from operating copper processing operations, thereby providing more Te for manufacturing of products such as inexpensive high-efficiency solar panels.
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... Molybdenum Ores Subcategory § 440.104 New source performance standards (NSPS). Except as provided in subpart... technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... Molybdenum Ores Subcategory § 440.104 New source performance standards (NSPS). Except as provided in subpart... technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
NASA Astrophysics Data System (ADS)
Hualong, Yu; Xiaorong, Liu
2017-04-01
Copper solvent extraction entrained and dissoluted organics (SX organics) in the raffinate during SX operation can contaminated chalcopyrite ores and influence bioleaching efficiency by raffinate recycling. The adsorption and bioleaching of A. ferrooxidans and L. ferriphilum with contaminated ores were investigated. The results showed that, A. ferrooxidans and L. ferriphilum cells could adsorb quickly on minerals, the adsorption rate on contaminated ores were 83% and 60%, respectively, larger than on uncontaminated ores. However, in the bioleaching by the two kinds of acid bacterias, contaminated ores presented a lower bioleaching efficiency.
Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper.
Vieira, Marisa D M; Goedkoop, Mark J; Storm, Per; Huijbregts, Mark A J
2012-12-04
In the life cycle assessment (LCA) of products, the increasing scarcity of metal resources is currently addressed in a preliminary way. Here, we propose a new method on the basis of global ore grade information to assess the importance of the extraction of metal resources in the life cycle of products. It is shown how characterization factors, reflecting the decrease in ore grade due to an increase in metal extraction, can be derived from cumulative ore grade-tonnage relationships. CFs were derived for three different types of copper deposits (porphyry, sediment-hosted, and volcanogenic massive sulfide). We tested the influence of the CF model (marginal vs average), mathematical distribution (loglogistic vs loglinear), and reserve estimate (ultimate reserve vs reserve base). For the marginal CFs, the statistical distribution choice and the estimate of the copper reserves introduce a difference of a factor of 1.0-5.0 and a factor of 1.2-1.7, respectively. For the average CFs, the differences are larger for these two choices, i.e. respectively a factor of 5.7-43 and a factor of 2.1-3.8. Comparing the marginal CFs with the average CFs, the differences are higher (a factor 1.7-94). This paper demonstrates that cumulative grade-tonnage relationships for metal extraction can be used in LCA to assess the relative importance of metal extractions.
Production Quality, Value and Revenue in Polish Copper Mines
NASA Astrophysics Data System (ADS)
Malewski, Jerzy
2016-10-01
Polish copper ore deposits, located in the Legnica-Głogów Copper District (LGOM) documented an area of over 200 km2, at a depth of 600-1400 meters. The estimated resources equal to 22.7 million tonnes of copper (proven and probable), or 44.4 million t (measured and indicated), or 8.7 million t (infered), at the criterion of profitability at a cost less than 50 cents per ton of ore. Organization of production takes place in the combine of mining and metallurgy (KGHM). Ore is extracted in three mines: Lubin, Polkowice-Sieroszowice and Rudna. The total production of these mines is about 31 million tonnes/year of ore, from which it receives a 576000 t/y of copper, 1152 t/y of silver, 1066 kg/y of gold, and certain amounts of Pb, Zn, Se, Re, Ni, SO4, H2SO4. The quality (grading) of the ore in exploited deposits is varied, affecting the quality and quantity of produced concentrates, what influence on its market value. The paper presents a brief description of ore deposit and estimates mines revenues and production profit. Calculations show that at today's (June 2016) metal prices each of the mine can expect the following net smelter revenue: Lubin ∼⃒41, P-S ∼⃒70, Rudna ∼⃒75 /t of ore. But estimated cost production differs less, i.e.: 45, 56 and 65/t of ore respectively, because of mining depth.
NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.K. Kawatra; T.C. Eisele; J.A. Gurtler
2005-04-01
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will workmore » satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.« less
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; J. A. Gurtler
2004-03-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yongqing, E-mail: ydonglai@mail.cgs.gov.cn; Zhao Pengda; Chen Jianguo
2001-03-15
A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. Amore » geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.« less
Strong, B; Murray-Smith, R
1974-12-01
A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.
Physical, chemical and antimicrobial characterization of copper-bearing material
NASA Astrophysics Data System (ADS)
Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan
2010-12-01
Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.
Earth Observations taken by the Expedition 22 Crew
2010-01-14
ISS022-E-026137 (14 Jan. 2010) --- Open Pit Mines in southern Arizona are featured in this image photographed by an Expedition 22 crew member on the International Space Station. The State of Arizona is the United States? largest producer of the metal copper, primarily mined from ore bodies known as porphyry copper deposits. Copper is a good conductor of electricity and heat, and is a vital element of virtually all of our electronic devices and components. A porphyry copper deposit is a geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes, it forms an igneous rock with large crystals embedded in a fine-grained matrix, known as porphyry. Hot fluids circulate through the magma and surrounding rocks via fractures, depositing copper-bearing and other minerals in characteristic spatial patterns that signal the nature of the ore body to a geologist. The most common approach to extracting metal-bearing ore from a porphyry copper deposit is by open-pit mining. For more details, please refer to http://earth.jsc.nasa.gov/EarthObservatory/OpenPitMinesSouthernArizona.htm.
Determining Prehistoric Mining Practices in Southeastern Europe Using Copper Isotopes
NASA Astrophysics Data System (ADS)
Powell, Wayne; Mathur, Ryan; Bankoff, H. Arthur; Bulatović, Aleksandar; Filipović, Vojislav
2017-04-01
Copper was first smelted from malachite at 5000 BCE in Serbia. There the Eneolithic (Copper Age) began with the production of small jewelry pieces and progressed to the casting of massive copper tools near its end, approximately 2000 years later. However, copper metallurgy in southeastern Europe ceased or significantly decreased in the later third millennium, several centuries before the Bronze Age began. Whether this metallurgical hiatus was the result a cultural shift or depletion of natural resources remains an ongoing subject of debate. It has been speculated that the marked reduction in metal production at the Eneolithic-Bronze Age transition was due to the exhaustion of surficial weathered oxide ores and the technical inability to smelt the underlying sulfide minerals. The behavior of copper isotopes in near-surface environments allows us to differentiate highly weathered oxide ores that occur at Earth's surface from non-weathered sulfide ores that occur at greater depth. The oxidation of copper generates fluids and associated minerals that are enriched in the 65Cu isotope. Thus, oxidative weathering of sulfide ores leads to the development of three stratified isotopic reservoirs for copper: 1) oxides above the water table that are enriched in 65Cu; 2) residual weathered sulfides minerals at the water table that are depleted in 65Cu; and 3) non-fractionated, non-weathered sulfide ore below the water table. And so, the transformative shift to sulfide-based metallurgy will be delineated by a significant decrease in δ65Cu in copper artifacts corresponding to the first use of 65Cu-depleted residual ore. The degree of variability of primary ore composition from numerable ore deposits would likely result in the overlap of copper isotope composition between populations of artifacts. Therefore, shifts in the mean copper isotope values and associated standard deviations would best reflect changes in ores use. A baseline value of -0.2‰ ±0.5 (1) was determined from an average of 164 published measurements from chalcopyrite and bornite from 8 epithermal and massive sulfide deposits. Twenty-two (88%) of Eneolithic artifacts (n=25) have values greater than this, whereas eight (73%) of the Early Bronze age artifacts (n=11) yield compositions less than -0.2‰. The mean of Middle Bronze Age, Late Bronze Age and Early Iron Age (n=86) cluster near -0.2‰. This pattern is consistent with a progression to the mining of ore assemblages from increasing depths through prehistory. The shift from 65Cu-enriched to 65Cu-depleted copper in artifacts across the Eneolithic-Bronze Age boundary at 2500 BCE indicates that accessible near-surface oxide ore reserves were depleted after approximately two millennia of mining, and that the beginning of the Bronze Age in the Balkans corresponded to the acquisition of pyrotechnology which allowed for the extraction of metals from sulfide minerals and the resumption of copper mining activity in the region.
Biomining: metal recovery from ores with microorganisms.
Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine
2014-01-01
Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.
Ngom, Baba; Liang, Yili; Liu, Xueduan
2014-01-01
A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-03-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; J. A. Gurtler
2005-09-30
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less
NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.K. Kawatra; T.C. Eisele; J.A. Gurtler
2004-04-01
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.« less
Biotechnology for the extractive metals industries
NASA Astrophysics Data System (ADS)
Brierley, James A.
1990-01-01
Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.
Responses of microbial community to pH stress in bioleaching of low grade copper sulfide.
Wang, Yuguang; Li, Kai; Chen, Xinhua; Zhou, Hongbo
2018-02-01
The microbial diversity and dynamics in the leachates and on the ore surfaces of different depth of the column were analyzed during bioleaching of low grade copper sulfide at different pH, after inoculation with the same inoculum containing mesophiles and moderate thermophiles. The results indicate that low pH was beneficial to enhance copper extraction. The highest copper extraction (86%) was obtained when pH was controlled at 1.0-1.5. The microbial structures on the ore surfaces were independent of community structures in the leachate, even at the top portion of column. Microbial richness and evenness increased with decreasing pH during bioleaching. pH had significant effects on microbial community structure in the leachate and on the mineral surface of different depth of the column. Leptospirillum ferriphilum accounted for the highest proportions of the community at most times when pH was operated during bioleaching, especially at the end of run. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... provided in subpart L of this part any new source subject to this subsection must achieve the following... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that...
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... provided in subpart L of this part any new source subject to this subsection must achieve the following... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Biomining-biotechnologies for extracting and recovering metals from ores and waste materials.
Johnson, D Barrie
2014-12-01
The abilities of acidophilic chemolithotrophic bacteria and archaea to accelerate the oxidative dissolution of sulfide minerals have been harnessed in the development and application of a biotechnology for extracting metals from sulfidic ores and concentrates. Biomining is currently used primarily to leach copper sulfides and as an oxidative pretreatment for refractory gold ores, though it is also used to recover other base metals, such as cobalt, nickel and zinc. Recent developments have included using acidophiles to process electronic wastes, to extract metals from oxidized ores, and to selectively recover metals from process waters and waste streams. This review describes the microorganisms and mechanisms involved in commercial biomining operations, how the technology has developed over the past 50 years, and discusses the challenges and opportunities for mineral biotechnologies in the 21st century. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hao, Xiao-dong; Liang, Yi-li; Yin, Hua-qun; Liu, Hong-wei; Zeng, Wei-min; Liu, Xue-duan
2017-04-01
Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains was carried out by mixed cultures on a small scale over a period of 210 d. Lump ores as a framework were loaded at the bottom of the ore heap. The overall copper leaching rates of tailings and lump ores were 57.10wt% and 65.52wt%, respectively. The dynamic shifts of microbial community structures about attached microorganisms were determined using the Illumina MiSeq sequencing platform based on 16S rRNA amplification strategy. The results indicated that chemolithotrophic genera Acidithiobacillus and Leptospirillum were always detected and dominated the microbial community in the initial and middle stages of the heap bioleaching process; both genera might be responsible for improving the copper extraction. However, Thermogymnomonas and Ferroplasma increased gradually in the final stage. Moreover, the effects of various physicochemical parameters and microbial community shifts on the leaching efficiency were further investigated and these associations provided some important clues for facilitating the effective application of bioleaching.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
Code of Federal Regulations, 2012 CFR
2012-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Code of Federal Regulations, 2011 CFR
2011-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
Xiao, Yunhua; Liu, Xueduan; Dong, Weiling; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Ma, Liyuan; Hao, Xiaodong; Zhang, Xian; Xu, Zhen; Yin, Huaqun
2017-07-01
This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.
Donaldson, E M; Wang, M
1986-03-01
Methods for determining ~ 0.2 mug g or more of silver and cadmium, ~ 0.5 mug g or more of copper and ~ 5 mug g or more of antimony, bismuth and indium in ores, concentrates and related materials are described. After sample decomposition and recovery of antimony and bismuth retained by lead and calcium sulphates, by co-precipitation with hydrous ferric oxide at pH 6.20 +/- 0.05, iron(III) is reduced to iron(II) with ascorbic acid, and antimony, bismuth, copper, cadmium and indium are separated from the remaining matrix elements by a single methyl isobutyl ketone extraction of their iodides from ~2M sulphuric acid-0.1M potassium iodide. The extract is washed with a sulphuric acid-potassium iodide solution of the same composition to remove residual iron and co-extracted zinc, and the extracted elements are stripped from the extract with 20% v v nitric acid-20% v v hydrogen peroxide. Alternatively, after the removal of lead sulphate by filtration, silver, copper, cadmium and indium can be extracted under the same conditions and stripped with 40% v v nitric acid-25% v v hydrochloric acid. The strip solutions are treated with sulphuric and perchloric acids and ultimately evaporated to dry ness. The individual elements are determined in a 24% v v hydrochloric acid medium containing 1000 mug of potassium per ml by atomic-absorption spectrophotometry with an air-acetylene flame. Tin, arsenic and molybdenum are not co-extracted under the conditions above. Results obtained for silver, antimony, bismuth and indium in some Canadian certified reference materials by these methods are compared with those obtained earlier by previously published methods.
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-12-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the performance of pellet binders, and have directly saved energy by increasing filtration rates of the pelletization feed by as much as 23%.« less
Water leaching of titanium from ore flotation residue.
Jaworska, Malgorzata M; Guibal, Eric
2003-01-01
Copper ore tailings were tested for the stability of titanium submitted to water leaching in three different reactor systems (agitated vessel, bioreactor and percolated fixed-bed column). For each of these systems, titanium extraction did not exceed 1% of the available metal. Biomass removed from ore residue adsorbed a small part of the titanium with sorption capacities below 20-30 mg g(-1), but most of this biomass was sequestered in the ore residue. Oxygen and carbon dioxide concentrations were monitored and changes in concentration correlated with bacteria development at the initial stage of the process and to fungal development in the latter stages.
Han, Baisui; Altansukh, Batnasan; Haga, Kazutoshi; Stevanović, Zoran; Jonović, Radojka; Avramović, Ljiljana; Urosević, Daniela; Takasaki, Yasushi; Masuda, Nobuyuki; Ishiyama, Daizo; Shibayama, Atsushi
2018-06-15
Sulfide copper mineral, typically Chalcopyrite (CuFeS 2 ), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of un‒recovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of low‒grade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using high‒pressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS 2 as main copper mineral) by HPL in a H 2 O media in the presence of pyrite, whereas the iron was co‒dissolved with copper according to an equation given as C Cu = 38.40 × C Fe . To avoid co‒dissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPL‒solvent extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Malewski, Jerzy
2017-12-01
Geological and technological conditions of Cu production in the Polish copper mines of the Legnica-Glogów Copper Belt are presented. Cu production is recognized as a technological fractal consisting of subsystems for mineral exploration, ore extraction and processing, and metallurgical treatment. Qualitative and quantitative models of these operations have been proposed, including estimation of their costs of process production. Numerical calculations of such a system have been performed, which allow optimize the system parameters according to economic criteria under variable Cu mineralization in the ore deposit. The main objective of the study is to develop forecasting tool for analysis of production efficiency in domestic copper mines based on available sources of information. Such analyses are primarily of social value, allowing for assessment of the efficiency of management of local mineral resources in the light of current technological and market constraints. At the same time, this is a concept of the system analysis method to manage deposit exploitation on operational and strategic level.
The extractive metallurgy of gold
NASA Astrophysics Data System (ADS)
Kongolo, K.; Mwema, M. D.
1998-12-01
Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.
[Bronchopulmonary diseases in workers engaged in deep-mined extraction of copper-nickel ore].
Siurin, S A; Derevoedov, A A; Nikanov, A N
2008-01-01
Examinations were made in 220 male workers exposed to dust-gas (low-silicon dioxide, nitric oxides, and carbon oxide) mixture, physical exercises, and cooling microclimate on deep-mined output of copper-nickel ore. Twenty-eight per cent of the workers were found to have evolving chronic bronchitis that did not substantially affect the patients' working capacity; 3.2% had chronic obstructive pulmonary disease and 1.4% had asthma that had developed before the onset of professional activity. 32.3% of the examinees were ascertained to have individual clinicofunctional disorders that permit their identification as a bronchopulmonary disease risk group to carry out early preventive and rehabilitative measures.
Translations on Eastern Europe, Scientific Affairs, Number 543
1977-04-29
They are economically more effective than those now used, for one gram of glass can replace ten kilograms of copper wire. For several years such a...and 62 times for nonferrous ores, the greatest increase being recorded for copper bearing ores. 1. Iron Ores Overall, the iron ore deposits which...percent S. 30 Intensive research and design work is being conducted to exploit two deposits of poor copper ore (0.25-D.35 percent Cu), a deposit of
Simulation of geochemical processes responsible for the formation of the Zhezqazghan deposit
NASA Astrophysics Data System (ADS)
Ryzhenko, B. N.; Cherkasova, E. V.
2014-05-01
Physicochemical computer simulation of water-rock systems at a temperature of 25-150°C and under a pressure of up to 600 bar has been carried out for quantitative description of the mineralization formation conditions at sandstone- and shale-hosted copper deposits. The simulation is based on geological and geochemical information concerning the Zhezqazghan deposit and considers (i) a source of ore matter, (ii) composition of the fluid that transfers ore matter to the ore formation zone, and (iii) factors of ore concentration. It has been shown that extraction of copper from minerals of rocks and its accumulation in aqueous solution are optimal at a high mass ratio of rock to water (R/W > 10), Eh of +200 to -100 mV, and an obligatory content of chloride ions in the aqueous phase. The averaged ore-bearing fluid Cl95SO44//Ca50(Na + K)30Mg19 (eq %), pH ˜ 4, mineralization of up to 400 g/L, is formed by the interaction of red sandstone beds with a sedimentogenic brine (a product of metamorphism of seawater in carbonate rocks enriched in organic matter). The ore concentration proceeds in the course of cooling from 150 to 50°C during filtration of ore-bearing fluid through red sandstone beds in the rock-water system thermodynamically opened with respect to the reductive components.
Biomineralization of metal-containing ores and concentrates.
Rawlings, Douglas E; Dew, David; du Plessis, Chris
2003-01-01
Biomining is the use of microorganisms to extract metals from sulfide and/or iron-containing ores and mineral concentrates. The iron and sulfide is microbially oxidized to produce ferric iron and sulfuric acid, and these chemicals convert the insoluble sulfides of metals such as copper, nickel and zinc to soluble metal sulfates that can be readily recovered from solution. Although gold is inert to microbial action, microbes can be used to recover gold from certain types of minerals because as they oxidize the ore, they open its structure, thereby allowing gold-solubilizing chemicals such as cyanide to penetrate the mineral. Here, we review a strongly growing microbially-based metal extraction industry, which uses either rapid stirred-tank or slower irrigation technology to recover metals from an increasing range of minerals using a diversity of microbes that grow at a variety of temperatures.
Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans
NASA Astrophysics Data System (ADS)
Yu, Hualong; Liu, Xiaorong; Shen, Junhui; Chi, Daojie
2017-03-01
Solvent extraction organics (SX organics) entrained and dissoluted in the raffinate during copper SX operation, can impact bioleaching in case of raffinate recycling. The influence of SX organics on bioleaching process by Acidithiobacillus ferrooxidans (At. ferrooxidans) has been investigated. The results showed that, cells of At. ferrooxidans grew slower with contaminated low-grade chalcopyrite ores in shaken flasks bioleaching, the copper bioleaching efficiency reached 15%, lower than that of 24% for uncontaminated minerals. Obviously, the SX organics could adsorb on mineral surface and hinder its contact with bacterials, finanlly lead to the low bioleaching efficiency.
Manganese biomining: A review.
Das, A P; Sukla, L B; Pradhan, N; Nayak, S
2011-08-01
Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biomining's future. Copyright © 2011 Elsevier Ltd. All rights reserved.
4. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
4. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTHEAST. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Chemistry in the Time of the Pharaohs
ERIC Educational Resources Information Center
Loyson, Peter
2011-01-01
The Egyptians were known in the ancient world as experts in many applied chemistry fields such as metallurgy, wine and beer making, glass making, paper manufacture, paint pigments, dyes, cosmetics, perfumes, and pharmaceuticals. They made significant developments in the extraction of metals from their ores, especially copper and gold. The…
MERCURY IN STAMP SAND DISCHARGES: IMPLICATIONS FOR LAKE SUPERIOR MERCURY CYCLING
Approximately a half billion tons of waste rock from the extraction of native copper and silver ores was discharged into the Lake Superior basin. Stamping was the method of choice to recover these metals from the surrounding poor rock. This process created large amounts of extre...
The arsenic removal from arsenopyrite in sulfide mineral by physicochemical extraction
NASA Astrophysics Data System (ADS)
Jo, Jiyu; Cho, Kanghee; Choi, Nagchoul; Park*, Cheonyoung
2015-04-01
The most abundant As ore mineral is arsenopyrite (FeAsS). Arsenopyrite is present in sulfide ores associated with sediment-hosted Au deposits, it tends to be the earliest-formed mineral, derived from hydrothermal solutions and formed at temperatures typically of 100(degree Celsius) or more. The aim of this study was to investigate the mineralogical phase change and arsenic removal from arsenopyrite as a penalty element in sulfide mineral contained Au by physical extraction (high frequency) and chemical leaching (thiocyanate). Arsenic removal experiments for were performed under various conditions of high frequency exposure(1~35 min), thiocyanate concentration (0.1~1.0M), HCl concentration (0.1~2.0M), copper(2) sulfate concentration (0.1~1.0M), temperature (30~60 degree Celsius). Increasing the high frequency exposure produced a positive effect on arsenic removal in arsenopyrite. The highest percentage arsenic removal of 96.67% was obtained under the following conditions by thiocyanate leaching: thiocyanate concentration = 1.0M ; HCl concentration = 2.0M ; copper(2) sulfate concentration = 1.0M ; temperature = 60(degree Celsius) This study demonstrates the adequate performance of physical extraction (high frequency) and chemical leaching (thiocyanate) for the arsenic removal from arsenopyrite as a penalty element.
19 CFR 10.98 - Copper-bearing fluxing material.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) [Reserved] (c) There shall be filed in connection with the entry of such copper-bearing ores...
19 CFR 10.98 - Copper-bearing fluxing material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) [Reserved] (c) There shall be filed in connection with the entry of such copper-bearing ores...
Earth Observations taken by the Expedition 16 Crew
2008-03-05
ISS016-E-031056 (3 March 2008) --- Cananea Copper Mine, Sonora, Mexico is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. One of the largest open-pit copper mines in the world, the Cananea mine produced over 164,000 tons of copper in 2006. The mine is located approximately 40 kilometers south of the border between the USA (Arizona) and Mexico (Sonora). Copper and gold ores at Cananea are found in a porphyry copper deposit, a geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. A porphyry - an igneous rock with large crystals in a fine-grained matrix -- is formed as the magma cools and crystallizes. While crystallization is occurring, hot fluids can circulate through the magma and surrounding rocks via fractures. This hydrothermal alteration of the rocks typically forms copper-bearing and other minerals. Much of the Cananea mine's ore is concentrated in breccia pipes -- mineralized rod or chimney-shaped bodies that contain broken rock fragments. The active, two-kilometers-in-diameter Colorada Pit (top right) is recognizable in this image by the concentric steps or benches cut around its perimeter. These benches allow for access into the pit for extraction of ore and waste materials. Water (black) is visible filling the bottom of the pit, and several other basins in the surrounding area. The city of Cananea -- marked by its street grid -- is located to the northeast of the mine workings. A leachate reservoir is located to the east of the mine (lower left) for removal and evaporation of water pumped from the mine workings -- the bluish-white coloration of deposits near the reservoir suggests the high mineral content of the leachate. A worker strike halted mine operations in 2007.
Microwave enhanced recovery of nickel-copper ore: communition and floatability aspects.
Henda, R; Hermas, A; Gedye, R; Islam, M R
2005-01-01
A study describing the effect of microwave radiation, at a frequency of 2450 MHz, on the processes of communication and flotation of a complex sulphide nickel-copper ore is presented. Ore communication has been investigated under standard radiation-free conditions and after ore treatment in a radiated environment as a function of ore size, exposure time to radiation, and microwave power. The findings show that communication is tremendously improved by microwave radiation with values of the relative work index as low as 23% at a microwave power of 1.406 kW and after 10 s of exposure time. Communication is affected by exposure time and microwave power in a nontrivial manner. In terms of ore floatability, the experimental tests have been carried out on a sample of 75 microm in size under different exposure times. The results show that both ore concentrate recoveries and grades of nickel and copper are significantly enhanced after microwave treatment of the ore with relative increases in recovered concentrate, grade of nickel, and grade of copper of 26 wt%, 15 wt%, and 27%, respectively, at a microwave power of 1330 kW and after 30 s of exposure time.
1. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
1. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTH. CONCRETE BASE FOR FUEL TANKS (FEATURE 21) VISIBLE IN FOREGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Disposal and improvement of contaminated by waste extraction of copper mining in chile
NASA Astrophysics Data System (ADS)
Naranjo Lamilla, Pedro; Blanco Fernández, David; Díaz González, Marcos; Robles Castillo, Marcelo; Decinti Weiss, Alejandra; Tapia Alvarez, Carolina; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria
2016-04-01
This project originated from the need of a mining company, which mines and processes copper ore. High purity copper is produced with an annual production of 1,113,928 tons of concentrate to a law of 32%. This mining company has generated several illegal landfills and has been forced by the government to make a management center Industrial Solid Waste (ISW). The forecast volume of waste generated is 20,000 tons / year. Chemical analysis established that the studied soil has a high copper content, caused by nature or from the spread of contaminants from mining activities. Moreover, in some sectors, soil contamination by mercury, hydrocarbons and oils and fats were detected, likely associated with the accumulation of waste. The waters are also impacted by mining industrial tasks, specifically copper ores, molybdenum, manganese, sulfates and have an acidic pH. The ISW management center dispels the pollution of soil and water and concentrating all activities in a technically suitable place. In this center the necessary guidelines for the treatment and disposal of soil contamination caused by uncontrolled landfills are given, also generating a leachate collection system and a network of fluid monitoring physicochemical water quality and soil environment. Keywords: Industrial solid waste, soil contamination, Mining waste
3. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
3. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTHWEST. DUPLEXES (FEATURES 8 AND 9) ARE VISIBLE AT RIGHT EDGE OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
2. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
2. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING NORTH-NORTHWEST. PORTION OF HEADFRAME AND STORAGE TANKS (FEATURE 18) VISIBLE IN UPPER RIGHT CORNER OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Development and application of biotechnologies in the metal mining industry.
Johnson, D Barrie
2013-11-01
Metal mining faces a number of significant economic and environmental challenges in the twenty-first century for which established and emerging biotechnologies may, at least in part, provide the answers. Bioprocessing of mineral ores and concentrates is already used in variously engineered formats to extract base (e.g., copper, cobalt, and nickel) and precious (gold and silver) metals in mines throughout the world, though it remains a niche technology. However, current projections of an increasing future need to use low-grade primary metal ores, to reprocess mine wastes, and to develop in situ leaching technologies to extract metals from deep-buried ore bodies, all of which are economically more amenable to bioprocessing than conventional approaches (e.g., pyrometallurgy), would suggest that biomining will become more extensively utilized in the future. Recent research has also shown that bioleaching could be used to process a far wider range of metal ores (e.g., oxidized ores) than has previously been the case. Biotechnologies are also being developed to control mine-related pollution, including securing mine wastes (rocks and tailings) by using "ecological engineering" approaches, and also to remediate and recover metals from waste waters, such as acid mine drainage. This article reviews the current status of biotechnologies within the mining sector and considers how these may be developed and applied in future years.
NASA Astrophysics Data System (ADS)
Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Gerdes, A.; Rovnushkin, M. Yu.
2014-06-01
The Krasnotur'insk skarn copper ore field known from the theoretical works of Academician K.S. Korzhinskii is located in the western part of the Tagil volcanic zone (in the area of the town of Krasnotur'insk). The ore field is composed of layered Devonian (Emsian) volcanosedimentary rocks intruded by small plutons of quartz diorites, diorites, and gabbrodiorites. Widespread pre-ore and intra-ore dikes of similar composition control the abundance of the andradite skarns formed after limestones and the magnetitesulfide and sulfide ore bodies formed after skarns. The LA-ICP-MS U-Pb concordant age of zircon from the quartz diorite of the Vasil'evsko-Moskalevskii pluton calculated by 16 analyses (16 crystals) is 407.7 ± 1.6 Ma (MSWD = 1.5). Taking into account the geological and petrogeochemical similarity of diorites of small plutons and intra-ore dikes, it is assumed that this age corresponds to the period of formation of the ore-magmatic system of the Krasnotur'insk skarn copper ore field. It was probably formed somewhat earlier than the Auerbakh montzonitic pluton and the accompanying skarn magnetite deposits in the south.
The application of PGNAA borehole logging for copper grade estimation at Chuquicamata mine.
Charbucinski, J; Duran, O; Freraut, R; Heresi, N; Pineyro, I
2004-05-01
The field trials of a prompt gamma neutron activation (PGNAA) spectrometric logging method and instrumentation (SIROLOG) for copper grade estimation in production holes of a porphyry type copper ore mine, Chuquicamata in Chile, are described. Examples of data analysis, calibration procedures and copper grade profiles are provided. The field tests have proved the suitability of the PGNAA logging system for in situ quality control of copper ore.
Analysis of variance in investigations on anisotropy of Cu ore deposits
NASA Astrophysics Data System (ADS)
Namysłowska-Wilczyńska, B.
1986-10-01
The problem of variability of copper grades and ore thickness in the Lubin copper ore deposit in southwestern Poland is presented. Results of statistical analysis of variations of ledge parameters carried out for three exploited regions of the mine, representing different types of lithological profile show considerable differences. Variability of copper grades occurs in vertical profiles, as well as on extension of field (the copper-bearing series). Against the background of a complex, well-substantiated description of the spatial variability in the Lubin deposit, a methodology is presented that has been applied for the determination of homogeneous ore blocks. The method is a two-factorial (cross) analysis of variance with the special tests of Tukey, Scheffe and Duncan. Blocks of homogeneous sandstone ore have dimensions of up to 160,000 m2 and 60,000 m2 in the case of the Cu content parameter and 200,000 m2 and 10,000 m2 for the thickness parameter.
Hydrometallurgical Extraction of Zinc and Copper A 57Fe-Mössbauer and XRD Approach
NASA Astrophysics Data System (ADS)
Mulaba-Bafubiandi, A. F.; Waanders, F. B.
2005-02-01
The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate roast leach electro winning process. In the present investigation a zinc copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS2), was studied. The 57Fe-Mössbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900°C for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe2O4) and zinc oxide (ZnO) and half the amount of willemite (Zn2SiO4). The Mössbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H2SO4 and HNO3, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.
[Biohydrometallurgical technology of a complex copper concentrate process].
Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T F
2011-01-01
Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.
NASA Astrophysics Data System (ADS)
Bhattacharya, H. N.; Bandyopadhyay, Sandip
2018-03-01
Shallow marine sandstone-shale-carbonate sedimentary rocks of the Paleoproterozoic northern Cuddapah basin host copper (Nallakonda deposit), copper-lead (Dhukonda deposit), and lead mineralization (Bandalamottu deposit) which together constitute the Agnigundala Sulfide Belt. The Cu sulfide mineralization in sandstone is both stratabound and disseminated, and Pb sulfide mineralization occurs as stratabound fracture filling veins and/or replacement veins within dolomite. Systematic mineralogical and sulfur, carbon, and oxygen isotope studies of the three deposits indicate a common ore-fluid that deposited copper at Nallakonda, copper-lead at Dhukonda, and lead at Bandalamottu under progressive cooling during migration through sediments. The ore-fluid was of low temperature (< 200 °C) and oxidized. Thermochemical reduction of basinal water sulfate produced sulfide for ore deposition. It is envisaged that basal red-bed and evaporite-bearing rift-related continental to shallow marine sediments might have acted as the source for the metals. Rift-related faults developed during sedimentation in the basin might have punctured the ore-fluid pool in the lower sedimentary succession and also acted as conduits for their upward migration. The ore-bearing horizons have participated in deformations during basin inversion without any recognizable remobilization.
5. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
5. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING NORTH-NORTHEAST. OFFICE/WAREHOUSE (FEATURE 23) SHOWN ON LEFT EDGE OF PHOTOGRAPH. HEADFRAME AND STORAGE TANKS (FEATURE 18) AND CRUSHING PLANT (FEATURE 19) VISIBLE IN BACKGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Code of Federal Regulations, 2014 CFR
2014-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines...
Code of Federal Regulations, 2012 CFR
2012-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines...
Code of Federal Regulations, 2011 CFR
2011-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines operated to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines operated to...
NASA Astrophysics Data System (ADS)
Arif, J.; Baker, T.
2004-10-01
Gold is an important by-product in many porphyry-type deposits but the distribution and chemistry of gold in such systems remains poorly understood. Here we report the results of petrographic, electron microprobe, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and flotation test studies of gold and associated copper sulfides within a paragenetic framework from the world-class Batu Hijau (914 mt @ 0.53% Cu, 0.40 g/t Au) porphyry copper gold deposit, Indonesia. Unlike many other porphyry copper gold deposits, early copper minerals (bornite digenite chalcocite) are well preserved at Batu Hijau and the chalcopyrite pyrite overprint is less developed. Hence, it provides an excellent opportunity to study the entire gold paragenesis of the porphyry system. In 105 polished thin sections, 699 native gold grains were identified. Almost all of the native gold grains occurred either within quartz veins, attached to sulfide, or as free gold along quartz or silicate grain boundaries. The native gold grains are dominantly round in shape and mostly 1 12 μm in size. The majority of gold was deposited during the formation of early ‘A’ veins and is dominantly associated with bornite rather than chalcopyrite. The petrographic and LA-ICP-MS study results indicate that in bornite-rich ores gold mostly occurs within copper sulfide grains as invisible gold (i.e., within the sulfide structure) or as native gold grains. In chalcopyrite-rich ores gold mostly occurs as native gold grains with lesser invisible gold. Petrographic observations also indicate a higher proportion of free gold (native gold not attached to any sulfide) in chalcopyrite-rich ores compared to bornite rich ores. The pattern of free gold distribution appears to correlate with the flotation test data, where the average gold recovery value from chalcopyrite-rich ores is consistently lower than bornite-rich ores. Our data suggest that porphyry copper-gold deposits with chalcopyrite-rich ores are more likely to have a higher proportion of free gold and may require different ore processing strategies.
Natural radiation and its hazard in copper ore mines in Poland
NASA Astrophysics Data System (ADS)
Chau, Nguyen; Jodłowski, Paweł; Kalita, Stefan; Olko, Paweł; Chruściel, Edward; Maksymowicz, Adam; Waligórski, Michał; Bilski, Paweł; Budzanowski, Maciej
2008-06-01
The doses of gamma radiation, concentrations of radium isotopes in water and sediments, radon concentration and concentration of alpha potential energy of radon decay products in the copper ore mine and in the mining region in the vicinity of Lubin town in Poland are presented. These data served as a basis for the assessment of radiological hazard to the mine workers and general public. The results of this assessment indicate that radiological hazard in the region does not differ substantially from typical values associated with natural radiation background. The calculated average annual effective dose for copper miners is 1.48 mSv. In general, copper ore mines can be regarded as radiologically safe workplaces.
Distribution of uranium in the Bisbee district, Cochise County, Arizona
Wallace, Stewart R.
1956-01-01
The Bisbee district has been an important source of copper for many years, and substantial amounts of lead and zinc ore and minor amounts of manganese ore have been mined during certain periods. The copper deposits occur both as low-grade disseminated ore in the Sacramento Hill stock and as massive sulfide (and secondary oxide and carbonate) replacement bodies in Paleozoic limestones that are intruded by the stock and related igneous bodies. The lead-zinc production has come almost entirely from limestone replacement bodies. The disseminated ore exhibits no anomalous radioactivity, and samples from the Lavender pit contain from 0.002 to less than 0.001 percent equivalent uranium. The limestone replacement ores are distinctly radioactive and stoping areas can be readily distinguished from from unmineralized ground on the basis of radioactivity alone. The equivalent uranium content of the copper replacement ores ranges from 0.002 to 0.014 percent and averages about 0.005 percent; the lead-zinc replacement ores average more than 0.007 percent equivalent uranium. Most of the uranium in the copper ores of the district is retained in the smelter slag of a residual concentrate; the slag contains about 0.009 percent equivalent uranium. Uranium carried off each day by acid mine drainage is roughly equal to 1 percent of that being added to the slag dump. Although the total amount of uranium in the district is large, no minable concentrations of ore-grade material are known; samples of relatively high-grade material represent only small fractions of tons at any one locality.
Ore microscopy of the Paoli silver-copper deposit, Oklahoma
Thomas, C.A.; Hagni, R.D.; Berendsen, P.
1991-01-01
The Paoli silver-copper deposit is located in south-central Oklahoma, 56 km south-southeast from Norman, Oklahoma. It was mined for high-grade silver-copper near the beginning of this century, and intensive exploratory drilling during the early 1970's delineated unmined portions of the deposit. A collaborative study between the U.S.G.S., the Kansas Geological Survey, and the University of Missouri-Rolla was undertaken to provide new information on the character of red bed copper deposits of the Midcontinent region. The Paoli deposit has been interpreted to occur as a roll-front type of deposit. The silver and copper mineralization occurs within paleochannels in the Permian Wellington Formation. The silver-copper interfaces appear to be controlled by oxidation-reduction interfaces that are marked by grey to red color changes in the host sandstone. Ore microscopic examinations of polished thin sections show that unoxidized ore consists of chalcocite, digenite, chalcopyrite, covellite and pyrite; and oxidized ores are characterized by covellite, bornite, hematite and goethite. In sandstone-hosted ores, chalcocite and digenite replace dolomite and border clastic quartz grains. In siltstone-hosted ores, the copper sulfide grains have varied shapes; most are irregular in shape and 5-25 ??m across, others have euhedral shapes suggestive of pyrite crystal replacements, and some are crudely spherical and are 120-200 ??m across. Chalcopyrite is the predominant copper sulfide at depth. Covellite and malachite replace chalcocite and digenite near the surface. Silver only occurs as native silver; most as irregularly shaped grains 40-80 ??m across, but some as cruciform crystals that are up to 3.5 mm across. The native silver has been deposited after copper sulfides, and locally replaces chalcocite. Surficial nodules of pyrite, malachite and hematite locally are present in outcrops at the oxidation-reduction fronts. Polished sections of the nodules show that malachite forms a cement around quartz sand grains, and brecciated pyrite grains are surrounded by rims of hematite and goethite. Dolomite is the principal sandstone cement. Cathodoluminescence microscopic study of the mineral has shown that it was deposited during seven periods before the copper sulfide mineralization. ?? 1991.
NASA Astrophysics Data System (ADS)
Wen-bo, LUO; Ji-kun, WANG; Yin, GAN
2018-01-01
Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.
Medical Experts and Agnotology in the Fumes Controversy of the Huelva Copper Mines (1888–1890)
Guillem-Llobat, Ximo
2017-01-01
Huelva’s copper mines (Spain) have been active for centuries but in the second half of the nineteenth century extractive activities in Riotinto, Tharsis, and other mines in the region were intensified in order to reach world leadership. The method used in these mines for copper extraction from low grade ores generated continuous emissions of fumes that were extremely controversial. The inhabitants had complained about the fumes for decades but as activity intensified so did complaints. The killing of anti-fumes demonstrators in 1888 led to the passing of a Royal Decree banning the open-air roasting of ore and to the drafting of numerous reports on the hazards of the fumes. Major state and provincial medical institutions, as well as renowned hygienists and engineers, took part in the assessment, contributing to a scientific controversy especially rich in content. In my paper I will analyse the production and circulation of knowledge and ignorance about the impact of fumes on public health, as well as the role of medical experts and expertise in the controversy. The analysis will focus on the reports drafted between the 1888 ban and its 1890 repeal, and will show the changing nature of the expert assessment and the numerous paths followed by experts in producing ignorance. The paper will conclude by considering other stakeholders, who may shed some light on the reasons behind the performance of the medical experts. PMID:28604295
Rhenium, Molybdenum, Tungsten - Prospects for Production and Industrial Applications
1998-06-18
concentrates from unique complex copper -containing porphyry deposit of the Almalyk region. The ore containing over 10 associated valuable constituents is...L.I.Ruzin, M .F.Sherem etyev ............................................... 71 Recovery of rhenium as by-product of treatment of molybdenite and copper ...for processing copper -molybdenum ores from "Erdenet- Ovoo" deposit S.Davaanyam, I.Sh.Sataev, Zh.Baatarkhuu, A.M.Desyatov, M.I.Khersonsky
Explosibility of Metal Powders
1964-01-01
299 1832 - Copper ore, sulfide , Mexic.................................................- - 100 - - - 300 1873 - Iron ore, magnetite...100 - - - 302 2076.............................................. do...................................... - - 100 - - - 303 749 - Iron ore, sulfide ...9 Pyrophoricity ............................................................... 9 Prevention of ignition and explosion
The copper-cobalt deposits of the Quartzburg district, Grant County, Oregon
Vhay, John Stewart
1960-01-01
The copper- and cobalt-bearing veins of part of the Quartzburg district are in fracture zones trending about N. 70 degrees E. in folded Permian (?) metavolcanic rocks on the southwest side of a quartz diorite stock. Along many of the veins fine-grained tourmaline and quartz have replaced the country rock. The primary ore minerals are chalcopyrite, glaucodot, safflorite, and cobaltite. The copper- and cobalt-rich parts of the deposits appear to be in separate ore shoots. Gold content is generally higher in the cobalt-bearing parts of the veins than in the copper-rich parts. The Standard mine has developed part of one vein zone. Several other vein zones that crop out may contain as much copper as the Standard vein zone. Further bulldozing and diamond drilling on the surface, and more geologic mapping, sampling, and diamond drilling underground are suggested as means to explore for more ore deposits.
Water requirements of the copper industry
Mussey, Orville Durey
1961-01-01
The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration was higher in dissolved solids and was harder than the water used in smelting and refining. Water used in mining and ore concentration had a median dissolved solids content of about 400 ppm and a median hardness (as CaCO3) of about 200 ppm. The median values for water used in smelting and refining were only half these amounts.
Copper Deposits in Sedimentary and Volcanogenic Rocks
Tourtelot, Elizabeth B.; Vine, James David
1976-01-01
Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be involved during erosion of any primary ore body and its ultimate displacement and redeposition as a secondary deposit. Bleached sandstone at the surface may indicate significant ore deposits near the water table.
Modeling the formation of porphyry-copper ores
Ingebritsen, Steven E.
2012-01-01
Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].
Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona
Hinkle, M.E.; Dilbert, C.A.
1984-01-01
Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones. ?? 1984.
With Strings Attached: Chinas Economic Policy in the South China Sea
2016-06-01
of the resources used to fuel its economy: it imports a majority of its timber , platinum, aluminum, iron ore, and copper. Perhaps though, most...gains access to resources such as oil, copper, uranium, cobalt, and timber .18 In Latin America, China receives iron ore, copper, oil and leather.19 In...The argument is that such a regional peace creates a structure that facilitates the transfer of the resources that China needs to continue to fuel
Swenson, J.B.; Person, M.; Raffensperger, Jeff P.; Cannon, W.F.; Woodruff, L.G.; Berndt, M.E.
2004-01-01
This paper presents a suite of two-dimensional mathematical models of basin-scale groundwater flow and heat transfer for the middle Proterozoic Midcontinent Rift System. The models were used to assess the hydrodynamic driving mechanisms responsible for main-stage stratiform copper mineralization of the basal Nonesuch Formation during the post-volcanic/pre-compressional phase of basin evolution. Results suggest that compaction of the basal aquifer (Copper Harbor Formation), in response to mechanical loading during deposition of the overlying Freda Sandstone, generated a pulse of marginward-directed, compaction-driven discharge of cupriferous brines from within the basal aquifer. The timing of this pulse is consistent with the radiometric dates for the timing of mineralization. Thinning of the basal aquifer near White Pine, Michigan, enhanced stratiform copper mineralization. Focused upward leakage of copper-laden brines into the lowermost facies of the pyrite-rich Nonesuch Formation resulted in copper sulfide mineralization in response to a change in oxidation state. Economic-grade mineralization within the White Pine ore district is a consequence of intense focusing of compaction-driven discharge, and corresponding amplification of leakage into the basal Nonesuch Formation, where the basal aquifer thins dramatically atop the Porcupine Mountains volcanic structure. Equilibrium geochemical modeling and mass-balance calculations support this conclusion. We also assessed whether topography and density-driven flow systems could have caused ore genesis at White Pine. Topography-driven flow associated with the Ottawan orogeny was discounted because it post-dates main-stage ore genesis and because recent seismic interpretations of basin inversion indicates that basin geometry would not be conductive to ore genesis. Density-driven flow systems did not produce focused discharge in the vicinity of the White Pine ore district.
Neutron-activation analysis applied to copper ores and artifacts
NASA Technical Reports Server (NTRS)
Linder, N. F.
1970-01-01
Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.
Geochemical barriers for environment protection and recovery of nonferrous metals.
Chanturiya, Valentine; Masloboev, Vladimir; Makarov, Dmitriy; Nesterov, Dmitriy; Bajurova, Julia; Svetlov, Anton; Men'shikov, Yuriy
2014-01-01
A study of natural minerals, ore tailings and their products as materials for artificial geochemical barriers is presented. In particular, it focuses on interaction between calcite and dolomite and sulfate solutions containing nickel, copper and iron under static conditions. Calcite of -0.1 mm fraction has been shown to perform well as a barrier when added to water phases of tailing dumps and natural reservoirs. Experiments under dynamic conditions have revealed a high potential of thermally activated copper-nickel tailings as barriers. After a 500-day precipitating period on a geochemical barrier, the contents of nickel and copper in ore dressing tailings were found to increase 12- and 28-fold, respectively. An effective sorbent of copper, iron and nickel ions is a brucite-based product of hydrochloric acid treatment of vermiculite ore tailings. Its sorption capacity can be essentially increased through thermal activation.
Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.
Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B
2016-05-01
Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.
40 CFR 421.154 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ore as beryllium Beryllium 1,842.000 831.000 Chromium (total) 831.000 336.900 Copper 2,875.000 1,370... pounds) of beryllium carbonate produced from beryl ore as beryllium Beryllium 180.4 81.4 Chromium (total... beryllium carbonate produced as beryllium Beryllium 175.900 79.370 Chromium (total) 79.370 32.180 Copper 274...
The interbelic Germans from the Banat Highland. Coal, steel, mines and forges
NASA Astrophysics Data System (ADS)
Rudolf, C.; Micliuc, D. M.; Nedeloni, M. D.; Birtarescu, E.; Varga, A.
2018-01-01
The difficulties of the reconstruction era, following World War I had been increased by the cessation of some activities in the industrial centres of the Banat Highland. For instance, the copper mines were closed in 1921, the Romanian state forbidding the extraction of this ore. Only in Ocna de Fier a special dispensation had been given. The copper mines from Moldova Nouă, Sasca Montană, Ciclova, Dognecea had also been shut down. This fact caused the acid reaction of some writers. We recall that one of the main ways for improving the material condition, embraced by the ethnic Germans, was working abroad. Many German workers of the Banat Highland had emigrated, taking up an offer of well-paid work during the crisis years: 1929-1933. The miners of the Banat Highland, especially those of German origin, travelled to the areas rich in iron ore and coal of France, namely Alsace and Loraine. Considering that German was spoken there by a significant percentage of the population, the integration into the new working environment did not represent a problem.
Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir; Gromiec, Jan P; Konieczko, Katarzyna
2015-06-01
The aim of this study was to determine hydrogen sulphide concentration emitted from the mine extracting copper ore, to evaluate potential adverse health effects to the population living in four selected villages surrounding the exhaust shaft. Maximum measured concentration of hydrogen sulphide in the emitter is 286 µg/m³. Maximum emission calculated from the results of determinations of concentrations in the emitter is 0.44 kg/h. In selected villages hydrogen sulphide at concentrations exceeding 4 µg/m³ was not detected in any of the 5-hour air samples. In all locations, the estimated maximum 1-hour concentrations of hydrogen sulphide were below 1 µg/m³, and the estimated mean annual concentrations were below 0.53 µg/m³. Any risk to the health of people in the selected area is not expected. As indicated by the available data on the threshold odour, the estimated concentrations of hydrogen sulphide may be sensed by humans. Copyright© by the National Institute of Public Health, Prague 2015.
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.
2016-10-01
Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.
Idea of Identification of Copper Ore with the Use of Process Analyser Technology Sensors
NASA Astrophysics Data System (ADS)
Jurdziak, Leszek; Kaszuba, Damian; Kawalec, Witold; Król, Robert
2016-10-01
The Polish resources of the copper ore exploited by the KGHM S.A. underground mines are considered as one of the most complex in the world and - consequently - the most difficult to be processed. The ore consists of three lithology forms: dolomites, shales and sandstones but in different proportions which has a significant impact on the effectiveness of the grinding and flotation processes. The lithological composition of the ore is generally recognised in-situ but after being mined it is blended on its long way from various mining fields to the processing plant by the complex transportation system consisting of belt conveyors with numerous switching points, ore bunkers and shafts. Identification of the lithological composition of the ore being supplied to the processing plant should improve the adjustments of the ore processing machinery equipment aiming to decrease the specific processing (mainly grinding) energy consumption as well as increase the metal recovery. The novel idea of Process Analyser Technology (PAT) sensors - information carrying pellets, dropped into the transported or processed bulk material which can be read directly when needed - is investigated for various applications within the DISIRE project (a part of the SPIRE initiative, acting under the Horizon2020 framework program) and here is adopted for implementing the annotation the transported copper ore for the needs of ore processing plants control. The identification of the lithological composition of ore blended on its way to the processing plant can be achieved by an information system consisting of pellets that keep the information about the original location of the portions of conveyed ore, the digital, geological database keeping the data of in-situ lithology and the simulation models of the transportation system, necessary to evaluate the composition of the blended ore. The assumptions of the proposed solution and the plan of necessary in-situ tests (with the special respect to harsh environment of
NASA Astrophysics Data System (ADS)
Gainov, R. R.; Vagizov, F. G.; Golovanevskiy, V. A.; Ksenofontov, V. A.; Klingelhöfer, G.; Klekovkina, V. V.; Shumilova, T. G.; Pen'kov, I. N.
2014-04-01
Nuclear resonance methods, including Mössbauer spectroscopy,are considered as unique techniques suitable for remote on-line mineralogical analysis. The employment of these methods provides potentially significant commercial benefits for mining industry. As applied to copper sulfide ores, Mössbauer spectroscopy method is suitable for the analysis noted. Bornite (formally Cu5FeS4) is a significant part of copper ore and identification of its properties is important for economic exploitation of commercial copper ore deposits. A series of natural bornite samples was studied by 57Fe Mössbauer spectroscopy. Two aspects were considered: reexamination of 57Fe Mössbauer properties of natural bornite samples and their stability irrespective of origin and potential use of miniaturized Mössbauer spectrometers MIMOS II for in-situ bornite identification. The results obtained show a number of potential benefits of introducing the available portative Mössbauer equipment into the mining industry for express mineralogical analysis. In addition, results of some preliminary 63,65Cu nuclear quadrupole resonance (NQR) studies of bornite are reported and their merits with Mössbauer techniques for bornite detection discussed.
NASA Astrophysics Data System (ADS)
Matveeva, T. N.; Chanturiya, V. A.
2017-07-01
The paper presents the results of the recent research performed in IPKON Russian Academy of Sciences that deals with development and substantiation of new selective reagents for effective flotation recovery of non-ferrous and noble metals from refractory ores. The choice and development of new selective reagents PTTC, OPDTC, modified butylxanthate (BXm) and modified diethyl-dithiocarbamate (DEDTCm) to float platiniferous copper and nickel sulfide minerals from hard-to-beneficiate ores is substantiated. The mechanism of reagents adsorption and regulation of minerals floatability is discussed. The study of reagent modes indicates that by combining PTTC with the modified xanthate results in 6 - 7 % increase in the recovery of copper, nickel and PGM in the flotation of the low-sulfide platiniferous Cu-Ni ore from the Fedorovo-Panskoye deposit. The substitution of OPDTC for BX makes it possible to increase recovery of Pt by 13 %, Pd by 9 % and 2 - 4 times the noble metal content in the flotation concentrate.
NASA Astrophysics Data System (ADS)
da Silva Nogueira de Matos, José Henrique; Saraiva dos Santos, Ticiano José; Virgínia Soares Monteiro, Lena
2017-12-01
The Pedra Verde Copper Mine is located in the Viçosa do Ceará municipality, State of Ceará, NE Brazil. The copper mineralization is hosted by the Pedra Verde Phyllite, which is a carbonaceous chlorite-calcite phyllite with subordinate biotite. It belongs to the Neoproterozoic Martinópole Group of the Médio Coreaú Domain, Borborema Province. The Pedra Verde deposit is stratabound and its ore zoning is conspicuous, according to the following sequence, from bottom to top: marcasite/pyrite, native silver, chalcopyrite, bornite, chalcocite, native copper and hematite. Barite and carbonaceous material are reported in ore zones. Zoning reflects the ore formation within a redox boundary developed due to the interaction between oxidized copper- and sulfate-bearing fluids and the reduced phyllite. Structural control on mineralization is evidenced by the association of the ore minerals with veins, hinge folds, shadow pressures, and mylonitic foliation. It was mainly exercised by a dextral transcurrent shear zone developed during the third deformational stage identified in the Médio Coreaú Domain between 590 Ma and 570 Ma. This points to the importance of epigenetic, post-metamorphic deformational events for ore formation. Oxygen isotopic composition (δ18OH2O = 8.94 to 11.28‰, at 250 to 300 °C) estimated for the hydrothermal fluids in equilibrium with calcite indicates metamorphic or evolved meteoric isotopic signatures. The δ13CPDB values (-2.60 to -9.25‰) obtained for hydrothermal calcite indicate mixing of carbon sources derived from marine carbonate rocks and carbonaceous material. The δ34SCDT values (14.88 to 36.91‰) of sulfides suggest evaporites as sulfate sources or a closed system in relation to SO42- availability to form H2S. Carbonaceous matter had a key role in thermochemical sulfate processes and sulfide precipitation. The Pedra Verde Copper Mine is considered the first stratabound meta-sedimentary rock-hosted copper deposit described in Brazil and shares similarities with the syn-orogenic copper deposits of the Congo-Zambian Copperbelt formed during the Gondwana amalgamation.
ERIC Educational Resources Information Center
Rodriguez, Emilio; Vicente, Miguel Angel
2002-01-01
Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)
[Bronchopulmonary diseases features in miners of Kolsky Transpolar area].
Siurin, S A; Nikanov, A N
2009-01-01
Miners engaged into open-cast and underground extraction of copper-nickel ores in Kolsky Transpolar area have chronic bronchitis as a main nosologic entity among chronic bronchopulmonary diseases (19.1% of the workers). Considerably lower (4.0% of the workers) occurrence concerns chronic obstructive lung disease and bronchial asthma, both developed before the occupational involvement (1.3% of the workers). Complex of occupational and nonoccupational risk factors is connected mostly with smoking that increases COLD/CB risk 10.7-15.8-fold.
ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.
Beiranvand Pour, Amin; Hashim, Mazlan
2014-01-01
This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.
Siurin, S A; Shilov, V V
2014-01-01
The risks for developing occupational pathology and its specific features were studied in 358 Kola Transpolar copper-nickel miners who were diagnosed with 722 cases of occupational diseases (OD) in the years 1990-2013. The highest risk for developing OD, which are dominated by the diseases of the musculoskeletal system, has been found in tunnellers (OR = 12,8) and operators of drilling rigs (OR = 10,4). A significant increase in the risk of OD has been established in miners with length of service at 11-15 years and over 25 years. The conclusion is made about the need to improve the technical, medical and organizational measures targetted at preventing health problems in this group of workers.
Mining for metals in society's waste
Smith, Kathleen S.; Plumlee, Geoffrey S.; Hageman, Philip L.
2015-01-01
Metals and minerals are natural resources that human beings have been mining for thousands of years. Contemporary metal mining is dominated by iron ore, copper and gold, with 2 billion tons of iron ore, nearly 20 million tons of copper and 2,000 tons of gold produced every year. Tens to hundreds of tons of other metals that are essential components for electronics, green energy production, and high-technology products are produced annually.
First find of platinum group metals in the ore of Kirganik copper-porphyry deposit (Kamchatka)
NASA Astrophysics Data System (ADS)
Sidorov, E. G.; Ignatyev, E. K.; Chubarov, V. M.
2017-08-01
The Kirganik copper-porphyry deposit is situated in the central part of the Sredinnyi Mountain Range of Kamchatka and is confined to fields of development of potassic orthoclase metasomatite and hypabyssal intrusions of shonkinite. Platinum group metals (PGMs), such as merenskyite, kotulskite, keithconnite, and temagamite, were discovered in the chalcopyrite-bornite and chalcopyrite-bornite-chalcosine ore of the deposit for the first time.
Leaching of Copper Ore by Thiobacillus Ferrooxidans.
ERIC Educational Resources Information Center
Lennox, John; Biaha, Thomas
1991-01-01
A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)
Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.
Weis, P; Driesner, T; Heinrich, C A
2012-12-21
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Heinrich, C. A.
2012-12-01
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation
NASA Astrophysics Data System (ADS)
Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei
2017-09-01
A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.
Metallogeny by Trans-magmatic Fluids—Theoretical Analysis and Field Evidence
NASA Astrophysics Data System (ADS)
Luo, Zhaohua; Mo, Xuanxue; Lu, Xinxiang; Chen, Bihe; Ke, Shan; Hou, Zengqian; Jiang, Wan
This paper is aimed at introducing and developing the principle of Metallogenic Theory through Trans-magmatic Fluids (MTTF) proposed by the Russian Kozhinskii's school. Some fundamental problems of metallogeny are discussed on geodynamic bases. In this theory, the trans-magmatic fluid is interpreted as a moving fluid passing through magma which is not yet consolidated. The intensive wallrock alteration of most of hydrothermal ore systems suggests that large scale fluid flow accompanies metallogenesis. However, geological observations and experiments imply a very limited solubility of fluids in magmas. In addition, the close relationship between small igneous bodies and large ore systems together with the difficulty of fluids that from the wallrocks might enter a magmatic body, which is under high pressure and temperature, need also to be considered. Those ore-bearing fluids that originate from a deep fluid system, are independent of magmas. Experiments show rapid increases of the solubility of ore-forming elements or their compounds in hydrothermal fluids. Therefore, the essential prerequisites for mineralization are (1) large volumes of deep ore-bearing fluids with high concentration of metals, and (2) the large amounts of metal accumulation depend on the rapid ascent of the deep ore-bearing fluid. Magmas are the favorable medium for the ascending fluids, because these magmas provide conditions that prevent re-equilibrium between the fluid and the wallrocks at different deep levels. The fluids in turn, may provide the driving force for the rapid ascent of magmas. Therefore, the two systems act together to account for the close relationship between magmatism and metallogeny. According to this theory, the scale and location of an ore-forming process are decided by (1) the volumetric ratio of the magma and the fluid systems, (2) the ascending rate of the ore-bearing fluid, (3) the boundary conditions for metal accumulation and (4) the segregation of the fluid from the magma. The field investigations of copper-bearing Melanocratic Macrogranular Enclaves (MME) in the Qushui massif, Gangdise belt are very helpful for understanding of source, transport and precipitation of ore-forming materials. In this example, it can be seen that fluid-rich MMEs is the source of the ore-forming element copper. Copper is transported out from MMEs by the fluid, following dispersal in the granitic magma. The copper-bearing fluid is then transferred through the magma and induced to deposit mineralization elsewhere. These processes have been noted when comparing the metallogenic features in both MME in the Qushui massif and the porphyry copper deposits in Yulong, eastern Tibet. It is obvious that MTTF is a very important theory for metallogeny of endogenic deposits. Using this theory, many paradoxes in metallogenesis can be interpreted in easier manner.
Melt inclusions in veins: linking magmas and porphyry Cu deposits.
Harris, Anthony C; Kamenetsky, Vadim S; White, Noel C; van Achterbergh, Esmé; Ryan, Chris G
2003-12-19
At a porphyry copper-gold deposit in Bajo de la Alumbrera, Argentina, silicate-melt inclusions coexist with hypersaline liquid- and vapor-rich inclusions in the earliest magmatic-hydrothermal quartz veins. Copper concentrations of the hypersaline liquid and vapor inclusions reached maxima of 10.0 weight % (wt %) and 4.5 wt %, respectively. These unusually copper-rich inclusions are considered to be the most primitive ore fluid found thus far. Their preservation with coexisting melt allows for the direct quantification of important oreforming processes, including determination of bulk partition coefficients of metals from magma into ore-forming magmatic volatile phases.
Osmium isotope constraints on ore metal recycling in subduction zones
McInnes; McBride; Evans; Lambert; Andrew
1999-10-15
Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.
Earth observation taken by the Expedition 11 crew
2005-06-25
ISS011-E-09620 (26 June 2005) --- Grasberg Mine, Indonesia is featured in this image photographed by an Expedition 11 crewmember on the International Space Station. Located in the Sudirman Mountains of the Irian Jaya province of Indonesia, the Grasberg complex (also known as the Freeport Mine) is one of the largest gold and copper mining operations in the world. The Sudirman Mountains form the western portion of the Maoke Range that extend across Irian Jaya from west to the east-southeast. According to scientists, these ranges were formed by ongoing collision of the northward-moving Australian and westward-moving Pacific tectonic plates. Intrusion of hot magma into sedimentary rock layers during uplift of the mountains resulted in the formation of copper- and gold-bearing ore bodies. Rich copper ore bodies were discovered in the area in 1936, and the Grasberg gold-bearing ore bodies were discovered in 1988. This image illustrates the approximately 4 kilometers-wide open-pit portion of the mine complex; there are also extensive underground mine workings. Access roads for trucks hauling ore and waste rock are visible along the sides of the pit.
Barthen, R; Karimzadeh, L; Gründig, M; Grenzer, J; Lippold, H; Franke, K; Lippmann-Pipke, J
2018-04-01
For Kupferschiefer mining established pyrometallurgical and acidic bioleaching methods face numerous problems. This is due to the finely grained and dispersed distribution of the copper minerals, the complex mineralogy, comparably low copper content, and the possibly high carbonate and organic content in this ore. Leaching at neutral pH seemed worth a try: At neutral pH the abundant carbonates do not need to be dissolved and therewith would not consume excessive amounts of provided acids. Certainly, copper solubility at neutral pH is reduced compared to an acidic environment; however, if copper complexing ligands would be supplied abundantly, copper contents in the mobile phase could easily reach the required economic level. We set up a model system to study the effect of parameters such as pH, microorganisms, microbial metabolites, and organic ligands on covellite leaching to get a better understanding of the processes in copper leaching at pH ≥ 6. With this model system we could show that glutamic acid and the microbial siderophore desferrioxamine B promote covellite dissolution. Both experimental and modeling data showed that pH is an important parameter in covellite dissolution. An increase of pH from 6 to 9 could elevate copper extraction in the presence of glutamic acid by a factor of five. These results have implications for both development of a biotechnological process regarding metal extraction from Kupferschiefer, and for the interaction of bacterial metabolites with the lithosphere and potential mobilization of heavy metals in alkaline environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise
Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.
1979-01-01
Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.
Metal stocks and sustainability
Gordon, R. B.; Bertram, M.; Graedel, T. E.
2006-01-01
The relative proportions of metal residing in ore in the lithosphere, in use in products providing services, and in waste deposits measure our progress from exclusive use of virgin ore toward full dependence on sustained use of recycled metal. In the U.S. at present, the copper contents of these three repositories are roughly equivalent, but metal in service continues to increase. Providing today's developed-country level of services for copper worldwide (as well as for zinc and, perhaps, platinum) would appear to require conversion of essentially all of the ore in the lithosphere to stock-in-use plus near-complete recycling of the metals from that point forward. PMID:16432205
NASA Astrophysics Data System (ADS)
Spichak, Viacheslav V.; Goidina, Alexandra G.
2017-12-01
Joint analysis of deep three-dimensional models of the electrical resistivity, seismic velocity, and density of the complex hosting the Sorskoe Cu-Mo deposit (Russia) is carried out aimed at finding geophysical markers characterizing the areas of ore generation, transportation and deposition. The three-dimensional lithology model of the study area is built based on the empirical relationship between the silica content of the rocks and seismic velocities. It is in agreement with geological and geochemical studies provided in this area earlier and could be used as a basis for forecasting locations of the copper-molybdenum ore deposits at depth. A conceptual model of the copper-porphyry complex explaining the mechanisms of ore generation, transportation from the lower to the upper crust and deposition in the upper crust is suggested. In particular, it is supposed that post-magmatic supercritical gas-water ore-bearing fluids are upwelling through the plastic crust due to the sliding of the fluid films along the cleavage planes of the foliated rocks while at the depths of the brittle upper crust this mechanism could be changed by volumetric fluid transportation along the network of large pores and cracks.
Solvent extraction of diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, W.
1984-07-24
There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.
Neutron activation analysis traces copper artifacts to geographical point of origin
NASA Technical Reports Server (NTRS)
Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.
1967-01-01
Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.
Mercury and copper inventories are low in central Lake Superior and increase markedly towards the Keweenaw Peninsula...where copper, mercury, and silver inventories are elevated and highly correlated. High copper, silver, and mercury inventories can be traced back to shoreline st...
NASA Astrophysics Data System (ADS)
Butterworth, N.; Steinberg, D.; Müller, R. D.; Williams, S.; Merdith, A. S.; Hardy, S.
2016-12-01
Porphyry ore deposits are known to be associated with arc magmatism on the overriding plate at subduction zones. While general mechanisms for driving magmatism are well established, specific subduction-related parameters linking episodes of ore deposit formation to specific tectonic environments have only been qualitatively inferred and have not been formally tested. We develop a four-dimensional approach to reconstruct age-dated ore deposits, with the aim of isolating the tectonomagmatic parameters leading to the formation of copper deposits during subduction. We use a plate tectonic model with continuously closing plate boundaries, combined with reconstructions of the spatiotemporal distribution of the ocean floor, including subducted portions of the Nazca/Farallon plates. The models compute convergence rates and directions, as well as the age of the downgoing plate through time. To identify and quantify tectonic parameters that are robust predictors of Andean porphyry copper magmatism and ore deposit formation, we test two alternative supervised machine learning methods; the "random forest" (RF) ensemble and "support vector machines" (SVM). We find that a combination of rapid convergence rates ( 100 km/Myr), subduction obliquity of 15°, a subducting plate age between 25-70 Myr old, and a location far from the subducting trench boundary (>2000 km) represents favorable conditions for porphyry magmatism and related ore deposits to occur. These parameters are linked to the availability of oceanic sediments, the changing small-scale convection around the subduction zone, and the availability of the partial melt in the mantle wedge. When coupled, these parameters could influence the genesis and exhumation of porphyry copper deposits.
An ore genetic model for the Lubin—Sieroszowice mining district, Poland
NASA Astrophysics Data System (ADS)
Wodzicki, A.; Piestrzyński, A.
1994-04-01
The Lubin-Sieroszowice mining district is a world-class copper-silver, stratabound ore deposit that lies near the Lower-Upper Permian boundary. It transgresses the Werra dolomite, the Kupferschiefer organicrich shale and the Weissliegendes sandstone, which overlie barren Rotliegendes sandstone. On the basis of underground and microscope observations and light stable isotope data, and thermodynamic calculations, a new ore genesis model is proposed whereby ore minerals were deposited in the following stages: Stage 0 was synsedimentary or earliest diagenetic and contains 100s ppm of base metals trapped by clay minerals, and minor sulphides. Stage I was early diagenetic and contains 1000s ppm base metals. It is characterized by bornite and overlying chalcopyrite + pyrite that lie a short distance above the Rotliegendes/Weissliegendes contact. The sulphides were deposited near the interface between an overlying, buffered, reducing fluid (1), largely derived from the Kupferschiefer, and an oxidizing fluid (2) in the Rotliegendes. Stage II is the main ore-forming stage. This stage is late diagenetic, peneconcordant, lies near the Kupferschiefer/Weissliegendes contact, and contains several percent base metals.It is associated with the hematite-bearing Rote Fäule facies and is characterized by vertical zonation. A central chalcocite zone is flanked above and below by bornite and chalcopyrite. Silver occurs with all the above sulphides. Galena and sphalerite occur mainly just above copper zone, whereas pyrite is usually present in the upper part of the copper zone and together with galena and sphalerite. Metals were transported in a copper-rich oxidizing fluid (3), which probably originated deep in the Permian basin, reacted with organic matter in the Kupferschiefer, and mixed with reducing fluid (1) in the Weissliegendes, resulting in the observed mineral zonation. Stage III is late diagenetic, discordant and is represented by massive and dispersed chalcocite ore present on the peripheries and below anhydrite-cemented Weissliegendes sandstone. It resulted from redistribution of earlier copper and silver minerals by descending, reduced, sulphur-rich fluids (4). Stage IV consists of rare polymetallic veins of no economic importance that cut the stratigraphy and are probably related to Alpine tectonism. The richest and thickest ore is in the Weissliegendes, 10-15 km east of the Rote Fäule facies (Fig. 1). It probably occupies structures that trapped fluid (1) which was the main precipitant of metals in the sandstone.
The Nature and Use of Copper Reserve and Resource Data
Cox, Dennis P.; Wright, Nancy A.; Coakley, George J.
1981-01-01
Copper reserve, resource, and production data can be combined to produce disaggregated resource estimates and trends and, when combined with demand forecasts, can be used to predict future exploration and development requirements. Reserve estimates are subject to uncertainties due mainly to incomplete exploration and rapidly changing economic conditions. United States' reserve estimates in the past have been low mainly because knowledge of the magnitude of very large porphyry-copper deposits has been incomplete. Present estimates are considerably more reliable because mining firms tend to drill out deposits fully before mining and to release their reserve estimates to the public. The sum of reserves and past production yields an estimate of the total ore, total metal contained in ore, and average grade of ore originally in each of the deposits known in the United States. For most deposits, estimates of total copper in ore are low relative to the total copper in mineralized rock, and many estimates are strongly affected by the economic behavior of mining firms. A better estimate of the real distribution of copper contained in deposits can be obtained by combining past production data with resource estimates. Copper resource data are disaggregated into categories that include resources in undeveloped deposits similar to those mined in the past, resources in mines closed because of unfavorable economic conditions, resources in deep deposits requiring high-cost mining methods, arid resources in deposits located in areas where environmental restrictions have contributed to delays in development. The largest resource is located in the five largest porphyry deposits. These deposits are now being mined but the resources are not included in the present mining plan. Resources in this last category will not contribute to supply until some future time when ores presently being mined are depleted. A high correlation exists between total copper contained in deposits and annual production from deposits. This correlation can be used to predict roughly the potential production from undeveloped deposits. Large deposits annually produce relatively less metal per ton of copper contained than do medium and small deposits. Dividing reserves by annual production gives a depletion date for each copper mine. The sum of annual production capacity of all mines not yet depleted at any year of interest gives the minimum production capacity for that year. A graph of minimum production capacity by year combined with curves representing potential capacity from undeveloped identified resources can be compared with various demand scenarios to yield a measure of copper requirements from new sources. Since 1950 reserves have been developed in the United States at a rate of about 1 million tons of copper per year. Since 1960 the number of deposits developed per 10-year period has greatly increased without a commensurate increase in tonnage of copper. This is in part due to the fact that recent exploration successes have been increasingly represented by smaller and (or) lower grade deposits containing less metal.
Maroni, V.A.; von Winbush, S.
1987-05-01
A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.
Maroni, Victor A.; von Winbush, Samuel
1988-01-01
A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.
The Myszkow porphyry copper-molybdenum deposit, Poland
Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.
1994-01-01
The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors
Highlights of the Salt Extraction Process
NASA Astrophysics Data System (ADS)
Abbasalizadeh, Aida; Seetharaman, Seshadri; Teng, Lidong; Sridhar, Seetharaman; Grinder, Olle; Izumi, Yukari; Barati, Mansoor
2013-11-01
This article presents the salient features of a new process for the recovery of metal values from secondary sources and waste materials such as slag and flue dusts. It is also feasible in extracting metals such as nickel and cobalt from ores that normally are difficult to enrich and process metallurgically. The salt extraction process is based on extraction of the metals from the raw materials by a molten salt bath consisting of NaCl, LiCl, and KCl corresponding to the eutectic composition with AlCl3 as the chlorinating agent. The process is operated in the temperature range 973 K (700°C) to 1173 K (900°C). The process was shown to be successful in extracting Cr and Fe from electric arc furnace (EAF) slag. Electrolytic copper could be produced from copper concentrate based on chalcopyrite in a single step. Conducting the process in oxygen-free atmosphere, sulfur could be captured in the elemental form. The method proved to be successful in extracting lead from spent cathode ray tubes. In order to prevent the loss of AlCl3 in the vapor form and also chlorine gas emission at the cathode during the electrolysis, liquid aluminum was used. The process was shown to be successful in extracting Nd and Dy from magnetic scrap. The method is a highly promising process route for the recovery of strategic metals. It also has the added advantage of being environmentally friendly.
NASA Astrophysics Data System (ADS)
deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.
2017-06-01
The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.
NASA Astrophysics Data System (ADS)
Krysa, Zbigniew; Pactwa, Katarzyna; Wozniak, Justyna; Dudek, Michal
2017-12-01
Geological variability is one of the main factors that has an influence on the viability of mining investment projects and on the technical risk of geology projects. In the current scenario, analyses of economic viability of new extraction fields have been performed for the KGHM Polska Miedź S.A. underground copper mine at Fore Sudetic Monocline with the assumption of constant averaged content of useful elements. Research presented in this article is aimed at verifying the value of production from copper and silver ore for the same economic background with the use of variable cash flows resulting from the local variability of useful elements. Furthermore, the ore economic model is investigated for a significant difference in model value estimated with the use of linear correlation between useful elements content and the height of mine face, and the approach in which model parameters correlation is based upon the copula best matched information capacity criterion. The use of copula allows the simulation to take into account the multi variable dependencies at the same time, thereby giving a better reflection of the dependency structure, which linear correlation does not take into account. Calculation results of the economic model used for deposit value estimation indicate that the correlation between copper and silver estimated with the use of copula generates higher variation of possible project value, as compared to modelling correlation based upon linear correlation. Average deposit value remains unchanged.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations representing...
NASA Astrophysics Data System (ADS)
KIM, Y.; Lee, I.; Oyungerel, S.; Jargal, L.; Tsedenbal, T.; Ryu, J. S.
2016-12-01
The copper isotope (δ65Cu) and sulfur isotope (δ34S) compositions of major ore minerals from the Erdenetiin-Ovoo Cu-Mo porphyry deposit were measured to trace sources of copper and sulfur, and to evaluate the precipitation environment of ore minerals. The major ore minerals are pyrite, chalcopyrite, molybdenite and chalcocite developed in the QSP (Quartz-Sericite-Pyrite) alteration zone. The sulfide minerals such as sphalerite and covellite, and carbonate ore minerals like malachite, azurite are also identified. The copper isotope ratios (65Cu/63Cu) of copper ore minerals (chalcopyrite, chalcocite, malachite, azurite, covellite and chrysocolla) were analyzed by the MC-ICPMS in KBSI located in Ochang, South Korea. The measured δ65Cu values relative to NIST 976 range from -1.01 ‰ to 5.76 ‰. The average δ65Cu values of sulfide minerals such as chalcopyrite (1.03 ‰), chalcocite (0.62 ‰) and covellite (0.51 ‰) seem to be relatively lower than those of carbonate and silicate Cu minerals such as malachite (0.24 ‰), azurite (2.17 ‰) and chrysocolla (5.76 ‰). The sulfur isotope ratios (34S/32S) of major sulfide minerals were measured by EA-CF-IRMS (Elemental Analyzer - Continuous Flow - Isotope Ratio Mass Spectrometer) in NCIRF, Seoul National University. The average δ34SV-CDT value is -1.1 ‰ indicating the magmatic signature of sulfur. There is the difference of δ34S values between sulfide minerals. While the δ34S values of pyrite, chalcopyrite and molybdenite range from -0.9 to 0.8 ‰, the δ34S values of chalcocite range from -2.6 ‰ to -1.4 ‰. These lower values might be attributed to the sulfur isotope fractionation during its precipitation.
NASA Astrophysics Data System (ADS)
Sun, Qingshan; Song, Yingli; Liu, Shengnan; Wang, Fei; Zhang, Lin; Xi, Shuhua; Sun, Guifan
2015-10-01
The investigation was carried out to evaluate arsenic exposure and the urine metabolite profiles of workers with different working departments, including administration (Group1), copper ore mining (Group2), copper ore grinding (Group3), electrolytic procession (Group4) and copper smelting (Group5) in a Copper mining and processing plant in China. Information about characteristics of each subject was obtained by questionnaire and inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The highest urinary levels of iAs, MMA and DMA all were found in the Group 5. Group 4 workers had a higher iAs% and a lower PMI compared to Group 3. The urinary total As (TAs) levels of 54.7% subjects exceeded 50 μg/g Cr, and the highest percentage (93.3%) was found in Group 5, smelters. The results of the present study indicate that workers in copper production plant indeed exposed to As, especially for smelters and workers of electrolytic process.
Summary of the mineralogy of the Colorado Plateau uranium ores
Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.
1956-01-01
In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little affected by oxidation. The unoxidized nonvanadiferous ores contain uraninite and coffinite in close association with coalified wood and iron and copper sulfides, and traces of many other sulfides, arsenides and selenides. The oxidized nonvanadiferous ores differ from the vanadiferous ores because, in the absence of vanadium to complex the uranium, a great variety of secondary yellow and greenish-yellow uranyl minerals are formed. The uranyl sulfates and carbonates are more common than the oxides, phosphates, arsenates, and silicates. Because the sulfates and carbonates are much less stable that carnotite, the oxidized nonvanadiferous ores occure only as halos around cores of unoxidized ore and do not form large oxidized deposits close to the surface of the ground as carnotite ores. Oxidation has taken place since the lowering of the water table in the present erosion cycle. Because of local structures and the highly lenticular character of the fluviatile host rocks perched water tables and water-saturated lenses of sandstone are common high above the regional water table. Unoxidized ore has been preserved in these water-saturated rocks and the boundary between oxidized and unoxidized ore is very irregular.
Preliminary report on the Apex and Paymaster mines, Washington County, Utah
Kinkel, Arthur R.
1951-01-01
The Apex and Paymaster mines in the Tutsagubet mining district, 25 miles southwest of St. George, Utah, are at an elevation of about 5,000 feet in the Beaver Dam Mountains. The ore was deposited in a steeply dipping fault zone which cuts a thick series of gently dipping limestones of Pennsylvanian age with minor interbedded shales and sandstones. The ore now consists primarily of copper oxides, but is reported to contain small quantities of lead and sine oxides. Complete oxidation extends to the 1,400 level of the Apex mine, the deepest level in this mine. Lead oxides are reported to have been more plentiful in the workings near surface, but the stoped area is now caved to the 1,330 level. The ore bodies probably formed largely as a filling in the fault fissure, and in crushed zones along the fault, with only minor replacement extending for short distances along the bedding. The sulfides oxidized essentially in place and migration of the oxidized copper ores is believed to be limited to a few feet. Additional exploration below the known ore shoots in the Apex and Paymaster mines and along the fissure between the two mines may disclose new ore bodies.
Panda, Sandeep; Akcil, Ata; Pradhan, Nilotpala; Deveci, Haci
2015-11-01
Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandom, R.T.; Hagni, R.D.; Allen, C.R.
1985-01-01
An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also aremore » similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage.« less
Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining.
Zeng, Xianlai; Mathews, John A; Li, Jinhui
2018-04-17
Stocks of virgin-mined materials utilized in linear economic flows continue to present enormous challenges. E-waste is one of the fastest growing waste streams, and threatens to grow into a global problem of unmanageable proportions. An effective form of management of resource recycling and environmental improvement is available, in the form of extraction and purification of precious metals taken from waste streams, in a process known as urban mining. In this work, we demonstrate utilizing real cost data from e-waste processors in China that ingots of pure copper and gold could be recovered from e-waste streams at costs that are comparable to those encountered in virgin mining of ores. Our results are confined to the cases of copper and gold extracted and processed from e-waste streams made up of recycled TV sets, but these results indicate a trend and potential if applied across a broader range of e-waste sources and metals extracted. If these results can be extended to other metals and countries, they promise to have positive impact on waste disposal and mining activities globally, as the circular economy comes to displace linear economic pathways.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... section 613(c)(3) (relating to extraction of ores or minerals from the ground). Thus, an acquiring...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... section 613(c)(3) (relating to extraction of ores or minerals from the ground). Thus, an acquiring...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Vakylabad, Ali Behrad; Schaffie, Mahin; Naseri, Ali; Ranjbar, Mohammad; Manafi, Zahra
2016-07-01
In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride-sulfate system.
Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J D; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun
2016-10-04
Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S 0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S 0 and Fe 2+ , which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.
NASA Astrophysics Data System (ADS)
Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun
2016-10-01
Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.
Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun
2016-01-01
Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system. PMID:27698381
Evidence for extreme partitioning of copper into a magmatic vapor phase.
Lowenstern, J B; Mahood, G A; Rivers, M L; Sutton, S R
1991-06-07
The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits.
Iron versus Copper II. Principles and Applications in Bioinorganic Chemistry.
ERIC Educational Resources Information Center
Ochiai, Ei-Ichiro
1986-01-01
Discusses the differences between iron and copper. Describes various aspects of the behaviors of these two elements, including those of biological and environmental significance. Addresses the evolution of the atmosphere and sedimentary ore formation, the phylogeny of iron and copper, and some anthropological notes regarding the use of the metals.…
Assessment of the effluent quality from a gold mining industry in Ghana.
Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L
2013-06-01
The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.
Geology of the Copper King Mine area, Prairie Divide, Larimer County, Colorado (Part 1)
Sims, Paul Kibler; Phair, George
1952-01-01
The Copper King mine, in Larimer County, Colo., in the northern part of the Front Range of Colorado, was operated for a short time prior to World War II for copper and zino, but since 1949, when pitchblende was discovered on the mine dump, it has been worked for uranium. The bedrock in the mine area consists predominantly of pre-Cambrian (Silver Plums) granite with minor migmatite and metasediments--biotite-quartz-plagioclase gneiss, biotite schist, quartzite, amphibolite, amphibole skarn, and biotite skols. The metasediments occur as inclusions that trend northeast in the granite. This trend is essentially parallel to the prevailing foliation in the granite. At places the metasediments are crosscut sharply by the granite to form angular, partly discordant, steep-walled bodies in the granite. Faults, confined to a narrow zone that extends through the mine, cut both the pre-Cambrian rocks and the contained sulfide deposits. The Copper King fault, a breccia zone, contains a deposit of pitchblende; the other faults are believed to be later than the ore. The two types of mineral deposits--massive sulfide and pitchblende deposits--in the mine area, are of widely different mineralogy, age, and origin. The massive sulfide deposits are small and consist of pyrite, sphalerite, chalcopyrite, pyrrhotite, and in places magnetite in amphibole skarn, mice skols, and quartzite. The deposit at the Copper King mine has yielded small quantities of high-grade sphalerite ore. The massive sulfides are pyrometasomatic deposits of pre-Cambrian age. The pitchblende at the Copper King mine is principally in the Copper King vein, a tight, hard breccia zone that cuts through both granite and the massive sulfide deposit. A small part of the pitchblende is in small fractures near the vein and in boxwork pyrite adjacent to the vein; the post-ore faults, close to their intersection with the Copper King vein, contain some radioactive material, but elsewhere, so far as is known, they are barren. The pitchblende in the deposit forms a steeply plunging ore shoot that has a horizontal length of more than 50 feet and a vertical height of about 85 feet. The thickness of the ore shoot averages about 2 feet, but it ranges from a feather edge to about 4 feet. The hard pitch-blende is intimately intergrown with siderite; other gangue minerals include pyrite, quartz, and finely comminuted fragments of the wall rocks. The vein was repeatedly reopened during mineral deposition as shown by several stages of brecciation and recommended by the vein matter. The pitchblende deposit probably formed at intermediate temperatures and depths and, according to the Pb/U ratio, is about 60 million years old--an early Tertiary age.
Evans, James George
1976-01-01
The central Santander Massif is composed of Precambrian Bucaramanga Gneiss and pre-Devonian Silgara Formation intruded by Mesozoic quartz diorite, quartz monzonite, and alaskite and Cretaceous or younger porphyry. Triassic (Bocas Formation), Jurassic (Jordan and Giron Formations).and Cretaceous (Tambor, Rosa Blanca, Paja, Tablazo, Simiti, La Luna, and Umir Formations) sedimentary rocks overlie the metamorphic rocks and are younger than most of the intrusions. A geological and geochemical reconnaissance of part of the central Santander Massif included the Vetas and California gold districts. At Vetas the gold is generally in brecciated aphanitic quartz and phyllonite. Dark-gray material in the ore may be graphite. The ore veins follow steep west-northwest- and north-northeast-striking fracture zones. No new gold deposits were found. Additional geochemical studies should concentrate on western Loma Pozo del Rey and on improvement of the gold extraction process. At California the gold is in pyritiferous quartz veins and quartz breccia. Ore containing black sooty material (graphite?) is highly radioactive. Some of the mineralization is post-Lower Cretaceous. Soil samples indicate that gold deposits lie under the thick blanket of soil on the ridges above the zone of mining. Three principal gold targets are outlined by gold and associated minerals in pan concentrates. The close relation of gold and copper anomalies suggests that copper may be useful as a pathfinder for gold elsewhere in the region. Based on occurrences of gold or high concentrations of pyrite or chalcopyrite in pan concentrates and on analytical data, eight potential gold targets are outlined in the central massif. Reconnaissance of the surrounding region is warranted.
Rock Smelting of Copper Ores with Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Norgate, Terry; Jahanshahi, Sharif; Haque, Nawshad
It is generally recognised that the grades of metallic ores are falling globally. This trend can be expected to increase the life cycle-based energy requirement for primary metal production due to the additional amount of material that must be handled and treated in the mining and mineral processing stages of the metal production life cycle. Rock (or whole ore) smelting has been suggested as a possible alternative processing route for low grade ores with a potentially lower energy intensity and environmental impact than traditional processing routes. In this processing route, the beneficiation stage is eliminated along with its associated energy consumption and greenhouse gas emissions, but this is partially offset by the need for more solid material to be handled and heated up to smelting temperatures. A life cycle assessment study was carried out to assess the potential energy and greenhouse gas benefits of a conceptual flowsheet of the rock smelting process, using copper ore as an example. Recovery and utilisation of waste heat in the slag (via dry slag granulation) and offgas streams from the smelting step was also included in the study, with the waste heat being utilised either for thermal applications or electricity generation.
Mineral commodity profiles: Silver
Butterman, W.C.; Hilliard, Henry E.
2005-01-01
Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the United States, about 30 companies accounted for more than 90 percent of the silver fabricated. The consumption of silver for all fabrication uses is expected to grow slowly through the decade ending in 2010 at about 1.3 percent per year for the world and 2.4 percent per year for the United States. World and U.S. reserves and reserve bases are more than adequate to satisfy the demand for newly mined silver through 2010. The other components of supply will be silver recovered from scrap, silver from industrial stocks, and silver bullion that is sold into the market from commodity exchange and private stocks.
Fe-U-PGE-Au-Ag-Cu Deposits of the Udokan-Chiney Region (East Siberia, Russia)
NASA Astrophysics Data System (ADS)
Gongalskiy, B.; Krivolutskaya, N.; Murashov, K.; Nistratov, S.; Gryazev, S.
2012-04-01
Introduction. Cupriferous sandstones-shales and magmatic copper-nickel deposits mark out the western and southern boundaries of the Siberian Craton accordingly. Of special interest are the Paleoproterozoic deposits of the Udokan-Chiney mining district (Gongalskiy, Krivolutskaya, 2008). Copper reserves and resources of this region are estimated at more than 50 Mt. Half of them is concentrated at the unique Udokan Deposit and the second half is distributed among sedimentary (Unkur, Pravoingamakitskoye, Sakinskoye, Krasnoye, Burpala) and magmatic deposits of the Chiney (Rudnoye, Verkhnechineyskoye, Kontaktovoye), Luktur and Maylav massifs. Results. It was established that the ores are characterized by similarity in chemical composition (main, major and rare elements that are Ag, Au, PGE) and mineral assemblages with varying proportions. It is important to emphasize that Fe role in mineralization was previously ignored. Meanwhile the Udokan deposit contains 10 Mt of magnetite metacrystals so as chalcocite ores may contain up to 50% magnetite too. It has been recently found that the Chiney titanomagnetite ores comprise commercially significant uranium and rare-earth metal concentrations (Makaryev et al., 2011). Thus the Udokan-Chiney region comprises Cu, Fe, Ti, V, U, REE, Ag, Au, PGE. These deposits differ from similar objects, the Olympic Dam in particular, by a much smaller content of fluid-bearing minerals. Copper mineralization at the Udokan is represented by chalcocite-bornite ores. They occur as ore beds conformable with sedimentary structures or as cross-cutting veins. The central zones of the former are often brecciated. They are rimmed by fine magnetite, bornite, and chalcocite dissemination. Bornite-chalcopyrite and chalcopyrite-pyrite veins are known at the lower levels of the Udokan ore bed. Such ore compositions are predominant in other ore deposits in sedimentary rocks (Pravoingamakitskoye, Unkur) and have a hydrothermal origin. Silver grades are up to 370 g/t in grab samples (Gongalskiy et al., 2008a). The long-lived Udokan-Chiney ore-magmatic has small areal extent of explosive rocks and breccias (n*10 m) with massive sulfide veins (chalcopyrite, pyrrhotite) which are similar to Sudbury offset dikes. While the same vertical zones at the Rudnoye deposit have been confirmed over 0.5 km downward from the lower contact of the Chiney massif. Conclusions. Multielement and similar mineralogical composition ores of different deposits in the Udokan-Chiney area reflect long evolution of ore processes in very movable block of the crust. Observed combination of magmatic, sedimentary and partially hydrothermal deposits is a result of the telescoping of a wide range of metals into a limited area.
NASA Astrophysics Data System (ADS)
Barra, Fernando; Valencia, Victor A.
2014-10-01
Two porphyry Cu-Mo prospects in northern Sonora, Mexico (Fortuna del Cobre and Los Humos) located within the southwestern North American porphyry province have been dated in order to constrain the timing of crystallization and mineralization of these ore deposits. In Fortuna del Cobre, the pre-mineralization granodiorite porphyry yielded an U-Pb zircon age of 76.5 ± 2.3 Ma, whereas two samples from the ore-bearing quartz feldespathic porphyry were dated at 74.6 ± 1.3 and 75.0 ± 1.4 Ma. Four molybdenite samples from Los Humos porphyry Cu prospect yielded a weighted average Re-Os age of 73.5 ± 0.2 Ma, whereas two samples from the ore-bearing quartz monzonite porphyry gave U-Pb zircon ages of 74.4 ± 1.1 and 74.5 ± 1.3 Ma, showing a Late Cretaceous age for the emplacement of this ore deposit. The results indicate that Laramide porphyry Cu mineralization of Late Cretaceous age is not restricted to northern Arizona as previously thought and provide evidence for the definition of NS trending metallogenic belts that are parallel to the paleo-trench. Porphyry copper mineralization follows the inland migration trend of the magmatic arc as a result of the Farallon slab flattening during the Laramide orogeny.
NASA Technical Reports Server (NTRS)
Jensen, M. L. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A significant and possible major economic example of the practical value of Skylab photographs was provided by locating on Skylab Camera Station Number 4, frame 010, SL-2, an area of exposures of limestone rocks which were thought to be completely covered by volcanic rocks based upon prior mapping. The area is located less than 12 miles north of the Ruth porphyry copper deposit, White Pine County, Nevada. This is a major copper producing open pit mine owned by Kennecott Copper Corporation. Geophysical maps consisting of gravity and aeromagnetic studies have been published indicating three large positive magnetic anomalies located at the Ruth ore deposits, the Ward Mountain, not a mineralized area, and in the area previously thought to be completely covered by post-ore volcanics. Skylab photos indicate, however, that erosion has removed volcanic cover in specific sites sufficient to expose the underlying older rocks suggesting, therefore, that the volcanic rocks may not be the cause of the aeromagnetic anomaly. Field studies have verified the initial interpretations made from the Skylab photos. The potential significance of this study is that the large positive aeromagnetic anomaly suggests the presence of cooled and solidified magma below the anomalies, in which ore-bearing solutions may have been derived forming possible large ore deposits.
Gitari, M W; Akinyemi, S A; Ramugondo, L; Matidza, M; Mhlongo, S E
2018-04-30
The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average ≈ 8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO 2 /Al 2 O 3 and Na 2 O/(Al 2 O 3 + SiO 2 ) ratios and low plastic index (i.e. PI ≈ 2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase > muscovite > hornblende > calcite > haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process are controlling the elements distribution.
Application of Reactive Transport Modeling to Heap Bioleaching of Copper
NASA Astrophysics Data System (ADS)
Liu, W.
2017-12-01
Copper heap bioleaching is a complex industrial process that utilizes oxidative chemical leaching and microbial activities to extract copper from packed ore beds. Mathematical modelling is an effective tool for identifying key factors that determine the leaching performance. HeapSim is a modelling tool that incorporates all fundamental processes that occur in a heap under leach, such as the movement of leaching solution, chemical reaction kinetics, heat transfer, and microbial activities, to predict the leaching behavior of a heap. In this study, the HeapSim model was applied to simulate chalcocite heap bioleaching at Quebrada Blanca mine located in the Northern Chile. The main findings were that the model could be satisfactorily calibrated and validated to simulate chalcocite leaching. Heap temperature was sensitive to the changes in the raffinate temperature, raffinate flow rate, and the extent of pyrite oxidation. At high flow rates, heap temperature was controlled by the raffinate temperature. In contrast, heat removal by the raffinate solution flow was insignificant at low flow rates, leading to the accumulation of heat generated by pyrite reaction and therefore an increase in heap temperature.
Long-distance connections in the Copper Age: New evidence from the Alpine Iceman’s copper axe
Angelini, Ivana; Kaufmann, Günther; Canovaro, Caterina; Dal Sasso, Gregorio; Villa, Igor Maria
2017-01-01
25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC. PMID:28678801
Long-distance connections in the Copper Age: New evidence from the Alpine Iceman's copper axe.
Artioli, Gilberto; Angelini, Ivana; Kaufmann, Günther; Canovaro, Caterina; Dal Sasso, Gregorio; Villa, Igor Maria
2017-01-01
25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC.
Bookstrom, Arthur A.; El Komi, Mohamed; Christian, Ralph P.; Bazzari, Maher A.
1990-01-01
Ore minerals in outcrops, and geochemically anomalous concentrations of gold, silver, copper, lead, zinc, arsenic, antimony, and tellurium are present in carbonate-rich rocks of the hot-spring assemblage. This indicates that the ore minerals and elements were deposited originally as constituents of the hot-spring assemblage. However, exposed ore-mineral occurrences are small and sparse, and geochemical anomalies are small, irregularly distributed, and of subeconomic grade. Furthermore, weak electromagnetic anomalies do not indicate the presence of subsurface bodies of concentrated, conductive ore minerals. Therefore, no drilling is recommended.
CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS
Clifford, W.E.
1962-05-29
A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)
NASA Astrophysics Data System (ADS)
Gutierrez, Adrian Emmanuel Gutierrez
A 3D gravity model of the Copper Flat Mine was performed as part of the exploration of new resources in at the mine. The project is located in the Las Animas Mining District in Sierra County, New Mexico. The mine has been producing ore since 1877 and is currently owned by the New Mexico Copper Corporation, which plans o bringing the closed copper mine back into production with innovation and a sustainable approach to mining development. The Project is located on the Eastern side of the Arizona-Sonora-New Mexico porphyry copper Belt of Cretaceous age. Copper Flat is predominantly a Cretaceous age stratovolcano composed mostly of quartz monzonite. The quartz monzonite was intruded by a block of andesite alter which a series of latite dikes creating veining along the topography where the majority of the deposit. The Copper Flat deposit is mineralized along a breccia pipe where the breccia is the result of auto-brecciation due to the pore pressure. There have been a number of geophysical studies conducted at the site. The most recent survey was a gravity profile on the area. The purpose of the new study is the reinterpretation of the IP Survey and emphasizes the practical use of the gravity geophysical method in evaluating the validity of the previous survey results. The primary method used to identify the deposit is gravity in which four Talwani models were created in order to created a 3D model of the ore body. The Talwani models have numerical integration approaches that were used to divide every model into polygons. The profiles were sectioned into polygons; each polygon was assigning a specific density depending on the body being drawn. Three different gridding techniques with three different filtering methods were used producing ten maps prior to the modeling, these maps were created to establish the best map to fit the models. The calculation of the polygons used an exact formula instead of the numerical integration of the profile made with a Talwani approach. A least squared comparison between the calculated and observed gravity is used to determine the best fitting gravity vectors and the best susceptibility for the assemblage of polygonal prisms. The survey is expected to identify the geophysical anomalies found at the Copper Flat deposit in order to identify the alteration that surrounds that part of the ore body. The understanding of the anomalies needs to be reevaluated in order to have a sharper model of Copper Flat, and to understand the relations of the different structures that shaped this copper porphyry deposit.
Estimating usable resources from historical industry data
Cargill, S.M.; Root, D.H.; Bailey, E.H.
1981-01-01
Historical production statistics are used to predict the quantity of remaining usable resources. The commodities considered are mercury, copper and its byproducts gold and silver, and petroleum; the production and discovery data are for the United States. The results of the study indicate that the cumulative return per unit of effort, herein measured as grade of metal ores and discovery rate of recoverable petroleum, is proportional to a negative power of total effort expended, herein measured as total ore mined and total exploratory wells or footage drilled. This power relationship can be extended to some limiting point (a lower ore grade or a maximum number of exploratory wells or footage), and the apparent quantity of available remaining resource at that limit can be calculated. For mercury ore of grades at and above 0.1 percent, the remaining usable resource in the United States is calculated to be 54 million kg (1,567,000 flasks). For copper ore of grades at and above 0.2 percent, the remaining usable copper resource is calculated to be 270 million metric tons (298 million short tons); remaining resources of its by-products gold and silver are calculated to be 3,656 metric tons (118 million troy ounces) and 64,676 metric tons (2,079 million troy ounces), respectively. The undiscovered recoverable crude oil resource in the conterminous United States, at 3 billion feet of additional exploratory drilling, is calculated to be nearly 37.6 billion barrels; the undiscovered recoverable petroleum resource in the Permian basin of western Texas and southeastern New Mexico, at 300 million feet of additional exploratory drilling or 50,000 additional exploratory wells, is calculated to be about 6.2 billion BOE (barrels of oil equivalent).
Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu basin, Central Kazakhstan
Box, Stephen E.; Seltmann, Reimar; Zientek, Michael L.; Syusyura, Boris; Creaser, Robert A.; Dolgopolova, Alla
2012-01-01
Sandstone-hosted copper (sandstone Cu) deposits occur within a 200-km reach of the northern Chu-Sarysu basin of central Kazakhstan (Dzhezkazgan and Zhaman-Aibat deposits, and the Zhilandy group of deposits). The deposits consist of Cu sulfide minerals as intergranular cement and grain replacement in 10 ore-bearing members of sandstone and conglomerate within a 600- to 1,000-m thick Pennsylvanian fluvial red-bed sequence. Copper metal content of the deposits ranges from 22 million metric tons (Mt, Dzehzkazgan) to 0.13Mt (Karashoshak in the Zhilandy group), with average grades of 0.85 to 1.7% Cu and significant values for silver (Ag) and rhenium (Re). Broader zones of iron reduction (bleaching) of sandstones and conglomerates of the red-bed sequence extend over 10 km beyond each of the deposits along E-NE-trending anticlines, which began to form in the Pennsylvanian. The bleached zones and organic residues within them are remnants of ormer petroleum fluid accumulations trapped by these anticlines. Deposit sites along these F1anticlines are localized at and adjacent to the intersections of nearly orthogonal N-NW-trending F2synclines. These structural lows served to guide the flow of dense ore brines across the petroleum-bearing anticlines, resulting in ore sulfide precipitation where the two fluids mixed. The ore brine was sourced either from the overlying Early Permian lacustrine evaporitic basin, whose depocenter occurs between the major deposits, or from underlying Upper Devonian marine evaporites. Sulfur isotopes indicate biologic reduction of sulfate but do not resolve whether the sulfate was contributed from the brine or from the petroleum fluids. New Re-Os age dates of Cu sulfides from the Dzhezkazgan deposit indicate that mineralization took place between 299 to 309 Ma near the Pennsylvanian-Permian age boundary. At the Dzhezkazgan and some Zhilandy deposits, F2fold deformation continued after ore deposition. Copper orebodies in Lower Permian shale near the Zhaman-Aibat deposit indicate that at least some of the mineralization there is younger than at Dzhezkazgan, consistent with the Re-Os age and with differences in their ore Pb isotopes.
NASA Astrophysics Data System (ADS)
Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei
2015-06-01
The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.
NASA Astrophysics Data System (ADS)
Potra, Adriana; Macfarlane, Andrew W.
2014-01-01
New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the field defined by the Huetamo Sequence, suggesting that these ores may also contain metals from the sedimentary rocks. The Pb isotope ratios of ore samples from the Zimapan deposit (206Pb/204Pb = 18.771-18.848) are substantially higher than the whole-rock Pb isotope compositions of the basement rocks. The similarity of ore Pb to igneous rock Pb in the Zimapan district (206Pb/204Pb = 18.800-18.968) may indicate that the proximal source of ore metals in the hydrothermal system was the igneous activity.
Chaffee, M.A.
1976-01-01
There may be many as-yet-undiscovered porphyry copper deposits that exist as blind deposits deep within exposed rock bodies. The Kalamazoo porphyry copper-molybdenum deposit is a blind deposit present at depths up to at least 1,000 m (about 3,200 ft) that contains zoning features common to many of the known porphyry copper deposits found in western North and South America. As the preliminary phase in a geochemical study of the Kalamazoo deposit, whole-rock samples of core and cuttings from two drill holes have been analyzed for 60 different elements. Each hole represents a different major rock unit and each has penetrated completely through all the existing alteration zones and the ore zone. Plots of concentration vs. depth for 17 selected elements show distinct high- or low-concentration zones that are spatially related to the ore zone. For most of the ore-related elements no significant correlation with the two lithologies is apparent. The spatial distribution and abundance of elements such as Co, Cu, S, Se, Mn, Tl, Rb, Zn, B, and Li may be useful in determining the direction for exploration to proceed to locate a blind deposit. Trace element studies should be valuable in evaluating areas containing extensive outcrops of rocks with disseminated pyrite. Elemental zoning should be at least as useful as alteration-mineralization zoning for evaluating rock bodies thought to contain blind deposits similar to the Kalamazoo deposit. ?? 1976.
Code of Federal Regulations, 2011 CFR
2011-07-01
... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... operations other than placer deposits; (2) Mills that use the froth-flotation process alone or in conjunction... not apply to discharges from the Quartz Hill Molybdenum Project in the Tongass National Forest, Alaska...
Code of Federal Regulations, 2010 CFR
2010-07-01
... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... operations other than placer deposits; (2) Mills that use the froth-flotation process alone or in conjunction... not apply to discharges from the Quartz Hill Molybdenum Project in the Tongass National Forest, Alaska...
MR imaging of ore for heap bioleaching studies using pure phase encode acquisition methods
NASA Astrophysics Data System (ADS)
Fagan, Marijke A.; Sederman, Andrew J.; Johns, Michael L.
2012-03-01
Various MRI techniques were considered with respect to imaging of aqueous flow fields in low grade copper ore. Spin echo frequency encoded techniques were shown to produce unacceptable image distortions which led to pure phase encoded techniques being considered. Single point imaging multiple point acquisition (SPI-MPA) and spin echo single point imaging (SESPI) techniques were applied. By direct comparison with X-ray tomographic images, both techniques were found to be able to produce distortion-free images of the ore packings at 2 T. The signal to noise ratios (SNRs) of the SESPI images were found to be superior to SPI-MPA for equal total acquisition times; this was explained based on NMR relaxation measurements. SESPI was also found to produce suitable images for a range of particles sizes, whereas SPI-MPA SNR deteriorated markedly as particles size was reduced. Comparisons on a 4.7 T magnet showed significant signal loss from the SPI-MPA images, the effect of which was accentuated in the case of unsaturated flowing systems. Hence it was concluded that SESPI was the most robust imaging method for the study of copper ore heap leaching hydrology.
Process and apparatus for solvent extraction of oil from oil-containing diatomite ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnofsky, G. B.
1980-12-16
A process for solvent extraction of oil from oil bearing diatomite ore and an apparatus for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent, solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom, and solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure.
Preliminary Report on the White Canyon Area, San Juan County, Utah
Benson, William Edward Barnes; Trites, A.F.; Beroni, E.P.; Feeger, J.A.
1952-01-01
The White Canyon area in San Juan County, Utah, contains known deposits of copper-uranium ore and is currently being mapped and studied by the Geological Survey. To date, approximately 75 square miles, or about 20 percent of the area, has been mapped on a scale 1 inch=1 mile. The White Canyon area is underlain by more than 2,000 feet of sedimentary rocks, Carboniferous to Jurassic(?) in age. The area is on the flank of the Elk Ridge anticline, and the strata have a regional dip of 1 deg to 2 deg SW. The Shinarump conglomerate of Late Triassic age is the principal ore-bearing formation. The Shinarump consists of lenticular beds of sandstone, conglomeratic sandstone, clay, and siltstone, and ranges in thickness from a feather edge to as much as 75 feet. Locally the sandstones contain silicified and carbonized wood and fragments of charcoal. These vegetal remains are especially common in channel-fill deposits. Jointing is prominent in the western part of the area, and apparently affects all formations. Adjacent to the joints some of the redbeds in the sequence are bleached. Deposits of copper-uranium minerals have been found in the Moenkopi, Shinarump, and Chinle formations, but the only production of ore has been from the Shinarump conglomerate. The largest concentration of these minerals is in the lower third of the Shinarump, and the deposits seem to be controlled in part by ancient channel fills and in part by fractures. Locally precipitation of the copper and uranium minerals apparently has been aided by charcoal and clays. Visible uranium minerals include both hard and soft pitchblende and secondary hydrosulfates, phosphates, and silicates. In addition, unidentified uranium compounds are present in carbonized wood and charcoal, and in veinlets of hydrocarbons. Base-metal sulfides have been identified in all prospects that extend beyond the oxidized zone. Secondary copper minerals in the oxidized zone include the hydrous sulfates and carbonates, and possibly chrysocolla. The principal gangue minerals are quartz, clay minerals, chlorite, oxides of iron and manganese, alunite, calcite, gypsum, pyrite, allophane, gibbsite, opal, and chalcedony. The origin of the copper-uranium ores has not been determined, but the association of many deposits with fractures, the mineralogic assemblage, and a lead-uranium age determination of 50 to 60 million years for the pitchblende in the Happy Jack mine favor the hypothesis that the ores are of hydrothermal origin and were deposited in early Tertiary time. Criteria believed to be the most useful in prospecting for new deposits are (1) visible uranium minerals; (2) visible copper minerals; (3) alunite; (4) hydrocarbons; and (5) bleaching of the underlying Moenkopi formation.
Microbiological Leaching of Metallic Sulfides
Razzell, W. E.; Trussell, P. C.
1963-01-01
The percentage of chalcopyrite leached in percolators by Thiobacillus ferrooxidans was dependent on the surface area of the ore but not on the amount. Typical examples of ore leaching, which demonstrate the role of the bacteria, are presented. In stationary fermentations, changes in KH2PO4 concentration above or below 0.1% decreased copper leaching as did reduction in the MgSO4·7H2O and increase in the (NH4)2SO4 concentration. Bacterial leaching of chalcopyrite was more effective than nonbiological leaching with ferric sulfate; ferric sulfate appeared to retard biological leaching, but this effect was likely caused by formation of an insoluble copper-iron complex. Ferrous sulfate and sodium chloride singly accentuated both bacterial and nonbiological leaching of chalcocite but jointly depressed bacterial action. Sodium chloride appeared to block bacterial iron oxidation without interfering with sulfide oxidation. Bacterial leaching of millerite, bornite, and chalcocite was greatest at pH 2.5. The economics of leaching a number of British Columbia ore bodies was discussed. PMID:16349627
Stochastic production phase design for an open pit mining complex with multiple processing streams
NASA Astrophysics Data System (ADS)
Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen
2014-08-01
In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.
Genesis of sediment-hosted stratiform copper cobalt deposits, central African Copperbelt
NASA Astrophysics Data System (ADS)
Cailteux, J. L. H.; Kampunzu, A. B.; Lerouge, C.; Kaputo, A. K.; Milesi, J. P.
2005-07-01
The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu-Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (⩾10 Mt copper). The origin of Cu-Co mineralisation in this province remains speculative, with the debate centred around syngenetic-diagenetic and hydrothermal-diagenetic hypotheses. The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15. The main Cu-Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal-supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment. The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic data on sulphides suggest the derivation of sulphur essentially from the bacterial reduction of seawater sulphates. The mineralizing brines were generated from sea water in sabkhas or hypersaline lagoons during the deposition of the host rocks. Changes of Eh-pH and salinity probably were critical for concentrating copper-cobalt and nickel mineralisation. Compressional tectonic and related metamorphic processes and supergene enrichment have played variable roles in the remobilisation and upgrading of the primary mineralisation. There is no evidence to support models assuming that metals originated from: (1) Katangan igneous rocks and related hydrothermal processes or; (2) leaching of red beds underlying the orebodies. The metal sources are pre-Katangan continental rocks, especially the Palaeoproterozoic low-grade porphyry copper deposits known in the Bangweulu block and subsidiary Cu-Co-Ni deposits/occurrences in the Archaean rocks of the Zimbabwe craton. These two sources contain low grade ore deposits portraying the peculiar metal association (Cu, Co, Ni, U, Cr, Au, Ag, PGE) recorded in the Katangan sediment-hosted ore deposits. Metals were transported into the basin dissolved in water. The stratiform deposits of Congo and Zambia display features indicating that syngenetic and early diagenetic processes controlled the formation of the Neoproterozoic Copperbelt of central Africa.
Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates
NASA Astrophysics Data System (ADS)
Onol, Kubra; Saridede, Muhlis Nezihi
2013-03-01
The use of microwave energy in materials processing is a relatively new development presenting numerous advantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140°C, the solution of 0.5 M H2SO4 + 0.05 M Fe2(SO4)3, and the time of 1 h.
Process and apparatus for solvent extraction of oil from oil-containing diatomite ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnofsky, G.B.
1979-09-11
A process is described for solvent extraction of oil-bearing diatomite ore. An apparatus is provided for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent. The solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom. The solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure. 17 claims.
NASA Astrophysics Data System (ADS)
Zhu, Zhimin; Tan, Hongqi; Liu, Yingdong; Li, Chao
2018-03-01
The Lala Fe-Cu deposit is one of the largest iron oxide-copper-gold (IOCG) deposits in the Kangdian copper belt, southwest China. The paragenetic sequence of the Lala deposit includes six hydrothermal stages: pre-ore pervasive Na alteration (I); magnetite stage with K-feldspar and apatite (II); polymetallic disseminated/massive magnetite-sulfide stage (III); banded magnetite-sulfide stage (IV); sulfide vein stage (V); and late quartz-carbonate vein stage (VI). Fifteen molybdenite separates from stages III to VI were analyzed for Re-Os dating. Our new Re-Os data, together with previous studies, identify four distinct hydrothermal events at the Lala deposit. Molybdenite from the stage III disseminated to massive chalcopyrite-magnetite ores yielded a weighted average Re-Os age of 1306 ± 8 Ma (MSWD = 1.1, n = 6) which represents the timing of main ore formation. Molybdenite from the stage IV-banded magnetite-chalcopyrite ores yielded a weighted average Re-Os age of 1086 ± 8 Ma (MSWD = 2.2, n = 7), i.e., a second ore-forming event. Molybdenite from the stage V sulfide veins yielded a weighted average Re-Os age of 988 ± 8 Ma (MSWD = 1.3, n = 7) which represents the timing of a third hydrothermal event. Molybdenite from the quartz-carbonate veins (stage VI) yielded a weighted average Re-Os age at 835 ± 4 Ma (MSWD = 0.66, n = 10) and documented the timing of a late hydrothermal event. Our results indicate that the Lala deposit formed during multiple, protracted mineralization events over several hundred million years. The first three Mesoproterozoic mineralization events are coeval with intra-continental rifting (breakup of the supercontinent Nuna) and share a temporal link to other IOCG-style deposits within the Kangdian Copper Belt, and the last Neoproterozoic hydrothermal event is coeval with the Sibao orogeny which culminated with the amalgamation of the Yangtze Block with the Cathaysia Block at 860-815 Ma.
NASA Astrophysics Data System (ADS)
Ye, Fa-wang; Liu, De-chang
2008-12-01
Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; Baumgartner, Lukas; Bouvier, Anne-Sophie
2016-04-01
Magmatic-hydrothermal ore deposits are important economic Cu, Au, Mo and Sn resources (Sillitoe, 2010, Kesler, 1994). The ore formation is a result of superimposed enrichment processes and metals can precipitate due to fluid-rock interaction and/or temperature drop caused by convection or mixing with meteoric fluid (Heinrich and Candela 2014). Microthermometry and LA-ICP MS trace element analyses of fluid inclusions of a well-characterized quartz sample from the Yankee Lode quartz-cassiterite vein deposit (Mole Granite, Australia) suggest that tin precipitation was driven by dilution of hot magmatic water by meteoric fluids (Audétat et al.1998). High resolution in situ oxygen isotope measurements of quartz have the potential to detect changing fluid sources during the evolution of a hydrothermal system. We analyzed the euhedral growth zones of this previously well-studied quartz sample. Growth temperatures are provided by Audétat et al. (1998) and Audétat (1999). Calculated δ 18O values of the quartz- and/or cassiterite-precipitating fluid show significant variability through the zoned crystal. The first and second quartz generations (Q1 and Q2) were precipitated from a fluid of magmatic isotopic composition with δ 18O values of ˜ 8 - 10 ‰. δ 18O values of Q3- and tourmaline-precipitating fluids show a transition from magmatic δ 18O values of ˜ 8 ‰ to ˜ -5 ‰. The outermost quartz-chlorite-muscovite zone was precipitated from a fluid with a significant meteoric water component reflected by very light δ 18O values of about -15 ‰ which is consistent with values found by previous studies (Sun and Eadington, 1987) using conventional O-isotope analysis of veins in the distal halo of the granite intrusion. Intense incursion of meteoric water during Q3 precipitation (light δ 18O values) agrees with the main ore formation event, though the first occurrence of cassiterite is linked to Q2 precipitating fluid with magmatic-like isotope signature. This apparent discrepancy can be explained by the presence of a fluid of meteoric origin that was isotopically equilibrated with a hot, but already solidified and fractured granitic intrusion under rock-dominated conditions prior their transfer to the cold ore deposition site (Heinrich, 1990). Conversely, in porphyry copper systems meteoric fluid incursion has been assumed to participate in formation of peripheral or post-mineralization processes (Bowman et al., 1987; Sillitoe, 2010; Williams-Jones and Migdisov, 2014). However, recent numerical simulations of porphyry copper systems identify a significant role of meteoric fluids for the enrichment process, providing a cooling mechanism for metal-rich fluids expelled from an upper crustal magma chamber (Weis et al. 2012, Weis 2015). Furthermore, new petrographic and fluid inclusion work of ore-mineralized quartz veins (Landtwing et al., 2010; Stefanova et al., 2014) indicates lower (˜ 450r{ }C) than magmatic fluid temperatures for copper precipitation. Given that the Yankee Lode study validated the capability of high resolution, in situ δ 18O analysis to trace meteoric water incursion, we will apply this method to hydrothermal quartz samples from two significant porphyry copper deposits (Bingham Canyon, USA and Elatsite, Bulgaria). By this we intend to better constrain a potential role of meteoric water incursion in porphyry copper ore precipitation. REFERENCES Audétat, A., Günther, D., Heinrich, C. A. 1998: Formation of a Magmatic-Hydrothermal Ore Deposit: Insights with LA-ICP-MS Analysis of Fluid Inclusions: Science, 279, 2091-2094. Audétat, A. 1999: The magmatic-hydrothermal evolution of the Sn/W-mineralized Mole Granite (Eastern Australia): PhD Thesis, 211. Bowman, J. R., Parry, W. T., Kropp, W. P., and Kruer, S. A., 1987: Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah: Economic Geology, 82, 395-428. Heinrich, C.A. 1990: The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition: Economic Geology, 85, 457-481. Heinrich, C. A., and Candela, P. A. 2014: 13.1 - Fluids and Ore Formation in the Earth's Crust, in Holland, H. D., and Turekian, K. K., eds., Treatise on Geochemistry (Second Edition): Oxford, Elsevier, 1-28. Kesler, S. E., 1994: Mineral Resources, economics and the environment, New York, McMillan, 391. Sillitoe, R. H., 2010: Porphyry copper systems: Economic Geology (Invited Special Paper), 105, 3-41. Sun, S. and Eadington, J. 1987: Oxygen Isotope Evidence for the Mixing of Magmatic and Meteoric Waters during Tin Mineralization in the Mole Granite, New South Wales, Australia: Economic Geology, 82, 43-52. Weis, P., Driesner, T., & Heinrich, C.A. 2012: Porphyry-Copper Ore Shells Form At Stable Pressure Temperature Fronts Within Dynamic Fluid Plumes: Science, 338, 1613-1616. Williams-Jones, A. E., and Migdisov, A. A., 2014: Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems: Economic Geology, Special Publication, 18, 77-95.
The origin of Cu/Au ratios in porphyry-type ore deposits.
Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A
2002-06-07
Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits.
Material flows generated by pyromet copper smelting
Goonan, T.G.
2005-01-01
Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.
Understanding the copper of the Statue of Liberty
NASA Astrophysics Data System (ADS)
Welter, Jean-Marie
2006-05-01
Pierre-Eugène Secrétan, a French copper industrialist, donated the copper sheets for the construction of the skin of the Statue of Liberty when it was built in 1875 1876. It can be inferred from the history of Secrétan's activities that the sheets were rolled in his plant of Sérifontaine. The impurities found in two samples obtained from the U.S. National Park Service show that different qualities of copper were used. They indicate, by taking also into account the commercial relations of Secrétan, that the copper may possibly have come from Spanish or South/North American ore.
Khaleque, Himel N; Corbett, Melissa K; Ramsay, Joshua P; Kaksonen, Anna H; Boxall, Naomi J; Watkin, Elizabeth L J
2017-11-20
Successful process development for the bioleaching of mineral ores, particularly the refractory copper sulfide ore chalcopyrite, remains a challenge in regions where freshwater is scarce and source water contains high concentrations of chloride ion. In this study, a pure isolate of Acidihalobacter prosperus strain F5 was characterized for its ability to leach base metals from sulfide ores (pyrite, chalcopyrite and pentlandite) at increasing chloride ion concentrations. F5 successfully released base metals from ores including pyrite and pentlandite at up to 30gL -1 chloride ion and chalcopyrite up to 18gL -1 chloride ion. In order to understand the genetic mechanisms of tolerance to high acid, saline and heavy metal stress the genome of F5 was sequenced and analysed. As well as being the first strain of Ac. prosperus to be isolated from Australia it is also the first complete genome of the Ac. prosperus species to be sequenced. The F5 genome contains genes involved in the biosynthesis of compatible solutes and genes encoding monovalent cation/proton antiporters and heavy metal transporters which could explain its abilities to tolerate high salinity, acidity and heavy metal stress. Genome analysis also confirmed the presence of genes involved in copper tolerance. The study demonstrates the potential biotechnological applicability of Ac. prosperus strain F5 for saline water bioleaching of mineral ores. Copyright © 2017 Elsevier B.V. All rights reserved.
Bookstrom, Arthur A.
2013-01-01
The Idaho cobalt belt (ICB) is a northwest-trending belt of cobalt (Co) +/- copper (Cu)-bearing deposits and prospects in the Salmon River Mountains of east-central Idaho, U.S.A. The ICB is about 55 km long and 10 km long in its central part, which contains multiple strata-bound ore zones in the Blackbird mine area. The Black Pine and Iron Creek Co-Cu prospects are southeast of Blackbird, and the Tinkers Pride, Bonanza Copper, Elk Creek, and Salmon Canyon Copper prospects are northwest of Blackbird.
2016-08-24
Chuquicamata, in Chile's Atacama Desert, is the largest open pit copper mine in the world, by excavated volume. The copper deposits were first exploited in pre-Hispanic times. Open pit mining began in the early 20th century when a method was developed to work low grade oxidized copper ores. The image was acquired September 2, 2007, covers an area of 19.5 by 29.3 km, and is located at 22.1 degrees south, 68.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20973
An econometric model of the U.S. secondary copper industry: Recycling versus disposal
Slade, M.E.
1980-01-01
In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.
Mineral Mapping with Imaging Spectroscopy: The Ray Mine, AZ
NASA Technical Reports Server (NTRS)
Clark, Roger N.; Vance, J. Sam; Livo, K. Eric; Green, Robert O.
1998-01-01
Mineral maps generated for the Ray Mine, Arizona were analyzed to determine if imaging spectroscopy can provide accurate information for environmental management of active and abandoned mine regions. The Ray Mine, owned by the ASARCO Corporation, covers an area of 5700 acres and is situated in Pinal County, Arizona about 70 miles north of Tucson near Hayden, Arizona. This open-pit mine has been a major source of copper since 1911, producing an estimated 4.5 million tons of copper since its inception. Until 1955 mining was accomplished by underground block caving and shrinkage stope methods. (excavation by working in stepped series usually employed in a vertical or steeply inclined orebody) In 1955, the mine was completely converted to open pit method mining with the bulk of the production from sulfide ore using recovery by concentrating and smelting. Beginning in 1969 a significant production contribution has been from the leaching and solvent extraction-electrowinnowing method of silicate and oxide ores. Published reserves in the deposit as of 1992 are 1.1 billion tons at 0.6 percent copper. The Environmental Protection Agency, in conjunction with ASARCO, and NASA/JPL obtained AVIRIS data over the mine in 1997 as part of the EPA Advanced Measurement Initiative (AMI) (Tom Mace, Principal Investigator). This AVIRIS data set is being used to compare and contrast the accuracy and environmental monitoring capabilities of remote sensing technologies: visible-near-IR imaging spectroscopy, multispectral visible and, near-IR sensors, thermal instruments, and radar platforms. The goal of this effort is to determine if these various technologies provide useful information for envirorunental management of active and abandoned mine sites in the arid western United States. This paper focuses on the analysis of AVIRIS data for assessing the impact of the Ray Mine on Mineral Creek. Mineral Creek flows to the Gila River. This paper discusses our preliminary AVIRIS mineral mapping and environmental findings.
du Bray, Edward A.; Holm-Denoma, Christopher S.; San Juan, Carma A.; Lund, Karen; Premo, Wayne R.; DeWitt, Ed
2015-08-10
In addition, Kisvarsanyi (1972) suggests that iron-copper deposits in the St. Francois Mountains of southeastern Missouri are petrogenetically associated with 1.4 Ga A-type granitoids that occur in that region. Similarly, Dall’Agnol and others (2012) summarize important global associations between A-type granitoid rocks and a variety of important ore deposit types, particularly tin, high-field-strength elements (Zr, Hf, Nb, Ta), rare-earth elements, and iron oxide-copper-gold deposits. Consequently, the need to better understand relations between A-type granitoid rocks, tectonic setting, and magma petrogenesis, as well as their genetic associations with important types of ore deposits, suggests that developing a definitive geochemical, modal, and geochronologic database for these rocks in the conterminous United States is of considerable value.
Volumetric determination of uranium using titanous sulfate as reductant before oxidimetric titration
Wahlberg, James S.; Skinner, Dwight L.; Rader, Lewis F.
1956-01-01
A new method for determining uranium in samples containing 0.05 percent or more U3O8, using titanous sulfate as reducing agent, is much shorter, faster, and has fewer interferences than conventional methods using reductor columns. The sample is dissolved with sulfuric, nitric, perchloric, and hydrofluoric acids. Elements that would otherwise form insoluble fluorides are kept in solution by complexing the fluoride ion with boric acid. A precipitation is made with cupferron to remove interfering elements. The solution is filtered to remove the precipitated cupferrates instead of extracting them with chloroform as is usually done. Filtration is preferred to extraction because any niobium that may be in solution forms an insoluble cupferrate that may be removed by filtering but is very difficult to extract with chloroform. Excess cupferron is destroyed by oxidizing with nitric and perchloric acids, and evaporating to dense fumes of sulfuric acid. The uranium is reduced to U(IV) by the addition of titanous sulfate, with cupric sulfate used as an indicator of the completeness of the reduction. Metallic copper is formed when all the uranium is reduced. The reduced copper is then reoxidized by the addition of mercuric perchlorate, an excess of ferric sulfate added, and the solution titrated immediately with standard ceric sulfate with ferroin as an indicator. Precision of the method compared favorable with methods in common use, both for uranium ores and for most types of uranium-rich materials.
Kanaev, A T; Bulaev, A G; Semenchenko, G V; Kanaeva, Z K; Shilmanova, A A
2016-01-01
The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.
Coper Isotope Fractionation in Porphyry Copper Deposits: A Controlled Experiment
NASA Astrophysics Data System (ADS)
Ruiz, J.; Mathur, R.; Uhrie, J. L.; Hiskey, B.
2001-12-01
Previous studies have shown that copper is fractionated in the environment. However, the mechanisms for isotope fractionation and the role of organic and inorganic processes in the fractionation are not well understood. Here we used the well controlled experiments used by Phelps Dodge Corporation aimed at leaching copper from their ore deposits to constrain the mechanism of copper isotope fractionation in natural systems. The isotope data were collected on a Micromass Isoprobe. High temperature copper sulfides from ore deposits in Chile and Arizona yield delta 65Cu near 0 permil. The reproducibility of the data is better that 0.1 permil. Controlled experiments consisting of large columns of rocks were fed solutions containing bacteria such as Thiobacillus ferroxidans and Leptospirrilium ferroxidan. Solutions fom the columns were sampled for sixty days and analyzed for copper concentrations, oxidation potential, ferrous/ferric ratios and pH. The results indicate that the bacterially aided dissolution of copper fractionated copper. Preliminary experiments of copper dissolution not using bacteria show no isotope fractionation The original rock in the experiment has a delta 65Cu of -2.1. The first solutions that were collected from the columns had a delta 65Cu of -5.0 per mil. The liquid changed its isotopic composition from -50 to -10 during the sixty days of sampling. The greatest shift in the isotope ratios occurred the first 30 days when the copper recovered was less than 40% and the ferrous/ferric ratios were somewhat constant. At approximately 35 days after the start of the experiments, the copper recovery increases the ferrousferric ratio decreased and the copper isotope ratio of the fluids remained fairly constant. The data suggest that the bacteria are required to effectively fractionate copper isotopes in natural systems and that the mechanisms of bacterial aided copper dissolution may include a direct dissolution of the sulfides by the bacteria. Experiments underway with enzimes without the bacteria may confirm this hypothesis. The data obtained in these experiments will provide some constraints in the use of copper isotopes as proxy for life in the rock record.
Deubner, David C; Sabey, Philip; Huang, Wenjie; Fernandez, Diego; Rudd, Abigail; Johnson, William P; Storrs, Jason; Larson, Rod
2011-10-01
Beryllium mine and ore extraction mill workers have low rates of beryllium sensitization and chronic beryllium disease relative to the level of beryllium exposure. The objective was to relate these rates to the solubility and composition of the mine and mill materials. Medical surveillance and exposure data were summarized. Dissolution of BeO, ore materials and beryllium hydroxide, Be(OH)(2) was measured in synthetic lung fluid. The ore materials were more soluble than BeO at pH 7.2 and similar at pH 4.5. Be(OH)(2) was more soluble than BeO at both pH. Aluminum dissolved along with beryllium from ore materials. Higher solubility of beryllium ore materials and Be(OH)(2) at pH 7.2 might shorten particle longevity in the lung. The aluminum content of the ore materials might inhibit the cellular immune response to beryllium.
NASA Astrophysics Data System (ADS)
Kurumshieva, K. R.; Gertner, I. F.; Tishin, P. A.
2017-12-01
An analysis of the distribution of noble metals in zones of sulfide mineralization makes it possible to justify the isolation of four ore-bearing horizons with a specific geochemical zonation. A rise in the gold content relative to palladium and platinum is observed from the bottom upwards along the section of the stratified series of gabbroids. The study of the mineral phases of sulphides and the noble minerals itself indicates the evolution of hydrothermal solutions, which determines the different activity and mobility of the fluid (mercury, tellurium, sulfur) and ore (copper, nickel, iron, platinum, gold and silver) components.
Estimating usable resources from historical industry data.
Cargill, S.M.; Root, D.H.; Bailey, E.H.
1981-01-01
The commodities considered are mercury, copper and its byproducts gold and silver, and petroleum; the production and discovery data are for the US. The results indicate that the cumulative return per unit of effort, herein measured as grade of metal ores and discovery rate of recoverable petroleum, is proportional to a negative power of total effort expended, herein measured as total ore mined and total exploratory wells or footage drilled. This power relationship can be extended to some limiting point (a lower ore grade or a maximum number of exploratory wells or footage), and the apparent quantity of available remaining resource at that limit can be calculated. -from Authors
Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13
Breit, George N.
2016-01-01
Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.
Hofstra, Albert H.; Landis, Gary P.
2012-01-01
The Idaho cobalt belt is a 60-km-long alignment of deposits composed of cobaltite, Co pyrite, chalcopyrite, and gold with anomalous Nb, Y, Be, and rare-earth elements (REEs) in a quartz-biotite-tourmaline gangue hosted in Mesoproterozoic metasedimentary rocks of the Lemhi Group. It is the largest cobalt resource in the United States with historic production from the Blackbird Mine. All of the deposits were deformed and metamorphosed to upper greenschist-lower amphibolite grade in the Cretaceous. They occur near a 1377 Ma anorogenic bimodal plutonic complex. The enhanced solubility of Fe, Co, Cu, and Au as chloride complexes together with gangue biotite rich in Fe and Cl and gangue quartz containing hypersaline inclusions allows that hot saline fluids were involved. The isotopes of B in gangue tourmaline are suggestive of a marine source, whereas those of Pb in ore suggest a U ± Th-enriched source. The ore and gangue minerals in this belt may have trapped components in fluid inclusions that are distinct from those in post-ore minerals and metamorphic minerals. Such components can potentially be identified and distinguished by their relative abundances in contrasting samples. Therefore, we obtained samples of Co and Cu sulfides, gangue quartz, biotite, and tourmaline and post-ore quartz veins as well as Cretaceous metamorphic garnet and determined the gas, noble gas isotope, and ion ratios of fluid inclusion extracts by mass spectrometry and ion chromatography. The most abundant gases present in extracts from each sample type are biased toward the gas-rich population of inclusions trapped during maximum burial and metamorphism. All have CO2/CH4 and N2/Ar ratios of evolved crustal fluids, and many yield a range of H2-CH4-CO2-H2S equilibration temperatures consistent with the metamorphic grade. Cretaceous garnet and post-ore minerals have high RH and RS values suggestive of reduced sulfidic conditions. Most extracts have anomalous 4He produced by decay of U and Th and 38Ar produced by nucleogenic production from 41K. In contrast, some ore and gangue minerals yield significant SO2 and have low RH and RS values of a more oxidized fluid. Three extracts from gangue quartz have high helium R/RA values indicative of a mantle source and neon isotope compositions that require nucleogenic production of 22Ne in fluorite from U ± Th decay. Two extracts from gangue quartz have estimated 40K/40Ar that permit a Precambrian age. Extracts from gangue quartz in three different ore zones are biased toward the hypersaline population of inclusions and have a tight range of ion ratios (Na, K, NH4, Cl, Br, F) suggestive of a single fluid. Their Na, Cl, Br ratios suggest this fluid was a mixture of magmatic and basinal brine. Na-K-Ca temperatures (279°-347°C) are similar to homogenization temperatures of hypersaline inclusions. The high K/Na of the brine may be due to albitization of K silicate minerals in country rocks. Influx of K-rich brines is consistent with the K metasomatism necessary to form gangue biotite with high Cl. An extract from a post-ore quartz vein is distinct and has Na, Cl, Br ratios that resemble metamorphic fluids in Cretaceous silver veins of the Coeur d'Alene district in the Belt Basin. The results show that in some samples, for certain components, it is possible to "see through" the Cretaceous metamorphic overprint. Of great import for genetic models, the volatiles trapped in gangue quartz have 3He derived from a mantle source and 22Ne derived from fluorite, both of which may be attributed to nearby ~1377 Ma basalt-rhyolite magmatism. The brine trapped in gangue quartz is a mixture of magmatic fluid and evaporated seawater. The former requires a granitic intrusion that is present in the bimodal intrusive complex, and the latter equatorial paleolatitudes that existed in the Mesoproterozoic. The results permit genetic models involving heat and fluids from the neighboring bimodal plutonic complex and convection of basinal brine in the Lemhi Group. While the inferred fluid sources in the Idaho cobalt belt are similar in many respects to those in iron oxide copper-gold deposits, the fluids were more reduced such that iron was fixed in biotite and tourmaline instead of iron oxides.
Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction
NASA Astrophysics Data System (ADS)
Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin
2016-10-01
With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.
Three Sub-Saharan Minerals: US Interests and Responses.
1983-03-01
Minnesota, 50 million ounces; Montana, 225 32 million ounces; and others (including copper porphyries ), 5 million ounces. Recycling. Although platinum and...domestic mines and resources are low-grade 18 ores of less than 35 percent metal content. Arizona , Arkansas, Colorado, Maine and Minnesota have...these manganese deposits also contain nickel, copper and cobalt. Because of the prohibitive research and initial operating costs, plus the risk of
NASA Astrophysics Data System (ADS)
Sarkar, S. C.; Dasgupta, Somnath
1980-07-01
The present study is confined to the northern part of the Khetri copper belt that extends for about 100 km in northern Rajasthan. Mineralization is more or less strata-bound and is confined to the garnetiferous chlorite schist and banded amphibolite quartzite, occurring towards the middle of the Proterozoic Delhi Supergroup. Preserved sedimentary features and re-estimation of the composition of the pre-metamorphic rocks suggest that the latter were deposited in shallow marine environment characterized by tidal activity. Cordierite-orthoamphibole-cummingtonite rock occurring in the neighbourhood of the ores is discussed, and is suggested to be isochemically metamorphosed sediment. The rocks together with the ores were deformed in two phases and metamorphosed in two progressive and one retrogressive events of metamorphism. Study of the host rocks suggests that the maximum temperature and pressure attained during metamorphism are respectively 550 600°C and < 5.5 kb. Principal ore minerals in Madan Kudan are chalcopyrite, pyrrhotite, pyrite and locally magnetite. In Kolihan these are chalcophyrite, pyrrhotite and cubanite. Subordinate phases are sphalerite, ilmenite, arsenopyrite, mackinawite, molybdenite, cobaltite and pentlandite. The last two are very rare. Gangue minerals comprise quartz, chlorite, garnet, amphiboles, biotite, scapolite, plagioclase and graphite. The ores are metamorphosed at temperatures > 491°C. Sulfide assemblages are explained in terms of fS 2 during metamorphism. Co-folding of the ore zone with the host rocks, confinement of the ores to the carbonaceous pelites or semi-pelitic rocks, strata-bound and locally even stratiform nature of the orebodies, lack of finite ‘wall rock alteration’, metamorphism of the ores in the thermal range similar to that for the host rocks, absence of spatial and temporal relationship with the granitic rocks of the region led the authors to conclude that the entire mineralization was originally sedimentary-diagenetic. Any loss of primitive features and development of incongruency are due to subsequent deformation and metamorphism to which the ores and their hosts were together subjected.
Application and research of block caving in Pulang copper mine
NASA Astrophysics Data System (ADS)
Ge, Qifa; Fan, Wenlu; Zhu, Weigen; Chen, Xiaowei
2018-01-01
The application of block caving in mines shows significant advantages in large scale, low cost and high efficiency, thus block caving is worth promoting in the mines that meets the requirement of natural caving. Due to large scale of production and low ore grade in Pulang copper mine in China, comprehensive analysis and research were conducted on rock mechanics, mining sequence, undercutting and stability of bottom structure in terms of raising mine benefit and maximizing the recovery mineral resources. Finally this study summarizes that block caving is completely suitable for Pulang copper mine.
Preliminary report on the White Canyon area, San Juan county, Utah
Benson, William E.; Trites, Albert F.; Beroni, Ernest P.; Feeger, John A.
1952-01-01
The White Canyon area, in the central part of San Juan County, Utah, consists of approximately two 15-minute quadrangles. Approximately 75 square miles have been mapped by the Geological Survey on a scale of 1 inch equals 1 mile, using a combined aerial photography-plane table method. Structure contours were drawn on top of the Organ Rock member of the Cutler formation. Parts of the Gonway and North Point claims, 1/4 mile east of the Happy Jack mine, were mapped in detail. The principal objectives of the investigations were: (1) to establish ore guides; (2) to select areas favorable for exploration; and (3) to map the general geology and to determine the regional relationships of the uranium deposits. The White Canyon area is comprised of sedimentary rocks of Carboniferous to Jurassic age, more than 2,000 feet thick, having a regional dip of 1° to 2° SW. The nearest igneous rocks are in the Henry Mountains about 7 miles west of the northern part of the area; The Shinarump conglomerate of the late Triassic age, the principal ore horizon in the White Canyon area, consists of lenticular beds of sandstone, conglomeratic sandstone, conglomerate, clay, and siltstone. The Shinarump conglomerate, absent in places, is as much as 75 feet thick. The sandstones locally contain molds of logs and fragments of altered volcanic ash. Some of the logs have been replaced by copper and uranium minerals and iron oxides. The clay and siltstone underlie and are interbedded with the sandstone, and are most common in channels that cut into the underlying Moenkopi formation. The Shinarump conglomerate contains reworked Moenkopi siltstone fragments, clay balls, carbonized wood, and pebbles of quarts, quartzite, and chert. Jointing is prominent in the Western part of the mapped area. The three most prominent joint trends are due east, N. 65°-75° W., and N. 65°-75° E. All joints have vertical dips. The red beds are bleached along some joints, especially those that trend N. 65°-75° W. All uranium ore produced has been from the lower part of the Shinarump conglomerate, where it commonly occurs with copper as disseminations and fracture coatings in sandstone. Uranium and copper minerals also occur in low-grade disseminated deposits in the lower Chinle and in the Moenkopi formation and in veins cutting these formations. Although some uranium deposits occur in Chinarump channels and scours, copper and uranium minerals along fractures suggest that channel control may be secondary. Logs and clay balls apparently have exerted some chemical influences for deposition. The uranium occurs as the oxide in some deposits, and as secondary hydrous sulfates, phosphates, oxides, and silicates in these and several other deposits. Charcoal, iron and manganese oxides, and veinlets of hydrocarbon are abnormally radioactive in most of the deposits. Base-metal sulfides are commonly found inside the oxidized zone. Secondary copper minerals include the hydrous sulfates and carbonate. Gangue minerals include quarts, clay minerals, and manganese oxides, dickite (?), calcite, gypsum, pyrite, and chalcedony (?). Principal wall-rock alteration appears to have been silicification, clay alteration, and bleaching. Most of the shipped ore has contained more than 0.3 percent uranium. The ore also contains copper, commonly in grades lower than 1.0 percent. Criteria believed to be most useful for prospecting for concealed uranium deposits are (1) visible uranium minerals; (2) sulfide minerals; (3) secondary copper minerals; (4) dickite (?); (5) hydrocarbons; and (6) bleaching and alteration of the Moenkopi formation.
25 CFR 214.8 - Acreage limitation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... excess of the following areas: (a) For deposits of the nature of lodes, or veins containing ores of gold, silver, copper, or other useful metals, 640 acres. (b) For beds of placer gold, gypsum, asphaltum...
25 CFR 214.8 - Acreage limitation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... excess of the following areas: (a) For deposits of the nature of lodes, or veins containing ores of gold, silver, copper, or other useful metals, 640 acres. (b) For beds of placer gold, gypsum, asphaltum...
25 CFR 214.8 - Acreage limitation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... excess of the following areas: (a) For deposits of the nature of lodes, or veins containing ores of gold, silver, copper, or other useful metals, 640 acres. (b) For beds of placer gold, gypsum, asphaltum...
25 CFR 214.8 - Acreage limitation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... excess of the following areas: (a) For deposits of the nature of lodes, or veins containing ores of gold, silver, copper, or other useful metals, 640 acres. (b) For beds of placer gold, gypsum, asphaltum...
25 CFR 214.8 - Acreage limitation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... excess of the following areas: (a) For deposits of the nature of lodes, or veins containing ores of gold, silver, copper, or other useful metals, 640 acres. (b) For beds of placer gold, gypsum, asphaltum...
Multidimensional Analysis of Copper Ore Flotation in Terms of Applied Hydrophobizing Agents
NASA Astrophysics Data System (ADS)
Pięta, Paulina; Niedoba, Tomasz; Surowiak, Agnieszka
2018-03-01
Flotation is a method of enrichment used to distribute particles, which differ in their surface properties. Hydrophobic solids intrinsically create contact at the solid-liquid-gas interface. However, not all minerals, including copper minerals, can be characterized by this crucial ability. In that case it is necessary to use the collector reagents which guarantees a high efficiency of the enrichment process. The main aim of the paper was to examine the impact of selected collector types and dosages on the results of Polish sandstone copper ore flotation and to find optimal parameter values for products that meet quality and quantity requirements. The laboratory tests were carried out with an application of two types of collectors (Hostaflot, sodium ethyl xanthate aqueous solution) in dosages 100 and 150 g/Mg. Data analysis was based on the use of the taxonomy methods in order to select optimal conditions of collector dosage and type. Based on the indexes, it was found that the best enrichment effects were obtained with a sodium ethyl xanthate aqueous solution 150 g/Mg.
Regional geochemical studies in the Patagonia Mountains, Santa Cruz County, Arizona
Chaffee, M.A.; Hill, R.H.; Sutley, S.J.; Watterson, J.R.
1981-01-01
The Patagonia Mountains in southern Arizona contain the deeply buried porphyry copper system at Red Mountain as well as a number of other base- and precious-metal mines and prospects. The range contains complex Basin and Range geology with units ranging in age from Precambrian to Holocene. Rock types present include igneous intrusive and extrusive units as well as sedimentary and metamorphic units, most of which have been tectonically disturbed. A total of 264 stream-sediment samples were collected and analyzed for 32 elements. Geochemical maps for Sb, Ag, Pb, Te, B, Mn, Au, Zn, Cu (total), Cu (cold-extractable), and Mo, as well as for Cu (cold-extractable)/Cu (total) and Fe/Mn, are presented. Anomaly patterns for these elements generally occur over the Red Mountain deposit and (or) along a north-northwest trend parallel to the major Harshaw Creek Fault. Much of the entire area sampled contains widespread anomalies for Pb, Te, and Cu; the other elements are only locally anomalous. Various plots of ratios of Cu (cold-extractable) to Cu (total) did not produce any new information not readily apparent on either one of the two copper maps. A plot of ratios of Fe to Mn delineated many areas of pyrite mineralization. Several of these areas may represent the pyritic halos around deeply buried porphyry copper systems. The best ore guide for the Red Mountain porphyry system is the coincidence of positive anomalies of Mo, Pb, and Te and a negative anomaly of Mn. Other areas with anomalies of the same suite of elements are present within the Patagonia Mountains. It is concluded that geochemical sampling, even in a highly contaminated area, can be useful in delineating major geologic features, such as porphyry copper belts and major faults. Multielement geochemical surveys on a regional scale can effectively locate large, deeply buried, zoned mineral systems such as that at Red Mountain. Plots of element ratios, where adequately understood, can provide geochemical information not readily discernible from plots of single elements alone. ?? 1981.
Code of Federal Regulations, 2011 CFR
2011-07-01
... carbonate produced from bertrandite ore as beryllium Beryllium 2,763.000 1,235.000 Chromium (total) 988.200... as beryllium Beryllium 270.6 121.0 Chromium (total) 96.8 39.6 Copper 418.0 220.0 Cyanide (total) 63.8... Beryllium 263.800 118.000 Chromium (total) 94.380 38.610 Copper 407.600 214.500 Cyanide (total) 62.210 25...
NASA Astrophysics Data System (ADS)
Miah, Khalid; Bellefleur, Gilles
2014-05-01
The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to the 3D multicomponent field survey data. Main features of the geological models, especially boundaries of main ore bodies were comparable in both data sets. This shows that the 3D geophysical model based on local geology and limited core samples is in fair agreement with the lithologic units confirmed from the field seismic survey data.
SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Clark, H.M.; Duffey, D.
1958-06-17
A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.
NASA Astrophysics Data System (ADS)
Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie
2015-05-01
Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.
Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt
Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.
2012-01-01
Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit types that form in deeper environments and could be related to metamorphic processes or magmatic processes, although the isotopic evidence for magmatic components is relatively weak.
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-09-30
Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.« less
Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite.
Ikehata, Kei; Hirata, Takafumi
2013-01-01
We evaluated the capabilities of an in situ method for measuring copper isotopes of cubanite using UV-fs-LA-MC-ICP-MS. A comparison of the UV-fs laser results with those obtained from the NIR-fs laser system shows that there is obviously an improvement in the precision (<0.10‰, 2SE) when using the UV-fs laser. In both wavelength modes, matrix-matched standards are required for reliable in situ copper isotope analysis of cubanite. This method was applied to determinations for copper isotopes of minute cubanite grains in a skarn ore. Copper isotopic ratios of cubanite grains near a weathered surface of the sample are lower than those of intact cubanite grains within the sample, suggesting that selective leaching of heavier copper isotope in primary minerals occurred during weathering.
NASA Astrophysics Data System (ADS)
Talebi, Hassan; Asghari, Omid; Emery, Xavier
2013-12-01
An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.
Mizoguchi, T; Ishii, H
1980-06-01
Sulphate in sulphate ores, e.g., alunite, anglesite, barytes, chalcanthite, gypsum, manganese sulphate ore, is reduced to hydrogen sulphide by the hypophosphite-tin metal-CPA method, if a slight modification is made. Sulphide ores, e.g., galena, sphalerite, are quantitatively decomposed with CPA alone to give hydrogen sulphide. Suitable reducing agents must be used for the quantitative recovery of hydrogen sulphide from pyrite, nickel sulphide, cobalt sulphide and cadmium sulphide, or elemental sulphur is liberated. Iodide must be used in the decomposition of chalcopyrite; the copper sulphide is too stable to be decomposed by CPA alone. Molybdenite is not decomposed in CPA even if reducing agents are added. The pretreatment methods for the determination of sulphur in sulphur oxyacids and elemental sulphur have also been investigated.
Recent trends in the nonfuel minerals industry of Iran
Hastorun, Sinan; Renaud, Karine M.; Lederer, Graham W.
2016-07-11
The U.S. Geological Survey estimated that Iran held globally significant reserves of feldspar (2d largest in the world), barite (5th largest), gypsum (5th largest), fluorspar (8th largest), and iron ore (10th largest). The Government of Iran claimed to also have significant reserves of chromium, copper, gold, manganese, phosphate rock, and zinc. In 2014, Iran was the second-leading producer of gypsum and the sixth-leading producer of barite, with 6.1 percent and 3.6 percent of world output, respectively. Iran was also the world’s 7th-leading producer of cement, feldspar, and fluorspar; 8th-leading producer of bentonite; 9th-leading producer of molybdenum; 11th-leading producer of iron ore; and 14th-leading producer of crude steel. The Government of Iran plans to quadruple the output of aluminum, copper cathode, direct-reduced iron, and iron ore pellets; triple that of crude steel and gold; and double that of cement, pig iron, and zinc by 2025. It also plans to double the contribution of mining and to quadruple that of mineral processing to the national economy in the next decade. In order to achieve these major goals, the construction and expansion of several mines and mineral facilities are planned or under development. Whether Iran’s annual mineral production increases as rapidly as envisioned by the Government will depend largely on the amount of foreign investment into the minerals industry; integration of modern technology into mineral facilities; and availability of energy to aluminum, copper, and steel plants at competitive prices to international investors.
Cyanide hazards to plants and animals from gold mining and related water issues
Eisler, R.; Wiemeyer, Stanley N.
2004-01-01
Highly toxic sodium cyanide (NaCN) is used by the international mining community to extract gold and other precious metals through milling of high-grade ores and heap leaching of low-grade ores (Korte et al. 2000). The process to concentrate gold using cyanide was developed in Scotland in 1887 and was used almost immediately in the Witwatersrand gold fields of the Republic of South Africa. Heap leaching with cyanide was proposed by the U.S. Bureau of Mines in 1969 as a means of extracting gold from low-grade ores. The gold industry adopted the technique in the 1970s, soon making heap leaching the dominant technology in gold extraction (Da Rosa and Lyon 1997). The heap leach and milling processes, which involve dewatering of gold-bearing ores, spraying of dilute cyanide solutions on extremely large heaps of ores containing low concentrations of gold, or the milling of ores with the use of cyanide and subsequent recovery of the gold-cyanide complex, have created a number of serious environmental problems affecting wildlife and water management. In this account, we review the history of cyanide use in gold mining with emphasis on heap leach gold mining, cyanide hazards to plants and animals, water management issues associated with gold mining, and proposed mitigation and research needs.
Adeleke, Rasheed A
2014-12-01
The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed.
Analysis of Greek small coinage from the classic period
NASA Astrophysics Data System (ADS)
Šmit, Ž.; Šemrov, A.
2018-02-01
A series of 25 Greek coins from the 6th to 4th centuries BC was studied by PIXE for their trace element composition, with an aim to discover the origin of their silver ore. The procedure revealed a counterfeited coin, and then concentrated on distinguishing the coins minted from the ore of Laurion on the Attica peninsula and the coins minted from other sources. Linear discriminant analysis based on the impurities and alloying elements of copper, gold, lead and bismuth revealed that discrimination is indeed possible according to a single canonical variable.
Mineral resource of the month: Arsenic
Bedinger, George M.
2014-01-01
Arsenic is a gray metal rarely encountered as a free element, but is widely distributed in minerals and ores that contain copper, iron and lead. Arsenic is often found in groundwater as a result of the natural weathering of rock and soil.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 440.101 Section 440.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum...
China?s growing appetite for minerals
Menzie, David; Tse, Pui-Kwan; Fenton, Mike; Jorgenson, John; van Oss, Hendrik
2004-01-01
During the last 15 years, China's economy and consumption have grown rapidly. This report contains figures and notes from a talk that discusses China's increasing consumption of aluminum, cement, coal, copper, iron ore, petroleum, and steel in context of its developing economy.
Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.
1996-01-01
Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later as indicated by the geologic evidence, the source rocks probably contained elevated concentrations of Zn and Pb (75-100 ppm), and relatively low concentrations of U and Th (2 and 8 ppm or less, respectively). The Carboniferous coal-bearing molasse rocks of the Upper Silesian Coal Basin are a prime candidate for such a source region. The presence of ammonia and acetate in the fluid inclusions (Viets et al., 1996a) also indicate that the Carboniferous coal-bearing molasse sequence in the Upper Silesian Coal Basin may have been a suitable pathway for the MVT ore fluids. The lead-isotopic homogeneity, when coupled with the sulfur-isotopic heterogeneity of the ores suggests that mixing of a single metal-bearing fluid with waters from separate aquifers containing variable sulfur-isotopic compositions in karsts in the Muschelkalk Formation of Middle Triassic age may have been responsible for the precipitation of the ores of the Silesian-Cracow district.
PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES
Sawyer, C.W.; Handley, R.W.
1959-07-14
A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.
Engineering and Design of the Steady Inductive Helicity Injected Torus (HIT--SI)
NASA Astrophysics Data System (ADS)
Sieck, P. E.; Jarboe, T. R.; Nelson, B. A.; Rogers, J. A.; Shumlak, U.
1999-11-01
Steady Inductive Helicity Injection (SIHI) is an inductive helicity injection method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma.(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 SIHI directly produces a rotating magnetic field structure, and in the frame of the rotating field the current profile is nearly time independent. The Steady Inductive Helicity Injected Torus (HIT--SI) is a spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. The geometry of HIT--SI will be presented, including the manufacturing techniques and metallurgical processes planned for construction of the close-fitting flux conserver. The flux conserver is made of aged chromium copper with 80% the conductivity of pure copper. The detailed electrical insulation requirements in the helicity injector design lead to a complex o-ring seal and a plasma-sprayed alumina insulation coating. This has prompted the construction of an o-ring prototype test fixture having the main features of the o-ring design and the alumina coating. The design and evaluation of this fixture will also be presented with vacuum and voltage test results.
NASA Technical Reports Server (NTRS)
2002-01-01
Full resolution visible and near-infrared image (1.4 MB) Full resolution shortwave infrared image (1.6 MB) This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image covers 30 by 23 km (full images 30 x 37 km) in the Atacama Desert, Chile, and was acquired on April 23, 2000. The Escondida copper, gold, and silver open-pit mine is at an elevation of 3050 m, and began operations in 1990. Current capacity is 127,000 tons/day of ore; in 1999 production totaled 827,000 tons of copper, 150,000 ounces of gold, and 3.53 million ounces of silver. Primary concentrate of the ore is done on-site; the concentrate is then sent to the coast for further processing through a 170 km long, 9-inch pipe. Escondida is related geologically to three porphyry bodies intruded along the Chilean West Fissure Fault System. A high grade supergene cap overlies primary sulfide ore. The top image is a conventional 3-2-1 (near infrared, red, green) RGB composite. The bottom image displays shortwave infrared bands 4-6-8 (1.65um, 2.205um, 2.33um) in RGB, and highlights the different rock types present on the surface, as well as the changes caused by mining. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team
NASA Technical Reports Server (NTRS)
Hoyer, Jesse L.
1993-01-01
Turbomilling, an innovative grinding technology developed by the U.S. Bureau of Mines in the early 1960's for delaminating filler-grade kaolinitic clays, has been expanded into the areas of particle size reduction, material mixing, and process reaction kinetics. The turbomill, originally called an attrition grinder, has been used for particle size reduction of many minerals, including natural and synthetic mica, pyrophyllite, talc, and marble. In recent years, an all-polymer version of the turbomill has been used to produce ultrafine, high-purity, advanced ceramic powders such as SiC, Si3N4, TiB2, and ZrO2. In addition to particle size reduction, the turbomill has been used to produce intimate mixtures of high surface area powders and whiskers. Raw materials, TiN, AlN, and Al2O3, used to produce a titanium nitride/aluminum oxynitride (TiN/AlON) composite, were mixed in the turbomill, resulting in strength increases over samples prepared by dry ball milling. Using the turbomill as a leach vessel, it was found that 90.4 pct of the copper was extracted from the chalcopyrite during a 4-hour leach test in ferric sulfate versus conventional processing which involves either roasting of the ore for Cu recovery or leaching of the ore for several days.
Structural Engineering. Loads. Design Manual 2.2.
1981-11-01
cast, rolled 534 Locust 46 Bronze, 7.9 to 14% Sn 509 Maple, hard 43 Bronze, aluminum 481 Maple, white 33 Copper , cast, rolled 556 Oak, chestnut 54... Copper ore, pyrites 262 Oak, live 59 Gold, cast, hammered 1205 Oak, red, black 41 Gold, bars, stacked 1133 Oak, white 46 Gold, coin in bags 1084 Pine...Phosphate rock, apatite 200 Glass, crystal 184 Porphyry 172 Hay and straw - bales 20 Pumice, natural 40 Leather 59 Quartz, flint 165 Paper 58 Sandstone
Processing of copper converter slag for metals reclamation: Part II: mineralogical study.
Deng, Tong; Ling, Yunhan
2004-10-01
Chemical and mineralogical characterizations of a copper converter slag, and its products obtained by curing with strong sulphuric acid and leaching with hot water, were carried out using ore microscopy, scanning electronic microscopy with energy dispersive spectrometry, wave-length dispersive X-ray fluorescence spectrometry, X-ray diffractometry and chemical phase analysis, which provided necessary information to develop a new process for treating such slag and further understanding of the chemical and mineralogical changes in the process.
Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah
Finch, Warren Irvin
1954-01-01
The geology of the Shinarump No. 1 uranium mine, located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah, was studied to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permian, Triassic, and Jurassic age crop out in the area mapped, and uranium deposits are found in three zones in the lower 25 feet of the Chinle formation of Late Triassic age. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uraninite, impregnate the rock. High-grade ore seams of uraninite and chalcocite occur along bedding planes. Uraninite formed later than, or simultaneous with, most sulfides, and the chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the more poorly sorted parts of siltstones. In the Seven Mile Canyon area guides to ore inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, carbonaceous matter, and copper sulfides. Results of spectrographic analysis indicate that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper, as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal.
Perlatti, Fabio; Otero, Xosé Luis; Macias, Felipe; Ferreira, Tiago Osório
2014-12-01
The potentially hazardous effects of rock wastes disposed at open pit in three different areas (Pr: Ore processing; Wr: Waste rock and Bd: Border) of an abandoned copper mine were evaluated in this study, with emphasis on acid drainage generation, metal contamination and copper geochemical dynamics in soils. Samples of waste rock were analyzed by Energy dispersive X-ray fluorescence (XRF), scanning electron microscopy with microanalysis (SEM-EDS) and X-ray diffraction (XRD). Soil samples were analyzed to determine the total metal contents (XRF), mineralogy (XRD), pH (H2O and H2O2), organic and inorganic carbon, % of total N, S and P, particle size, and a sequential extraction procedure was used to identify the different copper fractions. As a result of the prevalence of carbonates over sulphides in the wastes, the soil pH remained close to neutral, with absence of acid mine drainage. The geochemical interaction between these mineral phases seems to be the main mechanism to release Cu(2)(+) ions. Total Cu in soils from the Pr area reached 11,180mg.kg(-1), while in Wr and Bd areas the values reached, on average, 4683 and 1086mg.kg(-1), respectively, indicating a very high level of soil contamination. In the Pr and Wr, the Cu was mainly associated with carbonates and amorphous iron oxides. In the Bd areas, the presence of vegetation has influenced the geochemical behavior of copper by increasing the dissolution of carbonates, affecting the buffer capacity of soils against sulphide oxidation, reducing the pH levels and enhancing the proportion of exchangeable and organic bound Cu. The present findings show that the use of plants or organic amendments in mine sites with high concentration of Cu carbonate-containing wastes should be viewed with caution, as the practice may enhance the mobilization of copper to the environment due to an increase in the rate of carbonates dissolution. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process
NASA Astrophysics Data System (ADS)
Enkh-Uyanga, Otgon-Uul; Munkhtsetseg, Baatar; Urangoo, Urtnasan; Tserendulam, Enkhtur; Agiimaa, Davaadorj
2017-06-01
In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derriks, J.J.; Oosterbosch, R.
1959-10-31
Swambo is a small uraniferous deposit discovered recently to the east of Shimkolobwe. The mineralization found is localized in the breccia and the epontes'' of a transverse fault affecting a layer of the ore series. This layer is part of an anticline alignment which can be followed from Shinkolobwe to Kalongwe and the length of which is level with the schisto-dolomitric stratum. The discovery of the ore deposit was made hy the application of radiometric methods. A prelimiary series of borings showed that the usable mineralization extends 125 m under the surface. The development by mining has gone to themore » hydrostatic level. From a genetic viewpoint, the ore deposit is similar to that of Shinkolobwe, but it is less important. Kalongwe is a cupro-cobaltic ore deposit lying to the southeast of Kolwezi. The deposit is principally localized in a fault which intersects a small layer of the ore series. The greso-dolomitic stratum at the base of this series is impregnated with powdered black uranium oxides in the neighhorhood of the fault. The mineralization extends to 80 m of depth. The ore deposit was developed by mining to a depth of 42 m. The genesis of the deposit is comparable to that of Shinkolobwe, hat the Kalongwe ores are distinguished by the relative abundance of copper and the absence of nickel. (tr- auth)« less
Evolution of ore deposits on terrestrial planets
NASA Astrophysics Data System (ADS)
Burns, R. G.
Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars, but not submarine ferromanganese nodules and crusts which have precipitated in oxygenated seawater on earth.
Evolution of ore deposits on terrestrial planets
NASA Technical Reports Server (NTRS)
Burns, R. G.
1991-01-01
Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars, but not submarine ferromanganese nodules and crusts which have precipitated in oxygenated seawater on earth.
Potential for cobalt recovery from lateritic ores in Europe
NASA Astrophysics Data System (ADS)
Herrington, R.
2012-04-01
Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.
γ-Oryzanol-Rich Black Rice Bran Extract Enhances the Innate Immune Response.
Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Lim, Yoongho; Kim, Jung-Bong; Lee, Young Han
2017-09-01
The innate immune response is an important host primary defense system against pathogens. γ-Oryzanol is one of the nutritionally important phytoceutical components in rice bran oil. The goal of this study was to investigate the effect of γ-oryzanol-rich extract from black rice bran (γORE) on the activation of the innate immune system. In this study, we show that γORE increased the expression of CD14 and Toll-like receptor 4 and enhanced the phagocytic activity of RAW264.7 macrophages. Furthermore, γORE and its active ingredient γ-oryzanol promoted the secretion of innate cytokines, interleukin-8, and CCL2, which facilitate phagocytosis by RAW264.7 cells. These findings suggest that γ-oryzanol in the γORE enhances innate immune responses.
Photochemical changes in cyanide speciation in drainage from a precious metal ore heap
Johnson, C.A.; Leinz, R.W.; Grimes, D.J.; Rye, R.O.
2002-01-01
In drainage from an inactive ore heap at a former gold mine, the speciation of cyanide and the concentrations of several metals were found to follow diurnal cycles. Concentrations of the hexacyanoferrate complex, iron, manganese, and ammonium were higher at night than during the day, whereas weak-acid-dissociable cyanide, silver, gold, copper, nitrite, and pH displayed the reverse behavior. The changes in cyanide speciation, iron, and trace metals can be explained by photodissociation of iron and cobalt cyanocomplexes as the solutions emerged from the heap into sunlight-exposed channels. At midday, environmentally significant concentrations of free cyanide were produced in a matter of minutes, causing trace copper, silver, and gold to be mobilized as cyanocomplexes from solids. Whether rapid photodissociation is a general phenomenon common to other sites will be important to determine in reaching a general understanding of the environmental risks posed by routine or accidental water discharges from precious metal mining facilities.
Progress in bioleaching: part B: applications of microbial processes by the minerals industries.
Brierley, Corale L; Brierley, James A
2013-09-01
This review presents developments and applications in bioleaching and mineral biooxidation since publication of a previous mini review in 2003 (Olson et al. Appl Microbiol Biotechnol 63:249-257, 2003). There have been discoveries of newly identified acidophilic microorganisms that have unique characteristics for effective bioleaching of sulfidic ores and concentrates. Progress has been made in understanding and developing bioleaching of copper from primary copper sulfide minerals, chalcopyrite, covellite, and enargite. These developments point to low oxidation-reduction potential in concert with thermophilic bacteria and archaea as a potential key to the leaching of these minerals. On the commercial front, heap bioleaching of nickel has been commissioned, and the mineral biooxidation pretreatment of sulfidic-refractory gold concentrates is increasingly used on a global scale to enhance precious metal recovery. New and larger stirred-tank reactors have been constructed since the 2003 review article. One biooxidation-heap process for pretreatment of sulfidic-refractory gold ores was also commercialized. A novel reductive approach to bioleaching nickel laterite minerals has been proposed.
NASA Astrophysics Data System (ADS)
Cannatelli, C.; Godoy, B.; Alvear, B.; Moncada, D.
2016-12-01
Central Andes present some of the biggest and most important porphyry copper ore deposits in the world. Porphyry copper ore formation is related to precipitation of ore minerals from sulphur and chlorine-rich fluids. Genesis of these deposits occurred 4 km below surface, while mineralized fluids are released by magmatic melts located between 5 and 15 km depth (Sillitoe, 2010). Cerro La Torta is part of a cluster of <105 ka rhyodacitic domes related to the waning stage of the Altiplano-Puna Volcanic Complex at Central Andes (Tierney et al., 2016). These domes reflect a crystal-rich mush layer at the upper crust - named Altiplano-Puna Magma Body (APMB) - which is proposed to be a voluminous partially molten body locate at shallow depth (4-25 km), with a thickness up to 11 km (Ward et al., 2014). Cerro La Torta is a crystal-rich ( 40% vol.) dacitic flow with plagioclase, amphibole, biotite, and quartz phenocrysts on a glassy (up to 50% vol.) groundmass. During detailed petrographic observation, two types of Melt Inclusions Assemblages (MIAs) were observed in the plagioclase. Group I is found in the core of crystals, and contains sulphide, pyrite ± bubbles. Group II of bubble-bearing MIAs is observed at the rim of the phenocrysts, with no associated sulphide mineral present. Melt Inclusions size ranges from 10-40 µm, suggesting an intermediate cooling rate (Roedder 1979). Out hypothesis is that during cooling, Group I MIA is trapped as result of a metal sulfur-rich event, leading to the suggestion that sulphide-bearing MIAs from Cerro La Torta are the evidence of mineralized magmas ponding at shallow crustal levels. Furthermore, the presence of MIAs in the mush-type magmas related to the APMB implies that such systems are suitable to porphyry copper ore generation. Roedder, 1979. The Evolution of the Igneous Rocks. 15-57 Sillitoe, 2010. Econ. Geol. 105:3-41 Tierney et al., 2016. Geology 44:683-686. doi:10.1130/G37968.1Ward et al., 2014. Earth Planet Sci Letters 404:43-54
NASA Astrophysics Data System (ADS)
Sekisov, AG; Lavrov, AYu; Rubtsov, YuI
2017-02-01
The paper gives a description of tests and trials of the technology of heap gold leaching from rebellious ore in Aprelkovo and Delmachik Mines. Efficiency of leaching flowsheets with the stage-wise use of activated solutions of different reagents, including active forms of oxygen, is evaluated. Carbonate-peroxide solutions are used at the first stage of leaching to oxidize sulfide and sulfide-arsenide ore minerals to recover iron and copper from them. The second stage leaching uses active cyanide solutions to leach encapsulated and disperse gold and silver.
Bioprocessing of ores: Application to space resources
NASA Technical Reports Server (NTRS)
Johansson, Karl R.
1992-01-01
The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.
Gold, nickel and copper mining and processing.
Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley
2010-01-01
Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors.
Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruhn, D F; Thompson, D N; Noah, K S
1999-06-01
Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less
The bioleaching potential of a bacterial consortium.
Latorre, Mauricio; Cortés, María Paz; Travisany, Dante; Di Genova, Alex; Budinich, Marko; Reyes-Jara, Angélica; Hödar, Christian; González, Mauricio; Parada, Pilar; Bobadilla-Fazzini, Roberto A; Cambiazo, Verónica; Maass, Alejandro
2016-10-01
This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores. Copyright © 2016 Elsevier Ltd. All rights reserved.
PROCESS OF RECOVERING URANIUM FROM ITS ORES
Galvanek, P. Jr.
1959-02-24
A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.
NASA Astrophysics Data System (ADS)
Jia, Yan; Sun, He-yun; Tan, Qiao-yi; Gao, Hong-shan; Feng, Xing-liang; Ruan, Ren-man
2018-03-01
The effects of temperature on chalcocite/pyrite oxidation and the microbial population in the bioleaching columns of a low-grade chalcocite ore were investigated in this study. Raffinate from the industrial bioleaching heap was used as an irrigation solution for columns operated at 20, 30, 45, and 60°C. The dissolution of copper and iron were investigated during the bioleaching processes, and the microbial community was revealed by using a high-throughput sequencing method. The genera of Ferroplasma, Acidithiobacillus, Leptospirillum, Acidiplasma, and Sulfobacillus dominated the microbial community, and the column at a higher temperature favored the growth of moderate thermophiles. Even though microbial abundance and activity were highest at 30°C, the column at a higher temperature achieved a much higher Cu leaching efficiency and recovery, which suggested that the promotion of chemical oxidation by elevated temperature dominated the dissolution of Cu. The highest pyrite oxidation percentage was detected at 45°C. Higher temperature resulted in precipitation of jarosite in columns, especially at 60°C. The results gave implications to the optimization of heap bioleaching of secondary copper sulfide in both enhanced chalcocite leaching and acid/iron balance, from the perspective of leaching temperature and affected microbial community and activity.
Solubility of copper in a sulfur-free mafic melt
NASA Astrophysics Data System (ADS)
Ripley, Edward M.; Brophy, James G.
1995-12-01
The solubility of Cu in S-free mafic melts has been measured at a series of ƒ O2 values and temperatures of 1245 and 1300°C. At constant temperature Cu solubility increases from 0.04 wt% at log ƒ O2 = -11.9 to 1.10 wt% at log ƒ O 2 = -7.4 . Copper solubilities were in excess of 8 wt% in two runs controlled at very high ƒ O2 conditions of 10 -1.4 and 10 -22 Partitioning of Cu between metal and glass shows a strong ƒ O2 dependence, with D Cumet/gl ranging from 90 at log ƒ O2 = -7.4 to 2190 at log ƒ O2 = -11.9 . Slopes of Cu solubility and DCumet/gl vs. log ƒ O2 suggest that Cu dissolves predominantly in the +1 valence state. Copper solubility decreases with increasing temperature at constant ƒ O2, similar to experimental results for Ni, Co, and Mo (Dingwell et al., 1994; Holzheid et al., 1994). The data are consistent with Cu dissolution as an oxide (represented by CuO 0.5) and suggest that changes in ƒ O2 ( Fe2+/Fe3+ variations and Cu 1+ complexation with Fe 3+) may have large effects on the distribution of Cu between silicate and sulfide magmas. Results also suggest that the extraction of oxide-bonded Cu in mafic magmas by externally derived S may be an important mechanism in the generation of Cu-rich sulfide ores.
NASA Astrophysics Data System (ADS)
Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua
2017-02-01
The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.
Feed-through connector couples RF power into vacuum chamber
NASA Technical Reports Server (NTRS)
Grandy, G. L.
1967-01-01
Feed-through device connects RF power to an RF coil in a vacuum chamber. The coil and leads are water cooled and vacuum tight seals are provided at the junctions. The device incorporates silver soldered copper tubes, polytetrafluoroethylene electrical insulators, and O-ring vacuum seals.
Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching
NASA Astrophysics Data System (ADS)
Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young
2018-03-01
The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.
Numerical and Permeability Constraints on Simulation of Sill-Driven Hydrothermal Convection
NASA Astrophysics Data System (ADS)
Carr, P. M.; Cathles, L. M.; Barrie, C. T.; Manhardt, P.
2004-05-01
Volcanic-associated massive sulfide deposits are formed where seawater, heated to ~350oC by subsurface magma intrusions, is quenched by cold water at or near the seafloor. Many VMS districts, like the one at Matagami, Quebec, contain their zinc, lead, and copper in about a dozen discrete ore bodies, with one or two deposits containing more than half of the district's resources. We construct numerical models to investigate the causes of variations in deposit size. These models show that a process which stabilizes the location of hydrothermal venting plumes is required to numerically generate discrete VMS ore bodies by sill-driven hydrothermal convection. This is achieved in our models by increasing rock permeability in a fashion that makes vent plumes more permeable than their surroundings. Maintaining the Courant number ≤1 (so that a thermal anomaly traverses only one grid cell in one timestep of the simulation) is shown to be crucial to numerical convergence. If this rule is violated, visually compelling but incorrect hydrothermal vents result. Small hydrothermal convection cells over the interior of an areally-extensive sill with a tabular edge are smaller than those formed at the sill edge. However, for a sill with the geometry of that at Matagami, numerical simulations indicate that large ore deposits should form near the thickest part of the sill where metals extracted from the underside of the still-hot portions of the sill can optimally contribute. Thus it is essential to construct a model of the entire domain rather than slicing a portion local to the deposition. The numerical models replicate the ten-fold range in deposit size variation, and predict the largest deposits at Matagami will be discovered at 5 to 8 km depth between currently known deposits in the South Flank and Phelps Dodge areas.
NASA Astrophysics Data System (ADS)
Fokina, Mariya
2017-11-01
The economy of Russia is based around the mineral-raw material complex to the highest degree. The mining industry is a prioritized and important area. Given the high competitiveness of businesses in this sector, increasing the efficiency of completed work and manufactured products will become a central issue. Improvement of planning and management in this sector should be based on multivariant study and the optimization of planning decisions, the appraisal of their immediate and long-term results, taking the dynamic of economic development into account. All of this requires the use of economic mathematic models and methodsApplying an economic-mathematic model to determine optimal ore mine production capacity, we receive a figure of 4,712,000 tons. The production capacity of the Uchalinsky ore mine is 1560 thousand tons, and the Uzelginsky ore mine - 3650 thousand. Conducting a corresponding analysis of the production of OAO "Uchalinsky Gok", an optimal production plan was received: the optimal production of copper - 77961,4 rubles; the optimal production of zinc - 17975.66 rubles. The residual production volume of the two main ore mines of OAO "UGOK" is 160 million tons of ore.
Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.
1992-01-01
Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors
In Brief: Assessing Afghanistan's mineral resources
NASA Astrophysics Data System (ADS)
Showstack, Randy
2007-12-01
Afghanistan has significant amounts of undiscovered nonfuel mineral resources, with copper and iron ore having the most potential for extraction, according to a new U.S. Geological Survey (USGS) assessment. The assessment, done cooperatively with the Afghanistan Geological Survey of the Afghanistan Ministry of Mines, also found indications of significant deposits of colored stones and gemstones (including emeralds, rubies, and sapphires), gold, mercury, sulfur, chromite, and other resources. ``Mineral resource assessments provide government decision-makers and potential private investors with objective, unbiased information on where undiscovered mineral resources may be located, what kinds of resources are likely to occur, and how much of each mineral commodity may exist in them,'' said USGS director Mark Myers. The USGS, in cooperation with the Afghan government, released an oil and gas resources assessment in March 2006 and an earthquake hazards assessment in May 2007. For more information, visit the Web sites: http://afghanistan.cr.usgs.gov and http://www.bgs.ac.uk/afghanminerals/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soileau, J.M.; Sikora, F.J.; Maddox, J.J.
1996-12-31
Open pit smelting of Copper ore about 100 years ago resulted in approximately 9,300 ha of severely eroded, very acidic (pH 4.0 to 5.0) soils at Copper Basin, Tennessee. Along with other essential nutrients, phosphorus (P) amendments are critical for long-term productivity and sustainability of vegetation on this depleted soil. A field study was conducted (1992-1995) to compare revegetation from surface-applied North Carolina phosphate rock (PR) and triple superphosphate (TSP) at 20, 59, and 295 kg P ha{sup -1}, and to determine benefits of starter NPK tree tablets. The experimental design consisted of 7.3 x 9.1 m replicated plots, eachmore » planted to 20 loblolly pine seedlings and aerially seeded with a mixture of grasses and legumes. Tree survivability was high from all treatments. Through the third year, tree height and diameter increased with increasing P to 59 kg P ha without fertilizer tablets. There were no pine growth differences between PR and TSP. Weeping lovegrass has been the dominant cover crop through 1995, with increased stimulation to tree tablets and surface P. Tall fescue (KY 31), sericea lespedeza, and black locust responded more to PR than to TSP. Surface soil pH increased, and 0.01 M SrCl{sub 2} extractable Al decreased, with increasing rate of PR. For future loblolly pine plantings in the Copper Basin, this study suggests there is no benefit to applying both tree tablets and surface P at rates above 59 kg P ha{sup -1}. For reclaiming land with high acidity and low P fertility, PR has significant benefits. In reclaiming steep, gullied land, there is great potential for aerial application of PR and/or pelletized liming agents.« less
Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Penížek, Vít; Matoušek, Tomáš; Culka, Adam; Drahota, Petr
2018-06-01
Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As 2 O 3 ) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg -1 ). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb 5 (AsO 4 ) 3 (Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As. Copyright © 2018 Elsevier Ltd. All rights reserved.
New Mexico structural zone - An analogue of the Colorado mineral belt
Sims, P.K.; Stein, H.J.; Finn, C.A.
2002-01-01
Updated aeromagnetic maps of New Mexico together with current knowledge of the basement geology in the northern part of the state (Sangre de Cristo and Sandia-Manzano Mountains)-where basement rocks were exposed in Precambrian-cored uplifts-indicate that the northeast-trending Proterozoic shear zones that controlled localization of ore deposits in the Colorado mineral belt extend laterally into New Mexico. The shear zones in New Mexico coincide spatially with known epigenetic precious- and base-metal ore deposits; thus, the mineralized belts in the two states share a common inherited basement tectonic setting. Reactivation of the basement structures in Late Cretaceous-Eocene and Mid-Tertiary times provided zones of weakness for emplacement of magmas and conduits for ore-forming solutions. Ore deposits in the Colorado mineral belt are of both Late Cretaceous-Eocene and Mid-Tertiary age; those in New Mexico are predominantly Mid-Tertiary in age, but include Late Cretaceous porphyry-copper deposits in southwestern New Mexico. The mineralized belt in New Mexico, named the New Mexico structural zone, is 250-km wide. The northwest boundary is the Jemez subzone (or the approximately equivalent Globe belt), and the southeastern boundary was approximately marked by the Santa Rita belt. Three groups (subzones) of mineral deposits characterize the structural zone: (1) Mid-Tertiary porphyry molybdenite and alkaline-precious-metal deposits, in the northeast segment of the Jemez zone; (2) Mid-Tertiary epithermal precious-metal deposits in the Tijeras (intermediate) zone; and (3) Late Cretaceous porphyry-copper deposits in the Santa Rita zone. The structural zone was inferred to extend from New Mexico into adjacent Arizona. The structural zone provides favorable sites for exploration, particularly those parts of the Jemez subzone covered by Neogene volcanic and sedimentary rocks. ?? 2002 Published by Elsevier Science B.V.
KALMIOPSIS WILDERNESS, OREGON.
Page, Norman J; Miller, Michael S.
1984-01-01
Geologic, geochemical, geophysical field and laboratory, and mine and prospect studies conducted in the Kalmiopsis Wilderness, Oregon indicate that areas within and immediately adjacent to the wilderness have substantiated mineral-resource potential. The types of mineral resources which occur in these areas include massive sulfide deposits containing copper, zinc, lead, silver and gold; podiform chromite deposits; laterite deposits containing nickel, cobalt, and chromium; lode gold deposits; and placer gold deposits. Past production from existing mines is estimated to have been at least 7000 troy oz of gold, 4000 long tons of chromite, and few tens of tons of copper ore.
Distribution of copper and other metals in gully sediments of part of Okanogan County, Washington
Fox, Kenneth F.; Rinehart, C. Dean
1972-01-01
A geochemical exploration program aimed at determining regional patterns of metal distribution as well as pinpointing areas likely to contain undiscovered ore deposits was carried out in north-central Okanogan County, Washington. About 1,000 gully and stream sediment samples were collected from a rectangular area of about 800 square miles. The area includes two contiguous, virtually dormant, mining districts that had yielded nearly $1.4 million in gold, silver, lead, copper, and zinc prior to the end of World War I, mostly from quartz lodes.
Mining operations have worked the rich mineral resources of the Lake Superior Basin for over 150 years, leaving industrially impacted regions with tailing piles and smelters. In Lake Superior sediments, mercury and copper inventories increase towards shorelines and are highly cor...
25 CFR 214.10 - Royalty rates.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) For gold, silver, or copper lessee shall pay quarterly a royalty of 10 percent to be computed on the gross value of the ores as shown by reduction returns after deducting freight and treatment charges... crude material, and 60 cents per ton on refined substances. (d) For substances other than gold, silver...
NASA Astrophysics Data System (ADS)
Zhong, Shihua; Feng, Chengyou; Seltmann, Reimar; Li, Daxin; Dai, Zhihui
2017-12-01
The Weibao copper-lead-zinc skarn deposit is located in the northern East Kunlun terrane, NW China. Igneous intrusions in this deposit consist of barren diorite porphyry (U-Pb zircon age of 232.0 ± 2.0 Ma) and ore-bearing quartz diorite and pyroxene diorite (U-Pb zircon ages of 223.3 ± 1.5 and 224.6 ± 2.9 Ma, respectively). Whole-rock major and trace element and accessory mineral (zircon and apatite) composition from these intrusions are studied to examine the different geochemical characteristics of ore-bearing and barren intrusions. Compared to the barren diorite porphyry, the ore-bearing intrusions have higher Ce4+/Ce3+ ratios of zircon and lower Mn contents of apatite, indicating higher oxidation state. Besides, apatite from the ore-bearing intrusions shows higher Cl contents and lower F/Cl ratios. These characteristics collectively suggest the higher productivity of ore-bearing quartz diorite and pyroxene diorite. When compared with ore-bearing intrusions from global porphyry Cu deposits, those from Cu-Pb-Zn skarn deposits display lower Ce4+/Ce3+ and EuN/EuN* ratios of zircon and lower Cl and higher F/Cl ratios of apatite. We conclude that these differences reflect a general geochemical feature, and that zircon and apatite composition is a sensitive tool to infer economic potential of magmas and the resulting mineralization types in intrusion-related exploration targets.
Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction
NASA Astrophysics Data System (ADS)
Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi
2016-11-01
The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.
40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...
40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...
40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...
NASA Astrophysics Data System (ADS)
Hu, B.; Wan, B.
2017-12-01
The porphyry copper deposits are characterized by alteration zones. Hydrothermal alteration minerals have diagnostic spectral absorption properties in the visible and near-infrared (VNIR) through the shortwave infrared (SWIR) regions. In order to identify the alteration zones in the study area, the Sentinel-2A Multi-Spectral Instrument(MSI) * Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and field inspection were combined. The Sentinel-2A MSI has ten bands in the visible and near-infrared (VNIR) regions, which has advantages of detecting ferric iron alteration minerals. Six ASTER bands in the shortwave infrared(SWIR) regions have been demonstrated to be effective in the mapping of Al-OH * Mg-OH group minerals. Integrating ASTER and Sentinel-2A MSI (AM) for mineral mapping can compensate each other's defect. The methods of minimum noise fraction(MNF) * band combination * matched filtering were applied to get Al-OH and Mg-OH group minerals information from AM data. The anomaly-overlaying selection method was used to process three temporal Sentinel-2A MSI data for extracting iron oxides minerals. The ground inspection has confirmed the validity of AM and Sentinel-2A MSI data in mineral mapping. The methodology proved effective in an arid area of Duolong ore concentrating area,Tibet and hereby suggested for application in similar geological settings.
2D Inversion of DCR and Time Domain IP data: an example from ore exploration
NASA Astrophysics Data System (ADS)
Adrian, J.; Tezkan, B.
2015-12-01
Ore deposits often appear as disseminated sulfidic materials. Exploring these deposits with the Direct Current Resistivity (DCR) method alone is challenging because the resistivity signatures caused by disseminated material is often hard to detect. The Time-domain Induced Polarization (TDIP) method, on the other hand, is qualified to detect areas with disseminated sulfidic ores due to large electrode polarization effects which result in large chargeability anomalies. By employing both methods we gain information about both, the resistivity and the chargeability distribution of the subsurface.On the poster we present the current state of the development of a 2D smoothness constraint inversion algorithm for DCR and TDIP data. The implemented forward algorithm uses a Finite Element approach with an unstructured mesh. The model parameters resistivity and chargeability are connected by either a simple conductivity pertubation approach or a complex conductivity approach.As a case study, the 2D inversion results of DCR/TDIP and RMT data obtained during a survey on a sulfidic copper ore deposit in Turkey are presented. The presence of an ore deposit is indicated by areas with low resistivity and significantly high chargeability in the inversion models.This work is part of the BMBF/TUEBITAK funded project ``Two-dimensional joint interpretation of Radiomagnetotellurics (RMT), Direct Current Resistivity (DCR) and Induced Polarization (IP) data: an example from ore exploration''.
Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott
1999-06-01
Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less
On prediction and discovery of lunar ores
NASA Technical Reports Server (NTRS)
Haskin, Larry A.; Colson, Russell O.; Vaniman, David
1991-01-01
Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.
Mining and beneficiation of lunar ores
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Williams, R. J.; Mckay, D. S.; Giles, D.
1979-01-01
The beneficiation of lunar plagioclase and ilmenite ores to feedstock grade permits a rapid growth of the space manufacturing economy by maximizing the production rate of metals and oxygen. A beneficiation scheme based on electrostatic and magnetic separation is preferred over conventional schemes, but such a scheme cannot be completely modeled because beneficiation processes are empirical and because some properties of lunar minerals have not been measured. To meet anticipated shipping and processing needs, the peak lunar mining rate will exceed 1000 tons/hr by the fifth year of operation. Such capabilities will be best obtained by automated mining vehicles and conveyor systems rather than trucks. It may be possible to extract about 40 kg of volatiles (60 percent H2O) by thermally processing the less than 20 micron ilmenite concentrate extracted from 130 tons of ilmenite ore. A thermodynamic analysis of an extraction process is presented.
NASA Astrophysics Data System (ADS)
Tagirov, Boris R.; Trigub, Alexander L.; Kvashnina, Kristina O.; Shiryaev, Andrey A.; Chareev, Dmitriy A.; Nickolsky, Maximilian S.; Abramova, Vera D.; Kovalchuk, Elena V.
2016-10-01
Geological processes leading to formation of sulfide ores often result in precipitation of gold-bearing sulfides which can contain high concentrations of this metal in ;invisible; (or ;refractory;) state. Covellite (CuS) is ubiquitous mineral in many types of the ore deposits, and numerous studies of the natural ores show that covellite can contain high concentrations of Au. At the same time, Au-bearing covellite withstands cooling in contrast to other minerals of the Cu-Fe-S system (chalcocite, bornite, chalcopyrite), where Au exsolves at low temperatures. This makes covellite a convenient model system for investigation of the chemical state (local environment and valence) of the ;invisible; Au in copper-sulfide ores (copper-porphyry, epithermal, volcanogenic massive sulfide, SEDEX deposits). Therefore, it is necessary to determine the location of Au in the covellite matrix as it will have important implications for the methods employed by mineral processing industry to extract Au from sulfide ores. Here we investigate the chemical state of Cu and Au in synthetic covellite containing up to 0.3 wt.% of Au in the ;invisible; state. The covellite crystals were synthesized by hydrothermal and salt flux methods. Formation of the chemically bound Au is indicated by strong dependence of the concentration of Au in covellite on the sulfur fugacity in the experimental system (d(log C(Au))/d(log f(S2)) ∼ 0.65). The Au concentration of covellite grows with increasing temperature from 400 to 450 °C, whereas further temperature increase to 500 °C has only minor effect. The synthesized minerals were studied using X-ray absorption fine structure spectroscopy (XAFS) in high energy resolution fluorescence detection (HERFD) mode. Ab initio simulations of Cu K edge XANES spectra show that the Cu oxidation state in two structural positions in covellite (tetrahedral and triangular coordination with S atoms) is identical: the total loss of electronic charge for the 3d shell is ∼0.3 for both positions of Cu. This result is confirmed by theoretical analysis of electron density performed using quantum theory of atoms in molecules (QTAIM). Modeling of the Au L3 edge EXAFS/XANES spectra showed that Au in covellite exists in the form of the isomorphous solid solution formed by substitution for Cu atoms in triangular coordination with the Me-S distance in the first coordination shell increased by 0.18 Å relative to the pure CuS structure. The ;formal; oxidation state of Au in covellite is +1. The Bader partial atomic charge for Au in covellite is lower than the charge of Cu (+0.2 e vs. +0.5 e) indicating that the degree of covalency for the Au-bearing covellite is higher than that of pure CuS. The analysis of electronic density of states shows that this structural position of Au results in strong interactions between hybridized Au s,p,d, S p, and Cu p,d orbitals. Such chemical bonding of Au to S and Cu can result in the formation of Au-bearing solid solution with other minerals in the Cu-Fe-S system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper...
Estimated water requirements for the conventional flotation of copper ores
Bleiwas, Donald I.
2012-01-01
This report provides a perspective on the amount of water used by a conventional copper flotation plant. Water is required for many activities at a mine-mill site, including ore production and beneficiation, dust and fire suppression, drinking and sanitation, and minesite reclamation. The water required to operate a flotation plant may outweigh all of the other uses of water at a mine site, [however,] and the need to maintain a water balance is critical for the plant to operate efficiently. Process water may be irretrievably lost or not immediately available for reuse in the beneficiation plant because it has been used in the production of backfill slurry from tailings to provide underground mine support; because it has been entrapped in the tailings stored in the TSF, evaporated from the TSF, or leaked from pipes and (or) the TSF; and because it has been retained as moisture in the concentrate. Water retained in the interstices of the tailings and the evaporation of water from the surface of the TSF are the two most significant contributors to water loss at a conventional flotation circuit facility.
Soil quality changes in response to their pollution by heavy metals, Georgia.
Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi
2015-01-01
The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.
Xie, Feng; Wang, Wei
2017-08-01
The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.
NASA Astrophysics Data System (ADS)
Quang Truong, Xuan; Luan Truong, Xuan; Nguyen, Tuan Anh; Nguyen, Dinh Tuan; Cong Nguyen, Chi
2017-12-01
The objective of this study is to design and implement a WebGIS Decision Support System (WDSS) for reducing uncertainty and supporting to improve the quality of exploration decisions in the Sin-Quyen copper mine, northern Vietnam. The main distinctive feature of the Sin-Quyen deposit is an unusual composition of ores. Computer and software applied to the exploration problem have had a significant impact on the exploration process over the past 25 years, but up until now, no online system has been undertaken. The system was completely built on open source technology and the Open Geospatial Consortium Web Services (OWS). The input data includes remote sensing (RS), Geographical Information System (GIS) and data from drillhole explorations, the drillhole exploration data sets were designed as a geodatabase and stored in PostgreSQL. The WDSS must be able to processed exploration data and support users to access 2-dimensional (2D) or 3-dimensional (3D) cross-sections and map of boreholles exploration data and drill holes. The interface was designed in order to interact with based maps (e.g., Digital Elevation Model, Google Map, OpenStreetMap) and thematic maps (e.g., land use and land cover, administrative map, drillholes exploration map), and to provide GIS functions (such as creating a new map, updating an existing map, querying and statistical charts). In addition, the system provides geological cross-sections of ore bodies based on Inverse Distance Weighting (IDW), nearest neighbour interpolation and Kriging methods (e.g., Simple Kriging, Ordinary Kriging, Indicator Kriging and CoKriging). The results based on data available indicate that the best estimation method (of 23 borehole exploration data sets) for estimating geological cross-sections of ore bodies in Sin-Quyen copper mine is Ordinary Kriging. The WDSS could provide useful information to improve drilling efficiency in mineral exploration and for management decision making.
Theobald, P.K.; Thompson, Charles Emmet
1968-01-01
Platinum-group metals in the Medicine Bow Mountains were first identified by W. C. Knight in 1901. In the Medicine Bow Mountains, these metals are commonly associated with copper, silver, or gold in shear zones that cut a series of mafic igneous and metamorphic rocks. At the New Rambler mine, where the initial discovery was made, about 50,000 tons of mine and mill waste contain an average of 0.3 percent copper, 7 ppm (parts per million) silver, 1 ppm platinum plus palladium, and 0.7 ppm gold. This material is believed to be from a low-grade envelope around the high-grade pod of complex ore that was mined selectively in the old workings. Soil samples in the vicinity of the New Rambler mine exhibit a wide range of content of several elements associated with the ore. Most of the variation can be attributed to contamination, from the mine workings. Even though soil samples identify a low-level copper anomaly that persists to the limit of the area sampled, soils do not offer a promising medium for tracing mineralization owing to the blanket of transported overburden. Stream sediments, if preconcentrated for analysis, do reveal anomalies not only in the contaminated stream below the New Rambler mine, but in adjacent drainage and on Dave Creek. Examination of a spectrum of elements in heavy-mineral concentrates from stream sediment may contribute to knowledge of the nature of the mineralization and of the basic geology of the environment. The sampling of bedrock exposures is not particularly fruitful because outcrops are sparse and the exposed rocks are the least altered and mineralized. Bedrock sampling does, however, provide information on the large size and provincial nature of the platinum-rich area. We feel that a properly integrated program of geological, geophysical, and geochemical exploration in the Medicine Bow Mountains and probably in the Sierra Madre to the west has a reasonable probability of successfully locating a complex ore body.
San Rafael, Peru: geology and structure of the worlds richest tin lode
NASA Astrophysics Data System (ADS)
Mlynarczyk, Michael S. J.; Sherlock, Ross L.; Williams-Jones, Anthony E.
2003-08-01
The San Rafael mine exploits an unusually high grade, lode-type Sn-Cu deposit in the Eastern Cordillera of the Peruvian Central Andes. The lode is centered on a shallow-level, Late Oligocene granitoid stock, which was emplaced into early Paleozoic metasedimentary rocks. It has a known vertical extent exceeding 1,200 m and displays marked vertical primary metal zoning, with copper overlying tin. The tin mineralization occurs mainly as cassiterite-quartz-chlorite veins and as cassiterite in breccias. The bulk of it is hosted by a K-feldspar megacrystic, biotite- and cordierite-bearing leucomonzogranite, which is the most distinctive phase of the pluton. Copper mineralization occurs predominantly in the veins that straddle the metasedimentary rock-intrusion contact or are hosted entirely by slates. Both tin and copper mineralization are associated with strong chloritic alteration, which is superimposed on an earlier episode of sericitization and tourmaline-quartz veining. Based on the distribution of alteration and ore mineralogy, cassiterite deposition and subsequent chalcopyrite precipitation are believed to have been the result of a single, prolonged hydrothermal event. The source of the metals is inferred to be a highly evolved, peraluminous magma, related to the leucomonzogranitic phase of the San Rafael pluton. Preliminary fluid inclusion microthermometry suggests that ore deposition took place during the mixing of moderate and low salinity fluids, which were introduced in a series of pulses. Several large fault-jogs, created by sinistral-normal, strike-slip movement, are interpreted to have focused synkinematic magmatic fluids and permitted their effective mixing with meteoric waters. It is proposed that this mixing led to rapid oxidation of Sn (II) chloride species and caused supersaturation of the fluids in cassiterite, resulting in the development of localized, high-grade ore shoots. A favorable structural regime that promoted large-scale mixing of two fluids originating under very different physico-chemical conditions appears to have been the key factor responsible for the unusual richness of the deposit.
The recovery of gold from refractory ores by the use of carbon-in-chlorine leaching
NASA Astrophysics Data System (ADS)
Greaves, John N.; Palmer, Glenn R.; White, William W.
1990-09-01
Recently, the U.S. Bureau of Mines examined the recovery of gold by chlorination of refractory carbonaceous and sulfidic ores, comparing various treatment methods in which a ground ore pulp is contacted with chlorine gas and activated carbon is added to the pulp for a carbon-in-chlorine leach (CICL). The objective of this research was to demonstrate the basic feasibility of CICL technology. Results showed that the organic carbon deactivating environment of CICL lowers, but does not eliminate, the adsorption of gold on activated carbon. In this environment, the refractory ore is altered, and gold is extracted and then recovered on activated carbon. With highly carbonaceous ores, CICL achieved a higher recovery than with primarily sulfidic refractory ores. Basic cyanide amenability testing of two carbonaceous ores achieved recoveries of only 5.5% and 46%. With CICL treatment, recoveries on carbon were 90% and 92%.
NASA Astrophysics Data System (ADS)
Chen, G. Q.; Chen, Z. M.
2010-11-01
A 135-sector inventory and embodiment analysis for carbon emissions and resources use by Chinese economy 2007 is presented in this paper by an ecological input-output modeling based on the physical entry scheme. Included emissions and resources belong to six categories as: (1) greenhouse gas (GHG) in terms of CO 2, CH 4, and N 2O; (2) energy in terms of coal, crude oil, natural gas, hydropower, nuclear power, and firewood; (3) water in terms of freshwater; (4) exergy in terms of coal, crude oil, natural gas, grain, bean, tuber, cotton, peanut, rapeseed, sesame, jute, sugarcane, sugar beet, tobacco, silkworm feed, tea, fruits, vegetables, wood, bamboo, pulp, meat, egg, milk, wool, aquatic products, iron ore, copper ore, bauxite, lead ore, zinc ore, pyrite, phosphorite, gypsum, cement, nuclear fuel, and hydropower; (5) and (6) solar and cosmic emergies in terms of sunlight, wind power, deep earth heat, chemical power of rain, geopotential power of rain, chemical power of stream, geopotential power of stream, wave power, geothermal power, tide power, topsoil loss, coal, crude oil, natural gas, ferrous metal ore, non-ferrous metal ore, non-metal ore, cement, and nuclear fuel. Accounted based on the embodied intensities are carbon emissions and resources use embodied in the final use as rural consumption, urban consumption, government consumption, gross fixed capital formation, change in inventories, and export, as well as in the international trade balance. The resulted database is basic to environmental account of carbon emissions and resources use at various levels.
PROCESS FOR THE RECOVERY OF URANIUM FROM PHOSPHATIC ORE
Long, R.L.
1959-04-14
A proccss is described for the recovery of uranium from phosphatic products derived from phosphatic ores. It has been discovered that certain alkyl phosphatic, derivatives can be employed in a direct solvent extraction operation to recover uranium from solid products, such as superphosphates, without first dissolving such solids. The organic extractants found suitable include alkyl derivatives of phosphoric, pyrophosphoric, phosof the derivative contains from 4 to 7 carbon atoms. A diluent such as kerosene is also used.
NASA Astrophysics Data System (ADS)
Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.
2012-12-01
A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U-Pb dating of zircon from both host rock and ore samples confirms a previously documented event around 1880 - 1900 Ma in the Norrbotten region. However, U-Pb in monazite from an ore sample suggests a further event at ca. 1650 Ma, a period of known activity in Fennoscandia. Further investigation and more U-Pb data are needed to confirm those dates and how the iron mineralization is related to those two events. The combination of U-Th-Pb ages, tracer isotopes and trace element abundances at mineral scale (e.g., Lu-Hf in zircon, and Sm-Nd in monazite, apatite, titanite), along with the O isotopic composition of zircon, will be used to decipher whether the Kiruna iron ore deposits are of metasomatic or igneous origin. Overall, the study also intends to develop a predictive model for exploration of similar iron oxide apatite deposits worldwide.
Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.
2014-01-01
Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions are the locally endemic Tusayan flameflower Phemeranthus validulus, the long-legged bat Myotis volans, and the Arizona bat Myotis occultus. The most common vertebrate species identified at the mine site included the Mexican spadefoot toad Spea multiplicata, plateau fence lizard Sceloporus tristichus, violetgreen swallow Tachycineta thalassina, pygmy nuthatch Sitta pygmaea, purple martin Progne subis, western bluebird Sialia mexicana, deermouse Peromyscus maniculatus, valley pocket gopher Thomomys bottae, cliff chipmunk Tamias dorsalis, black-tailed jackrabbit Lepus californicus, mule deer Odocoileus hemionus, and elk Cervus canadensis. A limited number of the most common species were collected for contaminant analysis to establish baseline contaminant and radiological concentrations prior to ore extraction. These empirical baseline data will help validate contaminant exposure pathways and potential threats from contaminant exposures to ecological receptors. Resource managers will also be able to use these data to determine the extent to which local species are exposed to chemical and radiation contamination once the mine is operational and producing ore. More broadly, these data could inform resource management decisions on mitigating chemical and radiation exposure of biota at high-grade uranium breccia pipes throughout the Grand Canyon watershed.
From Projectile Points to Microprocessors - The Influence of Some Industrial Minerals
Driscoll, Rhonda
2007-01-01
In the language of economic geology, Earth materials are classified as metallic ores, fuel minerals, gemstones, and industrial minerals. Most people know that metallic ores yield shiny, conductive, ductile elements such as copper, iron, or gold. Most understand that energy-producing coals constitute a fuel mineral. Likewise, dazzling rubies and rare sapphires are universally recognized as gemstones. The fourth group, industrial minerals, is largely unknown to the general public, even though industrial minerals are as essential to daily life as metals and fuel minerals. This report examines the occurrence and practical uses of nine important industrial minerals - constituting just a few of the more than 50 industrial minerals that shape human culture.
CO 2-fluxing collapses metal mobility in magmatic vapour
van Hinsberg, V. J.; Berlo, K.; Migdisov, A. A.; ...
2016-05-18
Magmatic systems host many types of ore deposits, including world-class deposits of copper and gold. Magmas are commonly an important source of metals and ore-forming fluids in these systems. In many magmatic-hydrothermal systems, low-density aqueous fluids, or vapours, are significant metal carriers. Such vapours are water-dominated shallowly, but fluxing of CO 2-rich vapour exsolved from deeper magma is now recognised as ubiquitous during open-system magma degassing. Furthermore, we show that such CO 2-fluxing leads to a sharp drop in element solubility, up to a factor of 10,000 for Cu, and thereby provides a highly efficient, but as yet unrecognised mechanismmore » for metal deposition.« less
NASA Astrophysics Data System (ADS)
Masruri, Masruri; Norani Pangestin, Dinna; Mariyah Ulfa, Siti; Riyanto, Slamet; Srihardyastutie, Arie; Farid Rahman, Moh.
2018-01-01
The paper report antibacterial activity of flower extract from Pinus merkusii Jungh Et De Vriese and its mixture with copper nanoparticle on Staphylococcus aureus. This finding revealed the potency of pine forestry waste to overcome a bacterial-resistance problem on some commercially antibiotics. The extract was prepared by hot water extraction of a dried powder of pine flower. Copper nanoparticle was synthesized following “green synthesis technique” using phenolic-rich extract of pine’s flower as a reduction and capping agent. In short, a mixture of pine’s flower extract and copper nanoparticle importantly was able to inhibit the growth of Staphylococcus aureus four times higher than that using water extract.
25 CFR 213.23 - Royalty rates for minerals other than oil and gas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... substances other than gold, silver, copper, lead, zinc, tungsten, coal, asphaltum and allied substances, oil... than 10 percent of the value, at the nearest shipping point, of all ores, metals, or minerals marketed. (b) For gold and silver the lessee shall pay quarterly or as otherwise provided in the lease, a...
25 CFR 213.23 - Royalty rates for minerals other than oil and gas.
Code of Federal Regulations, 2014 CFR
2014-04-01
... substances other than gold, silver, copper, lead, zinc, tungsten, coal, asphaltum and allied substances, oil... than 10 percent of the value, at the nearest shipping point, of all ores, metals, or minerals marketed. (b) For gold and silver the lessee shall pay quarterly or as otherwise provided in the lease, a...
Gold Mining in Papua New Guinea: A Curricular Omission?
ERIC Educational Resources Information Center
Palmer, W. P.
1989-01-01
What criteria should be used to include or exclude particular topics within a country's science curriculum? It will be argued here that gold/gold mining is a suitable and relevant topic for inclusion in PNG's science curricula and suggestions towards achieving that end will be offered. The teaching of the mining of copper ore and the metal's…
78 FR 78727 - Copper Sulfate Pentahydrate; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
.... If EPA is able to determine that a finite tolerance is not necessary to ensure that there is a... ubiquitous in nature and is a necessary nutritional element for both animals (including humans) and plants... natural ore. It is one of the elements found essential to life. The National Academy of Science...
Utilization of flotation wastes of copper slag as raw material in cement production.
Alp, I; Deveci, H; Süngün, H
2008-11-30
Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.
LA-MC-ICPMS Determination of Copper Isotope Ratios in Turquoise from the Southwestern United States.
NASA Astrophysics Data System (ADS)
Evans, M. J.; Fayek, M.; Riciputi, L.; Anovitz, L.; Hull, S.; Mathien, F. J.; Milford, H.
2004-12-01
Hydrothermal circulation driven by igneous intrusion led to the deposition of turquoise throughout the southwestern United States and Mesoamerica. The genesis of these copper-ore deposits is unclear; conflicting hypotheses call on ascent of magmatic waters (hypogene) or descent and recirculation of meteroric waters (supergene). Copper isotope analyses were performed by laser-ablation multi-collector ICPMS to survey turquoise deposits from AZ, NV, CA, NM, and CO. The turquoise have [Cu] from 0.1 to 10 wt% and are all found in near-surface alteration zones. Analyses of individual turquoise grains are reproducible to better than 0.4\\permil \\delta65Cu (1\\sigma) (relative to NBS-976). \\delta65Cu values show significant variation (ca. 10\\permil) between the deposits, equal to the total range reported for continental ores and both hypogene and supergene deposits. The variability between deposits may reflect differences in source Cu isotopic composition or more likely, hydrothermal processes during leaching and deposition. The mining and trade of turquoise played an important role in early social and economic development between Mesoamerica and N. America. Copper isotopes will improve differentiation between turquoise source areas, aiding archaeological and cultural studies of trade between and within Mesoamerica and the SW USA. Research sponsored by NSF-BCS (Archaeology) grant #0312088 to Fayek and the Office of Basic Energy Sciences, U.S. Department of Energy, under contract with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.
NASA Astrophysics Data System (ADS)
Sun, T.; Bao, H.; Reich, M.; Palacios, C.
2007-12-01
In the Atacama Desert of northern Chile, one of the world's richest metallogenic provinces, porphyry copper deposits are characterized by the unique occurrence of atacamite in their oxidized zones. The origin and formation of the oxide zone of these copper deposits is, however, controversial. It was proposed that Cl-rich deep formation water pumping-up events along faults by earthquakes, after onset of the hyperaridity, were required (Cameron et al., 2007). Their model would imply that supplies of saline deep formation water from fractures to the surface should have left behind a homogeneous or fracture-controlled salt profile from surface down to the oxide zone. While no excluding the deep formation water model in other deposit, here we propose that, in our sampling region, the alternative saline source, which is critical for atacamite formation, could be locally evaporated groundwater, Cl-rich salts leached from arid surface by meteoric water, or brines from eastern salar basins at a time when the climate in northern Chile was changing from arid to hyperarid. At this climate transition, arid- requiring minerals such as atacamite in the oxide zone were formed and, more importantly, preserved upon evaporation beneath the surface alluvial deposits. Since salt accumulation at the surface remain active during hyperarid condition, our model would predict that water-soluble salt profile from surface to the oxide zone should have a characteristic pattern: salts with an atmospheric component on the surface gradually transitioning to salts of the oxide ore zone on the bottom and a mixing zone in between. To test these two alternative models, we focus on sulfate salts, one of the common water-soluble salts in arid environments. An added advantage is that sulfate accumulated on desert surface has a secondary atmospheric component that bears a unique triple oxygen isotope signature, easily distinguishable from sulfate formed by the oxidation of sulfide minerals at the oxide ore zone. Samples were collected from a drill core that extends from surface soil to an oxide zone where gypsum and jarosite coexist with atacamite at Spence, a supergene enriched copper porphyry deposit located between Calama and Antofagasta. We found that at 15 to ~100 m depths, the Δ17O and δ34S both decrease while the δ18O increases steadily with depths, suggesting a binary mixing of two distinct sulfate sources, with the surface sulfate having Δ17O, δ34S, and δ18O at +0.55‰, +5.80‰, and +10.80‰, while the deep oxide-ore- zone sulfate at -0.23‰, +3.6‰, and+19.8‰, respectively. The surface sulfate has reached a maximum depth of ~ 50 meters, as marked by the disappearance of positive Δ17O signals at that depth. The intact preservation of this transitional sulfate mixing profile supports our model, a model that does not require a deep formation water source for atacamite formation in oxide zone of Spence copper porphyry deposit.
Preliminary study on copper isotopes of the Zijinshan ore field, Fujian Province, SE China
NASA Astrophysics Data System (ADS)
Zhao, Hai-Xiang
2017-04-01
Zijinshan Cu-Au polymetallic ore field is located in Southeast China, tectonically belonging to the Interior Cathaysia Block. It is a complete porphyry-epithermal mineralization system, including Luoboling porphyry Cu-Mo deposit, Zijinshan high sulfidation Cu-Au deposit, Yueyang low sulfidation Ag-Au deposit, Wuziqilong and Longjiangting transitional style Cu deposits, etc. Main ore minerals from Zijinshan and Wuziqilong deposits are covellite and digenite. Copper isotopic compositions of these two minerals were analyzed. Copper isotope ratios are reported in the standard delta notation: δ65 Cu‰¯[ (65Cu/63Cu)Sample/(65Cu/63Cu) ERM-AE633-1] ×1000. The overall δ65Cu values for the analysed samples vary from -2.76 to 1.33‰Ṫhe Zijinshan Cu-Au deposit show large Cu isotopic variability (-2.76 to 1.33), among which covellite samples range from -2.76‰ to 0.38‰ with -0.79‰ in average and digenite samples range from -1.8‰ to 1.33‰ with -0.11‰ in average. During the leaching process of hypogene sulphides, 65Cu was leached more easily and then trapped in the supergene enrichment zone. Therefore, enrichment minerals should be enriched in 65Cu and the leached cap enriched in 63Cu. Thus the relationship of δ65Cu values for different Cu reservoirs should be leached cap minerals < hypogene sulphides < enrichment minerals. Nonexistence of enriched δ65Cu values indicate that the major copper minerals (mainly covellite and digenite) in the Zijinshan Cu-Au deposit and Wuziqilong Cu deposit are of hypogene origin rather than secondary origin. At the Wuziqilong Cu deposit, Cu isotopes has narrow range from 0.16‰ to 0.43‰ with 0.31‰ in average, which is typically of hypogene origin. Two coexisting covellite -digenite fractionations (δ65Cu =δ65Cucovellite - δ65Cudigenite) are 0.27‰ and 0.18‰ relatively. For minerals of the Cu-S system, from chalcocite (Cu2S) to covellite (CuS), proportions of Cu(II) become higher and higher. The classical definition of the crystallographic structure of covellite indicated that one third of the Cu is Cu(II) and digenite (Cu1.8S) has one ninth of Cu(II). Therefore, covellite is more oxidized species and has higher δ65Cu compared with coexisting digenite.
A geologic assessment of potential lunar ores
NASA Technical Reports Server (NTRS)
Mckay, D. S.; Williams, R. J.
1979-01-01
Although bulk lunar soil is not a suitable feedstock for extracting metals, certain minerals such as anorthite and ilmenite can be separated and concentrated. These minerals can be considered as potential ores of aluminum, silicon, titanium, andiron. A separation and metal extraction plant could also extract large amounts of oxygen and perhaps hydrogen from these minerals. Anorthie containing 19 percent aluminum and 20 percent silicon can be concentrated from some highland soils where it is present in amounts up to 60 percent. Ilmenite containing 32 percent titanium and 37 percent iron can be concentrated from some mare soils where it is present in amounts up to 10 percent. The ideal mining site would be located at the boundary between a high-titanium mare and a high-aluminum highlands. Such area may exist around the rims of some eastern maria, particularly Tranquilitatis. A location on Earth with raw materials as described above would be considered an economically valuable ore deposit if conventional terrestrial resources were not available.
High sensitivity of metal footprint to national GDP in part explained by capital formation
NASA Astrophysics Data System (ADS)
Zheng, Xinzhu; Wang, Ranran; Wood, Richard; Wang, Can; Hertwich, Edgar G.
2018-04-01
Global metal ore extraction tripled between 1970 and 2010 as metals are widely used in new infrastructure and advanced technology. Meanwhile, the energy and environmental costs of metal mining increase as lower ore grades are being exploited. The domestic use of metals has been found to reach a plateau when gross domestic product reaches US15,000 per person. Here we present a quantification of the annual metal footprint (that is, the amount of metal ore extracted to satisfy the final demand of a country, including metals used abroad to produce goods that are then imported, and excluding metals used domestically to produce exports) for 43 large economies during 1995-2013. We use a panel analysis to assess short-term drivers of changes in metal footprint, and find that a 1% rise in gross domestic product raises the metal footprint by as much as 1.9% in the same year. Further, every percentage point increase in gross capital formation as a share of gross domestic product increased the metal footprint by 2% when controlling for gross domestic product. Other socioeconomic variables did not significantly influence the metal footprint. Finding ways to break the strong coupling of economic development and investment with metal ore extraction may be required to ensure resource access and a low-carbon future.
NASA Astrophysics Data System (ADS)
Peng, Ning-Jun; Jiang, Shao-Yong; Xiong, Suo-Fei; Pi, Dao-Hui
2018-02-01
The Dalingshang W-Cu deposit is located in the North section of the Dahutang ore field, northern Jiangxi Province, South China. Vein- and breccia-style tungsten-copper mineralization is genetically associated with Mesozoic S-type granitic rocks. Infrared and conventional microthermometric studies of both gangue and ore minerals show that the homogenization temperatures for primary fluid inclusions in wolframite ( 340 °C) are similar to those in scheelite ( 330 °C), but about 40 °C higher than those of apatite ( 300 °C) and generally 70 °C higher than those in coexisting quartz ( 270 °C). Laser Raman analysis identifies CH4 and N2 without CO2 in fluid inclusions in scheelite and coexisting quartz, while fluid inclusions in quartz of the sulfide stage have variable CO2 content. The ore-forming fluids overall are characterized by high- to medium-temperature, low-salinity, CH4, N2, and/or CO2-bearing aqueous fluids. Chalcopyrite, muscovite, and sphalerite are the most abundant solids recognized in fluid inclusions from different ores. The H-O-S-Pb isotope compositions favor a dominantly magmatic origin for ores and fluids, while some depleted δ34S values (- 14.4 to - 0.9‰) of sulfides from the sulfide stage are most likely produced by an increase of oxygen fugacity, possibly caused by inflow of oxidized meteoric waters. The microthermometric data also indicate that a simple cooling process formed early scheelite and wolframite. However, increasing involvement of meteoric waters and fluid mixing may trigger a successive deposition of base metal sulfides. Fluid-rock interaction was critical for scheelite mineralization as indicated by in-situ LA-ICP-MS analysis of trace elements in scheelite.
RAMAN ANALYSIS OF FERTILIZER AND PLANT TISSUE EXTRACTS FOR PERCHLORATE CONTAMINATION
Recently, we and others found perchlorate at high levels (approximately 500 - 8000 mg/kg) in ~ 90% of 25+ fertilizers products (primarily lawn-and-garden type) with no known link to mined nitrate-bearing Chilean ore. This ore is used, albeit in small scale, in fertilizer product...
Code of Federal Regulations, 2010 CFR
2010-04-01
... INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES... gross proceeds of all lead and zinc ores and concentrates extracted from the leased premises, the... royalty shall not be less than the highest and best obtainable market price of the lead and zinc ores and...
Code of Federal Regulations, 2011 CFR
2011-04-01
... INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES... gross proceeds of all lead and zinc ores and concentrates extracted from the leased premises, the... royalty shall not be less than the highest and best obtainable market price of the lead and zinc ores and...
Uranium resources in the Silver Reef (Harrisburg) district, Washington County, Utah
Stugard, Frederick
1951-01-01
The Silver Reef district is near Leeds, about 16 miles north of St. George, Utah. The major structural feature of the district is the Virgin anticline, a fold extending southwestward toward St. George. The anticline has been breached by erosion, and sandstone hogbacks or 'reefs' are carved from the Shinarump conglomerate mud sandstone members of the Chinle formation, both of Triassic age. Thirteen occurrences of uranium-vanadium minerals, all within the Tecumseh sandstone, which is the upper part of the Silver Reef sandstone member of the Chinle formation, have been examined over an area about 1.75 miles wide and 3 miles long. Two shipments of uranium-vanadium ore have been produced from the Chloride Chief and Silver Point claims. Samples from the deposits contain as much as 0.94 percent U3O8. The ore contains several times as much vanadium oxide as uranium, some copper, and traces of silver. It occurs in thinly bedded cross-bedded shales and sandstones within the fluviatile Tecumseh sandstone member of the Chinle formation. The ore beds are lenticular and are localized 2 near the base, center, and top of this sandstone member. The uranium-vanadium ore contains several yellow and green minerals not yet identified; the occurrences are similar to, but not associated with, the cerargyrite ore that made the district famous from 1879 to 1909.
High REE and Y concentrations in Co-Cu-Au ores of the Blackbird district, Idaho
Slack, J.F.
2006-01-01
Analysis of 11 samples of strata-bound Co-Cu-Au ore from the Blackbird district in Idaho shows previously unknown high concentrations of rare earth elements (REE) and Y, averaging 0.53 wt percent ???REE + Y oxides. Scanning electron microscopy indicates REE and Y residence in monazite, xenotime, and allanite that form complex intergrowths with cobaltite, suggesting coeval Co and REE + Y mineralization during the Mesoproterozoic. Occurrence of high REE and Y concentrations in the Blackbird ores, together with previously documented saline-rich fluid inclusions and Cl-rich biotite, suggest that these are not volcanogenic massive sulfide or sedimentary exhalative deposits but instead are iron oxide-copper-gold (IOCG) deposits. Other strata-bound Co deposits of Proterozoic age in the North American Cordillera and elsewhere in the world may have potential for REE and Y resources. IOCG deposits with abundant light REE should also be evaluated for possible unrecognized heavy REE and Y mineralization. ?? 2006 by Economic Geology.
2001-10-22
This ASTER image covers 30 by 37 km in the Atacama Desert, Chile and was acquired on April 23, 2000. The Escondida Cu-Au-Ag open-pit mine is at an elevation of 3050 m, and came on stream in 1990. Current capacity is 127,000 tons/day of ore; in 1999 production totaled 827,000 tons of copper, 150,000 ounces of gold and 3.53 million ounces of silver. Primary concentration of the ore is done on-site; the concentrate is then sent to the coast for further processing through a 170 km long, 9 pipe. Escondida is related geologically to three porphyry bodies intruded along the Chilean West Fissure Fault System. A high grade supergene cap overlies primary sulfide ore. This image is a conventional 3-2-1 RGB composite. Figure 1 displays SWIR bands 4-6-8 in RGB, and highlights lithologic and alteration differences of surface units. The image is located at 24.3 degrees south latitude and 69.1 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11090
Environmental impacts of iron ore tailings—The case of Tolo Harbour, Hong Kong
NASA Astrophysics Data System (ADS)
Wong, M. H.
1981-03-01
Disposal of iron ore tailings along the shore of Tolo Harbour, Hong Kong has altered the adjacent environment. Due to the ever-expanding population, the vast development of various industries, and the lack of sanitary control, the existing pollution problem of Tolo Harbour is serious. The iron ore tailings consist of a moderate amount of various heavy metals, e.g., copper, iron, manganese, lead, zinc, and a lower level of macronutrients. A few living organisms have been found colonizing this manmade habitat. Higher metal contents were also found in the tissue of Paphia sp. (clam); Scopimera intermedia (crab); Chaetomorpha brychagona (green alga); Enteromorpha crinita (green alga); and Neyraudia reynaudiana (grass). The area can be reclaimed by surface amelioration using inert materials, soils, or organic substrates, and by direct seeding, using nontolerant and tolerant plant materials. Reclamation of the tailings would improve the amenity of the adjacent environment and also mitigate pollution escaping to the sea.
Mechanism of unintentionally produced persistent organic pollutant formation in iron ore sintering.
Sun, Yifei; Liu, Lina; Fu, Xin; Zhu, Tianle; Buekens, Alfons; Yang, Xiaoyi; Wang, Qiang
2016-04-05
Effects of temperature, carbon content and copper additive on formation of chlorobenzenes (CBzs) and polychlorinated biphenyls (PCBs) in iron ore sintering were investigated. By heating simulated fly ash (SFA) at a temperature range of 250-500°C, the yield of both CBzs and PCBs presented two peaks of 637ng/g-fly ash at 350°C and 1.5×10(5)ng/g-fly ash at 450°C for CBzs, and 74ng/g-fly ash at 300°C and 53ng/g-fly ash at 500°C. Additionally, in the thermal treatment of real fly ash (RFA), yield of PCBs displayed two peak values at 350°C and 500°C, however, yield of CBzs showed only one peak at 400°C. In the thermal treatment of SFA with a carbon content range of 0-20wt% at 300°C, both CBzs and PCBs obtained the maximum productions of 883ng/g-fly ash for CBzs and 127ng/g-fly ash for PCBs at a 5wt% carbon content. Copper additives also affected chlorinated aromatic formation. The catalytic activity of different copper additives followed the orders: CuCl2∙2H2O>Cu2O>Cu>CuSO4>CuO for CBzs, and CuCl2∙2H2O>Cu2O>CuO>Cu>CuSO4 for PCBs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Budzan, Sebastian
2018-04-01
In this paper, the automatic method of grain detection and classification has been presented. As input, it uses a single digital image obtained from milling process of the copper ore with an high-quality digital camera. The grinding process is an extremely energy and cost consuming process, thus granularity evaluation process should be performed with high efficiency and time consumption. The method proposed in this paper is based on the three-stage image processing. First, using Seeded Region Growing (SRG) segmentation with proposed adaptive thresholding based on the calculation of Relative Standard Deviation (RSD) all grains are detected. In the next step results of the detection are improved using information about the shape of the detected grains using distance map. Finally, each grain in the sample is classified into one of the predefined granularity class. The quality of the proposed method has been obtained by using nominal granularity samples, also with a comparison to the other methods.
The dispersion of heavy metals in the vicinity of Britannia Mine, British Columbia, Canada.
Wilson, Bob; Lang, Brennan; Pyatt, F Brian
2005-03-01
Britannia Mine in British Columbia, Canada, is a major source of copper and other heavy metal pollutants, which enter the sea at Howe Sound. This investigation aims to determine whether there is sufficient Cd, Cu, Pb, and Zn, in the terrestrial environment surrounding the mine to suggest that dispersion and subsequent bioaccumulation has occurred in the past and continues. Samples of spoil, vegetation, and water were collected in January 2003 from areas at sea level and up to an altitude of 790 m. The samples of soil and vegetation were digested with aqua regia. The subsequent extracts and water samples were analyzed using flame atomic absorption spectrophotometry. The target metal concentrations were found to be much higher on the hillside spoil tips than on the seashore where the ore concentrators had formerly been located. The dispersion of heavy metals into the surrounding biosphere is discussed and further investigations into dispersion and partitioning within organisms including humans are suggested.
Tsukahara, I
1977-10-01
A sensitive spectrophotometric method has been developed for the determination of gold in copper, silver, lead, blister copper, copper concentrate and anode slime. Optimal conditions have been established for the extraction and determination of gold. Gold is extracted as its bromo complex with tri-n-octylamine and determined photometrically with 4,4'-bis(dimethylamino)thiobenzophenone; the absorbance of the organic phase is measured at 540 nm and the apparent molar absorptivity is about 1.2 x 10(5) 1.mole(-1). cm(-1). As little as 0.1 or 0.2 ppm of gold in these materials can be determined.
Microbial solubilization of phosphate
Rogers, R.D.; Wolfram, J.H.
1993-10-26
A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.
Microbial solubilization of phosphate
Rogers, Robert D.; Wolfram, James H.
1993-01-01
A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.
NASA Astrophysics Data System (ADS)
Biswas, Sujoy; Pathak, P. N.; Roy, S. B.
2012-06-01
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λmax) for UO22+-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol-1 cm-1). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to >24 h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO22+-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is <2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ±2%. This method can be used to determine 2.5-250 μg mL-1 uranium in ore leach solutions with high accuracy and precision.
Nickel: makes stainless steel strong
Boland, Maeve A.
2012-01-01
Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.
Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah
Finch, Warren Irvin
1953-01-01
The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.
Hayes, Timothy S.; Cox, Dennis P.; Bliss, James D.; Piatak, Nadine M.; Seal, Robert R.
2015-01-01
This report contains a descriptive model of sediment-hosted stratabound copper (SSC) deposits that supersedes the model of Cox and others (2003). This model is for use in assessments of mineral resource potential. SSC deposits are the second most important sources of copper in the world behind porphyry copper deposits. Around 20 percent of the copper in the world is produced from this class of deposits. They are also the most important sources of cobalt in the world, and they are fourth among classes of ore deposits in production of silver. SSC deposits are the basis of the economies of three countries: Democratic Republic of Congo, Poland, and Zambia. This report provides a description of the key features of SSC deposits; it identifies their tectonic-sedimentary environments; it illustrates geochemical, geophysical, and geoenvironmental characteristics of SSC deposits; it reviews and evaluates hypotheses on how these deposits formed; it presents exploration and assessment guides; and it lists some gaps in our knowledge about the SSC deposits. A summary follows that provides overviews of many subjects concerning SSC deposits.
Effects of metal mining and milling on boundary waters of Yellowstone National Park, USA
Nimmo, D.R.; Willox, M.J.; Lafrancois, T.D.; Chapman, P.L.; Brinkman, S.F.; Greene, J.C.
1998-01-01
Aquatic resources in Soda Butte Creek within Yellowstone National Park, USA, continue to be threatened by heavy metals from historical mining and milling activities that occurred upstream of the park's boundary. This includes the residue of gold, silver, and copper ore mining and processing in the early 1900s near Cooke City, Montana, just downstream of the creek's headwaters. Toxicity tests, using surrogate test species, and analyses of metals in water, sediments, and macroinvertebrate tissue were conducted from 1993 to 1995. Chronic toxicity to test species was greater in the spring than the fall and metal concentrations were elevated in the spring with copper exceeding water quality criteria in 1995. Tests with amphipods using pore water and whole sediment from the creek and copper concentrations in the tissue of macroinvertebrates and fish also suggest that copper is the metal of concern in the watershed. In order to understand current conditions in Soda Butte Creek, heavy metals, especially copper, must be considered important factors in the aquatic and riparian ecosystems within and along the creek extending into Yellowstone National Park.
Mineral Resource Team 2010 Activities Summary
2011-01-29
survey Afghanistan. Many of the resulting reports existed only at the Afghan Geological Survey in single paper copies - and the majority of the documents...Deposit: Copper ores associated with intrusive igneous rocks, and the fluids that accompany them, during magmatic emplacement and crystallization ...important commodities for agriculture and commercial industrial production. Thus, from a single massif, the Khanneshin carbonatite could be a source
2011-04-04
ore purchased f rom Lonz a, AG and used a s-received. Copper(I I) acetoacetonate from R OC/RIC and nony lphenol (Technical Grade) fro m Aldrich...were combined to produce a liquid catalyst. Sample Preparation. Catalyst batc hes were prepared by blending 30 weight parts nony lphenol with
NASA Astrophysics Data System (ADS)
Liu, Zheng; Liao, Shi-Yong; Zhou, Qing; Zhang, Xin
2018-05-01
In the western Yangtze Block, abundant Eocene ( 38-34 Ma) potassic adakite-like intrusions and associated porphyry copper deposits are exposed in non-subduction setting, including Machangjing, Beiya, Binchuan, Habo and Tongchang intrusions. All these ore-bearing porphyries share many geochemical characteristics of adakite such as depletion in heavy rare earth elements (HREEs), enrichment in Sr and Ba, absence of negative Eu anomalies, high SiO2, Al2O3, Sr/Y, La/Yb and low Y, Yb contents. They also exhibit affinities of potassic rocks, e.g., alkali-rich, high K2O/Na2O ratios and enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs). Their Sr-Nd isotopic ratios are similar to coeval shoshonitic lamprophyres. Geochemical data indicate that they were probably produced by partial melting of newly underplated potassic rocks sourced from a modified and enriched lithospheric mantle. These underplated rocks have elevated oxygen fugacity, water and copper contents, with high metallogenic potential. We propose that all the studied potassic rocks were emplaced in a post-collisional setting, associated with the local removal of lithospheric mantle.
NASA Astrophysics Data System (ADS)
Rausch, N.; Nieminen, T. M.; Ukonmaanaho, L.; Cheburkin, A.; Krachler, M.; Shotyk, W.
2003-05-01
Peat cores taken from ombrotrophic bogs are widely used to reconstruct historical records of atmospheric lead and mercury déposition[1, 2]. In this study, the retention of copper, nickel, cadmium and zinc in peat bogs are studied by comparing high resolution, age dated concentration profiles with emissions from the main local source, the Outokumpu copper-nickel mine. An ombrotrophic peat core was taken from the vicinity of Outokumpu, E Finland. Copper and zinc concentrations of dry peat were measured by XRF, cadmium and nickel by GF-AAS, and sample ages by 210Pb. Only copper and nickel show enhanced concentrations in layers covering the mining period, indicating a retention of these elements. However, the more detailed comparison of ore production rates and concentrations in age-dated samples show clearly that only copper is likely to be permanently fixed, while nickel doesn't reflect the mining activity. Even though copper is retained in the upper part of the profile, a possible redeposition of this element by secondary processes (e.g., water table fluctuations) can not be excluded. This question will be resolved by further investigations, e.g. by pore water profiles.
In vitro digestion method for estimation of copper bioaccessibility in Açaí berry.
Ruzik, Lena; Wojcieszek, Justyna
Copper is an essential trace element for humans and its deficiency can lead to numerous diseases. A lot of mineral supplements are available to increase intake of copper. Unfortunately, only a part of the total concentration of elements is available for human body. Thus, the aim of the study was to determine bioaccessibility of copper in Açai berry, known as a "superfood" because of its antioxidant qualities. An analytical methodology was based on size exclusion chromatography (SEC) coupled to a mass spectrometer with inductively coupled plasma (ICP MS) and on capillary liquid chromatography coupled to tandem mass spectrometer with electrospray ionization (µ-HPLC-ESI MS/MS). To extract various copper compounds, berries were treated with the following buffers: ammonium acetate, Tris-HCl, and sodium dodecyl sulfate (SDS). The best extraction efficiency of copper was obtained for SDS extract (88 %), while results obtained for Tris-HCl and ammonium acetate were very similar (47 and 48 %, respectively). After SEC-ICP-MS analysis, main signal was obtained for all extracts in the region of molecular mass about 17 kDa. A two-step model simulated gastric (pepsin) and gastrointestinal (pancreatin) digestion was used to obtain the knowledge about copper bioaccessibility. Copper compounds present in Açai berry were found to be highly bioaccessible. The structures of five copper complexes with amino acids such as aspartic acid, tyrosine, phenylalanine, were proposed after µ-HPLC-ESI MS/MS analysis. Obtained results show that copper in enzymatic extracts is bound by amino acids and peptides what leads to better bioavailability of copper for human body.
Yeager, J.H.
1958-08-12
In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.
Geology and ore deposits of the Klondike Ridge area, Colorado
Vogel, John David
1960-01-01
The region described in this report is in the northeastern part of the Colorado Plateau and is transitional between two major structural elements. The western part is typical of the salt anticline region of the Plateau, but the eastern part has features which reflect movements in the nearby San Juan Mountains. There are five major structural elements in the report area: the Gypsum Valley anticline, Dry Creek Basin, the Horse Park fault block, Disappointment Valley, and the Dolores anticline. Three periods of major uplift are recognized In the southeastern end of the Gypsum Valley anticline. Each was followed by collapse of the overlying strata. Erosion after the first two periods removed nearly all topographic relief over the anticline; erosion after the last uplift has not yet had a profound effect on the topography except where evaporite beds are exposed at the surface. The first and greatest period of salt flow and anticlinal uplift began in the late Pennsylvanian and continued intermittently and on an ever decreasing scale into the Early Cretaceous. Most movement was in the Permian and Triassic periods. The second period of uplift and collapse was essentially contemporaneous with widespread tectonic activity on. the northwestern side of the San Juan Mountains and may have Occurred in the Oligocene and Miocene epochs. Granogabbro sills and dikes were intruded during the middle or upper Tertiary in Disappointment Valley and adjoining parts of the Gypsum Valley and Dolores anticlines. The third and mildest period of uplift occurred in the Pleistocene and was essentially contemporaneous with the post-Hinsdale uplift of the San Juan Mountains. This uplift began near the end of the earliest, or Cerro, stage of glaciation. Uranium-vanadium, manganese, and copper ore as well as gravel have been mined in the Klondike district. All deposits are small, and few have yielded more than 100 tons of ore. Most of the latter are carnotite deposits. Carnotite occurs in the lower part of the basal sandstone unit of the Salt Wash member of the Morrison formation. Most deposits are in a narrow, elongate mineral belt' that cuts obliquely across Klondike Ridge. The remaining deposits probably form a second 'mineral belt' lying about ? mile to the north. Manganese and copper deposits show both stratigraphic and structural controls of mineralization. Most manganese deposits are in red beds near Tertiary faults; most copper deposits, on the other hand, are in brown sandstone, limestone, or gray-green shale and, like manganese, are in or near Tertiary faults. The manganese and copper deposits are hydrothermal in origin and were formed in the roots of an ancient hot springs system, now deeply eroded. The ore-bearing solutions probably consisted of dilute, carbonate-sulfate ground water heated by the near-surface intrusion of small bodies of igneous rock. These solutions obtained their metals by leaching the wallrock; little, if any, material was added by the intrusives. The deposits were formed near the surface under conditions of hydrostatic pressure, and temperatures and pressures in the ore-bearing solutions were probably low. The early solutions were weakly alkaline and reducing in character. A convection cell was established as mineralization progressed, and surface water mingled at depth with the solutions. As a result of mixing and oxidation, the pH of the solution decreased in later stages of mineralization and the Eh rose.
Characterizing copper flows in international trade of China, 1975-2015.
Zhang, Ling; Chen, Tianming; Yang, Jiameng; Cai, Zhijian; Sheng, Hu; Yuan, Zengwei; Wu, Huijun
2017-12-01
Since the economic reform, China has actively participated in the global market with rapid industrialization and gradually dominated the utilization and consumption of some critical materials, one of which is copper. China has reigned the global anthropogenic cycle of copper since 2004. We explore copper flows along with the international trade of China during 1975-2015, through life cycle lens, from ore to final products. Our main finding is that China has become more active in the copper-related trade, indicated by its great increase in trade volume and the number of trade partners. The physical volume of copper flows through trade increased over 119 times between 1975 and 2015, mainly because of more imported raw materials of copper and exported copper products. Generally, China is a net importer of copper, with increasing import dependence through the study period, whereas the degree of dependence slightly decreased from 2010 to 2015. The indicator of Export Support Rate took a decreasing percentage, which has fallen about 35% since 2010. It suggests China's changing position in the global resource and manufacturing market. In terms of trade price of different copper products, the price of imported copper concentrate was noticeably higher than that of exported one, revealing the poor copper resource endowment of China; while the different trend of copper semis in recent years signifies that China is in urgent need to improve its capability of producing high value-added semis. From international trade perspective, the copper resource of China presented stable supply as well as demand. The One Belt One Road strategy proposed by the state will further expand both the resource and market of copper. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
A two-step approach for copper and nickel extracting and recovering by emulsion liquid membrane.
Bi, Qiang; Xue, Juanqin; Guo, Yingjuan; Li, Guoping; Cui, Haibin
2016-11-01
The recycling of copper and nickel from metallurgical wastewater using emulsion liquid membrane (ELM) was studied. P507 (2-ethylhexyl phosphonic acid-2-ethylhexyl ester) and TBP (tributyl phosphate) were used as carriers for the extraction of copper and nickel by ELMs, respectively. The influence of four emulsion composition variables, namely, the internal phase volume fraction (ϕ), surfactant concentration (Wsurf), internal phase stripping acid concentration (Cio) and the carrier concentration (Cc), and the process variable treat ratio on the extraction efficiencies of copper or nickel were studied. Under the optimum conditions, 98% copper and nickel were recycled by using ELM. The results indicated that ELM extraction is a promising industrial application technology to retrieve valuable metals in low concentration metallurgical wastewater.
Microwave-assisted organic acids extraction of chromate copper arsenate (CCA)-treated southern pine
Bin Yu; Chung Y. Hse; Todd F. Shupe
2010-01-01
The extraction effects of acid concentration, reaction time and temperature in a microwave reactor on recovery of CCA-treated wood were evaluated. Extraction of copper, chromium, and arsenic metals from chromated copper arsenate (CCA)-treated southern pine wood samples with two different organic acids (i.e., acetic acid and oxalic acid) was investigated using a...
Chemical remediation of wood treated with micronised, nano or soluble copper preservatives
Saip Nami Kartal; Evren Terzi; Bessie Woodward; Carol A. Clausen; Stan T. Lebow
2013-01-01
The potential for extraction of copper from wood treated with micronised, nano or soluble forms of copper has been evaluated in view of chemical remediation. In focus were EDTA, oxalic acid, bioxalate, and D-gluconic acid for extraction of Cu from treated wood. Bioxalate extractions for 24 h resulted in Cu removal over 95% for all tested...
NASA Astrophysics Data System (ADS)
Berzina, A. N.
2009-04-01
Volatile components play an important role in the evolution of ore-magmatic systems and their ore potential. Of special interest are fluorine and chlorine compounds that principally control the transportation of ore elements by the fluid in a magmatic process and under high-temperature hydrothermal conditions. Study of the evolution of fluorine-chlorine activity in the ore-forming process and their source is usually based on analysis of their magmatic history, whereas the additional source of fluorine and chlorine released during metasomatic alteration of rocks hosting mineralization is poorly discussed in the existing literature. Based on microprobe data on Cl and F abundances in halogen-containing minerals (biotite, amphibole, apatite, titanite) in intrusive rocks and their hydrothermally altered varieties, the role of metasomatic processes in the balance of volatiles in the ore-forming system is discussed by the example of porphyry Cu-Mo deposits of Siberia (Russia) and Mongolia. Two groups of the deposits are considered: copper-molybdenum (Erdenetiin Ovoo, Mongolia and Aksug, Russia) with prevailing propylitic and phyllic alteration and molybdenum-copper (Sora, Russia), with predominant potassic alteration. All types of hydrothermal alterations have led to drastic decrease in Cl contents in metasomatic minerals as compared with halogen-containing magmatic minerals. All studied deposits (particularly those where propylitic and phyllic alteration were developed) show a nearly complete chlorine removal from altered halogen-containing rock-forming minerals (biotite and amphibole). The Cl content in amphibole decreases several times at the stage of replacement with actinolite in the process of propylitization. In the later chlorites (ripidolite and brunsvigite) that replace amphibole, actinolite, and biotite, chlorine is not detected by microprobe (detection limit 0.01-0.02% Cl). Chlorine was also not detected in white micas (muscovite-phengite series) in quartz-sericite alteration zones. No Cl-bearing minerals were revealed in ore-metasomatic assemblages with the exception of extremely low Cl contents in secondary biotite and very rare low-Cl apatite in the early potassic alteration zone. In contrast, fluorine concentrates in chlorites and white micas; however, the F content in them is commonly lower than in dark minerals, especially in biotite from altered rocks. The highest F contents are typical of biotites related to potassic alteration (K-feldspar + biotite + quartz assemblage). For example, the F content at the Sora deposit ranges from 2.5-2.7 wt.% in the metasomatic biotite to 0.44-1.63 wt.% in the rock-forming biotite of host granitoids. At this deposit, fluorite is a major mineral of the ore-metasomatic assemblage. The Mo-rich Sora deposit drastically differs from the Cu-rich Erdenetiin Ovoo and Aksug deposits by extremely low (0.02-0.08 wt.%) Cl contents in dark minerals from all of the host rocks. The considerable quantity of chlorine released as a result of large-scale propylitic and phyllic alteration from halogen-bearing dark minerals at Cu-rich deposits considerably affected the general Cl budget in the ore-metasomatic system. This could significantly promote the generation of Cl-rich (up to 50-70 wt.% NaCl-equiv.) ore-forming solutions at such deposits. At the Sora deposit characterized by less concentrated ore-bearing solutions (12-20 wt.% NaCl-equiv.), the metasomatic alteration of host rocks was not accompanied by an appreciable removal of Cl. At the studied deposits, huge volumes of enclosing rocks were involved in metasomatism. The large amounts of halogens released during the metasomatic alteration of host rocks might have significantly influenced the balance of volatiles in the ore forming system, including the increase in the salinity of hydrothermal solutions.
Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms
NASA Astrophysics Data System (ADS)
Ivǎnuş, D.; ǎnuş, R. C., IV; Cǎlmuc, F.
2010-06-01
A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs) samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations of scrap. The copper extraction increases obviously in bioleaching of scrap with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L scrap after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%, respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%, respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from electronic scrap effectively.
NASA Astrophysics Data System (ADS)
Bertrand, G.
2012-12-01
The genesis of many types of mineral deposits is closely linked to tectonic and petrographic conditions resulting from specific geodynamic contexts. Porphyry deposits, for instance, are associated to calc-alkaline magmatism of subduction zones. In order to better understand the relationships between ore deposit distribution and their tectonic context, and help identifying geodynamic-related criteria of favorability that would, in turn, help mineral exploration, we propose a paleogeographic approach. Paleogeographic reconstructions, based on global or regional plate tectonic models, are crucial tools to assess tectonic and kinematic contexts of the past. We use this approach to study the distribution of porphyry copper deposits along the western Tethyan and Andean subductions since Lower Cretaceous and Paleocene, respectively. For both convergent contexts, databases of porphyry copper deposits, including, among other data, their age and location, were compiled. Spatial and temporal distribution of the deposits is not random and show that they were emplaced in distinct clusters. Five clusters are identified along the western Tethyan suture, from Lower Cretaceous to Pleistocene, and at least three along the Andes, from Paleocene to Miocene. Two clusters in the Aegean-Balkan-Carpathian area, that were emplaced in Upper Cretaceous and Oligo-Miocene, and two others in the Andes, that were emplaced in late Eocene and Miocene, are studied in details and correlated with the past kinematics of the Africa-Eurasia and Nazca-South America plate convergences, respectively. All these clusters are associated with a similar polyphased kinematic context that is closely related to the dynamics of the subductions. This context is characterized by 1) a relatively fast convergence rate, shortly followed by 2) a drastic decrease of this rate. To explain these results, we propose a polyphased genetic model for porphyry copper deposits with 1) a first stage of rapid subduction rate, favoring high melt production in the mantle wedge, by dehydration of the subducted oceanic crust, and increased influx of mafic magmas in the MASH (Melting, Assimilation, Storage, Homogenization) zone, and 2) a subsequent significant decrease in subduction rate, favoring extensional regime within the upper plate and easing upward migration of fertile magmas to the upper crust. This second effect seems to be confirmed in the Aegean-Balkan-Carpathian area where the two clusters are spatially and temporally correlated with known extensional regimes. Although preliminary, these results highlight the control of the geodynamic context, and especially the subduction kinematics, on the spatial and temporal distribution of porphyry copper deposits. This study also confirms that the paleogeographic approach is a promising tool that could help identifying geodynamic and tectonic criteria favoring the genesis of various ore deposit types. Correlatively, ore deposits may be considered, in future studies, as possible markers of past geodynamic contexts.
Analysis of Historic Copper Patinas. Influence of Inclusions on Patina Uniformity
Chang, Tingru; Odnevall Wallinder, Inger; de la Fuente, Daniel; Chico, Belen; Morcillo, Manuel; Welter, Jean-Marie; Leygraf, Christofer
2017-01-01
The morphology and elemental composition of cross sections of eight historic copper materials have been explored. The materials were taken from copper roofs installed in different middle and northern European environments from the 16th to the 19th century. All copper substrates contain inclusions of varying size, number and composition, reflecting different copper ores and production methods. The largest inclusions have a size of up to 40 μm, with most inclusions in the size ranging between 2 and 10 μm. The most common element in the inclusions is O, followed by Pb, Sb and As. Minor elements include Ni, Sn and Fe. All historic patinas exhibit quite fragmentized bilayer structures, with a thin inner layer of cuprite (Cu2O) and a thicker outer one consisting mainly of brochantite (Cu4SO4(OH)6). The extent of patina fragmentation seems to depend on the size of the inclusions, rather than on their number and elemental composition. The larger inclusions are electrochemically nobler than the surrounding copper matrix. This creates micro-galvanic effects resulting both in a profound influence on the homogeneity and morphology of historic copper patinas and in a significantly increased ratio of the thicknesses of the brochantite and cuprite layers. The results suggest that copper patinas formed during different centuries exhibit variations in uniformity and corrosion protection ability. PMID:28772659
NASA Astrophysics Data System (ADS)
Barache, Umesh B.; Shaikh, Abdul B.; Lokhande, Tukaram N.; Kamble, Ganesh S.; Anuse, Mansing A.; Gaikwad, Shashikant H.
2018-01-01
The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH 4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414 nm which remains stable for > 48 h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5 μg mL- 1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5 μg mL- 1 to 17.5 μg mL- 1. The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813 × 104 L mol- 1 cm- 1, 0.01996 μg cm- 2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy vegetables, and water samples. The results are compared with those obtained with a reference procedure. Good agreement was attained. All the obtained results are indicative of a convenient, fast method for the extraction and quantification of micro levels of copper(II) from various environmental matrices without use of sophisticated instrumentation and procedure. The method showed a relative standard deviation of 0.42%.
Barache, Umesh B; Shaikh, Abdul B; Lokhande, Tukaram N; Kamble, Ganesh S; Anuse, Mansing A; Gaikwad, Shashikant H
2018-01-15
The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414nm which remains stable for >48h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5μgmL -1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5μgmL -1 to 17.5μgmL -1 . The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813×10 4 Lmol -1 cm -1 , 0.01996μgcm -2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy vegetables, and water samples. The results are compared with those obtained with a reference procedure. Good agreement was attained. All the obtained results are indicative of a convenient, fast method for the extraction and quantification of micro levels of copper(II) from various environmental matrices without use of sophisticated instrumentation and procedure. The method showed a relative standard deviation of 0.42%. Copyright © 2017 Elsevier B.V. All rights reserved.
Remote Sensing Extraction of Stopes and Tailings Ponds in AN Ultra-Low Iron Mining Area
NASA Astrophysics Data System (ADS)
Ma, B.; Chen, Y.; Li, X.; Wu, L.
2018-04-01
With the development of economy, global demand for steel has accelerated since 2000, and thus mining activities of iron ore have become intensive accordingly. An ultra-low-grade iron has been extracted by open-pit mining and processed massively since 2001 in Kuancheng County, Hebei Province. There are large-scale stopes and tailings ponds in this area. It is important to extract their spatial distribution information for environmental protection and disaster prevention. A remote sensing method of extracting stopes and tailings ponds is studied based on spectral characteristics by use of Landsat 8 OLI imagery and ground spectral data. The overall accuracy of extraction is 95.06 %. In addition, tailings ponds are distinguished from stopes based on thermal characteristics by use of temperature image. The results could provide decision support for environmental protection, disaster prevention, and ecological restoration in the ultra-low-grade iron ore mining area.
Fomchenko, N V; Murav'ev, M I
2015-01-01
The study concerns the leaching of copper, nickel, and cobalt from metallurgical production slag with trivalent iron sulphates prepared in the process of oxidation of bivalent iron ions with the use of associations of acidophilic chemolithotrophic microorganisms. At the same time, copper extraction in the solution reached 91.2%, nickel reached 74.9%, and cobalt reached 90.1%. Copper was extracted by cementation, and nickel as sulphate was extracted by electrolysis. Associations of microorganisms can then completely bioregenerate the solution obtained after leaching.
Tang, Jie; Qiao, Jiyang; Xue, Qiang; Liu, Fei; Chen, Honghan; Zhang, Guochen
2018-05-01
High concentration of ammonium sulfate, a typical leaching agent, was often used in the mining process of the weathering crust elution-deposited rare earth ore. After mining, a lot of ammonia nitrogen and labile heavy metal fractions were residual in tailings, which may result in a huge potential risk to the environment. In this study, in order to achieve the maximum extraction of rare earth elements and reduce the labile heavy metal, extraction effect and fraction changes of lanthanum (La) and lead (Pb) in the weathering crust elution-deposited rare earth ore were studied by using a compound agent of (NH 4 ) 2 SO 4 -EDTA. The extraction efficiency of La was more than 90% by using 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which was almost same with that by using 2.0% (NH 4 ) 2 SO 4 solution. In contrast, the extraction efficiency of Pb was 62.3% when use 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which is much higher than that (16.16%) achieved by using 2.0% (NH 4 ) 2 SO 4 solution. The released Pb fractions were mainly acid extractable and reducible fractions, and the content of reducible fraction being leached accounted for 70.45% of the total reducible fraction. Therefore, the use of 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA can not only reduce the amount of (NH 4 ) 2 SO 4 , but also decrease the labile heavy metal residues in soil, which provides a new way for efficient La extraction with effective preventing and controlling environmental pollution in the process of mining the weathering crust elution-deposited rare earth ore. Copyright © 2018 Elsevier Ltd. All rights reserved.
Veronez, Alexandra Caroline da Silva; Salla, Rômulo Victor; Baroni, Vinícius Dadalto; Barcarolli, Indianara Fernanda; Bianchini, Adalto; Dos Reis Martinez, Claudia Bueno; Chippari-Gomes, Adriana Regina
2016-05-01
For decades, the extraction of minerals has intensified in order to meet the demand of industry. Iron ore deposits are important sources of metals, such as iron (Fe) and manganese (Mn). The particulate ores can be dispersed during extraction, transport and storage, with potential to induce biological impacts. Amphibians are very sensitive to environmental stressors. Therefore, the present study aimed to assess the effects of iron ore, Fe and Mn exposure during the metamorphosis of Lithobates catesbeianus. Endpoints analyzed included morphological (biometrical and developmental analyses), whole body Fe and Mn concentration in, plasma ferritin concentration, erythrocyte DNA damage (measured through comet assay and micronucleus test) and liver activity of enzymes involved in oxidative status [glutathione S-transferase (GST) and catalase (CAT)]. Tadpoles were kept under control condition (no contaminant addition) or exposed to iron ore (3.79mg/L as fine particulate matter); Fe (nominal concentration: 0.51mg/L Fe as C10H12FeN2NaO8; Fe-EDTA); and Mn (nominal concentration: 5.23mg/L Mn as 4H2O.MnCl2) for 30 days. Virtually, no mortality was observed, except for one tadpole found dead in the iron ore treatment. However, tadpoles exposed to iron ore had longer tail than those kept under control conditions while tadpoles exposed to manganese chloride showed higher body length than control ones. Exposure to Fe and Mn induced a delay in tadpole metamorphosis, especially when these metals are presented not as a mixture (iron ore). Tadpoles exposed to iron ore had increased whole body Fe and Mn while those exposed to Fe and Mn accumulated each metal individually. Tadpoles exposed to any of the contaminants tested showed a significant increase in erythrocyte DNA damage and frequency of micronuclei. In addition, they showed higher liver GST activity respect with those kept under control conditions. Plasma ferritin concentration and liver CAT activity were higher only in tadpoles exposed to iron ore. These findings indicated that tadpoles accumulated Fe and Mn at the whole body level after exposure to the single metals or to their mixture as iron ore. In addition, they indicate that Fe and Mn accumulation can induce oxidative stress with consequent significant developmental, genotoxic and biochemical effects in L. catesbeianus tadpoles. Copyright © 2016 Elsevier B.V. All rights reserved.
Balland-Bolou-Bi, Clarisse; Turc, Benjamin; Alphonse, Vanessa; Bousserrhine, Noureddine
2017-06-01
Biodissolution experiments on cinnabar ore (mercury sulphide and other sulphide minerals, such as pyrite) were performed with microorganisms extracted directly from soil. These experiments were carried out in closed systems under aerobic and anaerobic conditions with 2 different soils sampled in French Guyana. The two main objectives of this study were (1) to quantify the ability of microorganisms to mobilize metals (Fe, Al, Hg) during the dissolution of cinnabar ore, and (2) to identify the links between the type and chemical properties of soils, environmental parameters such as season and the strategies developed by indigenous microorganisms extracted from tropical natural soils to mobilize metals. Results indicate that microbial communities extracted directly from various soils are able to (1) survive in the presence of cinnabar ore, as indicated by consumption of carbon sources and, (2) leach Hg from cinnabar in oxic and anoxic dissolution experiments via the acidification of the medium and the production of low molecular mass organic acids (LMMOAs). The dissolution rate of cinnabar in aerobic conditions with microbial communities ranged from 4.8×10 -4 to 2.6×10 -3 μmol/m 2 /day and was independent of the metabolites released by the microorganisms. In addition, these results suggest an indirect action by the microorganisms in the cinnabar dissolution. Additionally, because iron is a key element in the dynamics of Hg, microbes were stimulated by the presence of this metal, and microbes released LMMOAs that leached iron from iron-bearing minerals, such as pyrite and oxy-hydroxide of iron, in the mixed cinnabar ore. Copyright © 2016. Published by Elsevier B.V.
Recovery of Silver and Gold from Copper Anode Slimes
NASA Astrophysics Data System (ADS)
Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu
2015-02-01
Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.
Applied technology for mine waste water decontamination in the uranium ores extraction from Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejenaru, C.; Filip, G.; Vacariu, V.T.
1996-12-31
The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less
Development of a Chemical Process for Production of Cesium Chloride from a Canadian Pollucite Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, H. W.; Vezina, J. A.; Simard, R.
1963-01-01
A chemical process was developed for the production of a high-purity cesium chioride from a pollucite (cesium aluminum silicate) ore from the Manitoba deposit of Chemalloy Minerais Ltd. The history of the deposit, and the present and possible future uses of cesium are briefly reviewed. Laboratory and piiot plant investigations on this ore have shown that a cyclic sulphuric acid leach followed by fractional crystallization will produce a rubidiumfree cesium alum, which can be converted to cesium chloride by thermal decomposition and ion exchange. On the basis of these findings it is concluded that the process is applicable to themore » tonnage production of cesium chloride. Reagent consumption was found to be 3.3 sulphuric acid and 0.3 lb hydrochloric acid per pound of cesium extracted. Overall extraction of cesium was 95 to 96%. (auth)« less
Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.
2014-01-01
A probabilistic assessment of undiscovered resources in porphyry copper deposits in the Central Tethys region of Turkey, the Caucasus, Iran, western Pakistan, and southern Afghanistan was conducted as part of a U.S.G.S. global mineral resource assessment. The purpose was to delineate areas as permissive tracts for the occurrence of porphyry Cu-Mo and Cu-Au deposits, and to provide estimates of amounts of Cu, Mo, and Au likely to be contained in undiscovered porphyry deposits (Zürcher et al., 2013; Zürcher et al., in review). Tectonic, geologic, geochemical, geochronologic, and ore deposits data compiled and analyzed for this assessment show that magmatism in the region can be rationalized in terms of fundamental plate tectonic principles, including mantle-involved post-subduction processes. However, uplift, erosion, subsidence, and burial of porphyry copper deposits also played an important role in shaping the observed metallogenic patterns.
Copper tolerance in clones of Agrostis gigantea from a mine waste site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, G.D.; Courtin, G.M.; Rauser, W.E.
1977-04-15
A mine waste site from Sudbury, Ontario, contaminated with heavy metals is described. The dominant vegetative cover was formed by two grasses: Agrostis gigantea Roth. and Agrostis scabra Willd. Testing of 10 clones of A. gigantea from the roast bed and an adjoining area for copper tolerance showed that two clones collected from the roast bed were tolerant to increased copper levels. Copper tolerance was found in clones growing on soils with high copper contents and low pHs. The combination of high copper content and low pH brought about a high level of extractable copper within the soil. Soils withmore » equally high copper levels but higher pHs and therefore low extractable-copper levels did not support copper-tolerant clones.« less
NASA Astrophysics Data System (ADS)
Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind
2017-12-01
Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.
The indirect electrochemical refining of lunar ores
NASA Technical Reports Server (NTRS)
Semkow, Krystyna W.; Sammells, Anthony F.
1987-01-01
Recent work performed on an electrolytic cell is reported which addresses the implicit limitations in various approaches to refining lunar ores. The cell uses an oxygen vacancy conducting stabilized zirconia solid electrolyte to effect separation between a molten salt catholyte compartment where alkali metals are deposited, and an oxygen-evolving anode of composition La(0.89)Sr(0.1)MnO3. The cell configuration is shown and discussed along with a polarization curve and a steady-state current-voltage curve. In a practical cell, cathodically deposited liquid lithium would be continuously removed from the electrolytic cell and used as a valuable reducing agent for ore refining under lunar conditions. Oxygen would be indirectly electrochemically extracted from lunar ores for breathing purposes.
Lamar, Richard T; Olk, Daniel C; Mayhew, Lawrence; Bloom, Paul R
2014-01-01
Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method to quantify humic acid (HA) and fulvic acid (FA) in raw ores and products. Here we present a thoroughly validated method, the new standardized method for determination of HA and FA contents in raw humate ores and in solid and liquid products produced from them. The methods used for preparation of HA and FA were adapted according to the guidelines of the International Humic Substances Society involving alkaline extraction followed by acidification to separate HA from the fulvic fraction. This is followed by separation of FA from the fulvic fraction by adsorption on a nonionic macroporous acrylic ester resin at acid pH. It differs from previous methods in that it determines HA and FA concentrations gravimetrically on an ash-free basis. Critical steps in the method, e.g., initial test portion mass, test portion to extract volume ratio, extraction time, and acidification of alkaline extract, were optimized for maximum and consistent recovery of HA and FA. The method detection limits for HA and FA were 4.62 and 4.8 mg/L, respectively. The method quantitation limits for HA and FA were 14.7 and 15.3 mg/L, respectively.
Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria
NASA Astrophysics Data System (ADS)
Raith, Johann G.; Leitner, Thomas; Paar, Werner H.
2015-10-01
Structurally controlled Cu-Au mineralization in the historic Flatschach mining district (Styria, Austria) occurs in a NE-SW to NNE-WSW oriented vein system as multiple steep-dipping calcite-(dolomite)-quartz veins in amphibolite facies metamorphic rocks (banded gneisses/amphibolites, orthogneisses, metagranitoids) of the poly-metamorphosed Austroalpine Silvretta-Seckau nappe. Vein formation postdated ductile deformation events and Eoalpine (Late Cretaceous) peak metamorphism but predated Early to Middle Miocene sediment deposition in the Fohnsdorf pull-apart basin; coal-bearing sediments cover the metamorphic basement plus the mineralized veins at the northern edge of the basin. Three gold-bearing ore stages consist of a stage 1 primary hydrothermal (mesothermal?) ore assemblage dominated by chalcopyrite, pyrite and arsenopyrite. Associated minor minerals include alloclasite, enargite, bornite, sphalerite, galena, bismuth and matildite. Gold in this stage is spatially associated with chalcopyrite occurring as inclusions, along re-healed micro-fractures or along grain boundaries of chalcopyrite with pyrite or arsenopyrite. Sericite-carbonate alteration is developed around the veins. Stage 2 ore minerals formed by the replacement of stage 1 sulfides and include digenite, anilite, "blue-remaining covellite" (spionkopite, yarrowite), bismuth, and the rare copper arsenides domeykite and koutekite. Gold in stage 2 is angular to rounded in shape and occurs primarily in the carbonate (calcite, Fe-dolomite) gangue and less commonly together with digenite, domeykite/koutekite and bismuth. Stage 3 is a strongly oxidized assemblage that includes hematite, cuprite, and various secondary Cu- and Fe-hydroxides and -carbonates. It formed during supergene weathering. Stage 1 and 2 gold consists mostly of electrum (gold fineness 640-860; mean = 725; n = 46), and rare near pure gold (fineness 930-940; n = 6). Gold in stage 3 is Ag-rich electrum (fineness 350-490, n = 12), and has a high Hg content (up to 11 mass %). The Cu-Au deposits in the Flatschach area show similarities with meso- to epizonal orogenic lode gold deposits regarding the geological setting, the structural control of mineralization, the type of alteration, the early (stage 1) sulfide assemblage and composition of gold. Unique about the Flatschach district is the lower-temperature overprint of copper arsenides (domeykite and koutekite) and copper sulfides (djurleite, yarrowite/spionkopite) on earlier formed sulfide mineralization. Based on mineralogical considerations temperature of stage 2 mineralization was between about 70 °C and 160 °C. Gold was locally mobilized during this low-temperature hydrothermal overprint as well as during stage 3 supergene oxidation and cementation processes.
Biswas, Sujoy; Pathak, P N; Roy, S B
2012-06-01
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Bobadilla-Fazzini, Roberto A; Cortés, Maria Paz; Maass, Alejandro; Parada, Pilar
2014-12-01
Currently more than 90% of the world's copper is obtained through sulfide mineral processing. Among the copper sulfides, chalcopyrite is the most abundant and therefore economically relevant. However, primary copper sulfide bioleaching is restricted due to high ionic strength raffinate solutions and particularly chloride coming from the dissolution of ores. In this work we describe the chalcopyrite bioleaching capacity of Sulfobacillus thermosulfidooxidans strain Cutipay (DSM 27601) previously described at the genomic level (Travisany et al. (2012) Draft genome sequence of the Sulfobacillus thermosulfidooxidans Cutipay strain, an indigenous bacterium isolated from a naturally extreme mining environment in Northern Chile. J Bacteriol 194:6327-6328). Bioleaching assays with the mixotrophic strain Cutipay showed a strong increase in copper recovery from chalcopyrite concentrate at 50°C in the presence of chloride ion, a relevant inhibitory element present in copper bioleaching processes. Compared to the abiotic control and a test with Sulfobacillus acidophilus DSM 10332, strain Cutipay showed an increase of 42 and 69% in copper recovery, respectively, demonstrating its high potential for chalcopyrite bioleaching. Moreover, a genomic comparison highlights the presence of the 2-Haloacid dehalogenase predicted-protein related to a potential new mechanism of chloride resistance in acidophiles. This novel and industrially applicable strain is under patent application CL 2013-03335.
Ores and Climate Change - Primary Shareholders
NASA Astrophysics Data System (ADS)
Stein, Holly J.; Hannah, Judith L.
2015-04-01
Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of many giant Cu-Mo-Au ore deposits may be arrested when the surface is catastrophically breached, as multiple km-scale breccia pipes empty their volatile and metal contents into the atmosphere. The new equation for studying ore geology should be one that reconstructs ore formation from beginning to end, that is, from source, release, and transport, to breach. Of course, detailed measurements and mapping of ore bodies remains essential, but a full understanding of metal migration and budgets can only be achieved if we model what might have been left behind in deeper Earth, and what may have been lost to the atmosphere. To do this, we need to understand much more than the geology at our ore deposit of interest. Stein, H.J. (2014) Dating and Tracing the History of Ore Formation. Treatise on Geochemistry 13: 87-118. Elsevier. Support for time to think - CHRONOS, funded by a consortium of Norwegian petroleum companies.
Effects of High Pressure ORE Grinding on the Efficiency of Flotation Operations
NASA Astrophysics Data System (ADS)
Saramak, Daniel; Krawczykowska, Aldona; Młynarczykowska, Anna
2014-10-01
This article discusses issues related to the impact of the high pressure comminution process on the efficiency of the copper ore flotation operations. HPGR technology improves the efficiency of mineral resource enrichment through a better liberation of useful components from waste rock as well as more efficient comminution of the material. Research programme included the run of a laboratory flotation process for HPGR crushing products at different levels of operating pressures and moisture content. The test results showed that products of the high-pressure grinding rolls achieved better recoveries in flotation processes and showed a higher grade of useful components in the flotation concentrate, in comparison to the ball mill products. Upgrading curves have also been marked in the following arrangement: the content of useful component in concentrate the floatation recovery. All upgrading curves for HPGR products had a more favourable course in comparison to the curves of conventionally grinded ore. The results also indicate that various values of flotation recoveries have been obtained depending on the machine operating parameters (i.e. the operating pressure), and selected feed properties (moisture).
Health-hazard evaluation report HETA 88-104-2207, Asarco-Troy Unit Mine, Troy, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornwell, R.J.; Knutti, E.B.
1992-04-01
In response to a request from the United Mine Workers of America, an investigation was made of possible exposures to diesel exhaust, silica (14808607) and noise at the ASARCO Troy Unit Mine (SIC-1044), Troy, Montana. The silver mine was also a significant copper producer. Approximately 314 persons were employed in two basic operations of mining and ore concentration. The ore was mined by the room and pillar method. Extraction calls for drilling, blasting, scaling and roof bolting, mucking and hauling. Exposures to nitrogen-dioxide (10102440) ranged from 0.16 to 4.61 parts per million (ppm) some of which were in excess ofmore » the recommended NIOSH limit of 1ppm. Coal-tar-pitch volatiles ranged in concentration from 0.11 to 1.67mg/cu m. Exposure to diesel particulates ranged from 0.22 to 3.99mg/cu m with a mean concentration of 1.60mg/cu m. Respirable dust concentrations ranged from 0.26 to 16.74mg/cu m with a mean of 2.24mg/cu m. The mean quartz content of surface dust samples was 24% and of underground samples was 7%. Noise exposures ranged from 65.5 to 103.8 decibels-A for the 8 hour time weighted average samples. The authors conclude that a health hazard existed due to exposures to respirable silica, noise and diesel combustion products. The authors recommend specific measures to reduce the potential hazardous exposures and enhance the company's medical surveillance program.« less
Harris, Michael; Radtke, Arthur S.
1976-01-01
Linear regression and discriminant analyses techniques were applied to gold, mercury, arsenic, antimony, barium, copper, molybdenum, lead, zinc, boron, tellurium, selenium, and tungsten analyses from drill holes into unoxidized gold ore at the Carlin gold mine near Carlin, Nev. The statistical treatments employed were used to judge proposed hypotheses on the origin and geochemical paragenesis of this disseminated gold deposit.
Selenium content in sulfide ores from the Chalkidiki peninsula, Greece.
Nicolaidou, A E
1998-01-01
Selenium (Se) was assessed in galena, sphalerite, and pyrite samples. These are components of mixed sulfide ores from the Olympias and Madem Lakkos-Mavres Petres deposits and the Skouries porphyry-copper deposit. We used atomic absorption spectroscopy (AAS) with a hydride generator system. The highest concentration of Se (516 ppm) was found in the fine-grained galena at the -135 level of the Olympias deposits. In the Madem Lakkos-Mavres Petres deposit, the highest concentration of Se (33 ppm) was found in the pyrites of the level 30. The concentration of Se in the arsenopyrites and chalcopyrites is lower than the detection limit of the analytical method (< 100 ppb). The concentrated chalcopyrite from the porphyry copper deposit at Skouries exhibits a significant Se content (average 200 ppm) in contrast to the chalcopyrite from the Olympias and the Madem Lakkos-Mavres Petres. Variations in the Se content of the sulfide minerals studied could be caused by redox-pH and/or temperature conditions, as well as by the difference in crystal structure. The Se found in the areas studied may positively affect the environment. Sulfide minerals are oxidized by microorganisms, infiltrate in the soil-water in the form of selenate or selenite ion, and directly or indirectly influence the human organism.
Genotoxicity of mercury used in chromosome aberration tests.
Akiyama, M; Oshima, H; Nakamura, M
2001-01-01
The purpose of this study was to investigate the genotoxic effects of Hg released from dental amalgams. The chromosome aberration test was conducted using original extracts and their diluted solutions of conventional type amalgam and high copper amalgam. The concentrations of Hg, Cu and Ag in the original extract of high copper amalgam were 17.64, 7.97 and 43.90 microM, respectively. Those in the original extract of conventional type amalgam were 20.63, 7.87 and 14.79 microM, respectively. 10 and 30 microM Hg(2+) were also used for comparison. The frequency of chromosome aberrations was below 5% with 0 microM Hg(2+) and with a triple dilution of high copper amalgam extract, containing 5.88 microM Hg, 14.63 microM Cu and 2.65 microM Ag. However, 9.5% of the cells showed chromosome aberrations with a quadruple dilution of conventional type amalgam, containing 5.15 microM Hg, 3.69 microM Cu and 1.96 microM Ag. The amount of Hg in the quadruple dilution of conventional type amalgam was less than that in the triple dilution of high copper amalgam extract and 10 microM Hg(2+). A concentration of 30 microM Hg(2+) caused 34.5% of the cells to show chromosome aberrations while with a two-thirds dilution of high copper amalgam extract, containing 11.76 microM Hg, 29.26 microM Cu and 5.31 microM Ag, 58.5% of the cells showed chromosome aberrations. A two-thirds dilution of high copper amalgam extract induced more chromosome aberrations than 30 microM Hg(2+), although the amount of Hg was less than 30 microM Hg(2+). A triple dilution of conventional type amalgam extract, original extracts of conventional type amalgam and high copper amalgam and 100 microM Hg(2+) were induced few metaphases. It was revealed that the conventional type amalgam induced chromosome aberrations with quadruple dilution where cell viability was about 80% and that the high copper amalgam induced a high level of chromosome aberrations with the two-thirds dilution. The effects of low level Hg on humans are not clear.
Goldfarb, Richard J.; Berger, Byron R.; George, Micheal W.; Seal, Robert R.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Tellurium (Te) is a very rare element that averages only 3 parts per billion in Earth’s upper crust. It shows a close association with gold and may be present in orebodies of most gold deposit types at levels of tens to hundreds of parts per million. In large-tonnage mineral deposits, such as porphyry copper and seafloor volcanogenic massive sulfide deposits, sulfide minerals may contain hundreds of parts per million tellurium, although the orebodies likely have overall concentrations of 0.1 to 1.0 parts per million tellurium. Tellurium is presently recovered as a primary ore from only two districts in the world; these are the gold-tellurium epithermal vein deposits located adjacent to one another at Dashuigou and Majiagou (Sichuan Province) in southwestern China, and the epithermal-like mineralization at the Kankberg deposit in the Skellefteå VMS district of Västerbotten County, Sweden. Combined, these two groups of deposits account for about 15 percent (about 70 metric tons) of the annual global production of between 450 and 470 metric tons of tellurium. Most of the world’s tellurium, however, is produced as a byproduct of the mining of porphyry copper deposits. These deposits typically yield concentrations of 1 to 4 percent tellurium in the anode slimes recovered during copper refining. Present production of tellurium from the United States is solely from the anode slimes at ASARCO LLC’s copper refinery in Amarillo, Texas, and may total about 50 metric tons per year. The main uses of tellurium are in photovoltaic solar cells and as an additive to copper, lead, and steel alloys in various types of machinery. The environmental data available regarding the mining of tellurium are limited; most concerns to date have focused on the more-abundant metals present in the large-tonnage deposits from which tellurium is recovered as a byproduct. Global reserves of tellurium are estimated to be 24,000 metric tons, based on the amount of tellurium likely contained in global copper reserves and on a 50 percent recovery rate from refinery anode slimes during the commonly used electrolytic process, also known as solvent extraction-electrolytic refining. If the more economical solvent-leach process—a process that does not recover tellurium—is increasingly used in the future to recover lower grades of copper from porphyry and other large-tonnage deposits, then additional high-grade tellurium-rich gold deposits may become new primary sources for tellurium, particularly epithermal vein deposits associated with alkaline magmatism.
Counter-current acid leaching process for copper azole treated wood waste.
Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul
2012-09-01
This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.
Hildenbrand, T.G.; Berger, B.; Jachens, R.C.; Ludington, S.
2000-01-01
Upgraded gravity and magnetic databases and associated filtered-anomaly maps of western United States define regional crustal fractures or faults that may have guided the emplacement of plutonic rocks and large metallic ore deposits. Fractures, igneous intrusions, and hydrothermal circulation tend to be localized along boundaries of crustal blocks, with geophysical expressions that are enhanced here by wavelength filtering. In particular, we explore the utility of regional gravity and magnetic data to aid in understanding the distribution of large Mesozoic and Cenozoic ore deposits, primarily epithermal and porphyry precious and base metal deposits and sediment-hosted gold deposits in the western United States cordillera. On the broadest scale, most ore deposits lie within areas characterized by low magnetic properties. The Mesozoic Mother Lodge gold belt displays characteristic geophysical signatures (regional gravity high, regional low-to-moderate background magnetic field anomaly, and long curvilinear magnetic highs) that might serve as an exploration guide. Geophysical lineaments characterize the Idaho-Montana porphyry belt and the La Caridad-Mineral Park belt (from northern Mexico to western Arizona) and thus indicate a deep-seated control for these mineral belts. Large metal accumulations represented by the giant Bingham porphyry copper and the Butte polymetallic vein and porphyry copper systems lie at intersections of several geophysical lineaments. At a more local scale, geophysical data define deep-rooted faults and magmatic zones that correspond to patterns of epithermal precious metal deposits in western and northern Nevada. Of particular interest is an interpreted dense crustal block with a shape that resembles the elliptical deposit pattern partly formed by the Carlin trend and the Battle Mountain-Eureka mineral belt. We support previous studies, which on a local scale, conclude that structural elements work together to localize mineral deposits within regional zones or belts. This study of mineral deposits of the western United States demonstrates the ability of magnetic and gravity data to elucidate the regional geologic framework or structural setting and to contribute in locating favorable environments for hydrothermal mineralization.
Recent Developments in Australian Gold Extraction.
ERIC Educational Resources Information Center
Thiele, Rodney B.
1995-01-01
Describes new technologies that have greatly improved the extraction efficiency of gold ore, including: altering plant layout to promote efficiency, engaging Filiblast forced oxidation and bioxidation systems, and updating the electrowinning procedure at the gold recovery stage. (JRH)
Chung-Yun Hse; Todd F. Shupe; Bin Yu
2013-01-01
Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated by extraction in a microwave reactor with binary combinations of acetic acid (AA), oxalic acid (OxA), and phosphoric acid (PhA). Use of OxA was not successful, as insoluble copper oxalate complexes impeded copper removal. The combination of OxA and AA also had...
NASA Astrophysics Data System (ADS)
Sengar, Vivek K.; Champati Ray, P. K.; Chattoraj, Shovan L.; Venkatesh, A. S.; Sajeev, R.; Konwar, Purnima; Thapa, Shailaja
2017-10-01
The objective of this work is to identify the potential zones for detailed mineral exploration studies in areas adjoining to a copper prospect using Remotely Sensed data sets. In this study visualization of ASTER data has been enhanced to highlight the mineral-rich areas using various remote sensing techniques such as colour composites and band ratios. VNIR region of ASTER is significant to detect iron oxides while, clay minerals, carbonates and chlorites have characteristic absorption in the SWIR wavelength region. Therefore, an attempt has been made to target the mineral abundant regions through ASTER data processing. Height based information was extracted using high-resolution ALOSDEM to analyse the topographical controls in the region considering the fact that mineral deposits often found associated with geological structures and geomorphological units. Gravity data was used to generate gravity anomaly map which gives clues about subsurface density differences. In this context, base metal ores may show anomalous (high) gravity values in comparison to the non-mineralised areas. Outputs from all the data sets were analysed and correlated with the geological map and available literature. Final validation of results has been done through proper ground checks and laboratory analysis of rock samples collected from the litho-units present in the study area. Based on this study some new areas have been successfully demarcated which may be potential for base metal exploration.
The deep structure of a sea-floor hydrothermal deposit
Zierenberg, R.A.; Fouquet, Y.; Miller, D.J.; Bahr, J.M.; Baker, P.A.; Bjerkgard, T.; Brunner, C.A.; Duckworth, R.C.; Gable, R.; Gieskes, J.; Goodfellow, W.D.; Groschel-Becker, H. M.; Guerin, G.; Ishibashi, J.; Iturrino, G.; James, R.H.; Lackschewitz, K.S.; Marquez, L.L.; Nehlig, P.; Peter, J.M.; Rigsby, C.A.; Schultheiss, P.; Shanks, Wayne C.; Simoneit, B.R.T.; Summit, M.; Teagle, D.A.H.; Urbat, M.; Zuffa, G.G.
1998-01-01
Hydrothermal circulation at the crests of mid-ocean ridges plays an important role in transferring heat from the interior of the Earth. A consequence of this hydrothermal circulation is the formation of metallic ore bodies known as volcanic-associated massive sulphide deposits. Such deposits, preserved on land, were important sources of copper for ancient civilizations and continue to provide a significant source of base metals (for example, copper and zinc). Here we present results from Ocean Drilling Program Leg 169, which drilled through a massive sulphide deposit on the northern Juan de Fuca spreading centre and penetrated the hydrothermal feeder zone through which the metal-rich fluids reached the sea floor. We found that the style of feeder-zone mineralization changes with depth in response to changes in the pore pressure of the hydrothermal fluids and discovered a stratified zone of high-grade copper-rich replacement mineralization below the massive sulphide deposit. This copper-rich zone represents a type of mineralization not previously observed below sea-floor deposits, and may provide new targets for land-based mineral exploration.
PROCESS FOR UTILIZING ORGANIC ORTHOPHOSPHATE EXTRACTANTS
Grinstead, R.R.
1958-11-11
A process is presented for recovering uranium from its ores, the steps comprising producing the uranium in solution in the trivalent state, extracting the uranium from solution in an lmmiscible organic solvent extract phase which lncludes mono and dialkyl orthophosphorlc acid esters having a varying number of carbon atoms on the alkyl substituent, amd recovering the uranium from tbe extract phase.
Influence of indigenous and added iron on copper extraction from soil.
Di Palma, Luca
2009-10-15
Experimental tests of copper leaching from a low permeability soil are presented and discussed. The objective of the experiments was to investigate the influence of indigenous and added iron in the soil towards copper mobilization. Metals' leaching was performed by flushing (column tests) or washing (batch tests) the soil with an aqueous solution of ethylenediaminetetraacetic acid, EDTA. An excess of EDTA was used in flushing tests (up to a EDTA:Cu molar ratio of about 26.2:1), while, in washing tests, the investigated EDTA vs. copper molar ratios were in the range between 1 (equimolar tests) and 8. Copper extraction yield in flushing tests (up to about 85%) was found to depend upon contact time between the soil and the leaching solution and the characteristics of the conditioning solution. The saturation of the soil with a NaNO(3) solution before the treatment, favoured the flushing process reducing the time of percolation, but resulted in a lower metal extraction during the following percolation of EDTA. The indigenous iron was competitive with copper to form EDTA complexes only when it was present in the organic and oxides-hydroxides fractions. Artificial iron addition to the soil resulted in an increase of both the exchangeable iron and the iron bonded to the organic fraction of the soil, thus increasing the overall amount of iron available to extraction. In both batch and continuous tests, the mechanism of copper extraction was found to involve the former dissolution of metal salts, that lead to an initial high concentration of both copper and selected competitive cations (essentially Ca(2+)), and the following EDTA exchange reaction between calcium and copper complexes. The initial metal salts dissolution was found to be pH-dependant.
Arshadi, M; Mousavi, S M
2015-01-01
In this research simultaneous gold and copper recovery from computer printed circuit boards (CPCBs) was evaluated using central composite design of response surface methodology (CCD-RSM). To maximize simultaneous metals' extraction from CPCB waste four factors which affected bioleaching were selected to be optimized. A pure culture of Bacillus megaterium, a cyanogenic bacterium, was used to produce cyanide as a leaching agent. Initial pH 10, pulp density 2g/l, particle mesh#100 and glycine concentration 0.5g/l were obtained as optimal conditions. Gold and copper were extracted simultaneously at about 36.81 and 13.26% under optimum conditions, respectively. To decrease the copper effect as an interference agent in the leaching solution, a pretreatment strategy was examined. For this purpose firstly using Acidithiobacillus ferrooxidans copper in the CPCB powder was totally extracted, then the residual sediment was subjected to further experiments for gold recovery by B. megaterium. Using pretreated sample under optimal conditions 63.8% gold was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.
Copper leaching from electronic waste for the improvement of gold recycling.
Torres, Robinson; Lapidus, Gretchen T
2016-11-01
Gold recovery from electronic waste material with high copper content was investigated at ambient conditions. A chemical preliminary treatment was found necessary to remove the large quantities of copper before the precious metal can be extracted. For this purpose inorganic acids (HCl, HNO 3 and H 2 SO 4 ) and two organic substances EDTA and citrate, were tested. The effect of auxiliary oxidants such as air, ozone and peroxide hydroxide was studied. In pretreatments with peroxide and HCl or citrate, copper extractions greater than 90% were achieved. In the second leaching stage for gold recovery, the solid residue of the copper extraction was contacted with thiourea solutions, resulting in greater than 90% gold removal after only one hour of reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.
CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.
Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah
2018-04-01
This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.
Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Kopacek, Bernd
2014-07-15
Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized themore » main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.« less
Taylor, Cliff D.; Causey, J. Douglas; Denning, Paul; Hammarstrom, Jane M.; Hayes, Timothy S.; Horton, John D.; Kirschbaum, Michael J.; Parks, Heather L.; Wilson, Anna B.; Wintzer, Niki E.; Zientek, Michael L.
2013-01-01
Chapter 1 of this report summarizes a descriptive model of sediment-hosted stratabound copper deposits. General characteristics and subtypes of sediment-hosted stratabound copper deposits are described based upon worldwide examples. Chapter 2 provides a global database of 170 sediment-hosted copper deposits, along with a statistical evaluation of grade and tonnage data for stratabound deposits, a comparison of stratabound deposits in the CACB with those found elsewhere, a discussion of the distinctive characteristics of the subtypes of sediment-hosted copper deposits that occur within the CACB, and guidelines for using grade and tonnage distributions for assessment of undiscovered resources in sediment-hosted stratabound deposits in the CACB. Chapter 3 presents a new descriptive model of sediment-hosted structurally controlled replacement and vein (SCRV) copper deposits with descriptions of individual deposits of this type in the CACB and elsewhere. Appendix A describes a relational database of tonnage, grade, and other information for more than 100 sediment-hosted copper deposits in the CACB. These data are used to calculate the pre-mining mineral endowment for individual deposits in the CACB and serve as the basis for the grade and tonnage models presented in chapter 2. Appendix B describes three spatial databases (Esri shapefiles) for (1) point locations of more than 500 sediment-hosted copper deposits and prospects, (2) projected surface extent of 86 selected copper ore bodies, and (3) areal extent of 77 open pits, all within the CACB.
Mackie, K A; Schmidt, H P; Müller, T; Kandeler, E
2014-12-01
We investigated the ability of summer (Avena sativa [oat], Trifolium incarnatum [crimson clover], Chenopodium [goosefoot]) and winter (Vicia villosa [hairy vetch], Secale Cereale L. [Rye], Brassica napus L. partim [rape]) cover crops, including a mixed species treatment, to extract copper from an organic vineyard soil in situ and the microbial communities that may support it. Clover had the highest copper content (14.3mgCukg(-1) DM). However, it was the amount of total biomass production that determined which species was most effective at overall copper removal per hectare. The winter crop rye produced significantly higher amounts of biomass (3532kgDMha(-1)) and, therefore, removed significantly higher amounts of copper (14,920mgCuha(-1)), despite less accumulation of copper in plant shoots. The maximum annual removal rate, a summation of best performing summer and winter crops, would be 0.033kgCuha(-1)y(-1). Due to this low annual extraction efficiency, which is less than the 6kgCuha(-1)y(-1) permitted for application, phytoextraction cannot be recommended as a general method of copper extraction from vineyards. Copper concentration did not influence aboveground or belowground properties, as indicated by sampling at two distances from the grapevine row with different soil copper concentrations. Soil microorganisms may have become tolerant to the copper levels at this site. Microbial biomass and soil enzyme activities (arylsulfatase and phosphatase) were instead driven by seasonal fluxes of resource pools. Gram+ bacteria were associated with high soil moisture, while fungi seemed to be driven by extractable carbon, which was linked to high plant biomass. There was no microbial group associated with the increased phytoextraction of copper. Moreover, treatment did not influence the abundance, activity or community structure of soil microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Lasocki, Stanislaw; Antoniuk, Janusz; Moscicki, Jerzy
2003-08-01
The Zelazny Most depository of wastes from copper-ore processing, located in southwest Poland, is the largest mineral wastes repository in Europe. Moreover, it is located in a seismically active area. The seismicity is induced and is connected with mining works in the nearby underground copper mines. Any release of the contents of the repository to the environment could have devastating and even catastrophic consequences. For this reason, geophysical methods are used for continuous monitoring the state of the repository containment dams. The article presents examples of the application of geoelectric methods for detecting sites of leakage of contaminated water and a sketch of the seismic hazard analysis, which was used to predict future seismic vibrations of the repository dams.
Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; Schoonen, Martin A.A.
2014-01-01
The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleterious nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m2/mL stock) and exposure periods (beginning at 30 minutes and measured systematically for up to 24 hours). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. This study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management. PMID:25107347
Resource nationalism in Indonesia—Effects of the 2014 mineral export ban
Lederer, Graham W.
2016-09-27
Resource nationalism encompasses a broad range of political and economic actions taken by Governments to regulate the extraction of natural resources within their borders. Policies such as increased tariffs or export restrictions can have far-reaching economic effects on international trade. As the Governments of several developing countries consider enacting nationalistic policies, an examination of the 2014 mineral export ban in Indonesia provides an instructive example of the possible impacts of resource nationalism. Significant changes in the production and trade of unprocessed (that is, ores and concentrates) and processed (that is, refined metal) aluminum, copper, and nickel before and after the export ban form the basis of this study.The U.S. Geological Survey (USGS) National Minerals Information Center (NMIC) tracks production and trade of mineral commodities between producer and consumer countries. Materials flow studies clarify the effects of an export ban on different mineral commodities by assessing changes in production, processing capacity, and trade. Using extensive data collection and monitoring procedures, the USGS NMIC investigated the effects of resource nationalism on the flow of mineral commodities from Indonesia to the global economy.
Schulz, Klaus J.; Woodruff, Laurel G.; Nicholson, Suzanne W.; Seal, Robert R.; Piatak, Nadine M.; Chandler, Val W.; Mars, John L.
2014-01-01
The sulfides in magmatic Ni-Cu deposits generally constitute a small volume of the host rock(s) and tend to be concentrated in the lower parts of the mafic and/or ultramafic bodies, often in physical depressions or areas marking changes in the geometry of the footwall topography. In most deposits, the sulfide mineralization can be divided into disseminated, matrix or net, and massive sulfide, depending on a combination of the sulfide content of the rock and the silicate texture. The major Ni-Cu sulfide mineralogy typically consists of an intergrowth of pyrrhotite (Fe7S8), pentlandite ([Fe, Ni]9S8), and chalcopyrite (FeCuS2). Cobalt, PGE, and gold (Au) are extracted from most magmatic Ni-Cu ores as byproducts, although such elements can have a significant impact on the economics in some deposits, such as the Noril’sk-Talnakh deposits, which produce much of the world’s palladium. In addition, deposits may contain between 1 and 15 percent magnetite associated with the sulfides.
Sodium cyanide hazards to fish and other wildlife from gold mining operations
Eisler, R.; Clark, D.R.; Wiemeyer, Stanley N.; Henny, C.J.; Azcue, Jose M.
1999-01-01
Highly toxic sodium cyanide (NaCN) is used increasingly by the international mining community to extract gold and other precious metals through milling of high grade ores and heap leaching of low grade ores. Of the 98 million kg cyanide (CN) consumed in North America in 1989, about 80% was used in gold mining (Knudson 1990). In Canada, more than 90% of the mined gold is extracted from ores with the cyanidation process. This process consists of leaching gold from the ore as a gold-cyanide complex, and gold being recovered by precipitation (Simovic and Snodgrass 1985). Milling and heap leaching require cycling of millions of liters of alkaline water containing high concentrations of potentially toxic NaCN, free cyanide, and metal cyanide complexes that are frequently accessible to wildlife. Some milling operations result in tailings ponds of 150 ha and larger. Heap leach operations that spray or drip cyanide solution onto the flattened top of the ore heap require solution processing ponds of about 1 ha in surface area. Although not intentional or desired, puddles of various sizes may occur on the top of heaps where the highest concentrations of NaCN are found. Exposed solution recovery channels are usually constructed at the base of leach heaps. All of these cyanidecontaining water bodies are hazardous to wildlife if not properly managed (Henny et al. 1994). In this account we emphasize hazards of cyanide from mining operations to fish and wildlife species and proposed mitigation to protect them.
Brooks, Robert A.; Campbell, John A.
1976-01-01
Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.
Selective separation of copper over solder alloy from waste printed circuit boards leach solution.
Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Firozi, Sadegh
2017-02-01
The printed circuit boards (PCBs) from electronic waste are important resource, since the PCBs contain precious metals such as gold, copper, tin, silver, platinum and so forth. In addition to the economic point of view, the presence of lead turns this scrap into dangerous to environment. This study was conducted as part of the development of a novel process for selective recovery of copper over tin and lead from printed circuit boards by HBF 4 leaching. In previous study, Copper with solder alloy was associated, simultaneously were leached in HBF 4 solution using hydrogen peroxide as an oxidant at room temperature. The objective of this study is the separation of copper from tin and lead from Fluoroborate media using CP-150 as an extractant. The influence of organic solvent's concentration, pH, temperature and A/O phase ratio was investigated. The possible extraction mechanism and the composition of the extracted species have been determined. The separation factors for these metals using this agent are reported, while efficient methods for separation of Cu (II) from other metal ions are proposed. The treatment of leach liquor for solvent extraction of copper with CP-150 revealed that 20% CP-150 in kerosene, a 30min period of contact time, and a pH of 3 were sufficient for the extraction of Cu(II) and 99.99% copper was recovered from the leached solution. Copyright © 2016. Published by Elsevier Ltd.
1985-08-14
trade deficit. For this year, in addition to importing from the Philippines such tradi- tional commodities as coconut oil , copper ore, timber and...overseas family remittances and one-third from aid. In 1983, total export earnings were 27.5 million tala, with coconut oil making up 41.07 per cent...of this figure. In 1984, total export earnings were 27.5 million tala, with coconut oil making up 41.07 per cent of this figure. In 1984, earnings
Stratabound copper-silver deposits of the Mesoproterozoic Revett formation, Montana and Idaho
Boleneus, David E.; Appelgate, Larry M.; Stewart, John H.; Zientek, Michael L.
2005-01-01
The western Montana copper belt in western Montana and northern Idaho contains several large stratabound copper-silver deposits in fine- to medium-grained quartzite beds of the Revett Formation of the Mesoproterozoic (1,470-1,401 Ma) Belt Supergroup. Production from the deposits at the Troy Mine and lesser production from the Snowstorm Mine has yielded 222,237 tons Cu and 1,657.4 tons Ag. Estimates of undeveloped resources, mostly from the world-class Rock Creek-Montanore deposits, as well as lesser amounts at the Troy Mine, total more than 2.9 million tons Cu and 2,600 tons Ag in 406 million tons of ore.The Rock Creek-Montanore and Troy deposits, which are currently the most significant undeveloped resources identified in the copper belt, are also among the largest stratabound copper-silver deposits in North America and contain about 15 percent of the copper in such deposits in North America. Worldwide, stratabound copper-silver deposits contain 23 percent of all copper resources and are the second-most important global source of the metal after porphyry copper deposits.The Revett Formation, which consists of subequal amounts of argillite, siltite, and quartzite, is informally divided into lower, middle, and upper members on the basis of the proportions of the dominant rock types. The unit thickness increases from north to south, from 1,700 ft near the Troy Mine, 55 mi north of Wallace, Idaho, to more than 5,300 ft at Wallace, Idaho, in the Coeur d'Alene Trough south of the Osburn Fault, a major right-lateral strike-slip fault.Mineral deposits in the Revett Formation occur mostly in the A-D beds of the lower member and in the middle quartzite of the upper member. The deposits are concentrated along a preore pyrite/hematite interface in relatively coarse grained, thick quartzite beds that acted as paleoaquifers for ore fluids. The deposits are characterized by mineral zones (alteration-mineral assemblages) that are a useful guide to the locations of mineral deposits. In particular, the gradational zone between the chalcopyrite-ankerite and pyrite-calcite zones is the site of most mineral deposits. Detailed information on the geology and mineral deposits of the Revett Formation is presented in the accompanying files that include (1) a tab-delimited text file providing details of the geologic and mineral-resource data for 57 Revett-subtype stratabound copper-silver deposits, occurrences, and prospects; (2) the stratigraphic records of 40 diamond-drill cores and 86 measured sections, totaling 150,752 ft of true thickness, which are provided in Excel spreadsheet and Adobe Portable Document Format files; and (3) spatial geologic data consisting of geologic maps of the Revett Formation, the subsurface locations of resources in Revett-subtype stratabound copper-silver deposits based on diamond-drill-core data, and the locations of diamond-drill holes and measured sections. The spatial data are contained in Arc/Info interchange files. Spatial information derived from these data includes the locations of mineral zones, a digital database showing untested exploration areas, and a digital database of permissive tracts for undiscovered mineral deposits.
NASA Astrophysics Data System (ADS)
Sakhno, V. G.; Kovalenko, S. V.; Alenicheva, A. A.
2011-05-01
Magmatic rocks from the copper-porphyritic Lazurnoe deposit (Central Primor'e) have been studied. It has been found that rocks from the Lazurnyi massif are referred to gabbro-monzodiorites, monzodiorites, and monzo-granodiorites formed during two magmatic phases of different ages. The earlier phase is represented by gabbro-monzodiorites and diorites of the North Stock, and the later one, by gabbro-monzodiorites and monzo-grano-diorites of the South Stock. On the basis of isotopic dating by the U-Pb (SHRIMP) method for zircon and by the K-Ar method for hornblendes and biotites, the age of magmatic rocks is determined at 110 ± 4 for the earlier phase and at 103.5 ± 1.5 for the later one. Examination of the isotopic composition for Nd, Sr, Pb, Hf, δ18O, and REE spectra has shown that melts of the first phase are contaminated with crustal rocks and they are typical for a high degree of secondary alterations. Potassiumfeldspar, biotite, propylitic alterations, and sulfidization are manifested in these rocks. The rocks of the later stage of magmatism are characteristic for a primitive composition of isotopes and the absence of secondary alterations. They carry the features of adakite specifics that allows us to consider them derivatives of mantle generation under high fluid pressure. The intrusion of fluid-saturated melts of the second phase into the magmatic source of the first phase caused both an alteration pattern of rocks and copper-porphyritic mineralization. Isotopes of sulfur and oxygen allow us to consider the ore component to be of magmatic origin.
Extraction of magnesium from calcined dolomite ore using hydrochloric acid leaching
NASA Astrophysics Data System (ADS)
Royani, Ahmad; Sulistiyono, Eko; Prasetiyo, Agus Budi; Subagja, Rudi
2018-05-01
Magnesium is widely used in varieties industrial sector. Dolomite is one source of magnesium besides seawater. The extraction of magnesium from dolomite ores can be done by leaching process. In this work, the dolomite leaching to extract magnesium by hydrochloric acid was investigated. The leaching experiments were performed in a spherical glass batch reactor having a capacity of 1000 ml. The effects of the stirring speed, acid concentration, reaction temperature and liquid-solid ratio for each reaction time of 1; 2; and 3 h on the Mg leaching have been evaluated. 5 ml of solution sample were collected from the leached solutions, then it was filtered prior to analysis by ICP OES. The experimental results show that the magnesium extraction increases along with the increase of acid concentration, liquid-solid ratio and temperature. The optimum conditions for magnesium extraction were achieved at temperature 75 °C, extraction time 3 h, the HCl concentration of 2 M, the liquid-solid ratio 20 ml/g and stirring speed of 400 rpm. At this condition 98, 82 % of magnesium were extracted from dolomite. The conclusion obtained from this leaching process is that the magnesium can be extracted from dolomite by using hydrochloric acid solutions.
DeAlba-Montero, I; Guajardo-Pacheco, Jesús; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene; Loredo-Becerra, G M; Martínez-Castañón, Gabriel-Alejandro; Ruiz, Facundo; Compeán Jasso, M E
2017-01-01
This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli , Staphylococcus aureus , and Enterococcus faecalis . These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis . Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.
DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene
2017-01-01
This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459
NASA Astrophysics Data System (ADS)
Demirel, Cansu; Sonmez, Seref; Balci, Nurgul
2014-05-01
Covering a wide range on the earth's crust, oxidation of metal sulfide minerals have vital environmental impacts on the aquatic environment, causing one of the major environmental problems known as acid mine drainage (AMD). Located in the Kastamonu province of the Western Black Sea region, Kure district is one of the major copper mining sites in Turkey. Mining activities in the area heads back to ancient times, such that operation is thought to be started with the Roman Empire. Currently, only the underground mining tunnels of Bakibaba and Asikoy are being operated. Thus, mining heaps and ores of those pyritic deposits have been exposed to the oxidative conditions for so long. As a result of weathering processes of past and recent heaps of the Kure volcanic massive sulfide deposits in addition to the main ore mineral (chalcopyrite), significant amount of metals, especially Cu, are being released into the environment creating undesirable environmental conditions. In order to elucidate Cu release mechanisms from Kure pyritic ore deposits and mining wastes, field and laboratory approaches were used. Surface water and sediment samples from the streams around the mining and waste sites were collected. Groundwater samples from the active underground mining site were also collected. Physical parameters (pH, Eh, T°C, and EC) of water samples were determined in situ and in the laboratory using probes (WTW pH 3110, WTW Multi 9310 and CRISON CM 35). Metal and ion concentrations of the water samples were analysed using ICP-MS and DR 2800 spectrophotometer, respectively. High Cu, Co, Zn and Fe concentrations were determined in the water samples with pH values ranging from 2.9- 4. Cu concentrions ranges from 345 ppm to 36 ppm in the water samples. Consistent with the water samples, high Cu, Fe, Zn and Co were also determined in the sediment samples. Laboratory chalcopyrite oxidation experiments under the conditions representing the field site were set up as biological and abiotic in order to elucidate Cu release from ore and wastes. Greater Cu release were measured from the biological experiments carried out with S and Fe oxidizers compared to those from the chemical experiments. Fe-oxide precipitation experiments carried out in the laboratory showed high Cu absorbtion into Fe-oxides produced by biological reactions carried out with Fe oxidizers. Overall, these preliminary experimental results showed that Cu release and migration from the source can be controlled by various microorganims which regulate S and Fe cycles in the field. Key words: Metal sulfide oxidation, Kure pyritic copper mines, AMD, Bioleaching, Secondary Fe-oxide precipitation
NASA Astrophysics Data System (ADS)
Rogulina, L. I.; Moiseenko, V. G.; Ponomarchuk, V. A.
2018-04-01
New data on the composition of the major minerals from the skarn and vein polymetallic deposits of the Dal'negorskii ore region are reported. Analysis of galena and sphalerite was carried out by the X-ray fluorescent energy-dispersive method of synchrotron radiation for the first time. It is shown that the minor elements in major minerals of different deposits are typomorphic. Among these elements are Fe, Cu, Ni, Cd, Ag, Sn, and Sb, as well as In in sphalerite and Te in galena. The high concentrations of Ag, Cu, Te, Cd, and In in the extracted minerals indicate the complex character of mineralization. The compositional patterns of ore minerals characterize the sequence of mineral formation from the skarn to vein ores, and the sequence of deposits from the mesothermal to epithermal conditions. This provides geochemical evidence for the stage model of the formation of mineralization in the Dal'negorskii ore region.
Bin Yu; Chung Y. Hse; Todd F. Shupe
2009-01-01
The effects of acid concentration, reaction time, and temperature in a microwave reactor on recovery of CCA-treated wood were evaluated. Extraction of copper, chromium, and arsenic metals from chromated copper arsenate (CCA)-treated southern pine wood samples with three different acids (i.e., acetic acid, oxalic acid, and phosphoric acid) was investigated using in...
The influence of geomorphology on the role of women at artisanal and small-scale mine sites
Malpeli, Katherine C.; Chirico, Peter G.
2013-01-01
The geologic and geomorphic expressions of a mineral deposit determine its location, size, and accessibility, characteristics which in turn greatly influence the success of artisans mining the deposit. Despite this critical information, which can be garnered through studying the surficial physical expression of a deposit, the geologic and geomorphic sciences have been largely overlooked in artisanal mining-related research. This study demonstrates that a correlation exists between the roles of female miners at artisanal diamond and gold mining sites in western and central Africa and the physical expression of the deposits. Typically, women perform ore processing and ancillary roles at mine sites. On occasion, however, women participate in the extraction process itself. Women were found to participate in the extraction of ore only when a deposit had a thin overburden layer, thus rendering the mineralized ore more accessible. When deposits required a significant degree of manual labour to access the ore due to thick overburden layers, women were typically relegated to other roles. The identification of this link encourages the establishment of an alternative research avenue in which the physical and social sciences merge to better inform policymakers, so that the most appropriate artisanal mining assistance programs can be developed and implemented.
Yue, Chunlin; Sun, Huaming; Liu, Wen-Jing; Guan, Binbin; Deng, Xudong; Zhang, Xu; Yang, Peng
2017-08-01
The extraction of gold from ores and electronic waste is an important topic worldwide, as this precious metal has immense value in a variety of fields. However, serious environmental pollution and high energy consumption due to the use of toxic oxidation reagents and harsh reaction conditions is a well-known problem in the gold industry. Herein, we report a new chemical method based on the combined use of N-bromosuccinimide (NBS) and pyridine (Py), which has a greatly decreased environmental impact and reagent cost, as well as mild reaction requirements. This method can directly leach Au 0 from gold ore and electronic waste to form Au III in water. The process is achieved in a yield of approximately 90 % at room temperature and a nearly neutral pH. The minimum dose of NBS/Py is as low as 10 mm, which exhibits low toxicity towards mammalian cells and animals as well as aquatic creatures. The high leaching selectivity of Au over other metals during gold leaching is demonstrated, showing that this method has great potential for practical industrial application towards the sustainable refining of gold from ores and electronic waste. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
González, Isabel; Cortes, Amparo; Neaman, Alexander; Rubio, Patricio
2011-07-01
Oenothera picensis plants (Fragrant Evening Primrose) grow in the acid soils contaminated by copper smelting in the coastal region of central Chile. We evaluated the effects of the biodegradable chelate MGDA (methylglycinediacetic acid) on copper extraction by O. picensis and on leaching of copper through the soil profile, using an ex situ experiment with soil columns of varying heights. MGDA was applied in four rates: 0 (control), 2, 6 and 10 mmol plant(-1). MGDA application significantly increased biomass production and foliar concentration, permitting an effective increase in copper extraction, from 0.09 mg plant(-1) in the control, to 1.3mg plant(-1) in the 6 and 10 mmol plant(-1) treatments. With 10 mmol plant(-1) rate of MGDA, the copper concentration in the leachate from the 30 cm columns was 20 times higher than in the control. For the 60 cm columns, copper concentration was 2 times higher than the control. It can be concluded that at increased soil depths, copper leaching would be minimal and that MGDA applications at the studied rates would not pose a high risk for leaching into groundwater. It can thus be stated that applications of MGDA are an effective and environmentally safe way to improve copper extraction by O. picensis in these soils. Copyright © 2011 Elsevier Ltd. All rights reserved.
In vitro adverse effects of iron ore dusts on human lymphoblastoid cells in culture.
Wang, He; Wang, Jing J; Sanderson, Barbara J S
2013-01-01
The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 μg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 μg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 μg/ml. A significant rise in apoptosis induction was observed at 150 μg/ml HG1. Data indicate that Fe ore dusts at 150 μg/ml produced cytotoxicity and genotoxicity.
[RESULTS OF DUST FACTOR IN COPPER PYROMETALLURGY].
Adrianovskiy, V I; Lipatov, G Ya; Zebzeeva, N V; Kuzmina, E A
2016-01-01
The dust entering the air of the working zone of metallurgical shops was shown to be presented by a disintegration aerosols originating in crushing and transporting ore materials and condensation occurring in the course of smelting, converting and fire-refining copper. The overwhelming majority of the grains have a size of 2.1-5.0 mm, which determines a fixed condition of the presence of given dust in the working area, its long presence in the deeper parts of the respiratory system. At the preparatory stages in the composition of the dust there are presented significant amounts of crystalline silicon dioxide possessing of the fibrogenic impact on the body. In the dust the presence of the crystalline silicon dioxide, arsenic, nickel, cadmium determines its carcinogenic hazard. The elevated dustiness of the air is noted with the reflective and especially mine melting, due to the imperfection of the technological equipment and sanitary technical devices. Autogenous smelting processes have demonstrated their hygienic advantage over outdated methods of producing blister copper mining and smelting reflectivity.
Remote sensing and GIS-based prediction and assessment of copper-gold resources in Thailand
NASA Astrophysics Data System (ADS)
Yang, Shasha; Wang, Gongwen; Du, Wenhui; Huang, Luxiong
2014-03-01
Quantitative integration of geological information is a frontier and hotspot of prospecting decision research in the world. The forming process of large scale Cu-Au deposits is influenced by complicated geological events and restricted by various geological factors (stratum, structure and alteration). In this paper, using Thailand's copper-gold deposit district as a case study, geological anomaly theory is used along with the typical copper and gold metallogenic model, ETM+ remote sensing images, geological maps and mineral geology database in study area are combined with GIS technique. These techniques create ore-forming information such as geological information (strata, line-ring faults, intrusion), remote sensing information (hydroxyl alteration, iron alteration, linear-ring structure) and the Cu-Au prospect targets. These targets were identified using weights of evidence model. The research results show that the remote sensing and geological data can be combined to quickly predict and assess for exploration of mineral resources in a regional metallogenic belt.
NASA Technical Reports Server (NTRS)
2001-01-01
[figure removed for brevity, see original site] Figure 1 Click on image for larger version This ASTER image covers 30 by 37 km in the Atacama Desert, Chile and was acquired on April 23, 2000. The Escondida Cu-Au-Ag open-pit mine is at an elevation of 3050 m, and came on stream in 1990. Current capacity is 127,000 tons/day of ore; in 1999 production totaled 827,000 tons of copper, 150,000 ounces of gold and 3.53 million ounces of silver. Primary concentration of the ore is done on-site; the concentrate is then sent to the coast for further processing through a 170 km long, 9 pipe. Escondida is related geologically to three porphyry bodies intruded along the Chilean West Fissure Fault System. A high grade supergene cap overlies primary sulfide ore. This image is a conventional 3-2-1 RGB composite. Figure 1 displays SWIR bands 4-6-8 in RGB, and highlights lithologic and alteration differences of surface units. The image is located at 24.3 degrees south latitude and 69.1 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.NASA Astrophysics Data System (ADS)
Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan
2017-04-01
The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.
The Action of a Magnetic Field on Water,
The effect of a low intensity magnetic field on water as a flotation medium with the enrichment of coal and dressing of copper sulfied ore is studied...magnetic field with flotation is expressed. The imposition of an external magnetic field disturbs the energy state of water, which leads to a change in...intermolecular interaction, stability of hydrogen bonds, deterioration in the wettability of rigid surfaces, and a change in the technological indices of flotation enrichment. (Author)
Utility Distribution Systems in Sweden, Finland, Norway and England
1976-11-01
the duct adds to the water protection and sumps, with access for pumping, are provided -at low points. Glass wool or mineral wool insulation is placed...mm thick, is glass, mineral wool or polyurethane foam. The outer pipe is steel, polyurethane or asbestos cement coupled with O-ring seals. Asbestos...decided that asbestos cement should be replaced by less dangerous materials. Some use is made of steel, plastic or copper tubes with mineral wool or
Monti, Maria Cristina; Guido, Davide; Montomoli, Cristina; Sardu, Claudia; Sanna, Alessandro; Pretti, Salvatore; Lorefice, Lorena; Marrosu, Maria Giovanna; Valera, Paolo; Cocco, Eleonora
South-Western Sardinia (SWS) is a high risk area for Multiple Sclerosis (MS) with high prevalence and spatial clustering; its population is genetically representative of Sardinians and presents a peculiar environment. We evaluated the MS environmental risk of specific heavy metals (HM) and geographical factors such as solar UV exposure and urbanization by undertaking a population-based cross-sectional study in SWS. Geochemical data on HM, UV exposure, urbanization and epidemiological MS data were available for all SWS municipalities. Principal Component Analysis (PCA) was applied to the geochemical data to reduce multicollinearity and confounding criticalities. Generalized Linear Mixed Models (GLMM) were applied to evaluate the causal effects of the potential risk factors, and a model selection was performed using Akaike Information Criterion. The PCA revealed that copper (Cu) does not cluster, while two component scores were extracted: 'basic rocks', including cobalt, chromium and nickel, and 'ore deposits', including lead and zinc. The selected multivariable GLMM highlighted Cu and sex as MS risk factors, adjusting for age and 'ore deposits'. When the Cu concentration increases by 50 ppm, the MS odds are 2.827 (95% CI: 1.645; 5.07) times higher; females have a MS odds 2.04 times (95% CI: 1.59; 2.60) higher than males. The high frequency of MS in industrialized countries, where pollution by HM and CO poisoning is widespread, suggests a relationship between environmental exposure to metals and MS. Hence, we suggested a role of Cu homeostasis in MS. This is a preliminary study aimed at generating hypotheses that will need to be confirmed further.
Anawar, Hossain Md
2015-08-01
The oxidative dissolution of sulfidic minerals releases the extremely acidic leachate, sulfate and potentially toxic elements e.g., As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Th, U, Zn, etc. from different mine tailings and waste dumps. For the sustainable rehabilitation and disposal of mining waste, the sources and mechanisms of contaminant generation, fate and transport of contaminants should be clearly understood. Therefore, this study has provided a critical review on (1) recent insights in mechanisms of oxidation of sulfidic minerals, (2) environmental contamination by mining waste, and (3) remediation and rehabilitation techniques, and (4) then developed the GEMTEC conceptual model/guide [(bio)-geochemistry-mine type-mineralogy- geological texture-ore extraction process-climatic knowledge)] to provide the new scientific approach and knowledge for remediation of mining wastes and acid mine drainage. This study has suggested the pre-mining geological, geochemical, mineralogical and microtextural characterization of different mineral deposits, and post-mining studies of ore extraction processes, physical, geochemical, mineralogical and microbial reactions, natural attenuation and effect of climate change for sustainable rehabilitation of mining waste. All components of this model should be considered for effective and integrated management of mining waste and acid mine drainage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Landa, E.R.
1993-01-01
Federally funded remedial action projects are presently underway in New Jersey and Colorado at sites containing 226Ra and other radionuclides from radium-uranium ore extraction plants that operated during the early twentieth century. They are but the latest chapter in the story of an American industry that emerged and perished in the span of three decades. Major extraction plants were established in or near Denver (CO), Pittsburgh (PA), and New York City (NY) to process radium from ore that came largely from the carnotite deposits of western Colorado and eastern Utah. The staffs of these plants included some of the finest chemists and physicists in the nation, and the highly-refined radium products found a variety of uses in medicine and industry. The discovery of high-grade pitchblende ores in the Belgian Congo and the subsequent opening of an extraction plant near Antwerp, Belgium, in 1992, however, created an economic climate that put an end to the American radium industry. The geologic, chemical, and engineering information gathered during this era formed the basis of the uranium industry of the later part of the century, while the tailings and residues came to be viewed as environmental problems during the same period.
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco
2009-01-01
The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.
Processing of metal and oxygen from lunar deposits
NASA Technical Reports Server (NTRS)
Acton, Constance F.
1992-01-01
On the moon, some whole rocks may be ores for abundant elements, such as oxygen, but beneficiation will be important if metallic elements are sought from raw lunar dirt. In the extraction process, a beneficiated metallic ore, such as an oxide, sulfide, carbonate, or silicate mineral, is converted to reduced metal. A variety of plausible processing technologies, which includes recovery of meteoritic iron, and processing of lunar ilmenite, are described in this report.
Reagents and fractions impact on sulphide ore heap bioleaching at Smolnik mine
NASA Astrophysics Data System (ADS)
Oros, L. M.; Zavada, J.
2017-10-01
Mine Smolnik is one of the oldest sulphide ore mines in Europe and it is also an important part of bioleaching development. This paper follows previous attempts to extract residual metals from nearby heaps via variations in bioleaching reagents with regard to recent findings and needs in the related industry. Furthermore, economic and process relations between reagents and chosen heap fractions were also investigated in this case study.
An Effective Belt Conveyor for Underground Ore Transportation Systems
NASA Astrophysics Data System (ADS)
Krol, Robert; Kawalec, Witold; Gladysiewicz, Lech
2017-12-01
Raw material transportation generates a substantial share of costs in the mining industry. Mining companies are therefore determined to improve the effectiveness of their transportation system, focusing on solutions that increase both its energy efficiency and reliability while keeping maintenance costs low. In the underground copper ore operations in Poland’s KGHM mines vast and complex belt conveyor systems have been used for horizontal haulage of the run-of-mine ore from mining departments to shafts. Basing upon a long-time experience in the field of analysing, testing, designing and computing of belt conveyor equipment with regard to specific operational conditions, the improvements to the standard design of an underground belt conveyor for ore transportation have been proposed. As the key elements of a belt conveyor, the energy-efficient conveyor belt and optimised carrying idlers have been developed for the new generation of underground conveyors. The proposed solutions were tested individually on the specially constructed test stands in the laboratory and in the experimental belt conveyor that was built up with the use of prototype parts and commissioned for the regular ore haulage in a mining department in the KGHM underground mine “Lubin”. Its work was monitored and the recorded operational parameters (loadings, stresses and strains, energy dissipation, belt tracking) were compared with those previously collected on a reference (standard) conveyor. These in-situ measurements have proved that the proposed solutions will return with significant energy savings and lower maintenance costs. Calculations made on the basis of measurement results in the specialized belt conveyor designing software allow to estimate the possible savings if the modernized conveyors supersede the standard ones in a large belt conveying system.
Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; ...
2014-07-10
The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleteriousmore » nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m 2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.
The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleteriousmore » nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m 2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.« less
Lund, K.; Tysdal, Russell G.; Evans, Karl V.; Kunk, Michael J.; Pillers, Renee M.
2011-01-01
Textural data at all scales indicate that the host sites for veins and the tectonic evolution of both host rocks and mineral deposits were kinematically linked to Late Cretaceous regional thrust faulting. Heat, fluids, and conduits for generation and circulation of fluids were part of the regional crustal thickening. The faulting also juxtaposed metaevaporite layers in the Mesoproterozoic Yellowjacket Formation over Blackbird district host rocks. We conclude that this facilitated chemical exchange between juxtaposed units resulting in leaching of critical elements (Cl, K, B, Na) from metaevaporites to produce brines, scavenging of metals (Co, Cu, etc) from rocks in the region, and, finally, concentrating metals in the lower-plate ramp structures. Although the ultimate source of the metals remains undetermined, the present Cu-Co ± Au (± Ag ± Ni ± REE) Blackbird ore deposits formed during Late Cretaceous compressional deformation.
Cobalt-copper deposits of the Blackbird district, Lemhi County, Idaho
Vhay, J. S.
1947-01-01
The report contains brief descriptions of all the accessible workings in the district, of which the most important are Calera, Brown Bear, Uncle Sam, and Hawkeye mines. In the Calera adit, about 1,700 feet of the mineralized zone, ranging in width from 3 feet to 40 feet and averaging about 15 feet; have been explored (August 1946); the zone lies on a wide northwest-striking shear zone dipping moderately ( 60° ±) northeast. The Brown Bear adit is in a wide, mineralized, north-south shear zone in which are higher-grade pods plunging 25° to 35° north. The Uncle Sam mine explores a relatively narrow north-south shear zone in which are two or three north-plunging ore shoots. The Hawkeye mine is in a broad zone of mineralized schist in which are several north-plunging lenses of ore.
Timing of ore-related magmatism in the western Alaska Range, southwestern Alaska
Taylor, Ryan D.; Graham, Garth E.; Anderson, Eric D.; Selby, David
2014-01-01
This report presents isotopic age data from mineralized granitic plutons in an area of the Alaska Range located approximately 200 kilometers to the west-northwest of Anchorage in southwestern Alaska. Uranium-lead isotopic data and trace element concentrations of zircons were determined for 12 samples encompassing eight plutonic bodies ranging in age from approximately 76 to 57.4 millions of years ago (Ma). Additionally, a rhenium-osmium age of molybdenite from the Miss Molly molybdenum occurrence is reported (approx. 59 Ma). All of the granitic plutons in this study host gold-, copper-, and (or) molybdenum-rich prospects. These new ages modify previous interpretations regarding the age of magmatic activity and mineralization within the study area. The new ages show that the majority of the gold-quartz vein-hosting plutons examined in this study formed in the Late Cretaceous. Further work is necessary to establish the ages of ore-mineral deposition in these deposits.
Removal of copper from ferrous scrap
Blander, M.; Sinha, S.N.
1987-07-30
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
Removal of copper from ferrous scrap
Blander, M.; Sinha, S.N.
1990-05-15
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
Removal of copper from ferrous scrap
Blander, Milton; Sinha, Shome N.
1990-01-01
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
NASA Astrophysics Data System (ADS)
Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.
2014-12-01
This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).
Johnson, Craig A.; Day, Warren C.; Rye, Robert O.
2016-01-01
Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition of copper or was cotransported with copper, and (2) sulfur isotope analysis may be useful in evaluating southeast Missouri iron deposits for copper and possibly for gold.
Rodrigues, Michael L M; Leão, Versiane A; Gomes, Otavio; Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan
2015-07-01
The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (-208μm+147μm), ferrous iron concentration (1.25-10.0g/L) and pH (1.5-2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20mm-long) working with increased solids concentration (up to 25.0g/L). Because there was as the faster leaching kinetics at 50°C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8days and microscopic observations by SEM-EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20mm-size sheets. Copyright © 2015 Elsevier Ltd. All rights reserved.
How metalliferous brines line Mexican epithermal veins with silver
Wilkinson, Jamie J.; Simmons, Stuart F.; Stoffell, Barry
2013-01-01
We determined the composition of ~30-m.y.-old solutions extracted from fluid inclusions in one of the world's largest and richest silver ore deposits at Fresnillo, Mexico. Silver concentrations average 14 ppm and have a maximum of 27 ppm. The highest silver, lead and zinc concentrations correlate with salinity, consistent with transport by chloro-complexes and confirming the importance of brines in ore formation. The temporal distribution of these fluids within the veins suggests mineralization occurred episodically when they were injected into a fracture system dominated by low salinity, metal-poor fluids. Mass balance shows that a modest volume of brine, most likely of magmatic origin, is sufficient to supply the metal found in large Mexican silver deposits. The results suggest that ancient epithermal ore-forming events may involve fluid packets not captured in modern geothermal sampling and that giant ore deposits can form rapidly from small volumes of metal-rich fluid. PMID:23792776
Kesler, R.D.; Rabb, D.D.
1959-07-28
An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco
2009-03-15
The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.
Geology and ore deposits of the Casto quadrangle, Idaho
Ross, Clyde P.
1934-01-01
The study of the Casto quadrangle was undertaken as the first item in a project to obtain more thorough knowledge of the general geology of southcentral Idaho on which to base study of the ore deposits of t he region. The quadrangle conta ins fragmentary exposures of Algonkian and Paleozoic sedimentary rocks, extensive deposits of old volcanic strata, presumably Permian, not heretofore recognized in this part of Idaho, and a thick succession of Oligocene(?) lava and pyroclastic rocks. The Idaho batholith and its satellites extend into the quadrangle, and in addition there a re large masses of Tertiary granitic rock, not previously distinguished in Idaho, and many Tertiary dikes, some of which are genetically associated with contact-metamorphic deposits. The area contains injection gneiss of complex origin, largely related to the Idaho batholith but in part resulting from injection by ~he Tertiary granitic rocks under relatively light load. Orogenic movement took place in Algonkian, Paleozoic, and Tertiary time. There is a summit peneplain or par tial peneplain of Tertiary, perhaps Pliocene age, and the erosional history since its elevation has been complex. The ore deposits include lodes and placers. The lodes are related to both the Idaho batholith and the Tert iary intrusive rocks and have yielded gold and copper ore of a total value of about 1,000,000. Placers, largely formed in an interglacial inter val, have yielded about an equal amount. There has been some prospecting but almost no production since 1916.
NASA Astrophysics Data System (ADS)
Abedi, Maysam; Norouzi, Gholam-Hossain
2016-04-01
This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh-Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA analysis were considered as powerful traces to prepare final maps. The conventional, adjusted and modified variants of the TOPSIS method produced three mineral potential maps, in which the outputs indicate adequately matching of high potential zones with previous working and active mines in the region.
Anti-emetic principles of Inula linariaefolia flowers and Forsythia suspensa fruits.
Kinoshita, K; Kawai, T; Imaizumi, T; Akita, Y; Koyama, K; Takahashi, K
1996-05-01
The anti-emetic effects of 40 extracts made from 12 traditional Chinese herbal drugs were examined. Ten extracts inhibited emesis induced by copper sulfate pentahydrate; all were administered orally, and one extract inhibited emesis induced by apomorphine hydrochloride given to leopard and ranid frogs. Taraxasteryl palmitate and acetate, bigelovin and dihydrobigelovin were isolated from the CHCl(3) extract of Inula linariaefolia flowers, and identified as the active antiemetic agents when emesis was induced by copper sulfate. In addition, chlorogenic acid was isolated from the MeOH extract as an anti-emetic principle for the emesis induced by apomorphine hydrochloride. Rengyol, phillyrin and rutin were isolated from the MeOH extract of Forsythia suspensa fruits and identified as the inhibitors of emesis induced by copper sulfate pentahydrate. Copyright © 1996 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.
NASA Astrophysics Data System (ADS)
Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.
2015-12-01
Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at <900°C are dominated by early crystallization of hornblende and apatite, and late crystallization (~<780°C) of titanite. Magma mixing and crustal contamination are most evident in pre-ore magmas, whereas ore-forming intrusions at low temperatures are dominated by crystal fractionation. Thus, zircon provides evidence for cyclic crystallization and mafic recharge that enrich late silicic melts in incompatible ore components water, sulfur, chlorine and metals.
Mills, Christopher T.; Bern, Carleton R.; Wolf, Ruth E.; Foster, Andrea L.; Morrison, Jean M.; Benzel, William M.
2017-01-01
It has been shown that EPA Method 3060A does not adequately extract Cr(VI) from chromium ore processing residue (COPR). We modified various parameters of EPA 3060A toward understanding the transformation of COPR minerals in the alkaline extraction and improving extraction of Cr(VI) from NIST SRM 2701, a standard COPR-contaminated soil. Aluminum and Si were the major elements dissolved from NIST 2701, and their concentrations in solution were correlated with Cr(VI). The extraction fluid leached additional Al and Si from the method-prescribed borosilicate glass vessels which appeared to suppress the release of Cr(VI). Use of polytetrafluoroethylene vessels and intensive grinding of NIST 2701 increased the amount of Cr(VI) extracted. These modifications, combined with an increased extraction fluid to sample ratio of ≥900 mL g–1 and 48-h extraction time resulted in a maximum release of 1274 ± 7 mg kg–1 Cr(VI). This is greater than the NIST 2701 certified value of 551 ± 35 mg kg–1 but less than 3050 mg kg–1 Cr(VI) previously estimated by X-ray absorption near edge structure spectroscopy. Some of the increased Cr(VI) may have resulted from oxidation of Cr(III) released from brownmillerite which rapidly transformed during the extractions. Layered-double hydroxides remained stable during extractions and represent a potential residence for unextracted Cr(VI).
Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products
NASA Astrophysics Data System (ADS)
Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul
2018-05-01
The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.
Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus
2014-11-01
A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Laskou, Magdalini; Economou-Eliopoulos, Maria
2013-08-01
The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.
NASA Astrophysics Data System (ADS)
Sihotang, Iqbal Huda; Supriyatna, Yayat Iman; Ismail, Ika; Sulistijono
2018-04-01
Indonesia is a country that is rich in natural resources. Being a third country which has a nickel laterite ore in the world after New Caledonia and Philippines. However, the processing of nickel laterite ore to increase its levels in Indonesia is still lacking. In the processing of nickel laterite ore into metal, it can be processed by pyrometallurgy method that typically use coal as a reductant. However, coal is a non-renewable energy and have high enough levels of pollution. One potentially replace is the biomass, that is a renewable energy. Palm kernel shell are biomass that can be used as a reductant because it has a fairly high fix carbon content. This research aims to make nickel laterite ores become metal using palm kernel shell charcoal as reductant in mini electric arc furnace. The result show that the best smelting time of this research is 60 minutes with the best composition of the reductant is 2,000 gram.
Zakrzewska-Koltuniewicz, Grażyna; Herdzik-Koniecko, Irena; Cojocaru, Corneliu; Chajduk, Ewelina
2014-06-30
The paper deals with experimental design and optimization of leaching process of uranium and associated metals from low-grade, Polish ores. The chemical elements of interest for extraction from the ore were U, La, V, Mo, Yb and Th. Sulphuric acid has been used as leaching reagent. Based on the design of experiments the second-order regression models have been constructed to approximate the leaching efficiency of elements. The graphical illustrations using 3-D surface plots have been employed in order to identify the main, quadratic and interaction effects of the factors. The multi-objective optimization method based on desirability approach has been applied in this study. The optimum condition have been determined as P=5 bar, T=120 °C and t=90 min. Under these optimal conditions, the overall extraction performance is 81.43% (for U), 64.24% (for La), 98.38% (for V), 43.69% (for Yb) and 76.89% (for Mo) and 97.00% (for Th). Copyright © 2014 Elsevier B.V. All rights reserved.
Increasing flux rate to shorten leaching period and ramp-up production
NASA Astrophysics Data System (ADS)
Ngantung, Billy; Agustin, Riska; Ravi'i
2017-01-01
J Resources Bolaang Mongondow (JBRM) has operated a dynamic heap leach in its Bakan Gold Mine since late 2013. After successfully surpassing its name plate capacity of 2.6 MT/annum in 2014, the clayey and transition ore become the next operational challenge. The presence of transition and clayey ore requires longer leaching period, hence reducing the leach pad capacity which then caused reduced production. Maintaining or even increasing production with such longer leaching ore types can be done by expanding the leach pad area which means an additional capital investment, and/or shortening the leaching cycle which compromise a portion of gold extraction. JBRM has been successfully increasing the leach pad production from 2.6 MT/annum to 3.8 MT/annum, whilst improving the gold extraction from around 70% to around 80%. This was achieved by managing the operation of the leach pad which is shortening the leach cycle by identifying and combining the optimal flux rate application versus the tonne processed in each cell, at no capital investment for expanding the cell capacity.
NASA Astrophysics Data System (ADS)
Cao, Yi; Gao, Fuping; Du, Yangsong; Du, Yilun; Pang, Zhenshan
2017-03-01
Stratabound deposits are the most abundant and economically significant ore type in the Middle-Lower Yangtze River Valley, one of the most important metallogenic belts in China. The Datuanshan deposit is one of the largest and most representative stratabound Cu(-Mo) deposits in the Tongling district of the Middle-Lower Yangtze River metallogenic belt. All the orebodies of the Datuanshan deposit occur around Mesozoic quartz monzodiorite and are tabular or semi-tabular bodies along bedding-parallel faults within upper Permian to Lower Triassic strata. However, discordant and crosscutting relationships (e.g., the host rocks crosscut by skarn- and quartz-sulfide veins, with alteration halos around the veins) have also been found, especially along the skarn-host contact and orebody-host contact, indicating that skarnitization and mineralization postdated the deposition of the host sediments. The skarn consists mainly of prograde garnet and pyroxene and retrograde alteration assemblages of amphibole, epidote, and chlorite, as well as quartz and sulfides. Electron microprobe analyses show that the garnets and pyroxenes are grossular-andradite and hedenbergite-diopside series, respectively, and all samples plot in the field of typical skarn copper deposits worldwide. Molybdenite samples from stratiform copper ores yield Re-Os model ages of 138.2-139.9 Ma with a weighted mean age of 139.2 ± 0.9 Ma. This is reasonably consistent with the ages of the stratiform Mo ores (138.0-140.8 Ma) and genetically related quartz monzodiorite (135.2-139.3 Ma) in the Datuanshan deposit, indicating that the stratiform Cu and Mo mineralization was contemporaneous with emplacement of the quartz monzodiorite magmas in the Early Cretaceous. Fifteen δ34S values for sulfides range from -1.8 to +4.7 ‰, with a mean of 0.5 ‰, indicating that the sulfur was derived mainly from a magmatic source. Moreover, the sulfur isotope values of the ores are consistent with those of Mesozoic intermediate-acid intrusions but are different from those of sediments in the Shizishan orefield. Based on these lines of evidence, we conclude that the Datuanshan stratabound Cu(-Mo) deposit is the result of replacement related to Mesozoic magmatic rocks and is not a product of submarine exhalative sedimentary processes.
3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.
NASA Astrophysics Data System (ADS)
Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline
2013-04-01
3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene paleomagnetic dating in the Germany part of the Kupferschiefer ore, and which perhaps represents the last mineralizing stages. Last, we discuss perspectives and make recommendations on applying 3&4 geomodeling in mineral resources appraisal. The above research received funding from the European Union's Seventh Framework Program under grant agreement 228559 (ProMine project).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Applicability. The provisions of this subpart are applicable to the following stationary sources: (a) Extraction plants, ceramic plants, foundries, incinerators, and propellant plants which process beryllium ore...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Applicability. The provisions of this subpart are applicable to the following stationary sources: (a) Extraction plants, ceramic plants, foundries, incinerators, and propellant plants which process beryllium ore...
Scandium recovery from slags after oxidized nickel ore processing
NASA Astrophysics Data System (ADS)
Smyshlyaev, Denis; Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Semenishchev, Vladimir
2017-09-01
One of the possible sources of scandium production - waste (slags) from processing of oxidized nickel ores, has been considered in present research work. The hydrometallurgical method has been selected as the primary for scandium extraction. Different reagents for leaching of scandium, such as sulfuric acid, various carbonate salts and fluorides, have been tested. Sulfuric acid has been recognized as an optimal leaching reagent. Sulfuric acid concentration of 100 g L-1 allowed recovering up to 97 % of scandium.
NASA Astrophysics Data System (ADS)
Manzyrev, DV
2017-02-01
The paper reports the lab test results on simulation of heap leaching of unoxidized rebellious ore extracted from deep levels of Pogromnoe open pit mine, with different flowsheets and photo-electrochemically activated solutions. It has been found that pre-treatment of rebellious ore particles -10 mm in size by photo-electrochemically activated solutions at the stage preceding agglomeration with the use of rich cyanide solutions enhances gold recovery by 6%.
Lunar oxygen and metal for use in near-earth space - Magma electrolysis
NASA Technical Reports Server (NTRS)
Colson, Russell O.; Haskin, Larry A.
1990-01-01
The unique conditions on the moon, such as vacuum, absence of many reagents common on the earth, and presence of very nontraditional 'ores', suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. An investigation has begun into unfluxed silicate electrolysis as a method for extracting oxygen, Fe, and Si from lunar regolith. The advantages of the process include simplicity of concept, absence of need to supply reagents from the earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts, which has made identifying suitable electrode and container materials difficult.
In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper.
Ensign, S A; Hyman, M R; Arp, D J
1993-01-01
The effect of copper on the in vivo and in vitro activity of ammonia monooxygenase (AMO) from the nitrifying bacterium Nitrosomonas europaea was investigated. The addition of CuCl2 to cell extracts resulted in 5- to 15-fold stimulation of ammonia-dependent O2 consumption, ammonia-dependent nitrite production, and hydrazine-dependent ethane oxidation. AMO activity was further stimulated in vitro by the presence of stabilizing agents, including serum albumins, spermine, or MgCl2. In contrast, the addition of CuCl2 and stabilizing agents to whole-cell suspensions did not result in any stimulation of AMO activity. The use of the AMO-specific suicide substrate acetylene revealed two populations of AMO in cell extracts. The low, copper-independent (residual) AMO activity was completely inactivated by acetylene in the absence of exogenously added copper. In contrast, the copper-dependent (activable) AMO activity was protected against acetylene inactivation in the absence of copper. However, in the presence of copper both populations of AMO were inactivated by acetylene. [14C]acetylene labelling of the 27-kDa polypeptide of AMO revealed the same extent of label incorporation in both whole cells and optimally copper-stimulated cell extracts. In the absence of copper, the label incorporation in cell extracts was proportional to the level of residual AMO activity. Other metal ions tested, including Zn2+, Co2+, Ni2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Cr3+, and Ag+, were ineffective at stimulating AMO activity or facilitating the incorporation of 14C label from [14C]acetylene into the 27-kDa polypeptide. On the basis of these results, we propose that loss of AMO activity upon lysis of N. europaea results from the loss of copper from AMO, generating a catalytically inactive, yet stable and activable, form of the enzyme. Images PMID:8458839
1982-03-01
56% 78% 86% Coal 36 68 80 Crude Oil 98 99 99 Natural Gas -- 78 78 Iron Ore 92 98 98 Copper 86 93 94 Lead 55 64 79 Zinc 36 55 79 Tin 99 98 98 Aluminum...represented by energy resources (oil, gas , coal): The availabilty of adequate energy supplies is of great significance to the minerals and metals production...liquefied natural/petroleum gas , natural gas , and uranium. To meet the country’s energy needs, virtually all forms of mineral fuels were imported to
Mineral Deposits and Mineral Potential of the Randsburg Wash Test Range.
1983-12-01
prescreen samples to determine poten- tial worth by looking for lead, zinc, iron, silver K-alpha and K-beta excitation peaks, and arsenic and copper ...workings. The descrip- tion of the layout of the mining claims taken from the notice places 4G. Montague Butler. "Some Facts About Ore Deposits." Arizona ...intrusive is a porphyry with a white groundmass and quartz phenocrysts up to I millimeter across. Phenocrysts make up less than 10% of the rock. The
Extraordinary trace-element accumulations in roadside cedars near Centerville, Missouri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, J.J.; Shacklette, H.T.; Erdman, J.A.
1971-01-01
Unusually high concentrations of lead, copper, zinc, and cadmium were found in samples of cedar (Juniperus virginiana L.) collected on the roadside of State Highway 21-72 about 4 miles northeast of Centerville, Mo. For 15 samples, geometric mean concentrations for these elements in cedar ash were, in parts per million: Pb, 5,800; Cu, 190; An, 940; and Cd, 12. The high concentrations are thought to reflect vehicular transport of lead-bearing ores from mine to smelter, rather than mineralized rock at depth.
Earth Observations taken by the Expedition 22 Crew
2009-12-09
ISS022-E-008282 (9 Dec. 2009) --- One of the world?s leading copper mines, Escondida, in the Atacama Desert of Chile, is featured in this image photographed by an Expedition 22 crew member on the International Space Station. The copper mining industry is a major part of the Chilean economy. The mine is located 170 kilometers southeast of Chile?s port city of Antofagasta, in the hyper arid northern Atacama Desert at an elevation of 3,050 meters (approximately 10,000 feet) above sea level. Escondida produces mainly copper concentrates; assisted by gravity, the concentrates are piped as slurry down to the smaller port of Coloso just south of Antofagasta where they are dewatered for shipping. The photograph features a large light tan and gray waste or ?spoil? materials impoundment area (center) of the mine complex. The copper-bearing waste, which is a large proportion of the material excavated from open pits to the north (not in frame), is poured into the impoundment area as a liquid (green region at photo?s center), and dries to the lighter-toned spoil seen in the image. The spoil is held behind a retaining dam, just a little more than one kilometer in length, visible as a straight line at lower left. ?Escondida? means ?hidden? in Spanish, and refers to the fact that the copper ore body was buried beneath hundreds of meters of barren rock and had to be located by a laborious drilling program following a geologic trend established from other copper occurrences.
Geochemical constraints on adakites of different origins and copper mineralization
Sun, W.-D.; Ling, M.-X.; Chung, S.-L.; Ding, X.; Yang, X.-Y.; Liang, H.-Y.; Fan, W.-M.; Goldfarb, R.; Yin, Q.-Z.
2012-01-01
The petrogenesis of adakites holds important clues to the formation of the continental crust and copper ?? gold porphyry mineralization. However, it remains highly debated as to whether adakites form by slab melting, by partial melting of the lower continental crust, or by fractional crystallization of normal arc magmas. Here, we show that to form adakitic signature, partial melting of a subducting oceanic slab would require high pressure at depths of >50 km, whereas partial melting of the lower continental crust would require the presence of plagioclase and thus shallower depths and additional water. These two types of adakites can be discriminated using geochemical indexes. Compiled data show that adakites from circum-Pacific regions, which have close affinity to subduction of young hot oceanic plate, can be clearly discriminated from adakites from the Dabie Mountains and the Tibetan Plateau, which have been attributed to partial melting of continental crust, in Sr/Y-versus-La/Yb diagram. Given that oceanic crust has copper concentrations about two times higher than those in the continental crust, whereas the high oxygen fugacity in the subduction environment promotes the release of copper during partial melting, slab melting provides the most efficient mechanism to concentrate copper and gold; slab melts would be more than two times greater in copper (and also gold) concentrations than lower continental crust melts and normal arc magmas. Thus, identification of slab melt adakites is important for predicting exploration targets for copper- and gold-porphyry ore deposits. This explains the close association of ridge subduction with large porphyry copper deposits because ridge subduction is the most favorable place for slab melting. ?? 2012 by The University of Chicago.
Development of Technology for Enrichment of Silver Containing Ores
NASA Astrophysics Data System (ADS)
Shekiladze, Asmati; Kavtelashvili, Otari; Bagnashvili, Mamuka
2016-10-01
The progress of Georgian economics is substantially associated with a development of new deposits of mineral resources. Among them is the David-Gareji deposit where at present the intensive searching geological works are performed. The work goal involves the elaboration of the technology for processing of silver-containing quartz-barite ores. Without its development the mining of more valuable gold-polymetallic ores is impossible. Because of ore complexity silver and barite are considered in a common technological aspect. The investigations were carried out on the representative samples of quartz-barite ores containing 78-88 g/ton of silver and 27-29 % of silver is a nugget in the form of the simple sulphides and chlorides. The ore is characterized by fine coalescence of barite and ore-generating minerals. Non-ferrous metals haven't any industrial value because of their very low content. Therefore, for the processing of the ores under study the direct selective scheme of flotation enrichment was chosen and the formula of optimal reagent regime was elaborated. Potassium xanthogenate is used as a collector for flotation of silver minerals and pine oil- as a foaming agent. The effect of the pulp - pH and medium temperature on silver flotation was studied. It was established that the silver is actively floats in neutral medium. For barite flotation the various collectors were tested: sulfidezid cotton oil-soap stock, soaps of fatty acids and alkyl sulphates of C12 - C16 row, among the “Baritol” is the most efficient one. Depression of the barren rock was carried out by liquid glass in alkaline medium. The effect of pulp pH on barite flotation has been investigated. The best results were obtained at pH=8.5. The increase of the pulp alkalinity has no essential effect on the indexes of the barite enrichment. Conditional concentrate of the barite is obtained by two fold purification of the main flotation concentrate by the addition of the liquid glass to the re-purification operations. On the basis of laboratory investigations for silver-containing ores of David-Gareji deposit the technological scheme is recommended which implies the ore milling to 82 % class -074 mm, flotation of the silver minerals and the barite flotation from the tails of this operation by two-fold re-purification of the rough concentrate. The optimal parameters of the receipt of the reagent regime are: potassium butylxantogenate and pine oil-in the silver flotation; sodium carbonate, liquid glass, “Baritol”- in the barite main flotation and liquid glass in the repurification operations. Silver concentrate containing 680 g/ton of silver by extraction of 92.21% and barite concentrate, content - 92.11%, extraction - 81.85% are obtained.
Sun, Min; Feng, Juanjuan; Bu, Yanan; Luo, Chuannan
2015-08-21
A fiber-in-tube solid-phase microextraction (SPME) device was developed with copper wire and copper tube, which was served as both the substrate and sorbent with high physical strength and good flexibility. Its morphology and surface properties were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. It was coupled with high performance liquid chromatography (HPLC) equipment by replacing the sample loop of six-port injection valve, building the online SPME-HPLC system conveniently. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, extraction conditions including sampling rate, extraction time, organic content and desorption time were investigated and optimized. The copper fiber-in-tube exhibits excellent extraction efficiency toward PAHs, with enrichment factors from 268 to 2497. The established online SPME-HPLC method provides good linearity (0.05-100μgL(-1)) and low detection limits (0.001-0.01μgL(-1)) for PAHs. It has been used to determine PAHs in water samples, with recoveries in the range of 86.2-115%. Repeatability on the same extraction tube is in the range of 0.6-3.6%, and repeatability among three tubes is in the range of 5.6-20.1%. Compared with phthalates, anilines and phenols, the copper fiber-in-tube possesses good extraction selectivity for PAHs. The extraction mechanism is probably related to hydrophobic interaction and π-electron-metal interaction. Copyright © 2015 Elsevier B.V. All rights reserved.
Olympic Dam copper-uranium-gold deposit, South Australia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalor, J.H.
1986-07-01
The Olympic Dam copper-uranium-gold deposit was discovered in July 1975. It is located 650 km north-northwest of Adelaide on Roxby Downs Station in South Australia. The first diamond drill hole, RD1, intersected 38 m of 1.05% copper. A further eight holes were drilled with only marginal encouragement to November 1976, when RD10 cored 170 m of 2.12% copper and 0.06% of uranium oxide, thus confirming an economic discovery. The discovery of Olympic Dam is an excellent example applying broad-scale, scientifically based conceptual studies to area selection. Exploration management supported its exploration scientists in testing their ideas with stratigraphic drilling. Geologicmore » modeling, supported by geophysical interpretations and tectonic studies, was used to site the first hole. The discovery also illustrates the persistence required in mineral exploration. The deposit appears to be a new type of stratabound sediment-hosted ore. It has an areal extent exceeding 20 km/sup 2/ with vertical thicknesses of mineralization up to 350 m. It is estimated to contain more than 2000 million MT of mineralized material with an average grade of 1.6% copper, 0.06% uranium oxide, and 0.6 g/MT gold. The deposit occurs in middle Proterozoic basement beneath 350 m of unmineralized, flat upper Proterozoic sediments. The sediments comprising the local basement sequence are predominantly sedimentary breccias controlled by a northwest-trending graben.« less
NASA Astrophysics Data System (ADS)
Abdul, Fakhreza; Pintowantoro, Sungging; Kawigraha, Adji; Nursidiq, Ahlidin
2018-04-01
As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca
2009-01-15
The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary ironmore » removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.« less
Pîrlea, Sorina; Puiu, Mihaela; Răducan, Adina; Oancea, Dumitru
2017-03-01
In this study, it was demonstrated that the DNA Chelex extraction combined with the permanganate assisted-oxidation is highly efficient in removing the PCR inhibitors often found in clothing materials, such as phthalocyanine. The extraction assays were conducted in saliva, blood and epithelial cells samples mixed with three oxidation-resistant dye copper(II) α-phthalocyanine, copper(II) β-phthalocyanine and tetrasulfonated copper(II) β-phthalocyanine. After DNA amplification, all samples were able to provide full DNA profiles. The permanganate/Chelex system was tested further on denim-stained samples and displayed the same ability to remove the PCR inhibitors from the commercial textile materials.
LEACHING OF URANIUM ORES USING ALKALINE CARBONATES AND BICARBONATES AT ATMOSPHERIC PRESSURE
Thunaes, A.; Brown, E.A.; Rabbits, A.T.; Simard, R.; Herbst, H.J.
1961-07-18
A method of leaching uranium ores containing sulfides is described. The method consists of adding a leach solution containing alkaline carbonate and alkaline bicarbonate to the ore to form a slurry, passing the slurry through a series of agitators, passing an oxygen containing gas through the slurry in the last agitator in the series, passing the same gas enriched with carbon dioxide formed by the decomposition of bicarbonates in the slurry through the penultimate agitator and in the same manner passing the same gas increasingly enriched with carbon dioxide through the other agitators in the series. The conditions of agitation is such that the extraction of the uranium content will be substantially complete before the slurry reaches the last agitator.
Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.
Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung
2003-08-01
Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.
NASA Astrophysics Data System (ADS)
Kolchanova, Kseniia; Barsova, Natalia; Motuzova, Galina; Stepanov, Andrey; Karpukhin, Mikhail
2017-04-01
The aim of this study was to investigate the forms of copper and transformation of organic matter in the soil under the influence of humic substances (potassium humate, which was obtained from coal). The object of research was the top layer of soil model field experience. Field experiments were carried out in 10-liter plastic containers.The upper layers were constructed artificially as mixture of loam, sand and peat. Below it was a layer of loam, then gravel and under it we installed lysimeters. The experiment was conducted in 3 settings: 1) control, 2) control + Cu, and 3) control + Cu + potassium humate . Copper was deposited into upper layer at soil column construction as dry powder (CuSO4*5H2O), which is 1000mg per kg. Humic substance was introduced on surface as liquid form. The focus was the state of the copper and organic matter of solid and liquid phase. In the solid phase pH, carbon content, the molecular-mass distributions for the organic matter, total (HNO3 conc.+ H2O2; decomposition in a microwave oven) and acid-soluble (1H HNO3) copper content, sequential extraction of copper (1 M MgCl2, acetate buffer pH 4,8 (AAB), 1% EDTA) were determined. For liquid phase characteristics aqueous extract was obtained and identified therein: pH, total activity and copper content and water-soluble organic matter(WOM) amphiphilic properties. The introduction of copper is accompanied by a decrease in pH in soils from 7 to 6,3. The introduction of the humic substance softens this effect. Introducing humic preparation gives an increase in carbon at 0.5%. HS and copper has no significant effect on the molecular-mass distribution of solid organic matter. Only about 4% introduced copper accounted for the exchangeable form (MgCl2) for the variant only copper contaminated. Copper, mainly precipitated as hydroxides, moved in an AAB extract. And compared with the exchangeable forms its quantity increases by 10 times. Still more copper goes into an extract of EDTA, about half of the total. That is, the introduction of humic substances increases the amount of copper associated with organic matter in complexes with high stability constants. The total amount of copper of the results of extraction is 88-96% of the all total content. Water-soluble copper contains only 0.5% of the total. But the introduction of humic substances increases the amount of water-soluble copper is 3 times. This is due to the increase in the content of the WOM by 2.5-3 times, both due to the hydrophobic and hydrophilic factions of WOM. And this leads to a sharp reduction in the activity of copper in the liquid phase. Dual effect of introducing humic substances was obtained on the results of the work. On the one hand the introduction of humic substances contributes the immobilization of copper by increasing the fraction associated with organic matter in the solid phase. On the other hand the introduction of humic substances contributes the mobilization of copper in the liquid phase due to the increase of WOM.
ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION
Thunaes, A.; Brown, E.A.; Rabbitts, A.T.
1957-11-12
A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.
Getty Oil Company Diatomite project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuber, I.L.
1984-09-01
The feasibility of using Diatomite as a synthetic fuels feedstock is discussed. The asphaltic outcropping near McKittrick, California are evidence of oil bearing deposits. Two different processes have been taken to the pilot plant stage to evaluate the viability of recovering oil from the Diatomite ore. One approach was the retorting process which was developed by Lurgi. The other process is based on a totally different concept of solvent extracting the oil from the ore. The operation and performance of the pilot plants are described.
Iron-ore resources of the United States including Alaska and Puerto Rico, 1955
Carr, Martha S.; Dutton, Carl E.
1959-01-01
The importance of iron ore, the basic raw material of steel, as a fundamental mineral, resource is shown by the fact that about 100 million long tons of steel is used annually in the economy of the United States, as compared with a combined total of about 5 million long tons of copper, lead, zinc, and aluminum. Satisfying this annual demand for steel requires about 110 million tons of iron ore and 70 million tons of scrap iron and steel. The average annual consumption of iron ore in the United States from 1951 to 1955, inclusive, was about 110 million long tons, which is about twice the annual average from 1900 to 1930. Production of iron ore in the United States in this 5-year period averaged approximately 100 million long tons annually, divided by regions as follows (in percent): Lake Superior, 84.1; southeastern, 6.7; western, 6.7; northeastern, 1.4; and central and gulf, 1.1. Mining of iron ore began in the American Colonies about 1619, and for 225 years it was limited to eastern United States where fuel and markets were readily available. Production of iron ore from the Lake Superior region began in 1846; the region became the leading domestic source by 1890, and the Mesabi range in Minnesota has been the world's most productive area since 1896. Proximity of raw materials, water transportation, and markets has resulted in centralization of the country's iron and steel industry in the lower Great Lakes area. Increased imports of iron ore being delivered to eastern United States as well as demands for steel in nearby markets have given impetus to expansion in the steel-making capacity in this area. The four chief iron-ore minerals - hematite, liminite, magnetite, and siderite - are widely distributed but only locally form deposits of sufficient tonnage and grade to be commercially valuable at the present time. The iron content of these minerals, of which hematite is the most important, ranges from 48 percent in siderite to 72 percent in magnetite, but as these minerals are associated with other rock-forming minerals, the iron content of marketable ore has a lower range from 30 to 67 percent.Chemical constituents other than iron also are important in determining the marketability of iron ore. Although some iron ores can be used in the blast furnace as mined, others must first be improved either chemically by reduction of undesirable constituents, or physically by aggregation. Phosphorus and sulfur particularly are common deleterious elements; excessive silica is also undesirable but within certain limits can be controlled by additional flux. Lime and magnesia are beneficial in specified amounts because of their fluxing qualities, and a small amount of alumina improves the fluidity of slag. Manganese is especially desirable as a deoxidizing and desulfurizing agent. Titanium, chromium, and nickel must also be considered in the use of ore containing these elements.The principal iron-ore deposits in the United States have been formed by three processes. Hematite-bearing bedded deposits such as those at Birmingham, Ala., are marine sedimentary rocks which, except for weathering along the outcrop, have remained practically unaltered since deposition. Deposits of the Lake Superior region, also in sedimentary strata, originally had a slightly lower iron content than those at-Birmingham, but ore bodies of hematite and limonite were formed by removal of other constituents in solution after deposition of the beds, with a relative increase of iron content in the material remaining. Limestone adjacent to igneous intrusions has been replaced by magnetite deposits at Cornwall, Pa., and by hematite-magnetite deposits near Cedar City, Utah. Magnetite deposits in New Jersey and in the Adirondack Mountains of New York are generally believed to have been formed by replacement of grains of other minerals in metamorphic rocks. Iron-ore resources are made up of reserves of iron ore, material usable under existing economic and technologic conditions; and potential ore, material likely to become usable under more favorable conditions. The tonnage and grade of material of combined reserves and potential ore in each of the deposits known or believed to contain at least 200,000 long tons of iron-ore resources are tabulated in this report, and numerous sources of additional information are given in a selected bibliography. The total domestic iron-ore resources are estimated at approximately 75,000 million long tons of crude ore. About 10,000 million tons of the resources is reserves of crude ore that will probably yield 5,500 million tons of concentrates and direct-shipping ore. About 65,000 million tons is potential ore and may yield 25,000 million tons of concentrates and some direct-shipping ore.
Genomics, metagenomics and proteomics in biomining microorganisms.
Valenzuela, Lissette; Chi, An; Beard, Simon; Orell, Alvaro; Guiliani, Nicolas; Shabanowitz, Jeff; Hunt, Donald F; Jerez, Carlos A
2006-01-01
The use of acidophilic, chemolithotrophic microorganisms capable of oxidizing iron and sulfur in industrial processes to recover metals from minerals containing copper, gold and uranium is a well established biotechnology with distinctive advantages over traditional mining. A consortium of different microorganisms participates in the oxidative reactions resulting in the extraction of dissolved metal values from ores. Considerable effort has been spent in the last years to understand the biochemistry of iron and sulfur compounds oxidation, bacteria-mineral interactions (chemotaxis, quorum sensing, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. All of these are considered key phenomena for understanding the process of biomining. The use of genomics, metagenomics and high throughput proteomics to study the global regulatory responses that the biomining community uses to adapt to their changing environment is just beginning to emerge in the last years. These powerful approaches are reviewed here since they offer the possibility of exciting new findings that will allow analyzing the community as a microbial system, determining the extent to which each of the individual participants contributes to the process, how they evolve in time to keep the conglomerate healthy and therefore efficient during the entire process of bioleaching.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in devices used in industrial measuring systems, including x-ray fluorescence analyzers [Program Code... of ores containing source material for extraction of metals other than uranium or thorium, including.... 4 Other facilities include licenses for extraction of metals, heavy metals, and rare earths. 5 There...
Code of Federal Regulations, 2010 CFR
2010-01-01
... contained in devices used in industrial measuring systems, including x-ray fluorescence analyzers [Program... ores containing source material for extraction of metals other than uranium or thorium, including.... 4 Another license includes licenses for extraction of metals, heavy metals, and rare earths. 5 There...
Iron ore mines leachate potential for oxyradical production.
Hamoutene, D; Rahimtula, A; Payne, J
2000-06-01
The ecotoxicological effects of mining effluents is coming under much greater scrutiny. It appears necessary to explore possible health effects in association with iron ore mining effluents. The present results clearly demonstrate that iron-ore leachate is not an inert media but has the potential to induce lipid peroxidation. Peroxidation was assessed by measuring oxygen consumption in the presence of a reducing agent such as ascorbate or NADPH and a chelator such as EDTA. Labrador iron ore is an insoluble complex crystalline material containing a mixture of metals (Fe, Al, Ti, Mn, Mg,ellipsis, ) in contrast to the iron sources used for normal lipid peroxidation studies. The metal of highest percentage is iron (59. 58%), a metal known to induce oxyradical production. Iron ore powder initiated ascorbic acid-dependent lipid peroxidation (nonenzymatic) in liposomes, lipids extracted from rat and salmon liver microsomes, and intact salmon liver microsomes. It also revealed an inhibitory effect of NADPH-dependent microsomes lipid peroxidation as well as on NADPH cytochrome c reductase activity. However, nonenzymatic peroxidation in rat liver microsomes was not significantly inhibited. Cytochrome P450 IA1- and IIB1-dependent enzymatic activities as well as P450 levels were not affected. The inhibition could be due to one of the other components of iron ore leachate (Mn, Al,ellipsis, ). These effects of iron-ore leachate indicate that a potential toxicity could be associated with its release into lakes. Further studies are necessary to explore in vivo effects on aquatic animals. Copyright 2000 Academic Press.
Micro determination of plasma and erythrocyte copper by atomic absorption spectrophotometry
Blomfield, Jeanette; Macmahon, R. A.
1969-01-01
The free and total plasma copper and total erythrocyte copper levels have been determined by simple, yet sensitive and highly specific methods, using atomic absorption spectrophotometry. For total copper determination, the copper was split from its protein combination in plasma or red cells by the action of hydrochloric acid at room temperature. The liberated copper was chelated by ammonium pyrrolidine dithiocarbamate and extracted into n-butyl acetate by shaking and the organic extract was aspirated into the atomic absorption spectrophotometer flame. The entire procedure was carried out in polypropylene centrifuge tubes, capped during shaking. For the free plasma copper measurement the hydrochloric acid step was omitted. Removal of the plasma or erythrocyte proteins was found to be unnecessary, and, in addition, the presence of trichloracetic acid caused an appreciable lowering of absorption. Using a double-beam atomic absorption spectrophotometer and scale expansion × 10, micro methods have been derived for determining the total copper of plasma or erythrocytes with 0·1 ml of sample, and the free copper of plasma with 0·5 ml. The macro plasma copper method requires 2 ml of plasma and is suitable for use with single-beam atomic absorption spectrophotometers. With blood from 50 blood donors, normal ranges of plasma and erythrocyte copper have been determined. PMID:5776543
Leaching characteristics of copper flotation waste before and after vitrification.
Coruh, Semra; Ergun, Osman Nuri
2006-12-01
Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.
Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation
NASA Astrophysics Data System (ADS)
Alp, Ibrahim; Celep, Oktay; Deveci, Haci
2010-11-01
This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from <49% up to 83%) and silver (e.g., from <18% up to 90%) to subsequent cyanide leaching. An increase in reagent concentration (1-4 mol/L Na2S or NaOH) and temperature (20-80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.
Thermophilic microorganisms in biomining.
Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía
2016-11-01
Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.
NASA Astrophysics Data System (ADS)
Decrée, Sophie; Deloule, Étienne; Ruffet, Gilles; Dewaele, Stijn; Mees, Florias; Marignac, Christian; Yans, Johan; de Putter, Thierry
2010-10-01
The Katanga province, Democratic Republic of Congo, hosts world-class cobalt deposits accounting for ~50% of the world reserves. They originated from sediment-hosted stratiform copper and cobalt sulfide deposits within Neoproterozoic metasedimentary rocks. Heterogenite, the main oxidized cobalt mineral, is concentrated as “cobalt caps” along the top of silicified dolomite inselbergs. The supergene cobalt enrichment process is part of a regional process of residual ore formation that also forms world-class “manganese cap” deposits in western Katanga, i.e., the “black earths” that are exploited by both industrial and artisanal mining. Here, we provide constraints on the genesis and the timing of these deposits. Ar-Ar analyses of oxidized Mn ore and in situ U-Pb SIMS measurements of heterogenite yield Mio-Pliocene ages. The Ar-Ar ages suggest a multi-phase process, starting in the Late Miocene (10-5 Ma), when the metal-rich substratum was exposed to the action of meteoric fluids, due to major regional uplift. Further oxidation took place in the Pliocene (3.7-2.3 Ma) and formed most of the observed deposits under humid conditions: Co- and Mn-caps on metal-rich substrata, and coeval Fe laterites on barren areas. These deposits formed prior to the regional shift toward more arid conditions in Central Africa. Arid conditions still prevailed during the Quaternary and resulted in erosion and valley incision, which dismantled the metal-bearing caps and led to ore accumulation in valleys and along foot slopes.
NASA Astrophysics Data System (ADS)
Gregurek, Dean; Melcher, Frank; Niskavaara, Heikki; Pavlov, Vladimir A.; Reimann, Clemens; Stumpfl, Eugen F.
In April 1996 snowpack samples were collected from the surroundings of the ore roasting and dressing plant at Zapoljarnij and the nickel smelters at Nikel and Monchegorsk, Kola Peninsula, NW Russia. In the laboratory, filter residues of snowpack samples (fraction>0.45 μm) from 15 localities (close to the nickel processing centres) were chemically for precious metals (Rh, Pt, Pd, Au) and Te by graphite furnace atomic absorption spectrometry (GFAAS) analysis, and for Cu and Ni by ICP-MS. Values up to 2770 ng/l Pd, 650 ng/l Pt and 186 ng/l Au were found in the filter residues. Additionally, platinum-group elements (PGE) and Au contents in ore samples from Noril'sk , as well as in technogenic products ("Cu-Ni-feinstein" and copper concentrate) processed at the Monchegorsk smelter complex, were analysed using flameless atomic absorption spectroscopy (FAAS) for comparison with results obtained from snow. Rh, Pt, Pd and Au distribution data show the presence of two ore components (Noril'sk and Pechenga). Concentrations of these metals decrease with distance from the industrial sources and with the prevailing wind direction (generally north-south). Microscopic investigations and electron microprobe analysis of polished sections of snow filter residues (>0.45 μm) also reveal differences between particles from the two sources. To avoid confusion the term "Noril'sk" is used throughout the paper to denote material and/or data from the Noril'sk area and its sub-district, Noril'sk while Pechenga relates to the local ore.
Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
Maes, Synthia; Zhuang, Wei-Qin; Rabaey, Korneel; Alvarez-Cohen, Lisa; Hennebel, Tom
2017-02-07
Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L -1 and 281 mg of La L -1 leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L -1 achieved within 4 days (at 40 A m -2 ). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources.
Rehana, Dilaveez; Mahendiran, D; Kumar, R Senthil; Rahiman, A Kalilur
2017-05-01
Copper oxide (CuO) nanoparticles were synthesized by green chemistry approach using different plant extracts obtained from the leaves of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera and Tamarindus indica. In order to compare their efficiency, the same copper oxide nanoparticles was also synthesized by chemical method. Phytochemical screening of the leaf extracts showed the presence of carbohydrates, flavonoids, glycosides, phenolic compounds, saponins, tannins, proteins and amino acids. FT IR spectra confirmed the possible biomolecules responsible for the formation of copper oxide nanoparticles. The surface plasmon resonance absorption band at 220-235nm in the UV-vis spectra also supports the formation of copper oxide nanoparticles. XRD patterns revealed the monoclinic phase of the synthesized copper oxide nanoparticles. The average size, shape and the crystalline nature of the nanoparticles were determined by SEM, TEM and SAED analysis. EDX analysis confirmed the presence of elements in the synthesized nanoparticles. The antioxidant activity was evaluated by three different free radical scavenging assays. The cytotoxicity of copper oxide nanoparticles was evaluated against four cancer cell lines such as human breast (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549), and one normal human dermal fibroblast (NHDF) cell line. The morphological changes were evaluated using Hoechst 33258 staining assay. Copper oxide nanoparticles synthesized by green method exhibited high antioxidant and cytotoxicity than that synthesized by chemical method. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Tserendavga, Tsend-Ayush
The importance of flotation separation has long been, and continues to be, an important technology for the mining industry, especially to metallurgical engineers. However, the flotation process is quite complex and expensive, in addition to being influenced by many variables. Understanding the variables affecting flotation efficiency and how valuable minerals are lost to the tailings gives metallurgists an advantage in their attempts to increase efficiency by designing operations to target the areas of greatest potential value. A successful, accurate evaluation of lost minerals in the tailings and appropriate solutions to improve flotation efficiency can save millions of dollars in the effective utilization of our mineral resources. In this dissertation research, an attempt has been made to understand the reasons for the loss of valuable mineral particles in the tailings from Kennecott Utah Copper ores. Possibilities include liberation, particle aggregation (slime coating) and surface chemistry issues associated with the flotation separation. This research generally consisted of three main aspects. The first part involved laboratory flotation experiments and factors, which affect the flotation efficiency. Results of flotation testing are reported that several factors such as mineral exposure/liberation and slime coating and surface oxidation strongly affect the flotation efficiency. The second part of this dissertation research was to develop a rapid scan dual energy (DE) methodology using 2D radiography to identify, isolate, and prepare lost sulfide mineral particles with the advantages of simple sample preparation, short analysis time, statistically reliable accuracy and confident identification. The third part of this dissertation research was concerned with detailed characterization of lost particles including such factors as liberation, slime coating, and surface chemistry characteristics using advanced analytical techniques and instruments. Based on the results from characterization, the extent to which these factors contribute to the loss of sulfide mineral particles in the tailings were determined.
Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin
Bookstrom, Arthur A.; Box, Stephen E.; Cossette, Pamela M.; Frost, Thomas P.; Gillerman, Virginia; King, George; Zirakparvar, N. Alex
2016-01-01
The Blackbird cobalt-copper (Co-Cu) district in the Salmon River Mountains of east-central Idaho occupies the central part of the Idaho cobalt belt—a northwest-elongate, 55-km-long belt of Co-Cu occurrences, hosted in grayish siliciclastic metasedimentary strata of the Lemhi subbasin (of the Mesoproterozoic Belt-Purcell Basin). The Blackbird district contains at least eight stratabound ore zones and many discordant lodes, mostly in the upper part of the banded siltite unit of the Apple Creek Formation of Yellow Lake, which generally consists of interbedded siltite and argillite. In the Blackbird mine area, argillite beds in six stratigraphic intervals are altered to biotitite containing over 75 vol% of greenish hydrothermal biotite, which is preferentially mineralized.Past production and currently estimated resources of the Blackbird district total ~17 Mt of ore, averaging 0.74% Co, 1.4% Cu, and 1.0 ppm Au (not including downdip projections of ore zones that are open downward). A compilation of relative-age relationships and isotopic age determinations indicates that most cobalt mineralization occurred in Mesoproterozoic time, whereas most copper mineralization occurred in Cretaceous time.Mesoproterozoic cobaltite mineralization accompanied and followed dynamothermal metamorphism and bimodal plutonism during the Middle Mesoproterozoic East Kootenay orogeny (ca. 1379–1325 Ma), and also accompanied Grenvilleage (Late Mesoproterozoic) thermal metamorphism (ca. 1200–1000 Ma). Stratabound cobaltite-biotite ore zones typically contain cobaltite1 in a matrix of biotitite ± tourmaline ± minor xenotime (ca. 1370–1320 Ma) ± minor chalcopyrite ± sparse allanite ± sparse microscopic native gold in cobaltite. Such cobaltite-biotite lodes are locally folded into tight F2 folds with axial-planar S2 cleavage and schistosity. Discordant replacement-style lodes of cobaltite2-biotite ore ± xenotime2 (ca. 1320–1270 Ma) commonly follow S2fractures and fabrics. Discordant quartz-biotite and quartz-tourmaline breccias, and veins contain cobaltite3 ± xenotime3 (ca. 1058–990 Ma).Mesoproterozoic cobaltite deposition was followed by: (1) within-plate plutonism (530–485 Ma) and emplacement of mafic dikes (which cut cobaltite lodes but are cut by quartz-Fe-Cu-sulfide veins); (2) garnet-grade metamorphism (ca. 151–93 Ma); (3) Fe-Cu-sulfide mineralization (ca. 110–92 Ma); and (4) minor quartz ± Au-Ag ± Bi mineralization (ca. 92–83 Ma).Cretaceous Fe-Cu-sulfide vein, breccia, and replacement-style deposits contain various combinations of chalcopyrite ± pyrrhotite ± pyrite ± cobaltian arsenopyrite (not cobaltite) ± arsenopyrite ± quartz ± siderite ± monazite (ca. 144–88 Ma but mostly 110–92 Ma) ± xenotime (104–93 Ma). Highly radiogenic Pb (in these sulfides) and Sr (in siderite) indicate that these elements resided in Mesoproterozoic source rocks until they were mobilized after ca. 100 Ma. Fe-Cu-sulfide veins, breccias, and replacement deposits appear relatively undeformed and generally lack metamorphic fabrics.Composite Co-Cu-Au ore contains early cobaltite-biotite lodes, cut by Fe-Cu-sulfide veins and breccias, or overprinted by Fe-Cu-sulfide replacement-style deposits, and locally cut by quartz veinlets ± Au-Ag ± Bi minerals.
Determination of copper by isotopic dilution.
Faquim, E S; Munita, C S
1994-01-01
A rapid and selective method was used for the determination of copper by isotopic dilution employing substoichiometric extraction with dithizone in carbon tetrachloride. The appropriate pH range for the substoichiometric extraction was 2-7. In the analysis, even a large excess of elements forming extractable complexes with dithizone does not interfere. The accuracy and precision of the method were evaluated. The method has been applied to analysis of reference materials, wheat flour, wine, and beer.
NEO Targets for Biological In Situ Resource Utilization
NASA Astrophysics Data System (ADS)
Grace, J. M.; Ernst, S. M.; Navarrete, J. U.; Gentry, D.
2014-12-01
We are investigating a mission architecture concept for low-cost pre-processing of materials on long synodic period asteroids using bioengineered microbes delivered by small spacecraft. Space exploration opportunities, particularly those requiring a human presence, are sharply constrained by the high cost of launching resources such as fuel, construction materials, oxygen, water, and foodstuffs. Near-Earth asteroids (NEAs) have been proposed for supporting a human space presence. However, the combination of high initial investment requirements, delayed potential return, and uncertainty in resource payoff currently prevents their effective utilization.Biomining is the process in which microorganisms perform useful material reduction, sequestration or separation. It is commonly used in terrestrial copper extraction. Compared to physical and chemical methods of extraction it is slow, but very low cost, thus rendering economical even very poor ores. These advantages are potentially extensible to asteroid in situ resource utilization (ISRU).One of the first limiting factors for the use of biology in these environments is temperature. A survey of NEA data was conducted to identify those NEAs whose projected interior temperatures remained within both potential (-5 - 100 ºC) and preferred (15 - 45 ºC) ranges for the minimum projected time per synodic period without exceeding 100 ºC at any point. Approximately 2800 of the 11000 NEAs (25%) are predicted to remain within the potential range for at least 90 days, and 120 (1%) in the preferred range.A second major factor is water availability and stability. We have evaluated a design for a small-spacecraft-based injector which forces low-temperature fluid into the NEA interior, creating potentially habitable microniches. The fluid contains microbes genetically engineered to accelerate the degradation rates of a desired fraction of the native resources, allowing for more efficient material extraction upon a subsequent encounter.
Abandoned Mine Lands are those lands, waters, and surrounding watersheds where extraction, beneficiation, or processing of ores and minerals (excluding coal) has occurred. These lands also include areas where mining or processing activity is inactive.
The Structure of Reclaiming Warehouse of Minerals at Open-Cut Mines with the Use Combined Transport
NASA Astrophysics Data System (ADS)
Ikonnikov, D. A.; Kovshov, S. V.
2017-07-01
In the article performed an analysis of ore reclaiming and overloading point characteristics at modern opencast mines. Ore reclaiming represents the most effective way of stability support of power-intensive and expensive technological dressing process, and, consequently, of maintenance of the optimal production and set-up parameters of extraction and quality of finished product. The paper proposed the construction of the warehouse describing the technology of its creation. Equipment used for the warehouse described in detail. All stages of development and operation was shown. Advantages and disadvantages of using mechanical shovel excavator and hydraulic excavator “backdigger” as a reloading and reclaiming equipment was compared. Ore reclaiming and overloading point construction at cyclical and continuous method of mining using a hydraulic excavator “backdigger” was proposed.
Moench, Robert Hadley; Drake, Avery Ala
1966-01-01
The Idaho Springs mining district forms an important segment of the Front Range mineral belt, a northeast-trending zone of coextensive intrusive rocks and hydrothermal ore deposits of early Tertiary age. This belt, which is about 50 miles long, extends from the region just west of Boulder southwestward across the Front Range. From 1859, when placer gold was discovered in Idaho Springs and lode gold in Central City, through 1959, ores valued at about $200 million were shipped from a 50-square-mile area that includes the Idaho Springs and adjacent districts to the north, west, and southwest. The adjacent Central City district, which produced ores valued at more than $100 million, is clearly the most important district in the mineral belt. The Idaho Springs district from 1860 to 1959 produced ores valued at about $65 million, and the districts to the west and southwest produced smaller amounts. Gold has accounted for about 60 percent of the value of the ore, but in some areas silver provides the chief values, and copper, lead, and zinc add value to the ores in most areas. Mining activity in the Idaho Springs and adjacent districts was at its 'heyday' in the late 1800's, it declined sharply after 1914, it was somewhat renewed during the 1930's, and it greatly declined during World War II. In the 1950's uranium prospecting stimulated some mining activity. No uranium was produced, however, and at the close of the decade only one mine--the Bald Eagle--was being worked for its precious- and base-metal ores. In this report, 135 mines and prospects are described. The mines and prospects described are those that were accessible at the time of this study, as well as a few inaccessible properties for which some information was available. Most of the data for the inaccessible or unimportant properties were obtained from Bastin and Hill (1917) and Spurr, Garrey, and Ball (1908). The following list shows, in alphabetical order, the names of about 325 openings of mines and prospects, their coordinate location on the district map (fig. 1), the page of this report on which their description starts, and the number of the illustration, if any, referring to them.
Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey
NASA Astrophysics Data System (ADS)
Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül
2015-04-01
This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching experiments with mixed acidophiles at higher temperatures. Further depleted Fe(III) values coinciding with decreasing pH may point to precipitation of secondary phases (i.e. jarosite). This study revealed that the metals (Fe, Cu, Co and Zn) released during short term leaching of the ore (34 days) are generally caused by acid produced by dissolution reactions rather than oxidation. In the long term experiments a more complex biogeochemical reactions (oxidation and dissolution) take place in conjunction. Key words: Bioleaching, AMD, heavy metal release, environment, acidophilic bacteria, Küre copper ore deposits, volcanogenic massive sulfide deposits
Eco-Friendly Inhibitors for Copper Corrosion in Nitric Acid: Experimental and Theoretical Evaluation
NASA Astrophysics Data System (ADS)
Savita; Mourya, Punita; Chaubey, Namrata; Singh, V. K.; Singh, M. M.
2016-02-01
The inhibitive performance of Vitex negundo, Adhatoda vasica, and Saraka asoka leaf extracts on corrosion of copper in 3M HNO3 solution was investigated using gravimetric, potentiodynamic polarization, and electrochemical impedance spectroscopic techniques. Potentiodynamic polarization studies indicated that these extracts act as efficient and predominantly cathodic mixed inhibitor. Thermodynamic parameters revealed that the adsorption of these inhibitors on copper surface was spontaneous, controlled by physiochemical processes and occurred according to the Langmuir adsorption isotherm. AFM examination of copper surface confirmed that the inhibitor prevented corrosion by forming protective layer on its surface. The correlation between inhibitive effect and molecular structure was ascertained by density functional theory data.
GEOLOGY, SULFUR ISOTOPES AND THE ORIGIN OF THE HEATH STEELE ORE DEPOSITS, NEWCASTLE, N.B., CANADA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechow, E.
The Heath Steele mine is located 35 miles northwest of Newcastle, New Brunswick, Canada. Middle Ordovician Tetagouche Group rocks, consisting of siliceous and basic volcanic rocks, and fine-grained quartz sericite schists and porphyry, have been folded into a steeply plunging recumbent anticline. The ore deposits of zinc, lead, and copper are associated with minor folding and/or sheared dilatent zones at or near the contact between porphyry and fine-grained senicitic schist. Mineralogically the sulfide bodies consist of early, euhedral arsenopyrite, magnetite, and pyrite, followed by interstitial pyrrhotite, sphalerite, chalcopyrite and galena. Minor minerals are ternantite-tetrahedrite, bismuthinite, marcasite, hematite, and some graphite.more » Supergene minerals consist of chalcocite, covellite, and marcasite with a little native silver. Little hypogene replacement has taken place between the minerals, which show a "porphyritic" texture. Sulfur isotope ratios were determined for over 150 sulfide and sulfate specimens from five of the seven ore bodies, and from granite, acid and basic volcanics, porphyry, and sediments. The results indicate that there is no detectable fractionation either during hypogene mineralization or supergene enrichment. The spread (21.82 to 22.02) covered by the ratios is narrow, and suggestive of a well homogenized source of mineral solutions. The enrichment of S/sup 34/ in the ore sulfides and the presence of graphite, evident from mineralographic studies and mass spectrometric analysis, suggests reduction of original sulfates (known to be enriched in S/sup 34/) by organic carbon at temperatures in excess of 500 deg C. A calculation based on the isotopic exchange reaction between sulfide and sulfate under equilibrium conditions and the spread of the ratios indicates a temperature of 700 to 800 deg C for the source. Finally the ratios determined for sulfides in a gneissic granite close to Heath Steele have the same ratio as the ore. These factors are considered to be diagnostic of a magmatic hydrothermal origin for the orp deposits. It is believed that an original source bed has been buried until suitable temperatures were reached to cause granitization, reduction of sulfates, and mobilization of the resulting sulfides to form ore deposits at favorable loci. (auth)« less
Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.
Sobron, Pablo; Alpers, Charles N
2013-03-01
The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.
NASA Astrophysics Data System (ADS)
Gilani, Seyed-Omid; Sattarvand, Javad
2016-02-01
Meeting production targets in terms of ore quantity and quality is critical for a successful mining operation. In-situ grade uncertainty causes both deviations from production targets and general financial deficits. A new stochastic optimization algorithm based on ant colony optimization (ACO) approach is developed herein to integrate geological uncertainty described through a series of the simulated ore bodies. Two different strategies were developed based on a single predefined probability value (Prob) and multiple probability values (Pro bnt) , respectively in order to improve the initial solutions that created by deterministic ACO procedure. Application at the Sungun copper mine in the northwest of Iran demonstrate the abilities of the stochastic approach to create a single schedule and control the risk of deviating from production targets over time and also increase the project value. A comparison between two strategies and traditional approach illustrates that the multiple probability strategy is able to produce better schedules, however, the single predefined probability is more practical in projects requiring of high flexibility degree.
Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California
Sobron, Pablo; Alpers, Charles N.
2013-01-01
The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.
NASA Astrophysics Data System (ADS)
Filippov, V. A.
2018-01-01
The Ufimian tectonic concentric structure (UTC) is a regional structure with concentric and zonal structure of the internal gravity field. In the Neoproterozoic this structure was at higher hypsometric level relative to the Bashkir Meganticlinorium. The most significant uplift of this tectonic concentric structure happened at the beginning of the Karatau time ( 825 Ma) and was accompanied by the formation of a ring fractured zone, favorable for hydrocarbon migration from the Lower Riphean black shales. Due to this, bitumens with higher Mo content in the Neoproterozoic and Paleozoic deposits are confined spatially to this zone. The bitumenosity of the Neoproterozoic deposits on the southern slope of the Ufimian tectonic concentric structure could have contributed to the formation of complex Cu-Ag-Mo-Re ores (copper sands) at the upper boundary of terrigenous red deposits of the Zilmerdak Formation. Positive structures identified in the Neoproterozoic deposits near the margin of the Ufimian tectonic concentric structure are considered to be promising for searching for hydrocarbon fields.
Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona
Lasky, S.G.; Webber, B.N.
1944-01-01
The manganese deposits of the Artillery Mountains region lie within an area of about 25 square miles between the Artillery and Rawhide Mountains, on the west side of the Bill Williams River in west-central Arizona. The richest croppings are on the northeast side of this area, among the foothills of the Artillery Mountains. They are 6 to 10 miles from Alamo. The nearest shipping points are Congress, about 50 miles to the east, and Aguila, about 50 miles to the southeast. The principal manganese deposits are part of a sequence of alluvial fan and playa material, probably of early Pliocene age, which were laid down in a fault basin. They are overlain by later Pliocene (?) basalt flows and sediments and by Quaternary basalt and alluvium. The Pliocene (?) rocks are folded into a shallow composite S1ncline ttat occupies the valley between the Artillery and Rawhide Mountains, and the folded rocks along either side of the valley, together with the overlying Quaternary basalt, are broken by faults that have produced a group of horsts, grabens, and step-fault blocks. The manganiferous beds, lie at two zones, 750 to 1,000 feet apart stratigraphically, each of which is locally as much as 300 to 400 feet thick. The main, or upper, zone contains three kinds of ore - sandstone ore, clay ore, and 'hard' ore. The sandstone and clay ores differ from the associated barren sandstone and clay, with which they are interlayered and into which they grade, primarily in containing a variable proportion of amorphous manganese oxides, besides iron oxides and clayey material such as are present in the barren beds. The 'hard' ore is sandstone that has been impregnated with opal and calcite and in which the original amorphous manganese oxides have been largely converted to psilomelane and manganite. The average manganese content of the sandstone and clay ores is between 3 and 4 percent and that of the 'hard' ore is between 6 and 7 percent. The ore contains an average of 3 percent of iron, 0.08 percent of phosphorus, 1.1 percent of barium, and minute quantities of copper, lead, and zinc. Although the manganese content of the sandstone and clay ore may change abruptly from bed to bed, the content within any individual bed changes gradually, and for any large volume of ore both the nanganese and iron content are remarkably uniform. Explorations to June 1941 consisted chiefly of 49 holes diamond-drilled in the upper zone on the Artillery Mountains side of the area. The district is estimated to contain an assured minimum of 200,000,000 tons of material having an average manganese content of 3 to 4 percent. About 20,000,000 tons of this total contains 5 percent or more of manganese, and 2,000,000 to 3,000,000 tons contains 10 percent or more. To what extent these deposits can be utilized is a metallurgical and economic problem. Although the clay and sandstone ores, as well as the 'hard' ore, are present in large tonnages, the 'hard' ore is the only kind that combines minable tonnage with promising grade. About 15,000,000 tons of 'hard' ore is present; about 500,000 tons of this contains 15 percent or more of manganese and averages 17 percent, and somewhat over 2,000,000 tons contains 10 percent or more and averages nearly 13 percent. Except for closer drilling to determine such things as the tonnage, grade, spacing, and form of the richer shoots with greater accuracy before beginning to mine them, further explorations are not recommended, for any new ore found is likely to be similar, both in grade and kind, to that already discovered.