Science.gov

Sample records for copper ore tailings

  1. Beneficiation of flotation tailing from Polish copper sulfide ores

    SciTech Connect

    Luszczkiewicz, A.; Sztaba, K.S.

    1995-12-31

    Flotation tailing of Polish copper sulfide ores represents more than 90% of the mass of run-of-mine ore. The tailing contains mainly quartz, dolomite, clay minerals, traces of sulfides, and some accessory minerals. Almost all minerals of the tailing are well liberated and, therefore, any further beneficiation process applied to the tailing is expected to be inexpensive. In this work, results of investigations on utilization of flotation tailing using classification and gravity concentration are presented. It is shown that due to classification of flotation tailing in hydrocyclones, the coarse fraction becomes suitable material for gravity separation providing backfill material for underground mines as well as heavy minerals, a source of valuable rare elements. It was also found that heavy minerals separated by gravity methods contain a significant amount of rare elements such as zirconium, titanium, silver, rare earth metals, and uranium. The light fraction of the gravity separation contains well deslimed quartz particles and meets strict requirements for hydraulic filling material used for structural support in underground mines. Evaluation of the cost of the proposed technology indicated that investment to implement the method would provide a return within 2--4 years.

  2. Isolation and characterization of lost copper and molybdenum particles in the flotation tailings of Kennecott copper porphyry ores

    NASA Astrophysics Data System (ADS)

    Tserendavga, Tsend-Ayush

    The importance of flotation separation has long been, and continues to be, an important technology for the mining industry, especially to metallurgical engineers. However, the flotation process is quite complex and expensive, in addition to being influenced by many variables. Understanding the variables affecting flotation efficiency and how valuable minerals are lost to the tailings gives metallurgists an advantage in their attempts to increase efficiency by designing operations to target the areas of greatest potential value. A successful, accurate evaluation of lost minerals in the tailings and appropriate solutions to improve flotation efficiency can save millions of dollars in the effective utilization of our mineral resources. In this dissertation research, an attempt has been made to understand the reasons for the loss of valuable mineral particles in the tailings from Kennecott Utah Copper ores. Possibilities include liberation, particle aggregation (slime coating) and surface chemistry issues associated with the flotation separation. This research generally consisted of three main aspects. The first part involved laboratory flotation experiments and factors, which affect the flotation efficiency. Results of flotation testing are reported that several factors such as mineral exposure/liberation and slime coating and surface oxidation strongly affect the flotation efficiency. The second part of this dissertation research was to develop a rapid scan dual energy (DE) methodology using 2D radiography to identify, isolate, and prepare lost sulfide mineral particles with the advantages of simple sample preparation, short analysis time, statistically reliable accuracy and confident identification. The third part of this dissertation research was concerned with detailed characterization of lost particles including such factors as liberation, slime coating, and surface chemistry characteristics using advanced analytical techniques and instruments. Based on the

  3. Pressure leaching las cruces copper ore

    NASA Astrophysics Data System (ADS)

    Berezowsky, R. M.; Xue, T.; Collins, M. J.; Makwana, M.; Barton-Jones, I.; Southgate, M.; Maclean, J. K.

    1999-12-01

    A hydrometallurgical process was developed for treating the Las Cruces massive sulfide-ore deposit located near Seville, Spain. A two-stage countercurrent leach process, consisting of an atmospheric leach and a pressure leach, was developed to effectively leach copper from the copper-bearing minerals and to generate a solution suitable for the subsequent solvent-extraction and copper-electrowinning operations. The results of batch and continuous miniplant tests are presented.

  4. Environmentally safe design of tailing dams for the management of iron ore tailings in Indian context.

    PubMed

    Ghose, Mrinal K; Sen, P K

    2005-10-01

    The need for the disposal of iron ore tailings in an enviornmentally firiendly manner is of great concern. This paper investigates the soil engineering properties for the construction of iron ore tailing dam, its foundation, construction materials and design data used for the construction analysis of the tailing dam. Geophysical investigations were carried out to establish the bedrock below the spillway. A computer programme taking into account the Swedish Slip Circle Method of analysis was used in the stability analysis of dam. It also focuses on the charactierstics of the tailings reponsible for the determination of optimum size of tailing pond for the containment of the tailings. The studies on the settling characteristics of tailings indicate much less area in comparison to the area provided in the existing tailing ponds in India. In the proposed scheme, it is suggested to provide an additional unit of sedimentation tank before the disposal of tailings to the tailing pond.

  5. 1. VIEW OF EMPIRE MINE AREA WITH TAILINGS, ORE CHUTE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF EMPIRE MINE AREA WITH TAILINGS, ORE CHUTE, AND COLLAPSED BUILDINGS VISIBLE, AND BARE SWITCHBACK HILLSIDE FROM WHICH #4, #5 AND #6 WERE MADE. CAMERA IS POINTED NORTHWEST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  6. Estimated water requirements for the conventional flotation of copper ores

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water used by a conventional copper flotation plant. Water is required for many activities at a mine-mill site, including ore production and beneficiation, dust and fire suppression, drinking and sanitation, and minesite reclamation. The water required to operate a flotation plant may outweigh all of the other uses of water at a mine site, [however,] and the need to maintain a water balance is critical for the plant to operate efficiently. Process water may be irretrievably lost or not immediately available for reuse in the beneficiation plant because it has been used in the production of backfill slurry from tailings to provide underground mine support; because it has been entrapped in the tailings stored in the TSF, evaporated from the TSF, or leaked from pipes and (or) the TSF; and because it has been retained as moisture in the concentrate. Water retained in the interstices of the tailings and the evaporation of water from the surface of the TSF are the two most significant contributors to water loss at a conventional flotation circuit facility.

  7. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  8. Synthesis process of forsterite refractory by iron ore tailings.

    PubMed

    Li, Jing; Wang, Qi; Liu, Jihui; Li, Peng

    2009-01-01

    With mineral resources becoming gradually more deficient, as well as the issue of mine tailings causing environmental pollution, more and more people have realized the great significance of tailings utilization. Iron ore tailings, as a kind of secondary resource, have been developed in recycling industries. The feasibility to produce forsterite refractory from high-silicon iron tailings and high-magnesium raw materials were discussed. Also, the synthesis reaction processes were studied from the results of the laboratory experiments. The experiments showed that the synthesis processes can be separated into three steps when using iron tailings to synthesize forsterite: (1) produce magnesium iron sosoloid (Mg(1-X)Fe(X)O) and magnesium metasilicate (MgSiO3), (2) form the fayalite, and (3) create the forsterite. The synthetic productions are primarily forsterite, hortonolite, and small amounts of magnesium metasilicate (MgSiO3). The hortonolite is wrapped around the surface of the forsterite particles and formed the cementing phase. In addition, the method to produce forsterite refractory and lightweight forsterite refractory from iron tailings were offered.

  9. Electrodialytic remediation of copper mine tailings.

    PubMed

    Hansen, Henrik K; Rojo, Adrián; Ottosen, Lisbeth M

    2005-01-31

    Mining activities in Chile have generated large amounts of solid waste, which have been deposited in mine tailing impoundments. These impoundments cause concern to the communities due to dam failures or natural leaching to groundwater and rivers. This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2 V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4, and the copper by this reason was released in the solution. Furthermore, with acidic tailing the potential gradient was less than 2 V/cm. The maximum copper removal reached in the anode side was 53% with addition of sulphuric acid in 21 days experiment at 20 V using approximately 1.8 kg mine tailing on dry basis. In addition, experiments with acidic tailing show that the copper removal is proportional with time.

  10. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    ERIC Educational Resources Information Center

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  11. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    ERIC Educational Resources Information Center

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  12. Plant and soil reactions to nickel ore processed tailings

    SciTech Connect

    Sheets, P.J.; Volk, V.V.; Gardner, E.H.

    1982-07-01

    Greenhouse and laboratory experiments were conducted to determine the effect that tailings, produced during the processing of nickeliferous laterite ores by a proposed U.S. Bureau of Mines Process, would have on plant growth and soil properties. The tailings contained soluble salts (7.6 mmhos/cm), NH/sub 4/-N (877 ..mu..g/g), Ni (0.28%), Mn (82 ..mu..g/g DTPA-extractable), Cr (0.44%), P (2 and 6 ..mu..g/g acid F- and NaHCO/sub 3/-extractable, respectively), and Ca and Mg (1.0 and 20.7 meq/100 g NH/sub 4/Ac-extractable, respectively). Water leaching decreased the NH/sub 4/-N concentration to 53 ..mu..g/g and the EC to 0.4 mmhos/cm by removal of (NH/sub 4/)/sub 2/SO/sub 4/ and MgSO/sub 4/ salts. Tall fescue (Festuca arundinacea Schreb.) was grown on Eightlar clay soil (skeletal, serpentinitic, mesic Typic Xerochrept) amended with 0, 223, 446, and 669 g tailings/kg soil and pure, unleached tailings for 32 weeks in the greenhouse. Seedling establishment of plants grown on soil amended at the highest tailings rate and the pure tailings was initially slow, but plants grown on soil amended at lower rates established readily and grew well. Plant P was <0.24%, while plant Ca concentrations were <0.45% throughout the growth period even though Ca(H/sub 2/PO/sub 2/)/sub 2/ and gypsum had been added. Ammonium acetate-extractable Ca at the end of the growth period was <5.0 meq/100 g on all amended soils.The Mn, Ni, and Cr concentrations of plants grown on treated soils were within normal ranges, although soil-analysis values were higher than commonly found. It is recommended that the tailings be washed to reduce NH/sub 4/-N and soluble salts prior to revegetation, and that native soil be added to the surface to reduce crusting.

  13. Phytostabilization of iron ore tailings through Calophyllum inophyllum L.

    PubMed

    Chaturvedi, Nilima; Dhal, N K; Reddy, Palli Sita Rama

    2012-12-01

    The phytostabilization of waste material generated during mining and processing of iron ore through Calophyllum inophyllum L. have been investigated. Iron ore tailings and its varying composition with garden soil were taken to study plant growth, chlorophyll content and metal uptake pattern of Calophyllum inophyllum L. These studies indicate that 100% survival of plant species was noted in all the treatments without any toxicity symptoms. The increase in growth parameters and chlorophyll content along with the high metal accumulation in plant tissues suggests that Calophyllum inophyllum L. may be a potential tool for phytoremediation. The accumulation of Pb (1662 microgm/gm) and Fe (2313 microgm/gm) was observed to be maximum in the plant tissues followed by Cu, Zn, Cr, and Ni. The TF values for most of the heavy metals was observed to be > 1 which indicates that the plant can efficiently translocate these toxic metals to its above ground parts. Removal of more than 30% of the most of the heavy metal like Fe, Pb, and Cu & Zn has been observed in all the treatments during one year of observation. The overall study clearly suggests that the plant can be used as an efficient tool for restoration of mining wastes and other similarly contaminated sites.

  14. Studies on Leaching of Oxidized Copper Ore from South America

    NASA Astrophysics Data System (ADS)

    Zhu, Deqing; Wu, Tengjiao; Guo, Zhenqi; Pan, Jian; Li, Ziyun

    A leaching study was conducted on South America oxidized copper ore assaying 3.10% Cu, and the process parameters were optimized, including leaching temperature, leaching time, acid consumption, liquid-solid ratio and stirring rate. The results show that copper leaching rate of 92.02% were achieved under the optimized conditions as follows: raw ore crushed to 100% passing 1mm, leaching by sulfuric acid at 70°C for 1.5h with a sulfuric acid consumption of 150kg/t, liquid-solid ratio of 2:1, stirring rate of 300r/min. The leaching solution is a good feed for the subsequent extraction-electrowinning processes due to its high copper concentration and low contents of impurities like calcium and iron ions.

  15. Ore microscopy of the Paoli silver-copper deposit, Oklahoma

    USGS Publications Warehouse

    Thomas, C.A.; Hagni, R.D.; Berendsen, P.

    1991-01-01

    The Paoli silver-copper deposit is located in south-central Oklahoma, 56 km south-southeast from Norman, Oklahoma. It was mined for high-grade silver-copper near the beginning of this century, and intensive exploratory drilling during the early 1970's delineated unmined portions of the deposit. A collaborative study between the U.S.G.S., the Kansas Geological Survey, and the University of Missouri-Rolla was undertaken to provide new information on the character of red bed copper deposits of the Midcontinent region. The Paoli deposit has been interpreted to occur as a roll-front type of deposit. The silver and copper mineralization occurs within paleochannels in the Permian Wellington Formation. The silver-copper interfaces appear to be controlled by oxidation-reduction interfaces that are marked by grey to red color changes in the host sandstone. Ore microscopic examinations of polished thin sections show that unoxidized ore consists of chalcocite, digenite, chalcopyrite, covellite and pyrite; and oxidized ores are characterized by covellite, bornite, hematite and goethite. In sandstone-hosted ores, chalcocite and digenite replace dolomite and border clastic quartz grains. In siltstone-hosted ores, the copper sulfide grains have varied shapes; most are irregular in shape and 5-25 ??m across, others have euhedral shapes suggestive of pyrite crystal replacements, and some are crudely spherical and are 120-200 ??m across. Chalcopyrite is the predominant copper sulfide at depth. Covellite and malachite replace chalcocite and digenite near the surface. Silver only occurs as native silver; most as irregularly shaped grains 40-80 ??m across, but some as cruciform crystals that are up to 3.5 mm across. The native silver has been deposited after copper sulfides, and locally replaces chalcocite. Surficial nodules of pyrite, malachite and hematite locally are present in outcrops at the oxidation-reduction fronts. Polished sections of the nodules show that malachite forms a

  16. [Environmental hygiene and comprehensive processing of copper sulphate ore].

    PubMed

    Petrov, B A

    2004-01-01

    The modern comprehensive processing of copper-sulphate ores is based on using the fire, chemical and combined fire-and-hydrometallurgy processes. The existing schemes of comprehensive ore processing do not provide for a total utilization of the metallurgical cycles wastes due to the inherent technological and design shortcomings; besides, they are a source of environmental pollution. Contamination of the atmospheric air with discharge elements has unfavorable effects on the health condition of population; it worsens the natural body resistance and contributes (through the induction of chromosome aberrations) to a higher general morbidity and mortality due to malignant neoplasms. Health-improve measures are supported by modern achievements in the sphere of copper-sulphate ore processing technologies--they ensure the hygienic and ecological rational management and usage at all stages of the processing of raw materials and secondary products. Institutions of the territorial medical-and-ecological monitoring are the corner stones for ecological safety of persons residing in areas of comprehensive copper-and-sulphate ore processing.

  17. Insights Into Ore Deposit Genesis Using Copper Isotopes

    NASA Astrophysics Data System (ADS)

    Maher, K. C.; Larson, P. B.; Ramos, F. C.; Gaspar, M.; Chang, Z.

    2002-12-01

    Advances in MC-ICPMS have renewed interest in the analysis of transition metal isotopes to better constrain the processes involved in ore deposition. At WSU we employ sample-standard bracketing to accurately and precisely measure copper isotope ratios of whole mineral dissolutions without normalizing to zinc. This approach bypasses the use of chromatography for samples without significant isobaric interferences avoiding potential fractionation resulting from chromatography. Comparisons of analyses of native copper and chalcopyrite samples with and without chromatographic purification are within error. Reproducibility measured using native copper and chalcopyrite is \\pm0.03\\permil (1\\sigma, relative to NIST 976) over 2 months. We have found the range of δ65Cu values in chalcopyrite from a variety of ore deposits to be -0.9\\permil to +3.1\\permil. δ65Cu values of native copper and bornite samples are more restricted (-0.8\\permil to 1.3\\permil, and -1.1\\permil to 1.0\\permil, respectively). Additional minerals, including chalcocite, mohawkite, azurite and cuprite, have been analyzed from a variety of ore depositional environments. Variations in δ65Cu values of individual mineral species within a single deposit or district have smaller ranges. For example, "hypogene" native copper samples from the Michigan Native Copper district show a restricted range of values (0.2\\permil to 0.4\\permil), over 100km strike of the district. In addition, different genetically related minerals in the same deposit show distinctive trends in δ65Cu values. For example, co-precipitated chalcopyrite-bornite pairs from three deposits (Resolution, AZ, Beaver-Harrison Mine, UT, and Ferrobamba, Peru) display consistently higher δ65Cu values in chalcopyrite relative to bornite. Results from the Tintaya district, Peru and Resolution, AZ suggest that variations in δ65Cu values may be systematic on the deposit scale. In both deposits, δ65Cu in chalcopyrite increases with distance from

  18. 4. EMPIRE STATE MINE TAILINGS, ORE CHUTE/BIN, COLLAPSED BUILDING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EMPIRE STATE MINE TAILINGS, ORE CHUTE/BIN, COLLAPSED BUILDING FROM BELOW. CAMERA POINTED NORTHEAST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  19. Leaching of molybdenum and arsenic from uranium ore and mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    A sequential, selective extraction procedure was used to assess the effects of sulfuric acid milling on the geochemical associations of molybdenum and arsenic in a uranium ore blend, and the tailings derived therefrom. The milling process removed about 21% of the molybdenum and 53% of the arsenic initially present in the ore. While about one-half of the molybdenum in the ore was water soluble, only about 14% existed in this form in the tailings. The major portion of the extractable molybdenum in the tailings appears to be associated with hydrous oxides of iron, and with alkaline earth sulfate precipitates. In contrast with the pattern seen for molybdenum, the partitioning of arsenic into the various extractable fractions differs little between the ore and the tailings. ?? 1984.

  20. A Simulator for Copper Ore Leaching

    SciTech Connect

    Travis, B.

    1999-05-14

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Copper is a strategic metal and the nation needs a secure supply both for industrial use and military needs. However, demand is growing worldwide and is outstripping the ability of the mining industry to keep up. Improved recovery methods are critically needed to maintain the balance of supply and demand. The goal of any process design should be to increase the amount of copper recovered, control movement of acid and other environmentally harmful chemicals, and reduce energy requirements. To achieve these ends, several improvements in current technology are required, the most important of which is a better understanding of, and the ability to quantify, how fluids move through heterogeneous materials in a complex chemical environment. The goal of this project is create a new modeling capability that couples hydrology with copper leaching chemistry . once the model has been verified and validated, we can apply the model to specific problems associated with heap leaching (flow channeling due to non-uniformities in heap structure, precipitation/dissolution reactions, and bacterial action), to understand the causes of inefficiencies, and to design better recovery systems. We also intend to work with representatives of the copper mining industry to write a coordinated plan for further model development and application that will provide economic benefits to the industry and the nation.

  1. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  2. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Wen, Shu-ming; Deng, Jian-ying; Wu, Dan-dan

    2015-03-01

    Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leaching were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reaction temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate minerals of copper, zinc, cobalt and so on in an SA system.

  3. Recovery of Iron from Copper Tailings by Direct Reduction

    NASA Astrophysics Data System (ADS)

    Gu, Jing; Xia, De-Hong; Gu, Jing; Liu, Kai-Qi; Zhang, Feng; Wang, Shou-Zeng; Qi, Zhao-Dong; Ao, Wen-Qing

    2016-05-01

    Direct reduction of copper tailings were performed to recover iron efficiently by carbon-containing pellets, and the metallization rate was gained by chemical analysis method. The results showed that the metallization rate of copper tailings was up to 85.32% and the best reduction parameters are also found. Content of precious metals, such as, gold, silver in copper tailings can be enriched by 1.8~1.9 times through removing iron. The apparent activation energy of direct reduction of iron oxide in copper tailings is calculated to be 125.4 kJ/mol and the restrictive factor of reduction process is solid diffusion.

  4. Innovative methodology for comprehensive utilization of iron ore tailings: part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material.

    PubMed

    Li, Chao; Sun, Henghu; Yi, Zhonglai; Li, Longtu

    2010-02-15

    In order to comprehensive utilization of iron ore tailings, this experimental research was to investigate the possibility of using the residues after iron recovery from iron ore tailings as raw materials for the preparation of cementitious material, abbreviated as TSC, including analyses of its mechanical properties, physical properties and hydration products. The TSC1 was prepared by blending 30% the residues, 34% blast-furnace slag, 30% clinker and 6% gypsum. Meanwhile, the raw iron ore tailings (before iron recovery) with the same proportion of TSC1 were selected to compare the cementitious activity of raw tailings and the residues after magnetizing roasting, denoted by TSC0. The hydration products of them were mostly ettringite, calcium hydroxide and C-S-H gel, characterized by XRD, IR and SEM. It was found that ettringite and C-S-H gel were principally responsible for the strength development of TSC mortars with curing time. The results showed that the kaolinite of the tailings was decomposed completely after magnetizing roasting, which promoted the cementitious property of TSC1. Moreover, the mechanical properties of TSC1 are well comparable with those of 42.5 ordinary Portland cement according to Chinese GB175-2007 standard.

  5. Phytostabilisation potential of lemon grass (Cymbopogon flexuosus (Nees ex Stend) Wats) on iron ore tailings.

    PubMed

    Mohanty, M; Dhal, N K; Patra, P; Das, B; Reddy, P S R

    2012-01-01

    The present pot culture study was carried out for the potential phytostabilisation of iron ore tailings using lemon grass (Cymbopogon flexuosus) a drought tolerant, perennial, aromatic grass. Experiments have been conducted by varying the composition of garden soil (control) with iron ore tailings. The various parameters, viz. growth of plants, number of tillers, biomass and oil content of lemon grass are evaluated. The studies have indicated that growth parameters of lemon grass in 1:1 composition of garden soil and iron ore tailings are significantly more (-5% increase) compared to plants grown in control soil. However, the oil content of lemon grass in both the cases more or less remained same. The results also infer that at higher proportion of tailings the yield of biomass decreases. The studies indicate that lemongrass with its fibrous root system is proved to be an efficient soil binder by preventing soil erosion.

  6. Rock Smelting of Copper Ores with Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Norgate, Terry; Jahanshahi, Sharif; Haque, Nawshad

    It is generally recognised that the grades of metallic ores are falling globally. This trend can be expected to increase the life cycle-based energy requirement for primary metal production due to the additional amount of material that must be handled and treated in the mining and mineral processing stages of the metal production life cycle. Rock (or whole ore) smelting has been suggested as a possible alternative processing route for low grade ores with a potentially lower energy intensity and environmental impact than traditional processing routes. In this processing route, the beneficiation stage is eliminated along with its associated energy consumption and greenhouse gas emissions, but this is partially offset by the need for more solid material to be handled and heated up to smelting temperatures. A life cycle assessment study was carried out to assess the potential energy and greenhouse gas benefits of a conceptual flowsheet of the rock smelting process, using copper ore as an example. Recovery and utilisation of waste heat in the slag (via dry slag granulation) and offgas streams from the smelting step was also included in the study, with the waste heat being utilised either for thermal applications or electricity generation.

  7. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting.

    PubMed

    Li, Chao; Sun, Henghu; Bai, Jing; Li, Longtu

    2010-02-15

    Iron ore tailings have become one kind of the most hazardous solid waste. In order to recycle iron in the tailings, we present a technique using magnetizing roasting process followed by magnetic separation. After analysis of chemical composition and crystalline phase, according to experimental mechanism, the effects of different parameters on recovery efficiency of iron were carried out. The optimum reaction parameters were proposed as the following: ratio of coal: iron ore tailings as 1:100, roasting at 800 degrees C for 30 min, and milling 15 min of roasted samples. With these optimum parameters, the grade of magnetic concentrate was 61.3% Fe and recovery rate of 88.2%. With this method, a great amount of iron can be reused. In addition, the microstructure and phase transformation of the process of magnetizing roasting were studied.

  8. Characteristics of iron ore tailing slime in India and its test for required pond size.

    PubMed

    Ghose, M K; Sen, P K

    2001-04-01

    The physical and chemical nature of the tailing slime depends on milling operations and water content in the effluent. The characteristics of the tailings dictate the type of disposal facility required. Characteristics of the tailings, transportation from beneficiation plants and disposal system are described. Studies on tailing slime have been carried out at iron ore mines in Orissa and the results are discussed. The tailings contain toxic elements and find their way into the water environment. Sedimentation test was carried out on tailings and the area required for tailing pond was found to be 3155 m2 in comparison to 10000 m2 obtained from the use of an empirical equation. Provision of tailing pond for the disposal of tailings is a conservation of resources in addition to pollution control, and sedimentation test is essential for required pond size calculation.

  9. Thermal Decomposition of Copper Ore Concentrate and Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Szyszka, Danuta; Wieckowska, Jadwiga

    2016-10-01

    Thermal analyses (TGA and DTA) of the composite, comprised of 10% polyethylene (PE) scrap and 90% copper ore concentrate, enabled determination of the temperature range and decomposition degree of the organic matters in argon atmosphere. Products of pyrolysis were qualitatively and quantitatively determined. The results were compared to those obtained for products of pyrolysis of the composite in air. Products of pyrolysis were identified by means of the gas chromatography (GC) method alone or supported with results of mass spectrometry analyses (GC-MS).

  10. Leaching of radionuclides from uranium ore and mill tailings ( Ra- 226, Tn-230).

    USGS Publications Warehouse

    Landa, E.R.

    1982-01-01

    The major part of the extractable uranium is associated with a readily acid-soluble fraction in both ore and tailings. The major part of the extractable 226Ra was associated with an iron, manganese hydrous-oxide fraction in the ore and tailings. Thorium-230 was the least leachable of the radionuclides studied. The major portion of the extractable 230Th was associated with alkaline-earth sulphate precipitates, organic matter, or both. The specific effects of milling on each of the nuclides are discussed.-Author

  11. Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings

    SciTech Connect

    Yu Honghao; Xue Xiangxin; Huang Dawei

    2009-11-15

    Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N{sub 2} physisorption. The as-synthesized materials had high surface area of 527 m{sup 2} g{sup -1} and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.

  12. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory. (a)...

  13. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory. (a)...

  14. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics

    SciTech Connect

    Liu, Jie; Meng, Junping; Liang, Jinsheng; Duan, Xinhui; Huo, Xiaoli; Tang, Qingguo

    2015-06-15

    Highlights: • Detailed process proposed for preparation of iron ore tailings ceramics. • Replace natural minerals with iron ore tailings as raw materials for preparing functional ceramics. • Impact mechanism of Ce on far infrared ceramics, as well as its optimum addition amounts can be obtained. • Propose a new perspective on considering the mechanism of far infrared radiation. - Abstract: A kind of far infrared radiation ceramics was prepared by using iron ore tailings, CaCO{sub 3} and SiO{sub 2} as main raw materials, and Ce as additive. The result of Fourier transform infrared spectroscopy showed that the sample exhibits excellent radiation value of 0.914 when doping 7 wt.% Ce. Ce{sup 4+} dissolved into iron diopside and formed interstitial solid solution with it sintered at 1150 °C. The oxidation of Fe{sup 2+} to Fe{sup 3+} caused by Ce{sup 4+} led to a decrease of crystallite sizes and enhancement of Mg–O and Fe–O vibration in iron diopside, which consequently improved the far infrared radiation properties of iron ore tailings ceramics.

  15. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  16. Assessment of (222)Rn emanation from ore body and backfill tailings in low-grade underground uranium mine.

    PubMed

    Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2014-02-01

    This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.

  17. Recovery of Manganese Ore Tailings by High-Gradient Magnetic Separation and Hydrometallurgical Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiufeng; Tan, Xiumin; Yi, Yuejun; Liu, Weizao; Li, Chun

    2017-08-01

    With the depletion of high-grade manganese ores, Mn ore tailings are considered valuable secondary resources. In this study, a process combining high-gradient magnetic separation (HGMS) with hydrometallurgical methods is proposed to recycle fine-grained Mn tailings. The Mn tailings were treated by HGMS at 12,500 G to obtain a Mn concentrate of 30% Mn with the recovery efficiency of 64%. The Mn concentrate could be used in the ferromanganese industry. To recover Mn further, the nonmagnetic fraction was leached by SO2 in an H2SO4 solution. Hydrogen peroxide was added to the leachate to oxidize Fe2+ to Fe3+, and the solution pH was adjusted to 5.0-5.5 with ammonia to remove Al, Fe, and Si impurities. The purified solution was reacted with NH4HCO3, and a saleable product of MnCO3 with 97.9% purity was obtained. The combined process can be applied to Mn recovery from finely dispersed weakly magnetic Mn ores or tailings.

  18. Synthesis of Fe-MCM-41 Using Iron Ore Tailings as the Silicon and Iron Source.

    PubMed

    Li, Xin; Yu, Honghao; He, Yan; Xue, Xiangxin

    2012-01-01

    Highly ordered Fe-MCM-41 molecular sieve was successfully synthesized by using n-hexadecyl-trimethyl ammonium bromide (CTAB) as the template and the iron ore tailings (IOTs) as the silicon and iron source. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy, (29)Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption were used to characterize the samples. The results showed that the mesoporous materials had highly ordered 2-dimensional hexagonal structure. The synthesized sample had high surface area, and part of iron atoms is retained in the framework with formation of tetrahedron after removal of the template by calcinations. The results obtained in the present work demonstrate the feasibility of employing iron ore tailings as a potential source of silicon and iron to produce Fe-MCM-41 mesoporous materials.

  19. Synthesis of Fe-MCM-41 Using Iron Ore Tailings as the Silicon and Iron Source

    PubMed Central

    Li, Xin; Yu, Honghao; He, Yan; Xue, Xiangxin

    2012-01-01

    Highly ordered Fe-MCM-41 molecular sieve was successfully synthesized by using n-hexadecyl-trimethyl ammonium bromide (CTAB) as the template and the iron ore tailings (IOTs) as the silicon and iron source. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy, 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption were used to characterize the samples. The results showed that the mesoporous materials had highly ordered 2-dimensional hexagonal structure. The synthesized sample had high surface area, and part of iron atoms is retained in the framework with formation of tetrahedron after removal of the template by calcinations. The results obtained in the present work demonstrate the feasibility of employing iron ore tailings as a potential source of silicon and iron to produce Fe-MCM-41 mesoporous materials. PMID:22567574

  20. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  1. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite.

    PubMed

    Romo, E; Weinacker, D F; Zepeda, A B; Figueroa, C A; Chavez-Crooker, P; Farias, J G

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control.

  2. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.

    PubMed

    Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta

    2011-10-01

    Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.

  3. Effect of Tourmaline-Doped on the Far Infrared Emission of Iron Ore Tailings Ceramics.

    PubMed

    Liu, Jie; Meng, Junping; Liang, Jinsheng; Zhang, Hongchen; Gu, Xiaoyang

    2016-04-01

    Iron ore tailings as secondary resources have been of great importance to many countries in the world. Their compositions are similar to that of infrared emission ceramics, but there are few reports about it. In addition, tourmaline has high infrared emission properties due to its unique structure. With the purpose of expanding functional utilization of iron ore tailings, as well as reducing the production cost of far infrared ceramics, a new kind of far infrared emission ceramics was prepared by using iron ore tailings, calcium carbonate, silica, and natural tourmaline. The ceramics powders were characterized by Fourier transform infrared spectroscope, X-ray diffraction and scanning electron microscopy, respectively. The results show that after being sintered at 1065 °C, the percentage of pseudobrookite and lattice strain of samples increased with increasing the elbaite content. Furthermore, the added tourmaline was conducive to the densification sintering of ceramics. The appearance of Li-O vibration at 734.73 cm-1, as well as the strengthened Fe-O vibration at 987.68 cm-1 were attributed to the formation of Li0.375Fe1.23Ti1.4O5 solid solution, which led the average far infrared emissivity of ceramics increase from 0.861 to 0.906 within 8-14 µm.

  4. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum...

  5. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum...

  6. Microwave enhanced recovery of nickel-copper ore: communition and floatability aspects.

    PubMed

    Henda, R; Hermas, A; Gedye, R; Islam, M R

    2005-01-01

    A study describing the effect of microwave radiation, at a frequency of 2450 MHz, on the processes of communication and flotation of a complex sulphide nickel-copper ore is presented. Ore communication has been investigated under standard radiation-free conditions and after ore treatment in a radiated environment as a function of ore size, exposure time to radiation, and microwave power. The findings show that communication is tremendously improved by microwave radiation with values of the relative work index as low as 23% at a microwave power of 1.406 kW and after 10 s of exposure time. Communication is affected by exposure time and microwave power in a nontrivial manner. In terms of ore floatability, the experimental tests have been carried out on a sample of 75 microm in size under different exposure times. The results show that both ore concentrate recoveries and grades of nickel and copper are significantly enhanced after microwave treatment of the ore with relative increases in recovered concentrate, grade of nickel, and grade of copper of 26 wt%, 15 wt%, and 27%, respectively, at a microwave power of 1330 kW and after 30 s of exposure time.

  7. Catalytic-Oxidative Leaching of Low-Grade Complex Zinc Ore by Cu (II) Ions Produced from Copper Ore in Ammonia-Ammonium Sulfate Solution

    NASA Astrophysics Data System (ADS)

    Liu, Zhi Xiong; Yin, Zhou Lan; Hu, Hui Ping; Chen, Qi Yuan

    2012-10-01

    The catalytic-oxidative leaching of a mixed ore, which consists of low-grade oxide copper ore and oxide zinc ore containing ZnS, was investigated in ammonia-ammonium sulfate solution. The effect of the main parameters, such as mass ratio of copper ore to zinc ore, liquid-to-solid ratio, concentration of lixivant, leaching time, and temperature, was studied. The optimal leaching conditions with a maximum extraction of Cu 92.6 pct and Zn 85.5 pct were determined as follows: the mass ratio of copper ore to zinc ore 4/10 g/g, temperature 323.15 K (50 °C), leaching time 6 hours, stirring speed 500 r/min, liquid-to-solid ratio 3.6/1 cm3/g, concentration of lixivant including ammonia 2.0 mol/dm3, ammonium sulfate 1.0 mol/dm3, and ammonium persulfate 0.3 mol/dm3. It was found that ZnS in the oxide zinc ore could be extracted with Cu(II) ion, which was produced from copper ore and was used as the catalyst in the presence of ammonium persulfate.

  8. Idea of Identification of Copper Ore with the Use of Process Analyser Technology Sensors

    NASA Astrophysics Data System (ADS)

    Jurdziak, Leszek; Kaszuba, Damian; Kawalec, Witold; Król, Robert

    2016-10-01

    The Polish resources of the copper ore exploited by the KGHM S.A. underground mines are considered as one of the most complex in the world and - consequently - the most difficult to be processed. The ore consists of three lithology forms: dolomites, shales and sandstones but in different proportions which has a significant impact on the effectiveness of the grinding and flotation processes. The lithological composition of the ore is generally recognised in-situ but after being mined it is blended on its long way from various mining fields to the processing plant by the complex transportation system consisting of belt conveyors with numerous switching points, ore bunkers and shafts. Identification of the lithological composition of the ore being supplied to the processing plant should improve the adjustments of the ore processing machinery equipment aiming to decrease the specific processing (mainly grinding) energy consumption as well as increase the metal recovery. The novel idea of Process Analyser Technology (PAT) sensors - information carrying pellets, dropped into the transported or processed bulk material which can be read directly when needed - is investigated for various applications within the DISIRE project (a part of the SPIRE initiative, acting under the Horizon2020 framework program) and here is adopted for implementing the annotation the transported copper ore for the needs of ore processing plants control. The identification of the lithological composition of ore blended on its way to the processing plant can be achieved by an information system consisting of pellets that keep the information about the original location of the portions of conveyed ore, the digital, geological database keeping the data of in-situ lithology and the simulation models of the transportation system, necessary to evaluate the composition of the blended ore. The assumptions of the proposed solution and the plan of necessary in-situ tests (with the special respect to harsh

  9. Neutron-activation analysis applied to copper ores and artifacts

    NASA Technical Reports Server (NTRS)

    Linder, N. F.

    1970-01-01

    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.

  10. Determination of copper content in soils and ores by laser-induced breakdown spectrometry

    NASA Astrophysics Data System (ADS)

    Labutin, T. A.; Popov, A. M.; Zaytsev, S. M.; Cal'ko, I. A.; Zorov, N. B.

    2016-09-01

    It is demonstrated that the method of laser-induced breakdown spectrometry can be applied for quantitative determination of the copper content at a level of 500-40000 g/t, typical for copper ores and soil in the outcrop areas. To avoid the self-absorption of the resonance copper lines, we studied the most intense nonresonant lines of copper atoms and ions. It is shown that the Cu I 521.82-nm line is rather intense and provides the linear calibration. The copper detection limit for this line of 280 g/t allows its use for rapid mapping of outcrop areas.

  11. Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis

    NASA Astrophysics Data System (ADS)

    Hao, Xiao-dong; Liang, Yi-li; Yin, Hua-qun; Liu, Hong-wei; Zeng, Wei-min; Liu, Xue-duan

    2017-04-01

    Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains was carried out by mixed cultures on a small scale over a period of 210 d. Lump ores as a framework were loaded at the bottom of the ore heap. The overall copper leaching rates of tailings and lump ores were 57.10wt% and 65.52wt%, respectively. The dynamic shifts of microbial community structures about attached microorganisms were determined using the Illumina MiSeq sequencing platform based on 16S rRNA amplification strategy. The results indicated that chemolithotrophic genera Acidithiobacillus and Leptospirillum were always detected and dominated the microbial community in the initial and middle stages of the heap bioleaching process; both genera might be responsible for improving the copper extraction. However, Thermogymnomonas and Ferroplasma increased gradually in the final stage. Moreover, the effects of various physicochemical parameters and microbial community shifts on the leaching efficiency were further investigated and these associations provided some important clues for facilitating the effective application of bioleaching.

  12. Electrodialytic remediation of copper mine tailings using bipolar electrodes.

    PubMed

    Rojo, Adrián; Cubillos, Luis

    2009-09-15

    In this work an electrodialytic remediation (EDR) cell for copper mine tailings with bipolar stainless steel plates was analyzed. The bipolar plates were inserted inside the tailings, dividing it into independent electrochemical cells or sections, in order to increase the copper removal efficiency from mine tailings. The bipolar plates design was tested on acidic copper mine tailings with a fixed: applied electric field, liquid content, initial pH, and remediation time. The laboratory results showed that inserting bipolar plates in EDR cells improves the remediation action, even though the applied electric field is reduced by the electrochemical reactions on the plates. Basically three aspects favor the process: reduction of the ionic migration pathways, increase of the electrode surface, and in-situ generation of protons (H(+)) and hydroxyls (OH(-)). Furthermore, the laboratory results with citric acid addition significantly improve the remediation actions, reaching copper removal of up to nine times better, compared to conventional EDR experiments without any plates or citric acid addition.

  13. Research on Ore-controlling factors and Metallogenic Prognosis of Dongchuan Copper Mining Area, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Wang, Tianguo; Liu, Jishun; Huang, Chaowen

    2017-03-01

    Dongchuan is a famous copper producing area in China, where has good geological condition to form many copper deposits with local characteristics. This article summarizes the metallogenic regularities of Dongchuan copper deposits based on the previous works, research findings and the latest research advances. The study suggests that the Dongchuan copper-ore area has a good metallogenic background and immense prospecting potential. Copper ore is mainly found in Yinmin Formation, Luoxue Formation, Heishan Formation, Daqiaodi Formation, and in the Sinian-aged basement, and its occurrence is closely related to volcanic magmatism. The discussions regarding prospecting directions of Dongchuan copper ore were conducted based on the metallogenic regularity research, the results shows that further expanding of the exploration activities from the existing ore-bodies would be carried out; the breakthrough points focus on the Pingdingshan Formation, Qinglongshan Formation, and Daqiaodi Formation strata; at the same tine, more attention should be paid to the new types of deposits, such as Yanziya-type or hydrothermal deposits.

  14. Native plant restoration of biosolids-amended copper mine tailings

    SciTech Connect

    Kramer, P.A.; Zabowski, D.; Everett, R.L.; Scherer, G.

    1998-12-31

    Copper mine tailings are difficult to revegetate due to nutrient deficiencies, high levels of acidity, and potential metal toxicities. An amendment of biosolids could ameliorate these harsh growing conditions through the addition of available nutrients, improvement of physical soil properties (e.g., increased water holding capacity), and possible lowering of toxic metal availability through complexation with organic matter. A study was conducted on mine tailings at Holden, WA to evaluate the effect of an amendment of biosolids on the survival and growth of five native plant species (Sitka alder, big leaf maple, fireweed, w. yarrow, and pearly everlasting). Plots were established in tailings, gravel over tailings (G/T), and biosolids plus gravel over tailings. Each of the native plant species, except maple, had their highest survival in the biosolids-amended plot with 3 species at 100% survival. The biosolids amendment was shown to improve the growth of all species except maple. Fireweed produced 62 times more biomass in the biosolids-amended plot compared to the unamended plot (G/T). Plant analysis revealed a dramatic increase in nutrient content with the amendment of biosolids. Biosolids improved the survival, growth, and nutritional status of native plant species on the copper mine tailings.

  15. Quantitative mineralogical characterization of chrome ore beneficiation plant tailing and its beneficiated products

    NASA Astrophysics Data System (ADS)

    Das, S. K.

    2015-04-01

    Mineralogical characterization and liberation of valuable minerals are primary concerns in mineral processing industries. The present investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN®, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spectrometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr2O3 and 39.19wt% Fe2O3, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 μm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr2O3 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.

  16. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    PubMed

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  17. Utilization of Polyethylene Waste and Polypropylene Wastes for Formation of Fine Copper Ore Concentrates

    NASA Astrophysics Data System (ADS)

    Szyszka, Danuta; Więckowska, Jadwiga

    2016-10-01

    The possibilities for utilization of polyethylene waste and polypropylene waste as a binding material for formation of fine grain of copper ore concentrate in Hake Rheomix were examined. The optimum parameters of the formation processes were established. Strength, thermal and microscopic properties the products obtained were determined.

  18. Effects of Particle Size and Particle Loading on the Tensile Properties of Iron-Ore-Tailing-Filled Epoxy and Polypropylene Composites

    NASA Astrophysics Data System (ADS)

    Onitiri, M. A.; Akinlabi, E. T.

    2017-01-01

    The effect of particle size and particle loading on the stiffness and tensile strength of iron-ore-tailing-filled epoxy and polypropylene composites was investigated experimentally, and the results obtained are compared with calculations by various theoretical models. It was found that the stiffness of the materials increased with content of iron ore tailings.

  19. Krasnotur'insk Skarn copper ore field, Northern Urals: The U-Pb age of ore-controlling diorites and their place in the regional metallogeny

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Gerdes, A.; Rovnushkin, M. Yu.

    2014-06-01

    The Krasnotur'insk skarn copper ore field known from the theoretical works of Academician K.S. Korzhinskii is located in the western part of the Tagil volcanic zone (in the area of the town of Krasnotur'insk). The ore field is composed of layered Devonian (Emsian) volcanosedimentary rocks intruded by small plutons of quartz diorites, diorites, and gabbrodiorites. Widespread pre-ore and intra-ore dikes of similar composition control the abundance of the andradite skarns formed after limestones and the magnetitesulfide and sulfide ore bodies formed after skarns. The LA-ICP-MS U-Pb concordant age of zircon from the quartz diorite of the Vasil'evsko-Moskalevskii pluton calculated by 16 analyses (16 crystals) is 407.7 ± 1.6 Ma (MSWD = 1.5). Taking into account the geological and petrogeochemical similarity of diorites of small plutons and intra-ore dikes, it is assumed that this age corresponds to the period of formation of the ore-magmatic system of the Krasnotur'insk skarn copper ore field. It was probably formed somewhat earlier than the Auerbakh montzonitic pluton and the accompanying skarn magnetite deposits in the south.

  20. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings.

  1. Contamination of soils near a tailing pond at the Zlate Hory polymetallic ore deposit

    SciTech Connect

    Raclavska, H.; Raclavska, K.

    1994-12-31

    The relationship between concentrations of trace elements in soils and their content in plants has became a frequently discussed issue. Attention also focuses on the effects of trace element concentrations on the healthy development of vegetation. The Zlate Hory Mining District (in the northern part of the Jeseniky Mountains, 14 km east of Jesenik) with its polymetallic mineral deposits represents an important geochemical source area. It provides opportunities for the study of trace element distributions in the soil horizons and vegetation of a forest comprising mainly Norway spruce, Picea abies (L.) Karsten. Conditions of geochemical migration vary widely from geochemical background to the anomalous areas affected by a high level of mining activity. Trace element distribution in soil horizons was studied in the flood plain of Prudnik Creek. The study area was delineated using basic square units, 10 x 10 m, alternated regularly with free squares. Soil sampling was performed inside the basic square units simultaneously with geobotanical mapping. The study area was located where soils of the flood plain are influenced by waters discharged from a tailing pond and by the highly contaminated waters of Prudnik Creek. The tailing pond is situated above the study area, on the western slope of the Prudnik valley. The mine and mineral dressing plant is located two kilometers upstream to the south. Flotation technology is used to produce chalcopyrite concentrate from ore of the disseminated type. Stratiform ore bodies formed by chalcopyrite and pyrite, with some admixtures of galena and sphalerite, are deposited in metamorphosed Devonian series with quartzite and phyllites predominant.

  2. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  3. Characterization of energy critical elements in ore resources and associated waste tailings: Implications for recovery and remediation

    NASA Astrophysics Data System (ADS)

    McClenaghan, Sean H.

    2015-04-01

    The occurrence of Energy Critical Elements (ECE) in primary ore minerals and their subsequent enrichment in waste tailings is of great metallurgical interest. Recovery of many ECEs, in particular In, Ge, and Ga have come chiefly as a by-product of base-metal production (smelting and refining); these elements are found only at very low levels in the Earth's crust and do not typically form economic deposits on their own. As the ECEs become more important for a growing number of technological applications, it is critical to map the distribution of these elements in ore and waste (gangue) minerals to optimize their recovery and remediation. The characterization and beneficiation of ECEs is best illustrated for Zn-rich ore systems, where a mineral such as sphalerite (ZnS) will concentrate a number of major (Fe, Mn) and important trace elements (Cd, Se, In, Ge, Te, Sn, Bi, Sb, Hg). Interestingly, the mineral chemistry of sphalerite will often differ between different styles of mineralization (i.e., granite-hosted veins versus volcanic-hosted massive sulfides) and can even exhibit considerable variability within a deposit in response to metal zonation across hydrothermal facies. This has significant metallurgical implications for the blending of ore resources, the efficient production of Zn concentrates, and their ultimate value during the smelting and refining stages. Gangue minerals transferred to waste tailings may also exhibit significant enrichment in ECEs and precious metals; including Au in pyrite-arsenopyrite, and rare earth elements in a range of carbonate and phosphate minerals. In situ micro-analytical techniques are ideal for the quantitative measurement of trace elements in ore minerals as well as associated gangue materials. Recent advances in ICP-MS and ICP-OES technology coupled with newer classes of UV Excimer lasers (native 193 nm light) have allowed for more discrete analyses, permitting micro-chemical mapping at small scales (<10 microns). Further

  4. Bacterial Community in Copper Sulfide Ores Inoculated and Leached with Solution from a Commercial-Scale Copper Leaching Plant

    PubMed Central

    Espejo, R. T.; Romero, J.

    1997-01-01

    Most copper bioleaching plants operate with a high concentration of sulfate salts caused by the continuous addition of sulfuric acid and the recycling of the leaching solution. Since the bacteria involved in bioleaching have been generally isolated at low sulfate concentrations, the bacterial population in ores leached with the high-sulfate solution (1.25 M) employed in a copper production plant was investigated. The complexity of the original population was assessed by the length pattern of the spacer regions between the 16S and 23S rRNA genes, observed after PCR amplification of the DNA extracted from the leached ore. Six main spacers were distinguished by electrophoretic migration, but they could be further resolved into eight spacers by nucleotide sequence homology. The degree of homology was inferred from the electrophoretic migration of the heteroduplexes formed after hybridization. One of the spacers was indistinguishable from that found in Thiobacillus thiooxidans, four could be related to Thiobacillus ferrooxidans, and three could be related to Leptospirillum ferrooxidans. Only five of the spacers in the original sample could be recovered after culturing in media containing different inorganic energy source. Altogether, the results indicate that the bacteria in the leached ore formed a community composed of at least three species: a fairly homogeneous population of T. thiooxidans strains and two heterogeneous populations of T. ferrooxidans and L. ferrooxidans strains. PMID:16535570

  5. [Leaching of copper ore of the Udokanskoe deposit at low temperatures by an association of acidophilic chemolithotrophic microorganisms].

    PubMed

    Kondrat'eva, T F; Pivovarova, T A; Krylova, L N; Melamud, V S; Adamov, E V; Karavaĭko, G I

    2011-01-01

    Pure cultures of indigenous microorganisms Acidithiobacillus ferrooxidans strain TFUd, Leptospirillum ferrooxidans strain LUd, and Sulfobacillus thermotolerans strain SUd have been isolated from the oxidation zone of sulfide copper ore of the Udokanskoe deposit. Regimes of bacterial-chemical leaching of ore have been studied over a temperature range from -10 to +20 degrees C. Effects of pH, temperature, and the presence of microorganisms on the extraction of copper have been shown. Bacterial leaching has been detected only at positive values of temperature, and has been much more active at +20 than at +4 degrees C. The process of leaching was more active when the ore contained more hydrophilic and oxidized minerals. The possibility of copper ore leaching of the Udokanskoe deposit using sulfuric acid with pH 0.4 at negative values of temperature and applying acidophilic chemolithotrophic microorganisms at positive values of temperature and low pH values was shown.

  6. Removal of hazardous radionuclides from uranium ore and/or mill tailings. Progress report, October 1, 1978-September 30, 1979

    SciTech Connect

    Scheitlin, F.M.; Bond, W.D.

    1980-01-01

    The leaching of uranium ore and mill tailings to remove radium was studied. A few scouting tests were performed to obtain data on the recovery of radium, thorium, and uranium from leach liquors and on the recycle of leaching agents. Nitric acid, hydrochloric acid, ethylenediaminetetraacetic acid (EDTA), and diethylenetriaminepentaacetic acid (DTPA) were evaluated as leachants using one sample of a western US ore and two samples of tailings obtained from different uranium mills that employ the sulfuric acid leach process. Leached solids with radium contents approaching 10 pCi/g (98% radium removal) were obtained after six stages of batch, crosscurrent leaching with 3 M HNO/sub 3/ at 33% concentration of solids and a temperature of 60/sup 0/C. On the basis of two-stage tests on mill tailings, 0.5 M EDTA solutions at pH values of 8.2 to 11.6 were found to be more effective, while hydrochloric acid in two- or three-stage tests was less effective than nitric acid. Solutions of 0.3 M EDTA and 0.05 M DTPA were ineffective. No important differences were observed in the leaching behavior of ore and of mill tailings derived from the same ore. The residue remaining after six stages of nitric acid leaching was relatively intractable to radium leaching with water or additional nitric acid leaching. Tests indicated that the recycle of nitric acid is chemically feasible by evaporating the leach liquors to recover unused acid and then thermally decomposing the metal salts to recover consumed acid. Radium recoveries of 99+% by carrying on barium sulfate were shown to be chemically feasible in a series of experiments with leach liquors, but processing applications would probably require methods for barium recycle and barium-radium separation. Recovery of /sup 230/Th and uranium from nitrate leach liquors by tri-n-butyl phosphate extraction appears promising in initial tests.

  7. Recovery of Rare Earths, Niobium, and Thorium from the Tailings of Giant Bayan Obo Ore in China

    NASA Astrophysics Data System (ADS)

    Yu, Xiu-Lan; Bai, Li; Wang, Qing-Chun; Liu, Jia; Chi, Ming-Yu; Wang, Zhi-Chang

    2012-06-01

    The recovery of rare earths, niobium, and thorium from Bayan Obo's tailings has been investigated because the Bayan Obo ore is rich in rare earths and rich in niobium and thorium, but it is mined mainly as an iron ore and will be used up soon. By carbochlorination between 823 K (550 °C) and 873 K (600 °C) for 2 hours, 76 to 93 pct of rare earths were recovered from the tailings, which were much higher than those from Bayan Obo's rare earth concentrate, together with 65 to 78 pct of niobium, 72 to 92 pct of thorium, 84 to 91 pct of iron, and 81 to 94 pct of fluorine. This suggests a cooperative reaction mechanism that carbochlorination of iron minerals (and carbonates) in the tailings enhances that of rare earth minerals, which is supported by a thermodynamic analysis. Subsequently, niobium separation from the low-volatile, ultrahigh iron chloride mixture was achieved efficiently by selective oxidation with Fe2O3. This process, combined with the best available technologies for separation of rare earths and thorium from the involatile chloride mixture and for comprehensively using other valuable elements, allows the ore to minimize radioactive waste and to use rare metal resources sustainably in the future.

  8. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource.

  9. Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper.

    PubMed

    Vieira, Marisa D M; Goedkoop, Mark J; Storm, Per; Huijbregts, Mark A J

    2012-12-04

    In the life cycle assessment (LCA) of products, the increasing scarcity of metal resources is currently addressed in a preliminary way. Here, we propose a new method on the basis of global ore grade information to assess the importance of the extraction of metal resources in the life cycle of products. It is shown how characterization factors, reflecting the decrease in ore grade due to an increase in metal extraction, can be derived from cumulative ore grade-tonnage relationships. CFs were derived for three different types of copper deposits (porphyry, sediment-hosted, and volcanogenic massive sulfide). We tested the influence of the CF model (marginal vs average), mathematical distribution (loglogistic vs loglinear), and reserve estimate (ultimate reserve vs reserve base). For the marginal CFs, the statistical distribution choice and the estimate of the copper reserves introduce a difference of a factor of 1.0-5.0 and a factor of 1.2-1.7, respectively. For the average CFs, the differences are larger for these two choices, i.e. respectively a factor of 5.7-43 and a factor of 2.1-3.8. Comparing the marginal CFs with the average CFs, the differences are higher (a factor 1.7-94). This paper demonstrates that cumulative grade-tonnage relationships for metal extraction can be used in LCA to assess the relative importance of metal extractions.

  10. Mineralogy, petrology, and chemistry studies to evaluate oxide copper ores for heap leaching in Sarcheshmeh copper mine, Kerman, Iran.

    PubMed

    Shayestehfar, M R; Nasab, S Karimi; Mohammadalizadeh, H

    2008-06-15

    In recent years, as a result of biological, environmental, and economic considerations, available copper in copper oxide ores that could not be recovered by pyrometallurgical methods was accumulated in so-called oxide dumps. Suitable material is treated with dilute sulfuric acid in a heap-leaching process, whereupon the copper content of the rock slowly dissolves in the acidic solution. The performed investigations show that one needs to consider the action of the acid on the copper oxide-containing rocks at the microscopic level. In this paper, we describe research carried out on oxide samples from the western dump of the Sarcheshmeh copper mine. Each sample was split into two parts and a portion of each was exposed to heap-leaching conditions in a column. Subsequently, polished sections, thin sections, and powdered samples were subjected to chemical analysis as well as petrographic and mineralogical considerations. Changes in the weight percentages of non-metal and metal minerals before and after acid treatment were measured. Microscopic studies have indicated that chemical analyses do not provide a complete picture of the effects of acid on the rock. Thus, microscopic studies on sections are shown to be a necessary requirement, neglection of which can have negative economic and environmental effects.

  11. Analytical Results for 42 Fluvial Tailings Cores and 7 Stream Sediment Samples from High Ore Creek, Northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.

    1998-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubility. Sediments, fluvial tailings and water from High Ore Creek have been identified as significant contributors to water quality degradation of the Boulder River below Basin, Montana. A study of 42 fluvial tailings cores and 7 stream sediments from High Ore Creek was undertaken to determine the concentrations of environmentally sensitive elements (i.e. Ag, As, Cd, Cu, Pb, Zn) present in these materials, and the mineral phases containing those elements. Two sites of fluvial deposition of mine-waste contaminated sediment on upper High Ore Creek were sampled using a one-inch soil probe. Forty-two core samples were taken producing 247 subsamples. The samples were analyzed by ICP-AES (inductively coupled-plasma atomic emission spectroscopy) using a total mixed-acid digestion. Results of the core analyses show that the elements described above are present at very high concentrations (to 22,000 ppm As, to 460 ppm Ag, to 900 ppm Cd, 4,300 ppm Cu, 46,000ppm Pb, and 50,000 ppm Zn). Seven stream-sediment samples were also analyzed by ICP-AES for total element content and for leachable element content. Results show that the sediment of High Ore Creek has elevated levels of ore-related metals throughout its length, down to the confluence with the Boulder River, and that the metals are, to a significant degree, contained in the leachable phase, namely the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.

  12. Chelatometric determination of calcium and magnesium in iron ores, slags, anorthosite, limestone, copper-nickel-lead-zinc ores and divers materials.

    PubMed

    Hitchen, A; Zechanowitsch, G

    1980-03-01

    Chelatometric methods for the determination of calcium and magnesium in iron ores, slags, anorthosite, copper-nickel-lead-zinc ores and various other materials are described. Potential interfering elements are masked with triethanolamine and potassium cyanide. In one aliquot calcium is titrated at pH > 12, with calcein and thymolphthalein mixed indicator and in another aliquot calcium and magnesium are titrated in ammonia buffer, with o-cresolphthalein complexone screened with Naphthol Green B as indicator. The results compare favourably with certified values for reference materials of diverse nature.

  13. Remote-sensing ore prediction in and around the Linghou copper-polymetal deposit, southeastern China

    NASA Astrophysics Data System (ADS)

    Yang, F.; Zhao, B.; Wu, J. J.; Liao, Y. Z.; Zhang, T.

    2017-06-01

    Taking advantage of the band-ratioing operation, principal component analysis (PCA), and multifractal model, the OLI image was employed to extract iron - stained and hydroxyl alteration in and around the Linghou copper-polymetal mine. Findings showed that the extraction results successfully bypassed the interferences caused by the quite thick vegetational and sedimentary covers, and can accurately locate the Linghou diggings, as well as several suspected ore spots. This study may have contributed a useful case study for in-depth geological remote-sensing analysis.

  14. Application of Mathematical Modeling on Copper Recovery Optimization of Oxide Ores

    NASA Astrophysics Data System (ADS)

    Hoseinian, Fatemeh Sadat; Bahadori, Moein; Hashemzadeh, Mohsen; Rezai, Bahram; Soltani-Mohammadi, Saeed

    2017-10-01

    In this study, a mathematical modeling method was used to predict the optimum conditions of column leaching of copper oxide ore. Important parameters such as column height (m), particle sizes (m), acid rate (kg/ton) and leaching time (day) were studied and their impacts on copper recovery were investigated. Experiments were performed on samples with particle size distributions of -25.4 mm and -50.8 mm in six columns with the heights of 2 m, 4 m and 6 m. The results showed that the copper recovery has an inverse relation with column height and particle sizes, and direct relation with leaching time and acid rate. According to the results, the mathematical models based on the macro model predict the copper recovery based on operation conditions. The obtained values of determination coefficient (0.97), root mean square error (2.86) and relative error (0.089) testing datasets, showed the capability of the model in predicting the copper recovery.

  15. Application of Mathematical Modeling on Copper Recovery Optimization of Oxide Ores

    NASA Astrophysics Data System (ADS)

    Hoseinian, Fatemeh Sadat; Bahadori, Moein; Hashemzadeh, Mohsen; Rezai, Bahram; Soltani-Mohammadi, Saeed

    2017-08-01

    In this study, a mathematical modeling method was used to predict the optimum conditions of column leaching of copper oxide ore. Important parameters such as column height (m), particle sizes (m), acid rate (kg/ton) and leaching time (day) were studied and their impacts on copper recovery were investigated. Experiments were performed on samples with particle size distributions of -25.4 mm and -50.8 mm in six columns with the heights of 2 m, 4 m and 6 m. The results showed that the copper recovery has an inverse relation with column height and particle sizes, and direct relation with leaching time and acid rate. According to the results, the mathematical models based on the macro model predict the copper recovery based on operation conditions. The obtained values of determination coefficient (0.97), root mean square error (2.86) and relative error (0.089) testing datasets, showed the capability of the model in predicting the copper recovery.

  16. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  17. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.

    PubMed

    Wang, Peng; Liu, Yunjia; Menzies, Neal W; Wehr, J Bernhard; de Jonge, Martin D; Howard, Daryl L; Kopittke, Peter M; Huang, Longbin

    2016-11-01

    Arsenic (As) is commonly associated with Cu ore minerals, with the resultant risk that As can be released offsite from mine tailings. We used synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide in situ, laterally-resolved speciation of As within tailings which differed in magnetite content (5-12%) and organic matter content (0-5%). Although the total As content was lower in tailings with low magnetite (LM), the soluble (pore water) As was actually 7-times higher in LM tailings than in high magnetite (HM) tailings. Additionally, amendment with 5% sugarcane mulch residues (SMR) (for revegetation) further increased soluble As due to the dissolution and oxidation of arsenopyrite or orpiment. Indeed, in HM tailings, arsenopyrite and orpiment initially accounted for 88% of the total As, which decreased to 48% upon the addition of SMR - this being associated with an increase in As(V)-ferrihydrite from 12% to 52%. In LM tailings, the pattern of As distribution and speciation was similar, with As as As(V)-ferrihydrite increasing from 57% to 75% upon the addition of SMR. These findings indicate that changes in ore processing technology, such as the recovery of magnetite could have significant environmental consequences regarding the As mobilisation and transformation in mine tailings.

  18. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Paktunc, D.; Foster, A.; Heald, S.; Laflamme, G.

    2004-01-01

    The knowledge of mineralogy and molecular structure of As is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption fine structure (XAFS) spectroscopy (including both XANES and EXAFS regimes) were employed to determine the mineralogical composition and local coordination environment of As in gold ores and process tailings from bench-scale tests designed to mimic a common plant practice. Arsenic-bearing minerals identified in the ores and tailings include iron (III) oxyhydroxides, scorodite (FeAsO4??2H2O), ferric arsenates, arseniosiderite (Ca2Fe3 (AsO4)3O2??3H2O), Ca-Fe arsenates, pharmacosiderite (KFe4 (AsO4)3(OH)4??6-7H2O), jarosite (K2Fe6(SO4)4 (OH)12) and arsenopyrite (FeAsS). Iron (III) oxyhydroxides contain variable levels of As from trace to about 22 wt% and Ca up to approximately 9 wt%. Finely ground ore and tailings samples were examined by bulk XAFS and selected mineral grains were analyzed by microfocused XAFS (micro-EXAFS) spectroscopy to reconcile the ambiguities of multiple As sources in the complex bulk EXAFS spectra. XANES spectra indicated that As occurs as As5+in all the samples. Micro-EXAFS spectra of individual iron (III) oxyhydroxide grains with varying As concentrations point to inner-sphere bidentate-binuclear arsenate complexes as the predominant form of As. There are indications for the presence of a second Fe shell corresponding to bidentate-mononuclear arrangement. Iron (III) oxyhydroxides with high As concentrations corresponding to maximum adsorption densities probably occur as nanoparticles. The discovery of Ca atoms around As in iron (III) oxyhydroxides at interatomic distances of 4.14-4.17 A?? and the coordination numbers suggest the formation of arseniosiderite-like nanoclusters by coprecipitation rather than simple adsorption of Ca onto iron (III) oxyhydroxides

  19. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids

    USDA-ARS?s Scientific Manuscript database

    This study evaluates the effect of surface application of dried Class A biosolids on microbial populations within copper mine tailings. Methods and Results: Mine tailing sites were established at ASARCO Mission Mine close to Sahuarita, Arizona. Site 1 (Dec. 1998) was amended with 248 tons ha-1 of C...

  20. Comparison between availability of heavy metals in dry and wetland tailing of an abandoned copper tailing pond.

    PubMed

    Das, Manab; Maiti, S K

    2008-02-01

    Wetland sediments are generally considered as a sink for metals and, in the anoxic zone, may contain very high concentrations of heavy metals in reduced state. A comprehensive study was carried out to compare the differences of total, environmentally available (Env-Av), HOAC, EDTA and DTPA available heavy metal fraction in tailing of the marshy area of a copper tailing pond and the dry tailing. The average concentrations of all the seven metals in the wetland tailing were found higher than dry tailing. Regarding pH, organic carbon, available (correction of availailable) N, P and K also found higher in marshy wetland tailing compare to the dry tailing. This information is needed in order to understand wetland system and to assure that wetlands do not themselves eventually become sources of metal contamination to surrounding areas. But as levels of pollutants increases, the ability of a wetland system to incorporate waste can be impaired and the wetland can become a source of toxicity.

  1. [Bronchopulmonary diseases in workers engaged in deep-mined extraction of copper-nickel ore].

    PubMed

    Siurin, S A; Derevoedov, A A; Nikanov, A N

    2008-01-01

    Examinations were made in 220 male workers exposed to dust-gas (low-silicon dioxide, nitric oxides, and carbon oxide) mixture, physical exercises, and cooling microclimate on deep-mined output of copper-nickel ore. Twenty-eight per cent of the workers were found to have evolving chronic bronchitis that did not substantially affect the patients' working capacity; 3.2% had chronic obstructive pulmonary disease and 1.4% had asthma that had developed before the onset of professional activity. 32.3% of the examinees were ascertained to have individual clinicofunctional disorders that permit their identification as a bronchopulmonary disease risk group to carry out early preventive and rehabilitative measures.

  2. Chemolithotrophic Bacteria in Copper Ores Leached at High Sulfuric Acid Concentration

    PubMed Central

    Vasquez, M.; Espejo, R. T.

    1997-01-01

    Extensive bacterial growth was observed when copper sulfide ores were leached with 0.6 N sulfuric acid. The bacterial population developed in this condition was examined by characterization of the spacer regions between the 16S and 23S rRNA genetic loci obtained after PCR amplification of the DNA extracted from the leached ore. The spacers observed had the sizes found in strains of "Leptospirillum ferrooxidans" and Thiobacillus thiooxidans, except for a larger one, approximately 560 bp long, that was not observed in any of the strains examined, including those of Thiobacillus ferrooxidans. The bacteria with this last spacer were selected after culturing in mineral and elemental sulfur media containing 0.7 N sulfuric acid. The spacer and the 16S ribosomal DNA of this isolate were sequenced and compared with those in species commonly found in bioleaching processes. Though the nucleotide sequence of the spacer showed an extensive heterologous region with T. thiooxidans, the sequence of its 16S rDNA gene indicated a close relationship (99.85%) with this species. These results indicate that a population comprised of bacterial strains closely related to T. thiooxidans and of another strain, possibly related to "L. ferrooxidans," can develop during leaching at high sulfuric acid concentration. Iron oxidation in this condition is attributable to "L. ferrooxidans" and not T. ferrooxidans, based on the presence of spacers with the "L. ferrooxidans" size range and the absence of spacers characteristic of T. ferrooxidans. PMID:16535497

  3. The use of livestock as a tool for reclamation of copper tailings in southern Arizona

    SciTech Connect

    Bengson, S.A.

    1999-07-01

    The use of livestock as a tool for reclamation of copper tailings is not necessarily new. It stems from the concept of using livestock as a management tool for enhancing ecosystems. ASARCO Incorporated's use of ASARCOws began in 1994. Today, more than 300 acres of copper tailings slopes have been stabilized and reclamation begun by livestock impacts in southern Arizona. The livestock are concentrated on relatively small areas for a very short duration and fed hay. an abundance of organic matter is incorporated into the tailings by the hoof action of the animals. As the organic matter builds up in the sterile tailings, a soil-like medium is produced which enhances the reclamation of the tailings site. As plant communities develop, a self-sustaining ecosystem becomes established.

  4. Effect of moisture content on radon emanation from uranium ore and tailings.

    PubMed

    Strong, K P; Levins, D M

    1982-01-01

    A study was made of the effect of moisture on the emanation coefficient and radon flux from uranium mill tailings. A sharp rise in emanation coefficient occurred as the moisture content was increased from the absolutely dry state to 2% water by weight. The emanation coefficients from water-saturated tailings were about four times those from absolutely dry materials. Radon flux was measured from columns of dry, moist and water-saturated tailings. The highest flux came from the column filled with moist tailings. This can be explained by the effect of moisture content on the emanation coefficient. Water-saturated tailings gave the lowest flux because of the much lower diffusion coefficient of radon through water.

  5. The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration.

    PubMed

    Hu, Hanjun; Tang, Yang; Ying, Haisong; Wang, Minghai; Wan, Pingyu; Jin Yang, X

    2014-07-01

    The International Standard Organization (ISO) specifies two titrimetric methods for the determination of total iron content in iron ores using potassium dichromate as titrant after reduction of the iron(III) by tin(II) chloride and/or titanium(III) chloride. These two ISO methods (ISO2597-1 and ISO2597-2) require nearly boiling-point temperature for iron(III) reduction and suffer from copper interference and/or mercury pollution. In this study, potassium borohydride was used for reduction of iron(III) catalyzed by copper ions at ambient temperatures. In the absence of copper, iron(III) reduction by potassium borohydride was sluggish while a trace amount of copper significantly accelerated the reduction and reduced potassium borohydride consumption. The catalytic mechanism of iron(III) reduction in sulfuric acid and hydrochloric acid was investigated. Potassium borohydride in sodium hydroxide solution was stable without a significant degradation within 24h at ambient conditions and the use of potassium borohydride prepared in sodium hydroxide solution was safe and convenient in routine applications. The applicability of potassium borohydride reduction for the determination of total iron content by potassium dichromate titration was demonstrated by comparing with the ISO standard method using iron and copper ore reference materials and iron ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps.

    PubMed

    De la Iglesia, R; Castro, D; Ginocchio, R; van der Lelie, D; González, B

    2006-03-01

    To study the effect that copper residues exert on bacterial communities and the ability of bacteria to colonize different microhabitats in abandoned tailing dumps. We used the terminal-restriction fragment length polymorphism technique, a culture-independent molecular approach based on PCR amplification of ribosomal genes, to compare the structure of the bacterial communities from samples taken at two nearby located abandoned tailing dumps found in the Mediterranean-climate area of central Chile. Our results show that elevated available copper content in tailings has a strong effect on the bacterial community composition, but that other factors like pH and organic matter content also play an important role in the structure of these communities. We also found that the number of abundant bacteria in these samples was significantly lower than in soils not exposed to metal pollution. In addition to bioavailable copper, bacterial communities found in copper-tailings dumps are also affected by several other environmental factors. This first report on environmental factors influencing microbial communities in copper-tailings dumps will help to devise appropriate restoration procedures in this type of polluted habitat.

  7. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  8. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2016-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  9. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    PubMed

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  10. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching.

    PubMed

    Antonijević, M M; Dimitrijević, M D; Stevanović, Z O; Serbula, S M; Bogdanovic, G D

    2008-10-01

    The flotation tailings pond of the Bor Copper Mine poses a great ecological problem not only for the town of Bor but also for the surrounding soils and watercourses. Since the old flotation tailings contain about 0.2% of copper on the average, we investigated their leaching with sulphuric acid in the absence and presence of an oxidant. The aim was to determine the leaching kinetics of copper and iron as affected by various factors such as: the pH value of the leach solution, stirring speed, pulp density, particle size, concentration of ferric ions, temperature and time for leaching. The average copper and iron recovery obtained was from 60% to 70% and from 2% to 3%, respectively. These results indicate that the old flotation tailings pond represents an important source of secondary raw material for the extraction of copper and that it should be valorized rather than land reclamation. At the end of the paper, a mechanism of dissolution of copper and iron minerals from the tailings was described.

  11. Recovery of Copper from Cyanidation Tailing by Flotation

    NASA Astrophysics Data System (ADS)

    Qiu, Tingsheng; Huang, Xiong; Yang, Xiuli

    2016-02-01

    In this work, sodium hypochlorite, hydrogen peroxide, sodium metabisulfite and copper sulfate as activators were investigated to lessen the depression effect of cyanide for deep-depressing chalcopyrite. The experimental results indicate that the copper recovery exceeded 94%, 84% and 97% at the dosage: sodium hypochlorite 3 mL/L, hydrogen peroxide 2 mL/L, sodium metabisulfite 2 × 10-3 mol/L and copper sulfate 1.67 × 10-4 mol/L, respectively. According to the results of zeta potential and Fourier transform infrared spectrum, it is suggested that chalcopyrite was depressed because of the chemical adsorption of cyanide on the chalcopyrite surfaces. Sodium hypochlorite, hydrogen peroxide and sodium metabisulfite can destroy Cu-C bond on the deep-depressing chalcopyrite surface by chemical reaction. Copper sulfate can activate deep-depressing chalcopyrite by copper ion adsorption.

  12. Biogeochemical evolution of sulfide ore mine tailings profiles under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Chorover, J.

    2014-12-01

    Mining represents a principal form of earth surface disturbance in the anthropocene. Weathering reactions that ensue following tailings deposition are strongly affected by climatic forcing and tailings composition, and these also affect the weathering-induced transformations of the associated mineral assemblages and metal(loid) contaminants. The presence or absence of plants and associated microbiota can have a profound influence on these weathering trajectories. We employed field, laboratory and modeling approaches to resolve the impact of (bio)geochemical weathering reactions on the transformation of mine tailings parent materials into soil over the time following mining cessation. Using controlled experiments, we have evaluated the impacts of plants and associated rhizosphere microbiota on these reactions, hydrologic fluxes, and the molecular speciation of mining derived contaminants. Plant establishment is shown to alter site ecohydrology and biogeochemical weathering processes leading to distinctly different weathering products and patterns.

  13. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  14. Determination of gold in copper-bearing sulphide ores and metallurgical flotation products by atomic-absorption spectrometry.

    PubMed

    Strong, B; Murray-Smith, R

    1974-12-01

    A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.

  15. Mining Hazards Analysis with Simultaneous Mining Copper Ores and Salt Deposits in LGOM (Legnica-Głogów Copper Belt) Mines with Regard to Dynamic Influences

    NASA Astrophysics Data System (ADS)

    Kłeczek, Zdzisław; Niedojadło, Zygmunt; Popiołek, Edward; Skobliński, Wojciech; Sopata, Paweł; Stoch, Tomasz; Wójcik, Artur; Zeljaś, Dagmara

    2016-09-01

    In the case of locating two bedded deposits of different mineral resources in a small vertical distance, additional or increased mining hazards can occur (deformations of the rock mass, crumps and mining shocks, hazards to the land surface). This paper has thoroughly examined the impact of exploitation of the lower-located deposit of copper ore on the higher-located deposit of salt as well as the reverse situation as regards the dynamic phenomena, being the greatest lithospheric hazard in LGOM. At the same time theoretical models of processes were applied, verified by previous observations in situ in mines of Legnica-Głogów Copper Belt.

  16. Geophysical model of the Cu-Mo porphyry ore deposit at Copper Flat Mine, Hillsboro, Sierra County, New Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez, Adrian Emmanuel Gutierrez

    A 3D gravity model of the Copper Flat Mine was performed as part of the exploration of new resources in at the mine. The project is located in the Las Animas Mining District in Sierra County, New Mexico. The mine has been producing ore since 1877 and is currently owned by the New Mexico Copper Corporation, which plans o bringing the closed copper mine back into production with innovation and a sustainable approach to mining development. The Project is located on the Eastern side of the Arizona-Sonora-New Mexico porphyry copper Belt of Cretaceous age. Copper Flat is predominantly a Cretaceous age stratovolcano composed mostly of quartz monzonite. The quartz monzonite was intruded by a block of andesite alter which a series of latite dikes creating veining along the topography where the majority of the deposit. The Copper Flat deposit is mineralized along a breccia pipe where the breccia is the result of auto-brecciation due to the pore pressure. There have been a number of geophysical studies conducted at the site. The most recent survey was a gravity profile on the area. The purpose of the new study is the reinterpretation of the IP Survey and emphasizes the practical use of the gravity geophysical method in evaluating the validity of the previous survey results. The primary method used to identify the deposit is gravity in which four Talwani models were created in order to created a 3D model of the ore body. The Talwani models have numerical integration approaches that were used to divide every model into polygons. The profiles were sectioned into polygons; each polygon was assigning a specific density depending on the body being drawn. Three different gridding techniques with three different filtering methods were used producing ten maps prior to the modeling, these maps were created to establish the best map to fit the models. The calculation of the polygons used an exact formula instead of the numerical integration of the profile made with a Talwani approach. A

  17. Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings.

    PubMed

    Liu, Weiqiu; Yang, Chao; Shi, Si; Shu, Wensheng

    2014-02-01

    Ten strains of Cu-tolerant bacteria with potential plant growth-promoting ability were isolated by selecting strains with the ability to use 1-aminocyclopropane-1-carboxylate as a sole nitrogen source (designated ACC-B) or fix nitrogen (designated FLN-B) originating from the rhizosphere of plants growing on copper tailings. All 10 strains proved to have intrinsic ability to produce indole acetic acid and siderophores, and most of them could mobilize insoluble phosphate. In addition, a greenhouse study showed that ACC-B, FLN-B and a mixture of both had similar, potent ability to stimulate growth of Pennisetum purpureum, Medicago sativa and Oenothera erythrosepala plants grown on sterilized tailings. For instance, above-ground biomass of P. purpureum was 278-357% greater after 60d growth on sterilized tailings in their presence. They could also significantly promote the growth of the plants grown on non-sterilized tailings, though the growth-promoting effects were much weaker. So, strategies for using of the plant growth-promoting bacteria in the practice of phytoremediation deserve further studies to get higher growth-promoting efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India.

    PubMed

    Gupta, Abhishek; Dutta, Avishek; Sarkar, Jayeeta; Paul, Dhiraj; Panigrahi, Mruganka Kumar; Sar, Pinaki

    2017-06-01

    Mine tailings from copper mines are considered as one of the sources of highly hazardous acid mine drainage (AMD) due to bio-oxidation of its sulfidic constituents. This study was designed to understand microbial community composition and potential for acid generation using samples from mine tailings of Malanjkhand copper project (MCP), India through 16S rRNA gene based amplicon sequencing approach (targeting V4 region). Three tailings samples (T1, T2 and T3) with varied physiochemical properties selected for the study revealed distinct microbial assemblages. Sample (T3) with most extreme nature (pH < 2.0) harbored Proteobacteria, Actinobacteria, Chloroflexi while the samples (T1 and T3) with slightly moderate nature (pH < 4.0 and > 3.0) exhibited abundance of Proteobacteria, Fimicutes, Actinobacteria and/or Nitrospirae. Metagenomic sequences are available under the BioProject ID PRJNA361456.

  19. Recolonisation of mine tailing by meiofauna in mesocosm and microcosm experiments.

    PubMed

    Gwyther, David; Batterham, Grant J; Waworuntu, Jorina; Gultom, Tonny H; Prayogo, Windy; Susetiono; Karnan

    2009-06-01

    The Batu Hijau copper/gold mine in Sumbawa, Indonesia processes ore at approximately 130,000tpd and discharges tailing via a submarine pipeline to depths below 3000m at the base of a submarine canyon. The study investigated recolonisation of tailing by meiofauna and its dependence on subsequent accumulation of natural sediment. Microcosm and mesocosm scale experiments were carried out using two tailing and two control samples, the latter comprising defaunated and unaffected natural sediment. All test materials were similar in physical and chemical respects, except for the higher copper concentration in the tailing. The abundances of meiofauna colonising defaunated controls and both tailing samples increased from zero to levels statistically indistinguishable from natural unaffected controls after 97 and 203days. Colonisation was well established in tailing from freshly mined ore after 40days, and in oxidized tailing from stockpiled ore after 65days, and was not dependent on settled natural material.

  20. Evaluation of metal mobility from copper mine tailings in northern Chile.

    PubMed

    Lam, Elizabeth J; Gálvez, M E; Cánovas, M; Montofré, I L; Rivero, D; Faz, A

    2016-06-01

    This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4. Our objectives were to (1) compare the physicochemical properties of the tailing with surrounding soils of the mine under study, and (2) evaluate the effect of two amendments (CaCO3 and compost) and their mixtures on Cu(2+), Mn, Fe, Zn, Mg(2+), and K(+) and Ca(2+), SO4 (2-), NO3 (-), and PO4 (3-) leaching. The data obtained were submitted to variance and covariance analysis. The results from the comparison between both substrates showed that in general, the tailing presented greater content of metals. Regarding tailing leaching, pH, electrical conductivity (EC), and concentration of the elements of interest were measured. The statistical analysis showed that Cu(2+) leaching and immobilization of Fe occurred to the greatest extent with compost. The EC decreased throughout the experiment with irrigation and increased upon treatment with compost. The major interactions found among the chemical parameters were (1) tailings without treatment, Cu(2+)/Fe and NO3 (-)/SO4 (2-); (2) tailings treated with CaCO3, Cu(2+)/K(+); (3) tailings treated with compost, NO3 (-)/SO4 (-2) and EC/Cu(2+); and (4) tailings treated with both amendments, EC/Fe and Cu(2+)/Fe. The ANOVA showed that the number of irrigations and the amendments statistically significantly affected the copper mobility and the organic amendment significantly influenced the iron mobility.

  1. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    PubMed Central

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system. PMID:27698381

  2. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system.

    PubMed

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J D; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-04

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S(0) oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S(0) and Fe(2+), which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  3. High-performance reagent modes for flotation recovery of platiniferous copper and nickel sulfides from hard-to-beneficiate ores

    NASA Astrophysics Data System (ADS)

    Matveeva, T. N.; Chanturiya, V. A.

    2017-07-01

    The paper presents the results of the recent research performed in IPKON Russian Academy of Sciences that deals with development and substantiation of new selective reagents for effective flotation recovery of non-ferrous and noble metals from refractory ores. The choice and development of new selective reagents PTTC, OPDTC, modified butylxanthate (BXm) and modified diethyl-dithiocarbamate (DEDTCm) to float platiniferous copper and nickel sulfide minerals from hard-to-beneficiate ores is substantiated. The mechanism of reagents adsorption and regulation of minerals floatability is discussed. The study of reagent modes indicates that by combining PTTC with the modified xanthate results in 6 - 7 % increase in the recovery of copper, nickel and PGM in the flotation of the low-sulfide platiniferous Cu-Ni ore from the Fedorovo-Panskoye deposit. The substitution of OPDTC for BX makes it possible to increase recovery of Pt by 13 %, Pd by 9 % and 2 - 4 times the noble metal content in the flotation concentrate.

  4. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    NASA Astrophysics Data System (ADS)

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  5. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Alshawabkeh, Akram N; Cang, Long

    2005-08-01

    Effect of electrokinetic treatment on copper partitioning and distribution in mine tailings were studied. In particular the effects of catholyte enhancement by HAc-NaAc, HCl, HAc-NaAc+EDTA and lactic acid+NaOH were evaluated. The results show that conditioning the catholyte plays a very important role in improving Cu removal. When HAc-NaAc is used in the catholyte, the removal percentage of total Cu from the mine tailings sample reached 12.3% under 40 V in 15 days of treatment. The removal percentage of Cu increased to 31.2% when EDTA was used together with HAc-NaAc in the catholyte. At the same time, increasing the applied voltage and treatment time result in an increase in the Cu removal from the mine tailings. Compared with HAc-NaAc (pH=3.52), the use of lactic acid+NaOH (pH=3.15) in the catholyte resulted in better performance in Cu removal from the mine tailings. HCl treatment resulted in removal of about 17.5% of Cu from the mine tailings; however, it resulted in production of significant amounts of toxic chlorine gas. Copper partitioning in the mine tailings was analyzed before and after the electrokinetic treatments. The analysis was conducted using 0.25 mol/l MgCl2 and 0.5 mol/l HCl as extractants, consequently, to assess the mobility of Cu after treatment. The results showed that lowering the pH of the mine tailings increased the exchangeable Cu fraction (or the portion extracted by MgCl2). Accordingly, further acidification results in an increased mobility of Cu and increase in the environmental risk of mine tailings.

  6. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  7. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor.

    PubMed

    Liu, Yangsheng; Du, Fang; Yuan, Li; Zeng, Hui; Kong, Sifang

    2010-06-15

    The few reuse and large stockpile of iron ore tailings (IOT) led to a series of social and environmental problems. This study investigated the possibility of using the IOT as one of starting materials to prepare lightweight ceramisite (LWC) by a high temperature sintering process. Coal fly ash (CFA) and municipal sewage sludge (SS) were introduced as additives. The LWC was used to serve as a biomedium in a biological aerated filter (BAF) reactor for municipal wastewater treatment, and its purification performance was examined. The effects of sintering parameters on physical properties of the LWC, and leaching concentrations of heavy metals from the LWC were also determined. The microstructure and the phase composition of the LWC were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results revealed that: (1) IOT could be used to produce the LWC under the optimal sintering parameters; (2) the leaching concentrations of heavy metals from the LWC were well below their respective regulatory levels in the China Environmental Quality Standards for Surface Water (CEQS); and (3) the BAF reactor with the LWC serving as the biomedium achieved high removal efficiencies for COD(Cr) (>92%), NH(4)(+)-N (>62%) and total phosphate (T-P) (>63%). Therefore, the LWC produced from the IOT was suitable to serve as the biomedium in the municipal wastewater treatment.

  8. Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings.

    PubMed

    Fan, Lian-Mei; Ma, Zhan-Qiang; Liang, Jian-Qiang; Li, Hui-Fen; Wang, En-Tao; Wei, Ge-Hong

    2011-01-01

    A root nodule bacterium, Sinorhizobium meliloti CCNWSX0020, resistant to 1.4 mM Cu2+ was isolated from Medicago lupulina growing in mine tailings. In medium supplied with copper, this bacterium showed cell deformation and aggregation due to precipitation of copper on the cell surface. Genes similar to the copper-resistant genes, pcoR and pcoA from Escherichia coli, were amplified by PCR from a 1.4-Mb megaplasmid. Inoculation with S. meliloti CCNWSX0020 increased the biomass of M. lupulina grown in medium added 0 and 100 mg Cu2+ kg(-1) by 45.8% and 78.2%, respectively, and increased the copper concentration inside the plant tissues grown in medium supplied with 100 μM Cu2+ by 39.3%, demonstrating that it is a prospective symbiotic system for bioremediation purposes.

  9. Impact of commercial garden growth substratum and NPK-fertilizer on copper fractionation in a copper-mine tailing

    NASA Astrophysics Data System (ADS)

    Charles, A.; Karam, A.; Jaouich, A.

    2009-04-01

    Organic amendment and NPK-fertilizer could affect the distribution of copper (Cu) among Cu-mine tailing compounds and hence the availability or phytotoxicity of Cu to plants. A laboratory incubation experiment was conducted to investigate the forms of Cu in a Cu-mine tailing (pH 7.70) amended with a commercial garden growth substratum (GGS) containing peat moss and natural mycorrhizae (Glomus intraradices) in combination with a commercial NPK-fertilizer (20-20-20), by a sequential extraction method. There were eight treatments after the combination of four rates of GGS (0, 12.4, 50 and 100 g/kg tailing) and two rates of fertilizer (0 and 20 g/kg tailing). At the end of a 52-week incubation period, tailing Cu was sequentially extracted to fractionate Cu into five operationally defined geochemical forms, namely ‘water-soluble' (Cu-sol), ‘exchangeable' (Cu-exc), ‘specifically adsorbed on carbonates or carbonate-bound' (Cu-car), ‘organic-bound' (Cu-org) and ‘residual' (Cu-res) fractions. After treatments, the most labile Cu pool (Cu-sol + Cu-exc) represented about 0.94 % of the total Cu, the Cu-car and Cu-org accounted for 22.7 and 5.0% of total Cu, and the residual Cu accounted for nearly 71.3% of total Cu. Compared with the control, the application of GGS decreased Cu-car and increased CuORG whereas the addition of fertilizer increased Cu-sol + Cu-exc and decreased Cu-carb. Fertilizer-treated tailings had the highest amount of Cu-sol + Cu-exc. High rates of GGS resulted in Cu-org levels in GGS-treated tailings which were more than 2.0-2.8 times those obtained in the untreated tailing (control). The partition of Cu in GGS-treated tailings followed the order: Cu-sol + Cu-exc < Cu-car < Cu-org < Cu-res. This study suggests that NPK-fertilizer promotes the formation of labile Cu forms in the calcite-containing Cu-mine tailing. GGS in the tailing matrix acts as effective sorbent for Cu.

  10. Copper binding triggers compaction in N-terminal tail of human copper pump ATP7B.

    PubMed

    Mondol, Tanumoy; Åden, Jörgen; Wittung-Stafshede, Pernilla

    2016-02-12

    Protein conformational changes are fundamental to biological reactions. For copper ion transport, the multi-domain protein ATP7B in the Golgi network receives copper from the cytoplasmic copper chaperone Atox1 and, with energy from ATP hydrolysis, moves the metal to the lumen for loading of copper-dependent enzymes. Although anticipated, conformational changes involved in ATP7B's functional cycle remain elusive. Using spectroscopic methods we here demonstrate that the four most N-terminal metal-binding domains in ATP7B, upon stoichiometric copper addition, adopt a more compact arrangement which has a higher thermal stability than in the absence of copper. In contrast to previous reports, no stable complex was found in solution between the metal-binding domains and the nucleotide-binding domain of ATP7B. Metal-dependent movement of the first four metal-binding domains in ATP7B may be a trigger that initiates the overall catalytic cycle.

  11. Water leaching of titanium from ore flotation residue.

    PubMed

    Jaworska, Malgorzata M; Guibal, Eric

    2003-01-01

    Copper ore tailings were tested for the stability of titanium submitted to water leaching in three different reactor systems (agitated vessel, bioreactor and percolated fixed-bed column). For each of these systems, titanium extraction did not exceed 1% of the available metal. Biomass removed from ore residue adsorbed a small part of the titanium with sorption capacities below 20-30 mg g(-1), but most of this biomass was sequestered in the ore residue. Oxygen and carbon dioxide concentrations were monitored and changes in concentration correlated with bacteria development at the initial stage of the process and to fungal development in the latter stages.

  12. Formation stages and ore matter sources of the Devdoraki copper deposit, Kazbek volcanic center, the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Lebedev, V. A.; Chugaev, A. V.; Vashakidze, G. T.; Parfenov, A. V.

    2016-11-01

    Comprehensive petrological-mineralogical, geochronological, and isotope-geochemical studies have been carried out at the Devdoraki copper deposit situated in the Kazbek neovolcanic center, the frontier territory between Georgia and Russia. The formation history of this deposit has been deciphered on the basis of K-Ar isotopic geochronological data, and the multistage evolution of ore-magmatic system has been established. The subeconomic disseminated and less abundant stringer pyrite mineralization formed at the first stage in the Early Cretaceous back to 130-120 Ma at the retrograde stage of regional metamorphism. The second productive stage was related to intense Quaternary volcanism of the Kazbek center. The late stringer base-metal mineralization formed about 400 ka ago in connection with the activity of minor volcanoes in the eastern part of deposit. In its western part adjoining the Kazbek volcanic cone, ore formation apparently continued over the entire period of recent magmatic activity from 400 to 100 ka ago. It is quite probable that this process is currently proceeding at deep levels of the Devdoraki deposit. Pb-Pb isotope-geochemical data show that Jurassic metasedimentary rocks that host sulfide mineralization could have been a main source of matter for early pyrite. At the second stage of base-metal mineralization formation, the source of ore matter was earlier metamorphic pyrite combined with hydrothermal solutions related to Quaternary endogenic activity within the Kazbek volcanic center. Gangue mineral matter (quartz, carbonates) was supplied simultaneously from the postmagmatic hydrothermal solution and host shale.

  13. Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass.

    PubMed

    Liu, Yunjia; Huang, Longbin

    2017-01-15

    Reprocessing magnetite-rich copper (Cu) tailings prompted a concern about arsenic (As) risks in seepage water and revegetated plants at Ernest Henry Cu Mine (EHM) in North Queensland, Australia, due to the closely coupled relationship between iron (Fe) minerals and As mobility. The magnetite removal alone significantly decreased the content of crystalline Fe minerals and the maximum arsenate (As(V)) sorption capacity of the resultant tailings. A glasshouse experiment with native grass Red Flinders (Iseilema Vaginiflorum) was conducted with the reprocessed (low magnetite (LM)) and original (high magnetite (HM)) tailings, which were amended with 5% sugarcane residue (SR) as a basal treatment in combination with 0, 1 and 5% pine-biochar (BC). The organic matter treatments and plant growth stimulated the formation of secondary Fe minerals. The amount of extractable amorphous Fe in the amended and revegetated HM tailings was significantly higher than those in the LM. Arsenic forms in the specifically sorbed and the sorbed by amorphous Fe oxides were significantly increased by the SR amendment in the LM tailings, but which were decreased in the HM, compared to the unamended tailings. Soluble As levels in the porewater of the LM under revegetation were significantly higher (300-1150 μg As L(-1)) than those (up to 45-90 μg As L(-1)) in HM tailings in the same treatment, which led to the higher As concentrations in the plants grown in the LM tailings. In particular, root As concentration (62-146 mg kg(-1)) in the LM tailings was almost a magnitude higher than those (8-17 mg kg(-1)) in the HM. The present results confirmed the initial expectation that the recovery of magnetite from the Cu tailings significantly elevated the risk of As solubility in the tailings by decreasing As sorption capacity and increasing soluble As levels. Thus, it would be beneficial to retain high contents of magnetite in the top layer (e.g., root zone) of the Cu tailings for managing As

  14. Occurrence of Sn-Bearing colusite in the ore-body "T" of the Bor copper deposit, Serbia

    NASA Astrophysics Data System (ADS)

    Cvetković, Ljubomir; Pačevski, Aleksandar; Tončić, Trajče

    2013-07-01

    The ore body "T" is the newly discovered massive-pyrite type one which is located in the central part of the Bor copper mine. The main copper minerals are chalcocite-digenite, covellite and enargite. Small amounts of colusite are frequently present in the ore-body. It mostly occurs as the distinct exsolutions in digenite and, associating with enargite and covellite. Composition of the studied colusite shows enriched Sn content, giving an empirical formula from Cu24.7V1.8Fe0.2As5.1Sb0.2Sn0.8S32 to Cu26.7V2.0Fe0.3As3.0Sb0.3Sn3.5S32. This colusite represents a solid solution between colusite and nekrasovite within a range of 14-54 mol % nekrasovite. Most of the analyses show content of <50 mol % nekrasovite corresponding to the Sn-bearing colusite variety, while one analysis shows content of 54 mol % nekrasovite corresponding to the As-bearing nekrasovite.

  15. Construction and preliminary evaluation of copper tailings reclamation test plots at Cyprus Miami Mining Corporation

    SciTech Connect

    Chammas, G.A.; McCaulou, D.R.; Jones, G.L.

    1999-07-01

    Twenty pilot-scale test plots were constructed in mid-1998 at the Cyprus Miami mine to investigate the feasibility and cost-effectiveness of various reclamation strategies for establishment of self-sustaining native vegetation on acidic copper tailings. Four reclamation strategies are being tested: (1) directly covering acidic tailings with varying thicknesses f cover soil; (2) removing and/or neutralizing particularly acidic surgical tailings before soil cover placement, (3) chemically and/or physically inhibiting upward water and solute movement using neutralizing and neutral capillary barriers, and (4) constructing a subgrade of neutral tailings beneath cover soil. Preliminary results suggest that thicker soil covers and capillary barrier test plots initially support vegetation to a greater extent than other test plots, probably because of their increased moisture storage capacity. Results also suggest that salts are beginning to migrate upward from underlying tailings into cover soil. Data collected from ongoing vegetation surveys and soil testing will be used to evaluate the effect of various reclamation strategies on vegetation establishment and the potential impact of upward salt migration.

  16. Agricultural soils spiked with copper mine wastes and copper concentrate: implications for copper bioavailability and bioaccumulation.

    PubMed

    Ginocchio, Rosanna; Sánchez, Pablo; de la Fuente, Luz María; Camus, Isabel; Bustamante, Elena; Silva, Yasna; Urrestarazu, Paola; Torres, Juan C; Rodríguez, Patricio H

    2006-03-01

    A better understanding of exposure to and effects of copper-rich pollutants in soils is required for accurate environmental risk assessment of copper. A greenhouse experiment was conducted to study copper bioavailability and bioaccumulation in agricultural soils spiked with different types of copper-rich mine solid wastes (copper ore, tailing sand, smelter dust, and smelter slag) and copper concentrate. A copper salt (copper sulfate, CuSO4) that frequently is used to assess soil copper bioavailability and phytotoxicity also was included for comparison. Results showed that smelter dust, tailing sand, and CuSO4 are more likely to be bioavailable and, thus, toxic to plants compared with smelter slag, concentrate, and ore at equivalent total copper concentrations. Differences may be explained by intrinsic differences in copper solubilization from the source materials, but also by their capability to decrease soil pH (confounding effect). The copper toxicity and bioaccumulation in plants also varied according to soil physicochemical characteristics (e.g., pH and total organic carbon) and the available levels of plant nutrients, such as nitrogen, phosphorus, and potassium. Chemistry/mineralogy of mine materials, soil/pore-water chemistry, and plant physiological status thus should be integrated for building adequate models to predict phytotoxicity and environmental risk of copper.

  17. [Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].

    PubMed

    Chen, Zheng; Yang, Gui-de; Sun, Qing-ye

    2009-09-01

    Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.

  18. Using soil island plantings as dispersal vectors in large area copper tailings reforestation

    SciTech Connect

    Scherer, G.; Everett, R.

    1998-12-31

    The Wenatchee National Forest undertook the reforestation of the 80 acre (35 ha) Holden copper mine tailings of Washington State in 1989 by using 20, one-fourth acre, triangular shaped soil islands as a source of plant propagules targeted for gravel-covered tailings surfaces. The islands were constructed of soil and surface litter transported from a nearby gravel pit, and planted with four species of conifer seedlings, the shrub Sitka alder (Alnus sinuata) and eight species of grasses. Conifer and alder seedlings were also planted in graveled covered tailings with amendments. Since reproductive status of the conifers would not occur for several years, this propagule vector hypothesis was tested by measuring the distances traveled onto the tailings surface by grass seeds. The number of grass shoots established in four treatment blocks in target plots downwind from the soil island source plantings was also determined. After 36 months, grass seed had migrated to a distance of 32 feet (11 m) from the soil island source. Grass shoots were present within 10 feet (3 m) downwind of the soil island, the most frequent being Mountain brome (Bromus marginatus). Among the tree species, lodgepole pine (Pinus contorta) and Sitka alder grew an average of 6 inches (15--16 cm) after 40 months on the soil islands but somewhat less on the tailing surface. By the third growing season, the only tree species in reproductive condition on the tailings was alder. The soil-island technique is successful for grass dispersal and may have potential for conifer and alder migration.

  19. Extraction and determination of molybdenum with tributyl phosphate Application to analysis of copper-molybdenum ores.

    PubMed

    Caiozzi, M; Zunino, H; Sepúlveda, L

    1969-12-01

    A differential spectrophotometric method is described for the determination of molybdenum by means of solvent extraction with tributylphosphate of the peroxymolybdate complex formed with H(2)O(2) in 3.5N H(2)SO(4). The extraction parameters are studied, and the behaviour of some other ions is reported. The method is used for ore analysis.

  20. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at <900°C are dominated by early crystallization of hornblende and apatite, and late crystallization (~<780°C) of titanite

  1. Molybdenum and copper levels in white-tailed deer near uranium mines in Texas

    USGS Publications Warehouse

    King, K.A.; LeLeux, J.; Mulhern, B.M.

    1984-01-01

    Molybdenum toxicity, molybdenosis, in ruminant animals has been identified in at least 15 states and in Canada, England, Australia, and New Zealand. In most western states, molybdenosis has been associated with strip-mine spoil deposits. Molybdenum toxicity has been diagnosed in cattle pastured near uranium strip-mine spoils in several Texas counties. Recent reports from hunters and the authors' observations indicated that white-tailed deer (Odocoileus virginianus ) that fed near uranium-mine spoil deposits may also have been exposed to high levels of molybdenum. The objectives of this study were to determine if white-tailed deer from a South Texas uranium mining district were accumulating harmful levels of molybdenum and to compare molybdenum and copper levels with antler development in deer from the mined area vs. an unmined control area.

  2. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne.

    PubMed

    Santibáñez, Claudia; Verdugo, Cesar; Ginocchio, Rosanna

    2008-05-20

    A greenhouse pot experiment was conducted to evaluate the feasibility of using biosolids and Lolium perenne for the phytostabilization of copper mine tailings and to evaluate the patterns of metal accumulation and translocation in plants. Biosolids were applied either on the surface or mixed with the tailings at rates of 0, 6, and 12% w/w. All pots were seeded with L. perenne and after six months, the plants were harvested and separated into roots and shoots for metal concentrations analyses as well as some physiological characteristics of the plants. In order to correlate the metal content in plant tissues with some chemical properties, the pore-water of the substrates was analyzed for metals, pH and dissolved organic carbon. Results showed that biosolids application increased the dry biomass production of L. perenne and the shoot concentrations of N and chlorophyll. On the other hand, biosolids increased the concentration of Cu and Zn in the pore-water and in plant tissues. Despite this, there were no evident symptoms of phytotoxicity and the concentration of metals was within the normal ranges described for plants and below the maximum tolerable level for animals. In addition, plant tissue analysis showed that the application of biosolids could significantly reduce Mo uptake and shoot accumulation in plants. The metals were taken up by plants in the following order: Cu>Zn>Mo>Cd. The distribution patterns of metals in plants showed that metals were mainly accumulated in the roots and only a small amount of them were transported to the shoots. These results suggest that mixed application of biosolids (6%) and the use of L. perenne could be appropriate for use in programs of phytostabilization of copper mine tailings. However, these results should be tested under field conditions in order to confirm their efficacy under semi-arid Mediterranean climate conditions.

  3. Electrical Behavior of Copper Mine Tailings During EKR with Modified Electric Fields.

    PubMed

    Rojo, Adrian; Hansen, Henrik K; Monárdez, Omara; Jorquera, Carlos; Santis, Paulina; Inostroza, Paula

    2017-03-01

    Electro-kinetic remediation (EKR) with sinusoidal electric field obtained simultaneously with DC/AC voltage reduce the polarization of the EKR with DC voltage. The DC voltage value defines the presence of a periodic polarity reversal of the cell and the electrical charge for electro-kinetic transport. In this case, the AC frequency favors the breaking of polarization conditions resulting from the EKR with DC voltage. However, with high frequencies a negative effect occurs where the tailings behave as a filter circuit, discriminating frequencies of an electric signal. The goal of this work is to analyse the electrical behaviour of tailings in EKR experiments. The conditions selected were: DC/AC voltages: 10/15 and 20/25 V (peak values), and AC voltage frequencies 50-2000 Hz. When the AC frequency reaches 2000 Hz, the copper removal tends to zero, indicating that the tailing behaves as a high-pass filter in which the DC voltage was filtered out.

  4. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation.

    PubMed

    Chen, Baodong; Tang, Xiangyu; Zhu, Yongguan; Christie, Peter

    2005-05-01

    A field survey of metal concentrations and mycorrhizal status of plants growing on copper mine tailings was conducted in Anhui Province, China. Available phosphorus and organic matter in the tailings were very low. High concentrations of Pb, Zn, As and Cd as well as Cu were observed on some sites. The dominant plants growing on mine tailings belonged to the families Gramineae and Compositae, and the most widely distributed plant species were Imperata cylindrica, Cynodon dactylon and Paspalum distichum. Coreopsis drummondii also grew well on the arid sites but not on wet sites. Very low or zero arbuscular mycorrhizal (AM) fungal colonization was observed in most of the plants, but extensive mycorrhizal colonization was recorded in the roots of C. drummondii and C. dactylon. Metal concentrations in plant tissues indicated that I. cylindrica and P. distichum utilized avoidance mechanisms to survive at high metal concentrations. The investigation suggests that remediation and revegetation of heavy metal contaminated sites might be facilitated by selection of tolerant plant species. Isolation of tolerant AM fungi may also be warranted.

  5. Assessment of Vegetation Establishment on Tailings Dam at an Iron Ore Mining Site of Suburban Beijing, China, 7 Years After Reclamation with Contrasting Site Treatment Methods

    NASA Astrophysics Data System (ADS)

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.

  6. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods.

    PubMed

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.

  7. The phase composition of ores of the Norilsk type with the content of copper, nickel and cobalt

    NASA Astrophysics Data System (ADS)

    Mashukov, Anatoly; Mashukova, Alla; Bistryakova, Swetlana

    2017-04-01

    Using the methods of X-ray and Mössbauer spectroscopy, scanning electron microscopy, there were studied the samples of Norilsk ore types in order to identify compounds containing Cu, Ni, Co. Depending on elemental composition there were singled out the sample series, containing only copper (first series), nickel and cobalt (second series), only nickel (third series): 1: chalcopyrite (CuFeS2), cubanite I (CuFe2S3), cubanite II (CuFe2S3), bornite (CuFeS4), wroewolfeite (Cu4(OH)6(SO4) •H2O); 2: pentlandite (Fe1.68Ni1.82Co5.6S8) and (Fe4.40Ni4.57Co0.3S8); 3: nickel sulfide (Ni2.824S2), nickel-hexahydrite (NiS0.04(6H2O)). The research conducted by using the method of scanning electron microscopy and the X-ray microanalysis showed that iron and sulfur are distributed unevenly over the scanned area. However, there are some areas highly enriched with Fe. Some inclusions, having rectangular and rhomboid forms, contain Ni with increased content of Fe. The concentration of Ni has maximum in inclusions, which contain Cu. The replacement of magnetic ions of Fe with Co ions with nearest values of spin magnetic moment changes the magnetic stability of the samples and Curie temperature. It is proved by the discrepancy of Curie temperature in the cycle «heating - cooling». As it was shown by the studies, the presence of the impurity ions leads to changing magnetic properties. Sulfur is absent in the inclusions containing Fe and Ni. There are areas, strongly enriched by Fe. The magnetic phase has the spectrum composed of two six-linear spectrums. The peaks on the spectrum borders show the oxide presence. The isomer shifts of the samples range from 0,3 to 1,394 mm / s, quadrupole splitting ranges from 0,25 to 2,468 mm/s. This indicates that the local electronic structure depends on the genesis of compounds. Thus, most of the bulk of Cu, Ni is not dissipated in the crystal lattices of the ore, but it is part of the ore sulphides. The presence of the characteristic structures of

  8. Utilization and value addition of copper tailing as an extender for development of paints.

    PubMed

    Saxena, Mohini; Dhimole, Lokesh Kumar

    2006-02-28

    The present study deals with characterization of copper tailing waste, test for possibilities of hazards and its potential reuse as an extender in paints. The waste is a siliceous material containing aluminum oxide, iron oxide and sulphate in significant concentrations. In the primary stage waste is acidic in nature, which makes it unsuitable for paint. This acidity is removed from the waste by simple sieving and grinding. The prepared mass was characterized for basic properties of an extender like oil absorption, specific gravity, pH, etc. Toxicity studies were also conducted in term of leaching of heavy metals by standard techniques (USEPA using TCLP). Properties of the prepared paint's film in terms of hardness, adhesion, resistance to abrasion, resistance to impact, resistance to corrosion (under humidity and salt fog), etc. were evaluated and compared with a similar formulation of conventional extender and found satisfactory. Results from the experiments indicated that developed extender is environmentally clean and cost-effective.

  9. Trace metals associated with deep-sea tailings placement at the Batu Hijau copper-gold mine, Sumbawa, Indonesia.

    PubMed

    Angel, Brad M; Simpson, Stuart L; Jarolimek, Chad V; Jung, Rob; Waworuntu, Jorina; Batterham, Grant

    2013-08-15

    The Batu Hijau copper-gold mine on the island of Sumbawa, Indonesia operates a deep-sea tailings placement (DSTP) facility to dispose of the tailings within the offshore Senunu Canyon. The concentrations of trace metals in tailings, waters, and sediments from locations in the vicinity of the DSTP were determined during surveys in 2004 and 2009. In coastal and deep seawater samples from Alas Strait and the South Coast of Sumbawa, the dissolved concentrations of Ag, As, Cd, Cr, Hg, Pb and Zn were in the sub μg/L range. Dissolved copper concentrations ranged from 0.05 to 0.65 μg/L for all depths at these sites. Dissolved copper concentrations were the highest in the bottom-water from within the tailings plume inside Senunu Canyon, with up to 6.5 μg Cu/L measured in close proximity to the tailings discharge. In general, the concentrations of dissolved and particulate metals were similar in 2004 and 2009. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Phytostabilization of Zn-Pb ore flotation tailings with Dianthus carthusianorum and Biscutella laevigata after amending with mineral fertilizers or sewage sludge.

    PubMed

    Ciarkowska, Krystyna; Hanus-Fajerska, Ewa; Gambuś, Florian; Muszyńska, Ewa; Czech, Tomasz

    2017-03-15

    Zinc-lead mining wastes remain largely unvegetated and prone to erosion for many years because of phytotoxic levels of residual heavy metals, low nutrient status and poor physical structure. The optimal solution for these areas is to restore plant cover using species which spontaneously appear on the spoils. These species are adapted to the conditions of tailings, and their establishment will promote further vegetation by increasing soil organic matter and development of a soil system capable of supporting the nutrient and water requirements of plants and microoorganisms. The potential of Dianthus carthusianorum and Biscutella laevigata to stabilize mine spoils was analysed in a three-year pot experiment. Post-flotation wastes accumulated after Zn and Pb recovery from ores, were collected from tailings and used as a substrate for plant growth. Seeds for seedling production were collected from plants growing spontaneously on mine tailings. Prior to the establishment of the three-year pot experiment, the substrate was amended with fertilizer NPK or municipal sewage sludge, supplemented with K2O (SS). Substrate samples were collected for chemical analyses, dehydrogenase and urease activities measurements each year at the end of the growing season. The plants were harvested three years after the amendments. Both tested plant species were equally suitable for revegetation of the tailings. The amendment including both SS and NPK resulted in an increase of Corg, Nt, available P, K, Mg contents, an increase of dehydrogenase (DHA) and urease activities and a decrease in the concentrations of the soluble forms of Zn, Pb and Cd. However, nutrient content, DHA activity and plant biomass were higher with SS than NPK addition. NPK application enhanced the substrate properties after the first growing season, while positive effects of SS use were still observed after three years. A longer-lasting positive effect of SS than NPK application was probably due to the high organic

  11. Application of 57Fe Mössbauer spectroscopy as a tool for mining exploration of bornite (Cu5FeS4) copper ore

    NASA Astrophysics Data System (ADS)

    Gainov, R. R.; Vagizov, F. G.; Golovanevskiy, V. A.; Ksenofontov, V. A.; Klingelhöfer, G.; Klekovkina, V. V.; Shumilova, T. G.; Pen'kov, I. N.

    2014-04-01

    Nuclear resonance methods, including Mössbauer spectroscopy,are considered as unique techniques suitable for remote on-line mineralogical analysis. The employment of these methods provides potentially significant commercial benefits for mining industry. As applied to copper sulfide ores, Mössbauer spectroscopy method is suitable for the analysis noted. Bornite (formally Cu5FeS4) is a significant part of copper ore and identification of its properties is important for economic exploitation of commercial copper ore deposits. A series of natural bornite samples was studied by 57Fe Mössbauer spectroscopy. Two aspects were considered: reexamination of 57Fe Mössbauer properties of natural bornite samples and their stability irrespective of origin and potential use of miniaturized Mössbauer spectrometers MIMOS II for in-situ bornite identification. The results obtained show a number of potential benefits of introducing the available portative Mössbauer equipment into the mining industry for express mineralogical analysis. In addition, results of some preliminary 63,65Cu nuclear quadrupole resonance (NQR) studies of bornite are reported and their merits with Mössbauer techniques for bornite detection discussed.

  12. Preliminary mineralogical data on epithermal ore veins associated with Rosia Poieni porphyry copper deposit, Apuseni Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Iatan, E. L.; Popescu, Gh. C.

    2012-04-01

    Rosia Poieni is the largest porphyry copper (±Au±Mo) deposits associated with Neogene magmatic rocks from the South Apuseni Mountains, being located approximately 8 km northeast of the town of Abrud. During a recent examination of some epithermal mineralized veins, crosscutting the porphyry mineralization from the Roşia Poieni deposit, two species of tellurides and one tellurosulfide minerals were identified. The studied samples were collected from the + 1045 m level, SW side of the open pit and are represented by epithermal veins, crosscutting the porphyry copper mineralized body. The thickness of the veins is almost 4 cm. Following reflected-polarized light microscopy to identify the ore-mineral assemblages, the polished sections were studied with a Scanning Electron Microscope (SEM) equipped with a back-scattered electron (BSE) detector to study fine-sized minerals. Quantitative compositional data were determined using a Cameca SX 50 electron microprobe (EMP). Based on optical microscopy, SEM and EMPA three mineral associations have been separated inside the epithermal vein, from the margins to the centre: 1. quartz+tennantite-tetrahedrite+goldfieldite+pyrite+sphalerite; 2. quartz+pyrite+tellurobismutite; 3. chalcopyrite+hessite+vivianite. Goldfieldite occurs in anhedral grains and it is associated with tennantite-tetrahedrite and quartz. The electron microprobe analysis gave a variable content in Te between 13.28-13.39 wt.%, 43.34 wt.% Cu, 0.1 wt. % Fe, 0.2 wt.% Zn, 14.68 wt.% As, 4.35 wt.% Sb and 24.84 wt.% S. The calculated formula for the goldfieldite is Cu11.8Te1.8(Sb,As)4S13.4. The EPM analyses on tetrahedrite-tennantite revealed a low content in Te (0.02-0.03 wt.%) and 42.23 wt.% Cu, 2.67 wt.% Fe, 7.34 wt.% Zn, 0.04 wt.% Sb, 19.28 wt.% As and 28.4 wt.% S. The calculated formula is Cu9.8(Fe,Zn)2.4(Sb,As,Te)3.8S13. The variable ratio of the Te content may reflect a variable content of Te in the hydrothermal fluids from which the tellurian tetrahedrite

  13. Recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation: process optimization and mineralogical study

    NASA Astrophysics Data System (ADS)

    Jiao, Rui-min; Xing, Peng; Wang, Cheng-yan; Ma, Bao-zhong; Chen, Yong-Qiang

    2017-09-01

    Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. Herein, the recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation was conducted; process optimization was carried out, and the corresponding mineralogy was investigated. The reduction time, reduction temperature, reducing agent (coal), calcium chloride additive, grinding time, and magnetic field intensity were examined for process optimization. Mineralogical analyses of the sample, reduced pellets, and magnetic concentrate under various conditions were performed by X-ray diffraction, optical microscopy, and scanning electron microscopy-energy-dispersive X-ray spectrometry to elucidate the iron reduction and growth mechanisms. The results indicated that the optimum parameters of iron recovery include a reduction temperature of 1150°C, a reduction time of 120 min, a coal dosage of 25%, a calcium chloride dosage of 2.5%, a magnetic field intensity of 100 mT, and a grinding time of 1 min. Under these conditions, the iron grade in the magnetic concentrate was greater than 90%, with an iron recovery ratio greater than 95%.

  14. Estimation of temporal changes in oxidation rates of sulphides in copper mine tailings at Laver, Northern Sweden.

    PubMed

    Alakangas, Lena; Ohlander, Björn; Lundberg, Angela

    2010-02-15

    Tailings containing pyrrhotite were deposited in an impoundment at a copper mine at Laver, Northern Sweden, which operated between 1936 and 1946. Since then the oxidation of sulphides has acidified recipient water courses and contaminated them with metals. Measurements from surface water sampled in 1993, 2001 and 2004-05 from a brook into which the tailing impoundment drains indicate that the amounts of sulphide-associated elements such as Cu, S and Zn released into the brook have decreased over time, while pH has increased. The mass transport of S in the brook during 1993 and 2001 corresponded well with the amount of S estimated to be released from the tailings by oxidation. Secondary precipitates such as covellite and gypsum, which can trap sulphur, were shown in earlier studies to be present in only low amounts. The annual release of elements from the tailings was estimated from the volume of tailings assumed to oxidise each year, which depends on movement of the oxidation front with time. The results indicate that the oxidation rate in the tailings has decreased over time, which may be due to the increased distance over which oxygen needs to diffuse to reach unoxidised sulphide grains, or their cores, in the tailings.

  15. [Distribution characteristics of soil nematodes in reclaimed land of copper-mine-tailings in different plant associations].

    PubMed

    Zhu, Yong-heng; Li, Ke-zhong; Zhang, Heng; Han, Fei; Zhou, Ju-hua; Gao, Ting-ting

    2015-02-01

    A survey was carried out to investigate soil nematode communities in the plant associations of gramineae (Arthraxon lanceolatus, AL; Imperata cylindrica, IC) and leguminosae (Glycine soja, GS) in reclaimed land of copper-mine-tailings and in the plant associations of gramineae (Digitaria chrysoblephara, DC-CK) of peripheral control in Fenghuang Mountain, Tongling City. A total of 1277 nematodes were extracted and sorted into 51 genera. The average individual density of the nematodes was 590 individuals · 100 g(-1) dry soil. In order to analyze the distribution character- istics of soil nematode communities in reclaimed land of copper-mine-tailings, Shannon community diversity index and soil food web structure indices were applied in the research. The results showed that the total number of nematode genus and the Shannon community diversity index of soil nematode in the three plant associations of AL, IC and GS were less than that in the plant associations of DC-CK. Compared with the ecological indices of soil nematode communities among the different plant associations in reclaimed land of copper-mine-tailings and peripheral natural habitat, we found that the structure of soil food web in the plant associations of GS was more mature, with bacterial decomposition being dominant in the soil organic matter decomposition, and that the soil ecosystem in the plant associations of GS was not stable with low interference. This indicated that the soil food web in the plant associations of leguminosae had a greater development potential to improve the ecological stability of the reclaimed land of copper-mine-tailings. On the other hand, the structure of soil food web in the plant associations of AL and IC were relatively stable in a structured state with fungal decomposition being dominant in the decomposition of soil organic matter. This indicated that the soil food web in the plant associations of gramineae was at a poor development level.

  16. Material flows generated by pyromet copper smelting

    USGS Publications Warehouse

    Goonan, T.G.

    2005-01-01

    Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.

  17. Integrated biomarker assessment of the effects of tailing discharges from an iron ore mine using blue mussels (Mytilus spp.).

    PubMed

    Brooks, Steven J; Harman, Christopher; Hultman, Maria T; Berge, John Arthur

    2015-08-15

    The blue mussel (Mytilus spp.) has been used to assess the potential biological effects of the discharge effluent from the Sydvaranger mine, which releases its tailings into Bøk fjord at Kirkenes in the north of Norway. Metal bioaccumulation and a suite of biomarkers were measured in mussels positioned for 6 weeks at varying distances from the discharge outlet. The biomarkers used included: stress on stress (SS); condition index (CI); cellular energy allocation (CEA); micronuclei formation (MN); lysosomal membrane stability (LMS), basophilic cell volume (VvBAS); and neutral lipid (NL) accumulation. The individual biomarkers were integrated using the integrated biological response (IBR/n) index. The accumulation of Fe was significantly higher in mussels located closer to the discharge outlet, indicating that these mussels had been exposed to the suspended mine effluent. The IBR/n results were in good agreement with the location of the mussels in relation to the distance from the discharge outlet and expected exposure to the mine effluent. Several biomarkers showed responses resulting in higher IBR/n values of analysed mussels within a 3 km distance from the tailing discharge.

  18. Temporal variability of radon in a remediated tailing of uranium ore processing--the case of Urgeiriça (central Portugal).

    PubMed

    Barbosa, S M; Lopes, F; Correia, A D; Barbosa, S; Pereira, A C; Neves, L F

    2015-04-01

    Radon monitoring at different levels of the cover of the Urgeiriça tailings shows that the sealing is effective and performing as desired in terms of containing the strongly radioactive waste resulting from uranium ore processing. However, the analysis of the time series of radon concentration shows a very complex temporal structure, particularly at depth, including very large and fast variations from a few tens of kBq m(-3) to more than a million kBq m(-3) in less than one day. The diurnal variability is strongly asymmetric, peaking at 18 h/19 h and decreasing very fast around 21 h/22 h. The analysis is performed for summer and for a period with no rain in order to avoid the potential influence of precipitation and related environmental conditions on the radon variability. Analysis of ancillary measurements of temperature, relative humidity, wind speed and wind direction, as well as atmospheric pressure reanalysis data shows that the daily averaged radon concentration in the taillings material is anti-correlated with the atmospheric pressure and that the diurnal amplitude is associated with the magnitude of atmospheric pressure daily oscillations.

  19. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings.

    PubMed

    Shi, Xiang; Chen, Yi-Tai; Wang, Shu-Feng; Pan, Hong-Wei; Sun, Hai-Jing; Liu, Cai-Xia; Liu, Jian-Feng; Jiang, Ze-Ping

    2016-11-01

    Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.

  20. Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: a greenhouse experiment.

    PubMed

    Verdugo, César; Sánchez, Pablo; Santibáñez, Claudia; Urrestarazu, Paola; Bustamante, Elena; Silva, Yasna; Gourdon, Denis; Ginocchio, Rosanna

    2011-02-01

    Inadequate abandonment of copper mine tailings under semiarid Mediterranean climate type conditions has posed important environmental risks in Chile due to wind and rain erosion. There are cost-effective technologies for tailings stabilization such as phytostabilization. However, this technology has not been used in Chile yet. This study evaluated in a greenhouse assay the efficacy of biosolids, lime, and a commercial mycorrhiza to improve adverse conditions of oxidized Cu mine tailings for adequate establishment and grow of Lolium perenne L. var nui. Chemical characterization of experimental substrates and pore water samples were performed; plant density, biomass production, chlorophyll content, and metal content in shoots was evaluated in rye grass plants after an eight-week growth period. Results showed that neutralization of tailings and superficial application of biosolids increased both aerial biomass production and chlorophyll content of rye grass. Increased Cu solubilization and translocation to shoots occurred after biosolids application (mixed), particularly on unlimed tailings, due to formation of soluble organometallic complexes with dissolved organic carbon (DOC) which can be readily absorbed by plant roots. Positive effects of mycorrhizal inoculation on rye grass growth were restricted to treatments with superficial application of biosolids, probably due to Cu toxicity effects on commercial mycorrhiza used (Glomulus intraradices).

  1. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste.

    PubMed

    Diaby, Nouhou; Dold, Bernhard; Pfeifer, Hans-Rudolf; Holliger, Christof; Johnson, D Barrie; Hallberg, Kevin B

    2007-02-01

    The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) 'oxidation zone' characterized by low-pH (2.5-4), a 'neutralization zone' (70-80 to 300-400 cm) and an unaltered 'primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.

  2. Use of high-resolution X-ray computed tomography and 3D image analysis to quantify mineral dissemination and pore space in oxide copper ore particles

    NASA Astrophysics Data System (ADS)

    Yang, Bao-hua; Wu, Ai-xiang; Narsilio, Guillermo A.; Miao, Xiu-xiu; Wu, Shu-yue

    2017-09-01

    Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (ϕ4.6 mm × 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 μm. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.

  3. Occurrence of copper, gold, silver,uranium, tungsten, tin ore deposits in the Late Proterozoic aulacogen mobile melt of southeast China

    SciTech Connect

    Ma, X.H.

    1985-01-01

    In the early period of the late Proterozoic Era (1100 m.y. +/-) an aulacogen mobile belt was formed in the southeast of China. It extends about 1000 km crossing the Yantze Platform and Jiangnan Foldbelt in NNE-NE direction and adjoins the south China geosyncline basement. This belt shows some features of geology and mineralization similar to the Adelaide geosyncline and the Zambia-Zaire Copper-uranium belt. Within the belt, there are about 9000 to 12,000 m polystratotype strata and continuous sediments of the Late Proterozoic Erathem, including alkaline and meta-alkaline volcanic products of 4 epochs of mainly marine facies. A great number of ore-forming elements, such as Cu, U, Pb, Zn, Au, Ag, Fe, Co, Ni, Mn, P, and W, Sn, TR etc., were deposited and enriched in the whole volcano-sedimentary sequency at various times and in various places. A few of them have become syngenetic deposits, but most of them have been transformed into large-scale ore deposits or mineralization fields or areas of copper and gold, lead-zinc and silver, uranium, tungsten, tin, and other metals.

  4. ELEMENTAL MERCURY IN COPPER, SILVER, AND GOLD ORES: AN UNEXPECTED CONTRIBUTION TO LAKE SUPERIOR SEDIMENTS WITH GLOBAL IMPLICATIONS

    EPA Science Inventory

    Mercury and copper inventories are low in central Lake Superior and increase markedly towards the Keweenaw Peninsula...where copper, mercury, and silver inventories are elevated and highly correlated. High copper, silver, and mercury inventories can be traced back to shoreline st...

  5. ELEMENTAL MERCURY IN COPPER, SILVER, AND GOLD ORES: AN UNEXPECTED CONTRIBUTION TO LAKE SUPERIOR SEDIMENTS WITH GLOBAL IMPLICATIONS

    EPA Science Inventory

    Mercury and copper inventories are low in central Lake Superior and increase markedly towards the Keweenaw Peninsula...where copper, mercury, and silver inventories are elevated and highly correlated. High copper, silver, and mercury inventories can be traced back to shoreline st...

  6. Statistical source identification of major and trace elements in groundwater downward the tailings dam of Miduk Copper Complex, Kerman, Iran.

    PubMed

    Kargar, Maryam; Khorasani, Neamatolah; Karami, Mahmoud; Rafiee, Gholamreza; Naseh, Reza

    2012-10-01

    Identifying the possible sources of potential harmful metals in groundwater systems plays a crucial role in evaluating the potential risks to residents and local plant cover. An attempt was made to define the origin of Al, Cd, Cu, Fe, Mo, Ni, and Pb in groundwater using multivariate statistic approaches [principal component analysis (PCA), hierarchical cluster analysis], and tailings sequential extraction by the method of Tessier et al. The concentrations of studied elements were measured in 42 samples collected from 15 stations surrounding and downward the tailings dam of Miduk Copper Complex, central province of Kerman, Iran. According to the PCA results, confirmed by cluster dendrogram and metal content measurement of tailings sequential extracts, two components accounting for nearly 73% of the total variance, controlled the heavy metal variability and classified the possible source of groundwater contamination into two categories: (1) upper seepage which controls the variability of Cd, Cu, Fe, Ni, and Pb and (2) toe seepage of tailings dump affecting on Mo and Al concentration in downstream groundwater.

  7. Geochemistry of sedimentary ore deposits

    SciTech Connect

    Maynard, J. B.

    1983-01-01

    A text providing a sedimentological treatment of a study on ore deposits, and especially as related to geochemistry. Excellently documented (about 5000 citations). Well indexed with the index of deposits and localities separated. Contents, Iron. Copper and silver. Aluminum and nickel. Manganese. Uranium. Lead and zinc. Volcanic-sedimentary ores. Appendix. Indexes.

  8. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    NASA Astrophysics Data System (ADS)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  9. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings.

    PubMed

    Zhan, Jing; Sun, Qingye

    2012-03-20

    The composition of free-living nitrogen-fixing microbial communities in rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings was studied by the presence of nifH genes using Polymerase Chain Reaction-Denatured Gradient Gel Electrophoresis (PCR-DGGE) approach. Eleven rhizosphere tailing samples and nine non-rhizosphere tailing samples from six plant communities were collected from two wastelands with different discarded periods. The nested PCR method was used to amplify the nifH genes from environmental DNA extracted from tailing samples. Twenty-two of 37 nifH gene sequences retrieved from DGGE gels clustered in Proteobacteria (α-Proteobacteria and β-Proteobacteria) and 15 nifH gene sequences in Cyanobacteria. Most nifH gene fragments sequenced were closely related to uncultured bacteria and cyanobacteria and exhibited less than 90% nucleotide acid identity with bacteria in the database, suggesting that the nifH gene fragments detected in copper mine tailings may represent novel sequences of nitrogen-fixers. Our results indicated that the non-rhizosphere tailings generally presented higher diversity of nitrogen-fixers than rhizosphere tailings and the diversity of free-living nitrogen-fixers in tailing samples was mainly affected by the physico-chemical properties of the wastelands and plant species, especially the changes of nutrient and heavy metal contents caused by the colonization of plant community. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments

    NASA Astrophysics Data System (ADS)

    Yuval, Douglas; Oldenburg, W.

    1996-04-01

    Oxidation of sulfide minerals in the mine tailings impoundments at Copper Cliff, Ontario generates acidic conditions and elevated concentrations of dissolved metals and sulfates in the pore water. The pore water migrates away from the tailings to pose a potential environmental hazard if is should reach nearby water systems. There is a need to characterize this potential environmental problem and to assess the future hazards. A combined DC resistivity and induced polarization (IP) survey was carried out along one of the major flowpaths in the tailings and the data were inverted to produce detailed electrical conductivity and chargeability structures of the cross-section below the survey line. The conductivity distributions are directly translated, through theoretical and empirical relations, to a map of the concentration of the total dissolved solids (TDS) along the cross-section and thereby provide insight about the in-situ pore water quality. The sulfide minerals are the source of the IP response and, thus, when combined with borehole data, the chargeability model can be used to estimate the amount and distribution of the sulfides.

  11. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings.

    PubMed

    Huang, Li-Nan; Tang, Feng-Zao; Song, Yong-Sheng; Wan, Cai-Yun; Wang, Sheng-Long; Liu, Wei-Qiu; Shu, Wen-Sheng

    2011-12-01

    Microorganisms are important in soil development, inputs and biogeochemical cycling of nutrients and organic matter during early stages of ecosystem development, but little is known about their diversity, distribution, and function in relation to the chemical and physical changes associated with the progress of succession. In this study, we characterized the community structure and activity of nitrogen-fixing microbes during primary succession on a copper tailings. Terminal fragment length polymorphism (T-RFLP) and clone sequencing of nifH genes indicated that different N(2) -fixing communities developed under primary succession. Phylogenetic analysis revealed a diversity of nifH sequences that were mostly novel, and many of these could be assigned to the taxonomic divisions Proteobacteria, Cyanobacteria, and Firmicutes. Members of the Cyanobacteria, mostly affiliated with Nostocales or not closely related to any known organisms, were detected exclusively in the biological soil crusts and represented a substantial fraction of the respective diazotrophic communities. Quantitative PCR (and statistical analyses) revealed that, overall, copy number of nifH sequences increased with progressing succession and correlated with changes in physiochemical properties (including elementary elements such as carbon and nitrogen) and the recorded nitrogenase activities of the tailings. Our study provides an initial insight into the biodiversity and community structure evolution of N(2) -fixing microorganisms in ecological succession of mine tailings. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. An economic and energy evaluation of the replacement of conventional technology with continuous chromatography in the dump leaching of copper ores

    SciTech Connect

    Byers, C.H.; Begovich, J.M.; Holmes, J.M.

    1989-02-01

    The focus of this investigation is an economic and energy analysis of the implementation of CAC (continuous annular chromatography) to a large-scale industrial process. The technology selected is the dump leaching of copper and other metal values from low-grade copper ores. The portion of the presently used process to be placed in this case is the solvent extraction (SX) train in which the copper in solution is separated from the leach liquor from dump leaching. Instead of SX, we use the CAC for the separation and immediately obtain two advantages: (1) We can separate all of the metals such as iron, cobalt, and yttrium as well as copper in one operation, thus reducing the plant size and increasing the total metal values recovered; and (2) we exit with purer and more concentrated steams, thus improving the energy and economic picture. To scale the CAC, we have developed a model for the process which is implemented in ASPEN (Advanced System for Process Engineering). Modules for both the mass/energy balance part and the economics were implemented in ASPEN. ASPEN is a state-of-the-art process simulator which was originally written for the Department of Energy to be used in evaluating processes which are similar to the one we are considering. It allows one to perform the most complex material and energy balances automatically and to tie these in the same simulation to the economic evaluations of the process in question. Our implementation is an advanced version of the simulator, is distributed by JSD Associates.

  13. Determination of uranium, iron, copper, and nickel from ore samples by MEKC using N,N'-ethylene bis(salicylaldimine) as complexing reagent.

    PubMed

    Mirza, Muhammed Aslam; Khuhawar, Muhammad Yar; Arain, Rafee

    2008-02-01

    An analytical procedure has been developed for the separation of dioxouranium(VI), iron(III), copper(II), nickel(II), cobalt(II), cobalt(III), palladium(II), and thorium(IV) by MEKC using N,N'-ethylene bis(salicylaldimine) (H(2)SA(2)en) as a complexing reagent with total runtime <4.5 min. SDS was used as micellar medium at pH 8 with sodium tetraborate buffer (0.1 M). An uncoated fused-silica capillary with an effective length of 50 cm x 75 microm id was used with an applied voltage of 30 kV with photodiode array detection at 231 nm. Linear calibrations were obtained within 0.111-1000 microg/mL of each element with LODs within 37-325 ng/mL. The developed method was tested for analysis of uranium ore samples indicating its presence within 103-1789 microg/g with RSD within 0.79-1.87%. Likewise copper, nickel, and iron in their combined matrix were also simultaneously determined with RSD 0.4-1.6% (n = 6).

  14. Soil management of copper mine tailing soils--sludge amendment and tree vegetation could improve biological soil quality.

    PubMed

    Asensio, Verónica; Covelo, Emma F; Kandeler, Ellen

    2013-07-01

    Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species.

  15. The Cretaceous sediment-hosted copper deposits of San Marcos (Coahuila, Northeastern Mexico): An approach to ore-forming processes

    NASA Astrophysics Data System (ADS)

    García-Alonso, Donají; Canet, Carles; González-Partida, Eduardo; Villanueva-Estrada, Ruth Esther; Prol-Ledesma, Rosa María; Alfonso, Pura; Caballero-Martínez, Juan Antonio; Lozano-Santa Cruz, Rufino

    2011-04-01

    In the San Marcos ranges of Cuatrociénegas, NE Mexico, several sediment-hosted copper deposits occur within the boundary between the Coahuila Block, a basement high mostly granitic in composition and Late Paleozoic to Triassic in age, and the Mesozoic Sabinas rift basin. This boundary is outlined by the regional-scale synsedimentary San Marcos Fault. At the basin scale, the copper mineralization occurs at the top of a ˜1000 m thick red-bed succession (San Marcos Formation, Berrisian), a few meters below a conformable, transitional contact with micritic limestones (Cupido Formation, Hauterivian to Aptian). It consists of successive decimeter-thick roughly stratiform copper-rich horizons placed just above the red-beds, in a transitional unit of carbonaceous grey-beds grading to micritic limestones. The host rocks are fine- to medium-grained arkoses, with poorly sorted and subangular to subrounded grains. The detrital grains are cemented by quartz and minor calcite; besides, late iron oxide grain-coating cement occurs at the footwall unmineralized red-beds. The source area of the sediments, indicated by their modal composition, is an uplifted basement. The contents of SiO 2 (40.70-87.50 wt.%), Al 2O 3 (5.91-22.00 wt.%), K 2O (3.68-12.50 wt.%), Na 2O (0.03-2.03 wt.%) and CaO (0.09-3.78 wt.%) are within the ranges expected for arkoses. Major oxide ratios indicate that the sedimentary-tectonic setting was a passive margin. The outcropping copper mineralization essentially consists in a supergene assemblage of chrysocolla, malachite and azurite. All that remains of the primary mineralization are micron-sized chalcocite grains shielded by quartz cement. In addition, pyrite subhedral grains occur scattered throughout the copper-mineralized horizons. In these weathered orebodies copper contents range between 4.24 and 7.72 wt.%, silver between 5 and 92 ppm, and cobalt from 8 to 91 ppm. Microthermometric measurements of fluid inclusions in quartz and calcite crystals from

  16. Selective copper diffusion into quartz-hosted vapor inclusions: Evidence from other host minerals, driving forces, and consequences for Cu-Au ore formation

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hun; Heinrich, Christoph A.

    2013-07-01

    larger ion analyzed in vapor inclusions probably represent true gold concentrations in magmatic-hydrothermal vapor. These findings imply that brine-vapor separation in porphyry deposits does not cause selective Cu transfer to the vapor, but is more likely to destabilize Cu complexes and promote copper ore deposition during decompression and unmixing of the two fluid phases. By contrast, Au may be selectively transferred into the vapor phase, allowing its transport through the deeper porphyry copper deposits to form epithermal gold deposits closer to the earth's surface.

  17. Temporal variation in the diversity and cover of sessile species in rocky intertidal communities affected by copper mine tailings in northern Chile.

    PubMed

    Fariña, J M; Castilla, J C

    2001-07-01

    Several coastal rocky shores in the northern Chile have been affected by the discharges of copper mine tailings. In spite of this, the temporal and spatial variation on the diversity and composition of their intertidal benthic communities has scarcely been studied. The objectives of the present study were to analyse and to compare quantitatively the temporal variation on the diversity, cover and composition of sessile species in rocky intertidal benthic communities of the northern Chilean coast, in relation to the presence of copper mine tailings. The results show that the drastic reduction on the sessile species diversity and the monopolization of the substrate exerted by the green algae Enteromorpha compressa, are common and permanent features of the intertidal rocky shores affected by copper mine tailings. Such spatial (between sites) and temporal (seasonal) variation of these changes has been associated with the relative concentrations of trace metals and inorganic particles of the mining wastes. Our results suggest that the mechanical effects of resuspended and settling tailings are a more likely cause.

  18. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    PubMed Central

    González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  19. Germination and early growth of Brassica juncea in copper mine tailings amended with technosol and compost.

    PubMed

    Novo, Luís A B; González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings.

  20. Ore metals through geologic history.

    PubMed

    Meyer, C

    1985-03-22

    The ores of chromite, nickel, copper, and zinc show a wide distribution over geologic time, but those of iron, titanium, lead, uranium, gold, silver, molybdenum, tungsten, and tin are more restricted. Many of the limitations to specific time intervals are probably imposed by the evolving tectonic history of Earth interacting with the effects of the biomass on the evolution of the earth's s surface chemistry. Photosynthetic generation of free oxygen and "carbon" contributes significantlly to the diversity of redox potentials in both sedimentary and igneous-related processes of ore formation, influencing the selection of metals at the source, during transport, and at the site of ore deposition.

  1. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China.

    PubMed

    Tong, Jia; Miaowen, Cao; Juhui, Jing; Jinxian, Liu; Baofeng, Chai

    2017-01-01

    We conducted a survey of native grass species infected by endophytic fungi in a copper tailings dam over progressive years of phytoremediation. We investigated how endophytic fungi, soil microbial community structure and soil physiochemical properties and enzymatic activity varied in responses to heavy metal pollution over different stages of phytoremediation. endophyte infection frequency increased with years of phytoremediation. Rates of endophyte infection varied among different natural grass species in each sub-dam. Soil carbon content and soil enzymatic activity gradually increased through the years of phytoremediation. endophyte infection rates of Bothriochloa ischaemum and Festuca rubra were positively related to levels of cadmium (Cd) pollution levels, and fungal endophytes associated with Imperata cylindrical and Elymus dahuricus developed tolerance to lead (Pb). The structure and relative abundance of bacterial communities varied little over years of phytoremediation, but there was a pronounced variation in soil fungi types. Leotiomycetes were the dominant class of resident fungi during the initial phytoremediation period, but Pezizomycetes gradually became dominant as the phytoremediation period progressed. Fungal endophytes in native grasses as well as soil fungi and soil bacteria play different ecological roles during phytoremediation processes.

  2. [Occupational morbidity among miners engaged into contemporary method of extracting copper-nickel ores in Kola Transpolar regions].

    PubMed

    Siurin, S A; Shilov, V V

    2014-01-01

    The risks for developing occupational pathology and its specific features were studied in 358 Kola Transpolar copper-nickel miners who were diagnosed with 722 cases of occupational diseases (OD) in the years 1990-2013. The highest risk for developing OD, which are dominated by the diseases of the musculoskeletal system, has been found in tunnellers (OR = 12,8) and operators of drilling rigs (OR = 10,4). A significant increase in the risk of OD has been established in miners with length of service at 11-15 years and over 25 years. The conclusion is made about the need to improve the technical, medical and organizational measures targetted at preventing health problems in this group of workers.

  3. Changes in the sorption, desorption, distribution, and availability of copper, induced by application of sewage sludge on Chilean soils contaminated by mine tailings.

    PubMed

    Garrido, Tatiana; Mendoza, Jorge; Arriagada, Francisco

    2012-01-01

    The effect of mine tailings and sewage sludge was evaluated on sorption, desorption, availability and distribution of copper in two soils, one high (sandy soil) and one low in copper (clay soil). In both soils contaminated by mine tailings the copper sorption capacity and the affinity of the substrate for the metal decreased substantially compared to the uncontaminated soils, however, the sorption remained always high in the clay soil substrates. In the substrates with sandy soil, the high Cu content and lower clay content were determining factors in the lower magnitude of the sorption. Similarly, metal desorption was closely related to these two parameters, and it was higher in clay soil with lower pH. In general, the application of sewage sludge favored the sorption of Cu in soils contaminated and uncontaminated with mine tailings, and in all cases desorption decreased, an effect that remained for at least 30 days. Simple extraction of Cu with CaCl2 and diethylenetriaminepentaacetic acid gave contradictory results, so a careful choice of the procedure is required, depending on the level of metal in the soil and on the acting principle of the extracting agent. In that relation, more complete information on the changes in the metal forms was obtained by application of the sequential extraction procedure proposed by the European Community Bureau of Reference.

  4. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration.

    PubMed

    Zhan, Jing; Sun, Qingye

    2011-01-01

    Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands. The diversity of nifH genes in tailings samples under different plant communities in Yangshanchong and Tongguanshan wastelands in Tongling, was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach. The nitrogen-fixing microorganism community in the upper layer of tailings of Tongguanshan wasteland discarded in 1980 showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland discarded in 1991. The diversity of nifH genes in Yangshanchong wasteland of copper mine tailings did not display a consistent successional tendency with development of plant communities during the process of natural ecological restoration. Phylogenetic analysis of 25 sequences of nifH gene fragments retrieved from the DGGE gels indicated that there were mainly two taxa of free-living nitrogen-fixing microorganisms, Proteobacteria and Cyanobacteria living in the wastelands investigated, most of which were unique and uncultured. Canonical correspondence analysis (CCA) based on the relationship between band patterns of DGGE profile and physico-chemical properties of tailings samples showed that the diversity of nifH genes in different tailing samples was mainly affected by loss of ignition, water content, pH and available Zn contents of wastelands. The dominant plant species and development period of plant communities by ameliorating pH, reducing the toxicity of heavy metals, increasing organic matter and water content affected the diversity and structure of the free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings.

  5. 44. PHOTOCOPY OF DRAWING OF THE MINE ORE BIN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. PHOTOCOPY OF DRAWING OF THE MINE ORE BIN AND LOADING TERMINAL, CROSS SECTION AND SIDE ELEVATION - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  6. 43. PHOTOCOPY OF DRAWING OF THE MINE ORE BIN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. PHOTOCOPY OF DRAWING OF THE MINE ORE BIN AND LOADING TERMINAL, CROSS SECTION AND SIDE ELEVATION - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  7. 37. VIEW NORTH FROM EAST CRUDE ORE BIN TO CRUSHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW NORTH FROM EAST CRUDE ORE BIN TO CRUSHER ADDITION AND CRUSHED OXIDIZED ORE BIN. VISIBLE ARE DINGS MAGNETIC PULLEY (CENTER), THE 100-TON STEEL CRUSHED UNOXIDIZED ORE BIN, AND UPPER PORTION OF THE STEPHENS-ADAMSON 25 TON/HR BUCKET ELEVATOR. THE UPPER TAILINGS POND LIES BEYOND THE MILL WITH THE UPPER TAILINGS DAM UNDER THE GRAVEL ROAD IN THE UPPER RIGHT CORNER. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  8. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    USGS Publications Warehouse

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later

  9. Geothermal energy for the increased recovery of copper by flotation enhancement

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The possible use of geothermal energy (a) to speed the recovery of copper from ore flotation and/or leaching of flotation tailings and (b) to utilize geothermal brines to replace valuable fresh water in copper flotation operations was evaluated. Geothermal energy could be used to enhance copper and molybdenum recovery in mineral flotation by increasing the kinetics of the flotation process. In another approach, geothermal energy could be used to heat the leaching solution which might permit greater copper recovery using the same residence time in a tailings leach facility. Since there is no restriction on the temperature of the leaching fluid, revenues generated from the additional copper recovered would be greater for tailings leach operations than for other types of leach operations (for example, dump leaching operation) for which temperature restrictions exist. The estimated increase in total revenues resulting from two percent increase copper recovery in a 50,000 tons ore/day plant was estimated to be over $2,000,000 annually. It would require an estimated geothermal investment of about $2,130,000 for a geothermal well and pumping system. Thus, the capital investment would be paid out in about one year. Furthermore, considerable savings of fresh waters and process equipment are possible if the geothermal waters can be used directly in the mine-mill operations, which is believed to be practical.

  10. Genome sequence of the copper resistant and acid-tolerant Desulfosporosinus sp. BG isolated from the tailings of a molybdenum-tungsten mine in the Transbaikal area.

    PubMed

    Karnachuk, Olga V; Kadnikov, Vitalii V; Panova, Inna A; Mardanov, Andrey V; Beletsky, Alexey V; Danilova, Erzhena V; Avakyan, Marat R; Ravin, Nikolai V

    2017-03-01

    Here, we report on the draft genome of a copper-resistant and acidophilic Desulfosporosinus sp. BG, isolated from the tailings of a molybdenum-tungsten mine in Transbaikal area. The draft genome has a size of 4.52 Mb and encodes transporters of heavy metals. The phylogenetic analysis based on concatenated ribosomal proteins revealed that strain BG clusters together with the other acidophilic copper-resistant strains Desulfosporosinus sp. OT and Desulfosporosinus sp. I2. The K(+)-ATPase, Na(+)/H(+) antiporter and amino acid decarboxylases may participate in enabling growth at low pH. The draft genome sequence and annotation have been deposited at GenBank under the accession number NZ_MASS00000000.

  11. Prediction of ground motion due to mining seismic activity: a general prediction scheme applied to assess impacts on tailings pond in Legnica-Glogow Copper District in Poland in the years 2011-2050

    NASA Astrophysics Data System (ADS)

    Lasocki, S.; Orlecka-Sikora, B.

    2012-04-01

    Copper-ore excavation in the Legnica-Głogow Copper District (LGCD) in south-west Poland is accompanied by intense induced seismic activity. In-mine seismic systems record altogether thousands events annually, whose local magnitude ranges from 0.4 to 4.5. Within a range of mining tremors impact is the Zelazny Most tailings pond, one of the largest waste dumps in the world. To ensure its safety a probabilistic seismic hazard analysis (PSHA) is performed every few years and its results are used to adjust mining plans. In this work we present the newest predictions of limits of ground motion at the Żelazny Most pond embankments for the period 2011-2050. A seismic process in mines is controlled predominantly by time-varying mining works, therefore the results of PSHA for mining induced seismicity are predictions related to a prescribed time period in the future. Here, ground motion has been parameterized by peak horizontal and peak vertical acceleration and the exceedance probability of the limit is 5 per-cent. The work is done in a general prediction scheme. The expected seismic excitation is linked to the continuation of mining in LGCD. Based on mining plans 84 seismic zones, expected to become active in the years 2011-2050, have been identified and their periods of activity have been established. Seismic activity associated with past and current mining works is used to choose alternative models of event rate and event size distribution for the seismicity in the zones of future activity. Analyzing mining seismic catalogs, 188 zones active in the past and/or at present have been singled out and their probabilistic characteristics have been determined. It is assumed that the a priori probability of a model to be followed in a future zone is inversely proportional to the distance between the past zone, which originated the model, and the future active zone. As an epicenter distribution in future zones, the 2D uniform distribution is assumed, supposing that tremors may

  12. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  13. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  14. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit.

    PubMed

    Diaby, N; Dold, B; Rohrbach, E; Holliger, C; Rossi, P

    2015-11-15

    Mine tailings are a serious threat to the environment and public health. Remediation of these residues can be carried out effectively by the activation of specific microbial processes. This article presents detailed information about temporal changes in bacterial community composition during the remediation of a section of porphyry copper tailings deposited on the Bahía de Ite shoreline (Peru). An experimental remediation cell was flooded and transformed into a wetland in order to prevent oxidation processes, immobilizing metals. Initially, the top oxidation zone of the tailings deposit displayed a low pH (3.1) and high concentrations of metals, sulfate, and chloride, in a sandy grain size geological matrix. This habitat was dominated by sulfur- and iron-oxidizing bacteria, such as Leptospirillum spp., Acidithiobacillus spp., and Sulfobacillus spp., in a microbial community which structure resembled acid mine drainage environments. After wetland implementation, the cell was water-saturated, the acidity was consumed and metals dropped to a fraction of their initial respective concentrations. Bacterial communities analyzed by massive sequencing showed time-dependent changes both in composition and cell numbers. The final remediation stage was characterized by the highest bacterial diversity and evenness. Aside from classical sulfate reducers from the phyla δ-Proteobacteria and Firmicutes, community structure comprised taxa derived from very diverse habitats. The community was also characterized by an elevated proportion of rare phyla and unaffiliated sequences. Numerical ecology analysis confirmed that the temporal population evolution was driven by pH, redox, and K. Results of this study demonstrated the usefulness of a detailed follow-up of the remediation process, not only for the elucidation of the communities gradually switching from autotrophic, oxidizing to heterotrophic and reducing living conditions, but also for the long term management of the remediation

  15. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  16. State of the marine environment at Little Bay Arm, Newfoundland and Labrador, Canada, 10 years after a "do nothing" response to a mine tailings spill.

    PubMed

    Veinott, Geoff; Sylvester, Paul; Hamoutene, Dounia; Anderson, M Robin; Meade, Jim; Payne, Jerry

    2003-08-01

    In 1989, the tailings pond dam at the site of a former copper mine near Little Bay, Newfoundland and Labrador, Canada, ruptured and tailings spilled into Little Bay Arm. At the time, no action was taken to arrest the flow of tailings or to mitigate the effects of the spill. To date, no action has been taken to repair the dam and tailings continue to flow into Little Bay Arm. As a result, the marine environment around Little Bay Arm has become contaminated with heavy metals from the tailings. However, the tailings are not the only source of heavy metals to the ecosystem. An old slag heap and what is presumably concentrated copper ore spilled during the loading of ore freighters, are also contributing to the ecosystem's metal load. Marine sediment throughout the Arm contained elevated concentrations of Cu, Ni, Zn, As, V, Co, and Mn. Beach material also contained elevated concentrations of metals with material near the slag heap being the most contaminated. At this site, Cu concentrations were in excess of 5000 mg kg(-1) dry weight, Zn greater than 3000 mg kg(-1) and Co concentrations exceeded 700 mg kg(-1). The highest concentrations of metals in biota were found near the slag heap, near the tailings dam breach, and at the site of the former concentrate loading dock. Despite elevated metal concentrations, the tailings and nearby sediment were not devoid of life. Bivalves and seaweed were abundant in the area and there were no obvious signs of tissue damage or disease in soft shell clams (Mya arenaria) living in the tailings. These clams may be suffering from chronic exposure to the tailings, however, evidence of lipid peroxidation in the clams was inconclusive.

  17. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either for...

  18. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either for...

  19. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either for...

  20. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either for...

  1. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either for...

  2. Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Torresi, Ignacio; Xavier, Roberto Perez; Bortholoto, Diego F. A.; Monteiro, Lena V. S.

    2012-03-01

    The Alvo 118 iron oxide-copper-gold (IOCG) deposit (170 Mt at 1.0 wt.% Cu, 0.3 g/t Au) lies in the southern sector of the Itacaúnas Shear Belt, Carajás Mineral Province, along a WNW-ESE-striking, 60-km-long shear zone, close to the contact of the ~2.76-Ga metavolcano-sedimentary Itacaiúnas Supergroup and the basement (~3.0 Ga Xingu Complex). The Alvo 118 deposit is hosted by mafic and felsic metavolcanic rocks and crosscutting granitoid and gabbro intrusions that have been subjected to the following hydrothermal alteration sequence towards the ore zones: (1) poorly developed sodic alteration (albite and scapolite); (2) potassic alteration (biotite or K-feldspar) accompanied by magnetite formation and silicification; (3) widespread, pervasive chlorite alteration spatially associated with quartz-carbonate-sulphide infill ore breccia and vein stockworks; and (4) local post-ore quartz-sericite alteration. The ore assemblage is dominated by chalcopyrite (~60%), bornite (~10%), hematite (~20%), magnetite (10%) and subordinate chalcocite, native gold, Au-Ag tellurides, galena, cassiterite, F-rich apatite, xenotime, monazite, britholite-(Y) and a gadolinite-group mineral. Fluid inclusion studies in quartz point to a fluid regime composed of two distinct fluid types that may have probably coexisted within the timeframe of the Cu-Au mineralizing episode: a hot (>200°C) saline (32.8‰ to 40.6 wt.% NaCl eq.) solution, represented by salt-bearing aqueous inclusions, and a lower temperature (<200°C), low to intermediate salinity (<15 wt.% NaCl eq.) aqueous fluid defined by two-phase (LH2O + VH2O) fluid inclusions. This trend is very similar to those defined for other IOCG systems of the Carajás Mineral Province. δ 18OH2O values in equilibrium with calcite (-1.0‰ to 7.5‰ at 277°C to 344°C) overlap the lower range for primary magmatic waters, but the more 18O-depleted values also point to the involvement of externally derived fluids, possibly of meteoric origin

  3. View looking northwest toward HIghGrade Ore Bin and Concentrate Bin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking northwest toward HIgh-Grade Ore Bin and Concentrate Bin - Kennecott Copper Corporation, Concentration Mill, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  4. Distribution of ore deposits and spectrographic analyses of some rocks and ores on the Colorado Plateau

    USGS Publications Warehouse

    Riley, Leonard Benjamin; Shoemaker, Eugene Merle

    1952-01-01

    The geographic pattern of known igneous rocks and ore deposits on the Colorado Plateau suggests a zonal arrangement of several types of ore deposits around centers of igneous activity. Spectrographic analyses of rocks and ores on the Plateau have been obtained in an effort to determine the distribution of elements and to examine the relationships between types of ore deposits and between the ore deposits and igneous rocks. Over 170 analyses of rocks and ores are given in this report. A preliminary study of these analyses suggests that the proportion of uranium, vanadium, copper, and silver in the uranium ores varies geographically, and that the pattern of variation may be in part concentric about some of the major laccolithic intrusions. It is also suggested that the following ratios of metals contained in the uranium ores are possible guides to larger-than-average ore deposits: (1) lead/uranium greater than 1, (2) lead/zinc greater than 10, and (3) zinc/geometric mean of cobalt and nickel less than 10.

  5. Rhenium-osmium systematics of the Mount Isa copper orebody and the Eastern Creek Volcanics, Queensland, Australia: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Gregory, Melissa J.; Schaefer, Bruce F.; Keays, Reid R.; Wilde, Andy R.

    2008-07-01

    The syn-tectonic breccia-hosted Mount Isa Cu deposit in northwest Queensland is the largest sediment-hosted Cu deposit in Australia. Whole-rock samples of chalcopyrite-rich Cu ore form an isochron with a Re-Os age of 1,372 ± 41 Ma. This age is more than 100 Ma younger than the previously accepted age of Cu ore formation, an Ar-Ar mineral age for biotite separated from the host rocks within the alteration envelope to the Cu orebody. This discrepancy cannot be unequivocally resolved due to a lack of other absolute geochronological constraints for Cu mineralisation or the deformation event associated with Cu emplacement. The 1,372 ± 41 Ma date may reflect (a) the time of Cu deposition, (b) the time of a hydrothermal event that reset the Re-Os signature of the Cu ore or (c) mixing of the Re-Os isotope systematics between the host rocks and Cu-bearing fluids. However, a range of published Ar-Ar and Rb-Sr dates for potassic alteration associated with Cu mineralisation also records an event between 1,350 and 1,400 Ma and these are consistent with the 1,372 Ma Re-Os age. The 1.8 Ga Eastern Creek Volcanics are a series of tholeiitic basalts with a primary magmatic Cu enrichment which occur adjacent to the Mount Isa Cu deposit. The whole-rock Os isotopic signature of the Eastern Creek Volcanics ranges from mantle-like values for the upper Pickwick Member, to more radiogenic/crustal values for the lower Cromwell Member. The Re-Os isotope signature of the Cu ores overlaps with those calculated for the two volcanic members at 1,372 Ma; hence, the Os isotope data are supportive of the concept that the Os in the Cu ores was sourced from the Eastern Creek Volcanics. By inference, it is therefore postulated that the Eastern Creek Volcanics are the source of Cu in the Mount Isa deposit, as both Os and Cu are readily transported by oxidised hydrothermal fluids, such as those that are thought to have formed the Cu orebody. The Pickwick Member yields a Re-Os isochron age of 1,833

  6. 40 CFR 421.40 - Applicability: Description of the primary copper smelting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary copper smelting subcategory. 421.40 Section 421.40 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Copper Smelting Subcategory § 421.40 Applicability: Description of the primary copper... the primary smelting of copper from ore or ore concentrates. Primary copper smelting includes, but...

  7. 40 CFR 421.40 - Applicability: Description of the primary copper smelting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary copper smelting subcategory. 421.40 Section 421.40 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Copper Smelting Subcategory § 421.40 Applicability: Description of the primary copper... the primary smelting of copper from ore or ore concentrates. Primary copper smelting includes, but...

  8. 40 CFR 421.40 - Applicability: Description of the primary copper smelting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary copper smelting subcategory. 421.40 Section 421.40 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Copper Smelting Subcategory § 421.40 Applicability: Description of the primary copper... the primary smelting of copper from ore or ore concentrates. Primary copper smelting includes, but...

  9. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife.

    PubMed

    Donato, D B; Nichols, O; Possingham, H; Moore, M; Ricci, P F; Noller, B N

    2007-10-01

    industry. Cyanide concentrations below 50 mg/L weak-acid-dissociable (WAD) are deemed safe to wildlife but are considered an interim benchmark for discharge into tailings storage facilities (TSFs). Cyanide is a fast acting poison, and its toxicity is related to the types of cyanide complexes that are present. Cyanide in biota binds to iron, copper and sulfur-containing enzymes and proteins required for oxygen transportation to cells. The accurate determination of cyanide concentrations in the field is difficult to achieve due to sampling techniques and analytical error associated with loss and interferences following collection. The main WAD cyanide complexes in gold mine tailings are stable in the TSF environment but can release cyanide ions under varying environmental conditions including ingestion and absorption by wildlife. Therefore distinction between free, WAD and total cyanide forms in tailings water for regulatory purposes is justified. From an environmental perspective, there is a distinction between ore bodies on the basis of their copper content. For example, wildlife deaths are more likely to occur at mines possessing copper-gold ores due to the formation of copper-cyanide complexes which is toxic to birds and bats. The formation of copper-cyanide complex occurs preferentially to gold cyanide complex indicating the relative importance of economic vs. environmental considerations in the tailings water. Management of cyanide to a perceived threshold has inherent risks since cyanide has a steep toxicity response curve; is difficult to accurately measure in the field; and is likely to vary due to variable copper content of ore bodies and ore blending. Consequently, wildlife interaction needs to be limited to further reduce the risks. A gap in knowledge exists to design or manage cyanide-bearing mine waste solutions to render such facilities unattractive to at-risk wildlife species. This gap may be overcome by understanding the wildlife behaviour and habitat usage

  10. Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality.

    PubMed

    Abraham, Mwesigye R; Susan, Tumwebaze B

    2017-02-01

    The mining and processing of copper in Kilembe, Western Uganda, from 1956 to 1982 left over 15 Mt of cupriferous and cobaltiferous pyrite dumped within a mountain river valley, in addition to mine water which is pumped to the land surface. This study was conducted to assess the sources and concentrations of heavy metals and trace elements in Kilembe mine catchment water. Multi-element analysis of trace elements from point sources and sinks was conducted which included mine tailings, mine water, mine leachate, Nyamwamba River water, public water sources and domestic water samples using ICP-MS. The study found that mean concentrations (mg kg(-1)) of Co (112), Cu (3320), Ni (131), As (8.6) in mine tailings were significantly higher than world average crust and were being eroded and discharged into water bodies within the catchment. Underground mine water and leachate contained higher mean concentrations (μg L(-1)) of Cu (9470), Co (3430) and Ni (590) compared with background concentrations (μg L(-1)) in un contaminated water of 1.9, 0.21 and 0.67 for Cu, Co and Ni respectively. Over 25% of household water samples exceeded UK drinking water thresholds for Al of 200 μg L(-1), Co exceeded Winsconsin (USA drinking) water thresholds of 40 μg L(-1) in 40% of samples while Fe in 42% of samples exceeded UK thresholds of 200 μg L(-1). The study however found that besides mining activities, natural processes of geological weathering also contributed to Al, Fe, and Mn water contamination in a number of public water sources.

  11. Long-term effects of different type and rates of organic amendments on reclamation of copper mine tailing in Central Chile.

    NASA Astrophysics Data System (ADS)

    Arellano, Eduardo; Garreton, Bruna; Ginocchio, Rosanna

    2016-04-01

    A study was conducted to evaluate the long-term effects of a single application of organic amendments on a copper mine tailings. Seven years after seeding of a mix of herbaceous plant and planting of ten native trees, and the application of organic amendment, plant community and soil fertility was measured in replicated plots that received six different treatments of waste water treatment plant biosolids (100 ton/ha, and 200 ton/ha), olive oil waste (100 ton/ha, and 200 ton/ha) and pisco grapes waste (90 ton/ha, and 200 ton/ha). A control treatment that received no organic amendment was also measured after seven years. Field measurements demonstrated that application of biosolids and pisco grapes waste, at both rates significantly improved vegetation coverage in comparison to the control treatment (80 and 100% vs control, 25%). The high rates of pisco waste had the highest vegetation diversity and survival in comparison to the other treatments. The high rate of olive oil waste had a negative effect on vegetation development in comparison to the control treatment. The application of organic amendment improved soil fertility in the long-term. All the treatments had a significant higher nitrogen concentration in comparison to the control treatment. The high rates of biosolids and pisco grape waste had a significantly effect of soil carbon concentration. Soil macro-aggregate in the high rate of pisco grape waste were also higher than the control, showing a positive relation between soil recover and vegetation development. We can conclude assisted phytostabilization of mine tailings is likely a technically effective solution for the valorisation of organic residues.

  12. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia).

    PubMed

    Antonijević, M M; Dimitrijević, M D; Milić, S M; Nujkić, M M

    2012-03-01

    In this study concentrations of metals in the native plants and soils surrounding the old flotation tailings pond of the copper mine were determined. It has been established that the soil is heavily contaminated with copper, iron and arsenic, the mean concentrations being 1585.6, 29,462.5 and 171.7 mg kg(-1) respectively. All the plants, except manganese, accumulated metallic elements in concentrations which were either in the range of critical and phytotoxic values (Pb and As) or higher (Zn), and even much higher (Cu and Fe) than these values. Otherwise, the accumulation of Mn, Pb and As was considerably lower than that of Cu, Fe and Zn. In most plants the accumulation of target metals was highest in the root. Several plant species showed high bioaccumulation and translocation factor values, which classify them into species for potential use in phytoextraction. The BCF and TF values determined in Prunus persica were 1.20 and 3.95 for Cu, 1.5 and 6.0 for Zn and 1.96 and 5.44 for Pb. In Saponaria officinalis these values were 2.53 and 1.27 for Zn, and in Juglans regia L. they were 8.76 and 17.75 for Zn. The translocation factor in most plants, for most metals, was higher than one, whereas the highest value was determined in Populus nigra for Zn, amounting to 17.8. Among several tolerant species, the most suitable ones for phytostabilization proved to be Robinia pseudoacacia L. for Zn and Verbascum phlomoides L., Saponaria officinalis and Centaurea jacea L. for Mn, Pb and As.

  13. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins

    USGS Publications Warehouse

    Lund, K.; Tysdal, R.G.; Evans, K.V.; Kunk, M.J.; Pillers, R.M.

    2011-01-01

    Textural data at all scales indicate that the host sites for veins and the tectonic evolution of both host rocks and mineral deposits were kinematically linked to Late Cretaceous regional thrust faulting. Heat, fluids, and conduits for generation and circulation of fluids were part of the regional crustal thickening. The faulting also juxtaposed metaevaporite layers in the Mesoproterozoic Yellowjacket Formation over Blackbird district host rocks. We conclude that this facilitated chemical exchange between juxtaposed units resulting in leaching of critical elements (Cl, K, B, Na) from metaevaporites to produce brines, scavenging of metals (Co, Cu, etc) from rocks in the region, and, finally, concentrating metals in the lower-plate ramp structures. Although the ultimate source of the metals remains undetermined, the present Cu-Co ± Au (± Ag ± Ni ± REE) Blackbird ore deposits formed during Late Cretaceous compressional deformation.

  14. Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry

    PubMed Central

    Winz, Marie-Luise; Samanta, Ayan; Benzinger, Dirk; Jäschke, Andres

    2012-01-01

    The modification of RNA with fluorophores, affinity tags and reactive moieties is of enormous utility for studying RNA localization, structure and dynamics as well as diverse biological phenomena involving RNA as an interacting partner. Here we report a labeling approach in which the RNA of interest—of either synthetic or biological origin—is modified at its 3′-end by a poly(A) polymerase with an azido-derivatized nucleotide. The azide is later on conjugated via copper-catalyzed or strain-promoted azide–alkyne click reaction. Under optimized conditions, a single modified nucleotide of choice (A, C, G, U) containing an azide at the 2′-position can be incorporated site-specifically. We have identified ligases that tolerate the presence of a 2′-azido group at the ligation site. This azide is subsequently reacted with a fluorophore alkyne. With this stepwise approach, we are able to achieve site-specific, internal backbone-labeling of de novo synthesized RNA molecules. PMID:22344697

  15. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    PubMed

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Growth of free and attached Thiobacillus ferrooxidans in ore suspension

    SciTech Connect

    Espejo, R.T.; Ruiz, P.

    1987-01-01

    The growth of Thiobacillus ferroxidans in a copper-containing ore suspension incubated in shake flasks was studied by determining the number of colony-forming units both in solution and attached to ore particles. The amounts of iron and copper released from the ore under experimental conditions were also determined. The total ferrous iron either released from the minerals or generated by reduction of the ferric iron in the minerals or generated by reduction of the ferric iron in the minerals could account for the observed growth of bacteria in solution. Only a small fraction of the total colony-forming units - about 500 per mg ore - was found to be associated with the ore particles throughout the experiments. However, the rapid development of these colonies when ore particles were plated suggested that they were produced by a number of bacteria associated with each ore particle. Accordingly, when the amount of bacteria attached to ore particles was determined by monitoring the formation of ferric iron in the plates, the percentage of the total activity associated with attached bacteria was found to be between 1 and 10%.

  17. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  18. The extent of arsenic and of metal uptake by aboveground tissues of Pteris vittata and Cyperus involucratus growing in copper- and cobalt-rich tailings of the Zambian copperbelt.

    PubMed

    Kříbek, Bohdan; Mihaljevič, Martin; Sracek, Ondra; Knésl, Ilja; Ettler, Vojtěch; Nyambe, Imasiku

    2011-08-01

    The extent of arsenic (As) and metal accumulation in fronds of the As hyperaccumulator Pteris vittata (Chinese brake fern) and in leaves of Cyperus involucratus, which grow on the surface of an old flotation tailings pond in the Zambian Copperbelt province, was studied. The tailings consist of two types of material with distinct chemical composition: (1) reddish-brown tailings rich in As, iron (Fe), and other metals, and (2) grey-green tailings with a lower content of As, Fe, and other metals, apart from manganese (Mn). P. vittata accumulates from 2350 to 5018 μg g(-1) As (total dry weight [dw]) in its fronds regardless of different total and plant-available As concentrations in both types of tailings. Concentrations of As in C. involucratus leaves are much lower (0.24-30.3 μg g(-1) dw). Contents of copper (Cu) and cobalt (Co) in fronds of P. vittata (151-237 and 18-38 μg g(-1) dw, respectively) and in leaves of C. involucratus (96-151 and 9-14 μg g(-1) dw, respectively) are high, whereas concentrations of other metals (Fe, Mn, and zinc [Zn]) are low and comparable with contents of the given metals in common plants. Despite great differences in metal concentrations in the two types of deposited materials, concentrations of most metals in plant tissues are very similar. This indicates an exclusion or avoidance mechanism operating when concentrations of the metals in substrate are particularly high. The results of the investigation show that Chinese brake fern is not only a hyperaccumulator of As but has adapted itself to high concentrations of Cu and Co in flotation tailings of the Zambian Copperbelt.

  19. Exposures from mining and mine tailings

    NASA Astrophysics Data System (ADS)

    Chambers, Douglas B.; Cassaday, Valerie J.; Lowe, Leo M.

    The mining, milling and tailings management of uranium ores results in environmental radiation exposures. This paper describes the sources of radioactive emissions to the environment associated with these activities, reviews the basic approach used to estimate the resultant radiation exposures and presents examples of typical uranium mind and mill facilities. Similar concepts apply to radiation exposures associated with the mining of non-radioactive ores although the magnitudes of the exposures would normally be smaller than those associated with uranium mining.

  20. Determination of the oxidizing capacity of manganese ores.

    PubMed

    Prasad, R

    1974-09-01

    An accurate method is described for determining the amount of active oxygen in manganese ores, based on the oxidation-reduction reaction between the ore and arsenic(III) in presence of ammonium molybdate, followed by the back-titration of excess of arsenic(III) with cerium(IV), using osmium tetroxide as catalyst and Disulphine Blue V as indicator. A survey has been made of the applicability of this method to various pyrolusite ores containing less than 0.2% phosphorus. Aluminium(III), copper(II), iron(III), manganese(II), and molybdenum(VI) do not interfere. Up to 30% phosphorus(V) causes no interference.

  1. Ores and Climate Change - Primary Shareholders

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  2. A preliminary combined geochemical and rock-magnetic study of tailings of non-magnetic ores from Tlalpujahua-El Oro mining districts, Michoacán and Estado de México States

    NASA Astrophysics Data System (ADS)

    Morales, J.; Hernández-Bernal, M.; Corona-Chávez, P.

    2013-05-01

    Mining activities in Mexico have been continuously developed since 1550. Since then several thousands of million tons of waste produced as a result of the mining activity have been accumulated and scattered throughout the territory. These wastes can contain minerals with potentially toxic elements (PTEs) such as Cr, As, Cd, Cu, Pb, Zn, which show a distribution and mobility in the environment according to the chemical species in which are hosted. The Tlalpujahua - El Oro mining district (TOMD) concentrates an impressive number of mines and historical tailings. Due to their in-slope hydrographic position, the mining activities increase the risk of generating anthropogenic effluent that could contribute with a certain amount of mine-water with high contents of PTEs. Although magnetic methods have been widely applied to pollution studies of regions with high anthropogenic impact, its application to tailings is scarce in spite of the several studies that document the environmental effects as a result of the mining waste. We present the results obtained by combined geochemical and rock-magnetic studies in these tailings. Similarly to the traditional EPTs vs SiO2 diagrams, EPTs vs Fe show good linear (inverse) correlation with most of these health-risk elements. Fe concentrations determined magnetically from room-temperature susceptibility measurements agrees with those obtained by traditionally geochemical methods.

  3. Summary of the mineralogy of the Colorado Plateau uranium ores

    USGS Publications Warehouse

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  4. Analytical solutions for ore fluid transport in fractured rocks

    NASA Astrophysics Data System (ADS)

    Ling, Qi-Cong; Liu, Cong-Qiang; Bao, Zheng-Yu; Li, Fanglin

    2002-06-01

    The Dongguashan skarn copper deposit can be considered as the product of the transport-chemical reaction coupling process of ore-forming materials (for example, complexes of copper) in discrete, parallel fractures in a porous medium system. A mathematical model of metallogenesis has been established and the accurate analytical solutions for depicting the transport of ore-forming materials have been worked out. In establishing the model of metallogenesis and working out the analytical solutions, the following aspects have been taken into consideration: (1) advective transport along fractures; (2) diffusion and longitudinal mechanical dispersion of ore-forming materials (solutes) along the fracture axis; (3) diffusion of ore-forming materials from the fractures to the wall media; (4) adsorption of ore-forming materials on the surface of wall-rock matrices; (5) adsorption of ore-forming materials within the wall-rock matrices; (6) reduction of the concentrations of solutes due to the chemical reactions between ore fluids and wall-rock matrices and the precipitation of ore-forming materials. The general transient solution takes the form of a double integral, which can be evaluated using the Gauss-Legendre quadrature. By comparing the steady-state solutions in the special case of = D 0 (without dispersion) and of = [!=] 0 (with dispersion), a simple criterion can be established, with which one can assess the importance of longitudinal dispersion along the fracture system. Case studies showed that the developing extent of fractures in the system would exert a great influence on the transport rate and distance of ore-forming materials. In case that fractures are developed at small intervals, ore-forming materials will be transported along the fracture system over larger distance because of the limited capability of the wall rocks to store ore-forming materials. That is to say, larger orebodies would be formed. In the case of higher transport rates of ore fluids along the

  5. Geophysical Investigation of Buried Slag at the Parrot Tailings Site, Butte, Montana

    NASA Astrophysics Data System (ADS)

    Ha, C. D. M.; Shepherd, K.; Mack, A.; Rutherford, B. S.; Speece, M. A.

    2016-12-01

    Butte, Montana, has served as an important mining district for more than 120 years. This area contains historic mine waste from decades of unregulated mining practices. In July 1881, the Parrot smelter in Butte started operations and was soon processing ore and producing copper. The Parrot smelter also had a concentrating plant that treated the ore prior to smelting. The Parrot smelter wastes (slag and tailings) were later covered with Berkeley Pit crushed quartz monzonite overburden. The slag is bricked because it was deposited hot and, as a consequence forms a laterally extensive, cohesive, hard body that is difficult to remove without blasting. With the mine waste being covered by unknown quantities of overburden and soil throughout the area, and core data being limited and expensive to retrieve, the only economical method of discovery is geophysics. Several geophysical techniques were used to determine the lateral boundaries and depth of the buried slag body. The geophysical methods used were seismic, gravity, electromagnetic induction, and magnetics. Not all of these geophysical surveys produced useful results due to the nature of the slag. For instance, electromagnetic induction could not distinguish between the slag and adjacent tailings; and, the microgravity profiles showed only a small gravitational field variation caused by the density contrast between slag and the surrounding tailings, sediment and granitic cover. On the other hand, the seismic surveys resulted in unexpected first arrival times that distinctly showed velocity variations due to the slag. In addition, the slag body produced a large magnetic response. Unpublished, proprietary well data allowed us to model the slag body from our magnetic data. This model was confirmed by projecting velocity tomograms, that we created using seismic diving waves, onto our magnetic models. Model results were combined to form a three-dimensional image of the slag body. These results will be used to help

  6. TOTAL ORE PROCESSING INTEGRATION AND MANAGEMENT

    SciTech Connect

    Leslie Gertsch; Richard Gertsch

    2005-05-16

    The lessons learned from ore segregation test No.3 were presented to Minntac Mine personnel during the reporting period. Ore was segregated by A-Factor, with low values going to Step 1/2 and high values going to Step 3. During the test, the mine maintained the best split possible for the given production and location constraints. During the test, Step 1&2 A-Factor was lowered more than Step 3 was raised. All other ore quality changes were not manipulated, but the segregation by A-Factor affected most of the other qualities. Magnetic iron, coarse tails, fine tails, silica, and grind changed in response to the split. Segregation was achieved by adding ore from HIS to the Step 3 blend and lowering the amount of LC 1&2 and somewhat lowering the amount of LC 3&4. Conversely, Step 1&2 received less HIS with a corresponding increase in LC 1&2. The amount of IBC was increased to both Steps about one-third of the way into the test. For about the center half of the test, LC 3&4 was reduced to both Steps. The most noticeable layer changes were, then: an increase in the HIS split; a decrease in the LC 1&2 split; adding IBC to both Steps; and lowering LC 3&4 to both Steps. Statistical analysis of the dataset collected during ordinary, non-segregated operation of the mine and mill is continuing. Graphical analysis of blast patterns according to drill monitor data was slowed by student classwork. It is expected to resume after the semester ends in May.

  7. 3. VIEW OF EMPIRE STATE MINE WITH TAILING PILE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF EMPIRE STATE MINE WITH TAILING PILE IN BOTTOM LEFT AND COLLAPSED ADIT LOCATED BELOW DARK SHADOWS IN FAR RIGHT/LOWER THIRD. COLLAPSED BUILDING AND PARTIAL VIEW OF ORE CHUTE/BIN IS VISIBLE ON HILLSIDE ABOVE TAILINGS. CAMERA POINTED NORTH/NORTHWEST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  8. Australia's big copper-uranium deposit

    SciTech Connect

    Lyons, L.A.

    1981-07-01

    A combination of studies of satellite imagery with emphasis on lineament analysis, conventional gravity studies, aerial and ground magnetic surveys, theoretical and empirical modeling contributed to the discovery of the Roxby Downs/Olympic Dam deposit. The main ore body could contain as much as 750,000,000 tons of ore at grades of 1.5 percent copper.

  9. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts.

    ERIC Educational Resources Information Center

    Rodriguez, Emilio; Vicente, Miguel Angel

    2002-01-01

    Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)

  10. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts.

    ERIC Educational Resources Information Center

    Rodriguez, Emilio; Vicente, Miguel Angel

    2002-01-01

    Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)

  11. Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings.

    PubMed

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Wei, Gehong

    2012-03-01

    Sinorhizobium meliloti CCNWSX0020 was isolated from Medicago lupulina plants growing in lead-zinc mine tailings, which can establish a symbiotic relationship with Medicago species. Also, the genome of this bacterium contains a number of protein-coding sequences related to metal tolerance. We anticipate that the genomic sequence provides valuable information to explore environmental bioremediation.

  12. 26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN THE BACKGROUND. BLAST FURNACES ALONG THE RIGHT SIDE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.

  14. Bioprocessing of ores: Application to space resources

    NASA Technical Reports Server (NTRS)

    Johansson, Karl R.

    1992-01-01

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  15. Bioprocessing of ores: Application to space resources

    NASA Astrophysics Data System (ADS)

    Johansson, Karl R.

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  16. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  17. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  18. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  19. Velocity field measurements in tailings dam failure experiments using a combined PIV-PTV approach

    USDA-ARS?s Scientific Manuscript database

    Tailings dams are built to impound mining waste, also called tailings, which consists of a mixture of fine-sized sediments and water contaminated with some hazardous chemicals used for extracting the ore by leaching. Non-Newtonian flow of sediment-water mixture resulting from a failure of tailings d...

  20. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.

  1. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  2. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  3. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler; K. Lewandowski

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  4. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; K. Lewandowski

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.

  5. 11. VIEW OF THE MILL LOOKING SOUTHWEST SHOWING THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF THE MILL LOOKING SOUTHWEST SHOWING THE ORE RECEIVING STATION AND ORE BIN ON THE LEFT SIDE OF THE IMAGE, THE TRESTLE ON THE NORTH SIDE OF THE MILL LEADING FROM THE GROUND TO THE DELIVERY LEVEL. NOTE THE A FRAME STRUCTURE PROJECTING UP FROM THE INCLINED TRESTLE, THIS IS THE ONLY REMAINING PIECE OF A TRESTLE THAT CARRIED TAILING FROM THE MILL TO A CYANIDE PLANT THAT WAS LOCATED NORTH OF THE MILL. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  6. Potential for cobalt recovery from lateritic ores in Europe

    NASA Astrophysics Data System (ADS)

    Herrington, R.

    2012-04-01

    Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.

  7. Neutron activation analysis traces copper artifacts to geographical point of origin

    NASA Technical Reports Server (NTRS)

    Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.

    1967-01-01

    Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.

  8. Tail planes

    NASA Technical Reports Server (NTRS)

    Constantin, L

    1926-01-01

    This report presents methods by which the cells of large commercial airplanes may be reduced. The tail of large airplanes represent an area where considerable improvement in weight and size reduction can be attained.

  9. Tail Buffeting

    NASA Technical Reports Server (NTRS)

    Abdrashitov, G.

    1943-01-01

    An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.

  10. The application of PGNAA borehole logging for copper grade estimation at Chuquicamata mine.

    PubMed

    Charbucinski, J; Duran, O; Freraut, R; Heresi, N; Pineyro, I

    2004-05-01

    The field trials of a prompt gamma neutron activation (PGNAA) spectrometric logging method and instrumentation (SIROLOG) for copper grade estimation in production holes of a porphyry type copper ore mine, Chuquicamata in Chile, are described. Examples of data analysis, calibration procedures and copper grade profiles are provided. The field tests have proved the suitability of the PGNAA logging system for in situ quality control of copper ore.

  11. 165. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    165. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ON LEFT WITH ELEVATOR/CRUSHED ORE BIN TOWER TO RIGHT. MAIN MILL BUILDING IN CENTER WITH THICKENER ADDITION TO RIGHT. MACHINE SHOP ON CRUDE ORE BIN TERRACE ABOVE ROASTER. THE LOCATION OF THE 100,000 GALLON MILL WATER TANK CAN BE SEEN AT THE CENTER RIGHT NEAR THE TOP OF THE MOUNTAIN - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  12. 24. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ON LEFT WITH ELEVATOR/CRUSHED ORE BIN TOWER TO RIGHT. MAIN MILL BUILDING IN CENTER WITH THICKENER ADDITION TO RIGHT. MACHINE SHOP ON CRUDE ORE BIN TERRACE ABOVE ROASTER. THE LOCATION OF THE 100,000 GALLON MILL WATER TANK CAN BE SEEN AT THE CENTER RIGHT NEAR THE TOP OF THE MOUNTAIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  13. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the

  14. Ecotechnological approach for consolidation of uranium tailings.

    PubMed

    Soni, Prafulla; Singh, Lal

    2011-07-01

    Present study has been undertaken to consolidate radioactivity in uranium mill tailings at Jaduguda, Jharkhand, India.Tailings that remain after processing of ore are released in tailing ponds specially designed for the purpose. The degraded tailing ponds have been capped with 30 cm. thick soil cover. For cosolidation of radioactivity in the tailings firstly the selected plant species should not have any socioeconomic relevance in that area and secondly, uptake of uranium by selected plants has to be low to avoid its dissemination in any form in environment. Seven native plant species of forestry origin were used for experimental trials. Above ground growth has been measured for two years under ex- situ and in- situ conditions. Distribution and concentration of uranium have been evaluated in tailing pond soil as well as tailings. Uranium uptake by plants has been evaluated and discussed in this paper. The highest concentration of uranium has been found in the order as: in tailings > soil cover on tailings > roots of selected plant species > shoots of all the selected species. These results show that among seven species tried Jatropha gossypifolia and Furcraea foetida have lowest uptake (below detectable limit), while Saccharum spontaneum and Pogostemon benghalense have comparatively higher uptake among the studied species.

  15. Computer finds ore

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.

  16. Possible lunar ores

    NASA Technical Reports Server (NTRS)

    Gillett, Stephen L.

    1991-01-01

    Despite the conventional wisdom that there are no lunar ores, geochemical considerations suggest that local concentrations of useful rare elements exist on the Moon in spite of its extreme dryness. The Moon underwent protracted igneous activity in its history, and certain magmatic processes can concentrate incompatible elements even if anhydrous. Such processes include: (1) separation of a magma into immiscible liquid phases (depending on composition, these could be silicate-silicate, silicate-oxide, silicate-sulfide, or silicate-salt); (2) cumulate deposits in layered igneous intrusions; and (3) concentrations of rare, refractory, lithophile elements (e.g., Be, Li, Zr) in highly differentiated, silica-rich magmas, as in the lunar granites. Terrestrial mining experience indicates that the single most important characteristic of a potential ore is its concentration of the desire element. The utility of a planet as a resource base is that the welter of interacting processes over geologic time can concentrate rare element automatically. This advantage is squandered if adequate exploration for ores is not first carried out.

  17. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the

  18. Biotransformation of organic-rich copper-bearing black shale by indigenous microorganisms isolated from lubin copper mine (Poland).

    PubMed

    Matlakowska, Renata; Narkiewicz, Wanda; Sklodowska, Aleksandra

    2010-04-01

    The role of indigenous microorganisms in the biotransformation of refractory organic-rich copper-bearing black shale ore (Kupferschiefer) was confirmed in laboratory experiments. The persistent shale's organic matter was utilized by a mixture of bacterial strains as the sole carbon and energy source, and bacterial growth was accompanied by chemical and structural changes of black shale. The release of metallic elements and organic compounds into the aqueous phase was shown. Chemical analysis revealed the presence of long-chain aliphatic hydrocarbons and further biodegradation of these compounds by bacterial action. In this study, the release of metals from metalloorganic compounds present in organic-rich copper-bearing black shale was shown for the first time. The results have also confirmed the biotransformation of metalloporphyrins naturally occurring in black shale by indigenous microorganisms. Moreover, changes in the surface area and quantitative mineral composition of black shale were detected following bacterial treatment. This biotransformation activity is of potential use in biotechnological procedures for the recovery of copper and other valuable metals from tailings that contain up to 16% black shale. On the other hand, the release of organic carbon and heavy metals from black shale by biodegradation may significantly add to anthropogenic pollution.

  19. Metal-residence sites in mine tailings in the Magdalena District, New Mexico, USA

    SciTech Connect

    Larocque, A.C.L.; Chapin, C.E.; Laughlin, A.W.; Hickmott, D.

    1996-05-01

    Mineralization in the Kelly Mining Camp is hosted by the Mississippian Kelly Limestone and comprises Zn-Pb skarn, replacement, and vein deposits related to Tertiary intrusive activity. The ore consists of primary (hypogene) sulfide mineralization which has been oxidized near surface to form secondary (supergene) mineralization. A zone of secondary sulfide-enrichment separates the sulfide and oxide ores. Mine tailings in the camp contain primary sulfide, oxide and gangue minerals, secondary (supergene) minerals formed during weathering of the primary ore, and tertiary minerals formed by alteration of hypogene and supergene assemblages after deposition in the tailings impoundment.

  20. Can I Trust ORE Reports?

    ERIC Educational Resources Information Center

    Feedback, 1984

    1984-01-01

    This issue of FEEDBACK, a newsletter produced by the the Austin Independent School District Office of Research and Evaluation (ORE), illustrates the accuracy, validity, and fairness of ORE reports. The independence of the reports is explained. Internal and external quality controls are used to ensure reliability and accuracy of the reports.…

  1. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise

    USGS Publications Warehouse

    Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.

    1979-01-01

    Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.

  2. Electrodialytic remediation of suspended mine tailings.

    PubMed

    Hansen, Henrik K; Rojo, Adrian; Pino, Denisse; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2008-07-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings applying 40 mA during 7 days. The liquid-to-solid ratios used were 3, 6 and 9 mL g(- 1). With addition of sulfuric acid, the process was enhanced because the pH decreased to either 2 or 4, and copper was therefore dissolved. The maximum copper removal was 80% with addition of sulfuric acid in 7-day experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal efficiency from 1% to 80% compared to experiments with no stirring but with the same operational conditions. This showed the crucial importance of having the solids in suspension and not settled during the remediation.

  3. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  4. Reinforcement core facilitates O-ring installation

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Reinforcement core holds O-ring in place within a structure while adjacent parts are being assembled. The core in the O-ring adds circumferential rigidity to the O-ring material. This inner core does not appreciably affect the sectional elasticity or gland-sealing characteristics of the O-ring.

  5. 54. VIEW OF ROASTER ADDITION FROM SOUTHEAST. SHOWS ELEVATOR/ORE BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. VIEW OF ROASTER ADDITION FROM SOUTHEAST. SHOWS ELEVATOR/ORE BIN ADDITION ON LEFT WITH BASE OF EXHAUST STACK, PORTION OF TOPPLED STACK ON LOWER RIGHT IN VIEW, AND UPPER TAILINGS POND BEYOND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  6. Beneficiation and leaching study of a muti-Au carrier and low grade refractory gold ore

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Song, Y. S.; Chen, Y.; Cai, L. L.; Zhou, G. Y.

    2017-09-01

    Detailed mineralogy and beneficiation and leaching study of a muti-Au carrier, low grade refractory gold ore from a beneficiation plant in Henan Province, China, was investigated. Mineral liberation analysis, scanning electron microscopy, element phase analysis and etc. by a mineral liberation analyser were used for mineralogical characterization study of this ore. The present work describes an experimental study on the effect of traditional parameters (such as grinding fineness and reagent regimes), middling processing method and flowsheet construction on the total recovery and the assay of the floatation concentrate. Two-step floatation and part of middling combined to the floatation tailing for gold leaching process resulted in high gold grade (g.t-1) and gold recovery (%) for this refractory gold ore. This process opens the possibilities of maximizing Au grade and recoveries in a muti-Au carrier and low grade refractory gold ore where low recoveries are common.

  7. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  8. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  9. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  10. 3D electrical structure of porphyry copper deposit: A case study of Shaxi copper deposit

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-Bin; Lü, Qing-Tian; Yan, Jia-Yong

    2012-06-01

    Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial characteristics of host structures, an AMT survey was conducted in mining area. Eighteen pseudo-2D resistivity sections were constructed through careful processing and inversion. These sections clearly show resistivity difference between the Silurian sandstones formation and quartz diorite porphyry and this porphyry copper formation was controlled by the highly resistive anticlines. Using 3D block Kriging interpolation method and 3D visualization techniques, we constructed a detailed 3D resistivity model of quartz diorite porphyry which shows the shape and spatial distribution of deep ore bodies. This case study can serve as a good example for future ore prospecting in and around this mining area.

  11. Physical, chemical and antimicrobial characterization of copper-bearing material

    NASA Astrophysics Data System (ADS)

    Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan

    2010-12-01

    Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.

  12. [Dust and gas factors in extraction of polymetallic ore in Arctic conditions and their hygienic assessment].

    PubMed

    Borisenkova, R V; Lutsenko, L A; Skriabin, S Iu; Khristenko, P P

    1996-01-01

    Studies of drilling and blasting method of copper and nickel ores extraction at underground Transpolar mines proved that the highest concentrations of dust appeared during dry drilling of vertical blast holes, work of scraper windlass, fragmentation of out-size blocks, preparation of concrete mixture. Presence of aggressive metals, especially nickel, in the ore dust is a main base for planned thorough investigations of fibrogenic, toxic and carcinogenic effects of copper and nickel ore dust, for more precise assessment of its MAC in the air of workplace. Two-step purification of exhaust gases appearing due to mining diesel machines is not quite efficient, as the concentrations of nitrogen oxides (assessed through nitrogen dioxide) continually exceeded the MAC.

  13. SUBAQUEOUS DISPOSAL OF MILL TAILINGS

    SciTech Connect

    Neeraj K. Mendiratta; Roe-Hoan Yoon; Paul Richardson

    1999-09-03

    A study of mill tailings and sulfide minerals was carried out in order to understand their behavior under subaqueous conditions. A series of electrochemical experiments, namely, cyclic voltammetry, electrochemical impedance spectroscopy and galvanic coupling tests were carried out in artificial seawater and in pH 6.8 buffer solutions with chloride and ferric salts. Two mill tailings samples, one from the Kensington Mine, Alaska, and the other from the Holden Mine, Washington, were studied along with pyrite, galena, chalcopyrite and copper-activated sphalerite. SEM analysis of mill tailings revealed absence of sulfide minerals from the Kensington Mine mill tailings, whereas the Holden Mine mill tailings contained approximately 8% pyrite and 1% sphalerite. In order to conduct electrochemical tests, carbon matrix composite (CMC) electrodes of mill tailings, pyrite and galena were prepared and their feasibility was established by conducting a series of cyclic voltammetry tests. The cyclic voltammetry experiments carried out in artificial seawater and pH 6.8 buffer with chloride salts showed that chloride ions play an important role in the redox processes of sulfide minerals. For pyrite and galena, peaks were observed for the formation of chloride complexes, whereas pitting behavior was observed for the CMC electrodes of the Kensington Mine mill tailings. The electrochemical impedance spectroscopy conducted in artificial seawater provided with the Nyquist plots of pyrite and galena. The Nyquist plots of pyrite and galena exhibited an inert range of potential indicating a slower rate of leaching of sulfide minerals in marine environments. The galvanic coupling experiments were carried out to study the oxidation of sulfide minerals in the absence of oxygen. It was shown that in the absence of oxygen, ferric (Fe3+) ions might oxidize the sulfide minerals, thereby releasing undesirable oxidation products in the marine environment. The source of Fe{sup 3{minus}} ions may be

  14. Water requirements of the copper industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  15. Biomineralization of metal-containing ores and concentrates.

    PubMed

    Rawlings, Douglas E; Dew, David; du Plessis, Chris

    2003-01-01

    Biomining is the use of microorganisms to extract metals from sulfide and/or iron-containing ores and mineral concentrates. The iron and sulfide is microbially oxidized to produce ferric iron and sulfuric acid, and these chemicals convert the insoluble sulfides of metals such as copper, nickel and zinc to soluble metal sulfates that can be readily recovered from solution. Although gold is inert to microbial action, microbes can be used to recover gold from certain types of minerals because as they oxidize the ore, they open its structure, thereby allowing gold-solubilizing chemicals such as cyanide to penetrate the mineral. Here, we review a strongly growing microbially-based metal extraction industry, which uses either rapid stirred-tank or slower irrigation technology to recover metals from an increasing range of minerals using a diversity of microbes that grow at a variety of temperatures.

  16. The Application of Modern Techniques and Measurement Devices for Identification of Copper Ore Types and Their Properties / Wykorzystanie nowoczesnych technik i urządzeń pomiarowych do identyfikacji typów rud miedzi i ich właściwości

    NASA Astrophysics Data System (ADS)

    Krawczykowska, Aldona; Trybalski, Kazimierz; Krawczykowski, Damian

    2013-06-01

    The paper concerns the application of modern methods and research techniques for investigations of copper ore properties. It presents the procedure and tools which, when put together, can constitute a source of information on properties of different products of processing and, simultaneously, can be used in the process control and optimization. The copper ore of one of the branches of the KHGM Polska Miedz plc was investigated. The ore samples represented each of the three lithological types occurring in the Polish deposits, i.e. carbonate, shale and sandstone ores. The paper presents the results of microscopic analyses, image analysis of scanning photographs and application procedures of the obtained information for the identification of ore types (application of neuron networks to the recognition of lithological compositions). The present publication will present sample results of modelling of classification identifying two types of ores, i.e. carbonate-shale and sandstone. Summing up the predictions of ore type fractions in respective mixtures for the considered problem of classification it can be stated that the prediction results are good and confirm the lithological predominance of certain ore types in the investigated mixtures. The experimental part comprised the determination of mineralogical and lithological composition of ores (optical microscope) and also elemental composition in the microareas of analysed samples (scanning microscope). Next, the image analysis was performed and subsequently the models classifying the ore types were made. W rudzie miedzi przerabianej w zakładach wzbogacania O/ZWR KGHM Polska Miedź S.A. można wyróżnić trzy typy litologiczne: rudę węglanową, łupkową i piaskowcową. Typy te różnią się właściwościami między innymi takimi jak: rodzaj i zawartość minerałów miedzi, rodzaj minerałów nieużytecznych, zawartość miedzi, twardość i podatność na rozdrabnianie, ale także wielkością i kształtem ziaren

  17. In situ exploitation of deep set porphyry ores

    SciTech Connect

    Hard, R.A.; Harvey, W.W.; Lingane, P.J.; Park, W.C.; Redman, M.J.

    1981-09-29

    Disclosed is a method of economically exploiting deep set porphyry ore bodies of the type containing metal values such as sulfidic copper, nickel, or uranium minerals and minerals capable of absorbing copper, uranium, and nickel ions. The method involves establishing communication with the ore body through access and recovery wells and passing fluids sequentially therethrough. If necessary, thief zones of as low as 25 to 50 md in igneous rock of 1 to 5 md are prevented from distorting flow, by the injection of a polymeric solution of macromolecules with molecular weights of the order of 5 million along the entire wellbore, the higher permeability zones initially accepting the majority of the flow and being impaired at a much faster rate than the less permeable zones. In a first stage, the permeability of the leaching interval is stimulated as an ammoniated solution of sodium, potassium, or ammonium nitrate or chloride contacts calcium containing minerals to promote ion exchange, resulting in clay contraction or calcium carbonate dissolution. In a second stage, the leaching interval is primed as calcium ion is displaced with an aqueous solution of ammonium salt, a calcium sulfate scale inhibitor, and oxygen gas. In a third stage, a two-phase lixiviant comprising entrained oxygen containing bubbles and an ammoniacal leach liquor having a pH less than 10.5 and less than 1.0 mole/liter ammonia is passed through the leaching interval to solubilize copper, nickel, uranium, and other metal values.

  18. Iron versus Copper II. Principles and Applications in Bioinorganic Chemistry.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1986-01-01

    Discusses the differences between iron and copper. Describes various aspects of the behaviors of these two elements, including those of biological and environmental significance. Addresses the evolution of the atmosphere and sedimentary ore formation, the phylogeny of iron and copper, and some anthropological notes regarding the use of the metals.…

  19. Iron versus Copper II. Principles and Applications in Bioinorganic Chemistry.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1986-01-01

    Discusses the differences between iron and copper. Describes various aspects of the behaviors of these two elements, including those of biological and environmental significance. Addresses the evolution of the atmosphere and sedimentary ore formation, the phylogeny of iron and copper, and some anthropological notes regarding the use of the metals.…

  20. Uranium mill ore dust characterization

    SciTech Connect

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  1. Extraction procedure testing of solid wastes generated at selected metal ore mines and mills

    NASA Astrophysics Data System (ADS)

    Harty, David M.; Terlecky, P. Michael

    1986-09-01

    Solid waste samples from a reconnaissance study conducted at ore mining and milling sites were subjected to the U.S. Environmental Protection Agency extraction procedure (EP) leaching test Sites visited included mines and mills extracting ores of antimony (Sb), mercury (Hg), vanadium (V), tungsten (W), and nickel (Ni). Samples analyzed included mine wastes, treatment pond solids, tailings, low grade ore, and other solid wastes generated at these facilities Analysis of the leachate from these tests indicates that none of the samples generated leachate in which the concentration of any toxic metal parameter exceeded EPA criteria levels for those metals. By volume, tailings generally constitute the largest amount of solid wastes generated, but these data indicate that with proper management and monitoring, current EPA criteria can be met for tailings and for most solid wastes associated with mining and milling of these metal ores. Long-term studies are needed to determine if leachate characteristics change with time and to assist in development of closure plans and post closure monitoring programs.

  2. Evaluation of feasibility of static tests applied to Küre VMS ore deposits

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Çelik Balci, Nurgül; Şeref Sönmez, M.

    2015-04-01

    Küre volcanogenic massive sulfide (VMS) ore deposits have been mined for its copper content for over centuries. However, there is no published data on AMD around Küre VMS ore deposits. This study investigates the sources of acid producing mechanisms in Küre, using field and laboratorial approaches. Geochemical static tests to predict AMD generation are widely applied to mining sites for assessing potential environmental consequences. However, there are well known limitations of these methods particularly resulting from assumptions used for calculations. To test the feasibility of the methods to predict potential of AMD generation of Küre (VMS) copper deposits, for the first time, acid production and neutralization potential of various mine wastes of Küre (VMS) copper deposits were determined. To test our static test results, in situ and laboratory geochemical data were also obtained from the groundwater discharges from Bakibaba underground mining tunnels. Feasibility study showed that, despite a few inconsistencies, static tests were suitable for predicting generation of AMD around Küre copper mining site and reflected well the site conditions. The current study revealed that pulp density, defined as solid/liquid ratio and used for static tests, is an important limiting factor to predict reliable data for AMD generation. In this study, we also determined surface waters affected by AMD are predicted to have a pH value between 3 and 5, with an average of pH 4. Excessive concentrations of manganese, copper, cobalt and sulfate are also noted with considerable amounts of iron and zinc, which can reach to toxic levels. Moreover, iron and zinc were found to be the controlling the fate of metals by precipitation and co-precipitation, due to their relatively depleted concentrations at redox shifting zones. Key words: Küre pyritic copper ore, Bakibaba mining tunnels, volcanogenic massive sulfide ore deposits, acid production potential, neutralization potential

  3. Grouting of uranium mill tailings piles

    SciTech Connect

    Boegly, W.J. Jr.; Tamura, T.; Williams, J.D.

    1984-03-01

    A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10/sup -3/ cm/s to values approaching 10/sup -7/ cm/s using silicate grouts and to 10/sup -8/ cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table.

  4. Sintering Characteristics of Iron Ores with Addition of Laterite Nickel Ores

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Zhang, Jianliang; Yao, Chaoquan; Zhang, Yapeng; Shi, Zhiwen; Wang, Fei

    A great deal of iron ores which have special elements have been applied in the sintering process with the decreasing of high-grade quality iron ores resources. In this paper, the laterite nickel ores were added into three different kinds of iron ores respectively to make liquid phase formation research by software of Factsage and high temperature characteristic sintering experiments. The results showed that the adding proportion of laterite nickel ores should be less than 15% when the high temperature properties of the mixing ores were well. Increasing the mixing ration of laterite nickel ores in the sintering blending would play an important role in the reduction of the sintering cost.

  5. O-ring gasket test fixture

    NASA Technical Reports Server (NTRS)

    Turner, James Eric (Inventor); Mccluney, Donald Scott (Inventor)

    1991-01-01

    An apparatus is presented for testing O-ring gaskets under a variety of temperature, pressure, and dynamic loading conditions. Specifically, this apparatus has the ability to simulate a dynamic loading condition where the sealing surface in contact with the O-ring moves both away from and axially along the face of the O-ring.

  6. Relationship between soil copper content and copper content of selected crop plants in central Chile.

    PubMed

    Badilla-Ohlbaum, R; Ginocchio, R; Rodríguez, P H; Céspedes, A; González, S; Allen, H E; Lagos, G E

    2001-12-01

    A survey of copper levels in agricultural soils of central Chile revealed two soil clusters-one with a mean copper level of 162 mg/kg and one with a mean copper level of 751 mg/kg of soil. Samples of soils from both soil clusters were characterized on the basis of physicochemical characteristics, and copper extractability was compared by saturation and CaCl2 extraction as well as an acid-leaching procedure (TCLP). We also measured the copper content of various tissues of tomato (Lycopersicon esculentum) and onion (Allium cepa) crops growing on these soils. Other than copper levels, soils from the two clusters were quite similar, with slightly greater levels of molybdenum and cadmium in the high-copper soils. Within each cluster, extracted copper levels and total soil copper levels were not correlated. However, the three extraction procedures solubilized significantly more copper from the high-Cu soils. Mineralogical characterization of the soil particles and depth profiles of soil metal levels in a subsample of sites suggested that highly insoluble copper ore and mining wastes might account for the high copper levels. Neither total nor extractable copper levels allowed statistical prediction of the levels of copper in plant tissue. The edible tissues of both crops had the same mean copper content, regardless of the copper soil level. However, copper contents of stems and leaves were significantly higher for plants growing on the high-Cu soils. These results show that in these soils, high copper levels are associated with very insoluble copper species and thus low bioavailability of copper to crop plants.

  7. Conical O-ring seal

    DOEpatents

    Chalfant, G.G. Jr.

    A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  8. Conical O-ring seal

    DOEpatents

    Chalfant, Jr., Gordon G.

    1984-01-01

    A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  9. Utilization of bog iron ores as sorbents of heavy metals.

    PubMed

    Rzepa, Grzegorz; Bajda, Tomasz; Ratajczak, Tadeusz

    2009-03-15

    Sorption properties of bog iron ores with respect to Pb, Cu, Zn, Cr are evaluated at various pH. Maximum sorption determined in the experiments equals to 97.0, 25.2, 25.5, 55.0mg/g for lead(II), copper(II), zinc(II), and chromium(III), respectively. Chromium(VI) is bound in the amount of up to 10.0mg/g. The values of desorption indicate that most of the metals remain stably bound to the surface of bog iron ores, indicating that the chemisorption process prevails. The metals are sorbed as cations at the pH values from 4 to 9. Within this pH range up to 100% of the initial metal amount is immobilized. 90-100% of Cr(VI) is sorbed at pH between 3 and 5. Such properties, combined with favorable conditions of shallow mining and resultant low costs, may be regarded as an incentive for local utilization of bog iron ores in the environmental protection practice.

  10. Phase analytical studies of industrial copper smelting slags. Part I: Silicate slags

    NASA Astrophysics Data System (ADS)

    Rüffler, R.; Dávalos, J.

    1998-12-01

    The pyrometallurgical extraction of copper from sulfide ore concentrates is determined by the behaviour of the associated iron during smelting. Hence, 57Fe Mössbauer spectroscopy is an attractive tool for studying the phases in silicate slags from German and Chilean smelting plants. Other methods used were ore microscopy, electron microprobe analysis, and X-ray powder diffraction.

  11. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement.

  12. Uranium ore treatment. January 1970-May 1981 (citations from the Engineering Index Data Base). Report for Jan 70-May 81

    SciTech Connect

    Not Available

    1981-05-01

    The treatment of uranium ores is presented with emphasis placed on acid leaching as the primary step in the process. Tailing disposal and proper handling of radioactive materials, including environmental monitoring is emphasized. Primary treatment procedures include ion exchange, sulfuric acid leaching, solvent extraction and sedimentation. (Contains 300 citations fully indexed and including a title list.)

  13. Induced Polarization Responses of the Specimen with Sulfide Ore Minerals

    NASA Astrophysics Data System (ADS)

    Park, S.; Sung, N. H.

    2012-04-01

    Basic data of the physical properties of the rocks is required to effectively interpret geologic structures and mineralized zones in study areas from the geophysical data in the field of subsurface investigations and mineral resources explorations. In this study, the spectral induced polarization (SIP) measurement system in the laboratory was constructed to obtain the IP characteristics of the specimen with sulfide ore minerals. The SIP measurement system consists of lab transmitter for electrical current transmission, and GDP-32 for current receiver. The SIP system employs 14 steps of frequencies from 0.123 to 1,024 Hz, and uses copper sulfate solution as an electrolyte. The SIP data for system verification was acquired using a measurement system of parallel circuit with fixed resistance and condenser. This measured data was in good agreement with Cole-Cole model data. First of all, the experiment on the SIP response was conducted in the laboratory with the mixture of glass beads and pyrite powders for ore grade assessment using characteristics of IP response of the rocks. The results show that the phase difference of IP response to the frequency is nearly proportional to the weight content of pyrite, and that the dominant frequency of the IP response varies with the size of the pyrite powder. Subsequently, the specimens used for SIP measurement are slate and limestone which were taken from drilling cores and outcrops of skarn ore deposits. All specimens are cylindrical in shape, with a diameter of 5 cm and a length of 10 cm. When measuring SIP of water-saturated specimens, the specimen surface is kept dry, tap water is put into the bottom of sample holder and a lid is closed. It is drawn that the SIP characteristics of the rocks show the phase difference depends on the amount of the sulfide minerals. The phase difference did not occur with frequencies applied in the absence of sulfide minerals in the rock specimens. On the contrary, the rock specimens containing

  14. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs

    NASA Astrophysics Data System (ADS)

    Blundy, J.; Mavrogenes, J.; Tattitch, B.; Sparks, S.; Gilmer, A.

    2015-03-01

    Porphyry copper deposits, that is, copper ore associated with hydrothermal fluids rising from a magma chamber, supply 75% of the world's copper. They are typically associated with intrusions of magma in the crust above subduction zones, indicating a primary role for magmatism in driving mineralization. However, it is not clear that a single, copper-rich magmatic fluid could trigger both copper enrichment and the subsequent precipitation of sulphide ore minerals within a zone of hydrothermally altered rock. Here we draw on observations of modern subduction zone volcanism to propose an alternative process for porphyry copper formation. We suggest that copper enrichment initially involves metalliferous, magmatic hyper-saline liquids, or brines, that exsolve from large, magmatic intrusions assembled in the shallow crust over tens to hundreds of thousands of years. In a subsequent step, sulphide ore precipitation is triggered by the interaction of the accumulated brines with sulphur-rich gases, liberated in short-lived bursts from the underlying mafic magmas. We use high-temperature and high-pressure laboratory experiments to simulate such gas-brine interactions. The experiments yield copper-iron sulphide minerals and hydrogen chloride gas at magmatic temperatures of 700-800 °C, with textural and chemical characteristics that resemble those in porphyry copper deposits. We therefore conclude that porphyry copper ore forms in a two-stage process of brine enrichment followed by gas-induced precipitation.

  15. Multiple sources for ore-forming fluids in the Neves Corvo VHMS Deposit of the Iberian Pyrite Belt (Portugal): strontium, neodymium and lead isotope evidence

    NASA Astrophysics Data System (ADS)

    Relvas, Jorge M.; Tassinari, Colombo C.; Munhá, José; Barriga, Fernando J.

    2001-08-01

    Lead, Rb-Sr, and Sm-Nd isotopes have been used to constrain the sources and the timing of mineralisation at the Neves Corvo VHMS deposit of the Iberian Pyrite Belt (IPB). Sulfide- and cassiterite-rich ores, together with a mineralised felsic volcanic rock, yield a Rb-Sr errorchron age of 347±25 Ma with an initial 87Sr/86Sr=0.71031±65. The Rb-Sr results agree with palynological age constraints for ore formation at Neves Corvo, and are indistinguishable from several other mineralisation ages, indicating that major orebodies in the IPB formed coevally at ~350 Ma. In contrast, wide variations in initial 143Nd/144Nd indicate limited rare-earth-element redistribution during ore deposition. Initial ɛNd (350 Ma) values range from -0.2 to -9.7 for copper ores, -8.9 to -9.4 for copper-tin ores, and -6.9 (cassiterite) to -9.5 for tin ores, implying that neither the IPB volcanic host rocks [ɛNd (350 Ma) >-2.1; 87Sr/86Sr0<0.70664], nor contemporaneous seawater (87Sr/86Sr0 ~0.708), could have been the exclusive sources for the Neves Corvo ores. Distinct mixing arrays in the ɛNd (350 Ma)-Sm/Nd and 206Pb/204Pb-207Pb/204Pb diagrams demonstrate that sulfide and tin ore deposition involved ore-forming solutions from different sources. Whereas sulfide-ore compositional variations are consistent with significant incorporation of "typical" IBP volcanic-seawater derived hydrothermal components, the highly radiogenic lead and (exclusively) low-ɛNd values preserved in tin ores require a predominant derivation from external sources. This could be either a magmatic source (which must have been different from the typical IPB felsic magmas), or a metamorphic fluid deeply circulated through older basement rocks.

  16. Production Quality, Value and Revenue in Polish Copper Mines

    NASA Astrophysics Data System (ADS)

    Malewski, Jerzy

    2016-10-01

    Polish copper ore deposits, located in the Legnica-Głogów Copper District (LGOM) documented an area of over 200 km2, at a depth of 600-1400 meters. The estimated resources equal to 22.7 million tonnes of copper (proven and probable), or 44.4 million t (measured and indicated), or 8.7 million t (infered), at the criterion of profitability at a cost less than 50 cents per ton of ore. Organization of production takes place in the combine of mining and metallurgy (KGHM). Ore is extracted in three mines: Lubin, Polkowice-Sieroszowice and Rudna. The total production of these mines is about 31 million tonnes/year of ore, from which it receives a 576000 t/y of copper, 1152 t/y of silver, 1066 kg/y of gold, and certain amounts of Pb, Zn, Se, Re, Ni, SO4, H2SO4. The quality (grading) of the ore in exploited deposits is varied, affecting the quality and quantity of produced concentrates, what influence on its market value. The paper presents a brief description of ore deposit and estimates mines revenues and production profit. Calculations show that at today's (June 2016) metal prices each of the mine can expect the following net smelter revenue: Lubin ∼⃒41, P-S ∼⃒70, Rudna ∼⃒75 /t of ore. But estimated cost production differs less, i.e.: 45, 56 and 65/t of ore respectively, because of mining depth.

  17. Development of Technology for Enrichment of Silver Containing Ores

    NASA Astrophysics Data System (ADS)

    Shekiladze, Asmati; Kavtelashvili, Otari; Bagnashvili, Mamuka

    2016-10-01

    -purification operations. On the basis of laboratory investigations for silver-containing ores of David-Gareji deposit the technological scheme is recommended which implies the ore milling to 82 % class -074 mm, flotation of the silver minerals and the barite flotation from the tails of this operation by two-fold re-purification of the rough concentrate. The optimal parameters of the receipt of the reagent regime are: potassium butylxantogenate and pine oil-in the silver flotation; sodium carbonate, liquid glass, “Baritol”- in the barite main flotation and liquid glass in the repurification operations. Silver concentrate containing 680 g/ton of silver by extraction of 92.21% and barite concentrate, content - 92.11%, extraction - 81.85% are obtained.

  18. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials.

    PubMed

    Johnson, D Barrie

    2014-12-01

    The abilities of acidophilic chemolithotrophic bacteria and archaea to accelerate the oxidative dissolution of sulfide minerals have been harnessed in the development and application of a biotechnology for extracting metals from sulfidic ores and concentrates. Biomining is currently used primarily to leach copper sulfides and as an oxidative pretreatment for refractory gold ores, though it is also used to recover other base metals, such as cobalt, nickel and zinc. Recent developments have included using acidophiles to process electronic wastes, to extract metals from oxidized ores, and to selectively recover metals from process waters and waste streams. This review describes the microorganisms and mechanisms involved in commercial biomining operations, how the technology has developed over the past 50 years, and discusses the challenges and opportunities for mineral biotechnologies in the 21st century. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Method for beneficiating coal ore

    SciTech Connect

    Irons, S.D.

    1983-03-15

    A new heavy liquid parting medium comprising an emulsion of water and a substantially water immiscible heavy parting liquid for use in beneficiating ores by gravity separations such as sink -float processes. The specific gravity of the emulsion parting medium can be adjusted by proportioning the relative amounts of water and the substantially water immiscible heavy liquid. Asmined coal is beneficiated using a water-trichlorofluoromethane emulsion as the parting medium in a sink-float separation process.

  20. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be

  1. Geothermal brine well: Mile-deep drill hole may tap ore-bearing magmatic water and rocks Undergoing Metamorphism

    USGS Publications Warehouse

    White, D.E.; Anderson, E.T.; Grubbs, D.K.

    1963-01-01

    A deep geothermal well in California has tapped a very saline brine extraordinarily high in heavy metals and other rare elements; copper and silver are precipitated during brine production. Preliminary evidence suggests that the brine may be pure magmatic water and an active ore-forming solution. Metamorphism of relatively young rocks may also be occurring within accessible depths.

  2. Geothermal Brine Well: Mile-Deep Drill Hole May Tap Ore-Bearing Magmatic Water and Rocks Undergoing Metamorphism.

    PubMed

    White, D E; Anderson, E T; Grubbs, D K

    1963-03-08

    A deep geothermal well in California has tapped a very saline brine extraordinarily high in heavy metals and other rare elements; copper and silver are precipitated during brine production. Preliminary evidence suggests that the brine may be pure magmatic water and an active ore-forming solution. Metamorphism of relatively young rocks may also be occurring within accessible depths.

  3. Arizona Copper

    NASA Image and Video Library

    2017-09-27

    Arizona produces 60% of the total copper mined in the US; in 2007, 750,000 tons of copper came out of the state. One of the major mining districts is located about 30 km south of Tucson. Starting around 1950, open-pit mining replaced underground operations, and the ASARCO-Mission complex, Twin Buttes, and Sierrita mines became large open pit operations. Accompanying copper mineralization, silver, molybdenum, zinc, lead and gold are extracted. In addition to the pits themselves, enormous leach ponds and tailings piles surround the pits. The image was acquired May 31, 2012, covers an area of 22 by 28 km, and is located at 31.9 degrees north, 111 degrees west. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/ Credit: NASA

  4. Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals-a review.

    PubMed

    Adeleke, Rasheed A

    2014-12-01

    The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed.

  5. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  6. Microwave heating characteristics of magnetite ore

    NASA Astrophysics Data System (ADS)

    Rajavaram, Ramaraghavulu; Lee, Jaehong; Oh, Joon Seok; Kim, Han Gyeol; Lee, Joonho

    2016-11-01

    The heating characteristics of magnetite ore under microwave irradiation were investigated as a function of incident microwave power, particle size, and magnetite ore mass. The results showed that the heating rate of magnetite ore is highly dependent on microwave power and magnetite ore mass. The maximum heating rate was obtained at a microwave irradiation power of 1.70 kW with a mass of 25 g and particle size between 53-75 µm. The volumetric heating rate of magnetite ore was investigated by measuring the temperature at different depths during microwave irradiation. Microwave irradiation resulted in modification of the microstructure of the magnetite ore, but new phases such as FeO or Fe2O3 were not formed. In addition, the crystal size decreased from 115 nm to 63 nm after microwave irradiation up to 1573 K.

  7. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  8. Metallization of siderite ore in reducing roasting

    NASA Astrophysics Data System (ADS)

    Vusikhis, A. S.; Leont'ev, L. I.; Kudinov, D. Z.; Gulyakov, V. S.

    2016-05-01

    The behavior of the initial ore and the concentrate of magnetoroasting beneficiation during metallization under the conditions that are close to those for reducing roasting of iron ores in a rotary furnace is studied in terms of works on extending the field of application of Bakal siderites. A difference in the mechanisms of the metallization of crude ore and the roasted concentrate is observed. The metallization of roasted concentrate lumps is more efficient than that of crude siderite ore. In this case, the process ends earlier and can be carried out at higher temperatures (1250-1300°C) without danger of skull formation.

  9. Sintering Characteristics of Indian Chrome Ore Fines

    NASA Astrophysics Data System (ADS)

    Nandy, Bikash; Chaudhury, Manoj Kumar; Paul, Jagannath; Bhattacharjee, D.

    2009-10-01

    Chrome ore concentrate consists of high-temperature melting oxides such as Cr2O3, MgO, and Al2O3. The presence of these refractory constituents makes the ore a very high melting mineral. Hence, it is difficult to produce sinter from chrome ore by a pyrometallurgical route. Currently, chrome ore is ground to below 75 μm, pelletized, heat hardened through carbothermic reaction at 1300 °C to 1400 °C, and then charged into a submerged electric arc furnace (EAF), along with lumpy ore for ferrochrome/charge-chrome production. Electricity is a major cost element in this extraction process. This work explores the sinterability of chrome ore. The objective of this study was to: (1) determine whether chrome ore is sinterable and, if so, (2) ascertain ways of achieving satisfactory properties at a low temperature of sintering. Sintering of the raw material feed could be a way to reduce electricity consumption, because during sintering a partial reduction of minerals is expected along with agglomeration. Studies carried out by the authors show that it is possible to agglomerate chrome ore fines through sintering. The chrome ore sinter thus produced was found to be inferior in strength, comparable to that of an iron ore sinter, but strength requirements may not be the same for both. Because the heat generation during chrome ore sintering is high owing to some exothermic reactions, compared with iron ore, and because chrome ore contains a high amount of fines, shallow-bed-depth sinter cake production was attempted in the laboratory-scale pot-sintering machine. The sintered product was found to be a good conductor of electricity because of the presence of phases such as magnetite and maghemite. This characteristic of the chrome ore sinter will subsequently have a favorable impact in terms of power consumption during the production of ferrochrome in a submerged EAF. The sinter made was melted in the arc furnace and it was found that the specific melting energy is comparable to

  10. Use of cemented paste backfill in arsenic-rich tailings

    NASA Astrophysics Data System (ADS)

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2015-04-01

    Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an

  11. Geochemistry of Mine Waste and Mill Tailings, Meadow Deposits, Streambed Sediment, and General Hydrology and Water Quality for the Frohner Meadows Area, Upper Lump Gulch, Jefferson County, Montana

    USGS Publications Warehouse

    Klein, Terry L.; Cannon, Michael R.; Fey, David L.

    2004-01-01

    Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and

  12. 2D Inversion of DCR and Time Domain IP data: an example from ore exploration

    NASA Astrophysics Data System (ADS)

    Adrian, J.; Tezkan, B.

    2015-12-01

    Ore deposits often appear as disseminated sulfidic materials. Exploring these deposits with the Direct Current Resistivity (DCR) method alone is challenging because the resistivity signatures caused by disseminated material is often hard to detect. The Time-domain Induced Polarization (TDIP) method, on the other hand, is qualified to detect areas with disseminated sulfidic ores due to large electrode polarization effects which result in large chargeability anomalies. By employing both methods we gain information about both, the resistivity and the chargeability distribution of the subsurface.On the poster we present the current state of the development of a 2D smoothness constraint inversion algorithm for DCR and TDIP data. The implemented forward algorithm uses a Finite Element approach with an unstructured mesh. The model parameters resistivity and chargeability are connected by either a simple conductivity pertubation approach or a complex conductivity approach.As a case study, the 2D inversion results of DCR/TDIP and RMT data obtained during a survey on a sulfidic copper ore deposit in Turkey are presented. The presence of an ore deposit is indicated by areas with low resistivity and significantly high chargeability in the inversion models.This work is part of the BMBF/TUEBITAK funded project ``Two-dimensional joint interpretation of Radiomagnetotellurics (RMT), Direct Current Resistivity (DCR) and Induced Polarization (IP) data: an example from ore exploration''.

  13. Determining Prehistoric Mining Practices in Southeastern Europe Using Copper Isotopes

    NASA Astrophysics Data System (ADS)

    Powell, Wayne; Mathur, Ryan; Bankoff, H. Arthur; Bulatović, Aleksandar; Filipović, Vojislav

    2017-04-01

    Copper was first smelted from malachite at 5000 BCE in Serbia. There the Eneolithic (Copper Age) began with the production of small jewelry pieces and progressed to the casting of massive copper tools near its end, approximately 2000 years later. However, copper metallurgy in southeastern Europe ceased or significantly decreased in the later third millennium, several centuries before the Bronze Age began. Whether this metallurgical hiatus was the result a cultural shift or depletion of natural resources remains an ongoing subject of debate. It has been speculated that the marked reduction in metal production at the Eneolithic-Bronze Age transition was due to the exhaustion of surficial weathered oxide ores and the technical inability to smelt the underlying sulfide minerals. The behavior of copper isotopes in near-surface environments allows us to differentiate highly weathered oxide ores that occur at Earth's surface from non-weathered sulfide ores that occur at greater depth. The oxidation of copper generates fluids and associated minerals that are enriched in the 65Cu isotope. Thus, oxidative weathering of sulfide ores leads to the development of three stratified isotopic reservoirs for copper: 1) oxides above the water table that are enriched in 65Cu; 2) residual weathered sulfides minerals at the water table that are depleted in 65Cu; and 3) non-fractionated, non-weathered sulfide ore below the water table. And so, the transformative shift to sulfide-based metallurgy will be delineated by a significant decrease in δ65Cu in copper artifacts corresponding to the first use of 65Cu-depleted residual ore. The degree of variability of primary ore composition from numerable ore deposits would likely result in the overlap of copper isotope composition between populations of artifacts. Therefore, shifts in the mean copper isotope values and associated standard deviations would best reflect changes in ores use. A baseline value of -0.2‰ ±0.5 (1) was determined

  14. Application of the Geo-Anomaly Unit Concept in Quantitative Delineation and Assessment of Gold Ore Targets in Western Shandong Uplift Terrain, Eastern China

    SciTech Connect

    Chen Yongqing Zhao Pengda; Chen Jianguo; Liu Jiping

    2001-03-15

    A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. A geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.

  15. Understanding the copper of the Statue of Liberty

    NASA Astrophysics Data System (ADS)

    Welter, Jean-Marie

    2006-05-01

    Pierre-Eugène Secrétan, a French copper industrialist, donated the copper sheets for the construction of the skin of the Statue of Liberty when it was built in 1875 1876. It can be inferred from the history of Secrétan's activities that the sheets were rolled in his plant of Sérifontaine. The impurities found in two samples obtained from the U.S. National Park Service show that different qualities of copper were used. They indicate, by taking also into account the commercial relations of Secrétan, that the copper may possibly have come from Spanish or South/North American ore.

  16. Fire-assay collection of gold and silver by copper.

    PubMed

    Diamantatos, A

    1987-08-01

    Gold and silver are very effectively collected in copper after fire-assay fusion at 1200 degrees . The resultant copper button is dissolved in perchloric acid and the parting solution is diluted with an equal volume of water. Both gold and silver are precipitated in the copper perchlorate medium by reduction with formic acid or hydroquinone. The two noble metals are collected, dissolved in acids, and determined by atomic-absorption spectrometry. The proposed procedure is simple, relatively rapid, and has been successfully applied to ores, concentrates, furnace products, and copper alloys. Recoveries compare favourably with those obtained by the classical lead cupellation method.

  17. Environmental impact of mine tailings in Redi mines, Sindhudurg District, Maharashtra (India).

    PubMed

    Sawant, Arun D; Thakur, Vikas A

    2011-07-01

    Redi mine contains Fe, Mn as major elements, Al, Si as minor elements and also contains traces of Cr, Zn, Pb, Ni, Cu and P. The toxic trace elements present in the ore have also contributed to the contamination of the environment. Various operations of mining, the machinery used, transportation, the metallurgy and kind of waste management practices used are the significant factors of contributing to the nature of tailings of mine. The studies of tailings have revealed that, in addition to elemental contaminations, the operations create acidic environment around the area (pH-6.2 to 6.3 ), as water samples around showed acidic to slightly basic (pH 5.1 to 7.3) nature while soil samples were found acidic to the slightly basic (pH 6.1 to 7.4). In the samples of ore, tailings and soil, the most abundant elements found are Fe, Mn, Si and Al. In water samples, in addition to presence of Fe, Mn, Si, Al, P, significant quantities of Ni, Zn are also found. Ore, tailings and soil samples were analysed by X-Ray Diffraction technique and have shown the presence of goethite, gibbsite, kaolinite, quartz and mica alongwith haematite in the overall composition of ore.

  18. Toxicity of nickel ores to marine organisms.

    PubMed

    Florence, T M; Stauber, J L; Ahsanullah, M

    1994-06-06

    Queensland Nickel proposes to import New Caledonian (Ballande) and Indonesian (Gebe) nickel ores, one option being ship-to-barge transfer in Halifax Bay, North Queensland. Because small amounts of ore may be split during the unloading and transfer operations, it was important to investigate the potential impact of the spilt ore on the ecological health of the Bay. Long-term leaching of the ores with seawater showed that only nickel and chromium (VI) were released from the ores in sufficient concentrations to cause toxicity to a range of marine organisms. The soluble fractions of nickel and chromium (VI) were released from the ores within a few days. Nickel, chromium (VI) and the ore leachates showed similar toxicity to the juvenile banana prawn Penaeus merguiensis, the amphipod Allorchestes compressa and both temperature (22 degrees C) and tropical (27 degrees C) strains of the unicellular marine alga Nitzschia closterium. In a series of 30-day sub-chronic microcosm experiments, juvenile leader prawns Penaeus monodon, polychaete worms Galeolaria caespitosa and the tropical gastropod Nerita chamaeleon were all very resistant to the nickel ores, with mortality unaffected by 700 g ore per 50 l seawater. The growth rate of the leader prawns was, however, lower than that of the controls. From these data, a conservative maximum safe concentration of the nickel ores in seawater is 0.1 g l-1. The nickel ore was not highly toxic and if spilt in the quantities predicted, would not have a significant impact on the ecological health of the Bay.

  19. Iron ore: energy, labor, and capital changes with technology.

    PubMed

    Kakela, P J

    1978-12-15

    Resource gathering is depending on leaner crude ores. Iron ore mining typifies this trend. To make lean taconite iron ores useful required a technologic breakthrough-pelletization. The shift to iron ore pellets has the advantage that they require less energy and labor per ton of molten iron than high-grade naturally concentrated ores. Increased reliance on pellets causes a geographic shift of some jobs and environmental effects from blast furnaces to iron ore mines.

  20. Determination of tin in ores, iron, steel and non-ferrous alloys by atomic-absorption spectrophotometry after separation by extraction as the iodide.

    PubMed

    Donaldson, E M

    1980-06-01

    A simple and moderately rapid method for determining 0.001% or more of tin in ores, concentrates and tailings, iron, steel and copper-, zinc-, aluminium-, titanium- and zirconium-base alloys is described. After sample decomposition, tin is separated from the matrix elements, except arsenic, by toluene extraction of its iodide from a 3M sulphuric acid-1.5M potassium iodide medium containing tartaric and ascorbic acids. It is finally back-extracted into a nitric-sulphuric acid solution containing hydrochloric acid to prevent the formation of an insoluble tin-arsenic compound and the resultant solution is evaporated to dryness. Tin is subsequently determined by atomic-absorption spectrophotometry in a nitrous oxide-acetylene flame, at 235.4 nm in a 10% hydrochloric-0.5% tartaric acid medium containing 250 mug of potassium per ml. Co-extracted arsenic does not interfere. Results obtained by this method are compared with those obtained spectrophotometrically with gallein after the separation of tin by iodide extraction.

  1. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  2. Copper hypersensitivity.

    PubMed

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  3. Ore-blending optimization model for sintering process based on characteristics of iron ores

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Li; Oliveira, Dauter; Dai, Yu-Ming; Xu, Jian

    2012-03-01

    An ore-blending optimization model for the sintering process is an intelligent system that includes iron ore characteristics, expert knowledge and material balance. In the present work, 14 indices are proposed to represent chemical composition, granulating properties and high temperature properties of iron ores. After the relationships between iron ore characteristics and sintering performance are established, the "two-step" method and the simplex method are introduced to build the model by distinguishing the calculation of optimized blending proportion of iron ores from that of other sintering materials in order to improve calculation efficiency. The ore-blending optimization model, programmed by Access and Visual Basic, is applied to practical production in steel mills and the results prove that the present model can take advantage of the available iron ore resource with stable sinter yield and quality performance but at a lower cost.

  4. Continuous Steelmaking Directly from Ore

    NASA Astrophysics Data System (ADS)

    Warner, Noel A.

    2014-12-01

    In-line continuous processing of high-grade hematite ore (crushed ore or fines) with a pure hydrogen reductant is assessed. An appraisal is made of the rate controlling mechanisms involved in the reduction of a pure layer of molten wustite being transported by floating on a molten carrier iron carbon-free medium at temperatures just in excess of the iron melting point. Published research clearly indicates that under these conditions the kinetics are principally controlled by molecular gaseous diffusion. Thus, the rate is essentially not influenced by total gas pressure above 1 atmosphere. Accordingly, on safety grounds it is recommended that high pressure should not be used for hydrogen steelmaking in the future, but the operation should be conducted close to atmospheric pressure with low pressure steam encapsulation of the plant items involved. Using hydrogen as the reductant means that sub-surface nucleation of CO bubbles cannot disrupt continuous processing. The operation is then no different to processing a normal liquid phase. The off-gases from the reduction zone of a melt circulation loop are super-clean and only contaminated with iron vapor. Accordingly, the best available technology becomes available for energy conservation without risk of non-fusible solids deposition. The net result is that the energy requirements are expected to be superior to other potential processes.

  5. Evaluation and development of integrated technology of rare metal concentrate production in high-level ore processing at Zashikhinsk deposit

    NASA Astrophysics Data System (ADS)

    Khokhulya, MS; Mukhina, TN; Ivanova, V. A.; Mitrofanova, G. V.; Fomin, A. V.; Sokolov, VD

    2017-02-01

    The authors discuss material constitution of columbite ore sample and recommend optimized pretreatment modes to obtain ball milling products at the maximum dissociation of ore minerals in aggregates. A concentration technology is proposed, with division of material into two flows -0.315 mm and -0.2 mm in sizes, generated in the milling and screening cycles and subjected to gravity-magnetic and magnetic-gravity treatment, respectively. It is shown that the technology ensures production of both tantalum-niobium and zircon concentrates. It has become possible to additionally recover rare metal components Nb2O5 and ZrO2 from tailings through flotation.

  6. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.

  7. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    NASA Astrophysics Data System (ADS)

    Stanojlović, Rodoljub D.; Sokolović, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  8. Geology and ore deposits of the Klondike Ridge area, Colorado

    USGS Publications Warehouse

    Vogel, John David

    1960-01-01

    The region described in this report is in the northeastern part of the Colorado Plateau and is transitional between two major structural elements. The western part is typical of the salt anticline region of the Plateau, but the eastern part has features which reflect movements in the nearby San Juan Mountains. There are five major structural elements in the report area: the Gypsum Valley anticline, Dry Creek Basin, the Horse Park fault block, Disappointment Valley, and the Dolores anticline. Three periods of major uplift are recognized In the southeastern end of the Gypsum Valley anticline. Each was followed by collapse of the overlying strata. Erosion after the first two periods removed nearly all topographic relief over the anticline; erosion after the last uplift has not yet had a profound effect on the topography except where evaporite beds are exposed at the surface. The first and greatest period of salt flow and anticlinal uplift began in the late Pennsylvanian and continued intermittently and on an ever decreasing scale into the Early Cretaceous. Most movement was in the Permian and Triassic periods. The second period of uplift and collapse was essentially contemporaneous with widespread tectonic activity on. the northwestern side of the San Juan Mountains and may have Occurred in the Oligocene and Miocene epochs. Granogabbro sills and dikes were intruded during the middle or upper Tertiary in Disappointment Valley and adjoining parts of the Gypsum Valley and Dolores anticlines. The third and mildest period of uplift occurred in the Pleistocene and was essentially contemporaneous with the post-Hinsdale uplift of the San Juan Mountains. This uplift began near the end of the earliest, or Cerro, stage of glaciation. Uranium-vanadium, manganese, and copper ore as well as gravel have been mined in the Klondike district. All deposits are small, and few have yielded more than 100 tons of ore. Most of the latter are carnotite deposits. Carnotite occurs in the lower

  9. A "Tail" Of Two Mines: Determining The Sources Of Lead In Mine Waters Using Pb Isotopes

    NASA Astrophysics Data System (ADS)

    Cousens, B. L.; Allen, D. M.; Lepitre, M. E.; Mortensen, J. K.; Gabites, J. E.; Nugent, M.; Fortin, D.

    2004-12-01

    Acid mine drainage can be a significant environmental problem in regions where mine tailings are exposed to surface water and shallow groundwater flow. Whereas high metal concentrations in surface waters and groundwaters indicate that metals are being mobilized, these data do not uniquely identify the source of the contamination. The isotopic composition of Pb in mine waters is a superb tracer of Pb sources, because the isotopic composition of ore Pb is usually significantly different from that of host rocks, other surficial deposits, and aerosols. We have investigated metal mobility at two abandoned Pb-Zn mines in different geological settings: the sediment-hosted Sullivan Mine in southeastern British Columbia, and the New Calumet Mine of western Quebec that is hosted in metamorphic rocks of the Grenville Province. Ores from both mines have homogeneous Pb isotopic compositions that are much less radiogenic than surrounding host rocks. At Sullivan, the Pb isotopic compositions of water samples define a mixing line between Sullivan ore and at least one other more radiogenic end-member. Water samples with high Pb concentrations (0.002 to 0.3 mg/L) generally are acidic and have Pb isotope ratios equal to Sullivan ore, whereas waters with low Pb contents have near-neutral pH and have variably more radiogenic Pb isotope ratios. Thus not all the waters collected in the study area originate from Sullivan ore or mining operations, as previously thought. The dominant source of ore Pb in mine waters are the waste rock dumps. Based on their isotopic compositions, host shales or aerosols from the local Pb smelter are potential sources of non-Sullivan ore Pb; local glacial tills are an unlikely source due to their heterogeneous Pb isotopic composition. Similarly, at the New Calumet mine, water samples collected in direct contact with either ore at the surface or tailings have high Pb concentrations (up to 0.02 mg/L) and Pb isotope ratios equal to New Calumet Pb-Zn ore. However

  10. Copper transport.

    PubMed

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  11. The copper-cobalt deposits of the Quartzburg district, Grant County, Oregon

    USGS Publications Warehouse

    Vhay, John Stewart

    1960-01-01

    The copper- and cobalt-bearing veins of part of the Quartzburg district are in fracture zones trending about N. 70 degrees E. in folded Permian (?) metavolcanic rocks on the southwest side of a quartz diorite stock. Along many of the veins fine-grained tourmaline and quartz have replaced the country rock. The primary ore minerals are chalcopyrite, glaucodot, safflorite, and cobaltite. The copper- and cobalt-rich parts of the deposits appear to be in separate ore shoots. Gold content is generally higher in the cobalt-bearing parts of the veins than in the copper-rich parts. The Standard mine has developed part of one vein zone. Several other vein zones that crop out may contain as much copper as the Standard vein zone. Further bulldozing and diamond drilling on the surface, and more geologic mapping, sampling, and diamond drilling underground are suggested as means to explore for more ore deposits.

  12. Nitrile O-ring Cracking: A Case of Vacuum Flange O-ring Failures

    SciTech Connect

    Dees, Craig

    2016-07-01

    A review of recent nitrile O-ring failures in ISO-KF vacuum flange connections in glovebox applications is presented. An investigation of a single “isolated” o-ring failure leads to the discovery of cracked nitrile o-rings in a glovebox atmospheric control unit. The initial cause of the o-ring failure is attributed to ozone degradation. However, additional investigation reveals nitrile o-ring cracking on multiple gloveboxes and general purpose piping, roughly 85% of the nitrile o-rings removed for inspection show evidence of visible cracking after being in service for 18 months or less. The results of material testing and ambient air testing is presented, elevated ozone levels are not found. The contributing factors of o-ring failure, including nitrile air sensitivity, inadequate storage practices, and poor installation techniques, are discussed. A discussion of nitrile o-ring material properties, the benefits and limitations, and alternate materials are discussed. Considerations for o-ring material selection, purchasing, storage, and installation are presented in the context of lessons learned from the nitrile o-ring cracking investigation. This paper can be presented in 20 minutes and does not require special accommodations or special audio visual devices.

  13. Mineral and Elemental Composition Features of "Loose" Oolitic Ores in Bakchar Iron Ore Cluster (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Rudmin, M.; Mazurov, A.; Bolsunovskaya, L.

    2014-08-01

    Geo-technological investigation considerations of iron ore deposits within the Bakchar ore cluster are being carried out. The mineral and elemental composition of "loose" ores have been studied, embracing such important aspects as the distribution pattern of valuable and harmful impurities, the determination of element concentrators (such as vanadium, phosphate and sulphur) in basic minerals and the analysis of ore composition varaiation in volume ore cluster. Based on investigation results the mineral and elemental composition characteristic features of "loose" ores were defined. Although hydrogoethite was the basic identified ore mineral, such minerals as goethite, lepidocrocite, leptochlorite, siderite and hisingerite were also found. The deportment of calcium phosphate (anapaite) and phosphates of rare-earth elements (monazite, killarite), which are associated with the harmful impurity- phosphorous, are described. It has been defined that the ore constituent composition contains such persistent impurities as vanadium and manganese, the content of which is 0.35% and 0.03%, respectively. The "loose" ores are continuous in mineral composition, both in area and cross-section throughout the Bakchar ore cluster. Based on the sample element composition analysis the most perspective areas for further mineral processing could be: western with the fraction of 1....0.2mm. and eastern- fraction of 1...0.1mm.

  14. Rare-earth occurrences in the Pea Ridge tailings

    SciTech Connect

    Vierrether, C.W.; Cornell, W.I.

    1993-01-01

    Tailings from the Pea Ridge iron mine contain significant amounts of apatite, which has rare-earth element values associated with it. In association with the recovery of rare-earth minerals as a secondary resource, the US Bureau of Mines conducted an investigation on the recoverability of the rare-earth minerals from the tailings. The mill tailings were subjected to a phosphate flotation to separate the apatite from other constituents. More than 70-pct recovery of the rare-earth values was achieved. Based on mineralogical characterization and prior analysis of rare-earth-bearing breccia pipe material at Pea Ridge, it is proposed that processing this phosphate concentrate on a vanner table would yield up to a 95-pct recovery of the rare earths in the concentrate, with the apatite reporting to the tailings. Intensive ore microscopy studies of the original tailings to the flotation products led to the identification of monazite, xenotime, and rare-earth-enriched apatite as the major rare-earth-bearing minerals in the tailings.

  15. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    SciTech Connect

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 ..mu..R/hr, the average background exposure rate for the area, to 140 ..mu..R/hr. The average exposure rate for the tailings and former mill area was 220 ..mu..R/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of /sup 226/Ra in ten holes as a function of depth is presented graphically.

  16. Assessment of the radiological impact of the inactive uranium-mill tailings at Mexican Hat, Utah

    SciTech Connect

    Haywood, F.F.; Goldsmith, W.A.; Ellis, B.S.; Hubbard, H.M. Jr.; Fox, W.F.; Shinpaugh, W.H.

    1980-03-01

    High surface soil concentrations of /sup 226/Ra and high above-ground measurements of gamma-ray intensity in the vicinity of the inactive uranium-mill tailings at Mexican Hat show both wind and water erosion of the tailings. The former mill area, occupied by a trade school at the time of this survey, shows a comparatively high level of contamination, probably from unprocessed ore on the surface of the ore storage area near the location of the former mill buildings. However, the estimated health effect of exposure to gamma rays during a 2000-hr work year in the area represents an increase of 0.1% in the risk of death from cancer. Exposure of less than 600 persons within 1.6 km of the tailings to radon daughters results in an estimated 0.2%/year increase in risk of lung cancer.

  17. Direct Reduction of Iron Ore

    NASA Astrophysics Data System (ADS)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  18. Cross-comparison of leaching strains isolated from two different regions: Chambishi and Dexing copper mines.

    PubMed

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains.

  19. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    PubMed Central

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575

  20. Suture zones of the Urals as integral prospective ore-bearing tectonic structures

    NASA Astrophysics Data System (ADS)

    Koroteev, V. A.; Sazonov, V. N.; Ogorodnikov, V. N.; Polenov, Yu. A.

    2009-04-01

    Rift-related (1.2 Ga) and collision (380-240 Ma) suture zones of the Urals are described. The riftrelated suture zones comprise an ultramafic-gabbro complex with titanomagnetite mineralization, an ultramafic complex with chromite mineralization, and a complex of alkali granitoids with rare-metal (including REE) mineralization accompanied by K-feldspathites, albitites, and calcite metasomatic rocks. The collision suture zones are distinguished by early collision granitoids specialized for tungsten (scheelite) and gold, as well as by raremetal granites and such derivatives of them as pegmatite and greisen with rare-metal and colored-stone mineralization. The suture zones are characterized by long-term (up to 80 Ma or more) continuous-discontinuous periods of ore deposition; heterogeneous sources of ore matter and ore-bearing fluids; a polyelemental composition of lithogeochemical halos and an integral mineral composition of altered wall rocks; and the occurrence of mafic, intermediate, and felsic dikes at large gold deposits, as well as wide variations in PT parameters of the ore-forming process: T = 620-150°C and P = 3.2-0.6 kbar. Collision played a dual role in ore formation. On the one hand, collision led to deformation and metamorphism of precollision massive sulfide deposits and, to a lesser degree, Au-bearing Fe and Cu skarn and porphyry copper deposits, and, on the other hand, to the formation of new gold, rare-metal, quartz, colored-stone, talc, muscovite, and noble serpentine deposits. As a rule, this polygenetic mineralization differs in age and is related to collision volcanic and plutonic complexes. This diversity can be a good basis for metallogenic analysis, forecasting, and prospecting of various metallic deposits and industrial minerals. Polygenetic mineralization of various age known in suture zones is accompanied by integral lithogeochemical and metasomatic halos characterized by a continuous-discontinuous history. The complexity of ore

  1. MERCURY IN METAL ORE DEPOSITS: AN UNRECOGNIZED, WIDESPREAD SOURCE TO LAKE SUPERIOR SEDIMENTS, CONTRIBUTION #1072

    EPA Science Inventory

    Mining operations have worked the rich mineral resources of the Lake Superior Basin for over 150 years, leaving industrially impacted regions with tailing piles and smelters. In Lake Superior sediments, mercury and copper inventories increase towards shorelines and are highly cor...

  2. MERCURY IN METAL ORE DEPOSITS: AN UNRECOGNIZED, WIDESPREAD SOURCE TO LAKE SUPERIOR SEDIMENTS, CONTRIBUTION #1072

    EPA Science Inventory

    Mining operations have worked the rich mineral resources of the Lake Superior Basin for over 150 years, leaving industrially impacted regions with tailing piles and smelters. In Lake Superior sediments, mercury and copper inventories increase towards shorelines and are highly cor...

  3. Microbial biogeochemistry of uranium mill tailings

    USGS Publications Warehouse

    Landa, Edward R.

    2005-01-01

    Uranium mill tailings (UMT) are the crushed ore residues from the extraction of uranium (U) from ores. Among the radioactive wastes associated with the nuclear fuel cycle, UMT are unique in terms of their volume and their limited isolation from the surficial environment. For this latter reason, their management and long-term fate has many interfaces with environmental microbial communities and processes. The interactions of microorganisms with UMT have been shown to be diverse and with significant consequences for radionuclide mobility and bioremediation. These radionuclides are associated with the U-decay series. The addition of organic carbon and phosphate is required to initiate the reduction of the U present in the groundwater down gradient of the mills. Investigations on sediment and water from the U-contaminated aquifer, indicates that the addition of a carbon source stimulates the rate of U removal by microbial reduction. Moreover, most attention with respect to passive or engineered removal of U from groundwaters focuses on iron-reducing and sulfate-reducing bacteria.

  4. Reduction Mechanisms in Manganese Ore Reduction

    NASA Astrophysics Data System (ADS)

    Coetsee, Theresa; Reinke, Christian; Nell, Johannes; Pistorius, Petrus Christiaan

    2015-12-01

    Manganese ores are highly heterogeneous and contain various minerals with different levels of contained manganese and iron and therefore the ore reduction behavior is not uniform. Both phase chemistry and phase morphology at the reaction interface, at micron scale, must be investigated to understand the reaction mechanism effects in manganese ore reduction. This approach is applied here to reacted material mixture samples taken from the AlloyStream pilot plant furnace over a period of 4 months. The mineralogical features are reported and discussed. Deductions are made on the likely dominant reduction mechanism in this reaction system, given the phase morphology observations presented.

  5. On prediction and discovery of lunar ores

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.

  6. Method for extracting copper, silver and related metals

    DOEpatents

    Moyer, Bruce A.; McDowell, W. J.

    1990-01-01

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  7. Method for extracting copper, silver and related metals

    DOEpatents

    Moyer, B.A.; McDowell, W.J.

    1987-10-23

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  8. 25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE STORAGE YARD. AN ORE BRIDGE THAT FORMERLY TRANSFERRED ORE WITHIN THE STORAGE YARD WAS DESTROYED BY A BLIZZARD IN 1978. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  9. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  10. Geology, geochemistry, and geophysics of the Fry Canyon uranium/copper project site, southeastern Utah - Indications of contaminant migration

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.; Horton, Robert J.

    2010-01-01

    The Fry Canyon uranium/copper project site in San Juan County, southeastern Utah, was affected by the historical (1957-68) processing of uranium and copper-uranium ores. Relict uranium tailings and related ponds, and a large copper heap-leach pile at the site represent point sources of uranium and copper to local soils, surface water, and groundwater. This study was designed to establish the nature, extent, and pathways of contaminant dispersion. The methods used in this study are applicable at other sites of uranium mining, milling, or processing. The uranium tailings and associated ponds sit on a bench that is as much as 4.25 meters above the level of the adjacent modern channel of Fry Creek. The copper heap leach pile sits on bedrock just south of this bench. Contaminated groundwater from the ponds and other nearby sites moves downvalley and enters the modern alluvium of adjacent Fry Creek, its surface water, and also a broader, deeper paleochannel that underlies the modern creek channel and adjacent benches and stream terraces. The northern extent of contaminated groundwater is uncertain from geochemical data beyond an area of monitoring wells about 300 meters north of the site. Contaminated surface water extends to the State highway bridge. Some uranium-contaminated groundwater may also enter underlying bedrock of the Permian Cedar Mesa Sandstone along fracture zones. Four dc-resistivity surveys perpendicular to the valley trend were run across the channel and its adjacent stream terraces north of the heap-leach pile and ponds. Two surveys were done in a small field of monitoring wells and two in areas untested by borings to the north of the well field. Bedrock intercepts, salt distribution, and lithologic information from the wells and surface observations in the well field aided interpretation of the geophysical profiles there and allowed interpretation of the two profiles not tested by wells. The geophysical data for the two profiles to the north of the

  11. Modeling of crushed ore agglomeration for heap leach operations

    NASA Astrophysics Data System (ADS)

    Dhawan, Nikhil

    The focus of this dissertation is modeling of the evolution of size distribution in batch agglomeration drum. There has been no successful work on modeling of crushed ore agglomeration although the framework for population balance modeling of pelletization and granulation is readily available. In this study three different batch agglomeration drums were used to study the agglomeration kinetics of copper, gold and nickel ores. The agglomerate size distribution is inherently subject to random fluctuation due the very nature of the process. Yet, with careful experimentation and size analysis the evolution of size distribution can be followed. The population balance model employing the random coalesce model with a constant rate kernel was shown to work well in a micro and lab scale agglomerator experiments. In small drums agglomerates begin to break in a short time, whereas the growth is uniform in the lab scale drum. The experimental agglomerate size distributions exhibit self-preserving size spectra which confirms the applicability of coalescence rate based model. The same spectra became a useful fact for predicting the size distribution with an empirical model. Since moisture is a principal variable, the absolute deviation from optimum moisture was used as the primary variable in the empirical model. Having established a model for the size distribution, the next step was to delve into the internal constituents of each agglomerate size class. To this end, an experimental scheme known as dip test was devised. The outcome of the test was the size distribution of progeny particles which make up a given size class of agglomerate. The progeny size distribution was analyzed with a model that partitions the particles into a host and guest category. The ensuing partition coefficient is a valuable in determining how a particle in a size class participates in larger agglomerates. This dissertation lays out the fundamentals for applying the population balance concept to batch

  12. Oolitic ores in the Bakchar iron-ore cluster (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Rudmin, M. A.; Mazurov, A. K.

    2016-12-01

    Oolitic iron ores are typified, and their morphology and composition are studied. Special attention is focused on the character of distribution of valuable and harmful admixtures and determination of the principal minerals concentrating these elements. As a result of this study, three types of ores are identified, such as "loose" ores, cemented ores with glauconite-chlorite-clay cement, and well-cemented ores with siderite cement. The morphology and composition of the ore oolites are characterized. The forms of occurrence of calcium phosphates (anapaite) and phosphates of rare-earth elements (monazite, cularite) that are related to the harmful phosphorus admixture are described. According to the analysis of the elemental composition, the fractions of (-1…+0.2) and (-1…+0.1) mm in the western and eastern segments, respectively, may be promising for processing.

  13. Biogeometallurgical pre-mining characterization of ore deposits: an approach to increase sustainability in the mining process.

    PubMed

    Dold, Bernhard; Weibel, Leyla

    2013-11-01

    Based on the knowledge obtained from acid mine drainage formation in mine waste environments (tailings impoundments and waste rock dumps), a new methodology is applied to characterize new ore deposits before exploitation starts. This gives the opportunity to design optimized processes for metal recovery of the different mineral assemblages in an ore deposit and at the same time to minimize the environmental impact and costs downstream for mine waste management. Additionally, the whole economic potential is evaluated including strategic elements. The methodology integrates high-resolution geochemistry by sequential extractions and quantitative mineralogy in combination with kinetic bioleach tests. The produced data set allows to define biogeometallurgical units in the ore deposit and to predict the behavior of each element, economically or environmentally relevant, along the mining process.

  14. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  15. Helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, S.-T.; George, A. R.

    1986-01-01

    A study was made of helicopter tail rotor noise, particularly that due to interactions with the main rotor tip vortices, and with the fuselage separation mean wake. The tail rotor blade-main rotor tip vortex interaction is modelled as an airfoil of infinite span cutting through a moving vortex. The vortex and the geometry information required by the analyses are obtained through a free wake geometry analysis of the main rotor. The acoustic pressure-time histories for the tail rotor blade-vortex interactions are then calculated. These acoustic results are compared to tail rotor loading and thickness noise, and are found to be significant to the overall tail rotor noise generation. Under most helicopter operating conditions, large acoustic pressure fluctuations can be generated due to a series of skewed main rotor tip vortices passing through the tail rotor disk. The noise generation depends strongly upon the helicopter operating conditions and the location of the tail rotor relative to the main rotor.

  16. The Role of Groundwater Flow and Faulting on Hydrothermal Ore Formation in Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Garven, G.

    2006-05-01

    Sediment-hosted ore formation is thought to occur as a normal outcome of basin evolution, due to deep groundwater flow, heat transport, and reactive mass transport ---all of which are intimately coupled. This paper reviews recent attempts to understand the hydrologic and geochemical processes forming some of the world's largest sediment-hosted ores. Several questions still dominate the literature (driving forces for flows, source and controls on metal acquisition, concentrations of ore-forming components, timing and duration, role of faults, effects of transient flows). This paper touches upon all of these questions. Coupled reactive transport models have been applied for understanding the genesis of sandstone-hosted uranium ores of North America and Australia, red-bed copper ores of North America and northern Europe, carbonate-hosted MVT lead-zinc ores of the U.S. Midcontinent and northwestern Canada, and the carbonate- hosted lead-zinc ores of Ireland and southeast France. Good progress has been made in using these computational methods for comparing and contrasting both carbonate hosted (MVT and Irish types) and shale- hosted (SEDEX type) Pb-Zn deposits. The former are mostly associated with undeformed carbonate platforms associated with distal orogenic belts and the later are mostly associated with extensional basins and failed rifts that are heavily faulted. Two giant ore provinces in extensional basins provide good examples of structural control on reactive mass transport: shale-hosted Pb-Zn ores of the Proterozoic McArthur basin, Australia, and shale-hosted Pb-Zn-Ba ores of the Paleozoic Kuna basin, Alaska. For the McArthur basin, hydrogeologic simulations of thermally-driven free convection suggest a strong structural control on fluid flow created by the north-trending fault systems that dominate this Proterozoic extensional basin. Brines appear to have descended to depths of a few kilometers along the western side of the basin, migrated laterally to the

  17. 8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, LOOKING WEST FROM ACCESS ROAD. THE ROADWAY ON THIS LEVEL (CENTER) WAS USED FOR UNLOADING ORE BROUGHT ON BURROWS INTO THE ORE BIN AT THE TOP LEVEL OF THE MILL. THE ORE BIN IN THE UPPER LEFT WAS ADDED LATER WHEN ORE WAS BROUGHT TO THE MILL BY TRUCKS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  18. Research of Geochemical Associations of Nephelin Ores

    NASA Astrophysics Data System (ADS)

    Vulf, M.; Simonov, K.; Sazonov, A.

    The instant paper concerns research of distribution petrogenic chemical members in urtit ore body of Kia-Shaltyrsk deposit. Rocks of the deposit are ore for producing alum earth. Actuality of the subject based on outlooks of detection noble metal ore-bearing (Au, Pt, Pd, Rh, Ru) in alkaline rocks of Siberia, including rocks of Kia-Shaltyrsk deposit (Kuznetsk Alatau). The main purpose of analysis of distribution of members is directed to detection of a non-uniformity of distribution of substance and segments enriched with alum earth and noble members. The basic solved problems are following: o Creation regression models of ore body; o Definition of cumulative distribution functions of members in a contour of ore body; o The analysis of the obtained outcomes in geologic terms. For construction regression models the full-scale data was used, which was presented by the results of the spectral and silicate analyses of gold and petrogenic members containing 130 assays arranged in ore body. A non-linear multiparameter model of the ore body based on components of nephelin ore using neural net approach was constructed. For each member the corresponding distribution function is produced. The model is constructed on the following members: Au, Al2O3, SiO2, Fe2O3, CaO, MgO, SO3, R2O ((Na2O+K2O) -1) and losses of burning. The error of model forecasting membersS concentrations was from 0.02 up to 20%. Large errors basically connected with assays located near contact of ore body and ad- jacent strata or with very high concentrations of members; also they can be connected with different genesis of rocks or superposition of other processes. The analysis of concentrations of members and normalised absolute errors of the fore- cast has shown, that all members can be sectioned into two groups: first: Al2O3, SiO2, R2O, Fe2O3 and second: Au, losses of burning, CaO, MgO, SO3. The distribution of 1 gold is tightly connected with calcium and losses of burning and spatially linked with zones

  19. The sources of our iron ores. II

    USGS Publications Warehouse

    Burchard, E.F.

    1933-01-01

    In this instalment** the iron ore deposits of the Lake Superior States, which normally furnish about 80 per cent, of the annual output of the United States, are described together with historical notes on discovery and transportation of ore. Deposits in the Mississippi Valley and Western States are likewise outlined and the sources of imported ore are given. Reviewing the whole field, it is indicated that the great producing deposits of the Lake Superior and southern Appalachian regions are of hematite in basin areas of sedimentary rocks, that hydrated iron oxides and iron carbonates are generally found in undisturbed comparatively recent sediments, and that magnetite occurs in metamorphic and igneous rocks; also that numerical abundance of deposits is not a criterion as to their real importance as a source of supply. Statistics of production of iron ore and estimates of reserves of present grade conclude the paper.

  20. Geology and ore deposits of the Whitepine area, Tomichi mining district, Gunnison County, Colorado

    USGS Publications Warehouse

    Robinson, Charles Sherwood

    1956-01-01

    The Tomichi mining district is on the western slope of the Continental Divide near the southern end of the Sawatch Range in southeastern Gunnison County, Colorado. The most productive part of the Tomichi district was the Whitepine area. It is estimated that since the discovery of ore in 1879 the area has produced approximately $7,000,000, principally in lead and zinc, with lesser amounts of silver, copper, and gold. Geologically, the Whitepine area is a faulted syncline of Paleozoic rocks that was intruded by Tertiary igneous rocks. The oldest rock of the area is the Silver Plume granite of pre-Cambrian age. Deposited upon this successively were the Sawatch quartzite (Late Cambrian), Manitou dolomite (Early Ordovician), Harding quartzite (Middle Ordovician), Fremont dolomite (Lade Ordovician), Chaffee formation (Late Devonian), Leadville limestone (Late Mississippian), and Beldon shale (Late Pennsylvanian); a total thickness of about 1,450 feet. During the Laramide Revolution, the sedimentary rocks were folded into a broad northward-plunging syncline, faulted, and intruded by a series of igneous rocks. The igneous rocks, in order of relative age from oldest to youngest, are: a rhyolite stock, the Princeton quartz monzonite batholith, quartz monzonite or quartz latite porphyry dikes, and rhyolite or pitchstone porphyry dikes. The ore deposits of the Whitepine area may be classified into replacement deposits, vein deposits, and contact metamorphic deposits. The replacement deposits may be further subdivided into deposits along faults and bedded deposits. Of the types of deposits, the most productive have been the replacement deposits along faults. The major replacement deposits along faults are those of the Akron, Morning Star, and Victor mines. The ore deposits of these mines are in the foot wall of the Star faults in the Akron mine in the Manitou dolomite and in the Morning Star and Victor mines in the Leadville limestone. The chief bedded replacement deposits are

  1. Rare earth element ore geology of carbonatites

    USGS Publications Warehouse

    Verplanck, Philip L.; Mariano, Anthony N.; Mariano, Anthony

    2016-01-01

    For nearly 50 years, carbonatites have been the primary source of niobium and rare earth elements (REEs), in particular the light REEs, including La, Ce, Pr, and Nd. Carbonatites are a relatively rare type of igneous rock composed of greater than 50 vol % primary carbonate minerals, primarily calcite and/or dolomite, and contain the highest concentrations of REEs of any igneous rocks. Although there are more than 500 known carbonatites in the world, currently only four are being mined for REEs: the Bayan Obo, Maoniuping, and Dalucao deposits in China, and the Mountain Pass deposit in California, United States. The carbonatite-derived laterite deposit at Mount Weld in Western Australia is also a REE producer. In addition to REEs, carbonatite-related deposits are the primary source of Nb, with the Araxá deposit, a carbonatite-derived laterite in Minas Gerais state, Brazil, being the dominant producer. Other commodities produced from carbonatite-related deposits include phosphates, iron, fluorite, copper, vanadium, titanium, uranium, and calcite.Types of ores include those formed as primary magmatic minerals, from late magmatic hydrothermal fluids, and by supergene enrichment in weathered horizons. Although the principal REE-bearing mineral phases include fluorocarbonates (bastnäsite, parisite, and synchysite), hydrated carbonates (ancylite), and phosphates (monazite and apatite), the dominant mineral exploited at most mines is bastnäsite. Bastnäsite typically is coarse grained and contains approximately 75 wt % RE2O3 (rare earth oxides; REOs). Processes responsible for REE enrichment include fractional crystallization of the carbonatitic magma, enrichment of REEs in orthomagmatic or hydrothermal fluids and subsequent precipitation or subsolidus metasomatic redistribution of REEs, and breakdown of primary carbonatitic mineral phases by chemical weathering and sequestration of REEs in secondary minerals or in association with clays. Carbonatites are primarily

  2. The Tail of BPM

    NASA Astrophysics Data System (ADS)

    Kruba, Steve; Meyer, Jim

    Business process management suites (BPMS's) represent one of the fastest growing segments in the software industry as organizations automate their key business processes. As this market matures, it is interesting to compare it to Chris Anderson's 'Long Tail.' Although the 2004 "Long Tail" article in Wired magazine was primarily about the media and entertainment industries, it has since been applied (and perhaps misapplied) to other markets. Analysts describe a "Tail of BPM" market that is, perhaps, several times larger than the traditional BPMS product market. This paper will draw comparisons between the concepts in Anderson's article (and subsequent book) and the BPM solutions market.

  3. Estimating tail probabilities

    SciTech Connect

    Carr, D.B.; Tolley, H.D.

    1982-12-01

    This paper investigates procedures for univariate nonparametric estimation of tail probabilities. Extrapolated values for tail probabilities beyond the data are also obtained based on the shape of the density in the tail. Several estimators which use exponential weighting are described. These are compared in a Monte Carlo study to nonweighted estimators, to the empirical cdf, to an integrated kernel, to a Fourier series estimate, to a penalized likelihood estimate and a maximum likelihood estimate. Selected weighted estimators are shown to compare favorably to many of these standard estimators for the sampling distributions investigated.

  4. Analytical fingerprint for tantalum ores from African deposits

    NASA Astrophysics Data System (ADS)

    Melcher, F.; Graupner, T.; Sitnikova, M.; Oberthür, T.; Henjes-Kunst, F.; Gäbler, E.; Rantitsch, G.

    2009-04-01

    Illegal mining of gold, diamonds, copper, cobalt and, in the last decade, "coltan" has fuelled ongoing armed conflicts and civil war in a number of African countries. Following the United Nations initiative to fingerprint the origin of conflict materials and to develop a traceability system, our working group is investigating "coltan" (i.e. columbite-tantalite) mineralization especially in Africa, also within the wider framework of establishing certified trading chains (CTC). Special attention is directed towards samples from the main Ta-Nb-Sn provinces in Africa: DR Congo, Rwanda, Mozambique, Ethiopia, Egypt and Namibia. The following factors are taken into consideration in a methodological approach capable of distinguishing the origin of tantalum ores and concentrates with the utmost probability: (1) Quality and composition of coltan concentrates vary considerably. (2) Mineralogical and chemical compositions of Ta-Nb ores are extremely complex due to the wide range of the columbite-tantalite solid solution series and its ability to incorporate many additional elements. (3) Coltan concentrates may contain a number of other tantalum-bearing minerals besides columbite-tantalite. In our approach, coltan concentrates are analyzed in a step-by-step mode. State-of-the-art analytical tools employed are automated scanning electron microscopy (Mineral Liberation Analysis; MLA), electron microprobe analysis (major and trace elements), laser ablation-ICP-MS (trace elements, isotopes), and TIMS (U-Pb dating). Mineral assemblages in the ore concentrates, major and trace element concentration patterns, and zoning characteristics in the different pegmatites from Africa distinctly differ from each other. Chondrite-normalized REE distribution patterns vary significantly between columbite, tantalite, and microlite, and also relative to major element compositions of columbites. Some locations are characterized by low REE concentrations, others are highly enriched. Samples with

  5. Environmental impact of uranium mining and ore processing in the Lagoa Real District, Bahia, Brazil.

    PubMed

    Carvalho, Ilson G; Cidu, Rosa; Fanfani, Luca; Pitsch, Helmut; Beaucaire, Catherine; Zuddas, Pierpaolo

    2005-11-15

    Uranium mining and processing at Lagoa Real (Bahia, Brazil) started in 2000. Hydrogeochemical monitoring carried out from 1999 to 2001 revealed generally good quality of the water resources outside and inside the mineralized area. No chemical contamination in waters for domestic uses was observed. Hydrochemical characteristics did not vary significantly after 1 year of U exploitation, as compared to premining conditions. Due to the short time of mining, the results cannot exclude future variations in water quality. Leaching experiments helped to describe processes of ore and waste degradation. Sulfate was identified as an indicator for different types of contamination. Potential hazards related to local climate (hot rainy season) were identified. They indicate that tailings derived from the ore processing, destabilized by sulfuric acid attack, may induce acidification and salinization in the surrounding environment. Another potential source of environmental impact could be linked to local radium-rich mineralization, originating radon emission.

  6. Selenium content in sulfide ores from the Chalkidiki peninsula, Greece.

    PubMed

    Nicolaidou, A E

    1998-01-01

    Selenium (Se) was assessed in galena, sphalerite, and pyrite samples. These are components of mixed sulfide ores from the Olympias and Madem Lakkos-Mavres Petres deposits and the Skouries porphyry-copper deposit. We used atomic absorption spectroscopy (AAS) with a hydride generator system. The highest concentration of Se (516 ppm) was found in the fine-grained galena at the -135 level of the Olympias deposits. In the Madem Lakkos-Mavres Petres deposit, the highest concentration of Se (33 ppm) was found in the pyrites of the level 30. The concentration of Se in the arsenopyrites and chalcopyrites is lower than the detection limit of the analytical method (< 100 ppb). The concentrated chalcopyrite from the porphyry copper deposit at Skouries exhibits a significant Se content (average 200 ppm) in contrast to the chalcopyrite from the Olympias and the Madem Lakkos-Mavres Petres. Variations in the Se content of the sulfide minerals studied could be caused by redox-pH and/or temperature conditions, as well as by the difference in crystal structure. The Se found in the areas studied may positively affect the environment. Sulfide minerals are oxidized by microorganisms, infiltrate in the soil-water in the form of selenate or selenite ion, and directly or indirectly influence the human organism.

  7. Wagging tail vibration absorber

    NASA Technical Reports Server (NTRS)

    Barclay, R. G.; Humphrey, P. W.

    1969-01-01

    A 750-foot cantilever length of extendible-tape boom (very low stiffness) was considered as the main system to be damped. A number of tail lengths were tried from 20 feet to 80 feet after which 40 feet was investigated further as a desirable compromise between performance and practical lengths. A 40-foot damping tail produced a damping effect on the main boom for the first mode equivalent in decay rate to 3.1 percent of critical damping. In this case the spring-hinge and tail were tuned to the main boom first mode frequency and the hinge damping was set at 30 percent of critical based on the tail properties. With this same setting, damping of the second mode was .4 percent and the third mode .1 percent.

  8. Geochemical hosts of solubilized radionuclides in uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.; Bush, C.A.

    1990-01-01

    The solubilization and subsequent resorption of radionuclides by ore components or by reaction products during the milling of uranium ores may have both economic and environmental consequences. Particle-size redistribution of radium during milling has been demonstrated by previous investigators; however, the identification of sorbing components in the tailings has received little experimental attention. In this study, uranium-bearing sandstone ore was milled, on a laboratory scale, with sulfuric acid. At regular intervals, filtrate from this suspension was placed in contact with mixtures of quartz sand and various potential sorbents which occur as gangue in uranium ores; the potential sorbents included clay minerals, iron and aluminum oxides, feldspar, fluorspar, barite, jarosite, coal, and volcanic glass. After equilibration, the quartz sand-sorbent mixtures were separated from the filtrate and radioassayed by gamma-spectrometry to determine the quantities of 238U, 230Th, 226Ra, and 210Pb sorbed, and the radon emanation coefficients. Sorption of 238U was low in all cases, with maximal sorptions of 1-2% by the bentonite- and coal-bearing samples. 230Th sorption also was generally less than 1%; maximal sorption here was observed in the fluorspar-bearing sample and appears to be associated with the formation of gypsum during milling. 226Ra and 210 Pb generally showed higher sorption than the other nuclides - more than 60% of the 26Ra solubilized from the ore was sorbed on the barite-bearing sample. The mechanism (s) for this sorption by a wide variety of substrates is not yet understood. Radon emanation coefficients of the samples ranged from about 5 to 30%, with the coal-bearing samples clearly demonstrating an emanating power higher than any of the other materials. ?? 1990.

  9. The Tail Suspension Test

    PubMed Central

    Terrillion, Chantelle E.; Piantadosi, Sean C.; Bhat, Shambhu; Gould, Todd D.

    2012-01-01

    The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test. PMID:22315011

  10. Oil shales, evaporites and ore deposits

    NASA Astrophysics Data System (ADS)

    Eugster, Hans P.

    1985-03-01

    The relationships between oil shales, evaporites and sedimentary ore deposits can be classified in terms of stratigraphic and geochemical coherence. Oil shale and black shale deposition commonly follows continental red beds and is in turn followed by evaporite deposition. This transgressive-regressive sequence represents an orderly succession of depositional environments in space and time and results in stratigraphic coherence. The amount of organic carbon of a sediment depends on productivity and preservation, both of which are enhanced by saline environments. Work on Great Salt Lake. Utah, allows us to estimate that only 5% of TOC originally deposited is preserved. Inorganic carbonate production is similar to TOC production, but preservation is much higher. Oil shales and black shales commonly are enriched in heavy metals through scavenging by biogenic particles and complexation by organic matter. Ore deposits are formed from such rocks through secondary enrichment processes, establishing a geochemical coherence between oil shales and ore deposits. The Permian Kupferschiefer of N. Europe is used as an example to define a Kupferschiefer type (KST) deposit. Here oxygenated brines in contact with red beds become acidified through mineral precipitation and acquire metals by dissolving oxide coatings. Oxidation of the black shale leads to further acid production and metal acquisition and eventually to sulfide deposition along a reducing front. In order to form ore bodies, the stratigraphic coherence of the red bed-black shale-evaporite succession must be joined by the geochemical coherence of the ore body-evaporite-black shale association. The Cretaceous Cu-Zn deposits of Angola, the Zambian Copperbelt as well as the Creta, Oklahoma, deposits are other KST examples. In the Zambian Copperbelt, evaporites are indicated by the carbonate lenticles thought to be pseudomorphs after gypsum-anhydrite nodules. MVT deposits are also deposited by acid brines, but at more

  11. Geology and ore deposits of the Pioche district, Nevada

    USGS Publications Warehouse

    Westgate, L.G.; Knopf, Adolph

    1932-01-01

    which was discovered accidentally during the prospecting of the fissure veins. The ore deposits of the district comprise three groups (1) silver-bearing fissure veins in quartzite; (2) silver-bearing mineralized granite porphyry; (3) replacement deposits in limestone and dolomite. All of them appear to have been formed at about the same time, in the epoch of mineralization that occurred shortly after the intrusion of the granitic rocks and their allied dikes of granite porphyry and lamprophyre. The entire present output of the district is coming from the replacement deposits in limestone and dolomite, but exploratory work is still in progress on the fissure veins and mineralized porphyry. The replacement deposits include both replacement fissure veins and stratiform ("bedded") replacement deposits. The replacement fissure veins dip steeply and cut across the bedding of the carbonate rocks in which they are inclosed. They are thoroughly oxidized, as deep at least as 1,100 feet, for on none of them have the mine workings penetrated to water level, and they are highly manganiferous and limonitic and low in silica. At-certain horizons stratiform replacement deposits extend out as lateral branches from the fissure veins. Deposits of this kind occur mainly in the Mendha limestone, Highland Peak limestone, and Lyndon limestone. The stratigraphic range is therefore at least 5,500 feet, and as some of the fissure veins extend down through the underlying Pioche shale the indicated range may exceed 6,500 feet. The most notable representatives of the replacement fissure veins are at the Bristol mine, where they yield silver-bearing copper-leadzinc ores. So far unique among the ore bodies of the district is the pipe of wad and pyrolusite ore at the Jackrabbit mine, the periphery of the pipe consisting of a girdle of extraordinarily coarse white calcite spar produced by the recrystallization of the surrounding limestones. The stratiform replacement deposits that are attracting most

  12. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  13. A study of kinetics and mechanisms of iron ore reduction in ore/coal composites

    SciTech Connect

    Sun, S.; Lu, W.K.

    1996-12-31

    Blast furnace ironmaking technology, by far the most important ironmaking process, is based on coke and iron ore pellets (or sinter) to produce liquid iron. However, there has been a worldwide effort searching for a more economical and environmental friendly alternative process for the production of liquid iron. The essential requirement is that it should be minimized in the usage of metallurgical coke and agglomerate of iron ore concentrates. With iron ore concentrate and coal as raw materials, there are two approaches: (a) Smelting reduction; melting the ore before reduction; (b) Reduction of the ore in solid state followed by melting. The present work is on the fundamentals of the latter. It consists of a better designed experimental study including pressure gradient measurement, and a more rigorous non-isothermal and non-isobaric mathematical model. Results of this work may be applied to carbothermic processes, such as FASTMET and LB processes, as well as recycling of fines in steel plants.

  14. Molybdenum speciation in uranium mine tailings using X-ray absorption spectroscopy.

    PubMed

    Essilfie-Dughan, Joseph; Pickering, Ingrid J; Hendry, M Jim; George, Graham N; Kotzer, Tom

    2011-01-15

    Uranium (U) mill tailings in northern Saskatchewan, Canada, contain elevated concentrations of molybdenum (Mo). The potential for long-term (>10,000 years) mobilization of Mo from the tailings management facilities to regional groundwater systems is an environmental concern. To assist in characterizing long-term stability, X-ray absorption spectroscopy was used to define the chemical (redox and molecular) speciation of Mo in tailings samples from the Deilmann Tailings Management Facility (DTMF) at the Key Lake operations of Cameco Corporation. Comparison of Mo K near-edge X-ray absorption spectra of tailings samples and reference compounds of known oxidation states indicates Mo exists mainly as molybdate (+6 oxidation state). Principal component analysis of tailings samples spectra followed by linear combination fitting using spectra of reference compounds indicates that various proportions of NiMoO(4) and CaMoO(4) complexes, as well as molybdate adsorbed onto ferrihydrite, are the Mo species present in the U mine tailings. Tailings samples with low Fe/Mo (<708) and high Ni/Mo (>113) molar ratios are dominated by NiMoO(4), whereas those with high Fe/Mo (>708) and low Ni/Mo (<113) molar ratios are dominated by molybdate adsorbed onto ferrihydrite. This suggests that the speciation of Mo in the tailings is dependent in part on the chemistry of the original ore.

  15. Examination of Lipopolysaccharide (O-Antigen) Populations of Thiobacillus ferrooxidans from Two Mine Tailings

    PubMed Central

    Southam, G.; Beveridge, T. J.

    1993-01-01

    Net acid-generating capacities of 39.74 kg of H2SO4 per ton (ca. 0.05 kg/kg) (pH 2.68) for the Lemoine copper mine tailings (closed ca. 8 years ago; located 40 km west of Chibougamau, Quebec, Canada) and 16.07 kg of H2SO4 per ton (ca. 0.02 kg/kg) (pH 3.01) for the Copper Rand tailings (in current use and 50 km distant [east] from those of Lemoine) demonstrate that these sulfide tailings can support populations of acidophilic thiobacilli. Oxidized regions in both tailings environments were readily visible, were extremely acidic (Lemoine, pH 2.36; Copper Rand, pH 3.07), and provided natural isolates for our study. A 10% (wt/vol) oxalic acid treatment, which solubilizes both ferric sulfate and ferric hydroxide precipitates (B. Ramsay, J. Ramsay, M. deTremblay, and C. Chavarie, Geomicrobiol. J. 6:171-177, 1988), enabled the recovery of intact bacterial cells from the tailings material and from liquid synthetic medium for lipopolysaccharide analysis. No viable cells could be cultured after this oxalic acid treatment. Sodium dodecyl sulfate-polyacrylamide gel electro-phoretic profiles of lipopolysaccharides extracted from the Lemoine tailings were complex, indicating a heterogeneous population of Thiobacillus ferrooxidans. Six T. ferrooxidans subspecies as identified by lipopolysaccharide analysis (i.e., lipopolysaccharide chemotypes) were eventually isolated from a total of 112 cultures from the Lemoine tailings. Using the same isolate and lipopolysaccharide typing techniques, we identified only a single lipopolysaccharide chemotype from 20 cultures of T. ferrooxidans isolated from the Copper Rand tailings. This homogeneity of lipopolysaccharide chemotype was much different from what was found for the older Lemoine tailings and may reflect a progressive lipopolysaccharide heterogeneity of Thiobacillus isolates as tailings leach and age. Images PMID:16348925

  16. A comparison of the mineralogy, ore textures, paragenetic sequence, and occurrence of the Permian sandstone-hosted Ag-Cu deposit at Paoli, Oklahoma with the Permian shale-hosted Cu-Ag deposit at Creta, Oklahoma

    SciTech Connect

    Hagni, R.D. . Dept. of Geology and Geophysics)

    1993-03-01

    Although the sandstone-hosted (Wellington Formation, Leonardian Series) Ag-Cu deposit at Paoli in south-central Oklahoma and the shale-hosted (Flowerpot Shale, Guadalupean Series) Cu-Ag ore deposit at Creta in southwest Oklahoma are both contained in Permian sedimentary rocks, they differ in their mineralogy, ore textures, paragenetic sequence, and occurrence. At Paoli, chalcocite mineralization occurs as replacements of disseminated, diagenetic, pyritohedral pyrite crystals, as replacements of carbonate cement between clastic quartz sand grains, and especially as replacements of hematite that replaces carbonate cement in the host sandstones. In contrast, at Creta the copper sulfide grains occur as replacements of megaspores, colloform pyrite, and pyrrhotite crystals. Ore microscopic study indicates that the paragenetic sequence of ore minerals at Paoli is: pyrite(oldest)-goethite-hematite-covellite-chalcocite-digenite-bornite-chalcopyrite (youngest). Such a sequence is the reverse order of those deposited at Creta and for most copper ore deposits, of all types, elsewhere. The paragenetic sequence at Paoli is interpreted to indicate that the host red-bed sandstones experienced an early introduction of reducing fluids that formed disseminated and cementing pyrite. Subsequent oxidation of that pyrite to form hematite (and minor goethite) probably occurred at the leading edges of roll fronts of oxidizing groundwaters. The paragenetic sequence shows that the copper sulfide formation was from fluids that became progressively more reducing during the deposition of those copper sulfide minerals. The shapes of the ore deposits indicate that the copper ore fluids were ones that moved in the form of roll fronts along Permian stream channels.

  17. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  18. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  19. Low-Temperature Carbothermic Reduction of Indonesia Nickel Lateritic Ore with Sub-Bituminous Coal

    NASA Astrophysics Data System (ADS)

    Setiawan, I.; Harjanto, S.; Subagja, R.

    2017-05-01

    In this work, the experiment was conducted to investigate the effect of temperature and sub-bituminous coal on upgrading nickel laterites ores by carbothermic reduction. The reduction was carried out in the muffle furnace at a temperature ranging of 800-1100 °C. The produced calcine from reduction step was grounded in vibrating mill, mixed with water and passed on a magnetic separator to separate nickel concentrates from the tailing. The experimental results showed that the concentrate with highest nickel grade was produced at temperature 1000 °C. The nickel grade on concentrate was 5.0 %, with the recovery of nickel was 80.6 %.

  20. Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus.

    PubMed

    Veronez, Alexandra Caroline da Silva; Salla, Rômulo Victor; Baroni, Vinícius Dadalto; Barcarolli, Indianara Fernanda; Bianchini, Adalto; Dos Reis Martinez, Claudia Bueno; Chippari-Gomes, Adriana Regina

    2016-05-01

    For decades, the extraction of minerals has intensified in order to meet the demand of industry. Iron ore deposits are important sources of metals, such as iron (Fe) and manganese (Mn). The particulate ores can be dispersed during extraction, transport and storage, with potential to induce biological impacts. Amphibians are very sensitive to environmental stressors. Therefore, the present study aimed to assess the effects of iron ore, Fe and Mn exposure during the metamorphosis of Lithobates catesbeianus. Endpoints analyzed included morphological (biometrical and developmental analyses), whole body Fe and Mn concentration in, plasma ferritin concentration, erythrocyte DNA damage (measured through comet assay and micronucleus test) and liver activity of enzymes involved in oxidative status [glutathione S-transferase (GST) and catalase (CAT)]. Tadpoles were kept under control condition (no contaminant addition) or exposed to iron ore (3.79mg/L as fine particulate matter); Fe (nominal concentration: 0.51mg/L Fe as C10H12FeN2NaO8; Fe-EDTA); and Mn (nominal concentration: 5.23mg/L Mn as 4H2O.MnCl2) for 30 days. Virtually, no mortality was observed, except for one tadpole found dead in the iron ore treatment. However, tadpoles exposed to iron ore had longer tail than those kept under control conditions while tadpoles exposed to manganese chloride showed higher body length than control ones. Exposure to Fe and Mn induced a delay in tadpole metamorphosis, especially when these metals are presented not as a mixture (iron ore). Tadpoles exposed to iron ore had increased whole body Fe and Mn while those exposed to Fe and Mn accumulated each metal individually. Tadpoles exposed to any of the contaminants tested showed a significant increase in erythrocyte DNA damage and frequency of micronuclei. In addition, they showed higher liver GST activity respect with those kept under control conditions. Plasma ferritin concentration and liver CAT activity were higher only in tadpoles

  1. Uranium mill tailings stabilization

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-02-01

    Uranium mill tailings pose a potential radiation health hazard to the public. Therefore, stabilization or disposal of these tailings in a safe and environmentally sound way is needed to minimize radon exhalation and other environmental hazards. One of the most promising concepts for stabilizing U tailings is the use of asphalt emulsion to contain radon and other hazardous materials within uranium tailings. This approach is being investigated at the Pacific Northwest Laboratory. Results of these studies indicate that a radon flux reduction of greater than 99% can be obtained using either a poured-on/sprayed-on seal (3.0 to 7.0 mm thick) or an admixture seal (2.5 to 12.7 cm thick) containing about 18 wt % residual asphalt. A field test was carried out in June 1979 at the Grand Junction tailings pile in order to demonstrate the sealing process. A reduction in radon flux ranging from 4.5 to greater than 99% (76% average) was achieved using a 15.2-cm (6-in.) admix seal with a sprayed-on top coat. A hydrostatic stabilizer was used to apply the admix. Following compaction, a spray coat seal was applied over the admix as the final step in construction of a radon seal. Overburden was applied to provide a protective soil layer over the seal. Included in part of the overburden was a herbicide to prevent root penetration.

  2. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?

    PubMed Central

    Huang, Longbin; Baumgartl, Thomas; Mulligan, David

    2012-01-01

    Background Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil – mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Scope Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. Conclusions When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to

  3. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  4. Long-distance connections in the Copper Age: New evidence from the Alpine Iceman’s copper axe

    PubMed Central

    Angelini, Ivana; Kaufmann, Günther; Canovaro, Caterina; Dal Sasso, Gregorio; Villa, Igor Maria

    2017-01-01

    25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC. PMID:28678801

  5. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  6. Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites.

    PubMed

    Guo, Pan; Wang, Ting; Liu, Yanli; Xia, Yan; Wang, Guiping; Shen, Zhenguo; Chen, Yahua

    2014-01-01

    A field investigation, field experiment, and hydroponic experiment were conducted to evaluate feasibility of using Oenothera glazioviana for phytostabilization of copper-contaminated soil. In semiarid mine tailings in Tongling, Anhui, China, O. glazioviana, a copper excluder, was a dominant species in the community, with a low bioaccumulation factor, the lowest copper translocation factor, and the lowest copper content in seed (8 mg kg(-1)). When O. glazioviana was planted in copper-polluted farmland soil in Nanjing, Jiangsu, China, its growth and development improved and the level of γ-linolenic acid in seeds reached 17.1%, compared with 8.73% in mine tailings. A hydroponic study showed that O. glazioviana had high tolerance to copper, low upward transportation capacity of copper, and a high γ-linolenic acid content. Therefore, it has great potential for the phytostabilization of copper-contaminated soils and a high commercial value without risk to human health.

  7. Rajkonkoski gold-telluride ore occurrence: A new high prospective type of complex noble metal mineralization in the Karelian Proterozoic

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Sundblad, K.; Toritsin, A. N.; Golubev, A. I.; Lavrov, O. B.

    2008-11-01

    The Rajkonkoski ore occurrence is located within the region of the Karelian craton (AR2) and the Svecofennian folded belt (PR1) conjugation. It is presented by quartz-carbonate veins in metadoleriles and a zone of brecciation, crumple, and silification of carbonaceous shales within the volcanites of the Soanlakhtinsky suite (PR1). Ore mineralization in black shales and quartz veins has features of genetic similarity presenting different levels of the ore system controlled by different range strike-slip fault dislocations. At the Rajkonkoski ore occurrence, 41 ore minerals have been identified: 12 tellurides (native tellurium, hedleyite, pilsenite, tsumoite, tellurobismuthite, hessite, stuetzite, radclidzhite, joseite-B, altaite, volynskite, petzite); 4 bismuth-tellurides of the following compositions Bi3Te, Bi3Te2, BiTe4, PbBiTe; 3 selenides (clausthalite, tellurolaitakarite, native selenium); and 12 native metals (gold, silver, electrum, copper, iron, lead, tin, bismuth, osmiridium). The contents of the main ore minerals in places exceed 10%, and the concentrations of elements reach as follows: Cu and Pb, 5%; Zn, Bi, 1%; Se, 219 ppm; Te, 171 ppm; Sb, 3 ppm; As, 5 ppm; Ag, >0.1%; Au, 35.28 ppm. Ore mineralization is formed during the temperature interval from 550°C up to <170oC in the conditions of high activity of Se and Te, and beginning from medium temperatures (>300°C) complete miscibilities galenite-clausthalite and galenite-altaite are observed. In aggregate with a wide temperature interval (>400°C) of ore process evolution and mineral specia variety of telluride and native metal mineralizations, the original “torsion” of different temperature mineralizations makes it possible to determine the affiliation of the Rajkonkoski ore occurrence to the xenothermal type deposits or epithermal “alkaline,” gold-telluride A-type characterized by a close connection with magmatism of increased alkalinity and the original geochemical (Te-V-F) and mineral

  8. Predicting arsenic concentrations in porewaters of buried uranium mill tailings

    SciTech Connect

    Langmuir, D.; Mahoney, J.; MacDonald, A.; Rowson, J.

    1999-10-01

    The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buried for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25 C), and in the TMF after burial (5--49 day aging tests). The aging tests were run at 50, 25 and 4 C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates having Fe/As ratios of less than 3--5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9. Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5--6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids. The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25 C, and may equal zero at all times in the TMF at 4 C

  9. Geothermal energy for copper dump leaching

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    This report evaluates the possibility of using geothermal energy to heat a sulfuric acid leaching solution for the purpose of faster and more efficient copper recovery from copper-containing minerals. Experimental studies reported in the literature have shown that this technique can be economically feasible for the extraction of copper from low-grade dump ores. Its main advantage appears to be the considerable reduction in long-term leaching periods; it could also be less expensive than other conventional processing operations if an economical geothermal resource were provided. However, this process has some pitfalls which might restrict the extent of geothermal energy use. Nevertheless, the process is still technologically sound, especially if groundwaters are used directly in the leaching operation.

  10. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore. ...

  11. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore. ...

  12. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore. ...

  13. The indirect electrochemical refining of lunar ores

    NASA Technical Reports Server (NTRS)

    Semkow, Krystyna W.; Sammells, Anthony F.

    1987-01-01

    Recent work performed on an electrolytic cell is reported which addresses the implicit limitations in various approaches to refining lunar ores. The cell uses an oxygen vacancy conducting stabilized zirconia solid electrolyte to effect separation between a molten salt catholyte compartment where alkali metals are deposited, and an oxygen-evolving anode of composition La(0.89)Sr(0.1)MnO3. The cell configuration is shown and discussed along with a polarization curve and a steady-state current-voltage curve. In a practical cell, cathodically deposited liquid lithium would be continuously removed from the electrolytic cell and used as a valuable reducing agent for ore refining under lunar conditions. Oxygen would be indirectly electrochemically extracted from lunar ores for breathing purposes.

  14. The indirect electrochemical refining of lunar ores

    NASA Technical Reports Server (NTRS)

    Semkow, Krystyna W.; Sammells, Anthony F.

    1987-01-01

    Recent work performed on an electrolytic cell is reported which addresses the implicit limitations in various approaches to refining lunar ores. The cell uses an oxygen vacancy conducting stabilized zirconia solid electrolyte to effect separation between a molten salt catholyte compartment where alkali metals are deposited, and an oxygen-evolving anode of composition La(0.89)Sr(0.1)MnO3. The cell configuration is shown and discussed along with a polarization curve and a steady-state current-voltage curve. In a practical cell, cathodically deposited liquid lithium would be continuously removed from the electrolytic cell and used as a valuable reducing agent for ore refining under lunar conditions. Oxygen would be indirectly electrochemically extracted from lunar ores for breathing purposes.

  15. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  16. AERIAL OVERVIEW, LOOKING NORTH, WITH FORMER TCIUS STEEL ORE MINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING NORTH, WITH FORMER TCI-US STEEL ORE MINE HEADQUARTERS (BOTTOM) AND SUPERINTENDENT'S AND FOREMAN HOUSING ALONG MINNESOTA AVENUE AT CREST OF RED MOUNTAIN (TOP LEFT). - Muscoda Red Ore Mining Community, Bessemer, Jefferson County, AL

  17. 24. OVERHEAD VIEW OF MARISCAL WORKS ORE BIN FOUNDATION AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. OVERHEAD VIEW OF MARISCAL WORKS ORE BIN FOUNDATION AND CONDENSERS, TOWARD WHERE ORE DELIVERY TRACK WOULD HAVE RUN, LOOKING NORTHEAST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  18. OVERHEAD VIEW OF MARISCAL WORKS ORE BIN FOUNDATION AND CONDENSERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERHEAD VIEW OF MARISCAL WORKS ORE BIN FOUNDATION AND CONDENSERS, TOWARD WHERE ORE DELIVERY TRACK WOULD HAVE RUN, LOOKING NORTHEAST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  19. CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE CARS TOWARDS CLEVELAND BULK TERMINAL BUILDINGS. LOOKING SOUTH. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  20. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING BOOM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING BOOM IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  1. CONTEXT VIEW SHOWING MODERN TRACKS PASSING UNDER HULETTS AND ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW SHOWING MODERN TRACKS PASSING UNDER HULETTS AND ORE YARD. LOOKING NORTHEAST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  2. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING SHIP UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING SHIP UNLOADING IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  3. 3. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO WEST. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  4. 2. VIEW TO NORTHEAST (ORE RECEIVING PLATFORM OUT OF VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW TO NORTHEAST (ORE RECEIVING PLATFORM OUT OF VIEW TO RIGHT). - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  5. 4. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO EAST. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  6. 1. VIEW TO SOUTH (RETAINING WALL OF ORE RECEIVING PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO SOUTH (RETAINING WALL OF ORE RECEIVING PLATFORM TO LEFT). - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  7. 4. From west side of boat slip; ore piles, unloaders, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. From west side of boat slip; ore piles, unloaders, blast furnaces, tube conveyors, ore conveyors, stock house, powerhouse. Looking north/northeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  8. Method for extraction of uranium from ores

    SciTech Connect

    Bings, H.; Fischer, P.; Kampf, F.; Pietsch, H.; Thome, R.; Turke, W.; Wargalla, G.; Winkhaus, G.

    1982-11-30

    A method for continuously extracting uranium from ores comprises the steps of: forming a slurry of ore in a leaching solution; heating the slurry while pumping it through a tube reactor at high turbulences characterized by Reynolds numbers in excess of 50,000; supplying gaseous oxygen at high pressures into the tube reactor such that the uranium is substantially completely oxidized in a soluble form but impurities in the slurry are substantially kept from becoming soluble; recovering the uranium oxide solute which is substantially free of impurities.

  9. Processing of Goethitic Iron Ore Fines

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Sharma, T.; Mandre, N. R.

    2015-10-01

    In the present investigation an attempt has been made to beneficiate goethitic iron ore containing 59.02 % Iron, 6.51 % Alumina, 4.79 % Silica, 0.089 % Phosphorus with 7.11 % loss on ignition. For this purpose, different beneficiation techniques such as gravity and magnetic separation processes have been employed. During the process two conceptual flow sheets were also developed for the beneficiation of goethite iron ore fines. In the prsent work it was possible to enhance grade of iron to 63.35, 63.18, and 65.35 % from Jigging, Multi Gravity Separation (MGS) and Wet High Intensity Magnetic Separator (WHIMS) respectively.

  10. Scientific basis for risk assessment and management of uranium mill tailings

    SciTech Connect

    Not Available

    1986-01-01

    A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.

  11. Ore-bearing hydrothermal metasomatic processes in the Elbrus volcanic center, the northern Caucasus, Russia

    NASA Astrophysics Data System (ADS)

    Gurbanov, A. G.; Bogatikov, O. A.; Dokuchaev, A. Ya.; Gazeev, V. M.; Abramov, S. S.; Groznova, E. O.; Shevchenko, A. V.

    2008-06-01

    Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140-170°C and in quartz from geyserite, 120-150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite,

  12. 32. INTERIOR VIEW LOOKING NORTH ON THE ORE BREAKER LEVEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. INTERIOR VIEW LOOKING NORTH ON THE ORE BREAKER LEVEL. THE ORE BREAKER, A BLAKE JAW CRUSHER, IS IN THE BOX IN THE LEFT OF THE PHOTOGRAPH, THE ORE TO BE BROKEN IS FED INTO THE OPENING ON THE FLOOR AND NEXT TO ORE BREAKER BOX. THE GRIZZLY BARS ARE ON THE RIGHT AND THE PULLEYS FROM THE POWER SYSTEM ARE OVERHEAD. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  13. Long term sealing ability of butyl o-rings

    SciTech Connect

    Ytterboe, S.N.; Catsiff, E.H.; Kelchner, R.E.

    1991-10-01

    This article reports on accelerated aging tests carried out to anticipate the long term performance of o-rings in the Galileo spacecraft during its mission to Jupiter. This topics discussed include the impetus for the investigation, the operating conditions for the o-rings, the conditions leading to degradation of performance of the o-rings, and a prediction of the ability of the o-rings to complete their intended mission.

  14. Evaluation of in vitro dissolution rates of throum in uranium mill tailings

    SciTech Connect

    Reif, R.G.

    1996-06-01

    Dissolution rates of thorium from the uranium mill tailings piles at two Department of Energy Uranium Mill Tailings Remedial Action Project (UMTRAP) sites have been evaluated. The thorium dissolution rates were evaluated in vitro using simulated lung fluid. The former uranium mills at the UMTRAP sites employed different chemical processes (acid leach and alkaline pressure leach) to extract the uranium from the ore, and the thorium dissolution rates at these sites were found to be markedly different. A site specific annual limit on intake (ALI) value for {sup 230}Th was calculated for the UMTRAP Site that was associated with a multiple component dissolution curve.

  15. Evaluation of in vitro dissolution rates of thorium in uranium mill tailings.

    PubMed

    Reif, R H

    1994-11-01

    Dissolution rates of thorium from the uranium mill tailings piles at two Department of Energy Uranium Mill Tailings Remedial Action Project (UMTRAP) sites have been evaluated. The thorium dissolution rates were evaluated in vitro using simulated lung fluid. The former uranium mills at the UMTRAP sites employed different chemical processes (acid leach and alkaline pressure leach) to extract the uranium from the ore, and the thorium dissolution rates at these sites were found to be markedly different. A site specific annual limit on intake (ALI) value for 230Th was calculated for the UMTRAP site that was associated with a multiple component dissolution curve.

  16. Managing 'tail liability'.

    PubMed

    Frese, Richard C; Weber, Ryan J

    2013-11-01

    To reduce and control their level of tail liability, hospitals should: Utilize a self-insurance vehicle; Consider combined limits between the hospital and physicians; Communicate any program changes to the actuary, underwriter, and auditor; Continue risk management and safety practices; Ensure credit is given to the organization's own medical malpractice program.

  17. "Tails" of Linguistic Survival

    ERIC Educational Resources Information Center

    Timmis, Ivor

    2010-01-01

    Given the relatively short history of computerized corpora of spoken language, it is not surprising that few diachronic studies have been done on the grammatical features recently highlighted by the analysis of such corpora. This article, however, does take a diachronic perspective on one such feature: the syntactic feature of "tails"…

  18. White-tailed deer

    Treesearch

    Paul E. Johns; John C. Kilgo

    2005-01-01

    from a public relations standpoint, the white-tailed deer (Odocileus virginiamus) is probably the most important wildlife species occurring on the Savannah River Site (SRS). The SRS deer herd has been the subject of more scientific investigations than any comparable deer population in the world, resulting in more than 125 published papers. Each year...

  19. Exploring Mercury Tail

    NASA Image and Video Library

    2008-08-26

    As the MESSENGER spacecraft approached Mercury, the UVVS field of view was scanned across the planet's exospheric "tail," which is produced by the solar wind pushing Mercury's exosphere (the planet's extremely thin atmosphere) outward. This figure, recently published in Science magazine, shows a map of the distribution of sodium atoms as they stream away from the planet (see PIA10396); red and yellow colors represent a higher abundance of sodium than darker shades of blue and purple, as shown in the colored scale bar, which gives the brightness intensity in units of kiloRayleighs. The escaping atoms eventually form a comet-like tail that extends in the direction opposite that of the Sun for many planetary radii. The small squares outlined in black correspond to individual measurements that were used to create the full map. These measurements are the highest-spatial-resolution observations ever made of Mercury's tail. In less than six weeks, on October 6, 2008, similar measurements will be made during MESSENGER's second flyby of Mercury. Comparing the measurements from the two flybys will provide an unprecedented look at how Mercury's dynamic exosphere and tail vary with time. Date Acquired: January 14, 2008. http://photojournal.jpl.nasa.gov/catalog/PIA11076

  20. Isolation of uranium mill tailings and their component radionuclides from the biosphere; some earth science perspectives

    USGS Publications Warehouse

    Landa, Edward

    1980-01-01

    Uranium mining and milling is an expanding activity in the. Western United States. Although the milling process yields a uranium concentrate, the large volume of tailings remaining contains about 85 percent of the radioactivity originally associated with the ore. By virtue of the physical and chemical processing of the ore and the redistribution of the contained radionuclides at the Earth's surface, these tailings constitute a technologically enhanced source of natural radiation exposure. Sources of potential human radiation exposure from uranium mill tailings include the emanation of radon gas, the transport of particles by wind and water, and the transport of soluble radionuclides, seeping from disposal areas, by ground water. Due to the 77,000 year half-life of thorium-230, the parent of radium-226, the environmental effects associated with radionuclides contained in these railings must be conceived of within the framework of geologic processes operating over geologic time. The magnitude of erosion of cover materials and tailings and the extent of geochemical mobilization of the contained radionuclides to the atmosphere and hydrosphere should be considered in the evaluation of the potential, long-term consequences of all proposed uranium mill tailings management plans.

  1. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    PubMed

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. 17. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  3. 18. VIEW OF CRUDE ORE BINS FROM WEST. WEST CRUDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF CRUDE ORE BINS FROM WEST. WEST CRUDE ORE BIN AND TRESTLE FROM TWO JOHNS TRAMLINE TO SOUTH, CRUDE ORE BIN IN FOREGROUND. MACHINE SHOP IN BACKGROUND. THE TRAM TO PORTLAND PASSED TO NORTH OF MACHINE SHOP. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  4. 29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE M. HUMPHREY'S' CARGO OF 25,000. TONS OF ORE. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  5. CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE CARS TOWARDS WESTERN SIDE OF CLEVELAND BULK TERMINAL BUILDINGS AND A SELF-UNLOADING IRON ORE SHIP AT DOCK. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  6. 3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, c. 1908-10. SHOWS EXPOSED CRUSHER HOUSE IN FRONT OF (SOUTH) CRUDE ORE BIN AND SNOW SHED ADDED OVER TRAM TRACKS. NOTE LACK OF EAST OR WEST CRUDE ORE BINS. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  7. Current Energy Requirements in the Copper Producing Industries

    NASA Astrophysics Data System (ADS)

    Pitt, Charles H.; Wadsworth, Milton E.

    1981-06-01

    An analysis of energy usage in the production of refined cathode copper was made from mining ore to cathode copper. In mining copper ore the greatest energy consumers are ore hauling and blasting. Another important factor is the "recovery efficiency" of the metallurgical processes used to extract the copper. The mining and mineral concentrating energies are directly proportional to the "recovery efficiency," with a typical mining operation requiring about 20 million Btu/ton of cathode copper produced. Mineral concentrating was also found to be a large energy consumer, requiring about 43 million Btu/ton of cathode copper. Some possibilities for energy savings in the mineral processing area include use of autogenous grinding and computer control for optimizing grinding operations, improved classifier efficiency, and optimizing the entire concentrator plant performance by interrelating all plant operations. In acid plants, optimization of input SO2 concentration can make the plant a net producer rather than a net user of energy. The conventional smelting process utilizes very little of the energy from the combustion of sulfides in the charge. Several of the newer copper pyrometallurgical processes which utilize more of the combustion energy of the sulfides as heat show a significant improvement over conventional smelting. Generally, increased use of oxygen decreases Level 1 energies but proportionately increases Level 2 energies. Hydrometallurgical processes are, in general, more energy intensive than smelting processes, mainly because of the inability to utilize the heat of reaction of the sulfides. Electrowinning used in most hydrometallurgy processes is also energy intensive, and research in these areas could produce significant energy savings. Combination pyrometallurgical processes are generally less energy intensive than entirely hydrometallurgical processes. Significant improvements may be made in energy use in hydrometallurgical processes by more effective

  8. REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK STAND, SHOWING AIRCRAFT NUMBER (319), HORIZONTAL STABILIZER, TAIL CONE AND COOLING CTS FOR THE AUXILIARY POWER UNIT (APU), MECHANIC PAUL RIDEOUT IS LOWERING THE BALANCE PANELS ON THE STABILIZERS FOR LUBRICATION AND INSPECTION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  9. Photochemical changes in cyanide speciation in drainage from a precious metal ore heap

    USGS Publications Warehouse

    Johnson, C.A.; Leinz, R.W.; Grimes, D.J.; Rye, R.O.

    2002-01-01

    In drainage from an inactive ore heap at a former gold mine, the speciation of cyanide and the concentrations of several metals were found to follow diurnal cycles. Concentrations of the hexacyanoferrate complex, iron, manganese, and ammonium were higher at night than during the day, whereas weak-acid-dissociable cyanide, silver, gold, copper, nitrite, and pH displayed the reverse behavior. The changes in cyanide speciation, iron, and trace metals can be explained by photodissociation of iron and cobalt cyanocomplexes as the solutions emerged from the heap into sunlight-exposed channels. At midday, environmentally significant concentrations of free cyanide were produced in a matter of minutes, causing trace copper, silver, and gold to be mobilized as cyanocomplexes from solids. Whether rapid photodissociation is a general phenomenon common to other sites will be important to determine in reaching a general understanding of the environmental risks posed by routine or accidental water discharges from precious metal mining facilities.

  10. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOEpatents

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  11. Ore Melting and Reduction in Silicomanganese Production

    NASA Astrophysics Data System (ADS)

    Ringdalen, Eli; Gaal, Sean; Tangstad, Merete; Ostrovski, Oleg

    2010-12-01

    The charge for silicomangansese production consists of manganese ore (often mixed with ferromanganese slag) dolomite or calcite, quartz, and in some cases, other additions. These materials have different melting properties, which have a strong effect on reduction and smelting reactions in the production of a silicomanganese alloy. This article discusses properties of Assman, Gabonese, and Companhia Vale do Rio Doce (CVRD) ores, CVRD sinter and high-carbon ferromanganese (HC FeMn) slag, and their change during silicomanganese production. The melting and reduction temperatures of these manganese sources were measured in a carbon monoxide atmosphere, using the sessile drop method and a differential thermal analysis/thermogravimetric analysis. Equilibrium phases were analyzed using FACTSage (CRCT, Montreal, Canada and GTT, Aachen, Germany) software. Experimental investigations and an analysis of equilibrium phases revealed significant differences in the melting behavior and reduction of different manganese sources. The difference in smelting of CVRD ore and CVRD sinter was attributed to a faster reduction of sinter by the graphite substrate and carbon monoxide. The calculation of equilibrium phases in the reduction process of manganese ores using FACTSage correctly reflects the trends in the production of manganese alloys. The temperature at which the manganese oxide concentration in the slag was reduced below 10 wt pct can be assigned to the top of the coke bed in the silicomanganese furnace. This temperature was in the range 1823 K to 1883 K (1550 °C to 1610 °C).

  12. Sources of ores of the ferroalloy metals

    USGS Publications Warehouse

    Burchard, E.F.

    1933-01-01

    Since all steel is made with the addition of alloying elements, the record of the metallic raw materials contributory to the steel industry would be far from complete without reference to the ferroalloy metals. This paper, therefore, supplements two preceding arvicles on the sources of our iron ores. The photographs, with the exception of those relating to molybdenum and vanadium, are by the author.

  13. Rebound Of Previously Compressed O-Ring

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    Report presents theoretical and experimental analysis of relaxation characteristics of O-ring of vinylidene fluoride/hexafluoropropylene copolymer of same composition used in solid rocket boosters on Space Shuttle flight 51-L. Study covers range of temperatures from 10 to 120 degree F. Presents one-dimensional mathematical model of response provided for both elastic response and creep.

  14. Recovery of Iron from Hematite-Rich Diasporic-Type Bauxite Ore

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Li, Zhuoxuan; Yang, Lin; Li, Guanghui; Zhang, Yuanbo; Zeng, Jinghua

    A technique has been proposed for recovering iron from hematite-rich diasporic-type bauxite ore in this study. Direct reduction roasting followed by low intensity wet magnetic separation process was carried out. The parameters including reduction temperature and time, sodium salts, grinding conditions and magnetic field intensity for separation of iron were determined. The optimum process parameters as follows: roasting temperature of 1050 °C, time of 60 min, sodium salts involving sodium sulfate, borax, sodium carbonate with dosages of 10 wt%, 2 wt%, 35 wt% respectively, and magnetic field intensity of 1000 Gs with fineness of pulp reached 92.75% passing -0.074mm. Under the optimal conditions, an iron concentrate containing 88.17% total iron grade and iron recovery of 92.51% was obtained, 4.55% total iron grade in tailings. This novel technique provide a potential route for utilizing hematiterich diasporic bauxite ore, recovering iron resource firstly, and extracting alumina from magnetic separation tailings further.

  15. Controllable Phase Transformation in Extracting Valuable Metals from Chinese Low-Grade Nickel Sulphide Ore

    NASA Astrophysics Data System (ADS)

    Cui, Fuhui; Mu, Wenning; Wang, Shuai; Xu, Qian; Zhai, Yuchun; Luo, Shaohua

    2017-10-01

    In this work, a two-stage sulphuric acid roasting and water leaching system was chosen to extract valuable metals from Chinese low-grade nickel sulphide ore. By optimizing the two-stage roasting process, first roasting temperature at 295°C with particle size of 80-91 μm with an acid-ore ratio of 1.1:1 for 2 h, and second roasting temperature at 620°C for 2 h, it was found that more than 98% of the nickel and 99% of the copper but less than 14.38% of Fe were leached into the water. Attempts were made via x-ray diffraction analysis, scanning electron microscopy, chemical phase analysis, and differential thermal and thermogravimetric analysis to reveal the phase transformations for Ni, Cu, and Mg, which could be expressed as mineral phases → sulphates hydrate → sulphates and for iron as mineral phases → hydrated ferrous sulphate → ferric sulphates and ferric oxide → oxide. The results of this work suggest that a controllable phase transformation by using a two-stage sulphuric acid roasting process is a feasible method for efficiently extracting valuable metals from Chinese nickel sulphide ore.

  16. Ore genesis at the Monterrosas deposit in the Coastal Batholith, Ica, Peru

    NASA Astrophysics Data System (ADS)

    Sidder, G. B.

    1984-06-01

    Monterosas is a hydrothermal deposit of copper and for that is hosted by gabbro-diorites of the Upper Cretaceous Patap Superunit within the Coastal Batholith of central Peru. The ore body is localized by fractures and splays related to a nearby regional fault and is composed of massive chalcopyrite, magnetite, and pyrite. Ore and alteration minerals such as actinolite, sodic scapolite, epidotes, sphene, magnetite, apatite, tourmaline, chlorites, hematite, and quartz formed dominantly as replacements of magmatic diosside, labradorite-andesine, and ilmenite. Hydrothermal mineralization was characterized by the exchange of major, minor, and trace elements between hot saline fluids and gabbro-diorite wall rocks. Geochemical data suggest that the ore and gangue minerals were deposited at high temperatures from saline fluids derived from a magma. The evidence includes fluid inclusions within gangue quartz that exhibit homogenization temperatures of 400 to 500 C, salinites of 32 to 56 wt percent NaCl and the halite trend, and magmatic like sulfur isotopic compositions that range from 1.6 to 3.3 permit in gyrite and chalcopyrite.

  17. Controllable Phase Transformation in Extracting Valuable Metals from Chinese Low-Grade Nickel Sulphide Ore

    NASA Astrophysics Data System (ADS)

    Cui, Fuhui; Mu, Wenning; Wang, Shuai; Xu, Qian; Zhai, Yuchun; Luo, Shaohua

    2017-06-01

    In this work, a two-stage sulphuric acid roasting and water leaching system was chosen to extract valuable metals from Chinese low-grade nickel sulphide ore. By optimizing the two-stage roasting process, first roasting temperature at 295°C with particle size of 80-91 μm with an acid-ore ratio of 1.1:1 for 2 h, and second roasting temperature at 620°C for 2 h, it was found that more than 98% of the nickel and 99% of the copper but less than 14.38% of Fe were leached into the water. Attempts were made via x-ray diffraction analysis, scanning electron microscopy, chemical phase analysis, and differential thermal and thermogravimetric analysis to reveal the phase transformations for Ni, Cu, and Mg, which could be expressed as mineral phases → sulphates hydrate → sulphates and for iron as mineral phases → hydrated ferrous sulphate → ferric sulphates and ferric oxide → oxide. The results of this work suggest that a controllable phase transformation by using a two-stage sulphuric acid roasting process is a feasible method for efficiently extracting valuable metals from Chinese nickel sulphide ore.

  18. Metal Concentrations of Mississippi Valley-type Ore Fluids Predicted from Solid Solution Metal Concentrations in Ore-Stage Calcite and Implications for Ore Formation

    NASA Astrophysics Data System (ADS)

    Smith, S. E.; Appold, M. S.

    2016-12-01

    Mississippi-Valley-type (MVT) ore deposits represent significant enrichments of Zn, Pb, Ba, and F in the Earth's crust. Knowledge of the ore fluid concentrations of these elements is key to understanding their transport and precipitation to form deposits. LA-ICP-MS analyses of fluid inclusions have been the principle method used in recent research to determine the composition of MVT ore fluids. However, LA-ICP-MS results for Pb and Zn concentrations are ambiguous due to interferences from the host mineral matrix or possibly mineral accidentals within the fluid inclusions, motivating research for other methods to determine metal concentrations in MVT ore fluids. The present study was undertaken in an attempt to calculate ore fluid metal concentrations from their solid solution concentration in ore-stage calcite. Experimental distribution coefficients from Rimstidt et al. (1998) at 100° C were used in conjunction with solid solution metal concentrations of ore-stage calcite from the Illinois-Kentucky (IK) and Central-Tennessee (CT) MVT districts to predict ore fluid concentrations of Zn, Fe, Mg, and Mn. Predicted Mg and Mn ore fluid concentrations, which along with Zn and Fe form carbonate minerals (magnesite, rhodochrosite, smithsonite, and siderite) with the calcite structure, agreed well with available fluid inclusion data for these elements. Thus, the 1's of ppm Zn and 0.1's to 1's of ppm Fe ore fluid concentrations predicted in this study are also likely to be correct. Conversely, the predicted ore fluid concentrations of Sr and Ba, which along with Pb form carbonate minerals (strontianite, witherite, and cerrusite) with the aragonite structure, were in poor agreement with available fluid inclusion data for these elements. Thus, the predicted 1's of ppm ore fluid concentrations of Pb are unlikely to be accurate. The Zn concentrations calculated in this study for the IK and CT ore fluids have direct implications for the time needed to form the ores in these

  19. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-03-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  20. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  1. 13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. THE DOCK FEATURED FOUR HULETT UNLOADERS, EACH WITH A BUCKET CAPACITY OF 17 TONS; A 15-TON CAPACITY ORE STOCKING AND REHANDLING BRIDGE; AND A ONE-MILLION-TON CAPACITY ORE STORAGE YARD. THE WILLIAM-SEAVER-MORGAN COMPANY OF CLEVELAND BUILT THE DOCK EQUIPMENT. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  2. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco

    2009-01-01

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  3. Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal

    SciTech Connect

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca Veglio, Francesco

    2009-01-15

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  4. High-rate behaviour of iron ore pellet

    NASA Astrophysics Data System (ADS)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  5. DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER FOUNDATION, AND BALL MILL FOUNDATIONS, LOOKING NORTH NORTHWEST. ORE FROM THE MINES WAS DUMPED FROM THE TRAM BUCKETS INTO THE PRIMARY ORE BIN UNDER THE TRAM TERMINAL. A SLIDING CONTROL DOOR INTRODUCED THE INTO THE JAW CRUSHER (FOUNDATIONS,CENTER). THE CRUSHED ORE WAS THEN CONVEYED INTO THE SECONDARY ORE BIN AT CENTER LEFT. A HOLE IN THE FLOOR OF THE ORE BIN PASSED ORE ONTO ANOTHER CONVEYOR THAT BROUGHT IT OUT TO THE BALL MILL(FOUNDATIONS,CENTER BOTTOM). THIS SYSTEM IS MOST LIKELY NOT THE ORIGINAL SET UP, PROBABLY INSTALLED IN THE MINE'S LAST OCCUPATION IN THE EARLY 1940s. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  6. Faun tail nevus

    PubMed Central

    Yamini, M.; Sridevi, K. S.; Babu, N. Prasanna; Chetty, Nanjappa G.

    2011-01-01

    Faun tail nevus is a posterior midline cutaneous lesion of importance to dermatologists as it could be a cutaneous marker for its underlying spine and spinal cord anomaly. We report a 13-year-old girl with excessive hair growth over the lumbosacral region since birth. There was associated spinal anomaly with no neurological manifestation affecting the lower spinal cord. The diagnosis was made on clinical basis. The patient reported for cosmetic disability. This case is reported for its clinical importance. PMID:23130210

  7. Faun tail nevus.

    PubMed

    Yamini, M; Sridevi, K S; Babu, N Prasanna; Chetty, Nanjappa G

    2011-01-01

    Faun tail nevus is a posterior midline cutaneous lesion of importance to dermatologists as it could be a cutaneous marker for its underlying spine and spinal cord anomaly. We report a 13-year-old girl with excessive hair growth over the lumbosacral region since birth. There was associated spinal anomaly with no neurological manifestation affecting the lower spinal cord. The diagnosis was made on clinical basis. The patient reported for cosmetic disability. This case is reported for its clinical importance.

  8. The tail plane

    NASA Technical Reports Server (NTRS)

    Munk, Max M

    1923-01-01

    This report deals with the calculation of the equilibrium, statistical stability, and damping of the tail plane. The author has simplified the present theory of longitudinal stability for the particular purpose of obtaining one definite coefficient characteristics of the effect of the tail plane. This coefficient is obtained by substituting certain aerodynamic characteristics and some dimensions of the airplane in a comparatively simple mathematical expression. Care has been taken to confine all aerodynamical information necessary for the calculation of the coefficient to the well-known curves representing the qualities of the wing section. This is done by making use of the present results of modern aerodynamics. All formulas and relations necessary for the calculation are contained in the paper. They give in some cases only an approximation of the real values. An example of calculation is added in order to illustrate the application of the method. The coefficient indicates not only whether the effect of the tail plane is great enough, but also whether it is not too great. It appears that the designer has to avoid a certain critical length of the fuselage, which inevitably gives rise to periodical oscillations of the airplane. The discussion also shows the way and in what direction to carry out experimental work.

  9. Modelling Cometary Sodium Tails

    NASA Astrophysics Data System (ADS)

    Birkett, K. S.; Jones, G. H.; Coates, A. J.

    2013-12-01

    Neutral sodium is readily observed in cometary spectra and can be seen to form its own distinct tail at high activity comets. Solar radiation pressure accelerates the sodium atoms antisunward and, as strong sodium absorption lines are present in the solar spectrum, the magnitude of this force is dependent upon the Doppler shift of the incident solar radiation. Therefore the heliocentric velocity of the sodium atom directly determines its acceleration. This can produce unique effects, such as a stagnation region. Sodium is relatively easy to detect and so can potentially be used to trace mechanisms in the coma that are otherwise difficult to observe. The source of neutral sodium in the tail currently remains unknown. We have therefore developed a new, three dimensional Monte-Carlo model of neutral cometary sodium in order to facilitate testing of different source production functions. It includes weightings due to neutral sodium lifetime, variation of cometary sodium emission due to Fraunhofer absorption lines and solar flux variation with heliocentric distance. The Swings and Greenstein effects, which can have particularly dramatic effects in near-Sun comets, are also considered comprehensively. Preliminary results from this model are presented, focusing on a comparison of predictions of the neutral sodium tail of Comet C/2012 S1 (ISON) with initial observations.

  10. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.

    PubMed

    Beiranvand Pour, Amin; Hashim, Mazlan

    2014-01-01

    This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.

  11. An econometric model of the U.S. secondary copper industry: Recycling versus disposal

    USGS Publications Warehouse

    Slade, M.E.

    1980-01-01

    In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.

  12. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  13. Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings

    NASA Astrophysics Data System (ADS)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi

    2016-08-01

    Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.

  14. Coper Isotope Fractionation in Porphyry Copper Deposits: A Controlled Experiment

    NASA Astrophysics Data System (ADS)

    Ruiz, J.; Mathur, R.; Uhrie, J. L.; Hiskey, B.

    2001-12-01

    Previous studies have shown that copper is fractionated in the environment. However, the mechanisms for isotope fractionation and the role of organic and inorganic processes in the fractionation are not well understood. Here we used the well controlled experiments used by Phelps Dodge Corporation aimed at leaching copper from their ore deposits to constrain the mechanism of copper isotope fractionation in natural systems. The isotope data were collected on a Micromass Isoprobe. High temperature copper sulfides from ore deposits in Chile and Arizona yield delta 65Cu near 0 permil. The reproducibility of the data is better that 0.1 permil. Controlled experiments consisting of large columns of rocks were fed solutions containing bacteria such as Thiobacillus ferroxidans and Leptospirrilium ferroxidan. Solutions fom the columns were sampled for sixty days and analyzed for copper concentrations, oxidation potential, ferrous/ferric ratios and pH. The results indicate that the bacterially aided dissolution of copper fractionated copper. Preliminary experiments of copper dissolution not using bacteria show no isotope fractionation The original rock in the experiment has a delta 65Cu of -2.1. The first solutions that were collected from the columns had a delta 65Cu of -5.0 per mil. The liquid changed its isotopic composition from -50 to -10 during the sixty days of sampling. The greatest shift in the isotope ratios occurred the first 30 days when the copper recovered was less than 40% and the ferrous/ferric ratios were somewhat constant. At approximately 35 days after the start of the experiments, the copper recovery increases the ferrousferric ratio decreased and the copper isotope ratio of the fluids remained fairly constant. The data suggest that the bacteria are required to effectively fractionate copper isotopes in natural systems and that the mechanisms of bacterial aided copper dissolution may include a direct dissolution of the sulfides by the bacteria. Experiments

  15. Mining and beneficiation of lunar ores

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Williams, R. J.; Mckay, D. S.; Giles, D.

    1979-01-01

    The beneficiation of lunar plagioclase and ilmenite ores to feedstock grade permits a rapid growth of the space manufacturing economy by maximizing the production rate of metals and oxygen. A beneficiation scheme based on electrostatic and magnetic separation is preferred over conventional schemes, but such a scheme cannot be completely modeled because beneficiation processes are empirical and because some properties of lunar minerals have not been measured. To meet anticipated shipping and processing needs, the peak lunar mining rate will exceed 1000 tons/hr by the fifth year of operation. Such capabilities will be best obtained by automated mining vehicles and conveyor systems rather than trucks. It may be possible to extract about 40 kg of volatiles (60 percent H2O) by thermally processing the less than 20 micron ilmenite concentrate extracted from 130 tons of ilmenite ore. A thermodynamic analysis of an extraction process is presented.

  16. Proterozoic geology and ore deposits of Arizona

    USGS Publications Warehouse

    Karlstrom, Karl E.

    1991-01-01

    Proterozoic rocks in Arizona have been the focus of interest for geologists since the late 1800's. Early investigations, led by the U.S. Geological Survey, focused on the extensive ore deposits hosted by Proterozoic rocks. By the 1960's, these studies, combined with theses from academic institutions and the efforts of the Arizona Geological Survey, had produced a rich data base of geologic maps, primarily of the central part of the Transition Zone. The chronological significance of these maps became much better known with the application of U-Pb geochronology by L.Y. Silver and his students starting in the 1960's. The 1970's and early 1980's were marked by numerous contributions from Masters and Ph.D students at a variety of academic institutions, and continued work by the U.S. Geological Survey. Interest in ore deposits persisted and there was an increasing interest in interpretation of the tectonic history of Proterozoic rocks in terms of plate tectonic models, as summarized in papers by Phillip Anderson, Ed DeWitt, Clay Conway, Paul Lindberg, and J.L Anderson in the 1989 Arizona Geological Society Digest 17: "Geologic Evolution of Arizona". The present volume: "Proterozoic Geology and Ore deposits of Arizona" builds upon A.G.S. Digest 17, and presents the results of geologic investigations from the latter part of the 1980's. A number of the papers are condensed versions of MS theses done by students at Northern Arizona University. These papers are based upon 1:10,000 mapping and structural analysis of several areas in Arizona. The geologic maps from each of these studies are available separately as part of the Arizona Geological Survey Contributed Map Series. These detailed maps, plus the continuing mapping efforts of the U.S.G.S. and students at other academic institutions, form an ever improving data base for continuing attempts to understand the Proterozoic geology and ore deposits of Arizona

  17. Floods from tailings dam failures.

    PubMed

    Rico, M; Benito, G; Díez-Herrero, A

    2008-06-15

    This paper compiles the available information on historic tailings dam failures with the purpose to establish simple correlations between tailings ponds geometric parameters (e.g., dam height, tailings volume) and the hydraulic characteristics of floods resulting from released tailings. Following the collapse of a mining waste dam, only a part of tailings and polluted water stored at the dam is released, and this outflow volume is difficult to estimate prior the incident. In this study, tailings' volume stored at the time of failure was shown to have a good correlation (r2=0.86) with the tailings outflow volume, and the volume of spilled tailings was correlated with its run-out distance (r2=0.57). An envelope curve was drawn encompassing the majority of data points indicating the potential maximum downstream distance affected by a tailings' spill. The application of the described regression equations for prediction purposes needs to be treated with caution and with support of on-site measurement and observations. However, they may provide a universal baseline approximation on tailing outflow characteristics (even if detailed dam information is unavailable), which is of a great importance for risk analysis purposes.

  18. Tails of Natural Hazards

    NASA Astrophysics Data System (ADS)

    Malamud, B. D.

    2003-12-01

    There is increasing evidence that many natural hazards satisfy power-law frequency-size statistics. Examples include earthquakes, volcanic eruptions, landslides, snow avalanches, forest and wildfires, meteorite impacts, and possibly floods. Although power-law (fat-tail) distributions are commonly associated with the frequency-size distribution of earthquakes, the frequency-size statistics of many other natural hazards are presently associated (e.g. by government agencies and reinsurance companies) with distributions that are more thin-tailed. The occurrence risk for large and very-large events using power-law frequency-size distributions is often much more conservative, with a greater chance of a large event occurring in a given period of time, compared to thinner tail distributions. One potential explanation for the frequent occurrence of power-law (fractal) frequency-size distributions among natural hazards lies in cellular-automata models, and their association with self-organized criticality and inverse cascades. The power-law behavior of the sandpile cellular-automata model has been associated by some with landslides, the forest-fire model with actual forest fires, and the slider-block model with earthquakes. A relatively simple inverse-cascade of metastable regions can explain the behavior of both models and the actual natural hazards. Metastable regions grow by coalescence and are lost in `avalanches'. However, the losses are dominated by the largest events and have little influence on the inverse cascade of metastable region coalescence. This inverse cascade of metastable regions is self-similar and the number-area statistics are power-law. Although the theoretical explanations are still being debated, the increasing evidence for power-law statistics means that government agencies and reinsurance companies should include this much more conservative frequency-size distribution when calculating the occurrence risk of large natural hazards.

  19. Iron ore weathering potentials of ectomycorrhizal plants.

    PubMed

    Adeleke, R A; Cloete, T E; Bertrand, A; Khasa, D P

    2012-10-01

    Plants in association with soil microorganisms play an important role in mineral weathering. Studies have shown that plants in symbiosis with ectomycorrhizal (ECM) fungi have the potential to increase the uptake of mineral-derived nutrients. However, it is usually difficult to study many of the different factors that influence ectomycorrhizal weathering in a single experiment. In the present study, we carried out a pot experiment where Pinus patula seedlings were grown with or without ECM fungi in the presence of iron ore minerals. The ECM fungi used included Pisolithus tinctorius, Paxillus involutus, Laccaria bicolor and Suillus tomentosus. After 24 weeks, harvesting of the plants was carried out. The concentration of organic acids released into the soil, as well as potassium and phosphorus released from the iron ore were measured. The results suggest that different roles of ectomycorrhizal fungi in mineral weathering such as nutrient absorption and transfer, improving the health of plants and ensuring nutrient circulation in the ecosystem, are species specific, and both mycorrhizal roots and non-mycorrhizal roots can participate in the weathering process of iron ore minerals.

  20. 226Ra bioavailability to plants at the Urgeiriça uranium mill tailings site.

    PubMed

    Madruga, M J; Brogueira, A; Alberto, G; Cardoso, F

    2001-01-01

    Large amounts of solid wastes (tailings) resulting from the exploitation and treatment of uranium ore at the Urgeiriça mine (north of Portugal) have been accumulated in dams (tailing ponds). To reduce the dispersion of natural radionuclides into the environment, some dams were revegetated with eucalyptus (Eucalyptus globolus) and pines (Pinus pinea). Besides these plants, some shrubs (Cytisus spp.) are growing in some of the dams. The objective of this study is to determine the 226Ra bioavailability from uranium mill tailings by quantifying the total and available fraction of radium in the tailings and to estimate its transfer to plants growing on the tailing piles. Plant and tailing samples were randomly collected and the activity concentration of 226Ra in plants (aerial part and roots) and tailings was measured by gamma-spectrometry. The exchangeable fraction of radium in tailings was quantified using one single step extraction with 1 mol dm-3 ammonium acetate (pH = 7) or 1 mol dm-3 calcium chloride solutions. The results obtained for 226Ra uptake by plants show that 226Ra concentration ratios for eucalyptus and pines decrease at low 226Ra concentrations in the tailings and appear relatively constant at higher radium concentrations. For shrubs, the concentration ratios increase at higher 226Ra solid waste concentrations approaching a saturation value. Percentage values of 16.0 +/- 8.3 and 12.9 +/- 8.9, for the fraction of radium extracted from the tailings, using 1 mol dm-3 ammonium acetate or calcium chloride solutions, respectively, were obtained. The 226Ra concentration ratios determined on the basis of exchangeable radium are one order of magnitude higher than those based on total radium. It can be concluded that, at a 95% confidence level, more consistent 226Ra concentration ratios were obtained when calculated on the basis of available radium than when total radium was considered, for all the dams.

  1. Wind Tails Near Chimp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the rock 'Chimp' was taken by the Sojourner rover's right front camera on Sol 72 (September 15). Fine-scale texture on Chimp and other rocks is clearly visible. Wind tails, oriented from lower right to upper left, are seen next to small pebbles in the foreground. These were most likely produced by wind action.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  2. Integrin Cytoplasmic Tail Interactions

    PubMed Central

    2015-01-01

    Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling. PMID:24467163

  3. The geomagnetic tail

    SciTech Connect

    Birn, J. )

    1991-01-01

    A review is presented of the plasma sheet and lobe regions of the magnetotail, focusing principally on large-scale processes or microprocesses with some large-scale effects. Consideration is given to quiet and average structures, not necessarily related to activity phases, with quasi-steady convection aspects, and with the characteristics of dynamic phases including acceleration mechanisms and single particle aspects. Attention is given to various activity models, average and quiet time properties, properties and effects of magnetospheric convection, dynamics of the magnetotail, and the near tail, substorm current wedge.

  4. Neutron activation analysis of fluid inclusions for copper, manganese, and zinc

    USGS Publications Warehouse

    Czamanske, G.K.; Roedder, E.; Burns, F.C.

    1963-01-01

    Microgram quantities of copper, manganese, and zinc, corresponding to concentrations greater than 100 parts per million, were found in milligram quantities of primary inclusion fluid extracted from samples of quartz and fluorite from two types of ore deposits. The results indicate that neutron activation is a useful analytical method for studying the content of heavy metal in fluid inclusions.

  5. Tailings dam-break flow - Analysis of sediment transport

    NASA Astrophysics Data System (ADS)

    Aleixo, Rui; Altinakar, Mustafa

    2015-04-01

    A common solution to store mining debris is to build tailings dams near the mining site. These dams are usually built with local materials such as mining debris and are more vulnerable than concrete dams (Rico et al. 2008). of The tailings and the pond water generally contain heavy metals and various toxic chemicals used in ore extraction. Thus, the release of tailings due to a dam-break can have severe ecological consequences in the environment. A tailings dam-break has many similarities with a common dam-break flow. It is highly transient and can be severely descructive. However, a significant difference is that the released sediment-water mixture will behave as a non-Newtonian flow. Existing numerical models used to simulate dam-break flows do not represent correctly the non-Newtonian behavior of tailings under a dam-break flow and may lead to unrealistic and incorrect results. The need for experiments to extract both qualitative and quantitative information regarding these flows is therefore real and actual. The present paper explores an existing experimental data base presented in Aleixo et al. (2014a,b) to further characterize the sediment transport under conditions of a severe transient flow and to extract quantitative information regarding sediment flow rate, sediment velocity, sediment-sediment interactions a among others. Different features of the flow are also described and analyzed in detail. The analysis is made by means of imaging techniques such as Particle Image Velocimetry and Particle Tracking Velocimetry that allow extracting not only the velocity field but the Lagrangian description of the sediments as well. An analysis of the results is presented and the limitations of the presented experimental approach are discussed. References Rico, M., Benito, G., Salgueiro, AR, Diez-Herrero, A. and Pereira, H.G. (2008) Reported tailings dam failures: A review of the European incidents in the worldwide context , Journal of Hazardous Materials, 152, 846

  6. [Biohydrometallurgical technology of a complex copper concentrate process].

    PubMed

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T F

    2011-01-01

    Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.

  7. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  8. Kinetics of Uranium Extraction from Uranium Tailings by Oxidative Leaching

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Mi; Zhang, Xiaowen; Huang, Jing

    2016-07-01

    Extraction of uranium from uranium tailings by oxidative leaching with hydrogen peroxide (H2O2) was studied. The effects of various extraction factors were investigated to optimize the dissolution conditions, as well as to determine the leaching kinetic parameters. The behavior of H2O2 in the leaching process was determined through scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray diffraction analysis of leaching residues. Results suggest that H2O2 can significantly improve uranium extraction by decomposing the complex gangue structures in uranium tailings and by enhancing the reaction rate between uranium phases and the leaching agent. The extraction kinetics expression was changed from 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)-0.14903(S/L)-1.80435( R o)0.20023 e -1670.93/T t ( t ≥ 5) to 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)0.01382(S/L)-1.83275( R o)0.25763 e -1654.59/T t ( t ≥ 5) by the addition of H2O2 in the leaching process. The use of H2O2 in uranium leaching may help in extracting uranium more efficiently and rapidly from low-uranium-containing ores or tailings.

  9. Copper cyanide

    Integrated Risk Information System (IRIS)

    Copper cyanide ; CASRN 544 - 92 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  10. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mercury ore subcategory. 440.40 Section 440.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Mercury Ore Subcategory § 440.40 Applicability; description of the mercury ore subcategory. The provisions... produce mercury ores; and (b) mills beneficiating mercury ores by gravity separation methods or by froth...

  11. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mercury ore subcategory. 440.40 Section 440.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Mercury Ore Subcategory § 440.40 Applicability; description of the mercury ore subcategory. The provisions... produce mercury ores; and (b) mills beneficiating mercury ores by gravity separation methods or by froth...

  12. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mercury ore subcategory. 440.40 Section 440.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Mercury Ore Subcategory § 440.40 Applicability; description of the mercury ore subcategory. The provisions... produce mercury ores; and (b) mills beneficiating mercury ores by gravity separation methods or by froth...

  13. Acid pre-treatment method for in situ ore leaching

    DOEpatents

    Mallon, R.G.; Braun, R.L.

    1975-10-28

    An acid leaching method is described for the recovery of a desired element from a subterranean rubblized body of primary ore containing the element and also having associated therewith a carbonate mineral wherein the rubblized ore body is flooded with an aqueous acidic solution in order to release carbon dioxide from the associated carbonate mineral. After a substantial portion of the available carbon dioxide is released and removed from the ore body, as by venting to the atmosphere, an oxidizing gas is introduced into the flooded, rubblized ore to oxidize the ore and form an acid leach solution effective in the presence of the dissolved oxidizing gas to dissolve the ore and cause the desired element to go into solution. The leach solution is then circulated to the surface where the metal values are recovered therefrom.

  14. Taguchi optimization: Case study of gold recovery from amalgamation tailing by using froth flotation method

    NASA Astrophysics Data System (ADS)

    Sudibyo, Aji, B. B.; Sumardi, S.; Mufakir, F. R.; Junaidi, A.; Nurjaman, F.; Karna, Aziza, Aulia

    2017-01-01

    Gold amalgamation process was widely used to treat gold ore. This process produces the tailing or amalgamation solid waste, which still contains gold at 8-9 ppm. Froth flotation is one of the promising methods to beneficiate gold from this tailing. However, this process requires optimal conditions which depends on the type of raw material. In this study, Taguchi method was used to optimize the optimum conditions of the froth flotation process. The Taguchi optimization shows that the gold recovery was strongly influenced by the particle size which is the best particle size at 150 mesh followed by the Potassium amyl xanthate concentration, pH and pine oil concentration at 1133.98, 4535.92 and 68.04 gr/ton amalgamation tailing, respectively.

  15. Uranium mill tailings and radon

    SciTech Connect

    Hanchey, L A

    1981-04-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  16. Tailed bacteriophages: the order caudovirales.

    PubMed

    Ackermann, H W

    1998-01-01

    Tailed bacteriophages have a common origin and constitute an order with three families, named Caudovirales. Their structured tail is unique. Tailed phages share a series of high-level taxonomic properties and show many facultative features that are unique or rare in viruses, for example, tail appendages and unusual bases. They share with other viruses, especially herpesviruses, elements of morphogenesis and life-style that are attributed to convergent evolution. Tailed phages present three types of lysogeny, exemplified by phages lambda, Mu, and P1. Lysogeny appears as a secondary property acquired by horizontal gene transfer. Amino acid sequence alignments (notably of DNA polymerases, integrases, and peptidoglycan hydrolases) indicate frequent events of horizontal gene transfer in tailed phages. Common capsid and tail proteins have not been detected. Tailed phages possibly evolved from small protein shells with a few genes sufficient for some basal level of productive infection. This early stage can no longer be traced. At one point, this precursor phage became perfected. Some of its features were perfect enough to be transmitted until today. It is tempting to list major present-day properties of tailed phages in the past tense to construct a tentative history of these viruses: 1. Tailed phages originated in the early Precambrian, long before eukaryotes and their viruses. 2. The ur-tailed phage, already a quite evolved virus, had an icosahedral head of about 60 nm in diameter and a long non-contractile tail with sixfold symmetry. The capsid contained a single molecule of dsDNA of about 50 kb, and the tail was probably provided with a fixation apparatus. Head and tail were held together by a connector. a. The particle contained no lipids, was heavier than most viruses to come, and had a high DNA content proportional to its capsid size (about 50%). b. Most of its DNA coded for structural proteins. Morphopoietic genes clustered at one end of the genome, with head

  17. Plant selection for dewatering and reclamation of tailings

    SciTech Connect

    Silva, M.J.; Naeth, M.A.; Biggar, K.W.; Chanasyk, D.S.; Sego, D.C.

    1998-12-31

    A two-phase greenhouse experiment was conducted to identify the most suitable species for dewatering and reclamation of Composite Tailings (CT) from Alberta oil sands operated by Syncrude Canada Ltd. and Copper Mine Tailings (CMT) from the Kennecott site in Utah. A total of 15 and 9 plant species were selected for testing in CT and CMT, respectively. In Phase 1, distilled water was added weekly to simulate local precipitation. The initial solids content were 80% and 76% and the electrical conductivities were 1.1 dS/m and 3.2 dS/m for CT and CMT, respectively. All plants survived after a ten-week period. In Phase 2 only process water was added weekly to provide a worst case scenario of no precipitation and water recharge due only to process water being released from within the tailings. The initial solids contents were 65% and 76% for CT and CMT, respectively. Surface (0--3 in.) salinity increased dramatically due to the application of process water only; at the end of Phase 2 it had reached toxic levels of approximately 18.9 dS/m and 35.0 dS/m in CT and CMT, respectively. Many plants showed signs of stress due to the high salinity level. The plants which performed the best under both phases in Composite Tailings were creeping foxtail (Alopecurus arundinaceus), reed canarygrass (Phalaris arundinacea), Altai wildrye (Elymus angustus), and red top (Agrostis stolonifera); and in Copper Mine Tailings were Altai wildrye, smooth bromegrass (Bromus inermis) and creeping foxtail.

  18. OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE BIN, LOOKING NORTHEAST. REMAINS OF A BLACKSMITH'S FORGE AND WORK CAN BE SEEN JUST BELOW THE ORE BIN (SEE CA-291-32 FOR DETAIL). ROCK FOUNDATIONS LOCATED JUST ABOVE THE ORE BIN AND ALONG THE FIRST RIDGELINE ARE TENT PADS. SEE CA-291-24 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  19. OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE BIN, LOOKING NORTHEAST. REMAINS OF A BLACKSMITH'S FORGE AND WORK CAN BE SEEN JUST BELOW THE ORE BIN (SEE CA-291-32 FOR DETAIL). ROCK FOUNDATIONS LOCATED JUST ABOVE THE ORE BIN AND ALONG THE FIRST RIDGELINE ARE TENT PADS. SEE CA-291-49 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  20. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  1. The Nature and Use of Copper Reserve and Resource Data

    USGS Publications Warehouse

    Cox, Dennis P.; Wright, Nancy A.; Coakley, George J.

    1981-01-01

    Copper reserve, resource, and production data can be combined to produce disaggregated resource estimates and trends and, when combined with demand forecasts, can be used to predict future exploration and development requirements. Reserve estimates are subject to uncertainties due mainly to incomplete exploration and rapidly changing economic conditions. United States' reserve estimates in the past have been low mainly because knowledge of the magnitude of very large porphyry-copper deposits has been incomplete. Present estimates are considerably more reliable because mining firms tend to drill out deposits fully before mining and to release their reserve estimates to the public. The sum of reserves and past production yields an estimate of the total ore, total metal contained in ore, and average grade of ore originally in each of the deposits known in the United States. For most deposits, estimates of total copper in ore are low relative to the total copper in mineralized rock, and many estimates are strongly affected by the economic behavior of mining firms. A better estimate of the real distribution of copper contained in deposits can be obtained by combining past production data with resource estimates. Copper resource data are disaggregated into categories that include resources in undeveloped deposits similar to those mined in the past, resources in mines closed because of unfavorable economic conditions, resources in deep deposits requiring high-cost mining methods, arid resources in deposits located in areas where environmental restrictions have contributed to delays in development. The largest resource is located in the five largest porphyry deposits. These deposits are now being mined but the resources are not included in the present mining plan. Resources in this last category will not contribute to supply until some future time when ores presently being mined are depleted. A high correlation exists between total copper contained in deposits and annual

  2. Recovery of Cu and Zn from Complex Sulphide Ore

    NASA Astrophysics Data System (ADS)

    Talapaneni, Trinath; Sarkar, S.; Yedla, N.; Reddy, P. L. N., Dr

    2015-02-01

    Complex Sulphide Ores are often found to be a close mutual association with each other and with the nonmetallic gangue. The beneficiation experiments showed that it would be very difficult to recover Cu and Zn from the lean complex Sulphide ores using traditional ore beneficiation methods. In the present work, leaching of complex sulfide ores in sulfuric acid was investigated by the Electro hydrometallurgy process. The lab-scale experiments were conducted to investigate the influences of pulp-density, electrolyte concentration, particle size, current density and time on recovery of Cu and Zn. The leach liquor obtained after electrolysis was subjected to Atomic Absorption Spectroscopy analysis for the recovery of minerals.

  3. 34. VIEW OF VIVIANNA WORKS ORE SORTING AND CRUSHING PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF VIVIANNA WORKS ORE SORTING AND CRUSHING PLATFORM LOOKING EAST, NORTHEAST. NOTICE RAIL TIES EMBEDDED IN CONCRETE. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  4. Experimenting With Ore: Creating the Taconite Process; flow chart of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Experimenting With Ore: Creating the Taconite Process; flow chart of process - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  5. 39. Photocopy of photograph. NARROW GAUGE LOCOMOTIVE AND ORE CARS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Photocopy of photograph. NARROW GAUGE LOCOMOTIVE AND ORE CARS, 1910. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  6. 4. TROJAN MILL, DETAIL OF CRUDE ORE BINS FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TROJAN MILL, DETAIL OF CRUDE ORE BINS FROM NORTH, c. 1912. SHOWS TIMBER FRAMING UNDER CONSTRUCTION FOR EAST AND WEST CRUDE ORE BINS AT PREVIOUS LOCATION OF CRUSHER HOUSE, AND SNOW SHED PRESENT OVER SOUTH CRUDE ORE BIN WITH PHASE CHANGE IN SNOW SHED CONSTRUCTION INDICATED AT EAST END OF EAST CRUDE ORE BIN. THIS PHOTOGRAPH IS THE FIRST IMAGE OF THE MACHINE SHOP, UPPER LEFT CORNER. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  7. 3. VIEW OF WEST TAILING DAM, LARGE TANK, AND TAILING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF WEST TAILING DAM, LARGE TANK, AND TAILING, LOOKING NORTHEAST. A SIX-FOOT SCALE IS LOCATED AGAINST WALL ON LEFT. PURPOSE OF TANK IS UNKNOWN, BUT APPEARS TO HAVE FALLEN FROM ITS ORIGINAL LOCATION AT THE MILL SITE, UP AND TO THE RIGHT OF THIS VIEW. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  8. Understanding Cu release into environment from Kure massive sulfide ore deposits, Kastamonu, NW Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Sonmez, Seref; Balci, Nurgul

    2014-05-01

    Covering a wide range on the earth's crust, oxidation of metal sulfide minerals have vital environmental impacts on the aquatic environment, causing one of the major environmental problems known as acid mine drainage (AMD). Located in the Kastamonu province of the Western Black Sea region, Kure district is one of the major copper mining sites in Turkey. Mining activities in the area heads back to ancient times, such that operation is thought to be started with the Roman Empire. Currently, only the underground mining tunnels of Bakibaba and Asikoy are being operated. Thus, mining heaps and ores of those pyritic deposits have been exposed to the oxidative conditions for so long. As a result of weathering processes of past and recent heaps of the Kure volcanic massive sulfide deposits in addition to the main ore mineral (chalcopyrite), significant amount of metals, especially Cu, are being released into the environment creating undesirable environmental conditions. In order to elucidate Cu release mechanisms from Kure pyritic ore deposits and mining wastes, field and laboratory approaches were used. Surface water and sediment samples from the streams around the mining and waste sites were collected. Groundwater samples from the active underground mining site were also collected. Physical parameters (pH, Eh, T°C, and EC) of water samples were determined in situ and in the laboratory using probes (WTW pH 3110, WTW Multi 9310 and CRISON CM 35). Metal and ion concentrations of the water samples were analysed using ICP-MS and DR 2800 spectrophotometer, respectively. High Cu, Co, Zn and Fe concentrations were determined in the water samples with pH values ranging from 2.9- 4. Cu concentrions ranges from 345 ppm to 36 ppm in the water samples. Consistent with the water samples, high Cu, Fe, Zn and Co were also determined in the sediment samples. Laboratory chalcopyrite oxidation experiments under the conditions representing the field site were set up as biological and

  9. A hydrogeologic model of stratiform copper mineralization in the Midcontinent Rift System, Northern Michigan, USA

    USGS Publications Warehouse

    Swenson, J.B.; Person, M.; Raffensperger, J.P.; Cannon, W.F.; Woodruff, L.G.; Berndt, M.E.

    2004-01-01

    This paper presents a suite of two-dimensional mathematical models of basin-scale groundwater flow and heat transfer for the middle Proterozoic Midcontinent Rift System. The models were used to assess the hydrodynamic driving mechanisms responsible for main-stage stratiform copper mineralization of the basal Nonesuch Formation during the post-volcanic/pre-compressional phase of basin evolution. Results suggest that compaction of the basal aquifer (Copper Harbor Formation), in response to mechanical loading during deposition of the overlying Freda Sandstone, generated a pulse of marginward-directed, compaction-driven discharge of cupriferous brines from within the basal aquifer. The timing of this pulse is consistent with the radiometric dates for the timing of mineralization. Thinning of the basal aquifer near White Pine, Michigan, enhanced stratiform copper mineralization. Focused upward leakage of copper-laden brines into the lowermost facies of the pyrite-rich Nonesuch Formation resulted in copper sulfide mineralization in response to a change in oxidation state. Economic-grade mineralization within the White Pine ore district is a consequence of intense focusing of compaction-driven discharge, and corresponding amplification of leakage into the basal Nonesuch Formation, where the basal aquifer thins dramatically atop the Porcupine Mountains volcanic structure. Equilibrium geochemical modeling and mass-balance calculations support this conclusion. We also assessed whether topography and density-driven flow systems could have caused ore genesis at White Pine. Topography-driven flow associated with the Ottawan orogeny was discounted because it post-dates main-stage ore genesis and because recent seismic interpretations of basin inversion indicates that basin geometry would not be conductive to ore genesis. Density-driven flow systems did not produce focused discharge in the vicinity of the White Pine ore district.

  10. Galactic bridges and tails.

    NASA Technical Reports Server (NTRS)

    Toomre, A.; Toomre, J.

    1972-01-01

    This paper argues that the bridges and tails seen in some multiple galaxies are just tidal relics of close encounters. These consequences of the brief but violent tidal forces are here studied in a deliberately simple-minded fashion. Each encounter is considered to involve only two galaxies and to be roughly parabolic; each galaxy is idealized as just a disk of noninteracting test particles which initially orbit a central mass point. As shown here, the two-sided distortions provoked by gravity alone in such circumstances can indeed evolve kinematically into some remarkably narrow and elongated features. Besides extensive pictorial survey of tidal damage, this paper offers reconstructions of the orbits and outer shapes of four specific interacting pairs: Arp 295, M51 + NGC 5195, NGC 4676, and NGC 4038/9.

  11. Mercury Sodium Tail

    NASA Image and Video Library

    2015-04-16

    This image from NASA MESSENGER spacecraft is stitched together from thousands of observations made over the past 4 years by the MASCS/UVVS instrument, which measures sunlight scattered off of Mercury tenuous atmosphere. Scattered sunlight gives the sodium a bright orange glow. This scattering process also gives sodium atoms a push - this "radiation pressure" is strong enough, during parts of Mercury's year, to strip the atmosphere and give Mercury a long glowing tail. Someone standing on Mercury's nightside at the right time of year would see a faint orange similar to a city sky illuminated by sodium lamps! Instrument: Mercury Atmospheric and Surface Composition Spectrometer (MASCS)/Ultraviolet and Visible Spectrometer (UVVS) http://photojournal.jpl.nasa.gov/catalog/PIA19418

  12. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  13. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings.

    PubMed

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-04-01

    Microbial communities drive many biogeochemical processes in oil sands tailings and cause greenhouse gas emissions from tailings ponds. Paraffinic solvent (primarily C5-C6; n- and iso-alkanes) is used by some oil sands companies to aid bitumen extraction from oil sands ores. Residues of unrecovered solvent escape to tailings ponds during tailings deposition and sustain microbial metabolism. To investigate biodegradation of hydrocarbons in paraffinic solvent, mature fine tailings (MFT) collected from Albian and CNRL ponds were amended with paraffinic solvent at ~0.1wt% (final concentration: ~1000mgL(-1)) and incubated under methanogenic conditions for ~1600d. Albian and CNRL MFTs exhibited ~400 and ~800d lag phases, respectively after which n-alkanes (n-pentane and n-hexane) in the solvent were preferentially metabolized to methane over iso-alkanes in both MFTs. Among iso-alkanes, only 2-methylpentane was completely biodegraded whereas 2-methylbutane and 3-methylpentane were partially biodegraded probably through cometabolism. 16S rRNA gene pyrosequencing showed dominance of Anaerolineaceae and Methanosaetaceae in Albian MFT and Peptococcaceae and co-domination of "Candidatus Methanoregula" and Methanosaetaceae in CNRL MFT bacterial and archaeal communities, respectively, during active biodegradation of paraffinic solvent. The results are important for developing future strategies for tailings reclamation and management of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.

    PubMed

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-04-30

    Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting-water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation.

    PubMed

    Vakylabad, Ali Behrad; Schaffie, Mahin; Naseri, Ali; Ranjbar, Mohammad; Manafi, Zahra

    2016-07-01

    In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride-sulfate system.

  16. Neotethyan rifting-related ore occurrences: study of an accretionary mélange complex (Darnó Unit, NE Hungary)

    NASA Astrophysics Data System (ADS)

    Kiss, Gabriella B.; Oláh, Erika; Zaccarini, Federica; Szakáll, Sándor

    2016-02-01

    The geology of the NE Hungarian Darnó Unit is rather complicated, as it is composed mostly of a Jurassic accretionary mélange complex, according to the most recent investigations. The magmatic and sedimentary rock blocks of the mélange represent products of different evolutionary stages of the Neotethys; including Permian and Triassic sedimentary rocks of marine rifting related origin, Triassic pillow basalt of advanced rifting related origin and Jurassic pillow basalt originated in back-arc-basin environment. This small unit contains a copper-gold occurrence in the Permian marly-clayey limestone, an iron enrichment in the Triassic sedimentary succession, a copper-silver ore occurrence in Triassic pillow basalts and a copper ore indication, occurring both in the Triassic and Jurassic pillow basalts. The present study deals with the Cu(-Ag) occurrence in the Triassic basalt and the Fe occurrence in the Triassic sedimentary succession. The former shows significant similarities with the Michigan-type mineralizations, while the latter has typical characteristics of the Fe-SEDEX deposits. All the above localities fit well into the new geological model of the investigated area. The mineralizations represent the different evolutionary stages of the Neotethyan rifting and an epigenetic, Alpine metamorphism-related process and their recent, spatially close position is the result of the accretionary mélange formation. Thus, the Darnó Unit represents a perfect natural laboratory for studying and understanding the characteristic features of several different rifting related ore forming processes.

  17. Lead Isotope Constraints on the Sources of Ore Metals in SW Mexican Deposits

    NASA Astrophysics Data System (ADS)

    Potra, A.; Macfarlane, A. W.

    2007-12-01

    Lead isotope ratios from mineral deposits in southern Mexico increase with distance from the trench from 206Pb/204Pb values between 18.597 and 18.650 in the coastal area to values between 18.712 and 19.069 approximately 800 km east from the trench. This variation has been attributed to increasing assimilation of radiogenic lead from the crust with increasing distance from the trench. New sampling was undertaken in this area to provide a clearer picture of the potential sources of ore metals in this arc system, and also, if possible, to examine whether ore metal sources differ among the proposed tectonostratigraphic exotic terranes of southern Mexico. New TIMS lead isotope analyses are presented for samples from the metamorphic basement rocks of the Guerrero Terrane, the Late Cretaceous clastic sedimentary rocks from the Upper Mesozoic Assemblage, and for mid-Cretaceous igneous rocks, as well as for samples from the Oligocene La Verde, Esmeralda, and El Malacate copper prospects. Whole rock samples of schist from the Jurassic-Cretaceous Arteaga Complex and phyllite and slate from the Tierra Caliente Complex contain radiogenic lead relative to bulk earth models, with 206Pb/204Pb ranging from 18.981-19.256. These values are substantially more radiogenic than published values of analyses of metagabbro and charnockite from the Grenvillian-age Oaxaca Terrane. Sedimentary rocks (sandstones, siltstones, and marls) belonging to the Huetamo Sequence have 206Pb/204Pb values ranging between 18.630 to 18.998, close to the published data for the sediments from IPOD-DSDP Sites 487 and 488, Cocos Plate. Whole rock analyses of igneous rocks (granodiorite) collected from La Verde and El Malacate have 206Pb/204Pb ranging from 18.764 to 18.989, clustering between the fields represented by the sedimentary and the metamorphic rocks, suggesting assimilation of lead from these components. Ore samples from La Verde and Esmeralda have 206Pb/204Pb between 18.685 and 18.731 and plot within

  18. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and

  19. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation.

    PubMed

    Guittonny-Larchevêque, Marie; Bussière, Bruno; Pednault, Carl

    2016-05-01

    Tree water uptake relies on well-developed root systems. However, mine wastes can restrict root growth, in particular metalliferous mill tailings, which consist of the finely crushed ore that remains after valuable metals are removed. Thus, water stress could limit plantation success in reclaimed mine lands. This study evaluates the effect of substrates varying in quality (topsoil, overburden, compost and tailings mixture, and tailings alone) and quantity (50- or 20-cm-thick topsoil layer vs. 1-m plantation holes) on root development and water stress exposure of trees planted in low-sulfide mine tailings under boreal conditions. A field experiment was conducted over 2 yr with two tree species: basket willow ( L.) and hybrid poplar ( Moench × A. Henry). Trees developed roots in the tailings underlying the soil treatments despite tailings' low macroporosity. However, almost no root development occurred in tailings underlying a compost and tailings mixture. Because root development and associated water uptake was not limited to the soil, soil volume influenced neither short-term (water potential and instantaneous transpiration) nor long-term (δC) water stress exposure in trees. However, trees were larger and had greater total leaf area when grown in thicker topsoil. Despite a volumetric water content that always remained above permanent wilting point in the tailings colonized by tree roots, measured foliar water potentials at midday were lower than drought thresholds reported for both tested tree species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. [Infrared Spectra Characteristics of the Silicate Nickel Ores: A Comparison Study on Different Ore Samples from Indonesia and China].

    PubMed

    Yang, Meng-li; Fu, Wei; Wang, Bao-hua; Zhang, Ya-qian; Huang, Xiao-rong; Niu, Hu-jie

    2015-03-01

    The silicate nickel ores developed in the lateritic nickel deposit, from Kolonodale, Sulawesi Island, Indonesia, and Yuanjiang, Yunnan province, China, were selected for the present study. The X-ray diffraction and Fourier infrared spectra were used to analyze the mineralogical attribute of laterite nickel ores from two different places. The results show that these two different silicate nickel ores have unique infrared spectra characteristics individually, which contributes to the ore classification. The silicate nickel ores from Kolonodale deposit, Indonesia, can be classified as the serpentine type, the montmorillonite + serpentine type, and the garnierite type. While, the silicate nickel ores from Yuanjiang deposit, China, can be classified as the serpentine type and the talc + serpentine type. Moreover, the mineral crystallinity of Yuanjiang nickel ores is generally better than Kolonodale nickel ores. According to the advantage of infrared absorption spectra in distinguishing mineral polytypes, it can be determined that lizardite is the main mineral type in the silicate nickel ores of the two deposits, and there is no obvious evidence of chrysotile and antigorite's existence. The characteristic of infrared absorption spectra also shows that frequency change of OH libration indicates Ni (Fe) replacing Mg in the serpentine type nickel-bearing mineral, that is, OH libration of serpentine moves to higher frequency, with the proportion of Ni (Fe) replacing Mg increasing.

  1. Copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    A number of oxidizing agents, including chlorine, bromine, ozone and other peroxides, were allowed to act on copper solutions with the intention of forming copper peroxide. The only successful agent appears to be hydrogen peroxide. It must be used in a neutral 50 to 30 percent solution at a temperature near zero. Other methods described in the literature apparently do not work. The excess of hydrogen must be quickly sucked out of the brown precipitate, which it is best to wash with alcohol and ether. The product, crystalline under a microscope, can be analyzed only approximately. It approaches the formula CuO2H2O. In alkaline solution it appears to act catalytically in causing the decomposition of other peroxides, so that Na2O2 cannot be used to prepare it. On the addition of acids the H2O2 is regenerated. The dry substance decomposes much more slowly than the moist but is not very stable.

  2. Telling tails: selective pressures acting on investment in lizard tails.

    PubMed

    Fleming, Patricia A; Valentine, Leonie E; Bateman, Philip W

    2013-01-01

    Caudal autotomy is a common defense mechanism in lizards, where the animal may lose part or all of its tail to escape entrapment. Lizards show an immense variety in the degree of investment in a tail (i.e., length) across species, with tails of some species up to three or four times body length (snout-vent length [SVL]). Additionally, body size and form also vary dramatically, including variation in leg development and robustness and length of the body and tail. Autotomy is therefore likely to have fundamentally different effects on the overall body form and function in different species, which may be reflected directly in the incidence of lost/regenerating tails within populations or, over a longer period, in terms of relative tail length for different species. We recorded data (literature, museum specimens, field data) for relative tail length (n=350 species) and the incidence of lost/regenerating tails (n=246 species). We compared these (taking phylogeny into account) with intrinsic factors that have been proposed to influence selective pressures acting on caudal autotomy, including body form (robustness, body length, leg development, and tail specialization) and ecology (foraging behavior, physical and temporal niches), in an attempt to identify patterns that might reflect adaptive responses to these different factors. More gracile species have relatively longer tails (all 350 spp., P < 0.001; also significant for five of the six families tested separately), as do longer (all species, P < 0.001; Iguanidae, P < 0.05; Lacertidae, P < 0.001; Scindidae, P < 0.001), climbing (all species, P < 0.05), and diurnal (all species, P < 0.01; Pygopodidae, P < 0.01) species; geckos without specialized tails (P < 0.05); or active-foraging skinks (P < 0.05). We also found some relationships with the data for caudal autotomy, with more lost/regenerating tails for nocturnal lizards (all 246 spp., P < 0.01; Scindidae, P < 0.05), larger skinks (P < 0.05), climbing geckos (P < 0

  3. The O-ring universal impression technique.

    PubMed

    Hussaini, Souheil

    2008-10-01

    Recording the implant position for master cast fabrication for multiple implant systems may require a large inventory of impression copings. A technique is described whereby implant impression-making procedures can be modified to be more universal to all implant systems. This makes the procedure more cost-effective by simply incorporating the use of a rubber O-ring on the abutment or fixture mount, which then eliminates the use of a transfer coping. This technique can be applied at the time of surgery for indexing as well as during the final impression appointment.

  4. Uranium ore rolls in the United States

    USGS Publications Warehouse

    Harshman, E.N.

    1970-01-01

    About 40% of the uranium ore reserves in the United States, minable at $8 per pound of contained U3O8, are in roll-type deposits in the State of Wyoming. The host rocks are arkosic sandstones, deposited in intermontane basins under fluvial conditions, and derived from the granitic cores of mountain ranges that flank the basins. The host rocks are Eocene and possibly Paleocene in age and are, or were, overlain by a sequence of continental tuffaceous siltstones, sandstones and conglomerates 400 - 700 m thick.

  5. Magmatogenic manganese ores of the South Minusa Intermontane Trough

    NASA Astrophysics Data System (ADS)

    Kassandrov, E. G.; Mazurov, M. P.

    2009-10-01

    The first data on the mineral composition and formation conditions of manganese ore at the Chapsordag and Malosyrsky deposits in the Askiz ore district of Khakassia are integrated and systematized. The detailed mineralogical mapping of the deposits has been carried out. The identification of minerals and examination of the ore microstructure were performed with optical microscopy in transmitted and reflected light and using SEM/EDS, EMPA, XRD, IRS, and other methods. It was established that the ore mineralization is spatially and genetically related to the Early Devonian magmatism and accompanying hydrothermal activity and metasomatism. Syngenetic braunite was detected for the first time in elevated amounts reaching an economic level in the devitrified groundmass of volcanic rocks, in cement of lava breccia, and in fragments in pyroclastic rocks. By analogy with iron deposits, this magmatogenic type of manganese mineralization is regarded as ore lavas and tuffs combined with metasomatic and hydrothermal mineral assemblages into a strata-bound orebearing complex and as a source of hydrothermal metasomatic ore. The elevated Mn content in magmatic melts of the Early Devonian trachybasalt-trachyandesite-trachydacite association is caused by assimilation of Riphean and Lower Cambrian high-Mn carbonate sequences in crustal magma chambers. In contours of economic orebodies, the hydrothermal economic ore is recognized as sites of massive, patchy and impregnated, brecciated, stringer-disseminated, and disseminated varieties. High-grade massive ore occurs as stratiform and branching bodies up to 1.5 m thick and a few tens of meters long and as smaller pocketlike bodies. Braunite and pyrolusite (polianite) are major ore minerals varying in size, degree of crystallinity, and character of intergrowths with associating minerals. Gangue minerals include carbonates, sulfates, albite, quartz, chlorite, actinolite, piemontite, and okhotskite, a Mn-pumpellyite identified in Russia

  6. Sedimentary exhalative nickel-molybdenum ores in south China

    USGS Publications Warehouse

    Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.

    1999-01-01

    Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.

  7. Copper metallothioneins.

    PubMed

    Calvo, Jenifer; Jung, Hunmin; Meloni, Gabriele

    2017-04-01

    Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  8. Runaway tails in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.; Rowland, H. L.; Papadopoulos, K.

    1985-01-01

    The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed. Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are three different regimes in the evolution of the tail. The tail can be (1) stable with electrons accelerated to large parallel velocities, (2) unstable to Cerenkov resonance because of the depletion of the bulk and the formation of a positive slope, (3) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The role of a convection type loss term is also discussed.

  9. Differential gene expression and bioinformatics analysis of copper resistance gene afe_1073 in Acidithiobacillus ferrooxidans.

    PubMed

    Hu, Qi; Wu, Xueling; Jiang, Ying; Liu, Yuandong; Liang, Yili; Liu, Xueduan; Yin, Huaqun; Baba, Ngom

    2013-04-01

    Copper resistance of acidophilic bacteria is very significant in bioleaching of copper ore since high concentration of copper are harmful to the growth of organisms. Copper resistance gene afe_1073 was putatively considered to be involved in copper homeostasis in Acidithiobacillus ferrooxidans ATCC23270. In the present study, differential expression of afe_1073 in A. ferrooxidans strain DY26 and DC was assessed with quantitative reverse transcription polymerase chain reaction. The results showed the expression of afe_1073 in two strains increased with the increment of copper concentrations. The expression of DY26 was lower than that of DC at the same copper concentration although A. ferrooxidans strain DY26 possessed higher copper resistance than strain DC. In addition, bioinformatics analysis showed AFE_1073 was a typical transmembrane protein P1b1-ATPase, which could reduce the harm of Cu(+) by pumping it out from the cell. There were two mutation sites in AFE_1073 between DY26 and DC and one may change the hydrophobicity of AFE_1073, which could enhance the ability of DY26 to pump out Cu(+). Therefore, DY26 needed less gene expression of afe_1073 for resisting copper toxicity than that of DC at the same copper stress. Our study will be beneficial to understanding the copper resistance mechanism of A. ferrooxidans.

  10. The Association of Tourmaline With Cassiterite Ores: Implications for the Genesis of the World's Richest Tin Lode

    NASA Astrophysics Data System (ADS)

    Mlynarczyk, M. S.; Williams-Jones, A. E.

    2004-05-01

    The San Rafael deposit in the Eastern Cordillera of the Peruvian Central Andes is the world's richest hydrothermal tin lode, with a total resource of ~1 million tonnes Sn (metal) at an average tin grade of 4.7 wt.%. The mineralization is of the cassiterite-sulfide type and occurs in a vertically extensive vein-breccia system, centered on a shallow-level, Late Oligocene granitoid stock. The tin ores form cassiterite-quartz-chlorite-bearing veins and breccias, hosted by several large fault-jogs at depth in the lode. By contrast, the copper ores, which contain disseminated acicular cassiterite, are localized in the upper part of the system. Both ore types are associated with a very distinctive strong chloritic alteration, which was preceded by intense sericitization, tourmalinization and tourmaline veining. Tourmaline also continued to crystallize during tin mineralization. The early hydrothermal tourmaline is the Mg-rich variety, dravite, which forms tourmaline-quartz veins and tourmaline-quartz microbreccias. This was followed by the appearance of buergerite (a rare, Fe-rich variety of tourmaline) with cassiterite and chlorite, at the transition to the tin ore stage. Fe-rich tourmaline (buergerite ?) is also common as overgrowths on earlier dravite in the strongly chloritized wallrock, adjacent to tin mineralization. These observations corroborate evidence from mass-balance calculations, that the ore-fluid was very iron-rich. Potentially, the most interesting feature of the tourmaline chemistry from the perspective of tin mineralization is the oxidation state of Fe. All tourmaline samples analyzed have Fe3+/Fe2+ ratios that are unusually high for an S-type tin granite. However, tourmaline accompanying tin mineralization has a significantly lower Fe3+/Fe2+ ratio. This suggests that the rich tin ores of San Rafael were produced by a sudden injection of "late", deep-seated, reducing, (presumably magmatic) fluids, strongly enriched in iron, and that cassiterite

  11. Lift generation by the avian tail.

    PubMed

    Maybury, W J; Rayner, J M; Couldrick, L B

    2001-07-22

    Variation with tail spread of the lift generated by a bird tail was measured on mounted, frozen European starlings (Sturnus vulgaris) in a wind tunnel at a typical air speed and body and tail angle of attack in order to test predictions of existing aerodynamic theories modelling tail lift. Measured lift at all but the lowest tail spread angles was significantly lower than the predictions of slender wing, leading edge vortex and lifting line models of lift production. Instead, the tail lift coefficient based on tail area was independent of tail spread, tail aspect ratio and maximum tail span. Theoretical models do not predict bird tail lift reliably and, when applied to tail morphology, may underestimate the aerodynamic optimum tail feather length. Flow visualization experiments reveal that an isolated tail generates leading edge vortices as expected for a low-aspect ratio delta wing, but that in the intact bird body-tail interactions are critical in determining tail aerodynamics: lifting vortices shed from the body interact with the tail and degrade tail lift compared with that of an isolated tail.

  12. Upgrading Titanium Ore Through Selective Chlorination Using Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2013-06-01

    To develop a simple and effective process for upgrading low-grade titanium ore (ilmenite, mainly FeTiO3), a new selective chlorination process based on the use of calcium chloride (CaCl2) as the chlorine source was investigated in this study. Titanium ore and a titanium ore/CaCl2 mixture were placed in two separate crucibles inside a gas-tight quartz tube that was then positioned in a horizontal furnace. In the experiments, the titanium ore in the two crucibles reacted with either HCl produced from CaCl2 or CaCl2 itself at 1100 K (827 °C), leading to the selective removal of the iron present in the titanium ore as iron chlorides [FeCl x (l,g) ( x = 2, 3)]. Various kinds of titanium ores produced in different countries were used as feedstock, and the influence of the particle size and atmosphere on the selective chlorination was investigated. Under certain conditions, titanium dioxide (TiO2) with purity of about 97 pct was directly obtained in a single step from titanium ore containing 51 pct TiO2. Thus, selective chlorination is a feasible method for producing high purity titanium dioxide from low-grade titanium ore.

  13. 40. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also see OH-18-14, OH-18-38, and OH-18-39) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  14. 39. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also see OH-18-14, OH-18-38, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  15. 64. NORTH WALL OF CRUSHED OXIDIZED ORE BIN. THE PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. NORTH WALL OF CRUSHED OXIDIZED ORE BIN. THE PRIMARY MILL FEEDS AT BOTTOM. MILL SOLUTION TANKS WERE TO THE LEFT (EAST) AND BARREN SOLUTION TANK TO THE RIGHT (WEST) OR THE CRUSHED ORE BIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  16. 19. VIEW OF CRUDE ORE BINS FROM EAST. EAST CRUDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF CRUDE ORE BINS FROM EAST. EAST CRUDE ORE BIN IN FOREGROUND WITH DISCHARGE TO GRIZZLY AT BOTTOM OF VIEW. CONCRETE RETAINING WALL TO LEFT (SOUTH) AND BOTTOM (EAST EDGE OF EAST BIN). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  17. PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM

    DOEpatents

    Gaudin, A.M.; Dasher, J.

    1958-06-10

    ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.

  18. 27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW SKIP TIES UP AT DOCK. THE UNLOADERS OPERATE ALMOST CONTINUOUSLY DURING THE SHIPPING SEASON, WHICH USUALLY RUNS FROM APRIL UNTIL LATE DECEMBER OR EARLY JANUARY. VIEW HERE IS LOOKING NORTHEAST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  19. 24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT END AND REAR LEGS OF THE HULETT UNLOADERS ARE LAID ON THE DOCK AND REAR WALLS, RESPECTIVELY; BOTH WALLS ARE MADE OF REINFORCED CONCRETE SUPPORTED ON CONCRETE PILES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  20. 13. OBLIQUE VIEW OF UPPER ORE BIN, LOOKING WEST NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. OBLIQUE VIEW OF UPPER ORE BIN, LOOKING WEST NORTHWEST. THIS ORE BIN WAS ADDED IN THE LATE 1930'S. IT IS TRAPAZOIDAL IN SHAPE, WIDER AT THE REAR THAN THE FRONT, AND DIVIDED INTO THREE BINS, EACH WITH ITS OWN CONTROL DOOR (SEE CA-290-15). - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA