NASA Astrophysics Data System (ADS)
Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.
2017-07-01
The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.
Choi, Yi Taek; Bae, Sung Hwa; Son, Injoon; Sohn, Ho Sang; Kim, Kyung Tae; Ju, Young-Wan
2018-09-01
In this study, electrolytic etching, anodic oxidation, and copper electroplating were applied to aluminum to produce a plate on which a copper circuit for a thermoelectric module was formed. An oxide film insulating layer was formed on the aluminum through anodic oxidation, and platinum was coated by sputtering to produce conductivity. Finally, copper electroplating was performed directly on the substrate. In this structure, the copper plating layer on the insulating layer served as a conductive layer in the circuit. The adhesion of the copper plating layer was improved by electrolytic etching. As a result, the thermoelectric module fabricated in this study showed excellent adhesion and good insulation characteristics. It is expected that our findings can contribute to the manufacture of plates applicable to thermoelectric modules with high dissipation performance.
Barnett, Allen M.; Masi, James V.; Hall, Robert B.
1980-12-16
A solar cell having a copper-bearing absorber is provided with a composite transparent encapsulating layer specifically designed to prevent oxidation of the copper sulfide. In a preferred embodiment, the absorber is a layer of copper sulfide and the composite layer comprises a thin layer of copper oxide formed on the copper sulfide and a layer of encapsulating glass formed on the oxide. It is anticipated that such devices, when exposed to normal operating conditions of various terrestrial applications, can be maintained at energy conversion efficiencies greater than one-half the original conversion efficiency for periods as long as thirty years.
Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells
Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel
1999-01-01
The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.
Aluminium or copper substrate panel for selective absorption of solar energy
NASA Technical Reports Server (NTRS)
Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)
1979-01-01
A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.
High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film
Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo
2015-01-01
Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets. PMID:26509224
Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation
NASA Astrophysics Data System (ADS)
Pietrzak, Katarzyna; Strojny-Nędza, Agata; Olesińska, Wiesława; Bańkowska, Anna; Gładki, Andrzej
2017-11-01
On the basis of a specially designed experiment, this paper presents a model, which is an attempt to explain the mechanism of formatting and creating oxidation resistance of Cu-rGO subsurface layers. Practically zero chemical affinity of copper to carbon is a fundamental difficulty in creating composite structures of Cu-C, properties which are theoretically possible to estimate. In order to bind the thermally reduced graphene oxide with copper surface, the effect of structural rebuilding of the copper oxide, in the process of annealing in a nitrogen atmosphere, have been used. On intentionally oxidized and anoxic copper substrates the dispersed graphene oxide (GO) and thermally reduced graphene oxide (rGO) were loaded. Annealing processes after the binding effects of both graphene oxide forms to Cu substrates were tested. The methods for high-resolution electron microscopy were found subsurface rGO-Cu layer having a substantially greater resistance to oxidation than pure copper. The mechanism for the effective resistance to oxidation of the Cu-rGO has been presented in a hypothetical form.
Method for making an aluminum or copper substrate panel for selective absorption of solar energy
NASA Technical Reports Server (NTRS)
Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)
1978-01-01
A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.
Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.
2003-04-01
A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.
2005-09-13
A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627
2015-12-21
Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films reduces the activation volume for yielding.« less
Electrical characterization of anodic alumina substrate with via-in-pad structure
NASA Astrophysics Data System (ADS)
Kim, Moonjung
2013-10-01
An anodic alumina substrate has been developed as a package substrate for dynamic random access memory devices. Unlike the conventional package substrates commonly made by laminating an epoxy-based core and cladding with copper, this substrate is fabricated using aluminum anodization technology. The anodization process produces a thick aluminum oxide layer on the aluminum substrate to be used as a dielectric layer. Placing copper patterns on the anodic aluminum oxide layer forms a new substrate structure that consists of a layered structure of aluminum, anodic aluminum oxide, and copper. Using selective anodization in the fabrication process, a via structure connecting the top copper layer and bottom aluminum layer is demonstrated. Additionally, by putting vias directly in the bond and ball pads in the substrate design, the via-in-pad structure is applied in this work. These two-layer metal structures and via-in-pad arrangements make routing easier and thus provide more design flexibility. Additionally, this new package substrate has improved the power distribution network impedance given the characteristics of these structures.
The role of oxide structure on copper wire to the rubber adhesion
NASA Astrophysics Data System (ADS)
Su, Yea-Yang; Shemenski, Robert M.
2000-07-01
Most metals have an oxide layer on the surface. However, the structure of the oxide varies with the matrix composition, and depends upon the environmental conditions. A bronze coating, nominal composition of 98.5% Cu and balance of Sn, is applied to steel wire for reinforcing pneumatic tire beads and to provide adhesion to rubber. This work studied the influence of copper oxides on the bronze coating on adhesion during vulcanization. To emphasize the oxide structures, electrolytic tough pitch (ETP) copper wire was used instead of the traditional bronze-coated tire bead wire. Experimental results confirmed the hypothesis that cuprous oxide (Cu 2O) could significantly improve bonding between copper wire and rubber, and demonstrated that the interaction between rubber and oxide layer on wire is an electrochemical reaction.
Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng
2004-07-01
An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.
Method for providing uranium with a protective copper coating
Waldrop, Forrest B.; Jones, Edward
1981-01-01
The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.
Native oxide formation on pentagonal copper nanowires: A TEM study
NASA Astrophysics Data System (ADS)
Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian
2018-06-01
Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.
NASA Astrophysics Data System (ADS)
Chaitoglou, Stefanos; Amade, Roger; Bertran, Enric
2017-12-01
The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal oxide (WO3 and CeO x ) layered structures as potential electrodes in supercapacitor applications. Graphene layers were grown by chemical vapor deposition (CVD) on copper substrates. Single and layer-by-layer graphene stacks were fabricated combining graphene transfer techniques and metal oxides grown by magnetron sputtering. The electrochemical properties of the samples were analyzed and the results suggest an improvement in the performance of the device with the increase in the number of graphene layers. Furthermore, deposition of transition metal oxides within the stack of graphene layers further improves the areal capacitance of the device up to 4.55 mF/cm2, for the case of a three-layer stack. Such high values are interpreted as a result of the copper oxide grown between the copper substrate and the graphene layer. The electrodes present good stability for the first 850 cycles before degradation.
Shin, E J; Seong, B S; Choi, Y; Lee, J K
2011-01-01
Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.
Initial stage corrosion of nanocrystalline copper particles and thin films
NASA Astrophysics Data System (ADS)
Tao, Weimin
1997-12-01
Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current density associated with mass transport of ions in the oxide layer. A hypothesis is developed that the high corrosion rate of the nanocrystalline copper is closely associated with the structure of the copper oxide layer. Therefore, a high "apparent" exchange current density for the nanocrystalline copper is associated with the high angle grain boundary structure in the initial oxide layer. Additional structure analysis was also carried out: (a) High resolution TEM imaging has provided a cross sectional view of the epitaxial interface between nanocrystalline copper and copper (I) oxide and explicitly discloses the presence of interface defects such as misfit dislocations. Based on this observation, a mechanism was proposed to explain the Cu/Cusb2O interface misfit accommodation. This appears to be the first time this interface has been directly examined. (b) A nanocrystalline analogue to a cross-section of Gwathmey's copper single crystal sphere was revealed by high resolution TEM imaging. A partially oxidized nanocrystalline copper particle is used to examine the variation of the Cu/Cusb2O orientation relationship with respect to changes in surface orientation. A new orientation relationship, Cu (011) //Cusb2O (11), ˜ Cu(011)//Cusb2O(111), was found for the oxidation of nanocrystalline copper.
Kwon, Jinhyeong; Park, Shinyoung; Haque, Md Mominul; Kim, Young-Seok; Lee, Caroline Sunyong
2012-04-01
Sub-50 nm copper nanoparticles coated with sub-5 nm 1-octanethiol layer for oxidation inhibition were examined to confirm the 1-octanethiol removal temperature as the sub-50 nm copper nanoparticles are sintered. As a result, 1-octanethiol Self-Assembled Multi-layers (SAMs) on sub-50 nm copper nanoparticles were successfully removed before sintering of copper nanoparticles so that a high density of copper line could be obtained. Finally, the line resistivity was measured and compared to verify the effect of sintering in different atmospheres. As a result, electrical resistivity of the copper pattern sintered in hydrogen atmosphere was measured at 6.96 x 10(-6) ohm-cm whereas that of the copper pattern sintered in mixed gas atmosphere was measured at 2.62 x 10(-5) ohm-cm. Thus, sintering of copper patterns was successfully done to show low electrical resistivity values. Moreover, removal of 1-octanethiol coating after sintering process was confirmed using X-ray photoelectron spectroscopy (XPS) analysis. By showing no sulfur content, XPS results indicate that 1-octanethiol is completely removed. Therefore, the vapor form of 1-octanethiol coating layers can be safely used as an oxidation inhibition layer for low temperature sintering processes and ink-jet applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, W.L.; Eddy, M.M.; Hammond, R.B.
1991-12-10
This patent describes a method for producing a superconducting article comprising an oriented metal oxide superconducting layer containing thallium, optionally calcium, barium and copper, the layer being at least 30 {Angstrom} and having a c-axis oriented normal to a crystalline substrate surface. It comprises coating the crystalline substrate surface with a solution of thallium, optionally calcium, barium and copper carboxylate soaps dispersed in a medium of hydrocarbons of halohydrocarbons with a stoichiometric metal ratio to form the oxide superconducting layer, prepyrolyzing the soaps coated on the substrate at a temperature of 350{degrees} C. or less in an oxygen containing atmosphere,more » and pyrolyzing the soaps at a temperature in the range of 800{degrees} - 900{degrees} C. in the presence of oxygen and an overpressure of thallium for a sufficient time to produce the superconducting layer on the substrate, wherein usable portions of the superconducting layer are epitaxial to the substrate.« less
Copper oxide/N-silicon heterojunction photovoltaic device
Feng, Tom; Ghosh, Amal K.
1982-01-01
A photovoltaic device having characteristics of a high efficiency solar cell comprising a Cu.sub.x O/n-Si heterojunction. The Cu.sub.x O layer is formed by heating a deposited copper layer in an oxygen containing ambient.
Electroless deposition process for zirconium and zirconium alloys
Donaghy, R. E.; Sherman, A. H.
1981-08-18
A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.
Electroless deposition process for zirconium and zirconium alloys
Donaghy, Robert E.; Sherman, Anna H.
1981-01-01
A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.
Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri
2013-01-01
This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201
NASA Astrophysics Data System (ADS)
Trujillano, Raquel; Holgado, María Jesús; Rives, Vicente
2009-03-01
A series of hydrotalcite-type compounds containing Cu(II) and Al(III) in the layers, and carbonate or different alkylsulfonates in the interlayer, have been prepared and studied. Calcination of these solids gives rise to formation of metallic copper and Cu 2+ and Cu + oxides or sulfates, depending on the calcination temperature and on the precise nature of the interlayer alkylsulfonate.
Unsupported single-atom-thick copper oxide monolayers
NASA Astrophysics Data System (ADS)
Yin, Kuibo; Zhang, Yu-Yang; Zhou, Yilong; Sun, Litao; Chisholm, Matthew F.; Pantelides, Sokrates T.; Zhou, Wu
2017-03-01
Oxide monolayers may present unique opportunities because of the great diversity of properties of these materials in bulk form. However, reports on oxide monolayers are still limited. Here we report the formation of single-atom-thick copper oxide layers with a square lattice both in graphene pores and on graphene substrates using aberration-corrected scanning transmission electron microscopy. First-principles calculations find that CuO is energetically stable and its calculated lattice spacing matches well with the measured value. Furthermore, free-standing copper oxide monolayers are predicted to be semiconductors with band gaps ˜3 eV. The new wide-bandgap single-atom-thick copper oxide monolayers usher a new frontier to study the highly diverse family of two-dimensional oxides and explore their properties and their potential for new applications.
Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
Hahn, C; Hans, M; Hein, C; Mancinelli, R L; Mücklich, F; Wirth, R; Rettberg, P; Hellweg, C E; Moeller, R
2017-12-01
Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity. Key Words: Contact killing-E. coli-S. cohnii-Antimicrobial copper surfaces-Copper oxide layers-Human health-Planetary protection. Astrobiology 17, 1183-1191.
NASA Astrophysics Data System (ADS)
Zhang, Yaozhong; Zhou, Jun; Zhang, Xiaoli; Hu, Jun; Gao, Han
2014-11-01
This article reports the effect of solvent polarity on the formation of n-octadecanethiol self-assembled monolayers (C18SH-SAMs) on pure copper surface and oxidized copper surface. The quality of SAMs prepared in different solvents (n-hexane, toluene, trichloroethylene, chloroform, acetone, acetonitrile, ethanol) was monitored by EIS, RAIRS and XPS. The results indicated that C18SH-SAMs formed in these solvents were in good barrier properties on pure copper surface and the structures of monolayers formed in high polarity solvents were more compact and orderly than that formed in low polarity solvents. For comparison, C18SH adsorbed on the surface of oxidized copper in these solvents were studied and the results indicated that C18SH could be adsorbed on oxidized copper surface after the reduction of copper oxide layer by thiols. Compared with high polarity solvents, a limited reduction process of oxidized copper by thiols led to the incompletely formation of monolayers in low polarity solvents. This can be interpreted that the generated water on solid-liquid interface and a smaller reaction force restrict the continuous reduction reaction in low polarity solvents
Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide
NASA Astrophysics Data System (ADS)
Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.
2008-01-01
Dielectric spectroscopy analysis of the high permittivity (κ˜104) copper (II) oxide (CuO) ceramic shows that the grain contribution plays a major role for the giant-κ value at low temperature, whereas grain boundary (GB) contribution dominates around room temperature and above. Moreover, impedance spectroscopy analysis reveals electrically heterogeneous microstructure in CuO consisting of semiconducting grains and insulating GBs. Finally, the giant dielectric phenomenon exhibited by CuO is attributed to the internal barrier layer (due to GB) capacitance mechanism.
NASA Astrophysics Data System (ADS)
Yokoyama, Shun; Takahashi, Hideyuki; Itoh, Takashi; Motomiya, Kenichi; Tohji, Kazuyuki
2014-01-01
Surface oxides on small (2-5 μm) copper metal particles can be removed by chemical reaction with tris(2,3-dibromopropyl) isocyanurate (TIC) in diethylene glycol mono-n-hexyl ether (DGHE) solution under mild conditions where metal particles are not damaged. Surface oxides convert to copper bromide species and subsequently dissolve into the solvent. It was found that resultant surface species are resistant to re-oxidation due to remaining surface bromides. This finding opens up a possibility to create microclines based on cheap copper nanoparticles.
Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.
2013-02-01
Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.
Layered CU-based electrode for high-dielectric constant oxide thin film-based devices
Auciello, Orlando
2010-05-11
A layered device including a substrate; an adhering layer thereon. An electrical conducting layer such as copper is deposited on the adhering layer and then a barrier layer of an amorphous oxide of TiAl followed by a high dielectric layer are deposited to form one or more of an electrical device such as a capacitor or a transistor or MEMS and/or a magnetic device.
Redox Sorption of Oxygen Dissolved in Water on Copper Nanoparticles in an Ion Exchange Matrix
NASA Astrophysics Data System (ADS)
Vakhnin, D. D.; Pridorogina, V. E.; Polyanskii, L. N.; Kravchenko, T. A.; Gorshkov, V. S.
2018-01-01
The redox sorption of molecular oxygen from water by a thin granular layer of a copper-ion exchanger nanocomposite in the currentless mode and under cathodic polarization is studied. The speed of propagation of the boundaries of the chemical reaction of stepwise oxidation of copper nanoparticles under the conditions of polarization slows considerably. At the same time, the amount of electrochemically regenerated copper from the resulting oxides that is capable of interacting with oxygen again grows. The stationarity of the redox sorption of oxygen is due to the equality of the rates of oxidation and reduction of the metallic component of the composite.
NASA Astrophysics Data System (ADS)
Singh, Bharti; Mehta, B. R.; Govind, Feng, X.; Müllen, Klaus
2011-11-01
This study reports a bipolar resistive switching device based on copper oxide (CuO)-multilayer graphene (MLG) hybrid interface in complete contrast to the ohmic and rectifying characteristics of junctions based on individual MLG and CuO layers. The observed shift and the occurrence of additional O1s, Cu2p, and C1s core level peaks indicate electronic interaction at the hybrid interfacial layer. Large changes in the resistive switching parameters on changing the ambient conditions from air to vacuum establish the important role of MLG as oxygen ion storage and blocking layer towards the observed resistive switching effect.
Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater.
Torres Bautista, Blanca E; Carvalho, Maria L; Seyeux, Antoine; Zanna, Sandrine; Cristiani, Pierangela; Tribollet, Bernard; Marcus, Philippe; Frateur, Isabelle
2014-06-01
Copper alloys often used in cooling circuits of industrial plants can be affected by biocorrosion induced by biofilm formation. The objective of this work was to study the influence of protein adsorption, which is the first step in biofilm formation, on the electrochemical behavior of 70Cu-30Ni (wt.%) alloy in static artificial seawater and on the chemical composition of oxide layers. For that purpose, electrochemical measurements performed after 1h of immersion were combined to surface analyses. A model is proposed to analyze impedance data. In the presence of bovine serum albumin (BSA, model protein), the anodic charge transfer resistance deduced from EIS data at Ecorr is slightly higher, corresponding to lower corrosion current. Without BSA, two oxidized layers are shown by XPS and ToF-SIMS: an outer layer mainly composed of copper oxide (Cu2O redeposited layer) and an inner layer mainly composed of oxidized nickel, with a global thickness of ~30nm. The presence of BSA leads to a mixed oxide layer (CuO, Cu2O, Ni(OH)2) with a lower thickness (~10nm). Thus, the protein induces a decrease of the dissolution rate at Ecorr and hence a decrease of the amount of redeposited Cu2O and of the oxide layer thickness. © 2013.
Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.
Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K
2016-04-07
The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.
Cyclic Thermal Stress-Induced Degradation of Cu Metallization on Si3N4 Substrate at -40°C to 300°C
NASA Astrophysics Data System (ADS)
Lang, Fengqun; Yamaguchi, Hiroshi; Nakagawa, Hiroshi; Sato, Hiroshi
2015-01-01
The high-temperature reliability of active metal brazed copper (AMC) on Si3N4 ceramic substrates used for fabricating SiC high-temperature power modules was investigated under harsh environments. The AMC substrate underwent isothermal storage at 300°C for up to 3000 h and a thermal cycling test at -40°C to 300°C for up to 3000 cycles. During isothermal storage at 300°C, the AMC substrate exhibited high reliability, characterized by very little deformation of the copper (Cu) layer, low crack growth, and low oxidation rate of the Cu layer. Under thermal cycling conditions at -40°C to 300°C, no detachment of the Cu layer was observed even after the maximum 3000 cycles of the experiment. However, serious deformation of the Cu layer occurred and progressed as the number of thermal cycles increased, thus significantly roughening the surface of the Cu metallized layer. The cyclic thermal stress led to a significant increase in the crack growth and oxidation of the Cu layer. The maximum depth of the copper oxides reached up to 5/6 of the Cu thickness. The deformation of the Cu layer was the main cause of the decrease of the bond strength under thermal cycling conditions. The shear strength of the SiC chips bonded on the AMC substrate with a Au-12 wt.%Ge solder decreased from the original 83 MPa to 14 MPa after 3000 cycles. Therefore, the cyclic thermal stress destroyed the Cu oxides and enhanced the oxidation of the Cu layer.
Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
Lu, Chun [Monroeville, PA
2012-04-24
A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi
2018-03-01
We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.
NASA Technical Reports Server (NTRS)
Ferrante, J.
1973-01-01
Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.
Effets antibacteriens des nanoparticules de cuivre, oxyde de cuivre et oxyde de fer
NASA Astrophysics Data System (ADS)
Talantikit, Myriam
Population longevity tends to increase in occidental countries inducing an increment in medical implants use. Resistant bacteria may contaminate those implants causing nosocomial infections. Common treatment for bacteria is antibiotic, used mainly for their speed and efficacy. An overuse of antibiotics induced bacteria to be resistant to them. Adding to this issue, when bacteria are in a certain environment, bacteria tend to communicate between themselves and create a biofilm (protective layer). Polysaccharides forming the biofilm don't allow antibiotics to penetrate inside the biofilm. Bacteria in a biofilm are extremely hard to kill. An alternative to resolve all those issues is to use nanoparticles as antimicrobial agents. They are known to have antibacterial effect. But the. The main objective is to study the effects develop "nano-biotics" that can prevent nosocomial infections due to surgical implants. In this project, we evaluated in vitro antibacterial effects of some nanoparticles (copper, copper oxide, superparamagnetic iron oxide, and superparamagnetic iron oxide coupled with nitric oxide (NO) on bacteria. Nanoparticles and microparticles characterizations have been done to determine their size, their composition and their surface chemistry using TEM and FTIR. Different parameters play a crucial role in antibacterial toxicity of particles. First, we adapted microbiological tests to elucidate nanoparticles biotoxicity. Then, pure copper and copper oxide nanoparticles have been studied to determine the importance of nanoparticles composition in toxicity. Size is another important parameter, explaining our interest to study both copper micro and nanoparticles on bacteria (S.aureus and E.coli). Bacterial toxicity of superparamagnetic iron oxide nanoparticles, used as a magnetic vehicle to deliver NO (antibacterial molecule), has been studied. Once NO is delivered, iron oxide nanoparticles still react with bacteria. Finally, copper and copper oxide nanoparticles were in contact with S.aureus biofilm to see their effect and the difference with planktonic bacteria. Our nanoparticles characterizations of copper shows that these nanoparticles are not completely pure but a thin oxide layer at their surface forms, which can lower their toxicity. Our results on the importance of particles size, confirm what was seen in the literature. Nanoparticles seems to be more toxic than microparticles. Superparamagnetic iron oxide nanoparticles results, alone, don't show a big antibacterial effect. Preliminary tests were done on NO coupled nanoparticles, and it seems there is an antibacterial effect. However, NO results are not conclusive because of some technical difficulties during NO attachment on nanoparticles. These studies allowed us to show that copper and copper oxide nanoparticles were a good antibacterial but the dose used might be too important for biomedical applications. Superparamagnetic iron oxide nanoparticles have a low antibacterial effect but are biocompatible. They are an excellent candidate as vehicle for NO delivery to a specific site. These studies are the first effort made to the development of new antimicrobial agents based on metallic nanoparticles. Key words: nanoparticles, copper, oxide copper, biofilm, antibacterial, iron oxide, nitric oxide.
Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells
Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.
2016-01-01
The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398
Stabilization of solar films against hi temperature deactivation
Jefferson, Clinton F.
1984-03-20
A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.
Mechanical tearing of graphene on an oxidizing metal surface.
George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu
2015-12-11
Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.
NASA Astrophysics Data System (ADS)
Jing, Guojuan; Zhang, Xuejiao; Zhang, Aiai; Li, Meng; Zeng, Shanghong; Xu, Changjin; Su, Haiquan
2018-03-01
The supports of copper slices with three-kind morphologies Cu2O layers were prepared by the hydrothermal method. The Cu2O layers are rod-like structure, three-dimensional reticular and porous morphology as well as flower-like morphology, respectively. The CeO2-CuO/Cu2O/Cu monolithic catalysts present porous and network structure or foam morphology after loading CeO2 and CuO. Cu and Ce elements are uniformly dispersed onto the support surface. It is found that the monolithic catalyst with flower-like Cu2O layer displays better low-temperature activity because of highly-dispersed CuO and high Olatt concentration. The monolithic catalysts with rod-like or reticular-morphology Cu2O layers present high-temperature activity due to larger CuO crystallite sizes and good synergistic effect at copper-ceria interfacial sites. The as-prepared CeO2-CuO/Cu2O/Cu monolithic catalysts show good performance in the CO-PROX reaction. The generation of Cu2O layers with three-kind morphologies is beneficial to the loading and dispersion of copper oxides and ceria.
Paulose, Sanoop; Raghavan, Rajeev; George, Benny K
2017-05-15
Reactivity is of great importance for metal oxide nanoparticles (MONP) used as catalysts and advanced materials, but seeking for higher reactivity seems to be conflict with high chemical stability required for MONP. There is direct balance between reactivity and stability of these MONP. This could be acheived for metal oxide by dispersing them in a substrate. Here, we report a simple, efficient and high-yield process for the production of copper oxide (CuO) nanoparticles dispersed on a chemically inert material, few-layer hexagonal boron nitride (h-BN) with a thickness around 1.7nm and lateral dimensions mostly below 200nm. The mechano-chemical reaction which take place at atmospheric pressure and room temperature involves a urea assisted exfoliation of pristine boron nitride. Copper oxide nanoparticles dispersed on the surface of these few layered h-BN reduced its tendency for aggregation. The optimum concentration of CuO:h-BN was found to be 2:1 which shows highest catalytic activity for the thermal decomposition of ammonium perchlorate. The high catalytic activity of the in situ synthesized CuO-h-BN composite may be attributed to uniform distribution of CuO nanoparticles on the few layered h-BN which in turn provide a number of active sites on the surface due to non aggregation. Copyright © 2017 Elsevier Inc. All rights reserved.
CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, Mariappan Parans
We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less
Superconductivity at 43K in SmFeAsO1-xFx
NASA Astrophysics Data System (ADS)
Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F.
2008-06-01
Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40K (about the theoretical maximum predicted from Bardeen-Cooper-Schrieffer theory), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La-Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26K in the iron-based LaO1-xFxFeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1-xFx, which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43K. This provides a new material base for studying the origin of high-temperature superconductivity.
Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes
NASA Technical Reports Server (NTRS)
Philipp, W. H.; May, C. E.
1983-01-01
The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.
NASA Astrophysics Data System (ADS)
Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.
2011-05-01
The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.
Solder for oxide layer-building metals and alloys
Kronberg, James W.
1992-01-01
A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.
Solder for oxide layer-building metals and alloys
Kronberg, J.W.
1992-09-15
A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.
NASA Astrophysics Data System (ADS)
Jaya, T. P.; Pradyumnan, P. P.
2017-12-01
Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.
Molecular orbital imaging of cobalt phthalocyanine on native oxidized copper layers using STM.
Guo, Qinmin; Huang, Min; Qin, Zhihui; Cao, Gengyu
2012-07-01
To observe molecular orbitals using scanning tunneling microscopy, well-ordered oxidized layers on Cu(001) were fabricated to screen the individual adsorbed cobalt phthalocyanine (CoPc) molecules from the electronic influence of the metal surface. Scanning tunneling microscope images of the molecule on this oxidized layer show similarities to the orbital distribution of the free molecule. The good match between the differential conductance mapping images and the calculated charge distribution at energy levels corresponding to the frontier orbitals of CoPc provides more evidence of the screening of the oxidized layer from interactions between the metal surface and supported molecules. Copyright © 2012 Elsevier B.V. All rights reserved.
Preparation of Semiconducting Materials in the Laboratory, Part 3: The One-Penny Photovoltaic Cell
ERIC Educational Resources Information Center
Ibanez, Jorge G.; Finck-Pastrana, Adolfo; Mugica-Barrera, Alejandra; Balderas-Hernandez, Patricia; Ibarguengoitia-Cervantes, Martha E.; Garcia-Pintor, Elizabeth; Hartasanchez-Frenk, Jose Miguel; Bonilla-Jaurez, Cesar E.; Maldonado-Cordero, Casandra; Struck-Garza, Adelwart; Suberbie-Rocha, Felipe
2011-01-01
Copper(I) oxide photoresponsive layers are prepared on copper surfaces (e.g., U.S. pre-1982 pennies) by simple thermal, chemical, and electrochemical procedures. An easily measurable photovoltage (up to 100 mV) is obtained in each case under visible light illumination. (Contains 2 figures.)
Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities
NASA Astrophysics Data System (ADS)
Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.
2017-12-01
Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity.
Real-time oxide evolution of copper protected by graphene and boron nitride barriers.
Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L
2017-01-09
Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.
Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik
2017-06-01
The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene-copper composite with micro-layered grains and ultrahigh strength
Wang, Lidong; Yang, Ziyue; Cui, Ye; Wei, Bing; Xu, Shichong; Sheng, Jie; Wang, Miao; Zhu, Yunpeng; Fei, Weidong
2017-01-01
Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance. PMID:28169306
Chemical reaction of atomic oxygen with evaporated films of copper, part 4
NASA Technical Reports Server (NTRS)
Fromhold, A. T.; Williams, J. R.
1990-01-01
Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).
Aminosilanization nanoadhesive layer for nanoelectric circuits with porous ultralow dielectric film.
Zhao, Zhongkai; He, Yongyong; Yang, Haifang; Qu, Xinping; Lu, Xinchun; Luo, Jianbin
2013-07-10
An ultrathin layer is investigated for its potential application of replacing conventional diffusion barriers and promoting interface adhesion for nanoelectric circuits with porous ultralow dielectrics. The porous ultralow dielectric (k ≈ 2.5) substrate is silanized by 3-aminopropyltrimethoxysilane (APTMS) to form the nanoadhesive layer by performing oxygen plasma modification and tailoring the silanization conditions appropriately. The high primary amine content is obtained in favor of strong interaction between amino groups and copper. And the results of leakage current measurements of metal-oxide-semiconductor capacitor structure demonstrate that the aminosilanization nanoadhesive layer can block copper diffusion effectively and guarantee the performance of devices. Furthermore, the results of four-point bending tests indicate that the nanoadhesive layer with monolayer structure can provide the satisfactory interface toughness up to 6.7 ± 0.5 J/m(2) for Cu/ultralow-k interface. Additionally, an annealing-enhanced interface toughness effect occurs because of the formation of Cu-N bonding and siloxane bridges below 500 °C. However, the interface is weakened on account of the oxidization of amines and copper as well as the breaking of Cu-N bonding above 500 °C. It is also found that APTMS nanoadhesive layer with multilayer structure provides relatively low interface toughness compared with monolayer structure, which is mainly correlated to the breaking of interlayer hydrogen bonding.
Thin film solar energy collector
Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.
1983-11-22
A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.
Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P
2014-03-10
We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.
Process for the production of star-tracking reticles
NASA Technical Reports Server (NTRS)
Toft, A. R.; Smith, W. O.
1974-01-01
Reticles designed with quartz bases are masked with desired pattern and then are coated with highly adherent layers of chromium, chromium silver alloy, silver, copper, and black chromium (mixture of chromium and chromium oxides). Black chromium final layer produces required nonreflective surface.
The interaction of atomic oxygen with thin copper films
NASA Technical Reports Server (NTRS)
Gibson, B. C.; Williams, J. R.; Fromhold, A. T., Jr.; Bozack, M. J.; Neely, W. C.; Whitaker, Ann F.
1992-01-01
A source of thermal, ground-state atomic oxygen has been used to expose thin copper films at a flux of 1.4 x 10 exp 17 atoms/sq cm s for times up to 50 min for each of five temperatures between 140 and 200 C. Rutherford backscattering spectroscopy was used to characterize the oxide formed during exposure. The observations are consistent with the oxide phase Cu2O. The time dependence and the temperature dependence of the oxide layer thickness can be described using oxide film growth theory based on rate limitation by diffusion. Within the time and temperature ranges of this study, the growth of the oxide layers is well described by the equation L(T,t) = 3.6 x 10 to 8th exp(- 1.1/2k sub B T)t exp 1/2, where L,T, and t are measured in angstroms, degrees Kelvin, and minutes, respectively. The deduced activation energy is 1.10 +/- 0.15 eV, with the attendant oxidation rate being greater than that for the corresponding reaction in molecular oxygen.
Chemical-mechanical planarization of aluminum and copper interconnects with magnetic liners
NASA Astrophysics Data System (ADS)
Wang, Bin
2000-10-01
Chemical Mechanical Planarization (CMP) has been employed to achieve Damascene patterning of aluminum and copper interconnects with unique magnetic liners. A one-step process was developed for each interconnect scheme, using a double-layered pad with mesh cells, pores, and perforations on a top hard layer. In a hydrogen peroxide-based slurry, aluminum CMP was a process of periodic removal and formation of a surface oxide layer. Cu CMP in the same slurry, however, was found to be a dissolution dominant process. In a potassium iodate-based slurry, copper removal was the result of two competing reactions: copper dissolution and a non-native surface layer formation. Guided by electrochemistry, slurries were developed to remove nickel in different regimes of the corrosion kinetics diagram. Nickel CMP in a ferric sulfate-based slurry resulted in periodic removal and formation of a passive surface layer. In a potassium permanganate-based slurry, nickel removal is a dissolution dominant process. Visible Al(Cu) surface damages obtained with copper-doped aluminum could be eliminated by understanding the interactions between the substrate, the pad, and the abrasive agglomerate. Increasing substrate hardness by annealing prior to CMP led to a surface finish free of visible scratches. A similar result was also obtained by preventing formation of abrasive agglomerates and minimizing their contact with the substrate.
Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan
2012-10-21
In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.
Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K.; Rao, D. B.; Douglass, D. L.
1975-01-01
Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.
Role of copper oxides in contact killing of bacteria.
Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank
2013-12-31
The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.
Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N
2015-04-20
In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.
Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.
2015-01-01
In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711
NASA Astrophysics Data System (ADS)
Morgenstern, R.; Dietrich, D.; Sieber, M.; Lampke, T.
2017-03-01
Due to their outstanding specific mechanical properties, high-strength, age-hardenable aluminum alloys offer a high potential for lightweight security-related applications. However, the use of copper-alloyed aluminum is limited because of their susceptibility to selective corrosion and their low wear resistance. These restrictions can be overcome and new applications can be opened up by the generation of protective anodic aluminum oxide layers. In contrast to the anodic oxidation of unalloyed aluminum, oxide layers produced on copper-rich alloys exhibit a significantly more complex pore structure. It is the aim of the investigation to identify the influence of microstructural parameters such as size and distribution of the strengthening precipitations on the coating microstructure. The aluminum alloy EN AW-2024 (AlCu4Mg1) in different heat treatment conditions serves as substrate material. The influence of the strengthening precipitations’ size and distribution on the development of the pore structure is investigated by the use of high-resolution scanning electron microscopy. Integral coating properties are characterized by non-destructive and light-microscopic thickness measurements and instrumented indentation tests.
NASA Astrophysics Data System (ADS)
Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu
2018-02-01
We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.
Novel materials for electronic device fabrication using ink-jet printing technology
NASA Astrophysics Data System (ADS)
Kumashiro, Yasushi; Nakako, Hideo; Inada, Maki; Yamamoto, Kazunori; Izumi, Akira; Ishihara, Masamichi
2009-11-01
Novel materials and a metallization technique for the printed electronics were studied. Insulator inks and conductive inks were investigated. For the conductive ink, the nano-sized copper particles were used as metallic sources. These particles were prepared from a copper complex by a laser irradiation process in the liquid phase. Nano-sized copper particles were consisted of a thin copper oxide layer and a metal copper core wrapped by the layer. The conductive ink showed good ink-jettability. In order to metallize the printed trace of the conductive ink on a substrate, the atomic hydrogen treatment was carried out. Atomic hydrogen was generated on a heated tungsten wire and carried on the substrate. The temperature of the substrate was up to 60 °C during the treatment. After the treatment, the conductivity of a copper trace was 3 μΩ cm. It was considered that printed wiring boards can be easily fabricated by employing the above materials.
Nouri, Esmaiel; Mohammadi, Mohammad Reza; Xu, Zong-Xiang; Dracopoulos, Vassilios; Lianos, Panagiotis
2018-01-24
Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO 2 /reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced electron lifetime and recombination resistance led to an increase in the short circuit current density, open circuit voltage and fill factor. The device based on a T/RGO mesoporous layer with an optimal RGO content of 0.2 wt% showed 22% higher photoconversion efficiency and higher stability compared with pristine TiO 2 -based devices.
Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher
2013-01-01
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951
Zhang, Xian; Niu, Jiaojiao; Liang, Yili; Liu, Xueduan; Yin, Huaqun
2016-01-19
Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.
Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N
2016-04-13
Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S.; Ma, B.; Narayanan, M.
2012-01-01
Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) films were deposited by pulsed laser deposition on copper foils with low-temperature self-buffered layers. The deposition conditions included a low oxygen partial pressure and a temperature of 700 C to crystallize the films without the formation of secondary phases and substrate oxidation. The results from x-ray diffraction and scanning electron microscopy indicated that the microstructure of the BST films strongly depended on the growth temperature. The use of the self-buffered layer improved the dielectric properties of the deposited BST films. The leakage current density of the BST films on the copper foil was 4.4 xmore » 10{sup -9} A cm{sup -2} and 3.3 x 10{sup -6} A cm{sup -2} with and without the self-buffered layer, respectively. The ferroelectric hysteresis loop for the BST thin film with buffer layer was slim, in contrast to the distorted loop observed for the film without the buffer layer. The permittivity (7 0 0) and dielectric loss tangent (0.013) of the BST film on the copper foil with self-buffered layer at room temperature were comparable to those of the film on metal and single-crystal substrates.« less
The impact of hydrogen and oxidizing impurities in chemical vapor deposition of graphene on copper
NASA Astrophysics Data System (ADS)
Choubak, Saman
Graphene, the single-atom layer of carbon, has attracted scientists and technologists due to its outstanding physical and opto/electronic properties. The use of graphene in practical applications requires a reliable and cost-effective method to produce large area graphene films with low defects and controlled thicknesses. Direct growth of graphene using chemical vapor deposition (CVD) on copper, in which carbonaceous gaseous species react with the metal substrate in the presence of hydrogen at high temperatures (850-1100° C), led to high coverage of high quality graphene, opening up a promising future for methods of this type and a large step towards commercial realization of graphene products. The present thesis deals with the synthesis of graphene via low pressure CVD (LP-CVD) on copper catalyst using methane as the carbon precursor. The focus is mainly on the determination of the role of hydrogen and oxidizing impurities during graphene formation with an ultimate purpose: to elucidate a viable and reproducible method for the production of high quality graphene films compatible with industrial manufacturing processes. The role of molecular hydrogen in graphene CVD is explored in the first part of the thesis. Few studies claimed that molecular hydrogen etches graphene films on copper by conducting annealing experiments. On the other hand, we speculated that this graphene etching reaction is due to the presence of trace amount of oxygen in the furnace atmosphere. Thus, we took another approach and designed systematic annealing experiments to investigate the role of hydrogen in the etching reaction of graphene on copper foils. No evidence of graphene etching on copper was observed when purified ultra high purity (UHP) hydrogen was used at 825 °C and 500 mTorr. Nevertheless, graphene films exposed to the unpurified UHP hydrogen were etched due to the presence of oxidizing impurities. Our results show that hydrogen is not responsible for graphene etching reaction and oxygen impurities are the main cause of this etching reaction. We have also determined that graphene etching reaction is catalyzed by the copper surface. Next, we systematically investigated the role that hydrogen plays during the growth and coolingdown stage of LP-CVD of graphene on copper. We show that a flow of CH4/H2 is necessary during cooling for preventing graphene etching likely by the means of a competitive action with carbon growth. After graphene formation, the film can be preserved from detrimental effect of oxygen in the absence of methane by its exposure to purified ultra high purity (UHP) hydrogen flow during cooling. In conditions where the level of oxidizing impurities is low, we have obtained continuous and uniform graphene films using solely purified methane (O2<1ppbV) serving a double role as a copper oxide reducer and carbon supply for the growth in the absence of hydrogen gas. This result shows that the presence of hydrogen is not necessary for graphene growth in a controlled atmosphere. Differences in graphene film morphology in purified conditions, where the level of oxidizing impurities is low (O2<1ppb) compare to standard conditions (O2<1ppm), have also been observed. A larger bilayer and multilayer coverage was noticed when only purified methane was used. These bi- and multi-layer graphene islands appeared to be twisted with respect to the first graphene layer. These overall results suggest a different graphene growth behavior in purified and controlled conditions. Having investigated and understood the role of hydrogen and oxidizing impurities in LP-CVD of graphene on copper, we show a rapid and efficient growth of continuous monolayer graphene on copper within 1 min. This was achieved by minimizing the presence of oxidizing impurities with using gas purifiers installed on the gas lines and maintaining a flow of purified UHP hydrogen during the cooling down stage. With this method, we have reduced the graphene growth process time between 5 to 45 times compared to the current recipes in literature. Note that the installation of gas purifiers is entirely compatible with industrial manufacturing processes and is extremely profitable since it can lower graphene production cost by reducing process time and saving energy. Moreover, the crystalline quality and uniformity of the graphene films, determined by Raman spectroscopy and Scanning Electron Microscopy, stayed similar even at this short growth time. Lastly, by gathering all the results during the evolution of this thesis, we notice that graphene multilayer growth is mainly occurring in highly purified conditions and most importantly when a flow of methane gas is present during the cool down stage. Based on these observations, a significant number of bi/multi layer formation can potentially arise when graphene is completed in the cooling stage. These results, although preliminary, point toward the influence of the cooling stage on graphene bi/multi layer formation. The collection of our results presented in this thesis show that oxidizing impurities play a significant role in graphene LP-CVD and explain inconsistencies between growth recipes reported in the literature. They also provide a rational about the need to control the balance between oxygen and hydrogen pressures, for graphene growth pointing toward a general method for improving graphene layer thickness and uniformity on polycrystalline copper substrates.
Crystallization of copper metaphosphate glass
NASA Technical Reports Server (NTRS)
Bae, Byeong-Soo; Weinberg, Michael C.
1993-01-01
The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.
Apparatus for the electrolytic production of metals
Sadoway, Donald R.
1993-01-01
Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.
Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film
NASA Astrophysics Data System (ADS)
Sarkar, Suman; Kundu, Sarathi
2018-04-01
Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.
Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion
NASA Astrophysics Data System (ADS)
Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak
2018-02-01
The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathis, F.; Service de Recherche en Metallurgie Physique CEA Saclay 91191 Gif sur Yvette Cedex; Centre Europeen d'Archeometrie Universite de Liege Sart Tilman B15 4000 Liege
2006-12-01
Recently a new thematic of research -- intentional patinas on antic copper-base objects -- lead the AGLAE (Accelerateur Grand Louvre pour l'Analyse Elementaire) team of the C2RMF (Centre de Recherche et de Restauration des Musees de France) to improve its methods of analyzing thin surface layers both in their elemental composition and in-depth elemental distribution. A new beam extraction set-up containing a particle detector has been developed in order to use a 6 MeV alpha beam both in PIXE and RBS mode and to monitor precisely the ion dose received by the sample. Both RBS and ionization cross sections weremore » assessed in order to make sure that the analysis can be quantitative. This set up allows great progresses in the understanding of both nature and structure of this very particular oxide layer obtained in the antiquity by chemical treatment on copper alloys, containing gold and/or silver and presenting very interesting properties of color and stability.Besides the non destructive properties of the IBA in external beam mode, this method of analyzing allows the study of samples in interaction with its environment. This was used to study the high temperature oxidation of Cu-Sn alloys using a furnace developed in order to heat a sample and analyze it in RBS mode at the same time. This new way of studying the growth of oxide layers permits to understand the oxidation mechanism of this system and to propose an experimental model for the identification of oxide layers due to an exposition to a high temperature, model needed for a long time by curators in charge of the study and the conservation of archaeological bronzes.« less
Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ying; Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ; Yaacobi-Gross, Nir
We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronicmore » devices.« less
Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li
2012-01-01
Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.
NASA Astrophysics Data System (ADS)
Nadesalingam, Manori Prasadika
Transition metal oxides (TMOs) exhibit a rich collection of interesting and intriguing properties which can be used for wide variety of applications. In this dissertation, I will discuss the first PAES measurements on vacuum anneal induced changes in the surface layers of Cu2O/Ta, Cu 2O/TCO and oxidized Cu(100) prepared by spray coated, electrochemically deposition and thermal oxidation techniques respectively. PAES measurements on Cu2O/TCO shows that the a very large increase in the intensity of the Cu (M2,3 VV) Auger peak after annealing at 250°C. Similar but significantly smaller changes were observed in the EAES spectra consistent with the fact that PAES is primarily sensitive to the top-most atomic layer due to the fact that the positrons are trapped just outside the surface prior to annihilation while EAES samples several atomic layers. While PAES measurements on oxidized Cu(100) show a large monotonic increase in the intensity of the annihilation induced Cu (M2,3 VV) Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300°C. The intensity then decreases monotonically as the annealing temperature is increase to ˜500°C. These results provide a clear demonstration of the thermal reduction of the copper oxide surface after annealing at 300°C followed by re-oxidation of the copper surface at the higher annealing temperatures presumably due to the diffusion of subsurface oxygen to the surface.
Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.
Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang
2017-08-25
A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface study of films formed on copper and brass at open circuit potential
NASA Astrophysics Data System (ADS)
Procaccini, R.; Schreiner, W. H.; Vázquez, M.; Ceré, S.
2013-03-01
The corrosion resistance of Cu-Zn alloys strongly depends on the quality of the protective passive film. This study focuses on the influence of Zn on the composition of oxide films on copper and brass (Cu77Zn21Al2) in borax 0.1 mol L-1 (pH 9.2) solution, where the solubility of copper oxides is minimal. The effect of the presence of chloride ions at low concentration (0.01 mol L-1) in the electrolyte was also evaluated. Both conditions were studied using a set of different electrochemical, optical and surface techniques such as cyclic voltammetry, differential reflectance, X-ray photoelectron spectroscopy and Raman spectroscopy. A duplex Cu2O/CuO layer forms on copper at potentials positive to the open circuit potential (OCP), while in the case of brass, zinc compounds are also incorporated to the surface film. It also became evident that a surface film can be formed on these materials even at potentials negative to the OCP. Zn(II) species are the main constituents of the films growing on brass, while copper oxides are incorporated to the surface film when approaching the OCP. The presence of chloride ions at low concentrations contributes to the dissolution of the oxo-hydroxides formed during the early stages of the aging process at open circuit potential. Also, copper chloro-compounds are formed, as shown by Raman spectroscopy for both copper and brass electrodes.
Intrinsically water-repellent copper oxide surfaces; An electro-crystallization approach
NASA Astrophysics Data System (ADS)
Akbari, Raziyeh; Ramos Chagas, Gabriela; Godeau, Guilhem; Mohammadizadeh, Mohammadreza; Guittard, Frédéric; Darmanin, Thierry
2018-06-01
Use of metal oxide thin layers is increased due to their good durability under environmental conditions. In this work, the repeatable nanostructured crystalite Cu2O thin films, developed by electrodeposition method without any physical and chemical modifications, demonstrate good hydrophobicity. Copper (I) oxide (Cu2O) layers were fabricated on gold/Si(1 0 0) substrates by different electrodeposition methods i.e. galvanostatic deposition, cyclic voltammetry, and pulse potentiostatic deposition and using copper sulfate (in various concentrations) as a precursor. The greatest crystalline face on prepared Cu2O samples is (1 1 1) which is the most hydrophobic facet of Cu2O cubic structure. Indeed, different crystallite structures such as nanotriangles and truncated octahedrons were formed on the surface for various electrodeposition methods. The increase of the contact angle (θw) measured by the rest time, reaching to about 135°, was seen at different rates and electrodeposition methods. In addition, two-step deposition surfaces were also prepared by applying two of the mentioned methods, alternatively. In general, the morphology of the two-step deposition surfaces showed some changes compared to that of one-step samples, allowing the formation of different crystallite shapes. Moreover, the wettability behavior showd the larger θw of the two-step deposition layers compared to the related one-step deposition layers. Therefore, the highest observed θw was related to the one of two-step deposition layers due to the creation of small octahedral structures on the surface, having narrow and deep valleys. However, there was an exception which was due to the resulted big structures and broad valleys on the surface. So, it is possible to engineer different crystallites shapes using the proposed two-step deposition method. It is expected that hydrophobic crystallite thin films can be used in environmental and electronic applications to save energy and materials properties.
Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.
Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun
2016-11-02
HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.
Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free
NASA Astrophysics Data System (ADS)
Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian
2016-05-01
Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Copper resinate: preparation, characterisation and study of degradation.
Colombini, M P; Lanterna, G; Mairani, A; Matteini, M; Modugno, F; Rizzi, M
2001-01-01
This paper describes a method for the synthesis of Copper Resinate, which disappeared from artists' palettes in the eighteenth century. This was carried out by interpreting ancient recipes following a scientific approach. Its characterisation using Fourier Transform-Infrared Spectrometry and Gas Chromatography-Mass Spectrometry demonstrated that it is a mixture containing copper and oxidised abietic acids, mainly dehydroabietic and 7-oxo-dehydroabietic acids, formed during the preparation of the pigment and the curing of the paint layer. The composition of copper resinate paint layers, artificially aged by U.V. irradiation at 365 nm (UV), heating (T), and exposed to atmospheric pollutants (NOX) in a climatic chamber, was investigated. The combination of irradiation and temperature produced a change in colour along with a significant increase in the recovered amount of 7-oxo-dehydroabietic acid. The identification of copper resinate in a sample from an old painting should be related to the presence of the following resin compounds which are stable in the ageing process: dehydroabietic and 7-oxo-dehydroabietic acid pimaradienic acids. Photo-oxidation of the resin acids co-ordinated with copper seem to be the most probable decay mechanism responsible for the colour change in the pigment.
Hybrid copper complex-derived conductive patterns printed on polyimide substrates
NASA Astrophysics Data System (ADS)
Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho
2012-06-01
We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.
Li, Zhiqi; Liu, Chunyu; Zhang, Xinyuan; Li, Shujun; Zhang, Xulin; Guo, Jiaxin; Guo, Wenbin; Zhang, Liu; Ruan, Shengping
2017-09-20
Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO 2 or ZnO) to enhance the short-circuit current (J sc ) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC 71 BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.
NASA Astrophysics Data System (ADS)
Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.
2017-10-01
In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.
Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin
2012-12-12
Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.
Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface
2010-01-01
Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu) in eliminating pathogens for these surfaces would be to coat the aluminum (Al) items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO) of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al) followed by electroplating of copper (Cu) in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE) ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the risk of infection and spread of bacteria-related diseases particularly in moist or wet environments. PMID:20843373
Colloidal and electrochemical aspects of copper-CMP
NASA Astrophysics Data System (ADS)
Sun, Yuxia
Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.
Characterization and application of selective all-wet metallization of silicon
NASA Astrophysics Data System (ADS)
Uncuer, Muhammet; Koser, Hur
2012-01-01
We demonstrate selective, two-level metallization of silicon using electroless deposition of copper and gold. In this process, adhesion between the copper and silicon is improved with the formation of intermediary copper-silicide, and the gold layer protects copper from oxidation. The resistivity and residual stress of Au/Cu is 450 Ω nm (220 Ω nm annealed) and 56 MPa (tensile), respectively. These Au/Cu films allow a truly conformal and selective coating of high-aspect-ratio Si structures with good adhesion. We demonstrate the potential of these films in microswitches/relays, accelerometers and sensors by conformally coating the sidewalls of long (up to 1 mm in length), slender microbeams (5 µm × 5 µm) without inducing curvature.
NASA Technical Reports Server (NTRS)
Trout, Otto F., Jr.
1959-01-01
As part of an investigation by the National Aeronautics and Space Administration to determine the resistance to heating of various materials when used as a heat sink for hypersonic airframes, hemispherical nose-shape models of beryllium and copper have been tested in a Mach number 4 hot-air jet at stagnation temperatures of 2,000 F to 3,600 F and Reynolds numbers of 1.88 x 10(exp 6) to 2.93 x 10(exp 6). The experimental results of heating on the nose of the beryllium models agreed reasonably well with theoretical results, whereas heating on the nose of the copper models was almost twice that predicted by theory. Heating of the cylindrical wall behind the hemisphere agreed fairly well with that predicted by theory at lower temperatures. Beryllium produced a thin protective oxide when heated to its melting point with no tendency to ignite before melting. Copper produced a somewhat heavier layer of oxide upon heating, and ignited when heated to near its melting point. These tests indicate that beryllium is superior to copper as a heat-sink material because it absorbs more heat per unit weight, has greater resistance to oxidation in heated air, and does not ignite when heated in air up to its melting temperature.
Superior Sensitivity of Copper-Based Plasmonic Biosensors.
Stebunov, Yury V; Yakubovsky, Dmitry I; Fedyanin, Dmitry Yu; Arsenin, Aleksey V; Volkov, Valentyn S
2018-04-17
Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO 2 and Al 2 O 3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO 2 (25 nm) and Al 2 O 3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.
A new active solder for joining electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.
Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.
Influence of Bond Coat on HVOF-Sprayed Gradient Cermet Coating on Copper Alloy
NASA Astrophysics Data System (ADS)
Ke, Peng; Cai, Fei; Chen, Wanglin; Wang, Shuoyu; Ni, Zhenhang; Hu, Xiaohong; Li, Mingxi; Zhu, Guanghong; Zhang, Shihong
2017-06-01
Coatings are required on mold copper plates to prolong their service life through enhanced hardness, wear resistance, and oxidation resistance. In the present study, NiCr-30 wt.%Cr3C2 ceramic-metallic (cermet) layers were deposited by high velocity oxy-fuel (HVOF) spraying on different designed bond layers, including electroplated Ni, HVOF-sprayed NiCr, and double-decker Ni-NiCr. Annealing was also conducted on the gradient coating (GC) with NiCr bond layer to improve the wear resistance and adhesion strength. Coating microstructure was investigated by scanning electron microscopy and x-ray diffraction analysis. Mechanical properties including microhardness, wear resistance, and adhesion strength of the different coatings were evaluated systematically. The results show that the types of metallic bond layer and annealing process had a significant impact on the mechanical properties of the GCs. The GCs with electroplated Ni bond layer exhibited the highest adhesion strength (about 70 MPa). However, the GC with HVOF-sprayed NiCr bond layer exhibited better wear resistance. The wear resistance and adhesion strength of the coating with NiCr metallic bond layer were enhanced after annealing.
NASA Astrophysics Data System (ADS)
Shijeesh, M. R.; Jayaraj, M. K.
2018-04-01
Cuprous (Cu2O) and cupric (CuO) oxide thin films have been deposited by radio frequency magnetron sputtering with two different oxygen partial pressures. The as-deposited copper oxide films were subjected to post-annealing at 300 °C for 30 min to improve the microstructural, morphological, and optical properties of thin films. Optical absorption studies revealed the existence of a large number of subgap states inside CuO films than Cu2O films. Cu2O and CuO thin film transistors (TFTs) were fabricated in an inverted staggered structure by using a post-annealed channel layer. The field effect mobility values of Cu2O and CuO TFTs were 5.20 × 10-4 cm2 V-1 s-1 and 2.33 × 10-4 cm2 V-1 s-1, respectively. The poor values of subthreshold swing, threshold voltage, and field effect mobility of the TFTs were due to the charge trap density at the copper oxide/dielectric interface as well as defect induced trap states originated from the oxygen vacancies inside the bulk copper oxide. In order to study the distribution of the trap states in the Cu2O and CuO active layer, the temperature dependent transfer characteristics of transistors in the temperature range between 310 K and 340 K were studied. The observed subgap states were found to be decreasing exponentially inside the bandgap, with CuO TFT showing higher subgap states than Cu2O TFT. The high-density hole trap states in the CuO channel are one of the plausible reasons for the lower mobility in CuO TFT than in Cu2O TFT. The origin of these subgap states was attributed to the impurities or oxygen vacancies present in the CuO channel layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy
2015-01-01
TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and themore » Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.« less
Nanoscale Cu{sub 2}O films: Radio-frequency magnetron sputtering and structural and optical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, D. A., E-mail: kudryashovda@apbau.ru; Gudovskikh, A. S.; Babichev, A. V.
2017-01-15
Nanoscale copper (I) oxide layers are formed by magnetron-assisted sputtering onto glassy and silicon substrates in an oxygen-free environment at room temperature, and the structural and optical properties of the layers are studied. It is shown that copper oxide formed on a silicon substrate exhibits a lower degree of disorder than that formed on a glassy substrate, which is supported by the observation of a higher intensity and a smaller half-width of reflections in the diffraction pattern. The highest intensity of reflections in the diffraction pattern is observed for Cu{sub 2}O films grown on silicon at a magnetron power ofmore » 150 W. The absorption and transmittance spectra of these Cu{sub 2}O films are in agreement with the well-known spectra of bulk crystals. In the Raman spectra of the films, phonons inherent in the crystal lattice of cubic Cu{sub 2}O crystals are identified.« less
Electrodeposition of gold particles on aluminum substrates containing copper.
Olson, Tim S; Atanassov, Plamen; Brevnov, Dmitri A
2005-01-27
Electrodeposition of adhesive metal films on aluminum is traditionally preceded by the zincate process, which activates the aluminum surface. This paper presents an alternative approach for activation of aluminum by using films containing 99.5% aluminum and 0.5% copper. Aluminum/copper films are made amenable for subsequent electrodeposition by anodization followed by chemical etching of aluminum oxide. The electrodeposition of gold is monitored with electrochemical impedance spectroscopy (EIS). Analysis of EIS data suggests that electrodeposition of gold increases the interfacial capacitance from values typical for electrodes with thin oxide layers to values typical for metal electrodes. Scanning electron microscopy examination of aluminum/copper films following gold electrodeposition shows the presence of gold particles with densities of 10(5)-10(7) particles cm(-2). The relative standard deviation of mean particle diameters is approximately 25%. Evaluation of the micrographs suggests that the electrodeposition occurs by instantaneous nucleation followed by growth of three-dimensional semispherical particles. The gold particles, which are electrically connected to the conductive aluminum/copper film, support a reversible faradaic process for a soluble redox couple. The deposited gold particles are suitable for subsequent metallization of aluminum and fabrication of particle-type films with interesting catalytic, electrical, and optical properties.
Corrosion Behavior of Plasma-Passivated Cu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbour, J.C.; Braithwaite, J.W.; Son, K.A.
1999-07-09
A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a varietymore » of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.« less
Method of fabricating a catalytic structure
Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2009-09-22
A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.
NASA Astrophysics Data System (ADS)
Wang, Chong; Wen, Na; Zhou, Guoyun; Wang, Shouxu; He, Wei; Su, Xinhong; Hu, Yongsuan
2017-11-01
A novel method of improving the adhesion between copper and prepreg in high frequency PCB was proposed and studied in this work. This process which aimed to decrease the IEP (isoelectric point) of the copper to obtain higher adhesion, was achieved by depositing a thin tin layer with lower IEP on copper. It was characterized by scanning electron microscopy (SEM), 3D microscope, peel strength test, X-Ray thickness test, grazing incidence X-ray diffraction (GXRD), X-ray photoelectron spectroscopy (XPS), Agilent vector network analyzer (VNA), which confirmed its excellent adhesion performance and outstanding electrical properties in high-frequency signal transmission compared with traditional brown oxide method. Moreover, the mechanism of achieving high adhesion for this method was also investigated.
Carbon-based nanostructured surfaces for enhanced phase-change cooling
NASA Astrophysics Data System (ADS)
Selvaraj Kousalya, Arun
To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.
NASA Astrophysics Data System (ADS)
Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.
The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.
Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions
NASA Technical Reports Server (NTRS)
Kleinsasser, A. W.; Barner, J. B.
1997-01-01
The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.
Decarburizing Annealing of Technical Alloy Fe - 3% Si
NASA Astrophysics Data System (ADS)
Lobanov, M. L.; Gomzikov, A. I.; Akulov, S. V.; Pyatygin, A. I.
2005-09-01
Results of a study illustrating the effect of temperature and moisture content in the atmosphere (5% H2 + 95% N2) on the removal of carbon and oxidation of the surface layer of technical alloy Fe - 3% Si (electrical anisotropic steel of the nitride-copper production variant) are presented. Variation of the concentration of silicon over the thickness of the surface layer is studied. The types of phases forming on the surface and their influence on the occurrence of the processes are determined. Annealing parameters (temperature and moisture content of the atmosphere) at which the processes of decarburization and oxidation are decelerated and even stopped are established.
Song, Tian-Shun; Tan, Wei-Min; Xie, Jingjing
2018-08-01
In this paper, we developed an environmental friendly, cost effective, simple and green approach to reduce graphene oxide (GO) by a sulfate-reducing bacterium Desulfovibrio desulfuricans. The D. desulfuricans reduces exfoliated GO to reduced graphene oxide (rGO) at 25 °C in an aqueous solution without any toxic and environmentally harmful reducing agents. The rGO was characterized with X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscope, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. The analysis results showed that rGO had excellent properties and multi-layer graphene sheets structure. Furthermore, we demonstrated that D. desulfuricans, one of the primary bacteria responsible for the biocorrosion of various metals, might reduce GO to rGO on the surface of copper and prevented the corrosion of copper, which confirmed that electrophoretic deposition of GO on the surface of metals had great potential on the anti-biocorrosion applications.
SIMS depth profiling of rubber-tyre cord bonding layers prepared using 64Zn depleted ZnO
NASA Astrophysics Data System (ADS)
Fulton, W. S.; Sykes, D. E.; Smith, G. C.
2006-07-01
Zinc oxide and copper/zinc sulphide layers are formed during vulcanisation and moulding of rubber to brass-coated steel tyre reinforcing cords. Previous studies have described how zinc diffuses through the rubber-brass interface to form zinc sulphide, and combines with oxygen to create zinc oxide during dezincification. The zinc is usually assumed to originate in the brass of the tyre cord, however, zinc oxide is also present in the rubber formulation. We reveal how zinc from these sources is distributed within the interfacial bonding layers, before and after heat and humidity ageing. Zinc oxide produced using 64Zn-isotope depleted zinc was mixed in the rubber formulation in place of the natural ZnO and the zinc isotope ratios within the interfacial layers were followed by secondary ion mass spectroscopy (SIMS) depth profiling. Variations in the relative ratios of the zinc isotopes during depth profiling were measured for unaged, heat-aged and humidity-aged wire samples and in each case a relatively large proportion of the zinc incorporated into the interfacial layer as zinc sulphide was shown to have originated from ZnO in the rubber compound.
Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry
2015-01-01
Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355
Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis
NASA Astrophysics Data System (ADS)
Zhigalina, O. M.; Doludenko, I. M.; Khmelenin, D. N.; Zagorskiy, D. L.; Bedin, S. A.; Ivanov, I. M.
2018-05-01
The structure of layered Cu/Ni nanowires obtained by template synthesis in 100-nm channels of track membranes has been investigated by transmission and scanning electron microscopy. The phase composition and main structural features of individual nanowires are determined. It is shown that nanowires consist of alternating Ni ( Fm3m) and Cu ( Fm3m) layers with grains up to 100 nm in size. It is found that nanowires contain also copper oxide crystallites up to 20 nm in size. The elemental composition of individual layers and their mutual arrangement are determined.
NASA Astrophysics Data System (ADS)
Aazadfar, Parvaneh; Solati, Elmira; Dorranian, Davoud
2018-04-01
The fundamental wavelength of a Q-switched pulsed Nd:YAG laser was employed to produce Au and copper oxide nanoparticles via pulsed laser ablation method in water. Different volumetric ratio of nanoparticles were mixed and irradiated by the second harmonic pulses of the Nd:YAG laser to prepare Au/Copper oxide nanocomposite. The experimental investigation was dedicated to study the properties of Au/Copper oxide nanocomposite as a function of volumetric ratio of Au nanoparticles and copper oxide nanoparticles. Nanocomposites of Au and copper oxide were found almost spherical in shape. Adhesion of spherical nanostructure in Au/Copper oxide nanocomposites was decreased with increasing the concentration of Au nanoparticles. Crystalline phase of the Au/Copper oxide nanocomposites differs with the change in the volumetric ratio of Au and copper oxide nanoparticles. The intensity of surface plasmon resonance of Au nanoparticles was decreased after irradiation. Au/Copper oxide nanocomposites suspensions have emissions in the visible range. Results reveal that green laser irradiation of nanoparticle suspensions is an appropriate method to synthesize Au based nanocomposites with controlled composition and size.
Influence of oxygen, albumin and pH on copper dissolution in a simulated uterine fluid.
Bastidas, D M; Cano, E; Mora, E M
2005-06-01
The aim of this paper is to study the influence of albumin content, from 5 to 45 g/L, on copper dissolution and compounds composition in a simulated uterine solution. Experiments were performed in atmospheric pressure conditions and with an additional oxygen pressure of 0.2 atmospheres, at 6.3 and 8.0 pH values, and at a temperature of 37 +/- 0.1 degrees C for 1, 3, 7, and 30 days experimentation time. The copper dissolution rate has been determined using absorbance measurements, finding the highest value for pH 8.0, 35 g/L albumin, and with an additional oxygen pressure of 0.2 atmospheres: 674 microg/day for 1 day, and 301 microg/day for 30 days. X-ray photoelectron spectroscopy (XPS) results show copper(II) as the main copper oxidation state at pH 8.0; and copper(I) and metallic copper at pH 6.3. The presence of albumin up to 35 g/L, accelerates copper dissolution. For high albumin content a stabilisation on the copper dissolution takes place. Corrosion product layer morphology is poorly protective, showing paths through which copper ions can release.
Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.
Chen, Ying-Chu; Chen, Zhong-Bo; Hsu, Yu-Kuei
2018-08-01
A Copper phosphide (Cu 3 P) micro-rod (MR) array, with coverage by an n-Cu 2 O thin layer by electrodeposition as a photocathode, has been directly fabricated on copper foil via simple electro-oxidation and phosphidation for photoelectrochemical (PEC) hydrogen production. The morphology, structure, and composition of the Cu 3 P/Cu 2 O heterostructure are systematically analyzed using a scanning electron microscope (SEM), X-ray diffraction and X-ray photoelectron spectra. The PEC measurements corroborate that the p-Cu 3 P/n-Cu 2 O heterostructural photocathode illustrates efficient charge separation and low charge transfer resistance to achieve the highest photocurrent of 430 μA cm -2 that is greater than other transition metal phosphide materials. In addition, a detailed energy diagram of the p-Cu 3 P/n-Cu 2 O heterostructure was investigated using Mott-Schottky analysis. Our study paves the way to explore phosphide-based materials in a new class for solar energy applications. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.
2014-12-01
This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1981-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.
NASA Astrophysics Data System (ADS)
Gorospe, A. B.; Herrera, M. U.
2017-04-01
Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.
Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base
Alia, Shaun M.; Yan, Yushan
2015-05-09
The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 timesmore » greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.« less
Hardness and wear analysis of Cu/Al2O3 composite for application in EDM electrode
NASA Astrophysics Data System (ADS)
Hussain, M. Z.; Khan, U.; Jangid, R.; Khan, S.
2018-02-01
Ceramic materials, like Aluminium Oxide (Al2O3), have high mechanical strength, high wear resistance, high temperature resistance and good chemical durability. Powder metallurgy processing is an adaptable method commonly used to fabricate composites because it is a simple method of composite preparation and has high efficiency in dispersing fine ceramic particles. In this research copper and novel material aluminium oxide/copper (Al2O3/Cu) composite has been fabricated for the application of electrode in Electro-Discharge Machine (EDM) using powder metallurgy technique. Al2O3 particles with different weight percentages (0, 1%, 3% and 5%) were reinforced into copper matrix using powder metallurgy technique. The powders were blended and compacted at a load of 100MPa to produce green compacts and sintered at a temperature of 574 °C. The effect of aluminium oxide content on mass density, Rockwell hardness and wear behaviour were investigated. Wear behaviour of the composites was investigated on Die-Sink EDM (Electro-Discharge Machine). It was found that wear rate is highly depending on hardness, mass density and green protective carbonate layer formation at the surface of the composite.
Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P
2016-08-31
The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact and nondestructive measurement, such as RE, to extract key material parameters is beneficial for conveniently understanding the oxidation process that would ultimately enable copper oxide-based devices at manufacturing scales.
Electro deposition of cuprous oxide for thin film solar cell applications
NASA Astrophysics Data System (ADS)
Shahrestani, Seyed Mohammad
p and n type copper oxide semiconductor layers were fabricated by electrochemistry using new approaches for photovoltaic applications. Thin films were electroplated by cathodic polarization on a copper foil or indium tin oxide (ITO) substrates. The optimum deposition conditions (composition, pH and temperature of the electrolyte and applied potential) of the layers as thin films have been identified; in particular the conditions that allow getting the n-type layers have been well identified for the first time. The configuration of a photo - electrochemical cell was used to characterize the spectral response of the layers. It was shown that the p type layers exhibit a photocurrent in the cathode potential region and n layers exhibit photo current in the anode potential region. Measurements of electrical resistivity of electro chemically deposited layers of p and n type Cu2O, showed that the resistivity of p-type Cu2O varies from 3.2 x 105 to 2.0 x 108 Ocm. These values depend the electrodepositing conditions such as the pH of the solution, the deposition potential and temperature. The influence of several plating parameters of the p type layers of Cu2O, such as applied potential, pH and temperature of the bath on the chemical composition, degree of crystallinity, grain size and orientation parameters of the sample was systematically studied using X-ray diffraction and scanning electron microscopy. Depending of the electro-deposition potential, two different surface morphologies with various preferential crystal orientations were obtained for the temperatures of the electro-deposition of 30 °C and pH 9. For the same temperature, the layers of p type Cu2O of highly crystalline p type are obtained at pH 12, indicating that the crystallinity depends on the pH of the bath. Also, it has been shown that the morphology of Cu2O layers was changed by varying the potential and the duration of deposition, as well as the temperature of the solution. The conditions for the electro-deposition of Cu2O n-type were identified consistently for the first time. The electro-deposition electrolyte is based 0.01M acetate copper and 0.1 M sodium acetate: it has a pH between 6.3 and 4, a potential of from 0 to -0.25 V vs. Ag / AgCl and a temperature of 60oC. The optimum annealing temperature of the n-type Cu2O layers is between 120-150oC for the annealing time of 30 to 120 minutes. Resistivity of the n-type films varies between 5 x 103 and 5 x 104 at pH 4 to pH 6.4. We have shown for the first time that bubbling nitrogen gas in the electroplating cell improves significantly the spectral response of the electro-deposited n-type thin film. A two steps electro-deposition process was implemented to make the p-n homojunction cuprous oxide. Indium tin oxide (ITO) was used as a transparent conductive oxide substrate. A p-Cu2O was electrodeposited on ITO. After heat treatment a thin film layer of n-Cu 2O was electrodeposited on top of previous layer. The performance of a p-n homojunction photovoltaic solar cell of Cu2O was determined. The short-circuit current and the open circuit voltage were respectively determined to be as 0.35 volts and 235 muA/cm2. The fill factor (FF) and conversion efficiency of light into electricity were respectively measured to be 0.305 and 0.082%.
NASA Astrophysics Data System (ADS)
Sato, Yuichi; Naya, Shin-ichi; Tada, Hiroaki
2015-10-01
Ultrathin Cu layers (˜2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO2 (Au@Cu/TiO2) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO2 for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO2.
I-III-VI.sub.2 based solar cell utilizing the structure CuInGaSe.sub.2 CdZnS/ZnO
Chen, Wen S.; Stewart, John M.
1992-01-07
A thin film I-III-VI.sub.2 based solar cell having a first layer of copper indium gallium selenide, a second layer of cadmium zinc sulfide, a double layer of zinc oxide, and a metallization structure comprised of a layer of nickel covered by a layer of aluminum. An optional antireflective coating may be placed on said metallization structure. The cadmium zinc sulfide layer is deposited by means of an aqueous solution growth deposition process and may actually consist of two layers: a low zinc content layer and a high zinc content layer. Photovoltaic efficiencies of 12.5% at Air Mass 1.5 illumination conditions and 10.4% under AMO illumination can be achieved.
Zanon, Tyler; Kappell, Anthony D.; Petrella, Lisa N.; Andersen, Erik C.; Hristova, Krassimira R.
2016-01-01
Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress). PMID:27911941
NASA Astrophysics Data System (ADS)
Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki
2014-08-01
We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.
Removal of sulfur and nitrogen containing pollutants from discharge gases
Joubert, James I.
1986-01-01
Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.
NASA Astrophysics Data System (ADS)
Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain
2013-03-01
Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.
NASA Astrophysics Data System (ADS)
Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro
2015-02-01
In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.
Deposition of hermetic silver shells onto copper flakes.
Njagi, John I; Netzband, Christopher M; Goia, Dan V
2017-02-15
Continuous silver shells were deposited on copper flakes using a two-stage precipitation process. A tightly packed layer of silver nanoparticles was first formed on the surface of the base metal by galvanic displacement. The size of the noble metal particles and their distribution on the substrate were controlled using complexing agents and dispersants. A continuous Ag deposit was subsequently grown by reducing slowly [Ag(NH 3 ) 2 ] + ions with glucose. The final shell thickness was controlled by varying the amount of metal deposited in the second step. The electrical properties of resulting silver coated copper flakes are comparable to those measured for silver flakes of similar size and aspect ratio. By preventing the oxidation of copper cores up to 400°C, the hermetic noble metal shell dramatically extends the temperature range in which Ag/Cu flakes can successfully replace pure silver. Copyright © 2016 Elsevier Inc. All rights reserved.
Oxidation Behavior of GRCop-84 Copper Alloy Assessed
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, Linus U.
2002-01-01
NASA's goal of safe, affordable space transportation calls for increased reliability and lifetimes of launch vehicles, and significant reductions of launch costs. The areas targeted for enhanced performance in the next generation of reusable launch vehicles include combustion chambers and nozzle ramps; therefore, the search is on for suitable liner materials for these components. GRCop-84 (Cu-8Cr-4Nb), an advanced copper alloy developed at the NASA Glenn Research Center in conjunction with Case Western Reserve University, is a candidate. The current liner of the Space Shuttle Main Engine is another copper alloy, NARloy-Z (Cu-3Ag-0.1Zr). It provides a benchmark against which to compare the properties of candidate successors. The thermomechanical properties of GRCop-84 have been shown to be superior, and its physical properties comparable, to those of NARloy-Z. However, environmental durability issues control longevity in this application: because copper oxide scales are not highly protective, most copper alloys are quickly consumed in oxygen environments at elevated temperatures. In consequence, NARloy-Z and most other copper alloys are prone to blanching, a degradation process that occurs through cycles of oxidation-reduction as the oxide is repeatedly formed and removed because of microscale fluctuations in the oxygen-hydrogen fuel systems of rocket engines. The Space Shuttle Main Engine lining typically degraded by blanching-induced hot spots that lead to surface roughening, pore formation, and coolant leakage. Therefore, resistance to oxidation and blanching are key requirements for second-generation reusable launch vehicle liners. The rocket engine ambient includes H2 (fuel) and H2O (combustion product) and is, hence, under reduced oxygen partial pressures. Accordingly, our studies were expanded to include oxygen partial pressures as low as 322 parts per million (ppm) at the temperatures likely to be experienced in service. A comparison of 10-hr weight gains of GRCop-84, NARloy-Z, and pure copper in 0.032, 2.2, and 100 percent oxygen from 550 to 750 C is shown. In 2.2 vol% and higher oxygen content, GRCop-84 oxidation was slower than that of NARloy-Z or Cu, but that advantage was lost or diminished in 322-ppm O2. Over longer (50-hr) exposures in 1.0 atm O2, however, the advantage of GRCop-84 increased significantly, its oxidation rate becoming approximately 10 times slower than those of Cu and NARloy-Z from 500 to 700 C. Weight gains were moderate and the kinetics parabolic for all three materials in 2.2 vol% and higher oxygen content; however, in 322-ppm O2, the scales were nonprotective below about 650 C, as reflected in linear kinetics and large weight gains. The superior oxidation resistance of GRCop-84 is likely related to the kinetics of extra oxygen consumption to form the additional oxides of Cr and Nb detected beneath the GRCop-84 oxide layer. While we continue to evaluate the blanching resistance of GRCop-84 in other tests, these oxidation results indicate that GRCop-84 is suitable as a reusable launch vehicle liner, and in applications where it is desired to use a copper alloy but without the risk of oxidative failure. Three bar charts comparing overall specific weight gains by each of the three materials studied. The top chart is for oxidation in 1.0 atm of oxygen, the middle is for 2.2% oxygen (balance argon), and the bottom is for 0.0322% oxygen. GRCop-84 outperforms the other two materials, showing the least weight gain in nearly all cases.
NASA Astrophysics Data System (ADS)
Winter, Shoshana; Zenou, Michael; Kotler, Zvi
2016-04-01
We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (~4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (~5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing.
Novel graphene-oxide-coated SPR interfaces for biosensing applications
NASA Astrophysics Data System (ADS)
Volkov, V. S.; Stebunov, Yu. V.; Yakubovsky, D. I.; Fedyanin, D. Yu.; Arsenin, A. V.
2017-09-01
Carbon allotropes-based nanomaterials possess unique physical and chemical properties including high surface area, the possibility of pi-stacking interaction with a wide range of biological objects, rich availability of oxygen-containing functional groups in graphene-oxide (GO), and excellent optical properties, which make them an ideal candidate for use as a universal immobilization platform in SPR biosensing. Here, we propose a new surface plasmon resonance (SPR) biosensing interface for sensitive and selective detection of small molecules. This interface is based on the GO linking layers deposited on the gold/copper surface of SPR sensor chips. To estimate the binding capacity of GO layers, modification of carboxyl groups to N-Hydroxysuccinimide esters was performed in the flow cell of SPR instrument. For comparison, the same procedure was applied to commercial sensor chips based on linking layers of carboxymethylated dextran.
Ivan Bozovic
2017-12-09
"Atomic-Layer Engineering of Cuprate Superconductors." Copper-oxide compounds, called cuprates, show superconducting properties at 163 degrees Kelvin, the highest temperature of any known superconducting material. Cuprates are therefore among the "high-temperature superconductors" of extreme interest both to scientists and to industry. Research to learn their secrets is one of the hottest topics in the field of materials science.
NASA Astrophysics Data System (ADS)
Ani, M. H.; Helmi, F.; Herman, S. H.; Noh, S.
2018-01-01
Recently, extensive researches have been done on memristor to replace current memory storage technologies. Study on active layer of memristor mostly involving n-type semiconductor oxide such as TiO2 and ZnO. This paper highlight a simple water vapour oxidation method at 423 K to form Cu/Cu2O electronic junction as a new type of memristor. Cu2O is a p-type semiconductor oxide, was used as the active layer of memristor. Cu/Cu2O/Au memristor was fabricated by thermal oxidation of copper foil, followed by sputtering of gold. Structural, morphological and memristive properties were characterized using XRD, FESEM, and current-voltage, I-V measurement respectively. Its memristivity was indentified by pinch hysteresis loop and measurement of high resistance state (HRS) and low resistance state (LRS) of the sample. The Cu/Cu2O/Au memristor demonstrates comparable performances to previous studies using other methods.
Copper oxide thin films anchored on glass substrate by sol gel spin coating technique
NASA Astrophysics Data System (ADS)
Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha
2018-05-01
Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.
Conducting tin halides with a layered organic-based perovskite structure
NASA Astrophysics Data System (ADS)
Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.
1994-06-01
THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.
Lei, Ting; Dong, Hua; Xi, Jun; Niu, Yong; Xu, Jie; Yuan, Fang; Jiao, Bo; Zhang, Wenwen; Hou, Xun; Wu, Zhaoxin
2018-06-12
In this article, an inorganic-organic bilayer hole transport layer (B-HTL) is designed and utilized in planar perovskite solar cells. Here the B-HTL consists of an inorganic VOx matrix and a copper phthalocyanine (CuPc) buffer layer, providing excellent resistance to moisture as well as the alignment of the interfacial energy level. Benefiting from this typical HTL, an enlarged built-in potential and charge extraction can be achieved in PSCs simultaneously. Correspondingly, a champion device with a B-HTL shows a 16.85% efficiency with negligible hysteresis, which is superior to that of a PSC based on a PEDOT:PSS HTL. Meanwhile, significantly prolonged stability of the PSC with the B-HTL can be observed, exhibiting only a 10% efficiency loss after 350 hours in ambient air. Moreover, such an entirely low-temperature (≤60 °C) fabrication process of this typical PSC exhibits its successful application in flexible devices.
NASA Astrophysics Data System (ADS)
Hossain, Md I.; Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.
2016-07-01
We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.
Hossain, Md I; Maksud, M; Palapati, N K R; Subramanian, A; Atulasimha, J; Bandyopadhyay, S
2016-07-29
We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.
In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less
Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.; ...
2018-04-08
In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less
Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian
2012-07-01
The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.
Dispersion strengthened copper
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1989-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
Dispersion strengthened copper
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1990-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
NASA Technical Reports Server (NTRS)
Rao, D. B.; Heinemann, K.; Douglass, D. L.
1976-01-01
Single-crystalline thin films of copper were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of .005 Torr in situ in a high-resolution electron microscope. The specimens were prepared by epitaxial vapor deposition onto polished 100 and 110 faces of rocksalt and mounted in a hot stage inside an ultra-high-vacuum specimen chamber of the microscope. Large amounts of sulfur, carbon, and oxygen were detected by Auger electron spectroscopy on the surface of the as-received films and were removed in situ by ion-sputter etching immediately prior to the oxidation. The nucleation and growth characteristics of Cu2O on Cu were studied. Results show that neither stacking faults nor dislocations are associated with the Cu2O nucleation sites. The growth of Cu2O nuclei is linear with time. The experimental findings, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving (a) the formation of a surface-charge layer, (b) oxygen saturation in the metal and (c) nucleation, followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.
Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo
2016-01-01
The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics. PMID:27872494
Graphene: corrosion-inhibiting coating.
Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I
2012-02-28
We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.
Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition.
Daubert, James S; Hill, Grant T; Gotsch, Hannah N; Gremaud, Antoine P; Ovental, Jennifer S; Williams, Philip S; Oldham, Christopher J; Parsons, Gregory N
2017-02-01
Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al 2 O 3 , TiO 2 , ZnO, HfO 2 , and ZrO 2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al 2 O 3 or HfO 2 provided the highest level of initial corrosion protection, but films of HfO 2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO 2 or ZrO 2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.
Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.
Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin
2018-04-01
Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg 0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg 0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg 0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg 0 concentration and a high gas hourly space velocity of 128,000 h -1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg 0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg 0 in the presence of HCl. It is proposed that the Hg 0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg 0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg 0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Siebman, Coralie; Velev, Orlin D; Slaveykova, Vera I
2015-06-15
An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm⁻¹, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10⁻⁵ M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.
NASA Astrophysics Data System (ADS)
Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan
2018-03-01
In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.
Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.
Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg
2017-08-01
Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.
Oxidation Mechanism of Copper Selenide
NASA Astrophysics Data System (ADS)
Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri
2014-09-01
The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Haraveen, K. J. S.; Tee, Tiam-Ting; Rahmat, A. R.
2015-10-01
In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.
NASA Astrophysics Data System (ADS)
Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.
2016-05-01
The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.
Uptake of Light Elements in Thin Metallic Films
NASA Astrophysics Data System (ADS)
Markwitz, Andreas; Waldschmidt, Mathias
Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.
NASA Astrophysics Data System (ADS)
Siriwardane, Ranjani V.; Poston, James A.
1993-05-01
Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.
Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Li, Jia; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-08-14
The cellulose nanofibers (CNFs) paper exhibit high visible light transmittance, high mechanical strength, and excellent flexibility. Therefore, CNFs paper may be an excellent substrate material for flexible transparent electronic devices. In this paper, we endeavor to prepare CNFs-based flexible transparent conductive paper by layer-by-layer (LbL) assembly using divalent copper ions (Cu(2+)) as the crosslinking agent. The thickness of the reduced graphene oxide (RGO) active layer in the CNFs paper can be controlled by the cycle times of the LbL assembly. CNFs/[RGO]20 paper has the sheet resistances of ∼2.5 kΩ/□, and the transmittance of about 76% at a wavelength of 550 nm. Furthermore, CNFs/[RGO]20 paper inherits the excellent mechanical properties of CNFs paper, and the ultimate strength is about 136 MPa. CNFs-based flexible transparent conductive paper also exhibits excellent electrical stability and flexibility. Copyright © 2013. Published by Elsevier Ltd.
Status of CdS/CdTe solar cell research at NREL
NASA Astrophysics Data System (ADS)
Ramanathan, K.; Dhere, R. G.; Coutts, T. J.; Chu, T.; Chu, S.
1992-12-01
We report on the deposition of thin cadmium sulfide (CdS) layers from aqueous solutions and their optical properties. CdS layers have been deposited on soda lime glass, tin oxide coated glass and copper indium diselenide (CuInSe2) thin films. A systematic increase in the absorption is found to occur with increasing concentration of the buffer salt used in the bath. CdS/CdTe thin film solar cells have been fabricated by close spaced sublimation of CdTe, yielding 11.3% devices.
Production of pulsed ultra slow muons and first /μSR experiments on thin metallic and magnetic films
NASA Astrophysics Data System (ADS)
Träger, K.; Breitrück, A.; Trigo, M. Diaz; Grossmann, A.; Jungmann, K.; Merkel, J.; Meyer, V.; Neumayer, P.; Pachl, B.; zu Putlitz, G.; Santra, R.; William, L.; Allodi, G.; Bucci, C.; Renzi, R. De; Galli, F.; Guidi, G.; Shiroka, T.; Eaton, G. H.; King, P. J. C.; Scott, C. A.; Williams, G. W.; Roduner, E.; Scheuermann, R.; Charlton, M. C.; Donnelly, P.; Pareti, L.; Turilli, G.
2000-08-01
At ISIS, RAL (UK) we have produced a pulsed ultra-slow muon beam (E≲20 eV) and performed the first μSR experiments. Thanks to the pulsed feature, the implantation time is automatically determined and, by adjusting the final muon energy between ∼8 keV and 20 eV, depth slicing experiments are possible down to monolayers distances. We report slicing experiments across a 20 nm copper film on quartz substrate with evidence for a 2 nm copper oxide surface layer. A preliminary experiment on a hexagonal cobalt film suggests the existence of muon precession in the local magnetic field.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2014-03-01
Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.
Extraordinary Corrosion Protection from Polymer-Clay Nanobrick Wall Thin Films.
Schindelholz, Eric J; Spoerke, Erik D; Nguyen, Hai-Duy; Grunlan, Jaime C; Qin, Shuang; Bufford, Daniel C
2018-06-20
Metals across all industries demand anticorrosion surface treatments and drive a continual need for high-performing and low-cost coatings. Here we demonstrate polymer-clay nanocomposite thin films as a new class of transparent conformal barrier coatings for protection in corrosive atmospheres. Films assembled via layer-by-layer deposition, as thin as 90 nm, are shown to reduce copper corrosion rates by >1000× in an aggressive H 2 S atmosphere. These multilayer nanobrick wall coatings hold promise as high-performing anticorrosion treatment alternatives to costlier, more toxic, and less scalable thin films, such as graphene, hexavalent chromium, or atomic-layer-deposited metal oxides.
Molazemhosseini, Alireza; Liu, Chung Chiun
2018-01-01
A cuprous oxide (Cu2O) thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV) measurement. An X-ray photoelectron spectroscopy (XPS) study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS) and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum), interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O) thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated. PMID:29316652
H2 gas sensing properties of a ZnO/CuO and ZnO/CuO/Cu2O Heterostructures
NASA Astrophysics Data System (ADS)
Ababii, N.; Postica, V.; Hoppe, M.; Adelung, R.; Lupan, O.; Railean, S.; Pauporté, T.; Viana, B.
2017-03-01
The most important parameters of gas sensors are sensitivity and especially high selectivity to specific chemical species. To improve these parameters we developed sensor structures based on layered semiconducting oxides, namely CuO/Cu2O, CuO:Zn/Cu2O:Zn, NiO/ZnO. In this work, the ZnO/CuxO (where x = 1, 2) bi-layer heterostructure were grown via a simple synthesis from chemical solution (SCS) at relatively low temperatures (< 95 °C), representing a combination of layered n-type and p-type semiconducting oxides which are widely used as sensing material for gas sensors. The main advantages of the developed device structures are given by simplicity of the synthesis and technological cost-efficiency. Structural investigations showed high crystallinity of synthesized layers confirming the presence of zinc oxide nanostructures on the surface of the copper oxide film deposited on glass substrate. Structural changes in morphology of grown nanostructures induced by post-grown thermal annealing were observed by scanning electron microscopy (SEM) investigations, and were studied in detail. The influence of thermal annealing type on the optical properties was also investigated. As an example of practical applications, the ZnO/CuxO bi-layer heterojunctions and ZnO/CuO/Cu2O three-layered structures were integrated into sensor structures and were tested to different types of reducing gases at different operating temperatures (OPT), showing promising results for fabrication of selective gas sensors.
Ferric Oxide Mediated Formation of PCDD/Fs from 2-Monochlorophenol
Nganai, Shadrack; Lomnicki, Slawo; Dellinger, Barry
2012-01-01
The copper oxide, surface-mediated formation of polychlorinated dibenzop-dioxins and dibenzofurans (PCDD/F) from precursors such as chlorinated phenols is considered to be a major source of PCDD/F emissions from combustion sources. In spite of being present at 2–50x higher concentrations than copper oxide, virtually no studies of the iron oxide-mediated formation of PCDD/F have been reported in the literature. We have performed packed bed, flow reactor studies of the reaction of 50 ppm gas phase 2-monochlorophenol (2-MCP) over a surface of 5% iron oxide on silica over a temperature range of 200–500 °C. Dibenzo-p-dioxin (DD), 1-monochlorodibenzo-p-dioxin (1-MCDD), 4,6-dichlorodibenzofuran (4,6-DCDF), and dibenzofuran (DF) were formed in maximum yields of 0.1, 0.2, 0.3, and 0.4 %, respectively. The yield of PCDD/F over iron oxide peaked at temperatures 50–100 °C higher in temperature than over copper oxide. The maximum yields of DD, 1-MCDD and 4,6-DCDF were 2x and 5x higher over iron oxide, respectively, than over copper oxide, while DF was not observed at all for copper oxide. The resulting PCDD/PCDF ratio was 0.39 versus 1.2 observed for iron oxide and copper oxide, respectively, which is in agreement with PCDD to PCDF ratios in full-scale combustors that are typically ≪1. The combination of 2–50x higher concentrations of iron oxide than copper oxide in most full-scale combustors and 2.5x higher yields of PCDD/F observed in the laboratory, suggest that iron oxide may contribute as much as 5–125x more than copper oxide to the emissions of PCDD/F from full-scale combustors. PMID:19238966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, Glenn Geoffrey
1994-10-01
Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu 2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu 2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/molmore » < Cu 2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N 2 and CO 2. At the end of each reaction, the catalyst was found to be Cu 2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.« less
Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo
2017-11-01
The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, J.M.; Pergantis, C.G.
Organic and organo-metallic coatings are presently being applied over bare copper as an approach to improve the co-planarity of circuit boards. Conformal organic solderability preservative coatings (OSP) are environmentally and economically advantageous over the more commonly used lead based coatings. Problems arise in assessing the solderability of the bare copper and the integrity of the organic coating. Specular reflectance Fourier transform infrared spectroscopy (FT-IR) was utilized to monitor and evaluate the formation of Cu oxides occurring on copper substrates used in the manufacturing of electronic circuit boards. Previous studies reported the utility of this technique. By measuring the oxide andmore » protective coating characteristics of these surfaces, their solderability performance can rapidly be evaluated in a manufacturing environment. OSP coated test specimens were subjected to hot-dry and hot-wet environmental conditions using MIL-STD-202F and MIL-STD-883E as guides. The resultant FT-IR spectra provided clear evidence for the formation of various Cu oxides at the Cu/OSP interface over exposure time, for the samples subjected to the hot-dry environment. IR spectral bands consistent with O-Cu-O and Cu{sub 2}O{sub 2} formation appear, while very minimal deterioration to the OSP coating was observed. The appearance of the Cu oxide layers grew steadily with increased environmental exposure. Specimens subjected to the hot-wet conditions showed no significant signs of deterioration. The IR data can be directly correlated to solderability performance as evaluated by wet balance testing.« less
Zhang, Peili; Li, Lin; Nordlund, Dennis; Chen, Hong; Fan, Lizhou; Zhang, Biaobiao; Sheng, Xia; Daniel, Quentin; Sun, Licheng
2018-01-26
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2 . The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna
Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Sphericalmore » shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.« less
Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter
Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltagesmore » in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less
Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction
Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter; ...
2017-07-06
Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltagesmore » in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less
Surface morphology and electrochemical studies on polyaniline/CuO nano composites
NASA Astrophysics Data System (ADS)
Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Basappa, M.; Devendrappa, H.
2018-05-01
An electrochemically synthesized Polyaniline (PANI) and Polyaniline/copper oxide (PCN) nano composite have studied the morphology and electrochemical properties. The composite is characterized by X-ray diffraction (XRD) and surface morphology was studied using FESEM and electrochemical behavior is studied using cyclic voltammetry (CV) technique. The CV curves shows rectangular shaped curve and they have contribution to electrical double layer capacitance (EDCL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Guillemin, Claire; Neeman-azulay, Meytal
Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSDmore » or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper supplementation. • Global DNA hypomethylation was resolved both by Tempol and by copper supplementation. • Placental oxidative stress parameters coincides previous findings in the fetal liver.« less
Odor-Sensing System to Support Social Participation of People Suffering from Incontinence.
Ortiz Pérez, Alvaro; Kallfaß-de Frenes, Vera; Filbert, Alexander; Kneer, Janosch; Bierer, Benedikt; Held, Pirmin; Klein, Philipp; Wöllenstein, Jürgen; Benyoucef, Dirk; Kallfaß, Sigrid; Mescheder, Ulrich; Palzer, Stefan
2016-12-29
This manuscript describes the design considerations, implementation, and laboratory validation of an odor sensing module whose purpose is to support people that suffer from incontinence. Because of the requirements expressed by the affected end-users the odor sensing unit is realized as a portable accessory that may be connected to any pre-existing smart device. We have opted for a low-cost, low-power consuming metal oxide based gas detection approach to highlight the viability of developing an inexpensive yet helpful odor recognition technology. The system consists of a hotplate employing, inkjet-printed p-type semiconducting layers of copper(II) oxide, and chromium titanium oxide. Both functional layers are characterized with respect to their gas-sensitive behavior towards humidity, ammonia, methylmercaptan, and dimethylsulfide and we demonstrate detection limits in the parts-per-billion range for the two latter gases. Employing a temperature variation scheme that reads out the layer's resistivity in a steady-state, we use each sensor chip as a virtual array. With this setup, we demonstrate the feasibility of detecting odors associated with incontinence.
Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2014-01-01
Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight. Copyright © 2013 Elsevier B.V. All rights reserved.
Jung, Bong-Ki; Chung, Kyoung-Jae; Dang, Jeong-Jeung; Hwang, Y S
2012-02-01
A high monatomic beam fraction is an important factor in a hydrogen ion source to increase the application efficiency. The monatomic fraction of hydrogen plasmas with different plasma electrode materials is measured in a helicon plasma ion source, and aluminum shows the highest value compared to that with the other metals such as copper and molybdenum. Formation of an aluminum oxide layer on the aluminum electrode is determined by XPS analysis, and the alumina layer is verified as the high monatomic fraction. Both experiments and numerical simulations conclude that a low surface recombination coefficient of the alumina layer on the plasma electrode is one of the most important parameters for increasing the monatomic fraction in hydrogen plasma ion sources.
NASA Astrophysics Data System (ADS)
Jung, Bong-Ki; Chung, Kyoung-Jae; Dang, Jeong-Jeung; Hwang, Y. S.
2012-02-01
A high monatomic beam fraction is an important factor in a hydrogen ion source to increase the application efficiency. The monatomic fraction of hydrogen plasmas with different plasma electrode materials is measured in a helicon plasma ion source, and aluminum shows the highest value compared to that with the other metals such as copper and molybdenum. Formation of an aluminum oxide layer on the aluminum electrode is determined by XPS analysis, and the alumina layer is verified as the high monatomic fraction. Both experiments and numerical simulations conclude that a low surface recombination coefficient of the alumina layer on the plasma electrode is one of the most important parameters for increasing the monatomic fraction in hydrogen plasma ion sources.
NASA Astrophysics Data System (ADS)
Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.
2003-11-01
The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.
Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements
NASA Astrophysics Data System (ADS)
Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene
2011-03-01
The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.
Krzywiecki, Maciej; Grządziel, Lucyna; Powroźnik, Paulina; Kwoka, Monika; Rechmann, Julian; Erbe, Andreas
2018-06-13
Reduced tin dioxide/copper phthalocyanine (SnOx/CuPc) heterojunctions recently gained much attention in hybrid electronics due to their defect structure, allowing tuning of the electronic properties at the interface towards particular needs. In this work, we focus on the creation and analysis of the interface between the oxide and organic layer. The inorganic/organic heterojunction was created by depositing CuPc on SnOx layers prepared with the rheotaxial growth and vacuum oxidation (RGVO) method. Exploiting surface sensitive photoelectron spectroscopy techniques, angle dependent X-ray and UV photoelectron spectroscopy (ADXPS and UPS, respectively), supported by semi-empirical simulations, the role of carbon from adventitious organic adsorbates directly at the SnOx/CuPc interface was investigated. The adventitious organic adsorbates were blocking electronic interactions between the environment and surface, hence pinning energy levels. A significant interface dipole of 0.4 eV was detected, compensating for the difference in work functions of the materials in contact, however, without full alignment of the energy levels. From the ADXPS and UPS results, a detailed diagram of the interfacial electronic structure was constructed, giving insight into how to tailor SnOx/CuPc heterojunctions towards specific applications. On the one hand, parasitic surface contamination could be utilized in technology for passivation-like processes. On the other hand, if one needs to keep the oxide's surficial interactions fully accessible, like in the case of stacked electronic systems or gas sensor applications, carbon contamination must be carefully avoided at each processing step.
Derouiche, H.; Mohamed, A. B.
2013-01-01
We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the I-V characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc0.5:C600.5/BCP/Al and ITO/PEDOT:PSS/P3HT0.3:CuPc0.3:C600.4/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation. PMID:23766722
Derouiche, H; Mohamed, A B
2013-01-01
We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the I-V characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc₀.₅:C60₀.₅/BCP/Al and ITO/PEDOT:PSS/P3HT₀.₃:CuPc₀.₃:C60₀.₄/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation.
Stabilization of Oxidized Copper Nanoclusters in Confined Spaces
Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang; ...
2018-01-04
Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less
Oxidation-assisted graphene heteroepitaxy on copper foil.
Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François
2016-11-10
We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir
Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we havemore » shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. - Highlights: • Pro-oxidant properties of ferulic acid are enhanced in presence of copper. • Ferulic acid causes oxidative DNA damage in lymphocytes as observed by comet assay. • DNA damage was ameliorated by copper chelating agent neocuproine and ROS scavengers. • Endogenous copper is involved in ROS generation causing DNA damage. • Ferulic acid exerts cancer cell specific cytotoxicity as observed by MTT assay.« less
Sivaraj, Rajeshwari; Rahman, Pattanathu K S M; Rajiv, P; Narendhran, S; Venckatesh, R
2014-08-14
Copper oxide nanoparticles were synthesized by biological method using aqueous extract of Acalypha indica leaf and characterized by UV-visible spectroscopy, XRD, FT-IR, SEM TEM and EDX analysis. The synthesised particles were highly stable, spherical and particle size was in the range of 26-30 nm. The antimicrobial activity of A.indica mediated copper oxide nanoparticles was tested against selected pathogens. Copper oxide nanoparticles showed efficient antibacterial and antifungal effect against Escherichia coli, Pseudomonas fluorescens and Candida albicans. The cytotoxicity activity of A.indica mediated copper nanoparticles was evaluated by MTT assay against MCF-7 breast cancer cell lines and confirmed that copper oxide nanoparticles have cytotoxicity activity. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed
2018-04-01
Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1992-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1993-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Characterization of Blistering and Delamination in Depleted Uranium Hohlraums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biobaum, K. J. M.
2013-03-01
Blistering and delamination are the primary failure mechanisms during the processing of depleted uranium (DU) hohlraums. These hohlraums consist of a sputter-deposited DU layer sandwiched between two sputter-deposited layers of gold; a final thick gold layer is electrodeposited on the exterior. The hohlraum is deposited on a copper-coated aluminum mandrel; the Al and Cu are removed with chemical etching after the gold and DU layers are deposited. After the mandrel is removed, blistering and delamination are observed on the interiors of some hohlraums, particularly at the radius region. It is hypothesized that blisters are caused by pinholes in the coppermore » and gold layers; etchant leaking through these holes reaches the DU layer and causes it to oxidize, resulting in a blister. Depending on the residual stress in the deposited layers, blistering can initiate larger-scale delamination at layer interfaces. Scanning electron microscopy indicates that inhomogeneities in the machined aluminum mandrel are replicated in the sputter-deposited copper layer. Furthermore, the Cu layer exhibits columnar growth with pinholes that likely allow etchant to come in contact with the gold layer. Any inhomogeneities or pinholes in this initial gold layer then become nucleation sites for blistering. Using a focused ion beam system to etch through the gold layer and extract a cross-sectional sample for transmission electron microscopy, amorphous, intermixed layers at the gold/DU interfaces are observed. Nanometer-sized bubbles in the sputtered and electrodeposited gold layers are also present. Characterization of the morphology and composition of the deposited layers is the first step in determining modifications to processing parameters, with the goal of attaining a significant improvement in hohlraum yield.« less
Lanthony, Cloé; Guiltat, Mathilde; Ducéré, Jean Marie; Verdier, Agnes; Hémeryck, Anne; Djafari-Rouhani, Mehdi; Rossi, Carole; Chabal, Yves J; Estève, Alain
2014-09-10
The surface chemistry associated with the synthesis of energetic nanolaminates controls the formation of the critical interfacial layers that dominate the performances of nanothermites. For instance, the interaction of Al with CuO films or CuO with Al films needs to be understood to optimize Al/CuO nanolaminates. To that end, the chemical mechanisms occurring during early stages of molecular CuO adsorption onto crystalline Al(111) surfaces are investigated using density functional theory (DFT) calculations, leading to the systematic determination of their reaction enthalpies and associated activation energies. We show that CuO undergoes dissociative chemisorption on Al(111) surfaces, whereby the Cu and O atoms tend to separate from each other. Both Cu and O atoms form islands with different properties. Copper islanding fosters Cu insertion (via surface site exchange mechanism) into the subsurface, while oxygen islands remain stable at the surface. Above a critical local oxygen coverage, aluminum atoms are extracted from the Al surface, leading to oxygen-aluminum intermixing and the formation of aluminum oxide (γ-alumina). For Cu and O co-deposition, copper promotes oxygen-aluminum interaction by oxygen segregation and separates the resulting oxide from the Al substrate by insertion into Al and stabilization below the oxide front, preventing full mixing of Al, Cu, and O species.
Microstructure and properties of pure iron/copper composite cladding layers on carbon steel
NASA Astrophysics Data System (ADS)
Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang
2016-08-01
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
Dispersion strengthened copper
Sheinberg, H.; Meek, T.T.; Blake, R.D.
1990-01-09
A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.
Buffer layers for coated conductors
Stan, Liliana [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2011-08-23
A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.
Chirizzi, Daniela; Guascito, Maria Rachele; Filippo, Emanuela; Tepore, Antonio
2016-01-15
A new, very simple, rapid and inexpensive nonenzymatic amperometric sensor for hydrogen peroxide (H2O2) detection is proposed. It is based on the immobilization of cupric/cuprous oxide core shell nanowires (CuO@Cu2O-NWs) in a poly(vinyl alcohol) (PVA) matrix directly drop casted on a glassy carbon electrode surface to make a CuO@Cu2O core shell like NWs PVA embedded (CuO@Cu2O-NWs/PVA) sensor. CuO nanowires with mean diameters of 120-170nm and length in the range 2-5μm were grown by a simple catalyst-free thermal oxidation process based on resistive heating of pure copper wires at ambient conditions. The oxidation process of the copper wire surface led to the formation of a three layered structure: a thick Cu2O bottom layer, a CuO thin intermediate layer and CuO nanowires. CuO nanowires were carefully scratched from Cu2O layer with a sharp knife, dispersed into ethanol and sonicated. Then, the NWs were embedded in PVA matrix. The morphological and spectroscopic characterization of synthesized CuO-NWs and CuO@Cu2O-NWs/PVA were performed by transmission electron microscopy (TEM), selected area diffraction pattern (SAD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. Moreover a complete electrochemical characterization of these new CuO@Cu2O-NWs/PVA modified glassy carbon electrodes was performed by Cyclic Voltammetry (CV) and Cronoamperometry (CA) in phosphate buffer (pH=7; I=0.2) to investigate the sensing properties of this material against H2O2. The electrochemical performances of proposed sensors as high sensitivity, fast response, reproducibility and selectivity make them suitable for the quantitative determination of hydrogen peroxide substrate in batch analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwamoto, A.; Mito, T.; Takahata, K.
Heat transfer of large copper plates (18 x 76 mm) in liquid helium has been measured as a function of orientation and treatment of the heat transfer surface. The results relate to applications of large scale superconductors. In order to clarify the influence of the area where the surface treatment peels off, the authors studied five types of heat transfer surface areas including: (a) 100% polished copper sample, (b) and (c) two 50% oxidized copper samples having different patterns of oxidation, (d) 75% oxidized copper sample, (e) 90% oxidized copper sample, and (f) 100% oxidized copper sample. They observed thatmore » the critical heat flux depends on the heat transfer surface orientation. The critical heat flux is a maximum at angles of 0{degrees} - 30{degrees} and decreases monotonically with increasing angles above 30{degrees}, where the angle is taken in reference to the horizontal axis. On the other hand, the minimum heat flux is less dependent on the surface orientation. More than 75% oxidation on the surface makes the critical heat flux increase. The minimum heat fluxes of the 50 and 90% oxidized Cu samples approximately agree with that of the 100% oxidized Cu sample. Experiments and calculations show that the critical and the minimum heat fluxes are a bilinear function of the fraction of oxidized surface area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peili; Li, Lin; Nordlund, Dennis
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygenmore » evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.« less
Zhang, Peili; Li, Lin; Nordlund, Dennis; ...
2018-01-26
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygenmore » evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.« less
Inducing electric polarization in ultrathin insulating layers
NASA Astrophysics Data System (ADS)
Martinez-Castro, Jose; Piantek, Marten; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.
Studies of ultrathin polar oxide films have attracted the interest of researchers for a long time due to their different properties compared to bulk materials. However they present several challenges such as the difficulty in the stabilization of the polar surfaces and the limited success in tailoring their properties. Moreover, recently developed Van der Waals materials have shown that the stacking of 2D-layers trigger new collective states thanks to the interaction between layers. Similarly, interface phenomena emerge in polar oxides, like induced ferroelectricity. This represents a promising way for the creation of new materials with customized properties that differ from those of the isolated layers. Here we present a new approach for the fabrication and study of atomically thin insulating films. We show that the properties of insulating polar layers of sodium chloride (NaCl) can be engineered when they are placed on top of a charge modulated template of copper nitride (Cu2N). STM studies carried out in ultra-high vacuum and at low temperatures over NaCl/Cu2N/Cu(001) show that we are able to build up and stabilize interfaces of polar surface at the limit of one atomic layer showing new properties not present before at the atomic scale.
NASA Technical Reports Server (NTRS)
Meier, D. L.; Campbell, R. B.; Davis, J. R., Jr.; Rai-Choudhury, P.; Sienkiewicz, L. J.
1982-01-01
Two experimental contact systems were examined and compared to a baseline contact system consisting of evaporated layers of titanium, palladium, and silver and an electroplated layer of copper. The first experimental contact system consisted of evaporated layers of titanium, nickel, and copper and an electroplated layer of copper. This system performed as well as the baseline system in all respects, including its response to temperature stress tests, to a humidity test, and to an accelerated aging test. In addition, the cost of this system is estimated to be only 43 percent of the cost of the baseline system at a production level of 25 MW/year. The second experimental contact system consisted of evaporated layers of nickel and copper and an electroplated layer of copper. Cells with this system show serious degradation in a temperature stress test at 350 C for 30 minutes. Auger electron spectroscopy was used to show that the evaporated nickel layer is not an adequate barrier to copper diffusion even at temperatures as low as 250 C. This fact brings into question the long-term reliability of this contact system.
Kim, Jong H; Liang, Po-Wei; Williams, Spencer T; Cho, Namchul; Chueh, Chu-Chen; Glaz, Micah S; Ginger, David S; Jen, Alex K-Y
2015-01-27
An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A. T. Bollinger; Bozovic, I.
2016-08-12
Various electronic phases displayed by cuprates that exhibit high temperature superconductivity continue to attract much interest. We provide a short review of several experiments that we have performed aimed at investigating the superconducting state in these compounds. Measurements on single-phase films, bilayers, and superlattices all point to the conclusion that the high-temperature superconductivity in these materials is an essentially quasi-two dimensional phenomenon. With proper control over the film growth, high-temperature superconductivity can exist in a single copper oxide plane with the critical temperatures as high as that achieved in the bulk samples.
Modeling the ignition of a copper oxide aluminum thermite
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher
2017-01-01
An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.
Process for removing copper in a recoverable form from solid scrap metal
Hartman, Alan D.; Oden, Laurance L.; White, Jack C.
1995-01-01
A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.
The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.
Composite construction for nuclear fuel containers
Cheng, Bo-Ching [Fremont, CA; Rosenbaum, Herman S [Fremont, CA; Armijo, Joseph S [Saratoga, CA
1987-01-01
An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.
Role of different chelating agent in synthesis of copper doped tin oxide (Cu-SnO2) nanoparticles
NASA Astrophysics Data System (ADS)
Saravanakumar, B.; Anusiya, A.; Rani, B. Jansi; Ravi, G.; Yuvakkumar, R.
2018-05-01
An attempt was made to synthesis the copper doped tin oxide (Cu-SnO2) nanoparticles by adopting different chelating agents (NaOH, KOH and C2H2O4) by Sol-gel process. The synthesized products were characterized by XRD, Photoluminescence (PL), Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Cu-SnO2 shows the maximum peak at 33.8° with lattice plane (101). The PL peak at 361 and 382 nm due to the recombination of electron in conduction band to valence band infers the optical properties. The IR spectra correspond to the peak at 551 and 620 cm-1 attributed to the characteristics peak for Cu-SnO2 nanoparticles. The SEM images for all three Cu-SnO2 nanoparticles formed by three chelating agent (NaOH, KOH and C2H2O4) facilitates the formation mechanism and the chelating agent Oxalic acid results in formation of nano flowers with diverse layers orientated in random direction. Further SEM studies reveal that, the Cu-SnO2 nanoparticles formed by oxalic acid could posses high surface area with large number layered structured enables the better electrochemical properties and its applications.
Low temperature wafer-level bonding for hermetic packaging of 3D microsystems
NASA Astrophysics Data System (ADS)
Tan, C. S.; Fan, J.; Lim, D. F.; Chong, G. Y.; Li, K. H.
2011-07-01
Metallic copper-copper (Cu-Cu) thermo-compression bonding, oxide-oxide (SiO2-SiO2) fusion bonding and silicon-silicon (Si-Si) direct bonding are investigated for potential application as hermetic seal in 3D microsystem packaging. Cavities are etched to a volume of 1.4 × 10-3 cm3 in accordance with the MIL-STD-883E standard prescribed for microelectronics packaging. In the case of metal bonding, a clean Cu layer with a thickness of 300 nm and a Ti barrier layer with an underlying thickness of 50 nm are used. The wafer pair is bonded at 300 °C under the application of a bonding force of 5500 N for 1 h. On the other hand, Si-Si bonding and SiO2-SiO2 bonding are initiated at room ambient after surface activation, followed by annealing in inert ambient at 300 °C for 1 h. The bonded cavities are stored in a helium bomb chamber and the leak rate is measured with a mass spectrometer. An excellent helium leak rate below 5 × 10-9 atm cm3 s-1 is detected for all cases and this is at least ten times better than the reject limit.
Absorptive coating for aluminum solar panels
NASA Technical Reports Server (NTRS)
Desmet, D.; Jason, A.; Parr, A.
1979-01-01
Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.
What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?
NASA Astrophysics Data System (ADS)
Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed
2017-02-01
Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.
NASA Astrophysics Data System (ADS)
Wang, Zicheng; Wei, Renbo; Liu, Xiaobo
2017-01-01
Reduced graphene oxide/copper phthalocyanine nanocomposites are successfully prepared through a simple and effective two-step method, involving preferential reduction of graphene oxide and followed by self-assembly with copper phthalocyanine. The results of photographs, ultraviolet visible, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy show that the in situ blending method can effectively facilitate graphene sheets to disperse homogenously in the copper phthalocyanine matrix through π- π interactions. As a result, the reduction of graphene oxide and restoration of the sp 2 carbon sites in graphene can enhance the dielectric properties and alternating current conductivity of copper phthalocyanine effectively.
Analytical Transmission Electron Microscopy Studies on Copper-Alumina Interfaces.
1999-06-01
association with alumina, such as, copper, aluminum, chromium, silver, and gold . In particular, copper has been chosen because of its excellent...similar results in variance. However, the oxide calculation program assumes that all elements are 100% oxidized with no monoatomic species or mixed oxide
Rehana, Dilaveez; Mahendiran, D; Kumar, R Senthil; Rahiman, A Kalilur
2017-05-01
Copper oxide (CuO) nanoparticles were synthesized by green chemistry approach using different plant extracts obtained from the leaves of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera and Tamarindus indica. In order to compare their efficiency, the same copper oxide nanoparticles was also synthesized by chemical method. Phytochemical screening of the leaf extracts showed the presence of carbohydrates, flavonoids, glycosides, phenolic compounds, saponins, tannins, proteins and amino acids. FT IR spectra confirmed the possible biomolecules responsible for the formation of copper oxide nanoparticles. The surface plasmon resonance absorption band at 220-235nm in the UV-vis spectra also supports the formation of copper oxide nanoparticles. XRD patterns revealed the monoclinic phase of the synthesized copper oxide nanoparticles. The average size, shape and the crystalline nature of the nanoparticles were determined by SEM, TEM and SAED analysis. EDX analysis confirmed the presence of elements in the synthesized nanoparticles. The antioxidant activity was evaluated by three different free radical scavenging assays. The cytotoxicity of copper oxide nanoparticles was evaluated against four cancer cell lines such as human breast (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549), and one normal human dermal fibroblast (NHDF) cell line. The morphological changes were evaluated using Hoechst 33258 staining assay. Copper oxide nanoparticles synthesized by green method exhibited high antioxidant and cytotoxicity than that synthesized by chemical method. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Selvarajan, S; Suganthi, A; Rajarajan, M
2018-06-01
A silver/polypyrrole/copper oxide (Ag/PPy/Cu 2 O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu 2 O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu 2 O/GCE) and silver/polypyrrole/copper oxide/glassy carbon electrode (Ag/PPy/Cu 2 O/GCE). The Ag/PPy/Cu 2 O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L -1 and the detection limit was found to be 0.0124 μmol L -1 . It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and low-cost serotonin sensor for practical routine analyses. The proposed method is potential to expand the possible applied range of the nanocomposite material for detection of various concerned electro active substances. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fan, Wei
To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers, compared with pure TiO2. A modified 3-element model was adopted to extract the true C-V behavior of the TiAlOx-based MOS capacitor. Extremely small equivalent oxide thickness (EOT) less than 0.5 nm with dielectric leakage 4˜5 magnitude lower than that for SiO2 has been achieved on TiAlOx layer as a result of its excellent dielectric properties.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1980-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.
Intracellular Copper Does Not Catalyze the Formation of Oxidative DNA Damage in Escherichia coli▿
Macomber, Lee; Rensing, Christopher; Imlay, James A.
2007-01-01
Because copper catalyzes the conversion of H2O2 to hydroxyl radicals in vitro, it has been proposed that oxidative DNA damage may be an important component of copper toxicity. Elimination of the copper export genes, copA, cueO, and cusCFBA, rendered Escherichia coli sensitive to growth inhibition by copper and provided forcing circumstances in which this hypothesis could be tested. When the cells were grown in medium supplemented with copper, the intracellular copper content increased 20-fold. However, the copper-loaded mutants were actually less sensitive to killing by H2O2 than cells grown without copper supplementation. The kinetics of cell death showed that excessive intracellular copper eliminated iron-mediated oxidative killing without contributing a copper-mediated component. Measurements of mutagenesis and quantitative PCR analysis confirmed that copper decreased the rate at which H2O2 damaged DNA. Electron paramagnetic resonance (EPR) spin trapping showed that the copper-dependent H2O2 resistance was not caused by inhibition of the Fenton reaction, for copper-supplemented cells exhibited substantial hydroxyl radical formation. However, copper EPR spectroscopy suggested that the majority of H2O2-oxidizable copper is located in the periplasm; therefore, most of the copper-mediated hydroxyl radical formation occurs in this compartment and away from the DNA. Indeed, while E. coli responds to H2O2 stress by inducing iron sequestration proteins, H2O2-stressed cells do not induce proteins that control copper levels. These observations do not explain how copper suppresses iron-mediated damage. However, it is clear that copper does not catalyze significant oxidative DNA damage in vivo; therefore, copper toxicity must occur by a different mechanism. PMID:17189367
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oe, Shinji, E-mail: ooes@med.uoeh-u.ac.jp; Miyagawa, Koichiro, E-mail: koichiro@med.uoeh-u.ac.jp; Honma, Yuichi, E-mail: y-homma@med.uoeh-u.ac.jp
Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ERmore » stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.« less
Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher
2015-06-01
An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).
Chen, Guangcun; Lin, Huirong; Chen, Xincai
2016-12-28
Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.
NASA Astrophysics Data System (ADS)
Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.
2018-05-01
Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.
Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model.
Pereira, Talita Carneiro Brandão; Campos, Maria Martha; Bogo, Maurício Reis
2016-07-01
Copper is an essential micronutrient and a key catalytic cofactor in a wide range of enzymes. As a trace element, copper levels are tightly regulated and both its deficit and excess are deleterious to the organism. Under inflammatory conditions, serum copper levels are increased and trigger oxidative stress responses that activate inflammatory responses. Interestingly, copper dyshomeostasis, oxidative stress and inflammation are commonly present in several chronic diseases. Copper exposure can be easily modeled in zebrafish; a consolidated model in toxicology with increasing interest in immunity-related research. As a result of developmental, economical and genetic advantages, this freshwater teleost is uniquely suitable for chemical and genetic large-scale screenings, representing a powerful experimental tool for a whole-organism approach, mechanistic studies, disease modeling and beyond. Copper toxicological and more recently pro-inflammatory effects have been investigated in both larval and adult zebrafish with breakthrough findings. Here, we provide an overview of copper metabolism in health and disease and its effects on oxidative stress and inflammation responses in zebrafish models. Copper-induced inflammation is highlighted owing to its potential to easily mimic pro-oxidative and pro-inflammatory features that combined with zebrafish genetic tractability could help further in the understanding of copper metabolism, inflammatory responses and related diseases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Development of Sediment Quality Values for Puget Sound. Volume 1.
1986-09-01
62 cadmium CHROMIUM,63 chromium COPPER ,64 copper IRON ,65 iron LEAD ,66 lead MANGANES ,67 manganese NICKEL ,68 nickel SELENIUM,69 selenium SILVER ,70...BERYLLIU beryllium 67. CADMIUM cadmium 68. CHROMIUM chromium 69. COPPER copper 70. IRON iron 71. LEAD lead 72. MANGANES manganese 73. NICKEL nickel 74...they can also be strongly influenced by iron and manganese oxide and hydrous oxide surfaces (these phases can scavenge metals under oxidizing
Composite construction for nuclear fuel containers
Cheng, B. C.; Rosenbaum, H. S.; Armijo, J. S.
1987-04-21
Disclosed is an improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof. 1 fig.
Development of graphite/copper composites utilizing engineered interfaces. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.
1991-01-01
In situ measurements of graphite/copper alloy contact angles were made using the sessile drop method. The interfacial energy values obtained from these measurements were then applied to a model for the fiber matrix interfacial debonding phenomenon found in graphite/copper composites. The formation obtained from the sessile drop tests led to the development of a copper alloy that suitably wets graphite. Characterization of graphite/copper alloy interfaces subjected to elevated temperatures was conducted using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Auger Electron Spectroscopy, and X Ray Diffraction analyses. These analyses indicated that during sessile drop tests conducted at 1130 C for 1 hour, copper alloys containing greater than 0.98 at pct chromium form continuous reaction layers of approx. 10 microns in thickness. The reaction layers are adherent to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 deg or less. X ray diffraction results indicate that the reaction layer is Cr3C2.
Electronic properties and morphology of copper oxide/n-type silicon heterostructures
NASA Astrophysics Data System (ADS)
Lindberg, P. F.; Gorantla, S. M.; Gunnæs, A. E.; Svensson, B. G.; Monakhov, E. V.
2017-08-01
Silicon-based tandem heterojunction solar cells utilizing cuprous oxide (Cu2O) as the top absorber layer show promise for high-efficiency conversion and low production cost. In the present study, single phase Cu2O films have been realized on n-type Si substrates by reactive magnetron sputtering at 400 °C. The obtained Cu2O/Si heterostructures have subsequently been heat treated at temperatures in the 400-700 °C range in Ar flow and extensively characterized by x-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) imaging and electrical techniques. The Cu2O/Si heterojunction exhibits a current rectification of ~5 orders of magnitude between forward and reverse bias voltages. High resolution cross-sectional TEM-images show the presence of a ~2 nm thick interfacial SiO2 layer between Cu2O and the Si substrate. Heat treatments below 550 °C result in gradual improvement of crystallinity, indicated by XRD. At and above 550 °C, partial phase transition to cupric oxide (CuO) occurs followed by a complete transition at 700 °C. No increase or decrease of the SiO2 layer is observed after the heat treatment at 550 °C. Finally, a thin Cu-silicide layer (Cu3Si) emerges below the SiO2 layer upon annealing at 550 °C. This silicide layer influences the lateral current and voltage distributions, as evidenced by an increasing effective area of the heterojunction diodes.
NASA Astrophysics Data System (ADS)
Ingo, Gabriel M.; Bustamante, Angel D.; Alva, Walter; Angelini, Emma; Cesareo, Roberto; Gigante, Giovanni E.; Zambrano, Sandra Del Pilar A.; Riccucci, Cristina; Di Carlo, Gabriella; Parisi, Erica I.; Faraldi, Federica; Chero, Luis; Fabian, Julio S.
2013-12-01
Twenty five years ago, close to the northern Peruvian town of Lambayeque (Huaca Rajada) beneath two large and eroded pyramids, built of adobe mud bricks, Professor Alva discovered the world-famous unlooted pre-Columbian burial chambers of the Royal Tombs of Sipan. The tombs contained a large amount of objects of exceptional artistic and historical value including the greatest intact number of gold and silver artefacts in the Americas to be considered one of the most important archaeological discoveries of the last century. Some copper based objects coated with thin layers of gold have been studied by means of the combined use of analytical techniques such as optical microscopy (OM), scanning electron microscopy coupled with energy dispersive X-ray micro-analysis (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) in order to identify the chemical composition and the manufacturing processes of the gold layer as well as the corrosion products formed during the long-term burial. The micro-chemical and structural results give useful information about the manufacturing techniques used by the Moche metalsmiths to modify the surface chemical composition of the coated artefacts likely based on the depletion gilding process carried out by oxidising the surface copper containing the noble metal and etching away the copper oxides. Furthermore, the results reveal that the main degradation agent is the ubiquitous chlorine and that copper has been almost completely transformed during the burial into mineral species giving rise to the formation of stratified structures constituted by different mineral phases such as cuprous oxide (Cu2O) and copper carbonates [azurite (Cu3(CO3)2(OH)2 and malachite (CuCO3Cu(OH)2)] as well as dangerous chlorine-based compounds such as nantokite (CuCl) and atacamite (Cu2(OH)3Cl) polymorphs. These information evidence the strict interaction of the alloying elements with the soil components as well as the occurrence of the copper cyclic corrosion as post-burial degradation phenomenon. The present study confirms that the combined use of micro-chemical and micro-structural investigation techniques such as SEM-EDS, XPS, XRD, and OM can be successfully used to investigate the technological manufacturing processes of the ancient coated artefacts and to achieve information about degradation agents and mechanisms useful to define tailored conservation strategies possibly including new, more reliable, and safer materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang
Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less
NASA Astrophysics Data System (ADS)
Zainul, R.; Oktavia, B.; Dewata, I.; Efendi, J.
2018-04-01
This research aims to investigate the process of forming a multi-scale copper oxide semiconductor (CuO/Cu2O) through a process of calcining a copper plate. The changes that occur during the formation of the oxide are thermally and surface evaluated. Evaluation using Differential Thermal Analysis (DTA) obtained by surface change of copper plate happened at temperature 380°C. Calcination of oxide formation was carried out at temperature 380°C for 1 hour. Surface evaluation process by using Scanning Electron Microscope (SEM) surface and cross-section, to determine diffusion of oxide formation on copper plate. The material composition is monitored by XRF and XRD to explain the process of structural and physical changes of the copper oxide plate formed during the heating process. The thickness of Cu plates used is 200-250 μm. SEM analysis results, the oxygen atom interruption region is in the range of 20-30 μm, and diffuses deeper during thermal oxidation process. The maximum diffusion depth of oxygen atoms reaches 129 μm.
Comparative study on the passivation layers of copper sulphide minerals during bioleaching
NASA Astrophysics Data System (ADS)
Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long
2012-10-01
The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.
Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC
2008-05-27
A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.
NASA Astrophysics Data System (ADS)
Das, Sayantan; Alford, T. L.
2013-06-01
Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.
NASA Astrophysics Data System (ADS)
Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz
2017-10-01
Graphene-based p-type dye-sensitized solar cells (p-DSSCs) have been proposed and fabricated using copper oxide urchin-like nanostructures (COUN) as photocathode with an FeS2 counter electrode (CE). COUN composed of Cu2O core sphere and CuO shell nanorods with overall diameters of 2 to 4 μm were grown by a simple hydrothermal method with self-assemble nucleation. It was figured out that the formation of copper oxide core/shell structures could be adjusted by an ammonia additive leading to pH change of the precursor solution. In addition to a photocathode, we also demonstrated FeS2 thin films as an efficient CE material alternative to the conventional Pt CEs in DSSCs. FeS2 nanostructures, with diameters of 50 to 80 nm, were synthesized by a similar hydrothermal approach. FeS2 nanostructures are demonstrated to be an outstanding CE material in p-DSSCs. We report graphene/COUN as photocathode and Pt/FeS2 as CE in p-DSSCs, and results show that the synergetic combination of electrodes in each side (increased interconnectivity between COUN and graphene layer, high surface area, and high catalytic activity of FeS2) increased the power conversion efficiency from 1.56% to 3.14%. The excellent performances of COUN and FeS2 thin film in working and CEs, respectively, make them unique choices among the various photocathode and CE materials studied.
NASA Astrophysics Data System (ADS)
Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.
2014-09-01
SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.
Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction
Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; ...
2016-12-16
Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO 2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stablemore » under the strongly reducing conditions found in CO 2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.« less
Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W
2014-05-27
Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.
Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe
2018-03-29
The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Shoshani-Dror, Dana; Guillemin, Claire
High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy.more » Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and oxidative stress of liver.« less
A novel anti-influenza copper oxide containing respiratory face mask.
Borkow, Gadi; Zhou, Steve S; Page, Tom; Gabbay, Jeffrey
2010-06-25
Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties. We demonstrate that impregnation of copper oxide into respiratory protective face masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.66+/-0.51 and 6.17+/-0.37 log(10)TCID(50) of human influenza A virus (H1N1) and avian influenza virus (H9N2), respectively, under simulated breathing conditions (28.3 L/min). Importantly, no infectious human influenza A viral titers were recovered from the copper oxide containing masks within 30 minutes (< or = 0.88 log(10)TCID(50)), while 4.67+/-1.35 log(10)TCID(50) were recovered from the control masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were < or = 0.97+/-0.01 log(10)TCID(50) and from the control masks 5.03+/-0.54 log(10)TCID(50). The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards. Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical barrier properties. The use of biocidal masks may significantly reduce the risk of hand or environmental contamination, and thereby subsequent infection, due to improper handling and disposal of the masks.
Oxidation Potentials in Matte Smelting of Copper and Nickel
NASA Astrophysics Data System (ADS)
Matousek, Jan W.
2014-09-01
The oxidation potential, given as the base-ten logarithm of the oxygen partial pressure in bars and the temperature [log pO2/ T, °C], defines the state of oxidation of pyrometallurgical extraction and refining processes. This property varies from copper making, [-6/1150]; to lead/zinc smelting, [-10/1200]; to iron smelting, [-13/1600]. The current article extends the analysis to the smelting of copper and nickel/copper sulfide concentrates to produce mattes of the type Cu(Ni)FeS(O) and iron silicate slags, FeOxSiO2—with oxidation potentials of [-7.5/1250].
Park, Hyesung; Howden, Rachel M; Barr, Miles C; Bulović, Vladimir; Gleason, Karen; Kong, Jing
2012-07-24
For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene's hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (η(p,LPCVD) = 3.01%, and η(p,ITO) = 3.20%).
NASA Astrophysics Data System (ADS)
Inagaki, S.; Sueoka, S.; Harafuji, K.
2017-06-01
Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.
Surface chemistry of liquid metals
NASA Technical Reports Server (NTRS)
Mann, J. Adin, Jr.; Peebles, Henry; Peebles, Diamond; Rye, Robert; Yost, Fred
1993-01-01
The fundamental surface chemistry of the behavior of liquid metals spreading on a solid substrate is not at all well understood. Each of these questions involves knowing the details of the structure of interfaces and their dynamics. For example the structure of a monolayer of tin oxide on pure liquid tin is unknown. This is in contrast to the relatively large amount of data available on the structure of copper oxide monolayers on solid, pure copper. However, since liquid tin has a vapor pressure below 10(exp -10)torr for a reasonable temperature range above its melting point, it is possible to use the techniques of surface science to study the geometric, electronic and vibrational structures of these monolayers. In addition, certain techniques developed by surface chemists for the study of liquid systems can be applied to the ultra-high vacuum environment. In particular we have shown that light scattering spectroscopy can be used to study the surface tension tensor of these interfaces. The tin oxide layer in particular is very interesting in that the monolayer is rigid but admits of bending. Ellipsometric microscopy allows the visualization of monolayer thick films and show whether island formation occurs at various levels of dosing.
Comparison of the Oxidation Rates of Some New Copper Alloys
NASA Technical Reports Server (NTRS)
Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.
2002-01-01
Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.
Radiation induced corrosion of copper for spent nuclear fuel storage
NASA Astrophysics Data System (ADS)
Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats
2013-11-01
The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.
Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong
2015-02-01
The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.
Radio frequency surface resistance of Tl-Ba-Ca-Cu-O films on metal and single-crystal substrates
NASA Astrophysics Data System (ADS)
Arendt, P. N.; Reeves, G. A.; Elliott, N. E.; Cooke, D. W.; Gray, E. R.; Houlton, R. J.; Brown, D. R.
1990-01-01
Films of Tl-Ba-Ca-Cu were dc magnetron sputtered from a single multielement target. The films were deposited onto substrates of: (1) magnesium oxide, (2) a silver based alloy (Consil 995), (3) a nickel based alloy (Haynes 230), and (4) buffer layers of barium fluoride or copper oxide on Consil. To form superconducting phases, post-deposition anneals were made on these films using an alumina crucible with an over pressure of thallium and flowing oxygen. After annealing, the film phases were determined using x-ray diffraction. The film surface resistances (Rs) were measured at 22 GHz in a TE011 cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilert, André; Roberts, F. Sloan; Friebel, Daniel
Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less
NASA Astrophysics Data System (ADS)
Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei
2015-07-01
The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.
Puértolas, B; Navlani-García, M; García, T; Navarro, M V; Lozano-Castelló, D; Cazorla-Amorós, D
2014-08-30
A key target to reduce current hydrocarbon emissions from vehicular exhaust is to improve their abatement under cold-start conditions. Herein, we demonstrate the potential of factorial analysis to design a highly efficient catalytic trap. The impact of the synthesis conditions on the preparation of copper-loaded ZSM-5 is clearly revealed by XRD, N2 sorption, FTIR, NH3-TPD, SEM and TEM. A high concentration of copper nitrate precursor in the synthesis improves the removal of hydrocarbons, providing both strong adsorption sites for hydrocarbon retention at low temperature and copper oxide nanoparticles for full hydrocarbon catalytic combustion at high temperature. The use of copper acetate precursor leads to a more homogeneous dispersion of copper oxide nanoparticles also providing enough catalytic sites for the total oxidation of hydrocarbons released from the adsorption sites, although lower copper loadings are achieved. Thus, synthesis conditions leading to high copper loadings jointly with highly dispersed copper oxide nanoparticles would result in an exceptional catalytic trap able to reach superior hydrocarbon abatement under highly demanding operational conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Naddaf, M.
2017-01-01
Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.
NASA Astrophysics Data System (ADS)
Moosavi, Saeideh Sadat; Norouzbeigi, Reza; Velayi, Elmira
2017-11-01
In the present work, copper oxide superhydrophobic surface is fabricated on a copper foil via the chemical bath deposition (CBD) method. The effects of some influential factors such as initial concentrations of Cu (II) ions and the surface energy modifier, solution pH, reaction and modification steps time on the wettability property of copper oxide surface were evaluated using Taguchi L16 experimental design. Results showed that the initial concentration of Cu (II) has the most significant impact on the water contact angle and wettability characteristics. The XRD, SEM, AFM and FTIR analyses were used to characterize the copper oxide surfaces. The Water contact angle (WCA) and contact angle hysteresis (CAH) were also measured. The SEM results indicated the formation of a flower-like micro/nano dual-scale structure of copper oxide on the substrate. This structure composed of numerous nano-petals with a thickness of about 50 nm. As a result, a copper oxide hierarchical surface with WCA of 168.4°± 3.5° and CAH of 2.73° exhibited the best superhydrophobicity under proposed optimum condition. This result has been obtained just by 10 min hydrolysis reaction. Besides, this surface showed a good stability under acidic and saline conditions.
Metal-free, flexible triboelectric generator based on MWCNT mesh film and PDMS layers
NASA Astrophysics Data System (ADS)
Hwang, Hayoung; Lee, Kang Yeol; Shin, Dongjoon; Shin, Jungho; Kim, Sangtae; Choi, Wonjoon
2018-06-01
We demonstrate a metal-free triboelectric energy harvester consisted of MWCNT mesh film and PDMS layer. Upon touch from a finger, the single electrode-mode energy harvester generates up to 27.0 W/m2 output power at 10 MΩ matched impedance. The device generates stable power upon touch by bare fingers or gloved fingers. Using copper counter electrode results in decreased power output, due to the weaker tendency in triboelectrification. The power output also scales with the pressure applied by the finger. The intertwined, condensed MWCNT network acts as a flexible yet effective current collector, with resistance across the device less than 10 Ω. This current collector possesses strong corrosion resistance and stability against potential oxidation, while its metal counterpart may undergo oxidation over extended exposure to air or frequent fracture upon straining. The flexible device form may be applied to various curved or irregular surfaces that undergo frequent human touches.
Integration of P-CuO Thin Sputtered Layers onto Microsensor Platforms for Gas Sensing
Presmanes, Lionel; Thimont, Yohann; el Younsi, Imane; Chapelle, Audrey; Blanc, Frédéric; Talhi, Chabane; Bonningue, Corine; Barnabé, Antoine; Menini, Philippe; Tailhades, Philippe
2017-01-01
P-type semiconducting copper oxide (CuO) thin films deposited by radio-frequency (RF) sputtering were integrated onto microsensors using classical photolithography technologies. The integration of the 50-nm-thick layer could be successfully carried out using the lift-off process. The microsensors were tested with variable thermal sequences under carbon monoxide (CO), ammonia (NH3), acetaldehyde (C2H4O), and nitrogen dioxide (NO2) which are among the main pollutant gases measured by metal-oxide (MOS) gas sensors for air quality control systems in automotive cabins. Because the microheaters were designed on a membrane, it was then possible to generate very rapid temperature variations (from room temperature to 550 °C in only 50 ms) and a rapid temperature cycling mode could be applied. This measurement mode allowed a significant improvement of the sensor response under 2 and 5 ppm of acetaldehyde. PMID:28621738
A dendrite-suppressing composite ion conductor from aramid nanofibres.
Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A
2015-01-27
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu
2014-10-15
Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less
Eilert, André; Roberts, F. Sloan; Friebel, Daniel; ...
2016-04-04
Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less
Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan
2016-05-11
Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.
Goyal, Amit; Kroeger, Donald M.; Paranthaman, Mariappan; Lee, Dominic F.; Feenstra, Roeland; Norton, David P.
2002-01-01
A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO.sub.2, YSZ, LaAlO.sub.3, SrTiO.sub.3, Y.sub.2 O.sub.3, RE.sub.2 O.sub.3, SrRuO.sub.3, LaNiO.sub.3 and La.sub.2 ZrO.sub.3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.
Method for forming nuclear fuel containers of a composite construction and the product thereof
Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.
1984-01-01
An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.
Multilayer graphene as an effective corrosion protection coating for copper
NASA Astrophysics Data System (ADS)
Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu
2018-04-01
Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.
Solution-processed copper-nickel nanowire anodes for organic solar cells
NASA Astrophysics Data System (ADS)
Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.
2014-05-01
This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h
Catalytic production of metal carbonyls from metal oxides
Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.
1984-01-01
This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.
Catalytic production of metal carbonyls from metal oxides
Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.
1984-01-06
This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.
NASA Astrophysics Data System (ADS)
Back, Seunghyun; Kang, Bongchul
2018-02-01
Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.
Transformations of C2-C4 alcohols on the surface of a copper catalyst
NASA Astrophysics Data System (ADS)
Magaeva, A. A.; Lyamina, G. V.; Sudakova, N. N.; Shilyaeva, L. P.; Vodyankina, O. V.
2007-10-01
The interaction of monoatomic alcohols C2-C4 with the surface of a copper catalyst preliminarily oxidized under various conditions was studied by the temperature-programmed reaction method to determine the detailed mechanism of partial oxidation. The conditions of oxygen preadsorption on the surface of copper for the preparation of the desired products were determined. The selective formation of carbonyl compounds was shown to occur at the boundary between reduced and oxidized copper surface regions. The role played by Cu2O was the deep oxidation of alcohols to CO2. Alcohols with branched hydrocarbon structures experienced parallel partial oxidation and dehydrogenation, which was related to the high stability of intermediate keto-type compounds.
NASA Astrophysics Data System (ADS)
Solomon, J. S.
1981-05-01
The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.
NASA Astrophysics Data System (ADS)
Yonezawa, Tetsu; Takeoka, Shinsuke; Kishi, Hiroshi; Ida, Kiyonobu; Tomonari, Masanori
2008-04-01
Well size-controlled copper fine particles (diameter: 100-300 nm) were used as the inner electrode material of multilayered ceramic capacitors (MLCCs). The particles were dispersed in terpineol to form a printing paste with 50 wt% copper particles. The MLCC precursor modules prepared by the layer-by-layer printing of copper and BaTiO3 particles were cosintered. Detailed observation of the particles, paste, and MLCCs before and after sintering was carried out by electron microscopy. The sintering temperature of Cu-MLCC was as low as 960 °C. The permittivity of these MLCCs was successfully measured with the copper inner layers.
Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance.
Abdulagatov, A I; Yan, Y; Cooper, J R; Zhang, Y; Gibbs, Z M; Cavanagh, A S; Yang, R G; Lee, Y C; George, S M
2011-12-01
Al(2)O(3) and TiO(2) atomic layer deposition (ALD) were employed to develop an ultrathin barrier film on copper to prevent water corrosion. The strategy was to utilize Al(2)O(3) ALD as a pinhole-free barrier and to protect the Al(2)O(3) ALD using TiO(2) ALD. An initial set of experiments was performed at 177 °C to establish that Al(2)O(3) ALD could nucleate on copper and produce a high-quality Al(2)O(3) film. In situ quartz crystal microbalance (QCM) measurements verified that Al(2)O(3) ALD nucleated and grew efficiently on copper-plated quartz crystals at 177 °C using trimethylaluminum (TMA) and water as the reactants. An electroplating technique also established that the Al(2)O(3) ALD films had a low defect density. A second set of experiments was performed for ALD at 120 °C to study the ability of ALD films to prevent copper corrosion. These experiments revealed that an Al(2)O(3) ALD film alone was insufficient to prevent copper corrosion because of the dissolution of the Al(2)O(3) film in water. Subsequently, TiO(2) ALD was explored on copper at 120 °C using TiCl(4) and water as the reactants. The resulting TiO(2) films also did not prevent the water corrosion of copper. Fortunately, Al(2)O(3) films with a TiO(2) capping layer were much more resilient to dissolution in water and prevented the water corrosion of copper. Optical microscopy images revealed that TiO(2) capping layers as thin as 200 Å on Al(2)O(3) adhesion layers could prevent copper corrosion in water at 90 °C for ~80 days. In contrast, the copper corroded almost immediately in water at 90 °C for Al(2)O(3) and ZnO films by themselves on copper. Ellipsometer measurements revealed that Al(2)O(3) films with a thickness of ~200 Å and ZnO films with a thickness of ~250 Å dissolved in water at 90 °C in ~10 days. In contrast, the ellipsometer measurements confirmed that the TiO(2) capping layers with thicknesses of ~200 Å on the Al(2)O(3) adhesion layers protected the copper for ~80 days in water at 90 °C. The TiO(2) ALD coatings were also hydrophilic and facilitated H(2)O wetting to copper wire mesh substrates. © 2011 American Chemical Society
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...
Klimuszko, Elzbieta; Orywal, Karolina; Sierpinska, Teresa; Sidun, Jarosław; Golebiewska, Maria
2018-01-01
The objectives of the study were to evaluate the content of copper and zinc in individual layers of tooth enamel and to analyze the relationships between the study minerals in individual layers of tooth enamel. Fifteen human permanent teeth were cut off every 150 μm alongside the labial surface. Acid biopsy of each layer was performed. The zinc content was determined using the air-acetylene flame method. The copper content was determined using the electrothermal technique with argon. The mean zinc concentrations increased significantly starting from the outer enamel surface, with the maximum concentration in the 150-300 μm layer. The mean copper concentrations increased substantially from the outer enamel surface to a depth of 150 μm, and then a slight downward trend of this mineral levels was seen, down to a depth of 450 μm. Strong positive correlation was found between the zinc and copper concentrations at depths of 150-300, 450-600 and 600-750 μm. The levels of zinc and copper in the outer enamel layers may have an effect on the increased content of unipolar minerals at deeper enamel layers. The content of the study elements determined may reflect the process of mineralization and maturation of enamel in the pre-eruption period.
Oxidation of nitroxyl anion to nitric oxide by copper ions
Nelli, Silvia; Hillen, Mark; Buyukafsar, Kansu; Martin, William
2000-01-01
This study made use of a nitric oxide-sensitive electrode to examine possible means of generating nitric oxide from nitroxyl anion (NO−) released upon the decomposition of Angeli's salt. Our results show that copper ions (from CuSO4) catalyze the rapid and efficient oxidation of nitroxyl to nitric oxide. Indeed, the concentrations of copper required to do so (0.1–100 μM) are roughly 100-times lower than those required to generate equivalent amounts of nitric oxide from S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Experiments with ascorbate (1 mM), which reduces Cu2+ ions to Cu+, and with the Cu2+ chelators, EDTA and cuprizone, and the Cu+ chelator, neocuproine, each at 1 mM, suggest that the oxidation is catalyzed by copper ions in both valency states. Some compounds containing other transition metals, i.e. methaemoglobin, ferricytochrome c and Mn(III)TMPyP, were much less efficient than CuSO4 in catalyzing the formation of nitric oxide from nitroxyl, while FeSO4, FeCl3, MnCl2, and ZnSO4 were inactive. Of the copper containing enzymes examined, Cu-Zn superoxide dismutase and ceruloplasmin were weak generators of nitric oxide from nitroxyl, even at concentrations (2500 and 30 u ml−1, respectively) vastly greater than are present endogenously. Two others, ascorbate oxidase (10 u ml−1) and tyrosinase (250 u ml−1) were inactive. Our findings suggest that a copper-containing enzyme may be responsible for the rapid oxidation of nitroxyl to nitric oxide by cells, but the identity of such an enzyme remains elusive. PMID:10991931
Zhang, X; Turcheniuk, K; Zusmann, B; Benson, J; Nelson, S; Luo, S; Magasinski, A; Yushin, G
2018-05-24
In this work, we report a novel, one-step, inexpensive and environmentally friendly synthesis of Cu nanostructures by means of chemical de-alloying of bulk Cu-Ca alloys in aqueous solutions. By controlling the synthesis conditions, we tune the morphology of the nanostructured Cu from nanoporous Cu to copper oxide nanowires.
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
Process Of Bonding Copper And Tungsten
Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.
2000-07-18
Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.
A Novel Anti-Influenza Copper Oxide Containing Respiratory Face Mask
Borkow, Gadi; Zhou, Steve S.; Page, Tom; Gabbay, Jeffrey
2010-01-01
Background Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties. Methodology/Principal Findings We demonstrate that impregnation of copper oxide into respiratory protective face masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.66±0.51 and 6.17±0.37 log10TCID50 of human influenza A virus (H1N1) and avian influenza virus (H9N2), respectively, under simulated breathing conditions (28.3 L/min). Importantly, no infectious human influenza A viral titers were recovered from the copper oxide containing masks within 30 minutes (≤0.88 log10TCID50), while 4.67±1.35 log10TCID50 were recovered from the control masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were ≤0.97±0.01 log10TCID50 and from the control masks 5.03±0.54 log10TCID50. The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards. Conclusions/Significance Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical barrier properties. The use of biocidal masks may significantly reduce the risk of hand or environmental contamination, and thereby subsequent infection, due to improper handling and disposal of the masks. PMID:20592763
Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie
2014-01-01
An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.
Schumann, Julia; Kröhnert, Jutta; Frei, Elias; ...
2017-08-28
Carbon monoxide was applied as probe molecule to compare the surface of a ZnO-containing (Cu/ZnO:Al) and a ZnO-free (Cu/MgO) methanol synthesis catalyst (copper content 70 atomic %) after reduction in hydrogen at 523 K by DRIFT spectroscopy. Nano-structured, mainly metallic copper was detected on the surface of the Cu/MgO catalyst. In contrast, the high energy of the main peak in the spectrum of CO adsorbed on reduced Cu/ZnO:Al (2125 cm -1) proves that metallic copper is largely absent on the surface of this catalyst. The band is assigned to Zn δ+–CO. The presence of not completely reduced Cu δ+–CO speciesmore » cannot be excluded. The results are interpreted in terms of a partial coverage of the copper nano-particles in the Cu/ZnO:Al catalyst by a thin layer of metastable, defective zinc oxide. Minor contributions in the spectrum at 2090 and 2112 cm -1 due to nano-structured Cu 0–CO and CO adsorbed on highly defective Cu 0, respectively, indicate that the coverage of metallic copper is not complete.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumann, Julia; Kröhnert, Jutta; Frei, Elias
Carbon monoxide was applied as probe molecule to compare the surface of a ZnO-containing (Cu/ZnO:Al) and a ZnO-free (Cu/MgO) methanol synthesis catalyst (copper content 70 atomic %) after reduction in hydrogen at 523 K by DRIFT spectroscopy. Nano-structured, mainly metallic copper was detected on the surface of the Cu/MgO catalyst. In contrast, the high energy of the main peak in the spectrum of CO adsorbed on reduced Cu/ZnO:Al (2125 cm -1) proves that metallic copper is largely absent on the surface of this catalyst. The band is assigned to Zn δ+–CO. The presence of not completely reduced Cu δ+–CO speciesmore » cannot be excluded. The results are interpreted in terms of a partial coverage of the copper nano-particles in the Cu/ZnO:Al catalyst by a thin layer of metastable, defective zinc oxide. Minor contributions in the spectrum at 2090 and 2112 cm -1 due to nano-structured Cu 0–CO and CO adsorbed on highly defective Cu 0, respectively, indicate that the coverage of metallic copper is not complete.« less
Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films
NASA Astrophysics Data System (ADS)
Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team
2014-03-01
This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.
Hu, Shiben; Ning, Honglong; Lu, Kuankuan; Fang, Zhiqiang; Li, Yuzhi; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing
2018-03-27
In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al 2 O 3 ) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al 2 O 3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al 2 O 3 PVL exhibited remarkable mobility of 33.5-220.1 cm 2 /Vs when channel length varies from 60 to 560 μ m. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously.
Lu, Kuankuan; Li, Yuzhi; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing
2018-01-01
In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al2O3) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al2O3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al2O3 PVL exhibited remarkable mobility of 33.5–220.1 cm2/Vs when channel length varies from 60 to 560 μm. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously. PMID:29584710
Gastrointestinal effects associated with soluble and insoluble copper in drinking water.
Pizarro, F; Olivares, M; Araya, M; Gidi, V; Uauy, R
2001-01-01
The aim of this study was to determine whether total copper or soluble copper concentration is associated with gastrointestinal signs and symptoms. Forty-five healthy adult women (18-55 years of age), living in Santiago, Chile, ingested tap water with 5 mg/L of copper containing different ratios of soluble copper (copper sulfate) and insoluble copper (copper oxide) over a 9-week period. Three randomized sequences of the different copper ratios (0:5, 1:4, 2:3, 3:2, and 5:0 mg/L) were followed. Subjects recorded their water consumption and gastrointestinal symptoms daily on a special form. Mean water consumption was similar among groups. Serum copper levels, ceruloplasmin, and activities of liver enzymes were within normal limits. No differences were detected between the means of biochemical parameters at the beginning and at the end of the study. Twenty subjects presented gastrointestinal disturbances at least once during the study, 9 suffered diarrhea (with or without abdominal pain and vomiting), and the other 11 subjects reported abdominal pain, nausea, or vomiting. No differences were found in incidence of abdominal pain, nausea, vomiting, and diarrhea regardless of the ratio of copper sulfate to copper oxide. In conclusion, both copper sulfate (a soluble compound) and copper oxide (an insoluble compound) have comparable effects on the induction of gastrointestinal manifestations, implying that similar levels of ionic copper were present in the stomach. PMID:11673125
Thermally driven self-healing using copper nanofiber heater
NASA Astrophysics Data System (ADS)
Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.
2017-07-01
Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.
Weihs, Timothy P.; Barbee, Jr., Troy W.
2002-01-01
Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).
Odor-Sensing System to Support Social Participation of People Suffering from Incontinence
Ortiz Pérez, Alvaro; Kallfaß-de Frenes, Vera; Filbert, Alexander; Kneer, Janosch; Bierer, Benedikt; Held, Pirmin; Klein, Philipp; Wöllenstein, Jürgen; Benyoucef, Dirk; Kallfaß, Sigrid; Mescheder, Ulrich; Palzer, Stefan
2016-01-01
This manuscript describes the design considerations, implementation, and laboratory validation of an odor sensing module whose purpose is to support people that suffer from incontinence. Because of the requirements expressed by the affected end-users the odor sensing unit is realized as a portable accessory that may be connected to any pre-existing smart device. We have opted for a low-cost, low-power consuming metal oxide based gas detection approach to highlight the viability of developing an inexpensive yet helpful odor recognition technology. The system consists of a hotplate employing, inkjet-printed p-type semiconducting layers of copper(II) oxide, and chromium titanium oxide. Both functional layers are characterized with respect to their gas-sensitive behavior towards humidity, ammonia, methylmercaptan, and dimethylsulfide and we demonstrate detection limits in the parts-per-billion range for the two latter gases. Employing a temperature variation scheme that reads out the layer’s resistivity in a steady-state, we use each sensor chip as a virtual array. With this setup, we demonstrate the feasibility of detecting odors associated with incontinence. PMID:28036081
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.
2015-10-08
In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H 2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallicmore » form and thereby activates hydrogen.« less
Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation
NASA Astrophysics Data System (ADS)
Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei
2017-09-01
A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.
Annealing Effects on the Formation of Copper Oxide Thin Films
NASA Astrophysics Data System (ADS)
Marzuki, Marina; Zamzuri Mohamad Zain, Mohd; Zarul Hisham, Nurazhra; Zainon, Nooraizedfiza; Harun, Azmi; Nani Ahmad, Rozie
2018-03-01
This study approached the simple method of developing CuO thin films by thermal oxidation on pure Cu sheets. The effects of annealing temperature on the formation of CuO layers have been investigated. The oxide layers have been fabricated by annealing of Cu sheets for 5 hours at different temperatures of 980 ~ 1010 °C. The morphologies and optical properties of annealed Cu sheets were studied by using SEM and UV-Vis spectrophotometer respectively. It is revealed that the annealing temperature influence the grain growth and the grain size increases as the temperature increase. The highest grain size was observed on sample annealed at 1000 °C with average area per grain size of 0.023 mm2. Theoretically, larger grain size provides less barriers for electron mobility and increase the efficiency of solar devices. The optical absorption spectra of the oxide films was also measured. Interference pattern was noted at wavelength about 900 nm corresponding to the formation of CuO film. The interference noise observed could be due to the coarse surface and the presence of powdery oxide deposits that causes the scattering loses from the surface. CuO film obtained by this method may be further studied and exploited as low cost photovoltaic device.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhao, Xiaozhou; Wang, Shuang; Zeng, Shanghong; Su, Haiquan
2018-05-01
The CuO-CeO2@SiO2 catalyst with flower-sphere morphology was prepared by the impregnation method and then experienced the reduction-oxidation treatment at different temperatures. The multi-technique characterization shows that the reduction-oxidation treatment can remodel CuO, improve textural and surface properties and change Cu+ content and synergistic effect of copper and cerium. The importance of this work lies in the fact that the decrease of Cu+ content and synergistic effect of copper and cerium that occurs in the reduction-oxidation process results in the decrease of catalytic activity over the CuO-CeO2@SiO2 catalyst for preferential CO oxidation. The process of reaction in rich-hydrogen streams is equivalent to a reduction procedure which decreases Cu+ content and synergistic effect of copper and cerium.
NASA Astrophysics Data System (ADS)
Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B.
2014-06-01
Recently, biosynthesis of nanoparticles has attracted scientists' attention because of the necessity to develop new clean, cost-effective and efficient synthesis techniques. In particular, metal oxide nanoparticles are receiving increasing attention in a large variety of applications. However, up to now, the reports on the biopreparation and characterization of nanocrystalline copper oxide are relatively few compared to some other metal oxides. In this paper, we report for the first time the use of brown alga ( Bifurcaria bifurcata) in the biosynthesis of copper oxide nanoparticles of dimensions 5-45 nm. The synthesized nanomaterial is characterized by UV-visible absorption spectroscopy and Fourier transform infrared spectrum analysis. X-ray diffraction confirms the formation and the crystalline nature of copper oxide nanomaterial. Further, these nanoparticles were found to exhibit high antibacterial activity against two different strains of bacteria Enterobacter aerogenes (Gram negative) and Staphylococcus aureus (Gram positive).
Thin film superconductors and process for making same
Nigrey, P.J.
1988-01-21
A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.
High temperature interface superconductivity
Gozar, A.; Bozovic, I.
2016-01-20
High-T c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed.more » Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less
Copper Doping of Zinc Oxide by Nuclear Transmutation
2014-03-27
Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD
The oxidation of copper catalysts during ethylene epoxidation.
Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R
2015-10-14
The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of <3%. Tests on pure Cu2O and CuO powders confirm that the oxides intrinsically exhibit partial-oxidation activity. Cu2O was found to form acetaldehyde and ethylene epoxide in roughly equal amounts (1.0% and 1.2% respectively), while CuO was found to form much less ethyl aldehyde than ethylene epoxide (0.1% and 1.0%, respectively). Metallic copper catalysts were examined in extreme dilute-O2 epoxidation conditions to try and keep the catalyst from oxidizing during the reaction. It was found that in feed of 1 part O2 to 2500 parts C2H4 (PO2 = 1.2 × 10(-4) mbar) the copper surface becomes O-terminated. The O-terminated surface was found to exhibit partial-oxidation selectivity similar to that of Cu2O. With increasing O2 concentration (>8/2500) Cu2O forms and eventually covers the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, M.; Li, S.; McMills, L.E.
1990-06-01
Following the discoveries of high temperature superconductivity in the rare-earth copper oxide systems at 40K bY Bednorz and Muller in 1986 and at 90K by other researchers in 1987, Sheng and Hermann, in 1988, discovered superconductivity in the thallium-alkaline-earth copper oxide systems with critical temperatures as high as 120K. All of the Tl-based compounds can be described by the general formula, TlmA2Can-1CuO2n+m+2, where m=1 or 2; n=5; A=Ba, Sr. For convenience, the names of these compounds are abbreviated as 2223 for TlBa2Ca2Cu3O10, where each number denotes the number of Tl, Ba(Sr), Ca and Cu ions per formula, respectively. The compoundsmore » with m=1 and m=2 are usually referred to as single and double T1-O layered compounds, respectively. The highest superconducting transition temperature known so far was found in Tl2BaCa2Cu3O10 at 125K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Timing; Michael, Philip C.; Bascuñán, Juan
2016-08-22
We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil fieldmore » decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.« less
NASA Astrophysics Data System (ADS)
Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying
2017-03-01
Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.
Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose
2015-10-14
In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.
NASA Astrophysics Data System (ADS)
Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko
2017-04-01
Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.
Influence of gold content on copper oxidation from silver-gold-copper alloys
NASA Astrophysics Data System (ADS)
Swinbourne, D. R.; Barbante, G. G.; Strahan, A.
1996-10-01
In the final stages of the smelting of copper anode slimes, a silver alloy, known as “doré,” is produced. Oxidation refining is used to remove copper since this element interferes with subsequent electroparting of the small amounts of gold and platinum group metals in the doré. The gold content of doré can be greatly increased by gold scrap additions and this may affect the minimum achievable copper content of doré. In this work, silver-gold-copper alloys were oxidized by injecting pure oxygen at 1100 °C in the absence of any slag cover. For the gold contents expected in practice, the equilibrium copper content of the doré did not increase significantly as the gold content increased. However, at the other extreme of composition, the equilibrium copper content was a very strong function of the silver content of the gold bullion. The activity coefficient of copper in silver-gold alloys was calculated and compared to those predicted from a ternary subregular solution model of the system Ag-Au-Cu. Satisfactory agreement was found.
Biological and Environmental Transformations of Copper-Based Nanomaterials
Wang, Zhongying; Von Dem Bussche, Annette; Kabadi, Pranita K.; Kane, Agnes B.; Hurt, Robert H.
2013-01-01
Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from in vitro studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in studies of environmental and health impacts. Here we show that copper oxide nanoparticles undergo profound chemical transformations under conditions relevant to living systems and the natural environment. Copper oxide nanoparticle (CuO-NP) dissolution occurs at lysosomal pH (4-5), but not at neutral pH in pure water. Despite the near-neutral pH of cell culture medium, CuO-NPs undergo significant dissolution in media over time scales relevant to toxicity testing due to ligand-assisted ion release, in which amino acid complexation is an important contributor. Electron paramagnetic resonance (EPR) spectroscopy shows that dissolved copper in association with CuO-NPs are the primary redox-active species. CuO-NPs also undergo sulfidation by a dissolution-reprecipitation mechanism, and the new sulfide surfaces act as catalysts for sulfide oxidation. Copper sulfide NPs are found to be much less cytotoxic than CuO NPs, which is consistent with the very low solubility of CuS. Despite this low solubility of CuS, EPR studies show that sulfidated CuO continues to generate some ROS activity due to the release of free copper by H2O2 oxidation during the Fenton-chemistry-based EPR assay. While sulfidation can serve as a natural detoxification process for nanosilver and other chalcophile metals, our results suggest that sulfidation may not fully and permanently detoxify copper in biological or environmental compartments that contain reactive oxygen species. PMID:24032665
Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran
2016-02-01
An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6) M) and limit of quantitation (2.9 × 10(-5) M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.
Pousaneh, Elaheh; Korb, Marcus; Dzhagan, Volodymyr; Weber, Marcus; Noll, Julian; Mehring, Michael; Zahn, Dietrich R T; Schulz, Stefan E; Lang, Heinrich
2018-06-19
The synthesis of ketoiminato copper(ii) complexes [Cu(OCRCHC(CH3)NCH2CH2X)(μ-OAc)]2 (X = NMe2: 4a, R = Me; 4b, R = Ph. X = OMe: 5, R = Me) and [Cu(OCRCHCMeNCH2CH2NEt2)(OAc)] (6, R = Me) from RC(O)CHC(CH3)N(H)CH2CH2X (X = NMe2: 1a, R = Me; 1b, R = Ph. X = NEt2: 1c, R = Me. X = OMe: 2, R = Me) and [Cu(OAc)2·H2O] (3) is reported. The molecular solid-state structures of 4-6 were determined by single crystal X-ray diffraction studies, showing that 4a,b and 5 are dimers which are set up by two [{Cu(μ-OAc)L}] (L = ketoiminato ligand) units featuring a square-planar Cu2O2 core with a distorted square-pyramidal geometry at Cu(ii). In contrast, 6 is monomeric with a tridentate-coordinated OCMeCHCMeNCH2CH2NEt2 ligand and a σ-bonded acetate group, thus inducing a square-planar environment around Cu(ii). The thermal behavior of all complexes was studied by TG (Thermogravimetry) and DSC (Differential Scanning Calorimetry) under an atmosphere of Ar and O2. Complex 4b shows the highest first onset temperature at 213 °C (under O2) and 239 °C (Ar). PXRD studies confirmed the formation of CuO under an atmosphere of O2 and Cu/Cu2O under Ar. TG-MS studies, exemplarily carried out with 4a, indicate the elimination of the ketoiminato ligands with detectable fragments such as m/z = 15, 28, 43, 44, 45, and 60 at a temperature above 250 °C. Vapor pressure measurements displayed that 5 shows the highest volatility of 3.6 mbar at 70 °C (for comparison, 4a, 1.4; 4b, 1.3; 6, 0.4 mbar) and hence 4a and 5 were used as MOCVD precursors for Cu/Cu2O deposition on Si/SiO2 at substrate temperatures of 450 °C and 510 °C. The deposition experiments were carried out under an atmosphere of nitrogen as well as oxygen. The as-obtained layers were characterized by SEM, EDX, XPS, and PXRD, showing that with oxygen as the reactive gas a mixture of metallic copper and copper(i) oxide without carbon impurities was formed, while under N2 Cu films with 53-68 mol% C contamination were produced. In a deposition experiment using precursor 5 at 510 °C under N2 a pure copper film was obtained.
Oxidation Behavior of Copper Alloy Candidates for Rocket Engine Applications (Technical Poster)
NASA Technical Reports Server (NTRS)
Ogbuji, Linus U. J.; Humphrey, Donald H.; Barrett, Charles A.; Greenbauer-Seng, Leslie (Technical Monitor); Gray, Hugh R. (Technical Monitor)
2002-01-01
A rocket engine's combustion chamber is lined with material that is highly conductive to heat in order to dissipate the huge thermal load (evident in a white-hot exhaust plume). Because of its thermal conductivity copper is the best choice of liner material. However, the mechanical properties of pure copper are inadequate to withstand the high stresses, hence, copper alloys are needed in this application. But copper and its alloys are prone to oxidation and related damage, especially "blanching" (an oxidation-reduction mode of degradation). The space shuttle main engine combustion chamber is lined with a Cu-Ag-Zr alloy, "NARloy-Z", which exhibits blanching. A superior liner is being sought for the next generation of RLVs (Reusable Launch Vehicles) It should have improved mechanical properties and higher resistance to oxidation and blanching, but without substantial penalty in thermal conductivity. GRCop84, a Cu-8Cr-4Nb alloy (Cr2Nb in Cu matrix), developed by NASA Glenn Research Center (GRC) and Case Western Reserve University, is a prime contender for RLV liner material. In this study, the oxidation resistance of GRCop-84 and other related/candidate copper alloys are investigated and compared
NASA Astrophysics Data System (ADS)
Barthwal, Sumit; Lim, Si-Hyung
2015-02-01
We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.
Hu, Xiao; Schuster, Jörg; Schulz, Stefan E; Gessner, Thomas
2015-10-28
Atomistic mechanisms for the atomic layer deposition using the Cu(acac)2 (acac = acetylacetonate) precursor are studied using first-principles calculations and reactive molecular dynamics simulations. The results show that Cu(acac)2 chemisorbs on the hollow site of the Cu(110) surface and decomposes easily into a Cu atom and the acac-ligands. A sequential dissociation and reduction of the Cu precursor [Cu(acac)2 → Cu(acac) → Cu] are observed. Further decomposition of the acac-ligand is unfavorable on the Cu surface. Thus additional adsorption of the precursors may be blocked by adsorbed ligands. Molecular hydrogen is found to be nonreactive towards Cu(acac)2 on Cu(110), whereas individual H atoms easily lead to bond breaking in the Cu precursor upon impact, and thus release the surface ligands into the gas-phase. On the other hand, water reacts with Cu(acac)2 on a Cu2O substrate through a ligand-exchange reaction, which produces gaseous H(acac) and surface OH species. Combustion reactions with the main by-products CO2 and H2O are observed during the reaction between Cu(acac)2 and ozone on the CuO surface. The reactivity of different co-reactants toward Cu(acac)2 follows the order H > O3 > H2O.
Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.
Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal
2018-02-01
Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of nanoparticles and sulfate salt of copper in M.posthuma inhabiting the soil of India, an agriculture based country. Copyright © 2017 Elsevier Inc. All rights reserved.
A hybrid water-splitting cycle using copper sulfate and mixed copper oxides
NASA Technical Reports Server (NTRS)
Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.
1980-01-01
The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.
Magnetism and superconductivity of some Tl-Cu oxides
NASA Technical Reports Server (NTRS)
Datta, Timir
1990-01-01
Many copper oxide based Thallium compounds have now been discovered. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; viz., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are evidenced, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance as high as 125K has been observed. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in the conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) accurate thermal measurement of important parameters such as the sp. heat jump, electronic density of states, D(Ef) and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO, 120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the TlCuO HTSC, but technological aspects are also pointed out.
Magnetism and superconductivity of some Tl-Cu oxides
NASA Technical Reports Server (NTRS)
Datta, Timir
1991-01-01
Many copper oxide based Thallium compounds are now known. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; i.e., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are found, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance was observed at temperatures as great as 125 K. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) jump, electronic density of states, D(Ef), and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO,120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the Tl-CuO HTSC, but technological aspects are also pointed out.
Electrical Characterization of Spherical Copper Oxide Memristive Array Sensors
2014-03-27
Quartz Tube Furnace . . . . . . . 37 3.3.2.2 Thermal Oxidation in Air on a Hot Plate . . . . . . . . . 38 3.4 Experimental Setup for Electrical...closed hot plate . . . 80 B.1 Oxidation rates for copper at 100 °C by two different formulas . . . . . . . . . 81 xi List of Tables Table Page 2.1 The... Tectonics Inc. and manufactured by Canfield Technologies using a proprietary fabrication method. As received, the copper spheres may have contaminants
NASA Astrophysics Data System (ADS)
Ki, Seo Jin; Lee, Heon; Park, Young-Kwon; Kim, Sun-Jae; An, Kay-Hyeok; Jung, Sang-Chul
2018-07-01
Successful modification of surface properties of a nanocomposite electrode is prerequisite to enhancing the overall performance of electrochemical supercapacitors. The present study was designed to describe the microstructural and electrochemical characteristics of a new composite electrode assembled by activated carbon (AC) powder (as a host) and copper precursor (as a guest) using liquid phase plasma. The fabrication processes were conducted by changing plasma discharge time from 30 to 90 min in the presence and absence of (thermal) oxidation. We observed that merging plasma and oxidation treatments raised the content of copper oxide nanoparticles precipitated (evenly) on the AC surface, along with oxygen. A mixed valence state of copper oxides (in the forms of Cuo, Cu2O, and CuO) was found in different composites with and without oxidation, where CuO and Cuo affected a specific capacitance in positive and negative ways, respectively. This led to the difference of electrochemical stability and resistance among the assembled composites. For instance, the best cycling performance was observed in the plasma-treated composite for 90 min with oxidation, whereas that of 60 min without oxidation recorded the lowest resistance. Therefore, a proper balance between the capacitance and resistance appears to be required for effective fabrication of the supercapacitor electrode, specifically in cases involving copper oxides.
Klandima, Somphan; Kruatrachue, Anchalee; Wongtapradit, Lawan; Nithipanya, Narong; Ratanaprakarn, Warangkana
2014-06-01
The problem of image quality in a large number of upper airway obstructed patients is the superimposition of the airway over the bone of the spine on the AP view. This problem was resolved by increasing KVp to high KVp technique and adding extra radiographic filters (copper filter) to reduce the sharpness of the bone and increase the clarity of the airway. However, this raises a concern that patients might be receiving an unnecessarily higher dose of radiation, as well as the effectiveness of the invented filter compared to the traditional filter. To evaluate the level of radiation dose that patients receive with the use of multi-layer filter compared to non-filter and to evaluate the image quality of the upper airways between using the radiographic filter (multi-layer filter) and the traditional filter (copperfilter). The attenuation curve of both filter materials was first identified. Then, both the filters were tested with Alderson Rando phantom to determine the appropriate exposure. Using the method described, a new type of filter called the multi-layer filter for imaging patients was developed. A randomized control trial was then performed to compare the effectiveness of the newly developed multi-layer filter to the copper filter. The research was conducted in patients with upper airway obstruction treated at Queen Sirikit National Institute of Child Health from October 2006 to September 2007. A total of 132 patients were divided into two groups. The experimental group used high kVp technique with multi-layer filter, while the control group used copper filter. A comparison of film interpretation between the multi-layer filter and the copper filter was made by a number of radiologists who were blinded to both to the technique and type of filter used. Patients had less radiation from undergoing the kVp technique with copper filter and multi-layer filter compared to the conventional technique, where no filter is used. Patients received approximately 65.5% less radiation dose using high kVp technique with multi-layer filter compared to the conventional technique, and 25.9% less than using the traditional copper filter 45% of the radiologists who participated in this study reported that the high kVp technique with multi-layer filter was better for diagnosing stenosis, or narrowing of the upper airways. 33% reported that, both techniques were equal, while 22% reported that the traditional copper filter allowed for better details of airway obstruction. These findings showed that the multi-layered filter was comparable to the copper filter in terms of film interpretation. Using the multi-layer filter resulted in patients receiving a lower dose of radiation, as well as similar film interpretation when compared to the traditional copper filter.
All-vapor processing of p-type tellurium-containing II-VI semiconductor and ohmic contacts thereof
McCandless, Brian E.
2001-06-26
An all dry method for producing solar cells is provided comprising first heat-annealing a II-VI semiconductor; enhancing the conductivity and grain size of the annealed layer; modifying the surface and depositing a tellurium layer onto the enhanced layer; and then depositing copper onto the tellurium layer so as to produce a copper tellurium compound on the layer.
Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N
2017-08-01
The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Aberrant expression of copper associated genes after copper accumulation in COMMD1-deficient dogs.
Favier, Robert P; Spee, Bart; Fieten, Hille; van den Ingh, Ted S G A M; Schotanus, Baukje A; Brinkhof, Bas; Rothuizen, Jan; Penning, Louis C
2015-01-01
COMMD1-deficient dogs progressively develop copper-induced chronic hepatitis. Since high copper leads to oxidative damage, we measured copper metabolism and oxidative stress related gene products during development of the disease. Five COMMD1-deficient dogs were studied from 6 months of age over a period of five years. Every 6 months blood was analysed and liver biopsies were taken for routine histological evaluation (grading of hepatitis), rubeanic acid copper staining and quantitative copper analysis. Expression of genes involved in copper metabolism (COX17, CCS, ATOX1, MT1A, CP, ATP7A, ATP7B, ) and oxidative stress (SOD1, catalase, GPX1 ) was measured by qPCR. Due to a sudden death of two animals, the remaining three dogs were treated with d-penicillamine from 43 months of age till the end of the study. Presented data for time points 48, 54, and 60 months was descriptive only. A progressive trend from slight to marked hepatitis was observed at histology, which was clearly preceded by an increase in semi-quantitative copper levels starting at 12 months until 42 months of age. During the progression of hepatitis most gene products measured were transiently increased. Most prominent was the rapid increase in the copper binding gene product MT1A mRNA levels. This was followed by a transient increase in ATP7A and ATP7B mRNA levels. In the sequence of events, copper accumulation induced progressive hepatitis followed by a transient increase in gene products associated with intracellular copper trafficking and temporal activation of anti-oxidative stress mechanisms. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuai, J. C.; Wang, J. W.; Jiang, C. R.; Zhang, H. L.; Yang, Z. B.
2018-05-01
The mechanical properties of oxide films on copper based grinding wheel were studied by nanoindentation technique. The analysis of load displacement shows that the creep phenomenon occurs during the loading stage. Results show that the oxide film and the matrix have different characteristics, and the rigidity of the copper based grinding wheel is 0.6-1.3mN/nm, which is weaker than that of the matrix; the hardness of the oxide film is 2000-2300MPa, which is higher than the matrix; and the elastic modulus of the oxide film is 100-120GPa, also higher than the matrix.
Arif, Hussain; Sohail, Aamir; Farhan, Mohd; Rehman, Ahmed Abdur; Ahmad, Aamir; Hadi, S M
2018-01-01
Flavonoids, a class of polyphenols are known to be effective inducers of apoptosis and cytotoxicity in cancer cells. It is believed that antioxidant activity of polyphenols cannot fully account for induction of apoptosis and chemotherapeutic prevention in various cancers. In this article, by employing single cell alkaline gel electrophoresis (comet assay), we established that antioxidants, flavonoids such as (myricetin=MN, fisetin=FN, quercetin=QN, kaempferol=KL and galangin=GN) can cause cellular DNA breakage, also act as pro-oxidant in presence of transition metal ion such as copper. It was observed that the extent of cellular DNA breakage was found significantly higher in presence of copper. Hydroxyl radicals are generated as a sign of flavonoids' pro-oxidant nature through redox recycling of copper ions. Further, a dose-dependent inhibition of proliferation of breast cancer cells MDA-MB-231 by MN was found leading to pro-oxidant cell death, as assessed by MTT assay. Since levels of copper are considerably elevated in tissue, cell and serum during various malignancies, suggesting that cancer cells would be more subject to copper induced oxidative DNA breakage. Such a copper dependent pro-oxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela
2017-08-01
Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5 UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.
Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene
Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.; ...
2016-06-30
There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides aremore » surprisingly resistant to reduction and copper + species remain on the surface during the reaction. Furthermore, our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper + is key for lowering the onset potential and enhancing ethylene selectivity.« less
Kontoudakis, Nikolaos; Guo, Anque; Scollary, Geoffrey R; Clark, Andrew C
2017-08-15
Solid-phase extraction has previously been used to fractionate copper and iron into hydrophobic, cationic and residual forms. This study showed the change in fractionated copper and iron in Chardonnay wines with 1-year of bottle aging under variable oxygen and protein concentrations. Wines containing protein in low oxygen conditions induced a decrease (20-50%) in total copper and increased the proportion of the hydrophobic copper fraction, associated with copper(I) sulfide. In contrast, protein stabilised wines showed a lower proportion of the hydrophobic copper fraction after 1-year of aging. In oxidative storage conditions, the total iron decreased by 60% when at high concentration, and the concentration of the residual fraction of both copper and iron increased. The results show that oxidative storage increases the most oxidative catalytic form of the metal, whilst changes during reductive storage depend on the extent of protein stabilisation of the wine. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhuqin; Yu, Fengxiang; Gong, Ping
2014-04-15
Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxicmore » concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation. - Highlights: • Subneurotoxic copper(II) triggers NF-κB-dependent microglial activation. • This activation leads to hippocampal neuronal death. • This activation may involve mitochondria-derived reactive oxygen species.« less
Marcus, Esther-Lee; Yosef, Hana; Borkow, Gadi; Caine, Yehezkel; Sasson, Ady; Moses, Allon E
2017-04-01
Copper oxide has potent wide-spectrum biocidal properties. The purpose of this study is to determine if replacing hospital textiles with copper oxide-impregnated textiles reduces the following health care-associated infection (HAI) indicators: antibiotic treatment initiation events (ATIEs), fever days, and antibiotic usage in hospitalized chronic ventilator-dependent patients. A 7-month, crossover, double-blind controlled trial including all patients in 2 ventilator-dependent wards in a long-term care hospital. For 3 months (period 1), one ward received copper oxide-impregnated textiles and the other received untreated textiles. After a 1-month washout period of using regular textiles, for 3 months (period 2) the ward that received the treated textiles received the control textiles and vice versa. The personnel were blinded to which were treated or control textiles. There were no differences in infection control measures during the study. There were reductions of 29.3% (P = .002), 55.5% (P < .0001), 23.0% (P < .0001), and 27.5% (P < .0001) in the ATIEs, fever days (>37.6°C), days of antibiotic treatment, and antibiotic defined daily dose per 1,000 hospitalization days, respectively, when using the copper oxide-impregnated textiles. Use of copper oxide-impregnated biocidal textiles in a long-term care ward of ventilator-dependent patients was associated with a significant reduction of HAI indicators and antibiotic utilization. Using copper oxide-impregnated biocidal textiles may be an important measure aimed at reducing HAIs in long-term care medical settings. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.
There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides aremore » surprisingly resistant to reduction and copper + species remain on the surface during the reaction. Furthermore, our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper + is key for lowering the onset potential and enhancing ethylene selectivity.« less
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D. W.
1973-01-01
High-purity copper specimens and a copper-aluminum (10%) alloy specimen were subjected to sliding against Type 440 C in cryogenic fuel environments. It was found that virtually all wear occurred by the plastic deformation of a recrystallized layer extending to about 10 micrometers below the wear scar surface of the copper or copper alloy. The wear debris was in the form of a layered structure adhering to the exit region of the wear scar. Measurements on the high purity copper specimens indicated that the wear rate was proportional to the applied load and to the sliding velocity squared. A physical model of the wear process is proposed to account for these observations.
NASA Astrophysics Data System (ADS)
Raship, N. A.; Sahdan, M. Z.; Adriyanto, F.; Nurfazliana, M. F.; Bakri, A. S.
2017-01-01
Copper oxide films were grown on silicon substrates by sol-gel dip coating method. In order to study the effects of annealing temperature on the properties of copper oxide films, the temperature was varied from 200 °C to 450 °C. In the process of dip coating, the substrate is withdrawn from the precursor solution with uniform velocity to obtain a uniform coating before undergoing an annealing process to make the copper oxide film polycrystalline. The physical properties of the copper oxide films were measured by an X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), an atomic force microscopy (AFM) and a four point probe instrument. From the XRD results, we found that pure cuprite (Cu2O) phase can be obtained by annealing the films annealed at 200 °C. Films annealed at 300 °C had a combination phase which consists of tenorite (CuO) and cuprite (Cu2O) phase while pure tenorite (CuO) phase can be obtained at 450 °C annealing temperature. The surface microstructure showed that the grains size is increased whereas the surface roughness is increased and then decreases by increasing in annealing temperature. The films showed that the resistivity decreased with increasing annealing temperature. Consequently, it was observed that annealing temperature has strong effects on the structural, morphological and electrical properties of copper oxide films.
NASA Astrophysics Data System (ADS)
Wang, Shuai; Zhang, Long; Wang, Fa
2018-01-01
A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.
Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu
2015-04-01
The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cinar, Miyase; Yildirim, Ebru; Yigit, A Arzu; Yalcinkaya, Ilkay; Duru, Ozkan; Kisa, Uçler; Atmaca, Nurgul
2014-05-01
This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg + 250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.
Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer
NASA Astrophysics Data System (ADS)
Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.
2017-07-01
The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of -5.13 × 104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.
Crystallization Behavior of Copper Smelter Slag During Molten Oxidation
NASA Astrophysics Data System (ADS)
Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi
2015-10-01
Copper slag is composed of iron silicate obtained by smelting copper concentrate and silica flux. One of the most important criteria for the utilization of this secondary resource is the recovery of iron from the slag matrix to decrease the volume of dumped slag. The molten oxidation process with crushing magnetic separation appears to be a more sustainable approach and is based on directly blowing oxidizing gas onto molten slag after the copper smelting process. In the current study, using an infrared furnace, the crystallization behavior of the slag during molten oxidation was studied to better understand the trade-off between magnetite and hematite precipitations, as assessed by X-ray diffraction (using an internal standard). Furthermore, the crystal morphology was examined using a laser microscope and Raman imaging system to understand the iron oxide transformation, and the distribution of impurities such as Cu, Zn, As, Cr, and Pb were complemented with scanning electron microscopy and energy dispersive spectroscopy. In addition, the reaction mechanism was investigated with a focus on the oxidation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan
Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO 2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stablemore » under the strongly reducing conditions found in CO 2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.« less
Ghorpade, Satish; Liu, Rai-Shung
2014-11-17
This work describes the one-step construction of complex and important molecular frameworks through copper-catalyzed oxidations of cheap tertiary amines. Copper-catalyzed aerobic oxidations of N-hydroxyaminopropenes to form C2 -symmetric N- and O-functionalized cyclohexanes are described. Such catalytic oxidations proceed with remarkable stereocontrol and high efficiency. Reductive cleavage of the two NO bonds of these products delivers 1,4-dihydroxy-2,3-diaminocyclohexanes, which are important skeletons of several bioactive molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient Transfer Doping of Carbon Nanotube Forests by MoO3.
Esconjauregui, Santiago; D'Arsié, Lorenzo; Guo, Yuzheng; Yang, Junwei; Sugime, Hisashi; Caneva, Sabina; Cepek, Cinzia; Robertson, John
2015-10-27
We dope nanotube forests using evaporated MoO3 and observe the forest resistivity to decrease by 2 orders of magnitude, reaching values as low as ∼5 × 10(-5) Ωcm, thus approaching that of copper. Using in situ photoemission spectroscopy, we determine the minimum necessary MoO3 thickness to dope a forest and study the underlying doping mechanism. Homogenous coating and tube compaction emerge as key factors for decreasing the forest resistivity. When all nanotubes are fully coated with MoO3 and packed, conduction channels are created both inside the nanotubes and on the outside oxide layer. This is supported by density functional theory calculations, which show a shift of the Fermi energy of the nanotubes and the conversion of the oxide into a layer of metallic character. MoO3 doping removes the need for chirality control during nanotube growth and represents a step forward toward the use of forests in next-generation electronics and in power cables or conductive polymers.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus
The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
A dendrite-suppressing composite ion conductor from aramid nanofibres
NASA Astrophysics Data System (ADS)
Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.
2015-01-01
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Zhao, Xu; Zhang, Juanjuan; Qiao, Meng; Liu, Huijuan; Qu, Jiuhui
2015-04-07
Simultaneous photoelectrocatalytic (PEC) oxidation of cyanides and recovery of copper in a PEC reactor with a Bi(2)MoO(6) photoanode was investigated at alkaline conditions under visible light irradiation. The surface variation of the Bi(2)MoO(6) photoanode and titanium cathode was characterized. The Cu mass distribution onto the anode, in the solution, and onto the cathode was fully investigated. In the individual PEC oxidation of copper cyanides, the formation of a black copper oxide on the anode occurred. By keeping the initial cyanide concentration at 0.01 mM, the effect of EDTA/K(4)P(2)O(7) was examined at different molar ratios of EDTA/K(4)P(2)O(7) to cyanide. It was indicated that the oxidation of cyanides increased and simultaneous copper electrodeposition with zero value onto the cathode was feasible at pH 11. Under the optimal conditions, the total cyanide concentration was lowered from 250 to 5.0 mg/L, and the Cu recovery efficiency deposited onto the cathode was higher than 90%. Cyanate was the only product. The role of the photogenerated hole in the oxidation of cyanide ions was confirmed.
NASA Astrophysics Data System (ADS)
Huttunen-Saarivirta, E.; Rajala, P.; Bomberg, M.; Carpén, L.
2017-02-01
Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu2S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu2O. Furthermore, in the absence of SRB, Cu2O provided slightly inferior protection against corrosion compared to that by Cu2S in the presence of SRB. The obtained results show that the presence of microorganisms may enhance the passivity of copper. In addition, the identification of key microbial species, such as SRB thriving on copper for long time periods, is important for successful prediction of the behaviour of copper.
Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys
NASA Technical Reports Server (NTRS)
Raj, Sai V. (Inventor)
2005-01-01
A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.
Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li
2015-04-10
Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zakraysek, Louis
1987-01-01
Printed Wiring Multilayer Board (PWMLB) structures for high speed, high density circuits are prone to failure due to the microcracking of electrolytic copper interconnections. The failure can occur in the foil that makes up the inner layer traces or in the plated through holes (PTH) deposit that forms the layer to layer interconnections. It is shown that there are some distinctive differences in the quality of Type E copper and that these differences can be detected before its use in a PWMLB. It is suggested that the strength of some Type E copper can be very low when the material is hot and that it is the use of this poor quality material in a PWMLB that results in PTH and inner layer microcracking. Since the PWMLB failure in question are induced by a thermal stress, and since the poorer grades of Type E materials used in these structures are susceptible to premature failure under thermal stress, the use of elevated temperature rupture and creep rupture testing is proposed as a means for screening copper foil, or its PTH equivalent, in order to eliminate the problem of Type E copper microcracking in advanced PWMLBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veblen, D.R.; Ilton, E.S.
1993-05-01
TEM of naturally occurring Cu-rich biotites and feldspars from weathered portions of porphyry copper deposits has shown that copper is not in the structure of these minerals, is present in their weathering products such as copper-rich vermiculite layers, submicroscopic iron oxyhydroxides and native copper inclusions, and chrysocoua. Reaction of acidic solutions bearing-Cu{sup 2+}, Ag{sup +}, Cr{sup 6+}, and Se{sup 4+}, at 25C, with biotite indicates that ferrous iron in biotite can reduce Cu{sup 2+}, Ag+, and Cr{sup 6+} to Cu{degrees}, Ag{degrees}, and Cr(III), respectively. However, Se{sup 4+} does not appear to be reduced. Copper is reduced in the interlayer region,more » silver is reduced in the interlayer and on the biotite surfaces, and chromium is reduced at the biotite surface. TEM shows that the reduction of copper and silver by biotite can produce native metal inclusions, whereas reduction of Cr(VI) to CR(III) did not produce any Cr-bearing precipitates. The copper and silver experiments show that iron in biotite can be a much stronger reducing agent than iron in solution. TEM and XPS of biotites reacted with CR(VI) clearly show that edges or (hkO) faces are much more reactive than the basal planes, where the edges are strongly enriched in CR(III) relative to the basal planes. In contrast, biotites reacted with Cr(IH)-bearing solutions show little fractionation between the edges and basal planes. Another important result of our XPS studies is that we demonstrated that the oxidation state of near surface iron in biotite can be quantified.« less
Fiber laser welding of austenitic steel and commercially pure copper butt joint
NASA Astrophysics Data System (ADS)
Kuryntsev, S. V.; Morushkin, A. E.; Gilmutdinov, A. Kh.
2017-03-01
The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper-stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper-stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41-53 μm, microhardness was 128-170 HV0.01.
Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius
2018-04-06
Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mashock, Michael J.
Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode mutant strains containing gene knockouts in the divalent-metal transporters smf-1 and smf-2 showed increased tolerance to copper exposure. These results lend credence to the hypothesis that some toxicological effects to eukaryotic organisms from copper oxide nanoparticle exposure may be due to properties specific to the nanoparticles and not solely from the released copper ions.
Study of the Wall Paintings of the Cenador Del Leon in the Real Alcazar of Seville
NASA Astrophysics Data System (ADS)
Robador, Maria Dolores; Mancera, Inmaculada; Perez-Maqueda, Rafael; Albardonedo, Antonio
2017-10-01
The paintings on the walls of the Cenador del Leon located in the gardens of the Real Alcazar in Seville next to the Pabellon de Carlos V in the Jardin Ingles area have been studied. The components of the wall paintings cross-sections, which were prepared using small samples taken from the walls of Cenador del Leon, were characterized using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. The cross-sections of the collected samples indicated that the paint layer is well adhered to the preparation layer without any discontinuity, and only one carbonation layer exists at the top of the sequence of layers. These data suggest that the paint was applied on a fresco surface, and therefore, the adopted technique was fresco. Based on the different elements detected by EDX analysis of the cross-sections, the detected pigments included iron oxides accompanied by clay minerals (or earths) in the red pink, golden yellow and yellow colours, blue smelt for the blue colour and basic copper chloride (atacamite) for the green colour. In one sample, the particles were composed of Ba and S from barium sulphate and Ti and O from rutile titanium oxide due to a modern pigment.
Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism.
Rehmani, Nida; Zafar, Atif; Arif, Hussain; Hadi, Sheikh Mumtaz; Wani, Altaf A
2017-04-01
Oxidative DNA damage has been implicated in the pathogenesis of neurological disorders, cancer and ageing. Owing to the established link between labile copper concentrations and neurological diseases, it is critical to explore the interactions of neurotransmitters and drug supplements with copper. Herein, we investigate the pro-oxidant DNA damage induced by the interaction of L-DOPA and dopamine (DA) with copper. The DNA binding affinity order of the compounds has been determined by in silico molecular docking. Agarose gel electrophoresis reveals that L-DOPA and DA are able to induce strand scission in plasmid pcDNA3.1 (+/-) in a copper dependent reaction. These metabolites also cause cellular DNA breakage in human lymphocytes by mobilizing endogenous copper, as assessed by comet assay. Further, L-DOPA and DA-mediated DNA breaks were detected by the appearance of post-DNA damage sensitive marker γH2AX in cancer cell lines accumulating high copper. Immunofluorescence demonstrated the co-localization of downstream repair factor 53BP1 at the damaged induced γH2AX foci in cancer cells. The present study corroborates and provides a mechanism to the hypothesis that suggests metal-mediated oxidation of catecholamines contributes to the pathogenesis of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M
2008-08-01
It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.
NASA Astrophysics Data System (ADS)
Zhang, Zhixin; Chen, Shuqun; Li, Pingping; Li, Hongyi; Wu, Junshu; Hu, Peng; Wang, Jinshu
This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.
Zimmerman, Ryan P; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P; Wang, Jianmin; Li, Yunbo
2011-02-27
Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Method to grow group III-nitrides on copper using passivation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiming; Wang, George T; Figiel, Jeffrey T
Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.
Method for fabrication of ceramic dielectric films on copper foils
Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam
2015-03-10
The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.
High permeance sulfur tolerant Pd/Cu alloy membranes
Ma, Yi Hua; Pomerantz, Natalie
2014-02-18
A method of making a membrane permeable to hydrogen gas (H.sub.2.uparw.) is disclosed. The membrane is made by forming a palladium layer, depositing a layer of copper on the palladium layer, and galvanically displacing a portion of the copper with palladium. The membrane has improved resistance to poisoning by H.sub.2S compared to a palladium membrane. The membrane also has increased permeance of hydrogen gas compared to palladium-copper alloys. The membrane can be annealed at a lower temperature for a shorter amount of time.
Probing Interfacial Processes on Graphene Surface by Mass Detection
NASA Astrophysics Data System (ADS)
Kakenov, Nurbek; Kocabas, Coskun
2013-03-01
In this work we studied the mass density of graphene, probed interfacial processes on graphene surface and examined the formation of graphene oxide by mass detection. The graphene layers were synthesized by chemical vapor deposition method on copper foils and transfer-printed on a quartz crystal microbalance (QCM). The mass density of single layer graphene was measured by investigating the mechanical resonance of the QCM. Moreover, we extended the developed technique to probe the binding dynamics of proteins on the surface of graphene, were able to obtain nonspecific binding constant of BSA protein of graphene surface in aqueous solution. The time trace of resonance signal showed that the BSA molecules rapidly saturated by filling the available binding sites on graphene surface. Furthermore, we monitored oxidation of graphene surface under oxygen plasma by tracing the changes of interfacial mass of the graphene controlled by the shifts in Raman spectra. Three regimes were observed the formation of graphene oxide which increases the interfacial mass, the release of carbon dioxide and the removal of small graphene/graphene oxide flakes. Scientific and Technological Research Council of Turkey (TUBITAK) grant no. 110T304, 109T209, Marie Curie International Reintegration Grant (IRG) grant no 256458, Turkish Academy of Science (TUBA-Gebip).
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana
2016-01-01
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function. PMID:26879543
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana
2016-02-16
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.
Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers
NASA Astrophysics Data System (ADS)
Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian
2015-09-01
The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.
Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers
Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian
2015-01-01
The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated. PMID:26333520
Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea
2017-08-01
Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent copper accumulation in the cytoplasm and the nucleus. Modulation of gene expression by CuO NP appeared to be primarily oxidative stress-related and was more pronounced in redox-sensitive BEAS-2B cells. Regarding CuCl 2 , relevant modulations of gene expression were restricted to cytotoxic concentrations provoking impaired copper homoeostasis.
NASA Astrophysics Data System (ADS)
Borkar, Rajnikant; Dahake, Rashmi; Rayalu, Sadhana; Bansiwal, Amit
2018-03-01
A biphasic copper oxide thin film of grass-like appendage morphology is synthesized by two-step electro-deposition method and later investigated for photoelectrochemical (PEC) water splitting for hydrogen production. Further, the thin film was characterized by UV-Visible spectroscopy, x-ray diffraction (XRD), Scanning electron microscopy (SEM) and PEC techniques. The XRD analysis confirms formation of biphasic copper oxide phases, and SEM reveals high surface area grass appendage-like morphology. These grass appendage structures exhibit a high cathodic photocurrent of - 1.44 mAcm-2 at an applied bias of - 0.7 (versus Ag/AgCl) resulting in incident to photon current efficiency (IPCE) of ˜ 10% at 400 nm. The improved light harvesting and charge transport properties of grass appendage structured biphasic copper oxides makes it a potential candidate for PEC water splitting for hydrogen production.
Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.
Brewer, George J
2015-01-01
Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.
A base-metal conductor system for silicon solar cells
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Sparks, T. G.
1980-01-01
Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.
Popescu, R A; Magyari, K; Vulpoi, A; Trandafir, D L; Licarete, E; Todea, M; Ştefan, R; Voica, C; Vodnar, D C; Simon, S; Papuc, I; Baia, L
2016-07-19
In the present study our interest is focused on finding the efficiency of 60SiO2·(32 - x)CaO·8P2O5·xCuO (mol%) glass-ceramics, with 0 ≤ x ≤ 4 mol%, in terms of bioactivity, biocompatibility, antibacterial properties and cell viability in order to determine the most appropriate composition for their further use in in vivo trials. The sol-gel synthesized samples show a preponderantly amorphous structure with a few crystallization centers associated with the formation of an apatite and calcium carbonate crystalline phases. The Fourier Transform Infrared (FT-IR) spectra revealed slightly modified absorption bands due to the addition of copper oxide, while the information derived from the measurements performed by transmission electron microscopy, UV-vis and electron paramagnetic resonance spectroscopy showed the presence of ions and metallic copper species. X-Ray photoelectron spectroscopic analysis indicated the presence of copper metallic species, in a reduced amount, only on the sample surface with the highest Cu content. Regarding in vitro assessment of bioactivity, the results obtained by X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy, demonstrated the formation of a calcium phosphate layer on all investigated sample surfaces. The inhibitory effect of the investigated samples was more significant on the Pseudomonas aeruginosa than the Staphylococcus aureus strain, the sample with the lowest concentration of copper oxide (0.5 mol%) being also the most efficient in both bacterial cultures. This sample also exhibits a very good bactericidal activity, for the other samples it was necessary to use a higher quantity to inhibit and kill the bacterial species. The secondary structure of adsorbed albumin presents few minor changes, indicating the biocompatibility of the glass-ceramics. The cell viability assay shows a good proliferation rate on samples with 0.5 and 1.5 mol% CuO, although all glass-ceramic samples exhibited a good in vivo tolerance.
High adherence copper plating process
Nignardot, Henry
1993-01-01
A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.
Gong, Guiyi; Jiang, Lingling; Lin, Qinghua; Liu, Wenyuan; He, Ming-Fang; Zhang, Jie; Feng, Feng; Qu, Wei; Xie, Ning
2018-01-01
Dysfunction of copper homeostasis can lead to a host of disorders, which might be toxic sometimes. 4-Methoxy-5-hydroxy-canthin-6-one (CAN) is one of the major constituents from Picrasma quassioides and responsible for its therapeutic effects. In this work, we evaluated the toxic effect of CAN (7.5μM) on zebrafish embryos. CAN treatment decreased survival, delayed hatching time and induced malformations (loss of pigmentation, pericardial edema, as well as hematologic and neurologic abnormalities). Besides, exogenous copper supplementation rescued the pigmentation and cardiovascular defects in CAN-treated embryos. Further spectroscopic studies revealed a copper-chelating activity of CAN. Then its regulation on the expressions of copper homeostasis related genes also be analyzed. In addition, CAN lowered the total activity of SOD, elevated the ROS production and altered the oxidative related genes transcriptions, which led to oxidative stress. In conclusion, we demonstrated that CAN (7.5μM) might exert its toxic effects in zebrafish embryos by causing copper dyshomeostasis and oxidative stress. It will give insight into the risk assessment and prevention of CAN-mediated toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization and recovery of copper values from discarded slag.
Das, Bisweswar; Mishra, Barada Kanta; Angadi, Shivakumar; Pradhan, Siddharth Kumar; Prakash, Sandur; Mohanty, Jayakrushna
2010-06-01
In any copper smelter large quantities of copper slag are discarded as waste material causing space and environmental problems. This discarded slag contains important amounts of metallic values such as copper and iron. The recovery of copper values from an Indian smelter slag that contains 1.53% Cu, 39.8% Fe and 34.65% SiO(2) was the focus of the present study. A complete investigation of the different phases present in the slag has been carried out by means of optical microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. It is observed that iron and silica are mostly associated with the fayalite phase whereas copper is present in both oxide and sulfide phases. These oxide and sulfide phases of copper are mostly present within the slag phase and to some extent the slag is also embedded inside the oxide and sulfide phases. The recovery of copper values from the discarded slag has been explored by applying a flotation technique using conventional sodium isopropyl xanthate (SIX) as the collector. The effects of flotation parameters such as pH and collector concentration are investigated. Under optimum flotation conditions, it is possible to achieve 21% Cu with more than 80% recovery.
Deposition and properties of cobalt- and ruthenium-based ultra-thin films
NASA Astrophysics Data System (ADS)
Henderson, Lucas Benjamin
Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline.
NASA Astrophysics Data System (ADS)
Ichinose, Ataru; Horii, Shigeru; Doi, Toshiya
2017-10-01
Two approaches to reducing the material cost of second-generation superconducting wires are proposed in this paper: (1) instead of the electrical stabilizing layers of silver and copper presently used on the superconducting layer, a Nb-doped SrTiO3 conductive buffer layer and cube-textured Cu are proposed as an advanced architecture, and (2) the use of an electromagnetic (EM) steel tape as a metal substrate of coated conductors in a conventional architecture. In structures fabricated without using electrical stabilizing layers on the superconducting layer, the critical current density achieved at 77 K in a self-field was approximately 2.6 MA/cm2. On the other hand, in the case of using EM steel tapes, although the critical current density was far from practical at the current stage, the biaxial alignment of YBa2Cu3O y (YBCO) and buffer layers was realized without oxidation on the metal surface. In this study, the possibility of material cost reduction has been strongly indicated toward the development of low-cost second-generation superconducting wires in the near future.
Direct deposit laminate nanocomposites with enhanced propellent properties.
Li, Xiangyu; Guerieri, Philip; Zhou, Wenbo; Huang, Chuan; Zachariah, Michael R
2015-05-06
One of the challenges in the use of energetic nanoparticles within a polymer matrix for propellant applications is obtaining high particle loading (high energy density) while maintaining mechanical integrity and reactivity. In this study, we explore a new strategy that utilizes laminate structures. Here, a laminate of alternating layers of aluminum nanoparticle (Al-NPs)/copper oxide nanoparticle (CuO-NPs) thermites in a polyvinylidene fluoride (PVDF) reactive binder, with a spacer layer of PVDF was fabricated by a electrospray layer-by-layer deposition method. The deposited layers containing up to 60 wt % Al-NPs/CuO-NPs thermite are found to be uniform and mechanically flexible. Both the reactive and mechanical properties of laminate significantly outperformed the single-layer structure with the same material composition. These results suggest that deploying a multilayer laminate structure enables the incorporation of high loadings of energetic materials and, in some cases, enhances the reactive properties over the corresponding homogeneous structure. These results imply that an additive manufacturing approach may yield significant advantages in developing a tailored architecture for advanced propulsion systems.
Surface and interfacial chemistry of high-k dielectric and interconnect materials on silicon
NASA Astrophysics Data System (ADS)
Kirsch, Paul Daniel
Surfaces and interfaces play a critical role in the manufacture and function of silicon based integrated circuits. It is therefore reasonable to study the chemistries at these surfaces and interfaces to improve existing processes and to develop new ones. Model barium strontium titanate high-k dielectric systems have been deposited on ultrathin silicon oxynitride in ultrahigh vacuum. The resulting nanostructures are characterized with secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS). An interfacial reaction between Ba and Sr atoms and SiOxNy was found to create silicates, BaSixOy or SrSi xOy. Inclusion of N in the interfacial oxide decreased silicate formation in both Ba and Sr systems. Furthermore, inclusion of N in the interfacial oxide decreased the penetration of Ba and Sr containing species, such as silicides and silicates. Sputter deposited HfO2 was studied on nitrided and unnitrided Si(100) surfaces. XPS and SIMS were used to verify the presence of interfacial HfSixOy and estimate its relative amount on both nitrided and unnitrided samples. More HfSixOy formed without the SiNx interfacial layer. These interfacial chemistry results are then used to explain the electrical measurements obtained from metal oxide semiconductor (MOS) capacitors. MOS capacitors with interfacial SiNx exhibit reduced leakage current and increased capacitance. Lastly, surface science techniques were used to develop a processing technique for reducing thin films of copper (II) and copper (I) oxide to copper. Deuterium atoms (D*) and methyl radicals (CH3*) were shown to reduce Cu 2+ and/or Cu1+ to Cu0 within 30 min at a surface temperature of 400 K under a flux of 1 x 1015 atoms/cm2s. Temperature programmed desorption experiments suggest that oxygen leaves the surface as D2O and CO2 for the D* and CH3* treated surfaces, respectively.
NASA Astrophysics Data System (ADS)
Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun
2018-05-01
The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.
Metamagnetism in hydrophobically induced carboxylate (phenylmalonate)-bridged copper(II) layers.
Pasán, Jorge; Sanchiz, Joaquín; Ruiz-Pérez, Catalina; Campo, Javier; Lloret, Francesc; Julve, Miguel
2006-07-21
Self-assembly of copper(l) ions, phenylmalonate and pyrimidine yields the layered compound [Cu(pym)(Phmal)n (1) where intralayer ferro- and interlayer antiferromagnetic interactions occur with three-dimensional antiferromagnetic ordering at T(c) = 2.15 K.
Experimental investigation on in-situ microwave casting of copper
NASA Astrophysics Data System (ADS)
Raman Mishra, Radha; Sharma, Apurbba Kumar
2018-04-01
The in-situ microwave casting of metallic materials is a recently developed casting process. The process works on the principles of hybrid microwave heating and is accomplished inside the applicator cavity. The process involves – melting of the charge, in-situ pouring and solidification of the melt. The electromagnetic and thermal properties of the charge affects microwave-material interaction and hence melting of the charge. On the other hand, cooling conditions inside the applicator controls solidification process. The present work reports on in-situ casting of copper developed inside a multimode cavity at 2.45 GHz using 1400 W. The molten metal was allowed to get poured in-situ inside a graphite mold and solidification was carried out in the same mold inside the applicator cavity. The interaction of microwave with the charge during exposure was studied and the role of oxide layer during meltingthe copper blocks has been presented. The developed in-situ cast was characterized to access the cast quality. Microstructural study revealed the homogeneous and dense structure of the cast. The X-ray diffraction pattern indicated presence of copper in different orientations with (1 1 1) as the dominant orientation. The average micro indentation hardness of the casts was found 93±20 HV.
Controlled atmosphere for fabrication of cermet electrodes
Ray, Siba P.; Woods, Robert W.
1998-01-01
A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.
Controlled atmosphere for fabrication of cermet electrodes
Ray, S.P.; Woods, R.W.
1998-08-11
A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.
2014-01-01
In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. PMID:24387682
Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10
NASA Astrophysics Data System (ADS)
Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.
1989-06-01
We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].
Kuang, Gui-Chao; Guha, Pampa M.; Brotherton, Wendy S.; Simmons, J. Tyler; Stankee, Lisa A.; Nguyen, Brian T.; Clark, Ronald J.; Zhu, Lei
2011-01-01
A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)2) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and 1H NMR assays are developed for monitoring the reaction progress in two different solvents – methanol and acetonitrile. Solvent kinetic isotopic effect and pre-mixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)2 suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)2 in mediating a 2-picolylazide-involved AAC reaction than the fully reduced Cu(OAc)2. Finally, the discontinuous kinetic behavior that has been observed by us and others in copper(I/II)-mediated AAC reactions is explained by the likely catalyst disintegration during the course of a relatively slow reaction. Complementing the prior mechanistic conclusions drawn by other investigators which primarily focus on the copper(I)/alkyne interactions, we emphasize the kinetic significance of copper(I/II)/azide interaction. This work not only provides a mechanism accounting for the fast Cu(OAc)2-mediated AAC reactions involving chelating azides, which has apparent practical implications, but suggests the significance of mixed-valency dinuclear copper species in catalytic reactions where two copper centers carry different functions. PMID:21809811
NASA Astrophysics Data System (ADS)
Arora, Neha; Dar, M. Ibrahim; Hinderhofer, Alexander; Pellet, Norman; Schreiber, Frank; Zakeeruddin, Shaik Mohammed; Grätzel, Michael
2017-11-01
Perovskite solar cells (PSCs) with efficiencies greater than 20% have been realized only with expensive organic hole-transporting materials. We demonstrate PSCs that achieve stabilized efficiencies exceeding 20% with copper(I) thiocyanate (CuSCN) as the hole extraction layer. A fast solvent removal method enabled the creation of compact, highly conformal CuSCN layers that facilitate rapid carrier extraction and collection. The PSCs showed high thermal stability under long-term heating, although their operational stability was poor. This instability originated from potential-induced degradation of the CuSCN/Au contact. The addition of a conductive reduced graphene oxide spacer layer between CuSCN and gold allowed PSCs to retain >95% of their initial efficiency after aging at a maximum power point for 1000 hours under full solar intensity at 60°C. Under both continuous full-sun illumination and thermal stress, CuSCN-based devices surpassed the stability of spiro-OMeTAD-based PSCs.
Chemically Deposited Thin-Film Solar Cell Materials
NASA Technical Reports Server (NTRS)
Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.
2005-01-01
We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.
Mechanical properties of Cr-Cu coatings produced by electroplating
NASA Astrophysics Data System (ADS)
Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary
2017-06-01
Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.
Sorbent for use in hot gas desulfurization
Gasper-Galvin, Lee D.; Atimtay, Aysel T.
1993-01-01
A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.
Tocheva, Elitza I; Eltis, Lindsay D; Murphy, Michael E P
2008-04-15
The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.
NASA Astrophysics Data System (ADS)
Lukiyanchuk, I. V.; Rudnev, V. S.; Serov, M. M.; Krit, B. L.; Lukiyanchuk, G. D.; Nedozorov, P. M.
2018-04-01
The catalytic activity of both copper fibers and copper-coated fibers of a diameter of 50-100 μm made of aluminum alloy, technical grade titanium, and FeCrAl alloy in CO oxidation has been estimated. Metal fibers have been fabricated by the method of pendant drop melt extraction (PDME). The fibers copper plating was carried out by chemical and electrochemical methods. The composition and structure of samples and coatings before and after catalytic tests have been characterized by the methods of scanning electron microscopy, energy-dispersive analysis, and X-ray fluorescence analysis. It has been shown that the catalytic activity of copper-coated fibers made of FeCrAl alloy in the reaction of CO oxidation is not inferior to that of copper fibers.
Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.
Sowden, Rebecca J; Trotter, Katherine D; Dunbar, Lynsey; Craig, Gemma; Erdemli, Omer; Spickett, Corinne M; Reglinski, John
2013-02-01
A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.
NASA Astrophysics Data System (ADS)
Rathmell, Aaron R.
The demand for flat-panel televisions, e-readers, smart-phones, and touch-screens has been increasing over the past few years and will continue to increase for the foreseeable future. Each of these devices contains a transparent conductor, which is usually indium tin oxide (ITO) because of its high transparency and low sheet resistance. ITO films, however, are brittle, expensive, and difficult to deposit, and because of these problems, alternative transparent electrodes are being studied. One cheap and flexible alternative to ITO is films of randomly oriented copper nanowires. We have developed a synthesis to make long, thin, and well-dispersed copper nanowires that can be suspended in an ink and coated onto a substrate to make flexible transparent films. These films are then made conductive by annealing in a hydrogen atmosphere or by a solution processing technique that can be done in air at room temperature. The resulting flexible transparent conducting films display transparencies and sheet resistance values comparable to ITO. Since it is well known that copper oxidizes, we also developed a synthesis to coat the copper nanowires with a layer of nickel in solution. Our measurements indicated that copper nanowires would double their sheet resistance in 3 months, but the sheet resistance of cupronickel nanowire films containing 20 mole% nickel will double in about 400 years. The addition of nickel to the copper nanowires also gave the film a more neutral grey appearance. The nickel coating can also be applied to the copper nanowires after the film is formed via an electroless plating method. To further optimize the properties of our transparent conductors we developed a framework to understand how the dimensions and area coverage of the nanowires affect the overall film properties. To quantify the effect of length on the sheet resistance and transmittance, wires with different lengths but the same diameter were synthesized to make transparent conducting films and finite-difference time-domain calculations were used to determine the effect of the nanowire diameter on the film's transmittance. The experimental data and calculations were then incorporated into random resistor network simulations that demonstrated that wires with an aspect ratio of 400 or higher are required to make a network that transmits >90% of visible light while maintaining a sheet resistance below 100 O/sq-1. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make copper and cupronickel nanowire films a promising alternative for the sustainable, efficient production of transparent conductors.
Role of alloying elements in adhesive transfer and friction of copper-base alloys
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.
Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D
2009-11-01
Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.
Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials
NASA Technical Reports Server (NTRS)
Bill, R. C.
1974-01-01
Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.
High-frequency piezopolymer transducers with a copper-clad polyimide backing layer
Ketterling, Jeffrey A.; Aristizábal, Orlando; Turnbull, Daniel H.
2006-01-01
The effect of a copper-clad polyimide (CCP) backing layer on piezopolymer transducer performance is evaluated. High-frequency, spherically curved polyvinylidene fluoride (PVDF) transducers with and without a CCP backing layer are electrically and acoustically tested. The results showed very similar operating characteristics. B-mode in vivo images of a mouse embryo also showed no qualitative differences indicating the CCP backing layer does not effect transducer performance. PMID:16889345
NASA Astrophysics Data System (ADS)
Bogachev, V. A.; Pshechenkova, T. P.; Shumovskaya, M. A.
2016-04-01
The elemental composition of an altered layer at the external surface of a steam superheating tube of grade DI59 steel is investigated after long-term operation. It is shown that the layer is located between a scale and a matrix and depleted by silicon, manganese, copper, and chromium with the maximum oxidizer affinity, enriched by iron and nickel to 90%, and mainly composed of the α-Fe phase (ferrite) with the ferromagnetic properties. The layer formed as a result of selective oxidation and diffusion from the matrix into the metal scale with the less standard free energy of the formation of sulfides and oxides. A magnetic ferrite meter is used in the experimental investigation of the layer evolution by testing grade DI59 steel for heat resistance in air environment at temperatures of 585, 650, and 700°C for 15 × 103 h; creep at a temperature of 750°C and a stress of 60 MPa; and long-term strength at temperatures of 700 and 750°C and stresses of from 30 to 80 MPa. Specimens for tests are made of tubes under as-received conditions. The relationship between the ferrite phase content in the surface metal layer and the temperature and time of test is determined. The dependence is developed to evaluate the equivalent temperature for operation of the external surface of steam superheating tubes using data of magnetic ferritometry. It is shown that operation temperatures that are determined by the ferrite phase content and the σ phase concentration in the metal structure of steam superheating tubes with the significant operating time are close. It is proposed to use magnetic ferritometry for revelation of thermal nonuniformity and worst tubes of steam superheaters of HPP boilers.
Understanding the antimicrobial activity behind thin- and thick-rolled copper plates.
Yousuf, Basit; Ahire, Jayesh J; Dicks, Leon M T
2016-06-01
The aim of this study was to compare the antibacterial properties of the surfaces of copper plates that were rolled to a thickness of 25 and 100 μm. Differences in topology of 25- and 100-μm-thick copper plates were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Antibacterial activity of the copper surfaces was tested against strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella typhimurium, Streptococcus sp. BY1, Enterococcus sp. BY2, and Bacillus cereus BY3. Changes in viable cell numbers were determined by plating onto optimal growth media and staining with LIVE/DEAD BacLight™. Changes in metabolic activity were recorded by expression of the luciferase (lux) gene. Cell morphology was studied using SEM. Accumulation and diffusion of copper from cells were recorded using inductively coupled plasma mass spectroscopy (ICP-MS). Lipid and protein oxidation were recorded spectrophotometrically. Surfaces of 25-μm-thick copper plates were rough compared to that of 100-μm-thick copper plates. For most species, a five-log reduction in cell numbers, cell membrane instability, and a decline in metabolic activity were recorded after 15 min of exposure to 25-μm-thick copper plates. Copper accumulated in the cells, and lipids and proteins were oxidized. The rough surface of thinner copper plates (25 μm thick) released more copper and was more antimicrobial compared to thicker (100 μm) copper plates. Cell death was attributed to destabilization of the cell membrane, lipid peroxidation, and protein oxidation.
Bio-mimicking galactose oxidase and hemocyanin, two dioxygen-processing copper proteins.
Gamez, Patrick; Koval, Iryna A; Reedijk, Jan
2004-12-21
The modelling of the active sites of metalloproteins is one of the most challenging tasks in bio-inorganic chemistry. Copper proteins form part of this stimulating field of research as copper enzymes are mainly involved in oxidation bio-reactions. Thus, the understanding of the structure-function relationship of their active sites will allow the design of effective and environmental friendly oxidation catalysts. This perspective illustrates some outstanding structural and functional synthetic models of the active site of copper proteins, with special attention given to models of galactose oxidase and hemocyanin.
Abdollahi Nejand, B; Nazari, P; Gharibzadeh, S; Ahmadi, V; Moshaii, A
2017-01-05
Here, a low-cost perovskite solar cell using CuI and ZnO as the respective inorganic hole and electron transport layers is introduced. Copper foil is chosen as a cheap and low-weight conductive substrate which has a similar work function to ITO. Besides, copper foil is an interesting copper atom source for the growth of the upper cuprous iodide layer on copper foil. A spray coating of a transparent silver nanowire electrode is used as a top contact. The prepared device shows a maximum power conversion efficiency of 12.80% and long-term durability providing an environmentally and market friendly perovskite solar cell.
NASA Astrophysics Data System (ADS)
Padovani, S.; Borgia, I.; Brunetti, B.; Sgamellotti, A.; Giulivi, A.; D'Acapito, F.; Mazzoldi, P.; Sada, C.; Battaglin, G.
Lustre is one of the most important decorative techniques of the Medieval and Renaissance pottery of the Mediterranean basin, capable of producing brilliant metallic reflections and iridescence. Following the recent finding that the colour of lustre decorations is mainly determined by copper and silver nanoclusters dispersed in the glaze layer, the local environment of copper and silver atoms has been studied by extended X-ray absorption fine structure (EXAFS) spectroscopy on original samples of gold and red lustre. It has been found that, in gold lustre, whose colour is attributed mainly to the silver nanocluster dispersion, silver is only partially present in the metallic form and copper is almost completely oxidised. In the red lustre, whose colour is attributed mainly to the copper nanocluster dispersion, only a fraction of copper is present in the metallic form. EXAFS measurements on red lustre, carried out in the total electron yield mode to probe only the first 150 nm of the glaze layer, indicated that in some cases lustre nanoclusters may be confined in a very thin layer close to the surface.
Bioavailable copper modulates oxidative phosphorylation and growth of tumors
Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas
2013-01-01
Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment. PMID:24218578
High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures
Young, J.E.; Jalan, V.M.
1982-07-07
A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.
High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures
Young, J.E.; Jalan, V.M.
1984-06-19
A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.
High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures
Young, John E.; Jalan, Vinod M.
1984-01-01
A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.
High adherence copper plating process
Nignardot, H.
1993-09-21
A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing the surface of an aluminum or steel substrate for the electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to either substrate.
[Biohydrometallurgical technology of a complex copper concentrate process].
Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T F
2011-01-01
Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.
Zhong, Wu; Zhu, Haichuan; Sheng, Fugeng; Tian, Yonglu; Zhou, Jun; Chen, Yingyu; Li, Song; Lin, Jian
2014-07-01
Transition metal copper (Cu) can exist in oxidized or reduced states in cells, leading to cytotoxicity in cancer cells through oxidative stress. Recently, copper complexes are emerging as a new class of anticancer compounds. Here, we report that a novel anticancer copper complex (HYF127c/Cu) induces oxidative stress-dependent cell death in cancer cells. Further, transcriptional analysis revealed that oxidative stress elicits broad transcriptional changes of genes, in which autophagy-related genes are significantly changed in HYF127c/Cu-treated cells. Consistently, autophagy was induced in HYF127c/Cu-treated cells and inhibitors of autophagy promoted cell death induced by HYF127c/Cu. Further analysis identified that the MAPK11/12/13/14 (formerly known as p38 MAPK) pathway was also activated in HYF127c/Cu-treated cells. Meanwhile, the MAPK11/12/13/14 inhibitor SB203580 downregulated autophagy by inhibiting the transcription of the autophagy genes MAP1LC3B, BAG3, and HSPA1A, and promoted HYF127c/Cu-induced cell death. These data suggest that copper-induced oxidative stress will induce protective autophagy through transcriptional regulation of autophagy genes by activation of the MAPK11/12/13/14 pathway in HeLa cells.
NASA Astrophysics Data System (ADS)
Chen, Y.; Huang, X. J.; Kong, J. X.
2018-03-01
In this paper, the focused ion beam was used to study the subsurface deformed layer of single crystal copper caused by the nanoscale single-point diamond fly cutting, and the possibility of using nanometer ultra-precision cutting to remove the larger deformation layer caused by traditional rough cutting process was explored. The maximum cutting thickness of single-point diamond cutting was about 146 nm, and the surface of the single-crystal copper after cutting was etched and observed by using the focused ion beam method. It was found that the morphology of the near-surface layer and the intermediate layer of the copper material were larger differences: the near-surface of the material was smaller and more compact, and the intermediate material layer of the material was more coarse sparse. The results showed that the traditional precision cutting would residual significant subsurface deformed layer and the thickness was on micron level. Even more, the subsurface deformed layer was obviously removed from about 12μm to 5μm after single-point diamond fly cutting in this paper. This paper proved that the large-scale subsurface deformed layer caused by traditional cutting process could be removed by nanometer ultra-precision cutting. It was of great significance to further establish the method that control of the deformation of weak rigid components by reducing the depth of the subsurface deformed layers.
Growth and characterization of single phase Cu{sub 2}O by thermal oxidation of thin copper films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Sumita; Sarma, J. V. N.; Gangopadhyay, Subhashis, E-mail: subhagan@yahoo.com
2016-04-13
We report a simple and efficient technique to form high quality single phase cuprous oxide films on glass substrate using thermal evaporation of thin copper films followed by controlled thermal oxidation in air ambient. Crystallographic analysis and oxide phase determination, as well as grain size distribution have been studied using X-ray diffraction (XRD) method, while scanning electron microscopy (SEM) has been utilized to investigate the surface morphology of the as grown oxide films. The formation of various copper oxide phases is found to be highly sensitive to the oxidation temperature and a crystalline, single phase cuprous oxide film can bemore » achieved for oxidation temperatures between 250°C to 320°C. Cu{sub 2}O film surface appeared in a faceted morphology in SEM imaging and a direct band gap of about 2.1 eV has been observed in UV-visible spectroscopy. X-ray photoelectron spectroscopy (XPS) confirmed a single oxide phase formation. Finally, a growth mechanism of the oxide film has also been discussed.« less
Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.
Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping
2013-02-01
This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.
Cruces-Sande, Antón; Méndez-Álvarez, Estefanía; Soto-Otero, Ramón
2017-06-01
Copper is an essential metal for the function of many proteins related to important cellular reactions and also involved in the synaptic transmission. Although there are several mechanisms involved in copper homeostasis, a dysregulation in this process can result in serious neurological consequences, including degeneration of dopaminergic neurons. 6-Hydroxydopamine is a dopaminergic neurotoxin mainly used in experimental models of Parkinson's disease, whose neurotoxicity has been related to its ability to generate free radicals. In this study, we examined the effects induced by copper on 6-OHDA autoxidation. Our data show that both Cu + and Cu 2+ caused an increase in • OH production by 6-OHDA autoxidation, which was accompanied by an increase in the rate of both p-quinone formation and H 2 O 2 accumulation. The presence of ascorbate greatly enhanced this process by establishing a redox cycle which regenerates 6-OHDA from its p-quinone. However, the presence of glutathione did not change significantly the copper-induced effects. We observed that copper is able to potentiate the ability of 6-OHDA to cause both lipid peroxidation and protein oxidation, with the latter including a reduction in free-thiol content and an increase in carbonyl content. Ascorbate also increases the lipid peroxidation induced by the action of copper and 6-OHDA. Glutathione protects against the copper-induced lipid peroxidation, but does not reduce its potential to oxidize free thiols. These results clearly demonstrate the potential of copper to increase the capacity of 6-OHDA to generate oxidative stress and the ability of ascorbate to enhance this potential, which may contribute to the destruction of dopaminergic neurons. © 2017 International Society for Neurochemistry.
Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus.
Li, Xiaomin; Zhou, Suyang; Fan, Wenhong
2016-06-09
Nano-Al₂O₃ has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al₂O₃ is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al₂O₃ and heavy metals as well as the effect of nano-Al₂O₃ on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al₂O₃ towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al₂O₃ reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al₂O₃ decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al₂O₃. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al₂O₃. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.
NASA Astrophysics Data System (ADS)
Talic, Belma; Molin, Sebastian; Wiik, Kjell; Hendriksen, Peter Vang; Lein, Hilde Lea
2017-12-01
MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate the interaction with the cathode in a SOFC stack. All coated samples have three times lower ASR than uncoated Crofer 22 APU after 4370 h aging. The ASR increase with time is lowest with the MnCo2O4 coating, followed by the MnCo1.7Fe0.3O4 and MnCo1.7Cu0.3O4 coatings. LSM plates contacted to uncoated Crofer 22 APU contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect of doping is insignificant.
Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan; ...
2017-08-21
The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan
The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less
DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*
Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi
2014-01-01
Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322
NASA Astrophysics Data System (ADS)
Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath
2018-04-01
Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.
Torres, Jaume; Svistunenko, Dimitri; Karlsson, Bo; Cooper, Chris E; Wilson, Michael T
2002-02-13
The rapid reduction of one of the copper atoms (type 2) of tree laccase by nitric oxide (NO) has been detected. Addition of NO to native laccase in the presence of oxygen leads to EPR changes consistent with fast reduction and slow reoxidation of this metal center. These events are paralleled by optical changes that are reminiscent of formation and decay of the peroxide intermediate in a fraction of the enzyme population. Formation of this species is only possible if the trinuclear copper cluster (type 2 plus type 3) is fully reduced. This condition can only be met if, as suggested previously, a fraction of the enzyme contains both type 3 coppers already reduced before addition of NO. Our data are consistent with this assumption. We have suggested recently that fast reduction of copper is the mechanism by which NO interacts with the oxidized dinuclear center in cytochrome c oxidase. The present experiments using laccase strongly support this view and suggest this reaction as a general mechanism by which copper proteins interact with NO. In addition, this provides an unexploited way to produce a stable peroxide intermediate in copper oxidases in which the full complement of copper atoms is present. This enables the O-O scission step in the catalytic cycle to be studied by electron addition to the peroxide derivative through the native electron entry site, type 1 copper.
NASA Astrophysics Data System (ADS)
Charrier, J. G.; Richards-Henderson, N. K.; Bein, K. J.; McFall, A. S.; Wexler, A. S.; Anastasio, C.
2015-03-01
Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these end points are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species in the body, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA, using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single-particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions - ultrafine Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) - and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a factor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular emissions, regional source mix, commute hours, daytime mixed layer, and nighttime inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other organics, account for 30%. During nighttime, soluble copper and manganese largely explain the oxidative potential of PM, while daytime has a larger contribution from unknown (likely organic) species.
Process Produces Low-Secondary-Electron-Emission Surfaces
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.; Roman, R. F.
1986-01-01
Textured carbon layer applied to copper by sputtering. Carbon surface characterized by dense, random array of needle-like spires or peaks that extend perpendicularly from local copper surface. Spires approximately 7 micrometers in height and spaced approximately 3 micrometers apart, on average. Copper substrate essentially completely covered by carbon layer, is tenacious and not damaged by vibration loadings representative of multistage depressed collector (MDC) applications. Process developed primarily to provide extremely low-secondary-electron-emission surface for copper for use as highefficiency electrodes in MDC's for microwave amplifier traveling-wave tubes (TWT's). Tubes widely used in space communications, aircraft, and terrestrial applications.
Schuhmann-Irschik, I; Sager, M; Paulsen, P; Tichy, A; Bauer, F
2015-10-01
When venison with embedded copper bullets was subjected to different culinary processing procedures, the amount of copper released from the embedded bullet was affected more by the retention period of the bullet in the meat during cool storage, than by the different heating protocols. The presence of copper fragments had no significant effect on levels of thiobarbituric acid reactive substances (TBARS). Conversely, TBARS in lean meat (fallow deer, wild boar, roe deer) were significantly affected by culinary treatment (higher TBARS in boiled and boiled-stored meat than in meat barbecued or boiled in brine). In pork-beef patties doped with up to 28mg/kg Cu, TBARS increased after dry-heating and subsequently storing the meat patties. The amount of copper doping had no effect on TBARS for 0 and 7days of storage, but a significant effect at day 14 (fat oxidation retarded at higher Cu doses). Evidence is presented that wild boar meat may be more sensitive to fat oxidation than pork-beef. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stewart, Ian Edward
Printed electronics, including transparent conductors, currently rely on expensive materials to generate high conductivity devices. Conductive inks for thick film applications utilizing inkjet, aerosol, and screen printing technologies are often comprised of expensive and rare silver particles. Thin film applications such as organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) predominantly employ indium tin oxide (ITO) as the transparent conductive layer which requires expensive and wasteful vapor deposition techniques. Thus an alternative to silver and ITO with similar performance in printed electronics warrants considerable attention. Copper nanomaterials, being orders of magnitude cheaper and more abundant than silver or indium, solution-coatable, and exhibiting a bulk conductivity only 6 % less than silver, have emerged as a promising candidate for incorporation in printed electronics. First, we examine the effect of nanomaterial shape on the conductivity of thick films. The inks used in such films often require annealing at elevated temperature in order to sinter the silver nanoparticles together and obtain low resistivities. We explore the change in morphology and resistivity that occurs upon heating thick films of silver nanowires (of two different lengths, Ag NWs), nanoparticles (Ag NPs), and microflakes (Ag MFs) deposited from water at temperatures between 70 and 400 °C. At the lowest temperatures, longer Ag NWs exhibited the lowest resistivity (1.8 x 10-5 O cm), suggesting that the resistivity of thick films of silver nanostructures is dominated by the contact resistance between particles. This result supported previous research showing that junction resistance between Ag NWs in thin film conductors also dominates optoelectronic performance. Since the goal is to replace silver with copper, we perform a similar analysis by using a pseudo-2D rod network modeling approach that has been modified to include lognormal distributions in length that more closely reflect experimental data collected from the nanowire transparent conductors. In our analysis, we find that Cu NW-based transparent conductors are capable of achieving comparable electrical performance to Ag NW transparent conductors with similar dimensions. We also synthesize high aspect ratio Cu NWs (as high as 5700 in an aqueous based synthesis taking less than 30 minutes) and show that this increase in aspect ratio can result results in transparent conducting films with a transmittance >95% at a sheet resistance <100 O sq-1, optoelectronic properties similar to that for ITO. Two of the major barriers preventing the further use of Cu NWs in printed electronics are the necessity to anneal the nanowires under H2 at higher temperatures and copper's susceptibility to oxidation. The former issue is solved by removing the insulating oxide along the Cu NWs with acetic acid and pressing the nanowires together to make H2 annealing obsolete. Finally, several methods of preventing copper oxidation in the context of transparent conductors were successfully developed such as electroplating zinc, tin, and indium and electrolessly plating benzotriazole (BTAH), nickel, silver, gold, and platinum. While all of the shells lessened or prevented oxidation both in dry and humid conditions, it was found that a thin layer of silver confers identical optoelectronic properties to the Cu NWs as pure Ag NWs. These results are expected provide motivation to replace pure silver and ITO in printed electronics.
Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ken Shuang
2004-11-01
This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimentalmore » data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.« less
McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R
2015-01-01
Background Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. Materials and methods For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. Results The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. Conclusion These results support the concept of using the hyaluronidase inhibitory activity of sodium copper chlorophyllin complex to increase the hyaluronic acid level of the dermal extracellular matrix for the improvement of the appearance of aging facial skin. PMID:26300653
McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R
2015-01-01
Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. These results support the concept of using the hyaluronidase inhibitory activity of sodium copper chlorophyllin complex to increase the hyaluronic acid level of the dermal extracellular matrix for the improvement of the appearance of aging facial skin.
NASA Astrophysics Data System (ADS)
Danilov, P. A.; Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Litovko, E. P.; Mel'nik, N. N.; Rudenko, A. A.; Saraeva, I. N.; Umanskaya, S. P.; Khmelnitskii, R. A.
2017-09-01
Irradiation of optically transparent copper (I) oxide film covering a glass substrate with a tightly focused femtosecond laser pulses in the pre-ablation regime leads to film reduction to a metallic colloidal state via a single-photon absorption and its subsequent thermochemical decomposition. This effect was demonstrated by the corresponding measurement of the extinction spectrum in visible spectral range. The laser-induced formation of metallic copper nanoparticles in the focal region inside the bulk oxide film allows direct recording of individual thin-film plasmon nanostructures and optical-range metasurfaces.
Oxidation-Reduction Resistance of Advanced Copper Alloys
NASA Technical Reports Server (NTRS)
Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.; Humphrey, D. L.; Setlock, J. A.
2003-01-01
Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and results are presented.
Comparative study of initial stages of copper immersion deposition on bulk and porous silicon
NASA Astrophysics Data System (ADS)
Bandarenka, Hanna; Prischepa, Sergey L.; Fittipaldi, Rosalba; Vecchione, Antonio; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly
2013-02-01
Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.
Im, Hyeon-Gyun; Jung, Soo-Ho; Jin, Jungho; Lee, Dasom; Lee, Jaemin; Lee, Daewon; Lee, Jung-Yong; Kim, Il-Doo; Bae, Byeong-Soo
2014-10-28
We report a flexible high-performance conducting film using an embedded copper nanowire transparent conducting electrode; this material can be used as a transparent electrode platform for typical flexible optoelectronic devices. The monolithic composite structure of our transparent conducting film enables simultaneously an outstanding oxidation stability of the copper nanowire network (14 d at 80 °C), an exceptionally smooth surface topography (R(rms) < 2 nm), and an excellent opto-electrical performances (Rsh = 25 Ω sq(-1) and T = 82%). A flexible organic light emitting diode device is fabricated on the transparent conducting film to demonstrate its potential as a flexible copper nanowire electrode platform.
Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit
1986-01-01
A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..
Townsend, R.G.
1959-08-25
A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.
Structure and Microhardness of Cu-Ta Joints Produced by Explosive Welding
Maliutina, Iu. N.; Mali, V. I.; Bataev, I. A.; Bataev, A. A.; Esikov, M. A.; Smirnov, A. I.; Skorokhod, K. A.
2013-01-01
The structure and microhardness of Cu-Ta joints produced by explosive welding were studied. It was found that, during explosive welding, an intermediate layer 20⋯40 μm thick with a finely dispersed heterophase structure, formed between the welded copper and tantalum plates. The structure of the layer was studied by scanning and transmission electron microscopy. Microvolumes with tantalum particles distributed in a copper matrix and microvolumes of copper particles in a tantalum matrix were detected. The tantalum particles in copper have a size of 5⋯500 nm, with a predominance of 5⋯50 nm particles. A mechanism for the formation of the finely dispersed heterophase structure in explosive welding is proposed. The microhardness of interlayers with the heterophase structure reaches 280 HV, which far exceeds the microhardness of copper (~130 HV) and tantalum (~160 HV). Many twins of deformation origin were found in the structure of the copper plate. The effect of heating temperature in the range from 100 to 900°C on the microhardness of copper, tantalum, and the Cu-Ta welded joint was studied. Upon heating to 900°C, the microhardness of the intermediate layer decreases from 280 to 150 HV. The reduction in the strength properties of the weld material is mainly due to structural transformations in copper. PMID:24453818
Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei; Sanchez-Sanchez, Maricruz; Ortuño, Manuel A; Pahls, Dale R; Fulton, John L; Camaioni, Donald M; Li, Zhanyong; Ray, Debmalya; Mehdi, B Layla; Browning, Nigel D; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gagliardi, Laura; Lercher, Johannes A
2017-08-02
Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu + and ∼85% Cu 2+ . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu 2+ to Cu + . The products, methanol, dimethyl ether, and CO 2 , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.
NASA Astrophysics Data System (ADS)
Tomul, Fatma; Turgut Basoglu, Funda; Canbay, Hale
2016-01-01
Ti-pillared bentonite, Cu, Ag and Fe modified Ti-pillared bentonite and Cu/Ti- and Fe/Ti-mixed pillared bentonite were synthesized using different titanium sources by direct synthesis or by modification after synthesis. The effects of synthesis conditions on the surface characteristics, pore structure and acidity of the pillared bentonites were investigated by SEMEDS, XPS, XRD, N2-adsorption/desorption and FTIR analyses before and after ammonia adsorption. The results of EDS, XPS and XRD analysis confirmed that titanium, copper, silver and iron were incorporated into the bentonite structure. In the XRD patterns, the formation of delaminated structure reflecting the non-parallel distribution of the bentonite layers by pillaring with Ti, Cu/Ti and Fe/Ti-pillars was observed. XPS spectra indicated the presence of TiO2, CuO, Ag and Ag2O and Fe2O3 species depending on the source of active metals in the synthesized samples. In the FTIR spectra, an increase in the Bronsted/Lewis peak intensity was observed with the loading of copper and iron, whereas a decrease in Lewis and Bronsted acidities was observed with incorporation of silver. Adsorption studies indicated that the adsorption capacity of the sample synthesized using titanium (IV) propoxide and incorporating iron to the structure by ion exchange (Fe-PTi-PILC) were higher than those in other samples. The adsorption of BPA (bisphenol A) by all tested samples was found to fit the Langmuir isotherm. In the catalytic wet peroxide oxidation (CWPO) over PTi-PILC (prepared by titanium (IV) propoxide), Fe-PTi-PILC and Cu-PTi-PILC (prepared by copper impregnated Ti-pillared bentonite) samples, BPA values close to complete conversion were achieved within 30 min at 25 °C, pH 4 and 5 g/L mcat. CWPO results showed that increasement of pH causes a decrease the rate of oxidation. On the other hand, by the time catalyst and BPA concentration is increased, the rate of oxidation is increased as well.
Flavonoids and urate antioxidant interplay in plasma oxidative stress.
Filipe, P; Lança, V; Silva, J N; Morlière, P; Santus, R; Fernandes, A
2001-05-01
Flavonoids are naturally occurring plant compounds with antioxidant properties. Their consumption has been associated with the protective effects of certain diets against some of the complications of atherosclerosis. Low-density lipoprotein (LDL) oxidative modification is currently thought to be a significant event in the atherogenic process. Most of the experiments concerning the inhibition of LDL oxidation used isolated LDL. We used diluted human whole plasma to study the influence of flavonoids on lipid peroxidation (LPO) promoted by copper, and their interaction with uric acid, one of the most important plasma antioxidants. Lipid peroxidation was evaluated by the formation of thiobarbituric acid reactive substances (TBARS) and of free malondialdehyde (MDA). The comparative capability of the assayed flavonoids on copper (II) reduction was tested using the neocuproine colorimetric test. In our assay system, urate disappears and free MDA and TBARS formation increase during the incubation of plasma with copper. Most of the tested flavonoids inhibited copper-induced LPO. The inhibition of LPO by flavonoids correlated positively with their capability to reduce copper (II). The urate consumption during the incubation of plasma with copper was inhibited by myricetin, quercetin and kaempferol. The inhibition of urate degradation by flavonoids correlated positively with the inhibition of LPO. Urate inhibited the copper-induced LPO in a concentration-dependent mode. Luteolin, rutin, catechin and quercetin had an antioxidant synergy with urate. Our results show that some flavonoids could protect endogenous urate from oxidative degradation, and demonstrate an antioxidant synergy between urate and some of the flavonoids.
Contributions of Stress and Oxidation on the Formation of Whiskers in Pb-free Solders
2016-01-29
environmental factors influencing formation of tin whiskers on electrodeposited lead free, tin coatings over copper (or copper containing) substrates is the...Oxidation on the Formation of Whiskers in Pb‐free Solders,” WP-1754 15. SUBJECT TERMS Tin Whiskers, Residual Stress, Environmental Degradation 16...showing the surface of a tin film with whisker .................... 2 Figure 2: SEM Micrograph of Tin film on Copper Substrate cross-sectioned by FIB
Design and development of wafer-level near-infrared micro-camera
NASA Astrophysics Data System (ADS)
Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Dhar, Nibir K.; Lewis, Jay S.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.
2015-08-01
SiGe offers a low-cost alternative to conventional infrared sensor material systems such as InGaAs, InSb, and HgCdTe for developing near-infrared (NIR) photodetector devices that do not require cooling and can offer high bandwidths and responsivities. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated SiGe based PIN detector devices on 300 mm diameter Si wafers in order to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. An n+-Ge layer formed by ion implantation of phosphorus, passivating oxide cap, and then top copper contacts complete the PIN photodetector design. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxial growth and fabricated detector devices. In addition, electrical characterization was performed to compare the I-V dark current vs. photocurrent response as well as the time and wavelength varying photoresponse properties of the fabricated devices, results of which are likewise presented.
Is copper chelation an effective anti-angiogenic strategy for cancer treatment?
Antoniades, V; Sioga, A; Dietrich, E M; Meditskou, S; Ekonomou, L; Antoniades, K
2013-12-01
Angiogenesis and the acquisition of an angiogenic phenotype is important for cancer cell proliferation. Copper in an essential trace element that participates in many enzymatic complexes like the cytochrome c, superoxide dismutase and lysyl oxidase and it is involved in processes, like embryogenesis, growth, angiogenesis and carcinogenesis. In particular, its involvement in carcinogenesis was described for the first time in oral submucous fibrosis, where fibroblasts produce large amounts of collagen in the presence of copper. Copper's action in carcinogenesis is two-fold: (1) it participates in reactions with an increased redox potential that result in the production of oxidative products and oxidative stress. Through this mechanism, copper may cause DNA mutations in the nucleus and mitochondria or alterations to membrane phospholipids, (2) it participates in angiogenesis even in the absence of angiogenic molecules, as it was reported for the first time in rabbit cornea models with copolymer pellets charged with PGE1. Copper chelation regimens like penicillamine and tetrathiomolybdate are being described in the literature as having anti-angiogenic, anti-fibrotic and anti-inflammatory actions. Animal models of brain cancer that evaluated the anti-angiogenic properties of copper, have proven evidence of the reduction of tumor's microvascular supply, tumor volume and vascular permeability after plasma copper levels reduction. Interestingly, plasma copper levels reduction was shown to suppress micrometastases generation in mice models of breast cancer. We hypothesize that copper chelation therapy: increases oxidative stress in cancer cells to a level that does not allow survival because of the reduction of anti-oxidative enzymes production. It may also result in inhibition of angiogenesis and of the initiation of the angiogenic switch, because copper normally enhances endothelial cell migration and proliferation, improves binding of growth factors to endothelial cells and enhances the expression of angiogenic molecules. Copper chelation may also reduce extracellular matrix degradation and cancer spread, through reduction of MMP-9 production and probably of other collagenases and may inhibit propagation of micrometastases. However, copper chelation therapy may enhance angiogenesis through reduction of thrombospondin-1, that results into an increase in VEGF-VEGFR2 complexes and a high level of active MMP-9. These hypotheses help in understanding of the anti-angiogenic action of copper chelation therapies and of the complex network of interactions between copper and other molecules involved in angiogenesis. It may also stimulate further research regarding differences in copper metabolism, the effects of anti-copper regimens on organs, the development of resistance, and their possible angiogenic action through thrombospondin expression reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stepniowski, Wojciech J; Misiolek, Wojciech Z
2018-05-29
Typically, anodic oxidation of metals results in the formation of hexagonally arranged nanoporous or nanotubular oxide, with a specific oxidation state of the transition metal. Recently, the majority of transition metals have been anodized; however, the formation of copper oxides by electrochemical oxidation is yet unexplored and offers numerous, unique properties and applications. Nanowires formed by copper electrochemical oxidation are crystalline and composed of cuprous (CuO) or cupric oxide (Cu₂O), bringing varied physical and chemical properties to the nanostructured morphology and different band gaps: 1.44 and 2.22 eV, respectively. According to its Pourbaix (potential-pH) diagram, the passivity of copper occurs at ambient and alkaline pH. In order to grow oxide nanostructures on copper, alkaline electrolytes like NaOH and KOH are used. To date, no systemic study has yet been reported on the influence of the operating conditions, such as the type of electrolyte, its temperature, and applied potential, on the morphology of the grown nanostructures. However, the numerous reports gathered in this paper will provide a certain view on the matter. After passivation, the formed nanostructures can be also post-treated. Post-treatments employ calcinations or chemical reactions, including the chemical reduction of the grown oxides. Nanostructures made of CuO or Cu₂O have a broad range of potential applications. On one hand, with the use of surface morphology, the wetting contact angle is tuned. On the other hand, the chemical composition (pure Cu₂O) and high surface area make such materials attractive for renewable energy harvesting, including water splitting. While compared to other fabrication techniques, self-organized anodization is a facile, easy to scale-up, time-efficient approach, providing high-aspect ratio one-dimensional (1D) nanostructures. Despite these advantages, there are still numerous challenges that have to be faced, including the strict control of the chemical composition and morphology of the grown nanostructures, their uniformity, and understanding the mechanism of their growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrault, Joeel, E-mail: joel.barrault@univ-poitiers.fr; Makhankova, Valeriya G., E-mail: leram@univ.kiev.ua; Khavryuchenko, Oleksiy V.
2012-03-15
From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06more » m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.« less
Using Copper to Improve the Well-Being of the Skin
Borkow, Gadi
2014-01-01
Copper has two key properties that are being exploited in consumer and medical device products in the last decade. On the one hand, copper has potent biocidal properties. On the other hand, copper is involved in numerous physiological and metabolic processes critical for the appropriate functioning of almost all tissues in the human body. In the skin, copper is involved in the synthesis and stabilization of extracellular matrix skin proteins and angiogenesis. This manuscript reviews clinical studies that show that the use of textile consumer and medical device products, embedded with microscopic copper oxide particles, improve the well-being of the skin. These include studies showing a) cure of athlete’s foot infections and improvement in skin elasticity, especially important for individuals suffering from diabetes; b) reduction of facial fine line and wrinkles; and c) enhancement of wound healing; by copper oxide embedded socks, pillowcases and wound dressings, respectively. The manuscript also reviews and discusses the mechanisms by which the presence of copper in these products improves skin well-being. PMID:26361585
Hamulakova, Slavka; Poprac, Patrik; Jomova, Klaudia; Brezova, Vlasta; Lauro, Peter; Drostinova, Lenka; Jun, Daniel; Sepsova, Vendula; Hrabinova, Martina; Soukup, Ondrej; Kristian, Pavol; Gazova, Zuzana; Bednarikova, Zuzana; Kuca, Kamil; Valko, Marian
2016-08-01
Alzheimer's disease is a multifactorial disease that is characterized mainly by Amyloid-β (A-β) deposits, cholinergic deficit and extensive metal (copper, iron)-induced oxidative stress. In this work we present details of the synthesis, antioxidant and copper-chelating properties, DNA protection study, cholinergic activity and amyloid-antiaggregation properties of new multifunctional tacrine-7-hydroxycoumarin hybrids. The mode of interaction between copper(II) and hybrids and interestingly, the reduction of Cu(II) to Cu(I) species (for complexes Cu-5e-g) were confirmed by EPR measurements. EPR spin trapping on the model Fenton reaction, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap, demonstrated a significantly suppressed formation of hydroxyl radicals for the Cu-5e complex in comparison with free copper(II). This suggests that compound 5e upon coordination to free copper ion prevents the Cu(II)-catalyzed decomposition of hydrogen peroxide, which in turn may alleviate oxidative stress-induced damage. Protective activity of hybrids 5c and 5e against DNA damage in a Fenton system (copper catalyzed) was found to be in excellent agreement with the EPR spin trapping study. Compound 5g was the most effective in the inhibition of acetylcholinesterase (hAChE, IC50=38nM) and compound 5b was the most potent inhibitor of butyrylcholinesterase (hBuChE, IC50=63nM). Compound 5c was the strongest inhibitor of A-β1-40 aggregation, although a significant inhibition (>50%) was detected for compounds 5b, 5d, 5e and 5g. Collectively, these results suggest that the design and investigation of multifunctional agents containing along with the acetylcholinesterase inhibitory segment also an antioxidant moiety capable of alleviating metal (copper)-induced oxidative stress, may be of importance in the treatment of Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Privalova, Larisa I.; Katsnelson, Boris A.; Loginova, Nadezhda V.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Valamina, Irene E.; Makeyev, Oleg H.; Sutunkova, Marina P.; Minigalieva, Ilzira A.; Kireyeva, Ekaterina P.; Rusakov, Vadim O.; Tyurnina, Anastasia E.; Kozin, Roman V.; Meshtcheryakova, Ekaterina Y.; Korotkov, Artem V.; Shuman, Eugene A.; Zvereva, Anastasia E.; Kostykova, Svetlana V.
2014-01-01
In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particles <100 nm. In the scientific literature, there is a lack of their in vivo toxicity characterization and virtually no attempts of enhancing organism’s resistance to their impact. A stable suspension of copper oxide particles with mean (±SD) diameter 20 ± 10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a “bio-protective complex” (BPC) comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism’s status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD) test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its management with the help of innocuous bioprotectors seems to be justified. PMID:25026171
Privalova, Larisa I; Katsnelson, Boris A; Loginova, Nadezhda V; Gurvich, Vladimir B; Shur, Vladimir Y; Valamina, Irene E; Makeyev, Oleg H; Sutunkova, Marina P; Minigalieva, Ilzira A; Kireyeva, Ekaterina P; Rusakov, Vadim O; Tyurnina, Anastasia E; Kozin, Roman V; Meshtcheryakova, Ekaterina Y; Korotkov, Artem V; Shuman, Eugene A; Zvereva, Anastasia E; Kostykova, Svetlana V
2014-07-14
In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particles<100 nm. In the scientific literature, there is a lack of their in vivo toxicity characterization and virtually no attempts of enhancing organism's resistance to their impact. A stable suspension of copper oxide particles with mean (±SD) diameter 20±10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a "bio-protective complex" (BPC) comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism's status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD) test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its management with the help of innocuous bioprotectors seems to be justified.
Revealing the semiconductor–catalyst interface in buried platinum black silicon photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Anderson, Nicholas C.; Neale, Nathan R.
2016-01-01
Nanoporous 'black' silicon semiconductors interfaced with buried platinum nanoparticle catalysts have exhibited stable activity for photoelectrochemical hydrogen evolution even after months of exposure to ambient conditions. The mechanism behind this stability has not been explained in detail, but is thought to involve a Pt/Si interface free from SiOx layer that would adversely affect interfacial charge transfer kinetics. In this paper, we resolve the chemical composition and structure of buried Pt/Si interfaces in black silicon photocathodes from a micron to sub-nanometer level using aberration corrected analytical scanning transmission electron microscopy. Through a controlled electrodeposition of copper on samples aged for onemore » month in ambient conditions, we demonstrate that the main active catalytic sites are the buried Pt nanoparticles located below the 400-800 nm thick nanoporous SiOx layer. Though hydrogen production performance degrades over 100 h under photoelectrochemical operating conditions, this burying strategy preserves an atomically clean catalyst/Si interface free of oxide or other phases under air exposure and provides an example of a potential method for stabilizing silicon photoelectrodes from oxidative degradation in photoelectrochemical applications.« less
High-strength braze joints between copper and steel
NASA Technical Reports Server (NTRS)
Kuhn, R. F.
1967-01-01
High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.
Sadiq, Rakhshinda; Khan, Qaiser Mahmood; Mobeen, Ameena; Hashmat, Amer Jamal
2015-04-01
Metallic nanoparticles (NPs) have a variety of applications in different industries including pharmaceutical industry where these NPs are used mainly for image analysis and drug delivery. The increasing interest in nanotechnology is largely associated with undefined risks to the human health and to the environment. Therefore, in the present study cytotoxic and genotoxic effects of iron oxide, aluminium oxide and copper nanoparticles were evaluated using most commonly used assays i.e. Ames assay, in vitro cytotoxicity assay, micronucleus assay and comet assay. Cytotoxicity to bacterial cells was assessed in terms of colony forming units by using Escherichia coli (gram negative) and Bacillus subtilis (gram positive). Ames assay was carried out using two bacterial strains of Salmonella typhimurium TA98 and TA100. Genotoxicity of these NPs was evaluated following exposure to monkey kidney cell line, CHS-20. No cytotoxic and genotoxic effects were observed for iron oxide, and aluminium oxide NPs. Copper NPs were found mutagenic in TA98 and in TA100 and also found cytotoxic in dose dependent manner. Copper NPs induced significant (p < 0.01) increase in number of binucleated cells with micronuclei (96.6 ± 5.40) at the highest concentration (25 µg/mL). Copper NPs also induced DNA strand breaks at 10 µg/mL and oxidative DNA damage at 5 and 10 µg/mL. We consider these findings very useful in evaluating the genotoxic potential of NPs especially because of their increasing applications in human health and environment with limited knowledge of their toxicity and genotoxicity.
Copper and Copper Proteins in Parkinson's Disease
Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo
2014-01-01
Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633
Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice
Li, Xiaoxiao; Zhai, Qixiao; Wang, Gang; Zhang, Qiuxiang; Zhang, Hao; Chen, Wei
2015-01-01
Lactobacillus plantarum CCFM8246, which has a relatively strong copper binding capacity and tolerance to copper ions, was obtained by screening from 16 lactic acid bacteria in vitro. The selected strain was then applied to a mouse model to evaluate its protective function against copper intoxication in vivo. The experimental mice were divided into an intervention group and a therapy group; mice in the intervention group received co-administration of CCFM8246 and a copper ion solution by gavage, while mice in the therapy group were treated with CCFM8246 after 4 weeks of copper exposure. In both two groups, mice treated with copper alone and that treated with neither CCFM8246 nor copper served as positive and negative controls, respectively. At the end of the experimental period, the copper content in feces and tissues, the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, and oxidation stress indices in liver and kidney tissue were determined. Learning and memory ability was evaluated by Morris water maze experiments. The results indicated that treatment with CCFM8246 significantly increased the copper content in feces to promote copper excretion, reduce the accumulation of copper in tissues, reverse oxidative stress induced by copper exposure, recover the ALT and AST in serum and improve the spatial memory of mice. PMID:26605944
Preparation and electromagnetic wave absorption of RGO/Cu nanocomposite
NASA Astrophysics Data System (ADS)
Zhang, Hui; Tian, Xingyou; Zhang, Xian; Li, Shikuo; Shen, Yuhua; Xie, Anjian
2017-09-01
We use a facile pyrolysis method to prepare reduced graphene oxide and copper nanocomposite (RGO/Cu) based on it. The product shows an outstanding wave absorption properties. The maximum reflection loss is up to-50.7 dB at 3.8 GHz. The reflection loss of-10 dB (90% power absorption) corresponds to a bandwidth of 11.2 GHz (3.4-14.6 GHz range) for the layer thickness of 2-5 mm. Therefore, it is suggested that the RGO/Cu nanocomposite is also a new kind of lightweight and high-performance EM wave absorbing material.
Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion.
Xu, Boran; Hartigan, Elizabeth M; Feula, Giancarlo; Huang, Zheng; Lumb, Jean-Philip; Arndtsen, Bruce A
2016-12-19
We describe the use of simple copper-salt catalysts in the selective aerobic oxidation of amines to nitriles or imines. These catalysts are marked by their exceptional efficiency, operate at ambient temperature and pressure, and allow the oxidation of amines without expensive ligands or additives. This study highlights the significant role counterions can play in controlling selectivity in catalytic aerobic oxidations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copper-containing zeolite catalysts
Price, G.L.; Kanazirev, V.
1996-12-10
A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.
Copper-containing zeolite catalysts
Price, Geoffrey L.; Kanazirev, Vladislav
1996-01-01
A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.
Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji
2015-11-16
The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.
Quantitative analysis of oxygen content in copper oxide films using ultra microbalance
NASA Astrophysics Data System (ADS)
Shu, Yonghua; Wang, Lianhong; Liu, Chong; Fan, Jing
2014-12-01
Copper oxide films were prepared on quartz substrates through electron beam physical vapor deposition in a vacuum chamber, and the films were observed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The oxygen content of the films were analyzed using an ultra microbalance. Results indicated that when the substrate was heated to 600°C and the oxygen flow rate was 5 sccm, the film was composed of 47% Cu and 53% Cu2O (mass percent), and the oxidation ratio of copper was 25%. After the deposition process at the same condition, i.e. the substrate at temperature of 600°C and blowed by oxygen flowrate of 5 sccm, then in-stu annealed at 600°C in low oxygen pressure of 10 Pa for 30 minutes, the film composition became 22% Cu2O and 78% CuO (mass percent), and the oxidation ratio of copper greatly increased to about 88%.
NASA Astrophysics Data System (ADS)
Wu, Zhiwen; Chen, Chen; Feng, Yahui; Hong, Xin
Large amounts of copper slag containing about 40 wt% iron is generated during the process of producing copper. Recovery of iron from the copper slag is very essential not only for recycling the valuable metals and mineral resources but also for protecting the environment. The purpose of this study was to investigate the possibility of separating fayalite by oxidation-reduction process into Magnetite and silicate phases in intermediate temperature condition. Experimental results show that when the oxidation reaction at 1000°C for 120min and the oxygen flow is 0.1L/min, most fayalite decompose to hematite, less part of magnetite and silica. And then, the mixture of carbon and oxidation product is pressed into blocks and reduced to magnetite and silica at 900°C for 90min. A magnetic product containing about 57.9wt% iron was obtained from the magnetic separation under a magnetic field strength of 100 mT.
Electronic circuits having NiAl and Ni.sub.3 Al substrates
Deevi, Seetharama C.; Sikka, Vinod K.
1999-01-01
An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.
Kang, Kyeong-Nam; Kim, Ik-Hee; Ramadoss, Ananthakumar; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun
2018-01-03
An ultrathin nickel hydroxide layer electrodeposited on a carbon-coated three-dimensional porous copper structure (3D-C/Cu) is suggested as an additive and binder-free conductive electrode with short electron path distances, large electrochemical active sites, and improved structural stability, for high performance supercapacitors. The 3D-porous copper structure (3D-Cu) provides high electrical conductivity and facilitates electron transport between the Ni(OH) 2 active materials and the current collector of the Ni-plate. A carbon coating was applied to the 3D-Cu to prevent the oxidation of Cu, without degrading the electron transport behavior of the 3D-Cu. The 3D-Ni(OH) 2 /C/Cu exhibited a high specific capacitance of 1860 F g -1 at 1 A g -1 , and good cycling performance, with an 86.5% capacitance retention after 10 000 cycles. When tested in a two-electrode system, an asymmetric supercapacitor exhibited an energy density of 147.9 W h kg -1 and a power density of 37.0 kW kg -1 . These results open a new area of ultrahigh-performance supercapacitors, supported by 3D-Cu electrodes.
Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper
NASA Astrophysics Data System (ADS)
Lee, Seung-Mahn
2003-10-01
Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP removal rates were found to be in good agreement with the initial reaction kinetics as well as the mechanical properties of the chemically modified surface layer. In addition, the material removal model based on the micro- and nano-scale interactions, which were measured experimentally, has been developed.
Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus
Li, Xiaomin; Zhou, Suyang; Fan, Wenhong
2016-01-01
Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942
Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki
2007-06-21
A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.
Determining Prehistoric Mining Practices in Southeastern Europe Using Copper Isotopes
NASA Astrophysics Data System (ADS)
Powell, Wayne; Mathur, Ryan; Bankoff, H. Arthur; Bulatović, Aleksandar; Filipović, Vojislav
2017-04-01
Copper was first smelted from malachite at 5000 BCE in Serbia. There the Eneolithic (Copper Age) began with the production of small jewelry pieces and progressed to the casting of massive copper tools near its end, approximately 2000 years later. However, copper metallurgy in southeastern Europe ceased or significantly decreased in the later third millennium, several centuries before the Bronze Age began. Whether this metallurgical hiatus was the result a cultural shift or depletion of natural resources remains an ongoing subject of debate. It has been speculated that the marked reduction in metal production at the Eneolithic-Bronze Age transition was due to the exhaustion of surficial weathered oxide ores and the technical inability to smelt the underlying sulfide minerals. The behavior of copper isotopes in near-surface environments allows us to differentiate highly weathered oxide ores that occur at Earth's surface from non-weathered sulfide ores that occur at greater depth. The oxidation of copper generates fluids and associated minerals that are enriched in the 65Cu isotope. Thus, oxidative weathering of sulfide ores leads to the development of three stratified isotopic reservoirs for copper: 1) oxides above the water table that are enriched in 65Cu; 2) residual weathered sulfides minerals at the water table that are depleted in 65Cu; and 3) non-fractionated, non-weathered sulfide ore below the water table. And so, the transformative shift to sulfide-based metallurgy will be delineated by a significant decrease in δ65Cu in copper artifacts corresponding to the first use of 65Cu-depleted residual ore. The degree of variability of primary ore composition from numerable ore deposits would likely result in the overlap of copper isotope composition between populations of artifacts. Therefore, shifts in the mean copper isotope values and associated standard deviations would best reflect changes in ores use. A baseline value of -0.2‰ ±0.5 (1) was determined from an average of 164 published measurements from chalcopyrite and bornite from 8 epithermal and massive sulfide deposits. Twenty-two (88%) of Eneolithic artifacts (n=25) have values greater than this, whereas eight (73%) of the Early Bronze age artifacts (n=11) yield compositions less than -0.2‰. The mean of Middle Bronze Age, Late Bronze Age and Early Iron Age (n=86) cluster near -0.2‰. This pattern is consistent with a progression to the mining of ore assemblages from increasing depths through prehistory. The shift from 65Cu-enriched to 65Cu-depleted copper in artifacts across the Eneolithic-Bronze Age boundary at 2500 BCE indicates that accessible near-surface oxide ore reserves were depleted after approximately two millennia of mining, and that the beginning of the Bronze Age in the Balkans corresponded to the acquisition of pyrotechnology which allowed for the extraction of metals from sulfide minerals and the resumption of copper mining activity in the region.
Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii
2016-10-01
Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Venkatasubramanian, Rajesh; He, Jibao; Johnson, Michael W; Stern, Ilan; Kim, Dae Ho; Pesika, Noshir S
2013-10-29
A room-temperature electrochemical approach to synthesizing anisotropic platelike copper microcrystals and nanocrystals in the presence of potassium bromide is presented. Morphological and elemental characterization was performed using SEM, TEM, and XRD to confirm the anisotropic morphology and crystal structure of the synthesized copper particles. A possible mechanism for explaining the anisotropic crystal growth is proposed on the basis of the preferential adsorption of bromide ions to selective crystal faces. The shape-dependent electrocatalytic property of copper particles is demonstrated by its enhanced catalytic activity for methanol oxidation. Further development of such anisotropic copper particles localized on an electrode surface will lead us to find a suitable alternative for noble metal-based electrocatalysts for the methanol oxidation reaction relevant to fuel cells.
LaGrow, Alec P; Ward, Michael R; Lloyd, David C; Gai, Pratibha L; Boyes, Edward D
2017-01-11
Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ in real time with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (Z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu 2 O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu 2 O interface having a relationship of Cu{111}//Cu 2 O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.
Johnson, D. Barrie; Hedrich, Sabrina; Pakostova, Eva
2017-01-01
Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed. PMID:28239375
BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors
NASA Astrophysics Data System (ADS)
Zakutayev, Andriy
BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.
NASA Astrophysics Data System (ADS)
Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.
1993-09-01
Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.
NASA Astrophysics Data System (ADS)
Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf
2018-01-01
Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.
Park, Seong-Hun; Lee, Cheol Eui
2005-01-27
A series of hybrid inorganic-organic copper(II) hydroxy n-alkylsulfonate with a triangular lattice, Cu(2)(OH)(3)(C(n)H(2)(n)(+1)SO(3)) (n = 6, 8, 10), are prepared by anion exchange, starting from copper hydroxy nitrate Cu(2)(OH)(3)NO(3). These compounds show a layered structure as determined by X-ray diffraction, with interlayer distances of 14.3-34.8 A in alternation with interdigitated bilayer packing. Magnetic properties have been investigated by means of dc and ac measurements. All the compounds show similar metamagnet behaviors, with a Neel temperature of about 11 K. A subtle difference in the ac magnetic susceptibility among the compounds is understood by the existence of hydrogen bonding between the sulfonate headgroup and the hydroxide anion. A detailed molecular structure of the alkyl chains incorporated to the inorganic copper hydroxide layer is also discussed from the FTIR data.
Amna, Touseef; Hassan, M Shamshi; Yang, Jieun; Khil, Myung-Seob; Song, Ki-Duk; Oh, Jae-Don; Hwang, Inho
2014-01-01
Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide-olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil-copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.
Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films.
Hatton, Ross A; Blanchard, Nicholas P; Stolojan, Vlad; Miller, Anthony J; Silva, S Ravi P
2007-05-22
We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is consistent with an o-MWCNT scaffold decorated with phthalocyanine molecules self-assembled into extended aggregates reminiscent of 1-D linearly stacked phthalocyanine polymers. Remarkably, this self-organization occurs in a fraction of a second during the spin-coating process. To demonstrate the potential utility of this hybrid material, it is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction. The resulting enhancement in power conversion efficiency is rationalized in terms of the electronic, optical, and morphological properties of the nanostructured thin film.
Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA
2010-07-20
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes
Tan, Guoqiang; Wu, Feng; Yuan, Yifei; ...
2016-06-03
Here, structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core–shell nano-architecture. Cable-like copper oxide/carbon-nitride core–shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays providemore » abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.« less
Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes.
Tan, Guoqiang; Wu, Feng; Yuan, Yifei; Chen, Renjie; Zhao, Teng; Yao, Ying; Qian, Ji; Liu, Jianrui; Ye, Yusheng; Shahbazian-Yassar, Reza; Lu, Jun; Amine, Khalil
2016-06-03
Structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core-shell nano-architecture. Cable-like copper oxide/carbon-nitride core-shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays provide abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.
Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies
NASA Astrophysics Data System (ADS)
Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.
2018-05-01
Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.
Powder-Derived High-Conductivity Coatings for Copper Alloys
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, Linus U.
2003-01-01
Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.
Chen, Guangcun; Chen, Xincai; Yang, Yuanqiang; Hay, Anthony G.; Yu, Xiaohan; Chen, Yingxu
2011-01-01
The spatial and temporal distribution of metals in unsaturated Pseudomonas putida CZ1 biofilms was determined using synchrotron-based X-ray fluorescence microscopy (XRF). It was found that Fe, Mn, and Ca were mainly distributed near the air-biofilm interface of a biofilm grown on 40 mM citrate, while there were two Fe-, Mn-, and Ca-rich layers within a biofilm grown on 10 mM citrate. The sorption of copper by biofilm grown in medium containing 10 mM citrate was rapid, with copper being found throughout the biofilm after only 1 h of exposure. Copper initially colocalized with Fe and Mn element layers in the biofilm and then precipitated in a 40-μm-thick layer near the air-biofilm interface when exposed for 12 h. Cu K-edge X-ray absorption near edge structure (XANES) analysis revealed that Cu was primarily bound with citrate within the biofilm, and the precipitate formed in the biofilm exposed to copper for 12 h was most similar to copper phosphate. LIVE/DEAD staining revealed that cells at the biofilm-membrane interface were mostly alive even when the copper concentration reached 80.5 mg copper g−1 biomass. This suggests that the biofilm matrix provided significant protection for cells in this area. These results significantly improve our understanding of metal acquisition, transportation, and immobilization in unsaturated biofilm systems. PMID:21642411
Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.
Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui
2015-03-21
Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.
Experimental Consequences of Mottness in High-Temperature Copper-Oxide Superconductors
ERIC Educational Resources Information Center
Chakraborty, Shiladitya
2009-01-01
It has been more than two decades since the copper-oxide high temperature superconductors were discovered. However, building a satisfactory theoretical framework to study these compounds still remains one of the major challenges in condensed matter physics. In addition to the mechanism of superconductivity, understanding the properties of the…
Antistatic Polycarbonate/Copper Oxide Composite
NASA Technical Reports Server (NTRS)
Kovich, Michael; Rowland, George R., Jr.
2003-01-01
A composite material consisting of polycarbonate filled with copper oxide has been found to be suitable as an antistatic material. This material was developed to satisfy a requirement for an antistatic material that has a mass density less than that of aluminum and that exhibits an acceptably low level of outgassing in a vacuum.
Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...
Efficacy of copper oxide wire particles against gastrointestinal nematodes in sheep and goats
USDA-ARS?s Scientific Manuscript database
Economic sheep and goat production in the USA is severely limited by gastrointestinal nematode (GIN) parasitism, particularly by Haemonchus contortus, a highly pathogenic blood-feeder. Copper oxide wire particles (COWP) have anti-parasitic properties in the diet of small ruminants, but efficacy of ...
Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper
Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J.; Liu, Hua Kun
2015-01-01
Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1–10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics. PMID:25582557
Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper.
Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J; Liu, Hua Kun
2015-01-13
Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1-10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics.
Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems
NASA Astrophysics Data System (ADS)
de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng
2008-06-01
Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.
Empirical simulations of materials
NASA Astrophysics Data System (ADS)
Jogireddy, Vasantha
2011-12-01
Molecular dynamics is a specialized discipline of molecular modelling and computer techniques. In this work, first we presented simulation results from a study carried out on silicon nanowires. In the second part of the work, we presented an electrostatic screened coulomb potential developed for studying metal alloys and metal oxides. In particular, we have studied aluminum-copper alloys, aluminum oxides and copper oxides. Parameter optimization for the potential is done using multiobjective optimization algorithms.
Rajmohan, Rajamani; Ayaz Ahmed, Khan Behlol; Sangeetha, Sampathkumar; Anbazhagan, Veerappan; Vairaprakash, Pothiappan
2017-09-08
Copper(ii) ion mediated C-H oxidation of dipyrromethanes (DPMs) to the corresponding dipyrrins followed by complexation invoked the selective sensing of copper(ii) ions in aqueous solutions. On the addition of copper, the colour of the DPM solution instantaneously changes from yellow to pink with the detection limit of 0.104 μM measured by absorption spectroscopy, whereas visible colour changes could be observed by the naked eye for concentrations as low as 3 μM.
Fabrication of malachite with a hierarchical sphere-like architecture.
Xu, Jiasheng; Xue, Dongfeng
2005-09-15
Malachite (Cu2(OH)2CO3) with a hierarchical sphere-like architecture has been successfully synthesized via a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. Powder X-ray diffraction, scanning electron microscopy, and Fourier transmission infrared spectrometry are used to characterize various properties of the obtained malachite samples. The hierarchical malachite particles are uniform spheres with a diameter of 10-20 microm, which are comprised of numerous two-dimensional microplatelets paralleling the sphere surface. The initial concentration of reagents, the hydrothermal reaction time, and temperature are important factors which dominantly affect the evolution of crystal morphologies. The growth of the hierarchical architecture is believed to be a layer-by-layer growth process. Further, copper oxide with the similar morphology can be easily obtained from the as-prepared malachite.
NASA Astrophysics Data System (ADS)
Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam
2015-12-01
Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.