Science.gov

Sample records for copper-clad fr-4 laminates

  1. The effect of lead content and surface roughness on wetting and spreading of low-lead and no-lead solders on copper-clad FR-4 laminates

    SciTech Connect

    Stevenson, J.O.; Roberts, J.L.; Davidson, R.N.; Yost, F.G.; Hosking, F.M.

    1997-02-01

    Environmental and health concerns pertaining to lead have encouraged research into low-lead alloys for electronic soldering. The development of solder alloys containing lower amounts of lead than Sn/Pb eutectic (37 wt.% lead), but possessing similar properties, is an industry-wide goal. To determine the wettability of low-lead solders, 21 alloys each of Sn/Ag and Sn/Cu eutectic (containing 0 to 10 wt.% lead and/or indium) were tested on as-received copper-clad FR-4. Contact angles for the alloys ranged from 12.5 to 38.9{degrees} and area of spread measurements ranged from 5.2 to 17.3 mm{sup 2} compared with 5 to 150 and {approximately}19 mm{sup 2}, respectively, for Sn/Pb eutectic. Alloys with 8 to 10 wt.% lead showed contact angles and areas of spread similar to Sn/Pb eutectic under similar conditions. The best results on the as-received substrates, compared to the Sn/Pb eutectic, were obtained from the Sn/Ag eutectic with 10 wt.% lead. The very low-lead (less than 10 wt.% lead) and lead-free alloys, however, failed to achieve the performance level of eutectic Sn/Pb solders. A desire to improve the spreading of very low-lead and lead-free solders provided the impetus for these efforts to produce {open_quotes}engineered{close_quotes} rough surfaces. In an attempt to improve the wettability and spreading behavior of very low-lead and lead-free alloys, the very low-lead and lead-free members of the Sn/Ag system were tested on roughened copper-clad FR-4. Every alloy in the test suite demonstrated improvement in area of spread on the roughened substrates. The best results on the roughened substrates, compared to the Sn/Pb eutectic, were obtained from the Sn/Ag eutectic with 8 wt.% lead. The effects of surface roughness on the wettability and flow behavior of solder alloys has provided insight into surface morphologies that lead to improved solderability.

  2. Haematological and spermatotoxic effects of ethylene glycol monomethyl ether in copper clad laminate factories

    PubMed Central

    Shih, T.; Hsieh, A.; Liao, G.; Chen, Y.; Liou, S.

    2000-01-01

    OBJECTIVES—To investigate the effects of ethylene glycol monomethyl ether (EGME) on haematology and reproduction in exposed workers.
METHODS—53 Impregnation workers from two factories that make copper clad laminate with EGME as a solvent were recruited as the exposed group. Another group of 121 lamination workers with indirect exposure to EGME was recruited as the control group. Environmental monitoring of concentrations of EGME in air and biological monitoring of urinary methoxyacetic acid (MAA) concentrations were performed. Venous blood was collected for routine and biochemical analyses. Semen was collected from 14 workers exposed to EGME for sperm analysis and was compared with 13 control workers.
RESULTS—Results of haematological examination showed that the haemoglobin, packed cell volume, and red blood cell count in the male workers exposed to EGME were significantly lower than in the controls. The frequency of anaemia in the exposed group (26.1%) was significantly higher than in the control group (3.2%). However, no differences were found between the female workers exposed and not exposed to EGME. After adjustment for sex, body mass index, and duration of employment, red blood cell count was significantly negatively associated with air concentrations of EGME, and haemoglobin, packed cell volume, and red blood cell count were significantly negatively associated with urinary concentrations of MAA. The pH of semen in the exposed workers was significantly lower than in the control workers, but there were no significant differences in the sperm count or sperm morphology between the exposed and control groups.
CONCLUSION—It can be concluded that EGME is a haematological toxin, which leads to anaemia in the exposed workers. However, the data from this study did not support the theory of a spermatotoxic effect of EGME.


Keywords: ethylene glycol monomethyl ether; haematological disorders; spermatotoxicity PMID:10769301

  3. Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers.

    PubMed

    Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang

    2017-02-08

    The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na₂SO₄ was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed.

  4. Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers

    PubMed Central

    Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed. PMID:28772497

  5. Thermally Stable Siloxane Hybrid Matrix with Low Dielectric Loss for Copper-Clad Laminates for High-Frequency Applications.

    PubMed

    Kim, Yong Ho; Lim, Young-Woo; Kim, Yun Hyeok; Bae, Byeong-Soo

    2016-04-06

    We report vinyl-phenyl siloxane hybrid material (VPH) that can be used as a matrix for copper-clad laminates (CCLs) for high-frequency applications. The CCLs, with a VPH matrix fabricated via radical polymerization of resin blend consisting of sol-gel-derived linear vinyl oligosiloxane and bulky siloxane monomer, phenyltris(trimethylsiloxy)silane, achieve low dielectric constant (Dk) and dissipation factor (Df). The CCLs with the VPH matrix exhibit excellent dielectric performance (Dk = 2.75, Df = 0.0015 at 1 GHz) with stability in wide frequency range (1 MHz to 10 GHz) and at high temperature (up to 275 °C). Also, the VPH shows good flame resistance without any additives. These results suggest the potential of the VPH for use in high-speed IC boards.

  6. A study of adhesion at the E-glass/FR4 interface

    SciTech Connect

    Kent, M.S.; Baca, P.; McNarama, W.F.; Jones, G.; Fein, D.; Wright, W.; Domeier, L.; Wu, W.L.; Wong, A.

    1995-11-01

    The majority of printed circuit boards are copper clad laminates composed of fiberglass cloth impregnated with FR4 epoxy. An important factor affecting the reliability of these assemblies is the integrity of the epoxy/glass fiber interface. The goal of this work is to investigate mechanisms for the loss of adhesive strength between E-glass and FR4 epoxy upon humidity and temperature conditioning. In this paper the authors discuss the distribution of moisture between the interface region and the bulk epoxy examined by neutron reflection, and the relationship of this data to adhesive strength.

  7. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    SciTech Connect

    Shen, Z.; Chen, Y.; Haghshenas, M.; Nguyen, T.; Galloway, J.; Gerlich, A.P.

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  8. Laminates

    NASA Astrophysics Data System (ADS)

    Lepedat, Karin; Wagner, Robert; Lang, Jürgen

    The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.

  9. Design of handwriting drawing board based on common copper clad laminate

    NASA Astrophysics Data System (ADS)

    Wang, Hongyuan; Gao, Wenzhi; Wang, Yuan

    2015-02-01

    Handwriting drawing board is not only a subject which can be used to write and draw, but also a method to measure and process weak signals. This design adopts 8051 single chip microprocessor as the main controller. It applies a constant-current source[1][2] to copper plate and collects the voltage value according to the resistance divider effect. Then it amplifies the signal with low-noise and high-precision amplifier[3] AD620 which is placed in the low impedance and anti-interference pen. It converts analog signal to digital signal by an 11-channel, 12-bit A/D converter TLC2543. Adoption of average filtering algorithm can effectively improve the measuring accuracy, reduce the error and make the collected voltage signal more stable. The accurate position can be detected by scanning the horizontal and vertical ordinates with the analog switch via the internal bridge of module L298 which can change the direction of X-Y axis signal scan. DM12864 is used as man-machine interface and this hominization design is convenient for man-machine communication. This collecting system has high accuracy, high stability and strong anti-interference capability. It's easy to control and has very large development space in the future.

  10. Corrosion Behavior of Copper-Clad Steel Bars with Unclad Two-End Faces for Grounding Grids in the Red Clay Soil

    NASA Astrophysics Data System (ADS)

    Shao, Yupei; Mu, Miaomiao; Zhang, Bing; Nie, Kaibin; Liao, Qiangqiang

    2017-02-01

    Iron-aluminum oxides in the red soil have a significant impact on the corrosion behavior of the metal for grounding grids. Effects of iron-aluminum oxides on the corrosion behavior of the cross section of copper-clad steel in the red soil have been investigated using electrochemical impedance spectroscopy and Tafel polarization. All the data indicate that the iron-aluminum oxides can promote the corrosion of copper-clad steel in the red soil. The corrosivity of the red soil greatly increases after iron-aluminum oxides are added into the soil. Iron-aluminum oxides promote galvanic corrosion of copper-clad steel and increase the corrosion degree of the center steel layer. The iron-aluminum oxides stimulate corrosion process of copper-clad steel acting as a cathodic depolarizing agent. XRD results further validate that the corrosion products of the copper-clad steel bar mainly consist of Fe3O4 and Cu2O.

  11. 78 FR 65573 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... centerless-ground steel rod, then mechanically worked to final wire and shot configurations. Copper-clad iron... Coatings Spectra Shot is cut wire shotgun shot (steel shot) with a proprietary shot coating. Four different... tungsten, 4.1 Hot polymer. Shot . Tungsten-polymer 95.5 tungsten, 4.5 Hot Nylon 6 or 11. Shot . Tungsten...

  12. Initial corrosion behavior of a copper-clad plate in typical outdoor atmospheric environments

    NASA Astrophysics Data System (ADS)

    Yi, Pan; Xiao, Kui; Ding, Kangkang; Yan, Lidan; Dong, Chaofang; Li, Xiaogang

    2016-01-01

    A copper-clad printed circuit board (PCB-Cu) was subjected to long-term exposure test under typical Chinese atmospheric environments to study corrosion failure mechanisms. The corrosion behavior was investigated by analyzing electrochemical impedance, scanning Kelvin probes, stereo and scanning electron microscopes, and energy-dispersive spectra. Results showed that the initial surface potential was unevenly distributed. The outdoor PCB-Cu samples suffered severe corrosion caused by dust particles, contaminated media, and microorganisms after long-term atmospheric exposure. The initial localized corrosion was exacerbated and progressed to general corrosion for samples in Turpan, Beijing, and Wuhan under prolonged exposure, whereas PCB-Cu in Xishuangbanna was only slightly corroded. The tendency for electrochemical migration (ECM) of PCB-Cu was relatively low when applied with a bias voltage of 12 V. ECM was only observed in the PCB-Cu samples in Beijing. Contaminated medium and high humidity synergistically affected ECM corrosion in PCB-Cu materials. [Figure not available: see fulltext.

  13. Surface failure analysis of a field-exposed copper-clad plate in a marine environment with industrial pollution

    NASA Astrophysics Data System (ADS)

    Yi, Pan; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2017-03-01

    The corrosion behavior and electrochemical migration mechanism of a copper-clad plate (PCB-Cu) in a marine atmospheric environment with industrial pollution were studied in field exposure experiments. The results showed that corrosion was initiated from activity locations with low potential. With extended exposure time, the amount of corrosion products increased and gradually formed a double layer structure. The inner layer corrosion products were mainly Cu2O; the outer layer mainly included CuCO3·Cu(OH)2, Cu(OH)2·CuO·HCl, CuSO4·3Cu(OH)2 and CuSO3·3Cu(OH)2. When a 12 V bias voltage was applied, an anomalous electrochemical migration (ECM) phenomenon was observed: a Cu dendrite was produced near the anode and migrated toward the cathode. Finally, ECM led to the bridge connection of the two metallization stripes and caused a short circuit in the PCB-Cu.

  14. Effect of continuous induction annealing on the microstructure and mechanical properties of copper-clad aluminum flat bars

    NASA Astrophysics Data System (ADS)

    Liu, Xin-hua; Jiang, Yan-bin; Zhang, Hong-jie; Xie, Jian-xin

    2016-12-01

    Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the flat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460°C for 5 s, 480°C for 3 s, or 500°C for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500°C for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500°C for 1-5 s, a continuous interfacial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interfacial layer consisted primarily of a Cu9Al4 layer and a CuAl2 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500°C for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform.

  15. Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting

    NASA Astrophysics Data System (ADS)

    Su, Ya-Jun; Liu, Xin-Hua; Huang, Hai-You; Liu, Xue-Feng; Xie, Jian-Xin

    2011-12-01

    Copper cladding aluminum (CCA) rods with a diameter of 30 mm and a sheath thickness of 3 mm were fabricated by horizontal core-filling continuous casting (HCFC) technology. The microstructure and morphology, distribution of chemical components, and phase composition of the interface between Cu and Al were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS). The formation mechanism of the interface and the effects of key processing parameters, e.g., aluminum casting temperature, secondary cooling intensity, and mean withdrawing speed on the interfacial microstructure and bonding strength were investigated. The results show that the CCA rod has a multilayered interface, which is composed of three sublayers—sublayer I is Cu9Al4 layer, sublayer II is CuAl2 layer, and sublayer III is composed of α-Al/CuAl2 pseudo eutectic. The thickness of sublayer III, which occupies 92 to 99 pct of the total thickness of the interface, is much larger than the thicknesses of sublayers I and II. However, the interfacial bonding strength is dominated by the thicknesses of sublayers I and II; i.e., the bonding strength decreases with the rise of the thicknesses of sublayers I and II. When raising the aluminum casting temperature, the total thickness of the interface increases while the thicknesses of sublayers I and II decrease and the bonding strength increases. Either augmenting the secondary cooling intensity or increasing the mean withdrawing speed results in the decrease in both total thickness of the interface and the thicknesses of sublayers I and II, and an increase in the interfacial bonding strength. The CCA rod with the largest interfacial bonding strength of 67.9 ± 0.5 MPa was fabricated under such processing parameters as copper casting temperature 1503 K (1230 °C), aluminum casting temperature 1063 K (790 °C), primary cooling water flux 600 L/h, secondary cooling water flux 700 L/h, and

  16. Peel strength of sputtered FCCL(Flexible Copper Clad Laminate) using Ar:O2 mixed gas preprocessing and a Ni-Cr seed layer

    NASA Astrophysics Data System (ADS)

    Ahn, Woo-Young; Jang, Joong Soon

    2014-07-01

    The PI surface was modified with ion beams in a vacuum chamber to increase the surface area. A two-way Design of Experiments ("DOE") was performed by varying the DC power and changing the proportion of O2 gas with respect to the Ar reactive gas and measuring the peel strength between the PI layer and the plated Cu layer. The results showed that increasing the voltage level and applying mixed Ar-O2 gas makes the PI surface substantially rough, which increases the Van der Waals force as well as the chemical bonding strength. Using the oxygen gas makes the amorphous structure in the Cu layer sputtered. However, Cu plating with a high electrical current may remedy this, resulting in a good crystalline direction. It was also found that reducing the proportion of Cr in the Ni-Cr seed layer incurs a great decrease in the peel strength after the reflow process, although it requires just one etching.

  17. Invertebrate lamins

    SciTech Connect

    Melcer, Shai; Gruenbaum, Yosef . E-mail: gru@vms.huji.ac.il; Krohne, Georg . E-mail: krohne@biozentrum.uni-wuerzburg.de

    2007-06-10

    Lamins are the main component of the nuclear lamina and considered to be the ancestors of all intermediate filament proteins. They are localized mainly at the nuclear periphery where they form protein complexes with integral proteins of the nuclear inner membrane, transcriptional regulators, histones and chromatin modifiers. Studying lamins in invertebrate species has unique advantages including the smaller number of lamin genes in the invertebrate genomes and powerful genetic analyses in Caenorhabditis elegans and Drosophila melanogaster. These simpler nuclear lamina systems allow direct analyses of their structure and functions. Here we give an overview of recent advances in the field of invertebrate nuclear lamins with special emphasis on their evolution, assembly and functions.

  18. Acute laminitis.

    PubMed

    Baxter, G M

    1994-12-01

    Laminitis is an inflammation of the sensitive laminae along the dorsal aspect of the digit and is considered to be a secondary complication of several predisposing or primary factors. Affected horses are usually very lame, have increased digital pulses, are painful to hoof testers along the toe of the foot, and have evidence of downward rotation or distal displacement of the distal phalanx present on radiographs. Treatments for acute laminitis include anti-inflammatory drugs, anti-endotoxin therapy, vasodilators, antithrombotic therapy, corrective trimming and shoeing, and surgical procedures. Treatment regimens are very controversial and the true efficacy of these treatments is unknown. The quality of laminae damage that occurs with laminitis, however, probably has greater influence on the success of treatment and outcome of the horse than the treatment regimen itself.

  19. Photoresist laminate

    DOEpatents

    Andrade, A.D.; Galbraith, L.K.

    1979-10-01

    The disclosure relates to a laminated negative dry-film photoresist for the production of thick, as well as thin, patterns with vertical sidewalls. Uniform depthwise exposure in a photoresist layer is effected by the use of an ultraviolet filtering top layer.

  20. Laminate article

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2002-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  1. Hybrid composite laminate structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F. (Inventor)

    1977-01-01

    An invention which relates to laminate structures and specifically to essentially anisotropic fiber composite laminates is described. Metal foils are selectively disposed within the laminate to produce increased resistance to high velocity impact, fracture, surface erosion, and other stresses within the laminate.

  2. Farriery for chronic laminitis.

    PubMed

    O'Grady, Stephen E

    2010-08-01

    Laminitis is considered chronic once the distal phalanx has displaced within the hoof capsule. Chronic laminitis generally occurs as a direct sequel to acute laminitis. Clinical evaluation of chronic laminitis is best performed with a thorough clinical examination and radiography. The mainstay of hoof care is therapeutic farriery. In this article, the goals and principles of hoof care, the appropriate trim and various shoes that form the bulk of farriery for chronic laminitis, and surgical treatments are discussed.

  3. Lamination cooling system

    DOEpatents

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  4. Laminitis in the horse.

    PubMed

    Hood, D M

    1999-08-01

    This article serves as an introduction to this issue on laminitis. As such, it contains the general perspectives and terminology that will be used in all subsequent articles. This article separates the clinical problem of laminitis into developmental, acute, subacute, and chronic phases and defines the criteria, duration, clinical goals, and implications of these phases. The basis for the significance of laminitis to the horse industry and the horseman is reviewed. Lastly, the organization of this issue is described.

  5. Nuclear lamins and neurobiology.

    PubMed

    Young, Stephen G; Jung, Hea-Jin; Lee, John M; Fong, Loren G

    2014-08-01

    Much of the work on nuclear lamins during the past 15 years has focused on mutations in LMNA (the gene for prelamin A and lamin C) that cause particular muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. These disorders, often called "laminopathies," mainly affect mesenchymal tissues (e.g., striated muscle, bone, and fibrous tissue). Recently, however, a series of papers have identified important roles for nuclear lamins in the central nervous system. Studies of knockout mice uncovered a key role for B-type lamins (lamins B1 and B2) in neuronal migration in the developing brain. Also, duplications of LMNB1 (the gene for lamin B1) have been shown to cause autosome-dominant leukodystrophy. Finally, recent studies have uncovered a peculiar pattern of nuclear lamin expression in the brain. Lamin C transcripts are present at high levels in the brain, but prelamin A expression levels are very low-due to regulation of prelamin A transcripts by microRNA 9. This form of prelamin A regulation likely explains why "prelamin A diseases" such as Hutchinson-Gilford progeria syndrome spare the central nervous system. In this review, we summarize recent progress in elucidating links between nuclear lamins and neurobiology.

  6. Photovoltaic-Panel Laminator

    NASA Technical Reports Server (NTRS)

    Keenan, R.

    1985-01-01

    Two-piece unit heats and presses protective layers to form laminate. Rubber diaphragm between upper and lower vacuum chambers alternates between neutral position and one that presses against solar-cell array, supplying distributed force necessary to press layers of laminate together. Encapsulation helps to protect cells from environment and to ensure long panel life while allowing efficient generation of electricity from Sunlight.

  7. Photovoltaic-Panel Laminator

    NASA Technical Reports Server (NTRS)

    Keenan, R.

    1985-01-01

    Two-piece unit heats and presses protective layers to form laminate. Rubber diaphragm between upper and lower vacuum chambers alternates between neutral position and one that presses against solar-cell array, supplying distributed force necessary to press layers of laminate together. Encapsulation helps to protect cells from environment and to ensure long panel life while allowing efficient generation of electricity from Sunlight.

  8. Evaluation of Coatings for FR-4 Fiberglass Epoxy Composite Probes

    DTIC Science & Technology

    2014-01-01

    FR-4 fiberglass epoxy composite. In an effort to protect the probe from the damaging effects of abrasive components in soil, three commercial epoxy...coatings were evaluated for abrasion resistance. This report focuses on the application and performance properties of coatings applied to the FR-4...fiberglass epoxy composite material. The Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser (ASTM D4060-10) was used

  9. Honeycomb-laminate composite structure

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A. (Inventor)

    1977-01-01

    A honeycomb-laminate composite structure was comprised of: (1) a cellular core of a polyquinoxaline foam in a honeycomb structure, and (2) a layer of a noncombustible fibrous material impregnated with a polyimide resin laminated on the cellular core. A process for producing the honeycomb-laminate composite structure and articles containing the honeycomb-laminate composite structure is described.

  10. Flexible thermal laminate

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Sauers, D. G.

    1977-01-01

    Lightweight flexible laminate of interwoven conducting and insulating yarns, designed to provide localized controlled heating for propellant tanks on space vehicles, is useful for nonspace applications where weight, bulk, and flexibility are critical concerns.

  11. Historical perspectives on laminitis.

    PubMed

    Wagner, I P; Heymering, H

    1999-08-01

    This article attempts to provide a historical perspective regarding equine laminitis. It is designed to cover, as completely as possible, the historical record of, and the research advances made, in regards to acute and chronic laminitis. With respect to the historical record, the names given to this disease, the postulated etiologies, and the various treatment protocols are discussed. This article demonstrates the historical longevity of this disease and establishes a background for the current understanding of the disease's pathologic mechanisms and treatments.

  12. An overview of laminate materials with enhanced dielectric properties

    NASA Astrophysics Data System (ADS)

    Mumby, Stephen J.

    1989-03-01

    This report focuses on laminate materials (resins and reinforcements) having potential applications in the manufacture of multi-layer printed wiring boards (PWBs) that are required to efficiently transmit high-speed digital pulses. It is intended to be a primer and a reference for selection of candidate materials for such high-performance PWBs. Included are dielectric and physical properties, and where available chemical composition and/or structure, commercial availability, compatibility with typical PWB processing schemes and approximate relative cost. Recommendations are made as to the most viable candidate materials for this type of PWB application, based on a comparison of electrical and physical properties together with processing and cost considerations. The cyanate ester resin system appears promising. Such a resin may be reinforced with regular E-glass, or the more newly available S-glass, to produce a laminate useful for intermediate performance applications. For more demanding applications the E-glass will have to be replaced by a material of much lower relative permittivity. The expanded-PTFE reinforced laminates from W. L. Gore appear to be a good choice for these applications. The processing of the Gore materials can be expected to deviate from that used with FR-4 type materials, but is likely to be less problematic than laminates comprised of a fluorinated resin. Processing is a key obstacle to the implementation of any of the new materials herein. If implementation is to be successful, programs must be established to develop and optimize processing procedures. Cost will remain an important issue. However, the higher cost of the new materials may be justified in high-end products by the performance they deliver.

  13. Lamination cooling system formation method

    DOEpatents

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2012-06-19

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  14. Lamination cooling system formation method

    DOEpatents

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  15. Laminate armor and related methods

    SciTech Connect

    Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M

    2013-02-26

    Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.

  16. Laminates and reinforced metals

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1980-01-01

    A selective review is presented of the state of the art of metallic laminates and fiber reinforced metals called metallic matrix laminates (MMLs). Design and analysis procedures that are used for, and typical structural components that have been made from MMLs are emphasized. Selected MMLs, constituent materials, typical material properties and fabrication procedures are briefly described, including hybrids and superhybrids. Advantages, disadvantages, and special considerations required during design, analysis, and fabrication of MMLs are examined. Tabular and graphical data are included to illustrate key aspects of MMLs. Appropriate references are cited to provide a selective bibliography of a rapidly expanding and very promising research and development field.

  17. Transparent polymeric laminates

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Fohlen, G. M.; Sawko, P. M.

    1973-01-01

    Laminate prepared from epoxy-boroxine and phenolphthalein polycarbonate has high mechanical strength at elevated temperature and is resistant to impact, fire, and high-energy thermal radiation. Polycarbonate is prepared by reaction of phenolphthalein with phosgene in presence of amine catalyst and immiscible organic solvent phase.

  18. 78 FR 19007 - Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... COMMISSION Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof.... 1337, on behalf of Lamina Packaging Innovations LLC of Longview, Texas. An amended complaint was filed... importation of certain products having laminated packaging, laminated packaging, and components thereof...

  19. Chronic laminitis: foot management.

    PubMed

    Morrison, Scott

    2010-08-01

    Laminitis is a disease of the suspensory apparatus of the distal phalanx, which can advance to the chronic stage with varying degrees of structural failure. Because the disease may ultimately lead to mechanical failure of the digit, a foot management plan is required to effectively and mechanically treat these cases. Many laminitis cases can be successfully rehabilitated back to athletic soundness, light use, breeding, or pasture soundness, whereas others suffer from permanent instability and never enjoy an acceptable level of comfort. To understand how to minimize damage in the acute laminitic foot or rehabilitate the chronic laminitic foot, the veterinarian should have an understanding of the normal supporting structures of the digit, the biomechanical forces acting on the foot, and the structural failure that results when these otherwise normal forces act on a diseased, damaged foot.

  20. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  1. Laminated piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  2. Laminates for Ballistic Protection

    DTIC Science & Technology

    1975-02-01

    Textile Research &Inginearing Division 1S. NUM11ER OF PAGES N I ,aN4MotN.lInNOfDoe ISANSUITY CLASS. (of this eport0) 1 ~~,fICATIONf DOVINGRA3DING5 WS...Kevlar and glass laminates using an areal density of 11.6 kg/m and a maximn load of 82N (200 lb.). The Kevlar lamintes survived 1000 cycles but

  3. Laminated Fresnel lenses

    SciTech Connect

    Jebens, R.W.

    1980-04-01

    A fabrication method for making plastic-on-glass laminated Fresnel lenses is discussed. These Fresnel lenses are for application in an RCA solar photovoltaic concentrator array now in the prototype stage of development. This laminated Fresnel lens fabrication method consists of making a Dow Corning J RTV silastic rubber mold of a master lens array. This mold is used to vacuum cast only the lens facets onto a low-iron tempered-glass substrate with an epoxy resin such as Hysol 0S 1000, a bisphenol-A resin with a flexibilizer that is anhydride cured. Cast acrylic Fresnel lens arrays commercialy available have potential cleaning and abrasion problems, have very large thermal expansion, and have dimensional uncertainties in their manufacture. The laminated lens is dimensionally stable with low thermal expansion, has good cleaning characteristics, and is very inexpensive in materials cost. The measured transmission of such a lens on low-iron glass is 80.4% compared with 85.1% for a cast acrylic lens, and the optical quality is good enough for application in the 100X to 200X concentration range. An approach to making large lens arrays (3 by 6 ft) on a commercial scale is explored.

  4. Solar cell module lamination process

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Aceves, Randy C.

    2002-01-01

    A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

  5. Laminitis in the geriatric horse.

    PubMed

    Hunt, Robert J

    2002-12-01

    There are few diseases that instill a comparable sense of doom in the mind of a treating veterinarian as laminitis. There is a feeling of cautious optimism when a horse with laminitis responds favorably to treatment. Although this optimism all too often proves false when treating laminitic patients, management of the patient afflicted with chronic laminitis can be rewarding. Through diligent and careful client communication and instruction, many geriatric patients with chronic laminitis can be maintained for years as comfortable companions, for light riding use, or as productive breeding animals.

  6. Mechanics of metal matrix laminates

    SciTech Connect

    Teply, J.L.

    1996-12-31

    The mechanics of fracture and fatigue crack propagation of ARALL Laminates and Discontinuously Reinforced SiC Aluminum (DRA) laminates is studied. In t these two, supposedly different, material systems the fracture and fatigue performance is closely related to their capability to delaminate. The delamination shape, length, rate of growth, effect on fatigue and fracture toughness are analyzed in both lamination systems. The similarities between these two lamination systems fatigue and fracture failure modes are determined and summarized. Design for compression is also mentioned.

  7. A General Study of Hybrid Composite Laminates.

    DTIC Science & Technology

    1977-12-01

    appeared to have little effect on the overall properties of a laminate. Hybrid composite laminates obey classical laminate theory and can, in certain ply configurations, develop considerable free edge effect stresses. (Author)

  8. Thermal conductivity of graphene laminate.

    PubMed

    Malekpour, H; Chang, K-H; Chen, J-C; Lu, C-Y; Nika, D L; Novoselov, K S; Balandin, A A

    2014-09-10

    We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 μm. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600× higher thermal conductivity than plastics may have important practical implications.

  9. Self-Healing Laminate System

    NASA Technical Reports Server (NTRS)

    Beiermann, Brett A. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  10. The Development of Laminated Armor

    DTIC Science & Technology

    1948-09-27

    band saw, By using a piece of soft wood under the laminate while it was being cut, fraying of the edge was reduced to a minimum, especially in paneJs of...c. ’ LEGEND L LUMITE (SARAN) * ALL LAMINATE Rf RAYON (FQRTISAN) 20-30 OZ/FT 0-- Rc RAYON (CELANESE) ... 20-30...... X× GwLOss GLASS FLOSS Ir

  11. Lamin B receptor

    PubMed Central

    Olins, Ada L; Rhodes, Gale; Welch, David B Mark; Zwerger, Monika

    2010-01-01

    Lamin B receptor (LBR) is an integral membrane protein of the interphase nuclear envelope (NE). The N-terminal end resides in the nucleoplasm, binding to lamin B and heterochromatin, with the interactions disrupted during mitosis. The C-terminal end resides within the inner nuclear membrane, retreating with the ER away from condensing chromosomes during mitotic NE breakdown. Some of these properties are interpretable in terms of our current structural knowledge of LBR, but many of the structural features remain unknown. LBR apparently has an evolutionary history which brought together at least two ancient conserved structural domains (i.e., Tudor and sterol reductase). This convergence may have occurred with the emergence of the chordates and echinoderms. It is not clear what survival values have maintained LBR structure during evolution. But it seems likely that roles in post-mitotic nuclear reformation, interphase NE growth and compartmentalization of nuclear architecture might have provided some evolutionary advantage to preservation of the LBR gene. PMID:21327105

  12. Internal Stresses in Laminated Construction

    NASA Technical Reports Server (NTRS)

    Heim, A L; Knauss, A C; Seutter, Louis

    1923-01-01

    This report reviews the procedure employed in an investigation of the sources and influence of internal stresses in laminated construction, and discusses the influence of shrinkage and swelling stresses caused by atmospheric conditions upon the tensile strength across grain in laminated construction with special reference to airplane propellers. The investigation covered three sources of internal stress, namely, the combination of plain-sawed and quarter-sawed material in the same construction, the gluing together of laminations of different moisture contents, and the gluing together of laminations of different densities. Glued specimens and free specimens, made up under various manufacturing conditions, were subjected to various climatic changes inducing internal stresses and then were tested.

  13. Sudden bending of cracked laminates

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.

  14. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  15. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, Alan W.

    1995-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference.

  16. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  17. Metamaterial properties of periodic laminates

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankit

    2016-11-01

    In this paper we show that a 1-D phononic crystal (laminate) can exhibit metamaterial wave phenomena which are traditionally associated with 2- and 3-D crystals. Moreover, due to the absence of a length scale in 2 of its dimensions, it can outperform higher dimensional crystals on some measures. This includes allowing only negative refraction over large frequency ranges and serving as a near-omnidirectional high-pass filter up to a large frequency value. First we provide a theoretical discussion on the salient characteristics of the dispersion relation of a laminate and formulate the solution of an interface problem by the application of the normal mode decomposition technique. We present a methodology with which to induce a pure negative refraction in the laminate. As a corollary to our approach of negative refraction, we show how the laminate can be used to steer beams over large angles for small changes in the incident angles (beam steering). Furthermore, we clarify how the transmitted modes in the laminate can be switched on and off by varying the angle of the incident wave by a small amount. Finally, we show that the laminate can be used as a remarkably efficient high-pass frequency filter. An appropriately designed laminate will reflect all plane waves from quasi-static to a large frequency, incident at it from all angles except for a small set of near-normal incidences. This will be true even if the homogeneous medium is impedance matched with the laminate. Due to the similarities between SH waves and electromagnetic (EM) waves it is expected that some or all of these results may also apply to EM waves in a layered periodic dielectric.

  18. Push Tester For Laminated Films

    NASA Technical Reports Server (NTRS)

    Sugimura, Russell S.

    1991-01-01

    Small instrument used to measure brittleness of polymer film adhesively bonded to hard substrate. Penlike instrument has microball tip. Small pointer in slot on side of instrument used to calibrate and indicate spring force applied by point. Microball dents only small area of specimen. Such measurements used to measure rates of embrittlement in environmental tests of candidate laminated-film covers for photovoltaic modules. Not limited to transparent films; also used on opaque laminated films on back panels of photovoltaic modules.

  19. Lamin A, farnesylation and aging

    SciTech Connect

    Reddy, Sita; Comai, Lucio

    2012-01-01

    Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.

  20. Lamin A, farnesylation and aging.

    PubMed

    Reddy, Sita; Comai, Lucio

    2012-01-01

    Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.

  1. Bovine acidosis: implications on laminitis.

    PubMed

    Nocek, J E

    1997-05-01

    Bovine lactic acidosis syndrome is associated with large increases of lactic acid in the rumen, which result from diets that are high in ruminally available carbohydrates, or forage that is low in effective fiber, or both. The syndrome involves two separate anatomical areas, the gastrointestinal tract and body fluids, and is related to the rate and extent of lactic acid production, utilization, and absorption. Clinical manifestations range from loss of appetite to death. Lactic acid accumulates in the rumen when the bacteria that synthesize lactic acid outnumber those that utilize lactic acid. The systemic impact of acidosis may have several physiological implications, including laminitis, a diffuse aseptic inflammation of the laminae (corium). Although a nutritional basis for the disease exists, etiology includes a multitude of interactive factors, such as metabolic and digestive disorders, postpartum stress, and localized trauma, which lead to the release of vasoactive substances that trigger mechanisms that cause degenerative changes in the foot. The severity of laminitis is related to the frequency, intensity, and duration of systemic acidotic insults on the mechanisms responsible for the release of vasoactive substance. The critical link between acidosis and laminitis appears to be associated with a persistent hypoperfusion, which results in ischemia in the digit. Management of acidosis is critical in preventing laminitis. High producing dairy herds attempting to maximize energy intake are continually confronted with subclinical acidosis and laminitis. Management of feeding and husbandry practices can be implemented to reduce incidence of disease.

  2. Both lamin A and lamin C mutations cause lamina instability as well as loss of internal nuclear lamin organization

    SciTech Connect

    Broers, Jos L.V. . E-mail: jos.broers@molcelb.unimaas.nl; Kuijpers, H.J.H.; Oestlund, C.; Worman, H.J.; Endert, J.; Ramaekers, F.C.S.

    2005-04-01

    We have applied the fluorescence loss of intensity after photobleaching (FLIP) technique to study the molecular dynamics and organization of nuclear lamin proteins in cell lines stably transfected with green fluorescent protein (GFP)-tagged A-type lamin cDNA. Normal lamin A and C proteins show abundant decoration of the inner layer of the nuclear membrane, the nuclear lamina, and a generally diffuse localization in the nuclear interior. Bleaching studies revealed that, while the GFP-tagged lamins in the lamina were virtually immobile, the intranuclear fraction of these molecules was partially mobile. Intranuclear lamin C was significantly more mobile than intranuclear lamina A. In search of a structural cause for the variety of inherited diseases caused by A-type lamin mutations, we have studied the molecular organization of GFP-tagged lamin A and lamin C mutants R453W and R386K, found in Emery-Dreifuss muscular dystrophy (EDMD), and lamin A and lamin C mutant R482W, found in patients with Dunnigan-type familial partial lipodystrophy (FPLD). In all mutants, a prominent increase in lamin mobility was observed, indicating loss of structural stability of lamin polymers, both at the perinuclear lamina and in the intranuclear lamin organization. While the lamin rod domain mutant showed overall increased mobility, the tail domain mutants showed mainly intranuclear destabilization, possibly as a result of loss of interaction with chromatin. Decreased stability of lamin mutant polymers was confirmed by flow cytometric analyses and immunoblotting of nuclear extracts. Our findings suggest a loss of function of A-type lamin mutant proteins in the organization of intranuclear chromatin and predict the loss of gene regulatory function in laminopathies.

  3. Polymer metal lamination by radiation method

    NASA Astrophysics Data System (ADS)

    Yizheng, Ma; Maoqing, Chen; Zhixiong, Feng; Dakuan, Sun; Dawei, You

    1993-07-01

    Conventional technology of PE-metal laminate involves the use of adhesives for laminating. Environ pollution has been a big problem not easily resolved and processing is complicated. By radiation peroxidation of the surface of polyethylene a simple polyethylene-metal laminating method has been succeeded. Measurements of the mechanical properties and the electrical properties made according to China's national standards showed the properties of the laminating film conforming well with the national standards. It has been found that the adhesion strength of the PE-metal film is affected by irradiation, the metal surface reactivity and cleaning of the laminating surface. PE-metal film laminated by radiation method is more heat resistant than the film laminated by conventional methods. The laminate materials can be widely used in electrical devices, chemical and packaging industry.

  4. Basic mechanics of laminated composite plates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1994-01-01

    The mechanics of laminated composite materials is presented in a clear manner with only essential derivations included. The constitutive equations in all of their forms are developed and then summarized in a separate section. The effects of hygrothermal effects are included. The prediction of the engineering constants for a laminate are derived. Strength of laminated composites is not covered.

  5. Strength and stiffness of small glued-laminated beams with different qualities of tension laminations

    Treesearch

    Catherine M. Marx; Russell C. Moody

    1981-01-01

    A total of 180 small Douglas Fir–Larch (DF-L) or Southern Pine (SP) glued-laminated beams were evaluated to determine the tension lamination quality necessary to obtain desired design stresses. The test beams had either the regular laminating grades of L1 DF-L/No. 1D SP or the special 302-24 laminating grade as tension laminations. Because an initial set of SP beams...

  6. Chronic laminitis: current treatment strategies.

    PubMed

    Parks, Andrew; O'Grady, Stephen E

    2003-08-01

    Laminitis is divided into four different phases: developmental, acute, subacute, and chronic. The focus of this article is on treating the laminitic horse after the cessation of therapy for the acute phase, that is, usually 2 to 4 weeks after the onset of clinical signs.

  7. Laminitis as a systemic disease.

    PubMed

    Hood, D M

    1999-08-01

    This article presents the clinical pathology and the involvement of the cardiovascular, renal, endocrine, and immunologic systems in laminitis. The data available on these systems are presented with respect to the disease phase and severity. The nutritional and metabolic alterations realized in the chronically affected horse are also presented. In this discussion, the origins and clinical implications of these systemic findings are discussed.

  8. Multilayer printed wiring board lamination

    SciTech Connect

    Lula, J.W.

    1980-06-01

    The relationship of delamination resistance of multilayer PWBs made from GF material to manufacturing process variables was investigated. A unique quantitative test method developed during this project shows that delamination resistance is highly sensitive to material conditioning, to innerlayer surface treatment, and to post-lamination storage conditions, but is relatively insensitive to cure cycle variations.

  9. Steady state response of unsymmetrically laminated plates

    SciTech Connect

    Hosokawa, Kenji; Kawashima, Katsuya; Sakata, Toshiyuki

    1995-11-01

    A numerical approach for analyzing the forced vibration problem of a symmetrically laminated FRP (fiber reinforced plastic) composite plate was proposed by the authors. In the present paper, this approach is modified for application to an unsymmetrically laminated FRP composite plate. Numerical calculations are carried out for the clamped antisymmetrically laminated rectangular and elliptical plates which are a kind of unsymmetrically laminated plate. Then,, the effects of the lamina material and the fiber orientation angle on the steady state response are discussed. Furthermore, it is investigated that what structural damping factor is most influenced on the steady state response of an antisymmetrically laminated plate.

  10. Magnetic actuated FR4 scanners for compact spectrometers

    NASA Astrophysics Data System (ADS)

    Ataman, Çağlar; Urey, Hakan

    2008-04-01

    A novel magnetic actuated polymer optical platform is integrated into a Michelson interferometer type Fourier transform infrared spectrometer. The proposed advantages of the novel platform over existing approaches, such as MEMS spectrometers, or bulky FTIR systems, include millimeter range dimensions providing a large clear aperture and enabling conventional machining for device fabrication, a controllable AC and/or DC motion both in rotational and translational modes, and low frequency operation. It has been demonstrated that the platform is capable of achieving 400μm DC deflection in ambient pressure in the translational mode, and a total optical scan angle exceeding 60 degrees in the resonant rotational mode. A Michelson type Fourier transform spectrometer was built using a retro-reflector bearing FR4 platform and a spectral resolution of 25cm -1 is demonstrated with this setup. In addition, possible use of the same platform in various other spectrometer configurations and methods to improve the motion precision are discussed.

  11. Nuclear Lamins: Thin Filaments with Major Functions.

    PubMed

    de Leeuw, Rebecca; Gruenbaum, Yosef; Medalia, Ohad

    2017-09-08

    The nuclear lamina is a nuclear peripheral meshwork that is mainly composed of nuclear lamins, although a small fraction of lamins also localizes throughout the nucleoplasm. Lamins are classified as type V intermediate filament (IF) proteins. Mutations in lamin genes cause at least 15 distinct human diseases, collectively termed laminopathies, including muscle, metabolic, and neuronal diseases, and can cause accelerated aging. Most of these mutations are in the LMNA gene encoding A-type lamins. A growing number of nuclear proteins are known to bind lamins and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, signaling, gene regulation, genome stability, and cell differentiation. Recent studies reveal the organization of the lamin filament meshwork in somatic cells where they assemble as tetramers in cross-section of the filaments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors.

    PubMed

    Adam, Stephen A; Butin-Israeli, Veronika; Cleland, Megan M; Shimi, Takeshi; Goldman, Robert D

    2013-01-01

    Lamin A and the B-type lamins, lamin B1 and lamin B2, are translated as pre-proteins that are modified at a carboxyl terminal CAAX motif by farnesylation, proteolysis and carboxymethylation. Lamin A is further processed by proteolysis to remove the farnesyl, but B-type lamins remain permanently farnesylated. Two childhood diseases, Hutchinson Gilford Progeria Syndrome and restrictive dermopathy are caused by defects in the processing of lamin A, resulting in permanent farnesylation of the protein. Farnesyltransferase inhibitors, originally developed to target oncogenic Ras, have recently been used in clinical trials to treat children with Hutchinson Gilford Progeria Syndrome. Lamin B1 and lamin B2 play important roles in cell proliferation and organ development, but little is known about the role of farnesylation in their functions. Treating normal human fibroblasts with farnesyltransferase inhibitors causes the accumulation of unprocessed lamin B2 and lamin A and a decrease in mature lamin B1. Normally, lamins are concentrated at the nuclear envelope/lamina, but when farnesylation is inhibited, the peripheral localization of lamin B2 decreases as its nucleoplasmic levels increase. Unprocessed prelamin A distributes into both the nuclear envelope/lamina and nucleoplasm. Farnesyltransferase inhibitors also cause a rapid cell cycle arrest leading to cellular senescence. This study suggests that the long-term inhibition of protein farnesylation could have unforeseen consequences on nuclear functions.

  13. Lamination residual strains and stresses in hybrid laminates

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1977-01-01

    An investigation is conducted of the effects of hybridization on the magnitude of lamination residual stresses. Eight-ply graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy laminates were studied. The same matrix resin was selected for all basic materials to ensure compatibility and uniform curing of the various plies. The specimens, with inserted strain gages and thermocouples, were subjected to curing and postcuring cycles in an autoclave. Subsequently, the specimens were subjected to a thermal cycle from room temperature to 444 K and down to room temperature. It was found that hydridizing reduces apparently residual strains and stresses in the graphite plies. However, these strains were not affected much by the type and degree of hybridization.

  14. A computational procedure to analyze metal matrix laminates with nonlinear lamination residual strains

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1974-01-01

    An approximate computational procedure is described for the analysis of angleplied laminates with residual nonlinear strains. The procedure consists of a combination of linear composite mechanics and incremental linear laminate theory. The procedure accounts for initial nonlinear strains, unloading, and in-situ matrix orthotropic nonlinear behavior. The results obtained in applying the procedure to boron/aluminum angleplied laminates show that this is a convenient means to accurately predict the initial tangent properties of angleplied laminates in which the matrix has been strained nonlinearly by the lamination residual stresses. The procedure predicted initial tangent properties results which were in good agreement with measured data obtained from boron/aluminum angleplied laminates.

  15. Specific contribution of lamin A and lamin C in the development of laminopathies

    SciTech Connect

    Sylvius, Nicolas Hathaway, Andrea; Boudreau, Emilie; Gupta, Pallavi; Labib, Sarah; Bolongo, Pierrette M.; Rippstein, Peter; McBride, Heidi; Bilinska, Zofia T.; Tesson, Frederique

    2008-08-01

    Mutations in the lamin A/C gene are involved in multiple human disorders for which the pathophysiological mechanisms are partially understood. Conflicting results prevail regarding the organization of lamin A and C mutants within the nuclear envelope (NE) and on the interactions of each lamin to its counterpart. We over-expressed various lamin A and C mutants both independently and together in COS7 cells. When expressed alone, lamin A with cardiac/muscular disorder mutations forms abnormal aggregates inside the NE and not inside the nucleoplasm. Conversely, the equivalent lamin C organizes as intranucleoplasmic aggregates that never connect to the NE as opposed to wild type lamin C. Interestingly, the lamin C molecules present within these aggregates exhibit an abnormal increased mobility. When co-expressed, the complex formed by lamin A/C aggregates in the NE. Lamin A and C mutants for lipodystrophy behave similarly to the wild type. These findings reveal that lamins A and C may be differentially affected depending on the mutation. This results in multiple possible physiological consequences which likely contribute in the phenotypic variability of laminopathies. The inability of lamin C mutants to join the nuclear rim in the absence of lamin A is a potential pathophysiological mechanism for laminopathies.

  16. Plastic Laminate Pulsed Power Development

    SciTech Connect

    ALEXANDER,JEFF A.; SHOPE,STEVEN L.; PATE,RONALD C.; RINEHART,LARRY F.; JOJOLA,JOHN M.; RUEBUSH,MITCHELL H.; CROWE,WAYNE; LUNDSTROM,J.; SMITH,T.; ZAGAR,D.; PRESTWICH,K.

    2000-09-01

    The desire to move high-energy Pulsed Power systems from the laboratory to practical field systems requires the development of compact lightweight drivers. This paper concerns an effort to develop such a system based on a plastic laminate strip Blumlein as the final pulseshaping stage for a 600 kV, 50ns, 5-ohm driver. A lifetime and breakdown study conducted with small-area samples identified Kapton sheet impregnated with Propylene Carbonate as the best material combination of those evaluated. The program has successfully demonstrated techniques for folding large area systems into compact geometry's and vacuum impregnating the laminate in the folded systems. The major operational challenges encountered revolve around edge grading and low inductance, low impedance switching. The design iterations and lessons learned are discussed. A multistage prototype testing program has demonstrated 600kV operation on a short 6ns line. Full-scale prototypes are currently undergoing development and testing.

  17. Postbuckling of laminated anisotropic panels

    NASA Technical Reports Server (NTRS)

    Jeffrey, Glenda L.

    1987-01-01

    A two-part study of the buckling and postbuckling of laminated anisotropic plates with bending-extensional coupling is presented. The first part involves the development and application of a modified Rayleigh-Ritz analysis technique. Modifications made to the classical technique can be grouped into three areas. First, known symmetries of anisotropic panels are exploited in the selection of approximation functions. Second, a reduced basis technique based on these same symmetries is applied in the linear range. Finally, geometric boundary conditions are enforced via an exterior penalty function approach, rather than relying on choice of approximation functions to satisfy these boundary conditions. Numerical results are presented for both the linear and nonlinear range, with additional studies made to determine the effect of variation in penalty parameter and number of basis vectors. In the second part, six panels possessing anisotropy and bending-extensional coupling are tested. Detailed comparisons are made between experiment and finite element results in order to gain insight into the postbuckling and failure characteristics of such panels. The panels are constructed using two different lamination sequences, and panels with three different aspect ratios were constructed for each lamination sequence.

  18. 78 FR 48903 - Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof... & Spirits Group of Cognac, France (``Camus''). Camus, Sidney Frank, and L'Oreal have since been...

  19. Mammalian telomeres and their partnership with lamins

    PubMed Central

    Burla, Romina; La Torre, Mattia; Saggio, Isabella

    2016-01-01

    ABSTRACT Chromosome ends are complex structures, which require a panel of factors for their elongation, replication, and protection. We describe here the mechanics of mammalian telomeres, dynamics and maintainance in relation to lamins. Multiple biochemical connections, including association of telomeres to the nuclear envelope and matrix, of telomeric proteins to lamins, and of lamin-associated proteins to chromosome ends, underline the interplay between lamins and telomeres. Paths toward senescence, such as defective telomere replication, altered heterochromatin organization, and impaired DNA repair, are common to lamins' and telomeres' dysfunction. The convergence of phenotypes can be interpreted through a model of dynamic, lamin-controlled functional platforms dedicated to the function of telomeres as fragile sites. The features of telomeropathies and laminopathies, and of animal models underline further overlapping aspects, including the alteration of stem cell compartments. We expect that future studies of basic biology and on aging will benefit from the analysis of this telomere-lamina interplay. PMID:27116558

  20. Glucocorticoids and laminitis in the horse.

    PubMed

    Johnson, Philip J; Slight, Simon H; Ganjam, Venkataseshu K; Kreeger, John M

    2002-08-01

    The administration of exogenously administered GCs and syndromes associated with GC excess are both attended by increased risk for the development of laminitis in adult horses. However, there exists substantial controversy as to whether excess GCs cause laminitis de novo. If true, the pathogenesis of laminitis arising from the effects of GC excess is probably different from that associated with diseases of the gastrointestinal tract and endotoxemia. Although a satisfactory explanation for the development of laminitis as a consequence of GC action is currently lacking, numerous possible and plausible theoretical mechanisms do exist. Veterinarians must exert caution with respect to the use of GCs in adult horses. The extent to which individual horses are predisposed to laminitis as a result of GC effect cannot be predicted based on current information. However, the administration of systemic GCs to horses that have been previously affected by laminitis should be used only with extreme caution, and should be accompanied by careful monitoring for further signs of laminitis. The risk of laminitis appears to be greater during treatment using some GCs (especially dexamethasone and triamcinalone) compared with others (prednisone and prednisolone). Whenever possible, to reduce the risk of laminitis, GCs should be administered locally. For example, the risk of GC-associated laminitis is evidently considerably reduced in horses affected with chronic obstructive pulmonary disease (COPD) if GC treatment is administered via inhalation. We have hypothesized that structural changes in the equine hoof that resemble laminitis may arise as a consequence of excess GC effect. Although these changes are not painful per se, and are not associated with inflammation, they could likely predispose affected horses to the development of bona fide laminitis for other reasons. Moreover, the gross morphological appearance of the chronically GC-affected hoof resembles that of a chronically

  1. The pathophysiology of developmental and acute laminitis.

    PubMed

    Hood, D M

    1999-08-01

    This review implies that although we know more regarding the enigma of developmental and acute laminitis today than previously, there is still more to investigate. As these investigations are conducted and interpreted, new and more effective preventive and therapeutic regimens are likely to be developed, tested, and made available. As this occurs, the impact of laminitis should undoubtedly decrease. Unfortunately, due to the lack of clinical symptoms in the developmental phase and the shortness of the acute phase, it is also evident that the two sequelae of acute laminitis, subacute and chronic laminitis, are likely to continue to pose a major problem for some time.

  2. Geometrically nonlinear analysis of laminated elastic structures

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1984-01-01

    Laminated composite plates and shells that can be used to model automobile bodies, aircraft wings and fuselages, and pressure vessels among many other were analyzed. The finite element method, a numerical technique for engineering analysis of structures, is used to model the geometry and approximate the solution. Various alternative formulations for analyzing laminated plates and shells are developed and their finite element models are tested for accuracy and economy in computation. These include the shear deformation laminate theory and degenerated 3-D elasticity theory for laminates.

  3. Field performance of stress-laminated highway bridges constructed with glued laminated timber

    Treesearch

    J.P. Wacker

    2004-01-01

    This paper summarizes the field performance of three stress-laminated deck timber bridges located in Wisconsin, New York, and Arizona. The deck superstructures of these single-span highway bridges is comprised of full-span glued laminated timber (glulam) beam laminations manufactured with southern pine, hem fir/red maple combination, and/or Douglas fir lumber species....

  4. Machining of fiber-reinforced composite laminates

    NASA Astrophysics Data System (ADS)

    Won, Myong-Shik

    As fiber-reinforced composite laminates are becoming considerably popular in a wide range of applications, the necessity for machining such materials is increasing rapidly. Due to their microscopical inhomogeneity, anisotropy, and highly abrasive nature, composite laminates exhibit some peculiar types of machining damage. Consequently, the machining of composite laminates requires a different approach from that used for metals and offers a challenge from both an academic and application point of view. In the present work, the drilling of composite laminated plates and the edge trimming of tubular composite laminates were investigated through theoretical analyses and their experimental verification. First, a drilling process model using linear elastic fracture mechanics and classical plate bending theory was developed to predict the critical thrust value responsible for the onset of delamination during the drilling of composite laminates with pre-drilled pilot holes. Experiments using stepped drills, which can utilize the effectiveness of such pilot holes, were conducted on composite laminates. Reasonably good agreement was found between the results of the process model and the tests. Second, the development of a model-based intelligent control strategy for the efficient drilling of composite laminates was explored by experiments and analyses. In this investigation, mathematical models were created to relate the drilling forces to cutting parameters and to identify the different process stages. These models predicted the degree of thrust force regulation to prevent delamination. Third, the edge trimming of thin-walled tubular composite laminates was modeled and analyzed for estimating the critical cutting force at the initiation of longitudinal cracking. A series of full-scale edge trimming tests were conducted on tubular composite specimens to assess the current approach and to obtain basic machining data for various composite laminates. The present study provides

  5. Effect of laminate thickness and specimen configuration on the fracture of laminated composites

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Morris, D. H.

    1986-01-01

    Attention is given to the effect of laminate thickness on graphite/epoxy laminates in the present measurements of fracture toughness in center cracked tension specimens, compact tension specimens, and three-point bend specimens. Crack tip damage development prior to fracture is also studied. The results obtained show fracture toughness to be a function of laminate thickness, being in all cases independent of crack size. The fracture surface of all thick laminates was uniform in the interior and self-similar with the starter notch. With only one exception, the fracture toughness of the thicker laminates was relatively independent of specimen configuration.

  6. Negative refraction in a laminate

    NASA Astrophysics Data System (ADS)

    Willis, J. R.

    2016-12-01

    This work is concerned with the reflection and transmission of waves at a plane interface between a homogeneous elastic half-space and a half-space of elastic material that is periodically laminated. The lamination is always in the direction of the x1-coordinate axis and the displacement is always longitudinal shear, so that the only non-zero displacement component is u3(x1 ,x2 , t). After an initial discussion of Floquet-Bloch waves in the laminated material, brief consideration is given to the reflection-transmission problem, when the interface between the two media is the plane x1 = 0. Nothing unusual emerges: there are just a single reflected wave and a single transmitted wave, undergoing positive group-velocity refraction. Then, the problem is considered when the interface between the two media is the plane x2 = 0. The periodic structure of the interface induces an infinite set of reflected waves and an infinite set of transmitted waves. All need to be taken into account, but most decay exponentially away from the interface. It had previously been recognized that, if the incident wave had appropriate frequency and angle of incidence, a propagating transmitted wave would be generated that would undergo negative group-velocity refraction - behaviour usually associated with a metamaterial. It is established by an example in this work that there is, in addition, a propagating transmitted wave with smaller wavelength but larger group velocity that undergoes positive group-velocity refraction. The work concludes with a brief discussion of this finding, including its implications for the utility (or not) of "effective medium" theory.

  7. Symmetries in laminated composite plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1976-01-01

    The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.

  8. Maggot debridement therapy for laminitis.

    PubMed

    Morrison, Scott

    2010-08-01

    Maggot debridement therapy is a nontraumatic, minimally invasive method to treat infections in a foot compromised by chronic laminitis. A mechanical strategy must first be in place to address the instability of the distal phalanx and hoof capsule. Adverse reactions to maggot debridement therapy are uncommon and the only side effect observed has been irritation or hypersensitivity at the site. Chronic laminitic cases of sepsis/necrosis within the hoof benefit from this procedure due to the noninvasive, continuous debridement and healing properties provided by the larvae.

  9. Residual stresses in angleplied laminates and their effects on laminate behavior

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    Evidence of the presence of lamination residual stresses in angleplied laminates were transply cracks and warpage of unsymmetric laminates which occur prior to application of any mechanical load. Lamination residual strains were measured using the embedded strain gage technique. These strains result from the temperature differences between cure and room temperature and vary linearly within this temperature range. Lamination residual stresses were usually present in angleplied fiber composites laminates; they were also present in unidirectional hybrids and superhybrids. For specific applications, the magnitudes of lamination residual stresses were determined and evaluated relative to the anticipated applied stresses. Particular attention was given to cyclic thermal loadings in applications where the thermal cycling takes place over a wide temperature range.

  10. Evaluating the warping of laminated particleboard panels

    Treesearch

    Zhiyong Cai

    2004-01-01

    Laminated wood composites have been used widely in the secondary manufacturing processes in the wood panel industries. Warping, which is defined as the out-of-plane deformation of an initially flat panel, is a longstanding problem associated with the use of laminated wood composites. The mechanism of warping is still not fully understood. A new two- dimensional warping...

  11. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1980-01-01

    Six silicone modified resins were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 6-63%. The highest flexural values measured for the laminates were a strength of 1,220 MPa and a modulus of 105 GPa. The highest interlaminar shear strength was 72 MPa.

  12. The strength of Norwegian glued laminated beams

    Treesearch

    Kjell Solli; Erik Aasheim; Robert H. Falk

    1992-01-01

    This paper focuses on the characterization and the performance of glued laminated (glulam) timber beams manufactured from machine stress graded Norwegian spruce in comparison to developing CEN standards. Material property testing indicated that the supplied laminating timber can be represented by two CEN strength classes, C37-14E and C30-12E, with about 50% yield in...

  13. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family.

    PubMed

    Schilf, Paul; Peter, Annette; Hurek, Thomas; Stick, Reimer

    2014-07-01

    Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Stationary turbine component with laminated skin

    DOEpatents

    James, Allister W [Orlando, FL

    2012-08-14

    A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.

  15. Wettability of graphene-laminated micropillar structures

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Seo, Keumyoung; Park, Ji-Hoon; Ahn, Joung Real; Ju, Sanghyun

    2014-12-01

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  16. Steady compression characteristics of laminated MRE isolator

    NASA Astrophysics Data System (ADS)

    Wahab, N. A. A.; Mazlan, S. A.; Ubaidillah; Sharif, A. H. R.; Kamaruddin, S.

    2016-11-01

    This paper focused on an experimental setup on laminated magnetorheological elastomer (MRE) isolator under steady state compression test. An isotropic type natural rubber (NR) based MRE were fabricated and layered with a steel plate to form a multilayer sandwich structure adopted from the conventional laminated rubber bearing design. A set of static compression test was conducted to explore the potential of semi-active laminated MRE isolator in field-dependent stiffness properties. Stress versus strain relationship was assessed under different magnetic fields application. Based on the examination, the stress altered as the application of magnetic fields. Consequently, the effective stiffness of isolator also influenced by the magnetic fields induction. The experimental results show that the proposed laminated MRE isolator can effectively alter the compression stiffness up to the 14.56%. The preliminary results have confirmed the tunability of the semi-active laminated MRE isolator in which it would be beneficial for improving building isolator in general.

  17. Universality of the frequency spectrum of laminates

    NASA Astrophysics Data System (ADS)

    Shmuel, Gal; Band, Ram

    2016-07-01

    We show that the frequency spectrum of two-component elastic laminates admits a universal structure, independent of the geometry of the periodic-cell and the specific physical properties. The compactness of the structure enables us to rigorously derive the maximal width, the expected width, and the density of the band-gaps - ranges of frequencies at which waves cannot propagate. In particular, we find that the density of these band-gaps is a universal property of classes of laminates. Rules for tailoring laminates according to desired spectrum properties thereby follow. We show that the frequency spectrum of various finitely deformed laminates are also endowed with the same compact structure. Finally, we explain how our results generalize for laminates with an arbitrary number of components, based on the form of their dispersion relation.

  18. Wettability of graphene-laminated micropillar structures

    SciTech Connect

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun E-mail: shju@kgu.ac.kr; Park, Ji-Hoon; Ahn, Joung Real E-mail: shju@kgu.ac.kr

    2014-12-21

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  19. A study of adhesion at the E-glass/FR4 interface

    SciTech Connect

    Kent, M.S.; Baca, P.; McNamara, W.F.

    1995-12-31

    The goal of this work is to investigate mechanisms for the loss of adhesive strength between E-glass and FR4 epoxy upon-humidity and temperature conditioning. In this paper we discuss the distribution of moisture between the interface region and the bulk epoxy examined by neutron reflection, and the relationship of this data to adhesive strength.

  20. The Different Function of Single Phosphorylation Sites of Drosophila melanogaster Lamin Dm and Lamin C

    PubMed Central

    Zaremba-Czogalla, Magdalena; Piekarowicz, Katarzyna; Wachowicz, Katarzyna; Kozioł, Katarzyna; Dubińska-Magiera, Magda; Rzepecki, Ryszard

    2012-01-01

    Lamins' functions are regulated by phosphorylation at specific sites but our understanding of the role of such modifications is practically limited to the function of cdc 2 (cdk1) kinase sites in depolymerization of the nuclear lamina during mitosis. In our study we used Drosophila lamin Dm (B-type) to examine the function of particular phosphorylation sites using pseudophosphorylated mutants mimicking single phosphorylation at experimentally confirmed in vivo phosphosites (S25E, S45E, T435E, S595E). We also analyzed lamin C (A-type) and its mutant S37E representing the N-terminal cdc2 (mitotic) site as well as lamin Dm R64H mutant as a control, non-polymerizing lamin. In the polymerization assay we could observe different effects of N-terminal cdc2 site pseudophosphorylation on A- and B-type lamins: lamin Dm S45E mutant was insoluble, in contrast to lamin C S37E. Lamin Dm T435E (C-terminal cdc2 site) and R64H were soluble in vitro. We also confirmed that none of the single phosphorylation site modifications affected the chromatin binding of lamin Dm, in contrast to the lamin C N-terminal cdc2 site. In vivo, all lamin Dm mutants were incorporated efficiently into the nuclear lamina in transfected Drosophila S2 and HeLa cells, although significant amounts of S45E and T435E were also located in cytoplasm. When farnesylation incompetent mutants were expressed in HeLa cells, lamin Dm T435E was cytoplasmic and showed higher mobility in FRAP assay. PMID:22393432

  1. Laminitis and the equine metabolic syndrome.

    PubMed

    Johnson, Philip J; Wiedmeyer, Charles E; LaCarrubba, Alison; Ganjam, V K Seshu; Messer, Nat T

    2010-08-01

    Although much has been written about laminitis in the context of its association with inflammatory processes, recognition is growing that most cases of laminitis examined by veterinarians in private practice are those associated with pasture grazing, obesity, and insulin resistance (IR). The term 'endocrinopathic laminitis' has been adopted to classify the instances of laminitis in which the origin seems to be more strongly associated with an underlying endocrinopathy, such as either IR or the influence of corticosteroids. Results of a recent study suggest that obesity and IR represent the most common metabolic and endocrinopathic predispositions for laminitis in horses. IR also plays an important role in the pathogenesis of laminitis that develops when some horses or ponies are allowed to graze pastures at certain times of the year. The term equine metabolic syndrome (EMS) has been proposed as a label for horses whose clinical examination results (including both physical examination and laboratory testing) suggest heightened risk for developing laminitis as a result of underlying IR.

  2. Direct Composite Laminate Veneers: Three Case Reports

    PubMed Central

    Korkut, Bora; Yanıkoğlu, Funda; Günday, Mahir

    2013-01-01

    Re-establishing a patient’s lost dental esthetic appearance is one of the most important topics for contemporary dentistry. New treatment materials and methods have been coming on the scene, day by day, in order to achieve such an aim. Most dentists prefer more conservative and aesthetic approaches, such as direct and indirect laminate veneer restorations, instead of full-ceramic crowns for anteriors where aesthetics is really important. Laminate veneers are restorations which are envisioned to correct existing abnormalities, esthetic deficiencies and discolo-rations. Laminate veneer restorations may be processed in two different ways: direct or indirect. Direct laminate veneers have no need to be prepared in the laboratory and are based on the principle of application of a composite material directly to the prepared tooth surface in the dental clinic. Indirect laminate veneers may be produced from composite materials or ceramics, which are cemented to the tooth with an adhesive resin. In this case report, direct composite laminate veneer technique used for three patients with esthetic problems related to fractures, discolorations and an old prolapsed restoration, is described and six-month follow-ups are discussed. As a conclusion, direct laminate veneer restorations may be a treatment option for patients with the esthetic problems of anterior teeth in cases similar to those reported here. PMID:23875090

  3. Structural feasibility of parallel-laminated veneer crossarms

    Treesearch

    John Youngquist; Frank Brey; Joseph Jung

    1977-01-01

    Experimentally and commercially produced laminated M-19 crossarms were tested by standard Rural Electrification Administration (REA) crossarm tests. The laminated crossarms, produced by laminating veneer and by laminating solid-sawn dimension stock, generally performed satisfactorily according to REA specified standards. Materials tested are described and results on...

  4. Damage of hybrid composite laminates

    NASA Astrophysics Data System (ADS)

    Haery, Haleh A.; Kim, Ho Sung

    2013-08-01

    Hybrid laminates consisting of woven glass fabric/epoxy composite plies and woven carbon fabric/epoxy composite plies are studied for fatigue damage and residual strength. A theoretical framework based on the systems approach is proposed as a guide to deal with the complexity involving uncertainties and a large number of variables in the hybrid composite system. A relative damage sensitivity factor expression was developed for quantitative comparisons between non-hybrid and hybrid composites. Hypotheses derived from the theoretical framework were tested and verified. The first hypothesis was that the difference between two different sets of properties produces shear stress in interface between carbon fibre reinforced plastics (CRP) and glass fibre reinforced plastics (GRP), and eventually become a source for CRP/GRP interfacial delamination or longitudinal cracking. The second hypothesis was that inter-fibre bundle delamination occurs more severely to CRP sub-system than GRP sub-system.

  5. Method of laminating structural members

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A laminate is obtained by providing a lightweight core material, such as a honeycombed plastic or metal, within the cavity defined by an annular mold cavity frame. Face sheets, which are to be bonded to the core material, are provided on opposite sides of the frame and extend over the frame, thus sealing the core material in the cavity. An adhesive is provided between the core material and the face sheets and the combined thickness of the core material and adhesive is a close fit within the opposed face sheets. A gas tight seal, such as an O-ring gasket, is provided between the frame and the face sheet members to form a gas tight cavity between the face sheet members and the frame. External heat and pressure are used to bond the face sheets to the core material. Gas pressure is introduced into the sealed cavity to minimize out-gasing of the adhesive.

  6. Indentation law for composite laminates

    NASA Technical Reports Server (NTRS)

    Yang, S. H.

    1981-01-01

    Static indentation tests are described for glass/epoxy and graphite/epoxy composite laminates with steel balls as the indentor. Beam specimens clamped at various spans were used for the tests. Loading, unloading, and reloading data were obtained and fitted into power laws. Results show that: (1) contact behavior is not appreciably affected by the span; (2) loading and reloading curves seem to follow the 1.5 power law; and (3) unloading curves are described quite well by a 2.5 power law. In addition, values were determined for the critical indentation, alpha sub cr which can be used to predict permanent indentations in unloading. Since alpha sub cr only depends on composite material properties, only the loading and an unloading curve are needed to establish the complete loading-unloading-reloading behavior.

  7. Flat laminated microbial mat communities

    NASA Astrophysics Data System (ADS)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  8. Neuropathic pain management in chronic laminitis.

    PubMed

    Driessen, Bernd; Bauquier, Sébastien H; Zarucco, Laura

    2010-08-01

    Managing pain in horses afflicted by chronic laminitis is one of the greatest challenges in equine clinical practice because it is the dreadful suffering of the animals that most often forces the veterinarian to end the battle with this disease. The purpose of this review is to summarize our current understanding of the complex mechanisms involved in generating and amplifying pain in animals with laminitis and, based on this information, to propose a modified approach to pain therapy. Furthermore, a recently developed pain scoring technique is presented that may help better quantify pain and the monitoring of responses to analgesic treatment in horses with laminitis.

  9. Thermal buckling of symmetrically laminated composite plates

    NASA Technical Reports Server (NTRS)

    Meyers, C. A.; Hyer, M. W.

    1991-01-01

    This paper discusses an investigation into the thermal buckling of symmetrically laminated composite plates. In this study thermal buckling is investigated for laminates under two different simple support conditions, fixed and sliding. These laminates are subjected to the conditions of a uniform temperature change, and a temperature change varying linearly along the length of the plate. The effects of the principal material axes not being aligned with the edges of the plate are also investigated. The buckling response is studied using variational methods, specifically the Trefftz criterion. A Rayleigh-Ritz formulation is used to obtain numerical results from the formulations for the prebuckling response and the buckling response.

  10. Thermal buckling of laminated composite shells

    SciTech Connect

    Thangaratnam, R.K.; Palaninathan, R.; Ramachandran, J. )

    1990-05-01

    The linear buckling analysis of laminated composite cylindrical and conical shells under thermal load using the finite element method is reported here. Critical temperatures are presented for various cases of cross-ply and angly-ply laminated shells. The effects of radius/thickness ratio, number of layers, ratio of coefficients of thermal expansion, and the angle of fiber orientation have been studied. The results indicate that the buckling behavior of laminated shell under thermal load is different from that of mechanically loaded shell with respect to the angle of fiber orientation. 6 refs.

  11. NOLIN: A nonlinear laminate analysis program

    NASA Technical Reports Server (NTRS)

    Kibler, J. J.

    1975-01-01

    A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.

  12. Home care for horses with chronic laminitis.

    PubMed

    Orsini, James A; Wrigley, Jennifer; Riley, Patrick

    2010-04-01

    Home care for horses with chronic laminitis has been discussed rarely in the veterinary literature even though, at any given time, most of us have at least 1 chronic laminitis case in our care that is being managed at home by the owner. Almost all of our knowledge on this aspect of laminitis treatment has been gleaned through experience, by individually working through the medical, ethical, financial, and emotional challenges these cases can present. Much has already been presented on the medical management of the laminitic horse and on strategies for trimming and shoeing the laminitic foot. This article focuses on the other challenges so often faced when directing the home care of a horse with chronic laminitis.

  13. Pattern recognition of laminated sediments methodology

    NASA Astrophysics Data System (ADS)

    Barba-Rojo, Perla Karina; Solorza-Calderón, Selene; González-Fernández, Antonio

    2016-12-01

    This work presents a different aproach for laminae counting and thickness measurements on laminated sediment images. This is done by the use of morphological operations and minimum variance quantization.

  14. Free edge effects in laminated composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1989-01-01

    The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.

  15. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  16. Fatigue crack growth in aluminum laminate composites

    SciTech Connect

    Hoffman, P.B.; Carpenter, R.D.; Gibeling, J.C.

    1996-12-31

    Fatigue crack growth has been measured in a laminated metal composite (LMC) consisting of alternating layers of AA6090/SiC/25p metal matrix composite (MMC) and AA5182 alloy. This material was tested in both as-pressed (F temper) and aged (T6 temper) conditions. Corresponding crack growth measurements were made in self-laminates of both the MMC and AA5182 materials to examine the role of the interfaces.

  17. Descriptive epidemiological study of equine laminitis.

    PubMed

    Slater, M R; Hood, D M; Carter, G K

    1995-09-01

    A descriptive and matched case-control study of laminitis was conducted in 7 private practices and at the Texas Veterinary Medical Centre (TVMC) between May 1992 and July 1993. Out of 108 horses with laminitis, 19 acute (49%) and 20 chronic (51%) cases were seen in private practice and 16 acute (23%) and 53 (77%) cases at the TVMC. Gastrointestinal disease was the most common problem in 19/35 horses (54%), occurring just prior to the onset of acute laminitis in all hospitals. Among all horses in the study, most commonly used drugs were phenylbutazone (68%), acepromazine (34%), dimethyl sulphoxide (DMSO) (27%), antibiotics of various types (19%) and flunixin meglumine (19%). Acepromazine, DMSO and flunixin meglumine were used more commonly in acute cases of laminitis compared to chronic cases. In acutely affected horses, DMSO and flunixin meglumine were used significantly more often at the TVMC. In chronic cases, phenylbutazone and antibiotics were used more often in private practice. Shoeing and trimming were more commonly part of the treatment protocol for chronic cases. There were no significant associations between age, breed, sex or weight and the occurrence of acute laminitis. Horses with chronic laminitis were significantly older (P=0.04) and more females tended to be affected (P=0.08).

  18. Bovine laminitis: clinical aspects, pathology and pathogenesis with reference to acute equine laminitis.

    PubMed

    Boosman, R; Németh, F; Gruys, E

    1991-07-01

    This review deals with the features of clinical and subclinical laminitis in cattle. Prominent clinical signs of acute laminitis are a tender gait and arched back. The sole horn reveals red and yellowish discolourations within five days. In subacute and chronic cases clinical signs are less severe. In chronic laminitis the shape of the claws is altered. Laminitis is frequently followed by sole ulceration and white zone lesions. Blood tests showed no significant changes for laminitic animals. Arteriographic studies of claws affected by laminitis indicated that blood vessels had narrowed lumens. Gross pathology revealed congestion of the corium and rotation of the distal phalanx. Histopathologic studies indicate that laminitis is associated with changes of the vasculature. Peripartum management and nutrition are important factors in its aetiology. It is hypothesised that laminitis is evoked by disturbed digital circulation. In the pathogenesis of acute laminitis three factors are considered important: the occurrence of thrombosis, haemodynamic aspects of the corium, and endotoxins which trigger these pathologic events.

  19. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  20. Long-lasting FR-4 surface hydrophilisation towards commercial PCB passive microfluidics

    NASA Astrophysics Data System (ADS)

    Vasilakis, Nikolaos; Moschou, Despina; Carta, Daniela; Morgan, Hywel; Prodromakis, Themistoklis

    2016-04-01

    Printed circuit boards (PCB) technologies are an attractive system for simple sensing and microfluidic systems. Controlling the surface properties of PCB material is an important part of this technology and to date there has been no study on long-term hydrophilisation stability of these materials. In this work, the effect of different oxygen plasma input power and treatment duration times on the wetting properties of FR-4 surfaces was investigated by sessile droplet contact angle measurements. Super and weakly hydrophilic behaviour was achieved and the retention time of these properties was studied, with the hydrophilic nature being retained for at least 26 days. To demonstrate the applicability of this treatment method, a commercially manufactured microfluidic structure made from a multilayer PCB (3-layer FR-4 stack) was exposed to oxygen plasma at the optimum conditions. The structures could be filled with deionised (DI) water under capillary flow unlike the virgin devices.

  1. Treating laminitis: beyond the mechanics of trimming and shoeing.

    PubMed

    Baker, William R

    2012-08-01

    Laminitis is typically classified into developmental or prodromal, acute, subacute, and chronic phases. Scientific evidence regarding the pathophysiology of laminitis does exist, but it is often conflicting and dependent on the clinician's interpretation/understanding of the study or the model used for inducing laminitis. The diagnosis of laminitis consists of obtaining an accurate history, performing a thorough physical examination, and taking good-quality radiographs. The use of radiographs for diagnosis and interpretation of laminitis is an absolute necessity for the clinician. Laminitis is one disease that requires the assembly of a team consisting of the veterinarian, the farrier, and the owner to be successfully treated.

  2. Finite element analysis of shear deformable laminated composite plates

    SciTech Connect

    Kam, T.Y.; Chang, R.R. )

    1993-03-01

    A shear deformable finite element is developed for the analysis of thick laminated composite plates. The finite element formulation is based on Mindlin's plate theory in which shear correction factors are derived from the exact expressions for orthotropic materials. The element is used to solve a variety of problems on deflection, stress distribution, natural frequency and buckling of laminated composite plates. The effects of material properties, plate aspect ratio, length-to-thickness ratio, number of layers and lamination angle on the mechanical behaviors of laminated composite plates are investigated. Optimal lamination arrangements of layers for laminated composite plates of particular applications are determined.

  3. Lamin B1 and lamin B2 are long-lived proteins with distinct functions in retinal development

    PubMed Central

    Razafsky, David; Ward, Candace; Potter, Chloe; Zhu, Wanqiu; Xue, Yunlu; Kefalov, Vladimir J.; Fong, Loren G.; Young, Stephen G.; Hodzic, Didier

    2016-01-01

    Lamin B1 and lamin B2 are essential building blocks of the nuclear lamina, a filamentous meshwork lining the nucleoplasmic side of the inner nuclear membrane. Deficiencies in lamin B1 and lamin B2 impair neurodevelopment, but distinct functions for the two proteins in the development and homeostasis of the CNS have been elusive. Here we show that embryonic depletion of lamin B1 in retinal progenitors and postmitotic neurons affects nuclear integrity, leads to the collapse of the laminB2 meshwork, impairs neuronal survival, and markedly reduces the cellularity of adult retinas. In stark contrast, a deficiency of lamin B2 in the embryonic retina has no obvious effect on lamin B1 localization or nuclear integrity in embryonic retinas, suggesting that lamin B1, but not lamin B2, is strictly required for nucleokinesis during embryonic neurogenesis. However, the absence of lamin B2 prevents proper lamination of adult retinal neurons, impairs synaptogenesis, and reduces cone photoreceptor survival. We also show that lamin B1 and lamin B2 are extremely long-lived proteins in rod and cone photoreceptors. OF interest, a complete absence of both proteins during postnatal life has little or no effect on the survival and function of cone photoreceptors. PMID:27075175

  4. Transmission line printed using silver nanoparticle ink on FR-4 and polyimide substrates

    NASA Astrophysics Data System (ADS)

    Sim, Sung-min; Lee, Yeonsu; Kang, Hye-lim; Shin, Kwon-Yong; Lee, Sang-Ho; Kim, Jung-Mu

    2016-12-01

    In this paper, nano-silver ink-jet printed transmission lines were fabricated to investigate RF performance on both flame retardant (FR-4) and polyimide (PI) as rigid and flexible substrates. The transmission lines were printed by using the ink-jet printer with velocity of 3.5 mm/s and were sintered in a convection oven with 250 °C. The RF performance of transmission lines was simulated and measured at low frequencies. The transmission loss is measured to be 0.22 dB@1 GHz and 0.32 dB@1 GHz, respectively, for the FR-4 and PI substrates, respectively. The return loss has over 16 dB for FR-4 substrate and over 12 dB for PI substrate. The RF performance of transmission line was investigated and discussed in regard to an influence by two substrates. The measured RF performance of fabricated transmission lines results in the possibility that flexible device is explored in low frequencies application.

  5. Mechanical Behavior of Fabric-Film Laminates

    NASA Technical Reports Server (NTRS)

    Said, Magdi S.

    1999-01-01

    Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of materials made of laminating thin homogenous films to lightweight fabrics are being considered us structura1 gas envelops. The emerging composite materials are a result of recent advances in the manufacturing cf 1ightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barrier film results in wide range of materials suitable for various loading and environmental conditions. Polyester - based woven fabrics laminated to thin homogeneus film of polyester (Maylar) is an example of this class. This fabric/ film laminate is being considered for the development a material suitable for building large gas envelopes for use in the NASA Ultra Long Duration Balloon Program (ULDB). Compared to commercial homogeneus films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation. The purpose of this papers is to introduce the mechanical behavior of this class of multi-layers composite and to highlight some of the concerns observed during the characterization of these laminate composites.

  6. Fracture behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.

  7. Lamination residual stresses in fiber composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1975-01-01

    An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.

  8. Evaluation of Behaviours of Laminated Glass

    NASA Astrophysics Data System (ADS)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  9. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1979-01-01

    The development of silicon modified resins for graphite fiber laminates which will prevent the dispersal of graphite fibers when the composites are burned is discussed. Eighty-five silicone modified resins were synthesized and evaluated including unsaturated polyesters, thermosetting methacrylates, epoxies, polyimides, and phenolics. Neat resins were judged in terms of Si content, homogeneity, hardness, Char formation, and thermal stability. Char formation was estimated by thermogravimetry to 1,000 C in air and in N2. Thermal stability was evaluated by isothermal weight loss measurements for 200 hrs in air at three temperatures. Four silicone modified epoxies were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 25 to 50%. The highest flexural values measured for the laminates were a strength of 140 kpsi and a modulus of 10 Mpsi. The highest interlaminar shear strength was 5.3 kpsi.

  10. Damage initiation and propagation in metal laminates

    SciTech Connect

    Riddle, R.A.; Lesuer, D.R.; Syn, C.K.

    1996-07-26

    The metal laminates proposed here for aircraft structures are Al alloy interlayers between Al alloy based metal matrix composite (MMC) plates reinforced with Si carbide particles. Properties to be tailored for jet engine fan containment and wing and auxiliary support structures include the important property fracture toughness. A method was developed for simulating and predicting crack initiation/growth using finite element analysis and fracture mechanics. An important key in predicting the failure is the tie- break slideline with prescribed (chosen based on J Integral calculations) effective plastic strain to failure in elements along the slideline. More development of the method is needed, particularly in its correlation with experimental data from various fracture toughness and strength tests of metal laminates. Results show that delamination at the interface of the ductile interlayer and MMC material can add significantly to the energy required to propagate a crack through a metal laminate. 11 figs, 7 refs.

  11. Pasture nonstructural carbohydrates and equine laminitis.

    PubMed

    Longland, Annette C; Byrd, Bridgett M

    2006-07-01

    Fresh forages constitute a majority of the diet for many horses and ponies that graze on pastures during the growing season in many parts of the world. Grasses generally predominate in such pastures, with varying proportions of legumes. Nonstructural carbohydrates (NSC) (simple sugars, starch, and fructan) can induce laminitis experimentally, and NSC can accumulate to >400 g/kg of dry matter (DM) in pasture grasses. In this article we discuss the environmental factors affecting NSC accumulation in pastures and estimate the potential daily intakes of pasture NSC by grazing horses. We also discuss strategies for both reducing the NSC content of pastures and management practices that can help reduce intakes of pasture NSC by equines at risk of developing laminitis. This study reveals the importance of accurate forage analysis in the development of feeding regimens for equines at risk of laminitis.

  12. Flutter of laminated plates in supersonic flow

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.

    1975-01-01

    A solution procedure was developed using linear small deflection theory for the flutter of simply supported laminated plates. For such plates, the bending and extensional governing equations are coupled and have cross-stiffness terms which do not appear in classical plate theory. An extended Galerkin method is used to obtain approximate solutions to the governing equations, and the aerodynamic pressure loading used in the analysis is that given by linear piston theory with flow at arbitrary cross-flow angle. A limited parametric study was conducted for typical laminated composite plates. The calculations show that both the bending-extensional coupling and the cross-stiffness terms have a large destabilizing effect on flutter. Since classical plate theory does not consider bending-extensional coupling and cross stiffness terms, it usually gives inaccurate and nonconservative flutter boundaries for laminated plates.

  13. Hybrid Laminates for Application in North Conditions

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.

    2016-11-01

    A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.

  14. Plated lamination structures for integrated magnetic devices

    SciTech Connect

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  15. Development of tough, moisture resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1982-01-01

    Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.

  16. Preliminary evaluation of hybrid titanium composite laminates

    NASA Technical Reports Server (NTRS)

    Miller, J. L.; Progar, D. J.; Johnson, W. S.; St.clair, T. L.

    1994-01-01

    In this study, the mechanical response of hybrid titanium composite laminates (HTCL) was evaluated at room and elevated temperatures. Also, the use of an elastic-plastic laminate analysis program for predicting the tensile response from constituent properties was verified. The improvement in mechanical properties achieved by the laminates was assessed by comparing the results of static strength and constant amplitude fatigue tests to those for monolithic titanium sheet. Two HTCL were fabricated with different fiber volume fractions, resin layer thicknesses, and resins. One panel was thicker and was more poorly bonded in comparison to other. Consequently, the former had a lower tensile strength, while fewer cracks grew in this panel and at a slower rate. Both panels showed an improvement in fatigue life of almost two orders of magnitude. The model predictions were also in good agreement with the experimental results for both HTCL panels.

  17. Structural reliability analysis of laminated CMC components

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.

    1991-01-01

    For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.

  18. Stochastic damage evolution in textile laminates

    NASA Technical Reports Server (NTRS)

    Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.

    1993-01-01

    A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.

  19. Nonlinear effects on composite laminate thermal expansion

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Rosen, B. W.; Pipes, R. B.

    1979-01-01

    Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.

  20. Fracture behavior of laminated discontinuously reinforced aluminum material

    SciTech Connect

    Osman, T.M. |; Lewandowski, J.J.; Lesuer, D.R.; Syn, C.K.; Hunt, W.H. Jr

    1994-05-01

    Laminated metallic composites are being developed for applications which require high specific stiffness and fracture resistance. Recent work with laminated discontinuously reinforced aluminum (DRA) materials has demonstrated the potential for marked improvements in stable crack growth resistance via extrinsic toughening. The purpose of this work is to compare the fracture mechanisms and fracture resistance of laminated DRA materials to unlaminated DRA materials. In particular, the production of extensive stable crack growth and the associated improvement in damage tolerance in DRA laminates is documented.

  1. Small Laminated Axial Turbine Design and Test Program.

    DTIC Science & Technology

    1980-12-01

    the Disk Rim During Startup and Shutdown 112 74 CME Rotor Burst Ratio 114 75 PCM Laminate Tool No. 21 115 76 Small Cruise Missile Laminated Turbine 117...Jr., H. R. Fisk and J. A. Vonada, ’Demonstration of a Cooled Laminated Integral Axial Turbine," AIAA Paper 77-949. Reprinted in Journal of Aircraft... Tooling (PC0) for the small diameter laminated rotor. 3 4. .< ,.C, DESIGN ANALYSIS Heat-Ttansfer Performance Predictions The expected metal temperature

  2. Ultrasonic transducer with laminated coupling wedge

    DOEpatents

    Karplus, Henry H. B.

    1976-08-03

    An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.

  3. Reliability analysis of continuous fiber composite laminates

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Wetherhold, Robert C.

    1991-01-01

    This paper describes two methods, the maximum distortion energy (MDE) and the principle of independent action (PIA), developed for the analysis of the reliability of a single continuous composite lamina. It is shown that, for the typical laminated plate structure, the individual lamina reliabilities can be combined in order to produce the upper and the lower bounds of reliability for the laminate, similar in nature to the bounds on properties produced from variational elastic methods. These limits were derived for both the interactive and the model failure considerations. Analytical expressions were also derived for the sensitivity of the reliability limits with respect to changes in the Weibull parameters and in loading conditions.

  4. Ultrahigh Carbon Steels and Their Laminates

    DTIC Science & Technology

    1990-02-01

    PROGRAM PROJECT TASK WORK UNIT 11LitME NT NO. No. NO. NO I I TITLE tiAtluda Seca.r.ty Ck~iaialasonJ Ultrahigh Carbon Steels and their laminates...PROM Aug. 1984 To- Fe~r--9O February 1, 1906 1S. SUPPLEMENTARY NOTATION Amore coinpetc tte of tie-program is: Low Density and Tough Steels with High...Hardenabihzty: Processing, Testing and Evaluation of UHC steels and their laminates 17 COSATI CODES Is.. SUBJECT TERMS (CoAtInai" on uvwrue iroleemary

  5. Multi-layer laminate structure and manufacturing method

    DOEpatents

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald; Graham, Andrew T.; Langmaid, Joe A.

    2013-01-29

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  6. Multi-layer laminate structure and manufacturing method

    DOEpatents

    Keenihan, James R [Midland, MI; Cleereman, Robert J [Midland, MI; Eurich, Gerald [Merrill, MI; Graham, Andrew T [Midland, MI; Langmaid, Joe A [Caro, MI

    2012-04-24

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  7. Impact performance of two bamboo-based laminated composites

    Treesearch

    Huanrong Liu; Zehui Jiang; Zhengjun Sun; Yan Yan; Zhiyong Cai; Xiubiao Zhang

    2017-01-01

    The present work aims to determine the impact performance of two bamboo-based laminated composites [bamboo/poplar laminated composite (BPLC) and bamboo/ glass fiber laminated composite (BGFLC)] using lowvelocity impact tests by a drop tower. In addition, fracture characteristics were evaluated using computed tomography (CT). Results showed that BPLC presented better...

  8. Simulating Progressive Damage of Notched Composite Laminates with Various Lamination Schemes

    NASA Astrophysics Data System (ADS)

    Mandal, B.; Chakrabarti, A.

    2017-05-01

    A three dimensional finite element based progressive damage model has been developed for the failure analysis of notched composite laminates. The material constitutive relations and the progressive damage algorithms are implemented into finite element code ABAQUS using user-defined subroutine UMAT. The existing failure criteria for the composite laminates are modified by including the failure criteria for fiber/matrix shear damage and delamination effects. The proposed numerical model is quite efficient and simple compared to other progressive damage models available in the literature. The efficiency of the present constitutive model and the computational scheme is verified by comparing the simulated results with the results available in the literature. A parametric study has been carried out to investigate the effect of change in lamination scheme on the failure behaviour of notched composite laminates.

  9. Flexural properties of glued-laminated Southern pine beams with laminations positioned by visual-stiffness criteria

    Treesearch

    R. C. Moody; Billy Bohannan

    1970-01-01

    To establish the effect of using modulus elasticity in addition to visual grade as criteria for the positioning of laminations in laminated beams, an experimental study on southern pine members was conducted. The beams were manufactured in accordance with current specifications for glued-laminated southern pine timber, except that (a) minimum-quality tension...

  10. Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2

    PubMed Central

    Lee, John M.; Tu, Yiping; Tatar, Angelica; Wu, Daniel; Nobumori, Chika; Jung, Hea-Jin; Yoshinaga, Yuko; Coffinier, Catherine; de Jong, Pieter J.; Fong, Loren G.; Young, Stephen G.

    2014-01-01

    Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated “reciprocal knock-in mice”—mice that make lamin B2 from the Lmnb1 locus (Lmnb1B2/B2) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2B1/B1). Lmnb1B2/B2 mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1B2/B2 mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2B1/B1 mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other. PMID:24672053

  11. [Laminitis in cattle: a literature review].

    PubMed

    Lischer, C; Ossent, P

    1994-10-01

    Worldwide afflictions of the claws belong to the economically important diseases in dairy cattle. The significance of laminitis has gained importance in the last years since the condition is regarded as the most important predisposing factor for the development of lesions such as sole ulcer, white line disease and heel horn erosion. Apart from the clinical stages (acute, subacute, chronic, chronic-recurrent) there is also a subclinical form of laminitis which does not cause lameness. It is characterized by soft yellowish sole and heel horn with haemorrhages in the sole and along the white line. Laminitis is a multifactorial event in which nutrition, genetic disposition and the perinatal period, combined with the associated diseases of high-yielding cows, have a particular significance. Currently, two principally different hypotheses on the pathogenesis are discussed. The generally accepted theory bases on a disturbance in the microcirculation of the corium. According to the other theory the circulatory disturbances are secondary to changes which occur in the horn producing cells of the stratum basale of the epidermis. The predisposing factors and the pathogenesis of laminitis are discussed in the light of possible therapeutic and prophylactic measures.

  12. Laminated Root Rot of Western Conifers

    Treesearch

    E.E. Nelson; N.E. Martin; R.E. Williams

    1981-01-01

    Laminated root rot is caused by the native fungus Phellinus weirii (Murr.) Gilb. It occurs throughout the Northwestern United States and in southern British Columbia, Canada. The disease has also been reported in Japan and Manchuria. In the United States, the pathogen is most destructive in pure Douglas-fir stands west of the crest of the Cascade Range in Washington...

  13. Thermal postbuckling behavior of laminated composite plates

    SciTech Connect

    Singh, G.; Rao, G.V.; Lyengar, N.G.R. )

    1994-06-01

    Thermal buckling and postbuckling behavior of shear deformable laminated composite plates is investigated by employing a four-node rectangular C(sup 1) continuous finite element. The investigation reveals that the postbuckling path may not remain stable throughout. It is shown that secondary instabilities coupled with changes in the spatial deformation do take place from the postbuckling path. 15 refs.

  14. Thermal buckling of laminated composite plates

    SciTech Connect

    Chen, L.W.; Chen, L.Y.

    1987-01-01

    Thermal buckling of laminated composite plates subjected to a temperature change is studied. The displacement equations of equilibrium are used and Galerkin's method is employed to determine the critical buckling temperature. Clamped and simply supported boundary conditions are both considered. The effects of various parameters on the thermal buckling are examined. 18 references.

  15. Impermeable Robust Hydrogels via Hybrid Lamination.

    PubMed

    Parada, German A; Yuk, Hyunwoo; Liu, Xinyue; Hsieh, Alex J; Zhao, Xuanhe

    2017-07-17

    Hydrogels have been proposed for sensing, drug delivery, and soft robotics applications, yet most of these materials suffer from low mechanical robustness and high permeability to small molecules, limiting their widespread use. This study reports a general strategy and versatile method to fabricate robust, highly stretchable, and impermeable hydrogel laminates via hybrid lamination of an elastomer layer bonded between hydrogel layers. By controlling the layers' composition and thickness, it is possible to tune the stiffness of the impermeable hydrogels without sacrificing the stretchability. These hydrogel laminates exhibit ultralow surface coefficients of friction and, unlike common single-material hydrogels, do not allow diffusion of various molecules across the structure due to the presence of the elastomer layer. This feature is then used to release different model drugs and, in a subsequent experiment, to sense different pH conditions on the two sides of the hydrogel laminate. A potential healthcare application is shown using the presented method to coat medical devices (catheter, tubing, and condom) with hydrogel, to allow for drug release and sensing of environmental conditions for gastrointestinal or urinary tract. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Laminated insulators having heat dissipation means

    DOEpatents

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

    1980-04-24

    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  17. Laminated root rot in western North America.

    Treesearch

    Walter G. Thies; Rona N. Sturrock

    1995-01-01

    Laminated root rot, caused by Phellinus weirii (Murr.) Gilb., is a serious root disease affecting Douglas-fir and other commercially important species of conifers in northwestern North America. This report gives an overview of the dis-ease as it occurs in the Pacific Northwest in Canada and the United States. Information on recognizing crown...

  18. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  19. Micro-Cracking Detection in Laminated Composites

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin; Leyte, Alma; DiGregorio, Anthony; Russell, Samuel S.; Walker, James L.; Thom, Robert (Technical Monitor)

    2002-01-01

    Porosity and fatigue cracking are two critical factors that affect the performance and safety of cryogenic fuel tanks and feedlines made from unlined laminated or weaved carbon/epoxy materials. This paper presents the experiments to induce fatigue cracking of laminated composites through thermal cycling as well as the feasibility of using Thermography and Ultrasound Spectroscopy technology (UT) to detect and measure such micro-cracking. Carbon/epoxy laminated composite panels were built and cut into strips. These specimens were partially submerged in liquid nitrogen while subjected to various loads on a test machine. Edges of some specimens were polished and etched to determine the degree of micro-cracking. The rest of specimens were then examined with Thermography and Ultrasound Spectroscopy NDE systems to investigate the feasibility of finding such micro-cracking in the laminated composites. Thermography is utilized to determine changes in thermal diffusivity. The degree of cracking may reduce the apparent thermal diffusivity and therefore change the thermal response on the surface. Thermography testing was conducted on a group of specimens where it is desired to have some correlation between the predetermined stress and the thermography data. Ultrasound Spectroscopy was used to determine peak changes between the pre-stressed and stressed samples. Data from the inspections were analyzed and the results are presented in this paper.

  20. How to make a laminated diving board

    Treesearch

    U.S. Dept. of Agriculture. Forest Service. Forest Products Laboratory.

    1965-01-01

    The Forest Products Laboratory has developed a laminated diving board that has shown excellent performance characteristics. This board has given long, economical service under the severe moisture hazards and heavy service conditions such as found at public swimming places. The adhesive used is of the fully waterproof synthetic-resin type, which requires no protection...

  1. Fatigue damage development of various CFRP-laminates

    NASA Technical Reports Server (NTRS)

    Schulte, K.; Baron, CH.

    1988-01-01

    The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.

  2. Nonlinear laminate analysis for metal matrix fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.

  3. Prediction of Composite Laminate Fracture: Micromechanics and Progressive Fracture

    NASA Technical Reports Server (NTRS)

    Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.

    1996-01-01

    This report describes an investigation to predict first-ply failure and final fracture in selected composite laminates subjected to inplane loads. The laminates were composed of glass fiber and graphite fibers in epoxy matrices. Failure envelopes based on first-ply failure and laminate fracture were generated for combined loading of these laminates. Predictions were evaluated by micromechanics-based theory and progressive fracture. The results show that, for most cases, combined tensile loading significantly enhanced the laminate fracture stress in comparison to the uniaxial loading.

  4. Fatigue damage development of various CFRP-laminates

    NASA Technical Reports Server (NTRS)

    Schulte, K.; Baron, CH.

    1988-01-01

    The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.

  5. Composite laminates with negative through-the-thickness Poisson's ratios

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1984-01-01

    A simple analysis using two dimensional lamination theory combined with the appropriate three dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.

  6. Composite laminates with negative through-the-thickness Poisson's ratios

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1984-01-01

    A simple analysis using two-dimensional lamination theory combined with the appropriate three-dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.

  7. Progressive delamination in polymer matrix composite laminates: A new approach

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  8. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.

    1991-01-01

    The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single

  9. On a generalized laminate theory with application to bending, vibration, and delamination buckling in composite laminates

    SciTech Connect

    Barbero, E.J.

    1989-01-01

    In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminated cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.

  10. Determining Shear Stress Distribution in a Laminate

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.

    2010-01-01

    A "simplified shear solution" method approximates the through-thickness shear stress distribution within a composite laminate based on an extension of laminated beam theory. The method does not consider the solution of a particular boundary value problem; rather, it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply-level stresses can be efficiently determined from global load resultants at a given location in a structure and used to evaluate the margin of safety on a ply-by-ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. The method has been incorporated within the HyperSizer commercial structural sizing software to improve its predictive capability for designing composite structures. The HyperSizer structural sizing software is used extensively by NASA to design composite structures. In the case of through-thickness shear loading on panels, HyperSizer previously included a basic, industry-standard, method for approximating the resulting shear stress distribution in sandwich panels. However, no such method was employed for solid laminate panels. The purpose of the innovation is to provide an approximation of the through-thickness shear stresses in a solid laminate given the through-thickness shear loads (Qx and Qy) on the panel. The method was needed for implementation within the HyperSizer structural sizing software so that the approximated ply-level shear stresses could be utilized in a failure theory to assess the adequacy of a panel design. The simplified shear solution method was developed based on extending and generalizing bi-material beam theory to plate-like structures. It is assumed that the through-thickness shear stresses arise due to local bending of the laminate induced by the through-thickness shear load, and by imposing

  11. Novel Remanufacturing Process of Recycled Polytetrafluoroethylene(PTFE)/GF Laminate

    NASA Astrophysics Data System (ADS)

    Xi, Z.; Ghita, O. R.; Johnston, P.; Evans, K. E.

    2011-01-01

    Currently, the PTFE/GF laminate and PTFE PCB manufacturers are under considerable pressure to address the recycling issues due to Waste Electrical and Electronic Equipment (WEEE) Directive, shortage of landfill capacity and cost of disposal. This study is proposing a novel manufacture method for reuse of the mechanical ground PTFE/Glass fibre (GF) laminate and production of the first reconstitute PTFE/GF laminate. The reconstitute PTFE/GF laminate proposed here consists of a layer of recycled sub-sheet, additional layers of PTFE and PTFE coated glass cloth, also covered by copper foils. The reconstitute PTFE/GF laminate showed good dielectric properties. Therefore, there is potential to use the mechanical ground PTFE/GF laminate powder to produce reconstitute PTFE/GF laminate, for use in high frequencies PCB applications.

  12. Tensile stress-strain behavior of boron/aluminum laminates

    NASA Technical Reports Server (NTRS)

    Sova, J. A.; Poe, C. C., Jr.

    1978-01-01

    The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.

  13. Multi-Scale Creep Analysis of Plain-Woven Laminates Using Time-Dependent Homogenization Theory:. Effects of Laminate Configuration

    NASA Astrophysics Data System (ADS)

    Nakata, K.; Matsuda, T.; Kawai, M.

    In this study, multi-scale creep analysis of plain-woven GFRP laminates is performed using the time-dependent homogenization theory developed by the present authors. First, point-symmetry of internal structures of plain-woven laminates is utilized for a boundary condition of unit cell problems, reducing the domain of analysis to 1/4 and 1/8 for in-phase and out-of-phase laminate configurations, respectively. The time-dependent homogenization theory is then reconstructed for these domains of analysis. Using the present method, in-plane creep behavior of plain-woven glass fiber/epoxy laminates subjected to a constant stress is analyzed. The results are summarized as follows: (1) The in-plane creep behavior of the plain-woven GFRP laminates exhibits marked anisotropy. (2) The laminate configurations considerably affect the creep behavior of the laminates.

  14. Micromechanical Modeling of Impact Damage Mechanisms in Unidirectional Composite Laminates

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Wang, Zhenqing

    2016-12-01

    Composite laminates are susceptible to the transverse impact loads resulting in significant damage such as matrix cracking, fiber breakage and delamination. In this paper, a micromechanical model is developed to predict the impact damage of composite laminates based on microstructure and various failure models of laminates. The fiber and matrix are represented by the isotropic and elastic-plastic solid, and their impact failure behaviors are modeled based on shear damage model. The delaminaton failure is modeling by the interface element controlled by cohesive damage model. Impact damage mechanisms of laminate are analyzed by using the micromechanical model proposed. In addition, the effects of impact energy and laminated type on impact damage behavior of laminates are investigated. Due to the damage of the surrounding matrix near the impact point caused by the fiber deformation, the surface damage area of laminate is larger than the area of ​​impact projectile. The shape of the damage area is roughly rectangle or elliptical with the major axis extending parallel to the fiber direction in the surface layer of laminate. The alternating laminated type with two fiber directions is more propitious to improve the impact resistance of laminates.

  15. The structural response of unsymmetrically laminated composite cylinders

    NASA Technical Reports Server (NTRS)

    Butler, T. A.; Hyer, M. W.

    1989-01-01

    The responses of an unsymmetrically laminated fiber-reinforced composite cylinder to an axial compressive load, a torsional load, and the temperature change associated with cooling from the processing temperature to the service temperature are investigated. These problems are considered axisymmetric and the response is studied in the context of linear elastic material behavior and geometrically linear kinematics. Four different laminates are studied: a general unsymmetric laminate; two unsymmetric but more conventional laminates; and a conventional quasi-isotropic symmetric laminate. The responses based on closed-form solutions for different boundary conditions are computed and studied in detail. Particular emphasis is directed at understanding the influence of elastic couplings in the laminates. The influence of coupling decreased from a large effect in the general unsymmetric laminate, to practically no effect in the quasi-isotropic laminate. For example, the torsional loading of the general unsymmetric laminate resulted in a radial displacement. The temperature change also caused a significant radial displacement to occur near the ends of the cylinder. On the other hand, the more conventional unsymmetric laminate and the quasi-isotropic cylinder did not deform radially when subjected to a torsional load. From the results obtained, it is clear the degree of elastic coupling can be controlled and indeed designed into a cylinder, the degree and character of the coupling being dictated by the application.

  16. Thermomechanical postbuckling analysis of laminated composite shells

    SciTech Connect

    Averill, R.C.; Reddy, J.N.

    1993-01-01

    The nonlinear response of laminated composite structures subjected to thermal loads is investigated. Analysis is performed using a refined theory and an associated finite element model for geometrically nonlinear analysis of laminated composite shell structures. The model is based on a third-order displacement field which accounts for both transverse shear and transverse normal deformations. Numerical studies of simply-supported plates and cylindrical panels indicate that when the panels are free to expand or contract in the transverse direction, the predicted critical buckling temperatures do not depend significantly upon whether or not transverse normal deformations are explicitly accounted for in the analysis model. However, the critical buckling temperatures are strongly dependent upon whether or not the transverse normal deformations are restrained along the boundaries of the panels. 25 refs.

  17. Fabrication of CFRP/Al Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  18. Thermal stresses in thick laminated composite shells

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1993-01-01

    The paper provides an analytical formulation to investigate the thermomechanical behavior of thick composite shells subjected to a temperature distribution which varies arbitrarily in the radial direction. For illustrative purposes, shells under uniform temperature change are presented. It is found that thermal twist would occur even for symmetric laminated shells. Under uniform temperature rise, results for off-axis graphite/epoxy shells show that extensional-shear coupling can cause tensile radial stress throughout the shell and tensile hoop stress in the inner region. Laminated graphite/epoxy shells can exhibit negative effective thermal expansion coefficients in the longitudinal and transverse directions. Finally, the stacking sequence has a strong influence on the thermal stress distributions.

  19. High energy impact on woven laminates

    NASA Astrophysics Data System (ADS)

    López-Puente, J.; Zaera, R.; Navarro, C.

    2003-09-01

    The influence of high velocity impacts on CFRPs was studied by launching Spherical steel masses, at velocities from 60 m/s to 550 m/s, against carbon fiber/epoxy woven laminates. The extension of the damage induced in the laminate was measured by C-Scan. Finite element numerical simulation of the impact test used a failure model based on the Chang-Chang model. A comparison was made of the damaged areas resulting from non-destructive inspection of the specimens and those predicted by numerical simulation. To conclue the analysis, an analytical model developed by Cantwell-Morton was used to calculate the residual velocity of the projectile after perforation. The residual velocities predicted by numerical and by analytical models, were also compared.

  20. Investigating Delamination Migration in Composite Tape Laminates

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; DeCarvalho, Nelson V.

    2014-01-01

    A modification to a recently developed test specimen designed to investigate migration of a delamination between neighboring ply interfaces in tape laminates is presented. The specimen is a cross-ply laminated beam consisting of 40 plies with a polytetrafluoroethylene insert spanning part way along its length. The insert is located between a lower 0-degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The modification involved a stacking sequence that promotes stable delamination growth prior to migration, and included a relocation of the insert from the specimen midplane to the interface between plies 14 and 15. Specimens were clamped at both ends onto a rigid baseplate and loaded on their upper surface via a piano hinge assembly, resulting in a predominantly flexural loading condition. Tests were conducted with the load-application point positioned at various locations along a specimen's span. This position affected the sequence of damage events during a test.

  1. Digital holographic nondestructive testing of laminate composite

    NASA Astrophysics Data System (ADS)

    Karray, Mayssa; Christophe, Poilane; Gargouri, Mohamed; Picart, Pascal

    2016-09-01

    Optical digital holographic techniques can be used for nondestructive testing of materials. Digital holographic nondestructive testing essentially measures deformations on the surface of the object. However, there is sufficient sensitivity to detect subsurface and internal defects in metallic and composite specimens. We investigate and discuss the vibration analysis of laminated composite glass-epoxy using time averaging in digital Fresnel holography to visualize the modes of vibration and to test the integrity of the structures of studied materials.

  2. Laminated grid and web magnetic cores

    DOEpatents

    Sefko, John; Pavlik, Norman M.

    1984-01-01

    A laminated magnetic core characterized by an electromagnetic core having core legs which comprise elongated apertures and edge notches disposed transversely to the longitudinal axis of the legs, such as high reluctance cores with linear magnetization characteristics for high voltage shunt reactors. In one embodiment the apertures include compact bodies of microlaminations for more flexibility and control in adjusting permeability and/or core reluctance.

  3. Examination of Blistering of Fiberglass Reinforced Laminates

    DTIC Science & Technology

    1987-06-26

    laminates produced by non-standard methods would give a different ’signature’ than those made normally. I AGA Vision 688 Inframetrics 210 Spectral Range 2 to...Resolution .2C .40C and .20C Test Observations The observed output from the AGA unit appeared to be superior to I that of the Inframetrics . The resolution...definite using the Inframetrics unit. The fiberglass reinforced plastic panels (FRP) were positioned f vertically, approximately 15 feet from the infrared

  4. Extended Flow Life Laminating Resin System

    DTIC Science & Technology

    1976-06-01

    respo ^cerntrt ^^«üi-C^Äl. "E». How Life Laminating Resin System". The work was performed under the ^f^^L^l^L^tterl^rHr^ Laboratory (AFWL/ HBC ) Air...450 psi) CF) (from TMA) N/A N/A 340 240 230 320 310 470 455 385 390 365 400 300 310 (390)*** 375 (430)*** *0estructi ve exotherm

  5. Nondimensional impact models for composite laminates

    NASA Technical Reports Server (NTRS)

    Sankar, B. V.; Nguyen, P. T.; Ku, C.

    1990-01-01

    The equations governing the problem of low-velocity impact of a simply supported rectangular laminated plate are nondimensionalized such that the problem is defined in terms of five dimensionless parameters. A parametric study using the Graeco-Latin Factorial Plan is performed. Semi-empirical formulas for maximum impact force, impact duration, and maximum back surface strains are obtained. It is found that some of the simple impact models provide the bounds for the case of impact on a finite extent plate.

  6. Residual stresses in polymer matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.

    1976-01-01

    Residual stresses in composites are induced during fabrication and by environmental exposure. The theory formulated can describe the shrinkage commonly observed after a thermal expansion test. Comparison between the analysis and experimental data for laminates of various material systems indicates that the residual stress-free temperature can be lower than the curing temperature, depending on the curing process. Effects of residual stresses on ply failure including the acoustic emission characteristics are discussed.

  7. Delamination stresses in semicircular laminated composite bars

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1988-01-01

    Using anisotropic elasticity theory, delamination stresses in a semicircular laminated composite curved bar subjected to end forces and end moments were calculated, and their radial locations determined. A family of design curves was presented, showing variation of the intensity of delamination stresses and their radial locations with different geometry and different degrees of anisotropy of the curved bar. The effect of anisotropy on the location of peak delamination stress was found to be small.

  8. Modeling Composite Laminate Crushing for Crash Analysis

    NASA Technical Reports Server (NTRS)

    Fleming, David C.; Jones, Lisa (Technical Monitor)

    2002-01-01

    Crash modeling of composite structures remains limited in application and has not been effectively demonstrated as a predictive tool. While the global response of composite structures may be well modeled, when composite structures act as energy-absorbing members through direct laminate crushing the modeling accuracy is greatly reduced. The most efficient composite energy absorbing structures, in terms of energy absorbed per unit mass, are those that absorb energy through a complex progressive crushing response in which fiber and matrix fractures on a small scale dominate the behavior. Such failure modes simultaneously include delamination of plies, failure of the matrix to produce fiber bundles, and subsequent failure of fiber bundles either in bending or in shear. In addition, the response may include the significant action of friction, both internally (between delaminated plies or fiber bundles) or externally (between the laminate and the crushing surface). A figure shows the crushing damage observed in a fiberglass composite tube specimen, illustrating the complexity of the response. To achieve a finite element model of such complex behavior is an extremely challenging problem. A practical crushing model based on detailed modeling of the physical mechanisms of crushing behavior is not expected in the foreseeable future. The present research describes attempts to model composite crushing behavior using a novel hybrid modeling procedure. Experimental testing is done is support of the modeling efforts, and a test specimen is developed to provide data for validating laminate crushing models.

  9. Laminate analogy for composites enhanced concrete structures

    SciTech Connect

    Chamis, C.C.; Gotsis, P.K.

    1997-10-01

    A new and effective method is described to design composites to repair damage or enhance the overload strength of concrete infrastructures. The method is based on laminate analogy which is derivable from composite mechanics and available in computer codes. It is used to simulate structural sections made from reinforced concrete which are typical in infrastructures as well as select reinforced concrete structures. The structural sections are represented by a number of layers through the thickness where different layers are used for the concrete, for the reinforcing steel in concrete, and for the composite. The reinforced concrete structures are represented with finite elements where the element stiffness parameters are from the structural sections which are represented by the laminate analogy. The load carrying capability of the structure is determined by progressive structural fracture. Results show up to 40 percent improvements for damage and for overload enhancement with relatively small laminate thickness for the structural sections and up to three times for the composite enhanced select structures (arch and dome).

  10. Superconductivity in Ca-doped graphene laminates

    PubMed Central

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  11. Laminate articles on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2003-12-16

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (R.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  12. Superconductivity in Ca-doped graphene laminates.

    PubMed

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-03-16

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  13. Vascular perfusion in horses with chronic laminitis.

    PubMed

    Hood, D M; Grosenbaugh, D A; Slater, M R

    1994-05-01

    Vascular perfusion casts were used to define and characterise the macroscopic perfusion defects present in the distal digit of 11 horses affected by chronic laminitis. Five clinically normal horses were used as controls. Based on clinical history and clinical status, horses with chronic laminitis were classified as being potentially treatable or clinically refractory. Eleven macroscopic vascular defects were noted in the casts from horses with laminitis. Four types of lesions were identified in the submural laminar circulation, 3 in the coronary bed and 4 were associated with the solar circulation. Multiple defects were present and a definite trend was noted for the perfusion defects to be worse in the casts of clinically refractory subjects than in those considered treatable. This information suggests that evaluation of circulatory status should add significantly to the ability to separate treatable from clinically refractory patients. Results also indicated that ventral displacement of the third phalanx (sinkers) and compression of the solar vasculature are more prevalent than is presently thought.

  14. Eastern Guaymas Basin: laminated but not anoxic

    NASA Astrophysics Data System (ADS)

    Cheshire, H.; Thurow, J. W.

    2009-12-01

    Site MD02-2513, eastern Guaymas Basin, challenges the accepted hypothesis about the circumstances and sequence of events leading to the occurrence of annually laminated (varved) sediment. By convention, under a climate regime of strong seasonal contrast, high productivity in a restricted basin enhances a preformed OMZ and inhibits bioturbation, resulting in the preservation of varves. The comparison of the high-resolution log of the sediment fabric and continuous XRF data from Core MD02-2513 reveal that laminated intervals over the last ~90 ka BP are characterised by an increase of oxygenation above background levels and are accompanied by lows of terrestrial and biogenic flux indicating that the preserving factor is rapid burial rather than high sedimentation rate (ie high seasonality and low rainfall). Intervals of diffuse/discontinuous laminations are times of high terrestrial and biogenic flux indicating comparatively low seasonality and high rainfall. Brief periods of relatively high anoxic conditions occur within homogeneous intervals and are accompanied by exceptionally high biogenic flux, indicating there was no seasonal contrast. Long homogenous intervals occur during the last glacial due to lowered sea level and the consequent removal of the upwelling cell offshore. The changes in Guaymas Basin seasonality are most probably caused by alterations to the migration pattern of the North Pacific Subtropical High due to the growth and decay of the North American ice sheets.

  15. Superconductivity in Ca-doped graphene laminates

    NASA Astrophysics Data System (ADS)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  16. Vibration analysis of bimodulus laminated cylindrical panels

    NASA Astrophysics Data System (ADS)

    Khan, K.; Patel, B. P.; Nath, Y.

    2009-03-01

    This paper deals with the flexural vibration behavior of bimodular laminated composite cylindrical panels with various boundary conditions. The formulation is based on first order shear deformation theory and Bert's constitutive model. The governing equations are derived using finite element method and Lagrange's equation of motion. An iterative eigenvalue approach is employed to obtain the positive and negative half cycle free vibration frequencies and corresponding mode shapes. A detailed parametric study is carried out to study the influences of thickness ratio, aspect ratio, lamination scheme, edge conditions and bimodularity ratio on the free vibration characteristics of bimodulus angle- and cross-ply composite laminated cylindrical panels. It is interesting to observe that there is a significant difference between the frequencies of positive and negative half cycles depending on the panel parameters. Through the thickness distribution of modal stresses for positive half cycle is significantly different from that for negative half cycle unlike unimodular case wherein the stresses at a particular location in negative half cycle would be of same magnitude but of opposite sign of those corresponding to positive half cycle. Finally, the effect of bimodularity on the steady state response versus forcing frequency relation is studied for a typical case.

  17. The tail domain of lamin B1 is more strongly modulated by divalent cations than lamin A

    PubMed Central

    Ganesh, Sairaam; Qin, Zhao; Spagnol, Stephen T; Biegler, Matthew T; Coffey, Kelli A; Kalinowski, Agnieszka; Buehler, Markus J; Dahl, Kris Noel

    2015-01-01

    The nucleoskeleton contains mainly nuclear intermediate filaments made of lamin proteins. Lamins provide nuclear structure and also play a role in various nuclear processes including signal transduction, transcription regulation and chromatin organization. The disparate functions of lamins may be related to the intrinsic disorder of the tail domains, which allows for altered and promiscuous binding. Here, we show modulation of lamin tail domain structures in the presence of divalent cations. We utilize changes in fluorescence of tryptophan residues within the Ig-fold flanked by disordered regions to experimentally measure protein thermodynamics. Using spectroscopy experiments and molecular dynamics simulations, we show that the tail domain of lamin B1 shows enhanced association with both Ca2+ and Mg2+ compared to the tail domain of lamin A. Binding curves show a similar KD between protein and ion (250–300 μM) for both proteins with both ions. However, we observe a maximum binding of ions to lamin B1 tail domain which is 2–3 times greater than that for lamin A tail domain by both experiment and simulation. Using simulations, we show that divalent ion association alters the Ig-fold by pinning flanking regions. With cells in culture, we observe altered lamin B1 organization in the presence of excess Mg2+ more so than for lamin A. We suggest that the differential sensitivity to divalent cations contributes to the vastly different functionalities and binding of the 2 proteins. PMID:25807068

  18. The prevalence of endocrinopathic laminitis among horses presented for laminitis at a first-opinion/referral equine hospital.

    PubMed

    Karikoski, N P; Horn, I; McGowan, T W; McGowan, C M

    2011-10-01

    Endocrinopathic causes of laminitis may be a common underlying causative pathogenesis in first-opinion or field cases presenting with laminitis, as opposed to laminitis produced in inflammatory research models. This study aimed to determine whether evidence of an underlying endocrinopathy was present in horses presented for laminitis to a first-opinion/referral veterinary teaching hospital. A second aim was to compare the signalment of horses and ponies with laminitis with the equine hospital population during the same period. All horses presenting for laminitis at Helsinki University Equine Teaching Hospital, Finland, over a 16-month period were examined for an underlying endocrinopathy. Horses presenting for laminitis were compared with the hospitalized population over the same period. There were 36 horses presented for laminitis, and evidence of endocrinopathy was present in 89%. Of the horses showing an underlying endocrinopathy, one-third had a diagnosis of pituitary pars intermedia dysfunction, and two-thirds showed basal hyperinsulinemia indicative of insulin resistance, without evidence of hirsutism. Phenotypic indicators of obesity were present in 95% of horses with basal hyperinsulinemia without hirsutism. Compared with the hospital population during the same period, horses with laminitis associated with an underlying endocrinopathy were significantly older and more likely to be pony breeds. Our data support that endocrine testing should be performed on all cases of laminitis that do not have a clear inflammatory or gastrointestinal origin. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The molecular architecture of lamins in somatic cells.

    PubMed

    Turgay, Yagmur; Eibauer, Matthias; Goldman, Anne E; Shimi, Takeshi; Khayat, Maayan; Ben-Harush, Kfir; Dubrovsky-Gaupp, Anna; Sapra, K Tanuj; Goldman, Robert D; Medalia, Ohad

    2017-03-09

    The nuclear lamina is a fundamental constituent of metazoan nuclei. It is composed mainly of lamins, which are intermediate filament proteins that assemble into a filamentous meshwork, bridging the nuclear envelope and chromatin. Besides providing structural stability to the nucleus, the lamina is involved in many nuclear activities, including chromatin organization, transcription and replication. However, the structural organization of the nuclear lamina is poorly understood. Here we use cryo-electron tomography to obtain a detailed view of the organization of the lamin meshwork within the lamina. Data analysis of individual lamin filaments resolves a globular-decorated fibre appearance and shows that A- and B-type lamins assemble into tetrameric filaments of 3.5 nm thickness. Thus, lamins exhibit a structure that is remarkably different from the other canonical cytoskeletal elements. Our findings define the architecture of the nuclear lamin meshworks at molecular resolution, providing insights into their role in scaffolding the nuclear lamina.

  20. Waved core lamination techniques on large and bulb hydroelectric machinery

    SciTech Connect

    Lehoczky, K.N. )

    1988-12-01

    Stator core lamination of large hydroelectric generators and motors and especially bulb type machines are often exposed to heat expansion forces causing severe damages. The temperature difference between the warm core lamination and the relatively colder stator frame, creates both radial and tangential stresses in these components. The consequence of these stresses depends on the axial prestressing of lamination and the internal design of the core. An overriding of some critical combination of these stresses may result in buckling of lamination, fracture of core tensioning and supporting components or cracks in the stator frame. The present waved lamination technique reduces the tangential and radial spring constant of core and prevents the damages. The research performed through theoretical and experimental methods, indicates a fundamental change in the behavior of core. The waved lamination was successfully used in a large number of machines, providing the reliability and wide application range of the method.

  1. Improved damage tolerance of titanium by adhesive lamination

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1982-01-01

    Basic damage tolerance properties of Ti-6A1-4V titanium plate can be improved by laminating thin sheets of titanium with adhesives. Compact tension and center cracked tension specimens made from thick plate, thin sheet, and laminated plate (six plies of thin sheet) were tested. The fracture toughness of the laminated plate was 39 percent higher than the monolithic plate. The laminated plate's through the thickness crack growth rate was about 20 percent less than that of the monolithic plate. The damage tolerance life of the surface cracked laminate was 6 to over 15 times the life of a monolithic specimen. A simple method of predicting crack growth in a crack ply of a laminate is presented.

  2. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    NASA Astrophysics Data System (ADS)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  3. Thermo-mechanical response predictions for metal matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Hidde, J. S.; Herakovich, C. T.

    1991-01-01

    An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.

  4. Phosphorylation of lamins determine their structural properties and signaling functions

    PubMed Central

    Torvaldson, Elin; Kochin, Vitaly; Eriksson, John E

    2015-01-01

    Lamin A/C is part of the nuclear lamina, a meshwork of intermediate filaments underlying the inner nuclear membrane. The lamin network is anchoring a complex set of structural and linker proteins and is either directly or through partner proteins also associated or interacting with a number of signaling protein and transcription factors. During mitosis the nuclear lamina is dissociated by well established phosphorylation- dependent mechanisms. A-type lamins are, however, also phosphorylated during interphase. A recent study identified 20 interphase phosphorylation sites on lamin A/C and explored their functions related to lamin dynamics; movements, localization and solubility. Here we discuss these findings in the light of lamin functions in health and disease. PMID:25793944

  5. Broken nuclei--lamins, nuclear mechanics, and disease.

    PubMed

    Davidson, Patricia M; Lammerding, Jan

    2014-04-01

    Mutations in lamins, which are ubiquitous nuclear intermediate filaments, lead to a variety of disorders including muscular dystrophy and dilated cardiomyopathy. Lamins provide nuclear stability, help connect the nucleus to the cytoskeleton, and can modulate chromatin organization and gene expression. Nonetheless, the diverse functions of lamins remain incompletely understood. We focus here on the role of lamins on nuclear mechanics and their involvement in human diseases. Recent findings suggest that lamin mutations can decrease nuclear stability, increase nuclear fragility, and disturb mechanotransduction signaling, possibly explaining the muscle-specific defects in many laminopathies. At the same time, altered lamin expression has been reported in many cancers, where the resulting increased nuclear deformability could enhance the ability of cells to transit tight interstitial spaces, thereby promoting metastasis.

  6. Processing and mechanical characterization of alumina laminates

    NASA Astrophysics Data System (ADS)

    Montgomery, John K.

    2002-08-01

    Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces

  7. A peculiar lamin in a peculiar mammal: Expression of lamin LIII in platypus (Ornithorhynchus anatinus).

    PubMed

    Peter, Annette; Khandekar, Shaunak; Deakin, Janine E; Stick, Reimer

    2015-11-01

    Platypus (Ornithorhynchus anatinus) holds a unique phylogenetic position at the base of the mammalian lineage due to an amalgamation of mammalian and sauropsid-like features. Here we describe the set of four lamin genes for platypus. Lamins are major components of the nuclear lamina, which constitutes a main component of the nucleoskeleton and is involved in a wide range of nuclear functions. Vertebrate evolution was accompanied by an increase in the number of lamin genes from a single gene in their closest relatives, the tunicates and cephalochordates, to four genes in the vertebrate lineage. Of the four genes the LIII gene is characterized by the presence of two alternatively spliced CaaX-encoding exons. In amphibians and fish LIII is the major lamin protein in oocytes and early embryos. The LIII gene is conserved throughout the vertebrate lineage, with the notable exception of marsupials and placental mammals, which have lost the LIII gene. Here we show that platypus has retained an LIII gene, albeit with a significantly altered structure and with a radically different expression pattern. The platypus LIII gene contains only a single CaaX-encoding exon and the head domain together with coil 1a and part of coil1b of the platypus LIII protein is replaced by a novel short non-helical N-terminus. It is expressed exclusively in the testis. These features resemble those of male germ cell-specific lamins in placental mammals, in particular those of lamin C2. Our data suggest (i) that the specific functions of LIII, which it fulfills in all other vertebrates, is no longer required in mammals and (ii) once it had been freed from these functions has undergone structural alterations and has adopted a new functionality in monotremes.

  8. Arteriographical and pathological changes in chronic laminitis in dairy cattle.

    PubMed

    Boosman, R; Nemeth, F; Gruys, E; Klarenbeek, A

    1989-07-01

    The arteriographic appearance of 76 bovine hind digits, obtained from a slaughterhouse, was related to the macroscopic signs of chronic laminitis in the digits. There were statistically significant correlations between the macroscopic and the arteriographic appearance of the claws. Subsequent histological examination of the radiographically abnormal arteries revealed features indicative of arteriosclerosis. The results of this study indicate that chronic laminitis develops following a subclinical attack of laminitis due to a continous hypoperfusion of the digit.

  9. Impact Damage Tolerance of a Carbon Fibre Composite Laminate.

    DTIC Science & Technology

    1984-05-01

    design of composite structures. 8 CONCLUSIONS These carbon fibre/ epoxy resin laminates are susceptible :: low e ;rt., - .. impact damage, especially...ROYAL AIRCRAFT ESTABLISHMENT0 Technical Report 84049 May 1984 GARTEUR/TP-007 IMPACT DAMAGE TOLERANCE OF A CARBON FIBRE COMPOSITE LAMINATE by DTIC G...007 Received for printing 3 May 1984 IMPACT DAMAGE TOLERANCE OF A CARBON FIBRE COMPOSITE LAMINATE by G. Dorey P. Sigety* K. Stellbrink** W. G. J. ’t

  10. Non-linear behavior of fiber composite laminates

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Bagchi, D.; Rosen, B. W.

    1974-01-01

    The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.

  11. Methods for Preparing Nanoparticle-Containing Thermoplastic Composite Laminates

    NASA Technical Reports Server (NTRS)

    Gruber, Mark B. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor)

    2016-01-01

    High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.

  12. Fracture behavior of thick, laminated graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Morris, D. H.

    1984-01-01

    The effect of laminate thickness on the fracture behavior of laminated graphite epoxy (T300/5208) composites was studied. The predominantly experimental research program included the study of the 0/+ or - 45/90 sub ns and 0/90 sub ns laminates with thickness of 8, 32, 64, 96 and 120 plies and the 0/+ or - 45 sub ns laminate with thickness of 6, 30, 60, 90 and 120 plies. The research concentrated on the measurement of fracture toughness utilizing the center-cracked tension, compact tension and three point bend specimen configurations. The development of subcritical damage at the crack tip was studied nondestructively using enhanced X-ray radiography and destructively using the laminate deply technique. The test results showed fracture toughness to be a function of laminate thickness. The fracture toughness of the 0 + or - 45/90 sub ns and 0/90 sub ns laminates decreased with increasing thickness and asymptotically approached lower bound values of 30 ksi square root of in. (1043 MPa square root of mm and 25 ksi square root of in (869 MPa square root of mm respectively. In contrast to the other two laminates, the fracture toughness of the 0/+ or - 45 sub ns laminate increased sharply with increasing thickness but reached an upper plateau value of 40 ksi square root of in (1390 MPa square root of mm) at 30 plies. Fracture toughness was independent of crack size for both thin and thick laminates for all three laminate types except for the 0/90 sub 2s laminate which spilt extensively. The center cracked tension, three point bend and compact tension specimens gave comparable results.

  13. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    SciTech Connect

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF

  14. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail

    PubMed Central

    Simon, Dan N; Zastrow, Michael S

    2010-01-01

    Nuclear intermediate filament networks formed by A- and B-type lamins are major components of the nucleoskeleton. Lamins have growing links to human physiology and disease including Emery-Dreifuss muscular dystrophy (EDMD), lipodystrophy, cardiomyopathy, neuropathy, cerebellar disorders and segmental accelerated ‘aging’ syndromes. How lamins interact with other nucleoskeletal components, and even the identities of these other components, are open questions. Previous studies suggested lamins might bind actin. We report that the recombinant C-terminal tail domain of human A- and B-type lamins binds directly to purified actin in high-speed pelleting assays. This interaction maps to a conserved Actin Binding site (AB-1) comprising lamin A residues 461–536 in the Ig-fold domain, which are 54% identical in lamin B1. Two EDMD-causing missense mutations (R527P and L530P) in lamin A that are predicted to disrupt the Ig-fold, each reduced F-actin binding by ∼66%, whereas the surface-exposed lipodystrophy-causing R482Q mutation had no significant effect. The lamin A tail was unique among lamins in having a second actin-binding site (AB-2). This second site was mapped to lamin A tail residues 564–608, based on actin-binding results for the lamin C tail and internal deletions in the lamin A tail that cause Hutchinson-Gilford Progeria Syndrome (Δ35, Δ50) or restrictive dermopathy (Δ90). Supporting the presence of two actin-binding sites, recombinant precursor (unmodified) and mature lamin A tails (not C or B1 tails) each bundled F-actin in vitro: furthermore F-actin bundling was reduced 25–40% by the R527P, L530P, Δ35 and Δ50 mutations, and was abolished by Δ90. Unexpectedly, the mature lamin A tail bound F-actin significantly more efficiently than did the prelamin A tail; this suggested unmodified residues 647–664, unique to prelamin A, might auto-inhibit binding to actin (and potentially other partners). These biochemical results suggest direct mechanisms

  15. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  16. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  17. Residual stress and crack propagation in laminated composites

    SciTech Connect

    Yttergren, R.M.F.; Zeng, K.; Rowcliffe, D.J.

    1994-12-31

    Residual stress distributions in several laminated ceramic composites were measured by an indentation technique. The material included alumina-zirconia laminated composites, containing strong interfaces, and alumina-porcelain laminated composites with both weak and strong interfaces. The residual stress in these material originates from the mismatch of the thermal properties, differences in elastic properties, and different shrinkage of the laminates during sintering. An experimental technique is presented which gives a direct view of the residual stress state in the materials. Values of residual tensile stress are presented as a function of position relative to the interface in each material.

  18. Extrinsic fracture mechanisms in two laminated metal composites

    SciTech Connect

    Lesuer, D.; Syn, C.; Riddle, R.; Sherby, O.

    1994-11-29

    The crack growth behavior and fracture toughness of two laminated metal composites (6090/SiC/25p laminated with 5182 and ultrahigh-carbon steel laminated with brass) have been studied in both ``crack arrester`` and ``crack divider`` orientations. The mechanisms of crack growth were analyzed and extrinsic toughening mechanisms were found to contribute significantly to the toughness. The influence of laminate architecture (layer thickness and component volume function), component material properties and residual stress on these mechanisms and the resulting crack growth resistance are discussed.

  19. Impact damage resistance of thin stitched carbon/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Francesconi, L.; Aymerich, F.

    2015-07-01

    The study examines the influence of through-thickness stitching on the damage response of thin cross-ply carbon/epoxy laminates subjected to low-velocity impacts. Instrumented impact tests were carried out on unstitched and polyethylene stitched laminates and the resulting damage was assessed in detail by X-radiography analyses. The results of the observations carried out during the experimental analyses are illustrated and discussed to identify the mechanical role played by through-thickness reinforcement and to highlight the influence of the laminate layup on the impact resistance of stitched laminates.

  20. Mechanical model of blebbing in nuclear lamin meshworks.

    PubMed

    Funkhouser, Chloe M; Sknepnek, Rastko; Shimi, Takeshi; Goldman, Anne E; Goldman, Robert D; Olvera de la Cruz, Monica

    2013-02-26

    Much of the structural stability of the nucleus comes from meshworks of intermediate filament proteins known as lamins forming the inner layer of the nuclear envelope called the nuclear lamina. These lamin meshworks additionally play a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford Progeria Syndrome, and often include protruding structures termed nuclear blebs. These nuclear blebs are thought to be related to pathological gene expression; however, little is known about how and why blebs form. We have developed a minimal continuum elastic model of a lamin meshwork that we use to investigate which aspects of the meshwork could be responsible for bleb formation. Mammalian lamin meshworks consist of two types of lamin proteins, A type and B type, and it has been reported that nuclear blebs are enriched in A-type lamins. Our model treats each lamin type separately and thus, can assign them different properties. Nuclear blebs have been reported to be located in regions where the fibers in the lamin meshwork have a greater separation, and we find that this greater separation of fibers is an essential characteristic for generating nuclear blebs. The model produces structures with comparable morphologies and distributions of lamin types as real pathological nuclei. Thus, preventing this opening of the meshwork could be a route to prevent bleb formation, which could be used as a potential therapy for the pathologies associated with nuclear blebs.

  1. An Elastic Model of Blebbing in Nuclear Lamin Meshworks

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe; Sknepnek, Rastko; Shimi, Takeshi; Goldman, Anne; Goldman, Robert; Olvera de La Cruz, Monica

    2013-03-01

    A two-component continuum elastic model is introduced to analyze a nuclear lamin meshwork, a structural element of the lamina of the nuclear envelope. The main component of the lamina is a meshwork of lamin protein filaments providing mechanical support to the nucleus and also playing a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford progeria syndrome, and are often characterized by protruding structures termed nuclear blebs. Nuclear blebs are rich in A-type lamins and may be related to pathological gene expression. We apply the two-dimensional elastic shell model to determine which characteristics of the meshwork could be responsible for blebbing, including heterogeneities in the meshwork thickness and mesh size. We find that if one component of the lamin meshwork, rich in A-type lamins, has a tendency to form a larger mesh size than that rich in B-type lamins, this is sufficient to cause segregation of the lamin components and also to form blebs rich in A-type lamins. The model produces structures with comparable morphologies and mesh size distributions as the lamin meshworks of real, pathological nuclei. Funded by US DoE Award DEFG02-08ER46539 and by the DDR&E and AFOSR under Award FA9550-10-1-0167; simulations performed on NU Quest cluster

  2. NMCP/LINC proteins: putative lamin analogs in plants?

    PubMed

    Ciska, Malgorzata; Moreno Diaz de la Espina, Susana

    2013-01-01

    Lamins are the main components of the metazoan lamina, and while the organization of the nuclear lamina of metazoans and plants is similar, there are apparently no genes encoding lamins or most lamin-binding proteins in plants. Thus, the plant lamina is not lamin-based and the proteins that form this structure are still to be characterized. Members of the plant NMCP/LINC/CRWN protein family share the typical tripartite structure of lamins, although the 2 exhibit no sequence similarity. However, given the many similarities between NMCP/LINC/CRWN proteins and lamins (structural organization, position of conserved regions, sub-nuclear distribution, solubility, and pattern of expression), these proteins are good candidates to carry out the functions of lamins in plants. Moreover, functional analysis of NMCP/LINC mutants has revealed their involvement in maintaining nuclear size and shape, another activity fulfilled by lamins. This review summarizes the current understanding of NMCP/LINC proteins and discusses future studies that will be required to demonstrate definitively that these proteins are plant analogs of lamins.

  3. Strength and Stiffness of Small Glued-Laminated Beams with Different Qualities of Tension Laminations.

    DTIC Science & Technology

    1981-05-01

    difference two of the Li DF-L tension lamina- other test material in this study and between the average of the unad - tions were chosen for that reason...MOE data, adjusted to a 12 per- of tension lamination had a signifi- should be combined to determine the cent moisture content, and the unad - cant

  4. Neuropathic changes in equine laminitis pain.

    PubMed

    Jones, Emma; Viñuela-Fernandez, Ignacio; Eager, Rachel A; Delaney, Ada; Anderson, Heather; Patel, Anisha; Robertson, Darren C; Allchorne, Andrew; Sirinathsinghji, Eva C; Milne, Elspeth M; MacIntyre, Neil; Shaw, Darren J; Waran, Natalie K; Mayhew, Joe; Fleetwood-Walker, Susan M

    2007-12-05

    Laminitis is a common debilitating disease in horses that involves painful disruption of the lamellar dermo-epidermal junction within the hoof. This condition is often refractory to conventional anti-inflammatory analgesia and results in unremitting pain, which in severe cases requires euthanasia. The mechanisms underlying pain in laminitis were investigated using quantification of behavioural pain indicators in conjunction with histological studies of peripheral nerves innervating the hoof. Laminitic horses displayed consistently altered or abnormal behaviours such as increased forelimb lifting and an increased proportion of time spent at the back of the box compared to normal horses. Electron micrographic analysis of the digital nerve of laminitic horses showed peripheral nerve morphology to be abnormal, as well as having reduced numbers of unmyelinated (43.2%) and myelinated fibers (34.6%) compared to normal horses. Sensory nerve cell bodies innervating the hoof, in cervical, C8 dorsal root ganglia (DRG), showed an upregulated expression of the neuronal injury marker, activating transcription factor-3 (ATF3) in both large NF-200-immunopositive neurons and small neurons that were either peripherin- or IB4-positive. A significantly increased expression of neuropeptide Y (NPY) was also observed in myelinated afferent neurons. These changes are similar to those reported in other neuropathic pain states and were not observed in the C4 DRG of laminitic horses, which is not associated with innervation of the forelimb. This study provides novel evidence for a neuropathic component to the chronic pain state associated with equine laminitis, indicating that anti-neuropathic analgesic treatment may well have a role in the management of this condition.

  5. Expression of endothelin in equine laminitis.

    PubMed

    Katwa, L C; Johnson, P J; Ganjam, V K; Kreeger, J M; Messer, N T

    1999-05-01

    Biosynthesis of endothelin-1 (ET-1), the most potent endogenous vasoconstrictor yet identified, is increased following myocardial infarction (MI) in man. Pathological events which occur in the connective tissues of the equine hoof during laminitis are similar in some respects, to changes occurring in the myocardial connective tissues following MI in man. The objective of this study was to determine whether ET-1 expression in connective tissues obtained from the hoof of laminitic horses is increased compared with tissues obtained from healthy horses. Expression of ET-1 in connective tissues of the equine hoof was measured following tissue extraction from 3 groups of horses: horses in which acute laminitis had been induced by the administration of starch; chronically foundered horses; nonlaminitic horses. The concentration of ET-1 in laminar connective tissues obtained from all laminitic horses (1573.0 +/- 392.8 pg/g of tissue; n = 10) was increased when compared with tissues obtained from nonlaminitic horses (392.5 +/- 117.4 pg/g of tissue; n = 5) (P<0.05). The concentration of ET-1 in laminar connective tissues obtained from the experimentally induced, acute laminitic horses (1043.6 +/- 254.4 pg/g of tissue; n = 7) and from the spontaneously affected, chronic laminitic horses (2808.3 +/- 878.6 pg/g of tissue; n = 3) was increased compared with the control group (P<0.05, P<0.01, respectively). The concentration of ET-1 in laminar connective tissues obtained from the chronic laminitic horses was greater than that of the experimentally induced, acute laminitic group (P<0.05). It is suggested that the data provide a strong argument that increased ET-1 expression in the connective tissues of the equine hoof represent a potentially important and hitherto unrecognised component of the pathophysiology of equine laminitis. Further studies are needed to determine whether inhibitors of ET-1 converting enzyme or antagonists of ET-1 receptors might be useful in the treatment

  6. Micromechanics of composite laminate compression failures

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1988-01-01

    The purpose of this annual progress report is to summarize the work effort and results accomplished from July 1987 through July 1988 on NASA Research Grant NAG1-659 entitled Micromechanics of Composite Laminate Compressive Failure. The report contains: (1) the objective of the proposed research, (2) the summary of accomplishments, (3) a more extensive review of compression literature, (4) the planned material (and corresponding properties) received to date, (5) the results for three possible specimen geometries, experimental procedures planned, and current status of the experiments, and (6) the work planned for the next contract year.

  7. Tailoring Laminates For Protection Against Projectiles

    NASA Technical Reports Server (NTRS)

    Gassner, John J.; Boyce, Joseph S.; Smirlock, Martin E.; Evans, David A.

    1992-01-01

    Fiber/matrix composite laminates developed to protect military land vehicles against projectiles and spacecraft against impacts by micrometeroids. Although types, sizes, and velocities of expected incident objects differ between terrestrial and outer-space cases, general protection problems and solutions exhibit some common features. Configurations of fibers and matrices optimized with respect to protection, bulk, and weight, to obtain shield that breaks rapidly moving incident object into harmless smaller, more-slowly-moving pieces, containing debris, vaporizes debris, and/or otherwise absorbs kinetic energy of object to prevent harm to vehicle and occupants.

  8. Tailoring Laminates For Protection Against Projectiles

    NASA Technical Reports Server (NTRS)

    Gassner, John J.; Boyce, Joseph S.; Smirlock, Martin E.; Evans, David A.

    1992-01-01

    Fiber/matrix composite laminates developed to protect military land vehicles against projectiles and spacecraft against impacts by micrometeroids. Although types, sizes, and velocities of expected incident objects differ between terrestrial and outer-space cases, general protection problems and solutions exhibit some common features. Configurations of fibers and matrices optimized with respect to protection, bulk, and weight, to obtain shield that breaks rapidly moving incident object into harmless smaller, more-slowly-moving pieces, containing debris, vaporizes debris, and/or otherwise absorbs kinetic energy of object to prevent harm to vehicle and occupants.

  9. Fracture modes in notched angleplied composite laminates

    NASA Technical Reports Server (NTRS)

    Irvine, T. B.; Ginty, C. A.

    1984-01-01

    The Composite Durability Structural Analysis (CODSTRAN) computer code is used to determine composite fracture. Fracture modes in solid and notched, unidirectional and angleplied graphite/epoxy composites were determined by using CODSTRAN. Experimental verification included both nondestructive (ultrasonic C-Scanning) and destructive (scanning electron microscopy) techniques. The fracture modes were found to be a function of ply orientations and whether the composite is notched or unnotched. Delaminations caused by stress concentrations around notch tips were also determined. Results indicate that the composite mechanics, structural analysis, laminate analysis, and fracture criteria modules embedded in CODSTRAN are valid for determining composite fracture modes.

  10. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  11. Adhesive characterization in prestressed piezoelectric laminates

    NASA Astrophysics Data System (ADS)

    Hodges, Charles A.; Mossi, Karla M.; Scott, Lisa A.

    2003-08-01

    Pre-stressed piezoelectric laminates, consisting of one or more metal layers and a piezoelectric material bonded together with an adhesive, have been widely studied over the past few years, both numerically and experimentally. Most of the current research has concentrated on the effect of the metal layers, types and geometry, along with variations in the active layer of the laminate. Historically, the adhesive layer has been neglected as a contributing factor in the overall performance of the final device. This paper attempts to address the effect of the adhesive line thickness and its influence on the performance of pre-stressed piezoelectric laminates under specific boundary conditions. All laminates tested were constructed with the following lay-up: 0.354 mm thick stainless steel, adhesive, 0.381 mm PZT ceramic, adhesive, and a 0.0254 mm aluminum layer. The devices having an adhesive line thickness of 0.169 mm were classified as group A, and group B were the devices with an adhesive line thickness of 0.036 mm. The adhesive line thickness for group A was approximately 21% more than the line thickness of group B. The devices were tested in a simply supported, free-free condition under a series of loads at a constant frequency of 5 Hz over a voltage range from 400 to 800 Volts peak-to-peak. Displacement was measured using loads of 25, 50, 75, 100, and 200 grams for each actuator. The data from each group was averaged and compared. The results showed group B generated more displacement at the same "arm weight" applied as compared to group A. However, only three samples for group B were measured since the rest of the samples failed during testing. Failure of the devices of group B may be due to the ultimate stress of the devices and their ability to lift a load under those conditions. The study demonstrated that adhesive layer thickness, along with the manufacturing process, has to be taken into account when developing an application that requires load

  12. Strength of Bolted Joints in Laminated Composites

    DTIC Science & Technology

    1984-03-01

    considered (c13ao23=033a0). Under these conditions, in the absence of body forces, the condition of force equilibriui can be expressed as E18 ] (1) Bo2...Conference), ASTM STP 617, 1977, pp 229-242. 14. I.M. Daniel, R.E. Rowlands, and J.B. Whiteside, "Effects of Material and Stacking Sequence on the...Whitney, "Uniaxial Failure of Composite Laminates Containing Stress Concentrations,"Fracture Mechanics of Compo-ites, ASTM STP 593, 1975, pp. 117-142

  13. Lamin A and lamin-associated polypeptide 2 (LAP-2) in human skin in the process of aging.

    PubMed

    Golubtsova, N N; Filippov, F N; Gunin, A G

    2016-01-01

    At present time, relationships between lamins and processes leading to aging are established. Mutations of genes of lamins lead to diseases, one of them is progeria. This disease is caused by violation of splaysing of lamin A gene and accumulation the farnezylated prelamin A (progerin) in the nucleus. LAP-2 is an important factor which regulates and stabilizes the lamin A. However, roles of lamin A and LAP-2 in behavior of population of dermal fibroblasts in relation to age were not examined. The aim of this research was to study A type lamin and LAP-2 in human skin at different ages. Lamin A and LAP-2 were detected in sections of the skin by indirect immunohistochemistry. The number of fibroblasts containing lamin A was gradually decreased from 90,4 to 76,9 % from 20 weeks of gestation to 85 years old. There were 32 % of dermal fibroblasts with positive staining for LAP-2 at the period from 20 weeks of gestation to 20 years old. From 21 to 40 years, 37,8 % of fibroblasts containing lamin A were found in the dermis. In age interval 41-85 years, 49-51 % of dermal fibroblasts had a positive staining for LAP-2. Content of lamin A in the nuclei of fibroblasts was almost constant from 20 weeks of gestation to 85 years old. Expression of LAP-2 in the nuclei of fibroblasts was reduced from birth to 20 years old but increased from 21 years old. Number of fibroblasts and PCNA+ fibroblasts in dermis was diminished with age. The most significant decrease in the number of fibroblasts was observed from 20 weeks of gestation to 20 years old. Results allow to assume the participation of lamin A and LAP-2 in triggering age-dependent decrease in the number of fibroblasts in the dermis in humans.

  14. Buckling of angle-ply laminated circular cylindrical shells

    NASA Technical Reports Server (NTRS)

    Hirano, Y.

    1979-01-01

    This note presents closed-form solutions for axisymmetrical and axially unsymmetrical buckling of angle-ply laminated circular cylindrical shells under axial compression. The axisymmetrical and axially unsymmetrical buckling stress are found to be different from each other, and the best lamination angles which give the highest buckling stress are obtained.

  15. Mechanical performance of cellulose nanofibril film-wood flake laminate

    Treesearch

    Jen-Chieh Liu; Robert J. Moon; Alan Rudie; Jeffrey P. Youngblood

    2014-01-01

    Homogeneous and transparent CNF films, fabricated from the (2,2,6,6- tetramethylpiperidin-1-yl) oxyl (TEMPO)-modified CNF suspension, were laminated onto wood flakes (WF) based on phenol-formaldehyde (PF) resin and the reinforcement potential of the material has been investigated. The focus was on the influence of CNF film lamination, relative humidity (RH), heat...

  16. Maleated polypropylene film and wood fiber handsheet laminates

    Treesearch

    Sangyeob Lee; Todd F. Shupe; Leslie H. Groom; Chung Y. Hse

    2008-01-01

    The grafting effect of maleic anhydride (MA) as an interfacial bonding agent and its influence on the tensile strength properties of thermomechanical pulp handsheet-isotactic polypropylene (iPP) film laminates was studied. For the MA treated with benzoyl peroxide (BPO) as an initiator, tensile strength properties increased 76% with PP film over untreated laminates. The...

  17. Hole-thru-laminate mounting supports for photovoltaic modules

    DOEpatents

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  18. Processing of thermoset prepreg laminate via exposure to microwave radiation

    SciTech Connect

    Paulauskas, F.L.; Meek, T.T.

    1994-06-01

    Studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and carbon fiber laminates have shown that a substantial reduction in the curing time was obtained. This may be explained by the penetration of microwave energy directly and throughout the laminate with enhancement of the kinetics of the chemical reaction. Results of this work indicate that the microwave assisted curing of glass fiber laminates also shows a substantial reduction of the required curing time. Microwave radiation of 2.45 GHz has been demonstrated to be an acceptable method to cure unidirectional carbon fiber laminates. Also, effective curing of crossply (0/90) laminates through this method was observed when proper rotation of the parts accompanied the curing process. This is in accordance with previous work. Multidirectional carbon fiber/epoxy laminates demonstrate a lack of coupling during the curing process. A direct curing of these laminates was not possible by microwave radiation with the experimental approach used, in agreement with previous work. Nevertheless, a moderate reduction in the curing time of these thin laminates was observed due to hybrid curing.

  19. The North American Product Standard for Cross-Laminated Timber

    Treesearch

    Borjen Yeh; Sylvain Gagnon; Tom Williamson; Ciprian Pirvu; Conroy Lum; Dave Kretschmann

    2012-01-01

    Cross-laminated timber (CLT) is a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber or structural composite lumber that are laminated by gluing of longitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight, and plane timber intended for roof, floor, or wall...

  20. Lateral testing of glued laminated timber tudor arch

    Treesearch

    Douglas R. Rammer; Philip Line

    2016-01-01

    Glued laminated timber Tudor arches have been in wide use in the United States since the 1930s, but detailed knowledge related to seismic design in modern U.S. building codes is lacking. FEMA P-695 (P-695) is a methodology to determine seismic performance factors for a seismic force resisting system. A limited P-695 study for glued laminated timber arch structures...

  1. The pharmacologic basis for the treatment of endocrinopathic laminitis.

    PubMed

    Durham, Andy

    2010-08-01

    Although the treatment and management of laminitis in the horse requires a holistic and often multidisciplinary approach from the veterinarian, farrier, and nutritionist, this review focuses on pharmacologic interventions that might have prophylactic benefit, specifically in the horse with laminitis as a result of pituitary pars intermedia dysfunction and equine metabolic syndrome.

  2. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  3. Fracture toughness and impact properties of laminated metal composites

    SciTech Connect

    Lesuer, D.R.; Riddle, R.A.; Gogolewski, R.P.; Syn, C.K.; Cunningham, B.J.

    1996-03-04

    Laminated metal composites consist of alternating metal (or metal matrix composite) layers bonded together. These materials can provide fracture toughness and impact properties superior to those of the component materials. These properties are a function of component material properties, laminate architecture (volume fraction, thickness) and interface properties. Properties are compared for seven lightweight materials.

  4. Chapter 2: Manufacturing Cross-laminated timber manufacturing

    Treesearch

    Borjen Yeh; Dave Kretschmann; Brad (Jianhe) Wang

    2013-01-01

    Cross-laminated timber ( CLT) is defined as a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber or structural composite lumber (SCL) that are laminated by gluing oflongitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight, and plane timber intended for roof...

  5. The nucleoporin Nup88 is interacting with nuclear lamin A

    PubMed Central

    Lussi, Yvonne C.; Hügi, Ilona; Laurell, Eva; Kutay, Ulrike; Fahrenkrog, Birthe

    2011-01-01

    Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) and mediate bidirectional nucleocytoplasmic transport. Their spatial distribution in the NE is organized by the nuclear lamina, a meshwork of nuclear intermediate filament proteins. Major constituents of the nuclear lamina are A- and B-type lamins. In this work we show that the nuclear pore protein Nup88 binds lamin A in vitro and in vivo. The interaction is mediated by the N-terminus of Nup88, and Nup88 specifically binds the tail domain of lamin A but not of lamins B1 and B2. Expression of green fluorescent protein–tagged lamin A in cells causes a masking of binding sites for Nup88 antibodies in immunofluorescence assays, supporting the interaction of lamin A with Nup88 in a cellular context. The epitope masking disappears in cells expressing mutants of lamin A that are associated with laminopathic diseases. Consistently, an interaction of Nup88 with these mutants is disrupted in vitro. Immunoelectron microscopy using Xenopus laevis oocyte nuclei further revealed that Nup88 localizes to the cytoplasmic and nuclear face of the NPC. Together our data suggest that a pool of Nup88 on the nuclear side of the NPC provides a novel, unexpected binding site for nuclear lamin A. PMID:21289091

  6. Better Thermal Insulation in Solar-Array Laminators

    NASA Technical Reports Server (NTRS)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  7. Identification of differential protein interactors of lamin A and progerin

    PubMed Central

    Kubben, Nard; Voncken, Jan Willem; Demmers, Jeroen; Calis, Chantal; van Almen, Geert

    2010-01-01

    The nuclear lamina is an interconnected meshwork of intermediate filament proteins underlying the nuclear envelope. The lamina is an important regulator of nuclear structural integrity as well as nuclear processes, including transcription, DNA replication and chromatin remodeling. The major components of the lamina are A- and B-type lamins. Mutations in lamins impair lamina functions and cause a set of highly tissue-specific diseases collectively referred to as laminopathies. The phenotypic diversity amongst laminopathies is hypothesized to be caused by mutations affecting specific protein interactions, possibly in a tissue-specific manner. Current technologies to identify interaction partners of lamin A and its mutants are hampered by the insoluble nature of lamina components. To overcome the limitations of current technologies, we developed and applied a novel, unbiased approach to identify lamin A-interacting proteins. This approach involves expression of the high-affinity OneSTrEP-tag, precipitation of lamin-protein complexes after reversible protein cross-linking and subsequent protein identification by mass spectrometry. We used this approach to identify in mouse embryonic fibroblasts and cardiac myocyte NklTAg cell lines proteins that interact with lamin A and its mutant isoform progerin, which causes the premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). We identified a total of 313 lamina-interacting proteins, including several novel lamin A interactors, and we characterize a set of 35 proteins which preferentially interact with lamin A or progerin. PMID:21327095

  8. Histopathology of oligofructose-induced acute laminitis in heifers.

    PubMed

    Thoefner, M B; Wattle, O; Pollitt, C C; French, K R; Nielsen, S S

    2005-08-01

    Histopathology of the dermo-epidermal junction in the lamellar region of front claws was examined in 6 dairy heifers given an alimentary oligofructose overload and compared with sections from a control group of 6 heifers. Four of the 6 heifers administered oligofructose developed clinical signs of acute laminitis before they were euthanized. Postmortem samples from front claws were processed for histology. Eleven histopathologic characteristics were selected from the existing literature and used in a blinded evaluation of sections. In total, 104 front claw samples, including 8 samples from 2 cows having spontaneously occurring acute laminitis, were evaluated histologically using hematoxylin and eosin as well as periodic acid-Schiff staining. The major morphological features associated with oligofructose-induced acute clinical laminitis were stretching of lamellae, dermal edema, hemorrhage, changes in basal cell morphology, presence of white blood cells in dermis, and signs of basement membrane detachment. Changes at the lamellar junction of claw tissue affected by oligofructose-induced clinical laminitis resembled tissue from the 2 cows suffering from spontaneous acute clinical laminitis, and generally were consistent with existing descriptions of laminitis histopathology. Important exceptions to existing descriptions in the literature were stretching of lamellae and basement membrane changes. Not previously described, we considered these early signs of acute laminitis. In conclusion, this study documents that oligofructose-induced clinical laminitis is associated with histopathological changes at the lamellar interface. A weakened dermo-epidermal junction is a possible intermediate stage in the pathophysiology of bovine sole ulceration at the typical site.

  9. A MEMS lamination technology based on sequential multilayer electrodeposition

    SciTech Connect

    Kim, M; Kim, J; Herrault, F; Schafer, R; Allen, MG

    2013-08-06

    A MEMS lamination technology based on sequential multilayer electrodeposition is presented. The process comprises three main steps: (1) automated sequential electrodeposition of permalloy (Ni80Fe20) structural and copper sacrificial layers to form multilayer structures of significant total thickness; (2) fabrication of polymeric anchor structures through the thickness of the multilayer structures and (3) selective removal of copper. The resulting structure is a set of air-insulated permalloy laminations, the separation of which is sustained by insulating polymeric anchor structures. Individual laminations have precisely controllable thicknesses ranging from 500 nm to 5 mu m, and each lamination layer is electrically isolated from adjacent layers by narrow air gaps of similar scale. In addition to air, interlamination insulators based on polymers are investigated. Interlamination air gaps with very high aspect ratio (>1:100) can be filled with polyvinylalcohol and polydimethylsiloxane. The laminated structures are characterized using scanning electron microscopy and atomic force microscopy to directly examine properties such as the roughness and the thickness uniformity of the layers. In addition, the quality of the electrical insulation between the laminations is evaluated by quantifying the eddy current within the sample as a function of frequency. Fabricated laminations are comprised of uniform, smooth (surface roughness < 100 nm) layers with effective electrical insulation for all layer thicknesses and insulator approaches studied. Such highly laminated structures have potential uses ranging from energy conversion to applications where composite materials with highly anisotropic mechanical or thermal properties are required.

  10. Self-heating forecasting for thick laminate specimens in fatigue

    NASA Astrophysics Data System (ADS)

    Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.

  11. Laminated lumber may be more profitable than sawn lumber

    Treesearch

    P. Koch

    1976-01-01

    By laminating 1/4-in. rotary-cut veneer into structural lumber, manufacturers can expand lumber output by at least 30% without increasing volume logged. The idea merits intensive study. Manufacturing plus raw material costs should total about $142/Mbf; sales price for desirable widths and lengths of the strong laminated product should approach or exceed $200/Mbf.

  12. A Laminated Track for the Inductrack System: Theory and Experiment

    SciTech Connect

    Post, R F; Hoburg, J F

    2004-01-12

    A laminated structure, composed of stacks of thin conducting sheets, has several advantages over a litz-wire ladder as the ''track'' wherein levitating currents are induced by a permanent magnet array on a moving vehicle. Modeling and experimental results for the laminated track are described and evaluated in this paper.

  13. Residual stresses and their effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Hwang, D. G.

    1983-01-01

    Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.

  14. Diverse lamin-dependent mechanisms interact to control chromatin dynamics

    PubMed Central

    Camozzi, Daria; Capanni, Cristina; Cenni, Vittoria; Mattioli, Elisabetta; Columbaro, Marta; Squarzoni, Stefano; Lattanzi, Giovanna

    2014-01-01

    Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals.   Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation. PMID:25482195

  15. Deposition of laminated shale: A field and experimental study

    NASA Astrophysics Data System (ADS)

    Carey, Daniel L.; Roy, David C.

    1985-03-01

    Intermittently laminated shale of the Jemtland Formation in Maine is characterized by thin lenticular silt segregations interlaced with argillaceous and organic material (including graptolites). This shale is thinly interbedded with nonlaminated shale, siltstone, and thicker turbidite graywacke beds. Experiments suggest that the intermittently laminated shale was deposited by silt/clay-laden currents and may have been part of an upward turbidite progression from parallel-laminated silt (>60% silt), through intermittently laminated mud (40 to 60% silt), to nonlaminated mud (20 to 40% silt). Intermittently laminated mud may be produced from silt/clay flows that are: decelerating at a constant silt content, losing silt at constant velocity; or both decelerating and losing silt.

  16. The strength of laminated composite materials under repeated impact loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1988-01-01

    When low velocity and energy impact is exerted on a laminated composite material, in a perpendicular direction to the plane of the laminate, invisible damage may develop. It is shown analytically and experimentally that the invisible damage occurs during the first stage of contact between the impactor and the laminate and is a result of the contact stresses. However, the residual flexural strength changes only slightly, because it depends mainly on the outer layers, and these remain undamaged. Repeated impact intensifies the damage inside the laminate and causes larger bending under equivalent impact load. Finally, when the damage is most severe, even though it is still invisible, the laminate fails because of bending on the tension side. If the repeated impact is halted before final fracture occurs the residual strength and modulus would decrease by a certain amount.

  17. The mechanical behavior of GLARE laminates for aircraft structures

    NASA Astrophysics Data System (ADS)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  18. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  19. Design of composite laminates by a Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Fang, Chin; Springer, George S.

    1993-01-01

    A Monte Carlo procedure was developed for optimizing symmetric fiber reinforced composite laminates such that the weight is minimum and the Tsai-Wu strength failure criterion is satisfied in each ply. The laminate may consist of several materials including an idealized core, and may be subjected to several sets of combined in-plane and bending loads. The procedure yields the number of plies, the fiber orientation, and the material of each ply and the material and thickness of the core. A user friendly computer code was written for performing the numerical calculations. Laminates optimized by the code were compared to laminates resulting from existing optimization methods. These comparisons showed that the present Monte Carlo procedure is a useful and efficient tool for the design of composite laminates.

  20. The strength of laminated composite materials under repeated impact loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1988-01-01

    When low velocity and energy impact is exerted on a laminated composite material, in a perpendicular direction to the plane of the laminate, invisible damage may develop. It is shown analytically and experimentally that the invisible damage occurs during the first stage of contact between the impactor and the laminate and is a result of the contact stresses. However, the residual flexural strength changes only slightly, because it depends mainly on the outer layers, and these remain undamaged. Repeated impact intensifies the damage inside the laminate and causes larger bending under equivalent impact load. Finally, when the damage is most severe, even though it is still invisible, the laminate fails because of bending on the tension side. If the repeated impact is halted before final fracture occurs the residual strength and modulus would decrease by a certain amount.

  1. Residual stresses and their effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Hwang, D. G.

    1983-01-01

    Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.

  2. Vibration suppression of composite laminated plate with nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Zhang, Ye-Wei; Zhang, Hao; Hou, Shuai; Xu, Ke-Fan; Chen, Li-Qun

    2016-06-01

    The composite laminated plate is widely used in supersonic aircraft. So, there are many researches about the vibration suppression of composite laminated plate. In this paper, nonlinear energy sink (NES) as an effective method to suppress vibration is studied. The coupled partial differential governing equations of the composite laminated plate with the nonlinear energy sink (NES) are established by using the Hamilton principle. The fourth-order Galerkin discrete method is used to truncate the partial differential equations, which are solved by numerical integration method. Meanwhile study about the precise effectiveness of the nonlinear energy sink (NES) by discussing the different installation location of the nonlinear energy sink (NES) at the same speed. The results indicate that the nonlinear energy sink (NES) can significantly suppress the severe vibration of the composite laminated plate with speed wind loadings in to protect the composite laminated plate from excessive vibration.

  3. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  4. Geometrically nonlinear behavior of piezoelectric laminated plates

    NASA Astrophysics Data System (ADS)

    Rabinovitch, Oded

    2005-08-01

    The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.

  5. Free Vibration of Uncertain Unsymmetrically Laminated Beams

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Goyal, Vijay K.

    2001-01-01

    Monte Carlo Simulation and Stochastic FEA are used to predict randomness in the free vibration response of thin unsymmetrically laminated beams. For the present study, it is assumed that randomness in the response is only caused by uncertainties in the ply orientations. The ply orientations may become random or uncertain during the manufacturing process. A new 16-dof beam element, based on the first-order shear deformation beam theory, is used to study the stochastic nature of the natural frequencies. Using variational principles, the element stiffness matrix and mass matrix are obtained through analytical integration. Using a random sequence a large data set is generated, containing possible random ply-orientations. This data is assumed to be symmetric. The stochastic-based finite element model for free vibrations predicts the relation between the randomness in fundamental natural frequencies and the randomness in ply-orientation. The sensitivity derivatives are calculated numerically through an exact formulation. The squared fundamental natural frequencies are expressed in terms of deterministic and probabilistic quantities, allowing to determine how sensitive they are to variations in ply angles. The predicted mean-valued fundamental natural frequency squared and the variance of the present model are in good agreement with Monte Carlo Simulation. Results, also, show that variations between plus or minus 5 degrees in ply-angles can affect free vibration response of unsymmetrically and symmetrically laminated beams.

  6. Residual stress characterization for laminated composites

    NASA Astrophysics Data System (ADS)

    Liu, Shao-Chun

    With increasing applications of advanced laminated composites, process-induced residual stress has drawn more and more attention in recent years. Efforts have been devoted to understanding residual stress both quantitatively and qualitatively. In the current study, a novel technique called the Cure Referencing Method was developed which has the capability for measuring the residual stress on the symmetric laminated composite plates. It can also differentiate residual stress into two components: one is due to the mismatch of the coefficient of thermal expansion, the other is caused by the matrix chemical curing shrinkage. The chemical curing shrinkage of the polymer matrix was investigated in further detail. A technique was developed to measure the post-gel chemical curing shrinkage which is the portion of curing shrinkage that really induces the residual stress in the polymer matrix composites. Time-dependent material property is another issue associated with polymer matrix composite materials. The data of several short-term tensile creep tests run at different temperature were used to construct a linear viscoelastic: model for describing the behavior of the composites over a long period of time. It was found that physical aging of the polymer matrix needs to be taken into account in order to have a more accurate representation of the long-term behavior. A fair agreement was obtained between the result of the long-term creep test and the master curve constructed from several momentary creep tests.

  7. Interlaminar interaction in paper thermoplastic laminate composites

    NASA Astrophysics Data System (ADS)

    Prambauer, M.; Paulik, C.; Burgstaller, C.

    2016-07-01

    Bio-based composites are a research topic since several decades, which aims for sustainable and durable materials. In the scope of this research, many different sources for biobased reinforcements have been investigated. Typical issues associated with the use of such are property variations due to cultivation area and climate, besides the influences of the type, pretreatment and fibre geometry. Another issue can be the availability of such natural fibres. Due to these reasons, we started using paper sheets as reinforcements in laminate composites with thermoplastic materials. In preliminary studies with polypropylene composites, we found good mechanical properties, even higher than could be expected by estimating the composite properties from the constituents by applying simple rule of mixtures type models. We suspect, besides some effect of paper compaction, interlaminar effects to be the reason for this. Therefore, the aim of this work is to investigate the effects of the interfacial interaction on the different paper laminate properties due to different matrix polymers. For this work, we used polypropylene, polyamide 6 and 12 as well as polystyrene. Composites were produced via compression moulding and samples for mechanical testing and density evaluation were cut from the moulded plates. The results from mechanical tests show, that there is a reinforcing effect, regardless of matrix polymer used. Simple rule of mixtures evaluations show, that the different matrices exhibit different degrees of interaction, based on their chemical structure. In addition, also influences due to processing were found.

  8. Lamins as mediators of oxidative stress

    SciTech Connect

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.

  9. Development of a heterogeneous laminating resin system

    NASA Technical Reports Server (NTRS)

    Biermann, T. F.; Hopper, L. C.

    1985-01-01

    The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions.

  10. Failure and deformation analyses of smart laminated composites

    NASA Astrophysics Data System (ADS)

    Hasan, Z.; Muliana, A.

    2012-09-01

    The present study focuses on the failure analysis and shape control of smart composite laminates under coupled thermal (hygro), electric, and mechanical stimuli. A linear thermo(hygro)electroelastic constitutive model for transversely isotropic materials is used for each ply in the composite laminate and for the piezoelectric materials that are integrated with laminates of the composite. Piezoelectric materials, such as lead zirconate titanate, and piezoelectric fiber composites, such as an active fiber composite or a microfiber composite, are considered as actuators for controlling unwanted bending deformations to avoid failure in such composite laminates. Due to the high stress concentrations at the interfaces between an active layer and the host structure, which may cause debonding, embedded actuators in which the active material is placed as part of the plies to form geometrically continuous plies are considered in order to minimize the stress concentration while improving the actuation capability. The first-ply failure and the ultimate laminate failure criteria of composite laminates are used to predict the failure stress and mode of the smart composite laminates, where commonly known macroscopic failure criteria, such as the Tsai-Hill, Tsai-Wu, and maximum stress criteria, are employed for each lamina. Piezoelectric materials can be used to prevent the failure from hygrothermal and mechanical loadings by applying an electric voltage in order to counteract laminate deformations. Based on the deformation and failure analyzes of smart composite laminates having various stacking sequences, fiber and matrix constituents, and piezoelectric materials, we could estimate the overall properties and failure envelopes of the laminates, which is useful in the preliminary design of smart composite structures.

  11. Buckling analysis of laminated thin shells in a hot environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptil, James D.

    1993-01-01

    Results are presented of parametric studies to assess the effects of various parameters on the buckling behavior of angle-ply, laminated thin shells in a hot environment. These results were obtained by using a three-dimensional finite element analysis. An angle-ply, laminated thin shell with fiber orientation of (theta/-theta)(sub 2) was subjected to compressive mechanical loads. The laminated thin shell had a cylindrical geometry. The laminate contained T300 graphite fibers embedded in an intermediate-modulus, high-strength (IMHS) matrix. The fiber volume fraction was 55 percent and the moisture content was 2 percent. The residual stresses induced into the laminate structure during the curing were taken into account. Parametric studies were performed to examine the effect on the critical buckling load of the following parameters: cylinder length and thickness, internal hydrostatic pressure, different ply thicknesses, different temperature profiles through the thickness of the structure, and different lay up configurations and fiber volume fractions. In conjunction with these parameters the ply orientation was varied from 0 deg to 90 deg. Seven ply angles were examined: 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, and 90 deg. The results show that the ply angle theta and the laminate thickness had significant effects on the critical buckling load. The fiber volume fraction, the fiber orientations, and the internal hydrostatic pressure had important effects on the critical buckling load. The cylinder length had a moderate influence on the buckling load. The thin shell with (theta/-theta)(sub 2) or (theta/-theta)(sub s) angle-ply laminate had better buckling-load performance than the thin shell with (theta)(sub 4) angle-ply laminate. The temperature profiles through the laminate thickness and various laminates with the different ply thicknesses has insignificant effects on the buckling behavior of the thin shells.

  12. Interlaminate Deformation in Thermoplastic Composite Laminates: Experimental-Numerical Correlation

    NASA Astrophysics Data System (ADS)

    Shen, M.; Tong, J.; Wang, S.; Fang, Y.

    2010-06-01

    The interlaminar deformation behaviors of thermoplastic AS4/PEEK composite laminates subjected to static tensile loading are investigated by means of microscopic moiré interferometry with high spatial resolution. The fully threedimensional orthotropic elastic-plastic analysis of interlaminar deformation for the thermoplastic laminates is developed in this paper, and used to simulate the stress-strain curves of tensile experiment for its angle-ply laminates. Under uniaxial tensile loading, the 3D orthotropic elastic-plastic FE analysis and microscopic moiré interferometry of interlaminar deformations are carried out for the [±25]S4 laminates. The quantitative local-filed experimental results of interlaminar shear strain and displacements at freeedge surface of the laminate are compared with corresponding numerical results of the orthotropic elastic-plastic FE model. It is indicated that the numerical tensile stressstrain curves of angle-ply laminates computed with 3D orthotropic elastic-plastic model are agree with experimental results. The numerical interlaminar displacement U and shear strain γxz are also consistent with the experimental results obtained by moiré interferometry. It is expected the elastic-plastic interlaminar stresses and deformations analysis for the optimal design and application of AS4/PEEK laminates and its structures.

  13. Low cost and high performance screen laminate regenerator matrix

    NASA Astrophysics Data System (ADS)

    Bin-Nun, Uri; Manitakos, Dan

    2004-06-01

    A laminate screen matrix regenerator with 47 elements has been designed, analyzed, fabricated and tested. The laminate was fabricated from stainless steel screen sheets that were stacked on top of each other at certain angular orientation and then bonded at high temperature and pressure environment utilizing a sintering process. This laminate is a porous structure media with highly repeatable properties that can be controlled by varying mesh size, weave type, wire size and laminate sheet to sheet orientation. The flow direction in relation to the weave plan can be varied by cutting a cylindrical or rectangular laminate element along or across the weave. The regenerator flow resistance, thermal conductance losses, dead volume, surface area and heat transfer coefficient are analyzed. Regenerator cost and performance comparison data between the conventional widely used method of stacked screens and the new stacked laminate matrix regenerator is discussed. Also, a square stainless steel screen laminate was manufactured in a way which permits gas to flow along the screen wire instead of across it.

  14. Bending strength of shallow glued-laminated beams of a uniform grade

    Treesearch

    Catherine M. Marx; Russell C. Moody

    1981-01-01

    Ninety glued-laminated Douglas-fir or southern pine beams of a uniform grade with 2-, 4-, or 6-laminations were evaluated in static bending tests. No specially graded tension laminations or end joints were used. The purpose of the tests was to determine which of three present design criteria best predict near minimum bending strength values for shallow glued-laminated...

  15. LamLum : a tool for evaluating the financial feasibility of laminated lumber plants

    Treesearch

    E.M. (Ted) Bilek; John F. Hunt

    2006-01-01

    A spreadsheet-based computer program called LamLum was created to analyze the economics of value- added laminated lumber manufacturing facilities. Such facilities manufacture laminations, typically from lower grades of structural lumber, then glue these laminations together to make various types of higher value laminated lumber products. This report provides the...

  16. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    PubMed

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate.

  17. Chronic laminitis: strategic hoof wall resection.

    PubMed

    Rucker, Amy

    2010-04-01

    In the chronic-laminitic foot, severe soft-tissue compression and compromised circulation can result in osteitis and sepsis at the margin of the distal phalanx. Resultant inflammation and sepsis may cause the coronary corium to swell, drain, or separate from the hoof capsule, usually within 8 weeks of laminitis onset. Slow-onset cases of soft-tissue impingement can develop secondary to distal phalanx displacement due to lack of wall attachment. With either presentation, partial upper wall resection is required to reverse compression and vascular impingement by the hoof capsule. If the pathology is not overwhelming, the area reepithelializes and grows attached tubular horn. Firm bandaging and restricted exercise until tubular horn has regrown enhances recovery and the return of a strong hoof.

  18. The digital pathologies of chronic laminitis.

    PubMed

    Grosenbaugh, D A; Morgan, S J; Hood, D M

    1999-08-01

    This review indicates that the patient-to-patient uniqueness commonly seen in chronic laminitis represents the variable presence of the digital pathologies. Although some degree of mechanical failure is always present, the secondary metabolic and growth dysplasias, vascular pathologies, and sepsis may or may not be evident. The presence and severity of these pathologies appear to have a more significant impact on the prognosis of individual cases than does the displacement of the distal phalanx. It should be reiterated that it is often the combined presence of these individual pathologies that gives rise to the patient that is totally refractory to treatment. In the absence of these pathologies, many horses with significant displacement of the distal phalanx are not in pain and are not in need of treatment. It thus follows that a key to the improved rehabilitation of difficult patients is focusing research on the physiopathology and diagnosis of these nonmechanical problems.

  19. Statistical fatigue of unnotched composite laminates

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1980-01-01

    A general analytical, phenomenological model is developed for characterizing fatigue damage accumulation in unnotched composite laminates, and experimental results are used to evaluate the model. The fatigue model, which is developed for various types of cyclic loadings, is based on the assumption that the residual strength reduction is a monotonically decreasing function of the fatigue life. Parameters are determined from baseline test data consisting of one set of residual strength data, one set of static strength data, and one set of constant amplitude fatigue life data. Once the parameters are determined, the model is able to predict: (1) the statistical distribution of the fatigue life, and the residual strength under constant and variable amplitude loads, and (2) the effect of periodic proof tests, without any additional experimental data. Experimental test results show that predictions made from the present model agree quite well with the experimental results. The model is also applicable to fatigue of bonded or bolted composite joints.

  20. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, L. D.; Hyer, M. W.; Shuart, M. J.

    1992-01-01

    Test results from the compression loading of (+ or - Theta/ - or + Theta)(sub 6s) angle-ply IM7-8551-7a specimens, 0 less than or = Theta less than or = 90 degs, are presented. The observed failure strengths and modes are discussed, and typical stress-strain relations shown. Using classical lamination theory and the maximum stress criterion, an attempt is made to predict failure stress as a function of Theta. This attempt results in poor correlation with test results and thus a more advanced model is used. The model, which is based on a geometrically nonlinear theory, and which was taken from previous work, includes the influence of observed layer waviness. The waviness is described by the wave length and the wave amplitude. The theory is briefly described and results from the theory are correlated with test results. It is shown that by using levels of waviness observed in the specimens, the correlation between predictions and observations is good.

  1. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  2. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  3. Reliability analysis of ceramic matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Wetherhold, Robert C.

    1991-01-01

    At a macroscopic level, a composite lamina may be considered as a homogeneous orthotropic solid whose directional strengths are random variables. Incorporation of these random variable strengths into failure models, either interactive or non-interactive, allows for the evaluation of the lamina reliability under a given stress state. Using a non-interactive criterion for demonstration purposes, laminate reliabilities are calculated assuming previously established load sharing rules for the redistribution of load as the failure of laminae occur. The matrix cracking predicted by ACK theory is modeled to allow a loss of stiffness in the fiber direction. The subsequent failure in the fiber direction is controlled by a modified bundle theory. Results using this modified bundle model are compared with previous models which did not permit separate consideration of matrix cracking, as well as to results obtained from experimental data.

  4. The Creep of Laminated Synthetic Resin Plastics

    NASA Technical Reports Server (NTRS)

    Perkuhn, H

    1941-01-01

    The long-time loading strength of a number of laminated synthetic resin plastics was ascertained and the effect of molding pressure and resin content determined. The best value was observed with a 30 to 40 percent resin content. The long-time loading strength also increases with increasing molding pressure up to 250 kg/cm(exp 2); a further rise in pressure affords no further substantial improvement. The creep strength is defined as the load which in the hundredth hour of loading produces a rate of elongation of 5 X 10(exp -4) percent per hour. The creep strength values of different materials were determined and tabulated. The effect of humidity during long-term tests is pointed out.

  5. Eddy current losses in ferromagnetic laminations

    SciTech Connect

    Serpico, C.; Visone, C.; Mayergoyz, I. D.; Basso, V.; Miano, G.

    2000-05-01

    It is demonstrated through the comparison of analytical, numerical, and experimental results that the existence of excess eddy current losses can be explained by the peculiar nature of the nonlinear diffusion of electromagnetic fields in magnetically nonlinear laminations. The essence of this peculiar nature is that nonlinear diffusion occurs as inward progress of almost rectangular profiles of magnetic flux density of variable height. Approximating actual profiles of magnetic flux density by rectangular ones, the problem of nonlinear diffusion can be treated analytically by using a simple model. The accuracy and the limit of applicability of the rectangular profile model are discussed by comparing its predictions with finite elements numerical solutions of nonlinear diffusion equation as well as with experimental results. (c) 2000 American Institute of Physics.

  6. Transient response of a laminated composite plate

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Ju, T. H.; Bratton, R. L.; Shah, A. H.

    1992-01-01

    Results are presented from an investigation of the effect of layering on transient wave propagation in a laminated cross-ply plate, giving attention to the case of 2D plane strain in the case where a line vertical force is applied on a free surface of the plate; the line may be either parallel or perpendicular to the fibers in a ply. The results are in both the time and frequency domains for the normal stress component in the x direction, at a point on the surface of the plate on which the force is applied. Comparative results are also presented for a homogeneous plate whose properties are the static effective ones, when the number of plies is large.

  7. Prediction of microcracking in composite laminates under thermomechanical loading

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.; Mcmanus, Hugh L.

    1995-01-01

    Composite laminates used in space structures are exposed to both thermal and mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. An analytical methodology is developed to predict microcrack density in a general laminate exposed to an arbitrary thermomechanical load history. The analysis uses a shear lag stress solution in conjunction with an energy-based cracking criterion. Experimental investigation was used to verify the analysis. Correlation between analysis and experiment is generally excellent. The analysis does not capture machining-induced cracking, or observed delayed crack initiation in a few ply groups, but these errors do not prevent the model from being a useful preliminary design tool.

  8. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  9. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  10. Thermal buckling of thick antisymmetric angle-ply laminates

    SciTech Connect

    Tauchert, T.R.

    1987-01-01

    The buckling behavior of moderately thick antisymmetric angle-ply laminates that are simply supported and subject to a uniform temperature rise is analyzed. Transverse shear deformation is accounted for by employing the thermoelastic version of the Reissner-Mindlin theory. Results for the classical thin-plate theory are obtained as a special case. Numerical results are presented for fiber-reinforced laminates and show the effects of ply orientation, number of layers, plate thickness, and aspect ratio on the critical buckling temperature. Finally, an optimization procedure is proposed for the design of laminates having maximum resistance to thermal buckling. 17 references.

  11. Wave propagation in graphite/epoxy laminates due to impact

    NASA Technical Reports Server (NTRS)

    Tan, T. M.; Sun, C. T.

    1982-01-01

    The low velocity impact response of graphite-epoxy laminates is investigated theoretically and experimentally. A nine-node isoparametric finite element in conjunction with an empirical contact law was used for the theoretical investigation. Flat laminates subjected to pendulum impact were used for the experimental investigation. Theoretical results are in good agreement with strain gage experimental data. The collective results of the investigation indicate that the theoretical procedure describes the impact response of the laminate up to about 150 in/sec. impact velocity.

  12. Laminated metals composites fracture and ballistic impact behavior

    SciTech Connect

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.; Wadsworth, J.

    1998-01-20

    Recent advances in the fracture and ballistic impact response of laminated metal composites (LMCs) are reviewed. The laminate structure can provide significant improvements to these properties relative to the component materials. Typical fracture and ballistic impact properties in LMCs are illustrated for systems containing Al alloys and Al matrix composites. The unique mechanisms operating in a layered structure that contribute to fracture or ballistic impact resistance are discussed. The influence of laminate architecture, component material properties and interface strength on mechanisms and properties are briefly reviewed for these Al-based LMCs.

  13. Multi-Layer Laminated Thin Films for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Yavrouian, Andre; Plett, Gary; Mannella, Jerami

    2005-01-01

    Special-purpose balloons and other inflatable structures would be constructed as flexible laminates of multiple thin polymeric films interspersed with layers of adhesive, according to a proposal. In the original intended application, the laminate would serve as the envelope of the Titan Aerobot a proposed robotic airship for exploring Titan (one of the moons of Saturn). Potential terrestrial applications for such flexible laminates could include blimps and sails. In the original application, the multi-layered laminate would contain six layers of 0.14-mil (0.0036-mm)-thick Mylar (or equivalent) polyethylene terephthalate film with a layer of adhesive between each layer of Mylar . The overall thickness and areal density of this laminate would be nearly the same as those of 1-mil (0.0254-mm)-thick monolayer polyethylene terephthalate sheet. However, the laminate would offer several advantages over the monolayer sheet, especially with respect to interrelated considerations of flexing properties, formation of pinholes, and difficulty or ease of handling, as discussed next. Most of the damage during flexing of the laminate would be localized in the outermost layers, where the radii of bending in a given bend would be the largest and, hence, the bending stress would be the greatest. The adverse effects of formation of pinholes would be nearly completely mitigated in the laminate because a pinhole in a given layer would not propagate to adjacent layers. Hence, the laminate would tend to remain effective as a barrier to retain gas. Similar arguments can be made regarding cracks: While a crack could form as a result of stress or a defect in the film material, a crack would not propagate into adjacent layers, and the adjacent layer(s) would even arrest propagation of the crack. In the case of the monolayer sheet, surface damage (scratches, dents, permanent folds, pinholes, and the like) caused by handling would constitute or give rise to defects that could propagate through

  14. Improved PMR Polyimides For Heat-Stable Laminates

    NASA Technical Reports Server (NTRS)

    Vannucci, R. D.; Malarik, D. C.; Papadapoulos, D. S.; Waters, John F.

    1994-01-01

    Second-generation PMR-type polyimides (PMR-II polyimides) of enhanced thermo-oxidative stability prepared by substitution of para-aminostyrene (PAS) end caps for nadic-ester (NE) end caps used in prior PMR-II polyimides. Laminates unidirectionally reinforced with graphite fibers and made with PAS-capped resins exhibited thermo-oxidative stabilities significantly greater than those of similar laminates made with NE-capped PMR-II resins. One new laminate exhibited high retention of weight and strength after 1,000 h of exposure to air at 371 degrees C.

  15. Analysis of a hybrid-undirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.

  16. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  17. Influence of temperature change on optimum laminate design

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Tashkandi, M. A.

    1977-01-01

    Results of a laminate optimization study, which includes prescribed temperature change and mechanical loading conditions, are presented. Minimum-weight designs for balanced symmetric laminates are obtained subject to strength, membrane stiffness, and minimum thickness requirements, while including and omitting temperature change effects. Based on a first ply failure design philosophy and employing a linear thermoelastic analysis, it is shown that taking temperature decrease effects into account leads to substantial weight penalties in strength critical fiber composite laminates. Numerical results are presented for representative fiber composite materials based on three commonly used combined stress failure criteria.

  18. Interlaminar stresses in composite laminates: A perturbation analysis

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest.

  19. On the resonant behavior of laminated accelerating structures

    NASA Astrophysics Data System (ADS)

    Ivanyan, M. I.; Avagyan, V. Sh.; Danielyan, V. A.; Tsakanian, A. V.; Vardanyan, A. S.; Zakaryan, V. S.

    2017-03-01

    The laminated round metallic waveguide is one of the promising options for high frequency single-mode accelerating structures. Under certain conditions the longitudinal impedance of such type structures has a narrow-band resonance that corresponds to slowly propagating synchronous TM01 fundamental mode. In this paper the resonant properties of two parallel plates and rectangular cavity with laminated walls are studied. The first measurement results performed for the copper cavity of rectangular cross section with inner germanium layers at top and bottom walls are presented. The measurements show the existence of a dedicated resonant frequency being in a good agreement with the one predicted for the corresponding laminated parallel plates.

  20. Axisymmetric vibrations of laminated composite conical shells with varying thickness

    SciTech Connect

    Shikanai, G.; Suzuki, K.; Kojima, M.

    1995-11-01

    An exact solution procedure is presented for solving axisymmetric free vibrations of laminated composite conical shells with varying thickness. Based on the classical lamination theory neglecting shear deformation and rotary inertia, equations of motion and boundary conditions are obtained from the stationary conditions of the Lagrangian. The equations of motion are solved exactly by using a power series expansion for symmetrically laminated, cross-ply conical shells. Numerical studies are made for conical shells having both ends clamped to show the effects of the number of laminae, stacking sequences and other parameters upon the frequencies.

  1. Vibration analysis of rotating thin laminated composite shell of revolution

    SciTech Connect

    Suzuki, K.; Shikanai, G.; Takayama, K.

    1995-11-01

    An exact solution procedure is presented for solving free vibrations of a rotating thin laminated composite shell of revolution having meridionally constant curvature. Based on the classical lamination theory, equations of motion and boundary conditions are obtained from the stationally conditions of the Lagrangian. The equations of motion are solved exactly by using a power series expansion for symmetrically laminated, cross-ply shells. Frequencies and mode shapes of the shells having both ends clamped and both ends freely supported are presented showing their variations with rotating angular velocity, number of laminae and other parameters.

  2. Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.

    1999-01-01

    A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.

  3. Structural Feasibility of Parallel-Laminated Veneer Crossarms.

    DTIC Science & Technology

    1977-01-01

    Experimentally and commercially produced laminated M-19 crossarms were tested by standard Rural Electrification Administration ( REA ) crossarm tests... REA specified standards. Materials tested are described and results on standarized tests are summarized. The objective of this work was to provide

  4. Arbitrarily laminated, anisotropic cylindrical shell under internal pressure

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz Z.; Balaraman, K.; Kunukkasseril, Vincent X.

    1986-01-01

    An arbitrarily laminated, anisotropic cylindrical shell of finite length, under uniform internal pressure, is analyzed using Love-Timoshenko's kinematic relations and under the framework of classical lamination theory. The previously obtained solutions for asymmetrically laminated orthotropic (cross-ply) as well as unbalanced-symmetric and balanced-unsymmetric (angle-ply) cylindrical shells under the same loading conditions have been shown to be special cases of the present closed-form solution. Numerical results have been presented for a two-layer cylindrical shell and compared with those obtained using finite element solutions based on the layerwise constant shear-angle theory. These are expected to serve as benchmark solutions for future comparisons and to facilitate the use of unsymmetric lamination in design.

  5. Analysis of a unidirectional, symmetric buffer strip laminate with damage

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1984-01-01

    A method for predicting the fracture behavior of hybrid buffer strip laminates is presented in which the classical shear-lag model is used to represent the shear stress distribution between adjacent fibers. The method is demonstrated by applying it to a notched graphite/epoxy laminate, and the results show clearly the manner in which the most efficient combination of buffer strip properties can be selected in order to arrest the crack. The ultimate failure stress of the laminate is plotted vs the buffer strip width. It is shown that in the case of graphite-epoxy and S-glass epoxy laminates, the optimum buffer strip spacing to width ratio should be about four to one.

  6. 11. Detail of laminated arch beams, radiators, pews and portion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail of laminated arch beams, radiators, pews and portion of the office to the left of the sanctuary, facing north - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID

  7. Vibration analysis of composite laminate plate excited by piezoelectric actuators.

    PubMed

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-03-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control.

  8. Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators

    PubMed Central

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121

  9. Design of laminated composite plates for maximum shear buckling loads

    SciTech Connect

    Chang, R.R.; Chu, K.H.; Kam, T.Y.

    1993-12-01

    The optimal lamination arrangements of laminated composite plates with maximum shear buckling loads are studied via a multi-start global optimization technique. A previously proposed shear deformable finite element is used to evaluate the positive and negative shear buckling loads of laminated composite plates in the optimal design process. Optimal lay-ups of thin as well as moderately thick composite plates with global maximum positive or negative shear buckling loads are determined utilizing the multi-start global optimal design technique. A number of examples of the optimal shear buckling design of symmetrically and antisymmetrically laminated composite plates with various material properties, length-to-thickness ratios, aspect ratios and different numbers of layer groups are given to illustrate the trends of optimal layer orientations of the plates. Since the existence of in-plane axial force is possible, the effects of axial compressive load on the optimal layer orientations for maximum shear buckling load are also investigated.

  10. Thermal buckling and postbuckling of symmetrically laminated composite plates

    NASA Technical Reports Server (NTRS)

    Meyers, C. A.; Hyer, M. W.

    1991-01-01

    The thermal buckling and postbuckling response of symmetrically laminated composite plates are discussed. Using variational methods in conjunction with a Rayleigh-Ritz formulation, thermal buckling and postbuckling are investigated for two laminates, a (+/- 45/0/90) and a (+/- 45/02), under two different simple support conditions, fixed and sliding. These laminates are subjected to the condition of a uniform temperature change. The effects of the principal material axis not being aligned with the edges of the plate, referred to here as material axis skewing, are also investigated. Although differences between buckling temperatures for the two support conditions were small, support conditions can have a large influence on thermal postbuckling response. In general, plates with fixed simple supports deflect more than plates with sliding simple supports. In addition, support conditions can influence modal interaction. Skewing of the material axis decreases the buckling temperatures of both laminates and, like fixed support conditions, causes increased postbuckling deflections. Skewing also influences modal interaction.

  11. Tying up loose ends: telomeres, genomic instability and lamins

    PubMed Central

    Eissenberg, Joel C.

    2016-01-01

    On casual inspection, the eukaryotic nucleus is a deceptively simple organelle. Far from being a bag of chromatin, the nucleus is, in some ways, a structural and functional extension of the chromosomes it contains. Recently, interest has intensified in how chromosome compartmentalization and dynamics affect nuclear function. Different studies uncovered functional interactions between chromosomes and the filamentous nuclear meshwork comprised of lamin proteins. Here, we summarize recent research suggesting that telomeres, the capping structures that protect chromosome ends, are stabilized by lamin-binding and that alterations in nuclear lamins lead to defects in telomere compartmentalization, homeostasis and function. Telomere dysfunction contributes to the genomic instability that characterizes aging-related diseases, and might be an important factor in the pathophysiology of lamin-related diseases. PMID:27010504

  12. Laminated rare earth structure and method of making

    DOEpatents

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  13. Arbitrarily laminated, anisotropic cylindrical shell under internal pressure

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz Z.; Balaraman, K.; Kunukkasseril, Vincent X.

    1986-01-01

    An arbitrarily laminated, anisotropic cylindrical shell of finite length, under uniform internal pressure, is analyzed using Love-Timoshenko's kinematic relations and under the framework of classical lamination theory. The previously obtained solutions for asymmetrically laminated orthotropic (cross-ply) as well as unbalanced-symmetric and balanced-unsymmetric (angle-ply) cylindrical shells under the same loading conditions have been shown to be special cases of the present closed-form solution. Numerical results have been presented for a two-layer cylindrical shell and compared with those obtained using finite element solutions based on the layerwise constant shear-angle theory. These are expected to serve as benchmark solutions for future comparisons and to facilitate the use of unsymmetric lamination in design.

  14. Nonlinear analysis of laminated fibrous composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Renieri, G. D.; Herakovich, C. T.

    1976-01-01

    A computerized analysis of the nonlinear behavior of fibrous composite laminates including axial loading, thermal loading, temperature dependent properties, and edge effects is presented. Ramberg-Osgood approximations are used to represent lamina stress-strain behavior and percent retention curves are employed to model the variation of properties with temperature. Balanced, symmetric laminates comprised of either boron/epoxy, graphite/epoxy, or borsic-aluminum are analyzed using a quasi-three-dimensional finite element analysis. Results are presented for the interlaminar stress distributions in cross-ply, angle-ply, and more complex laminates. Nonlinear stress-strain curves for a variety of composite laminates in tension and compression are obtained and compared to other existing theories and experimental results.

  15. Tensile stress-strain behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.

  16. Nuclear lamins during gametogenesis, fertilization and early development

    NASA Technical Reports Server (NTRS)

    Maul, G. G.; Schatten, G.

    1986-01-01

    The distribution of lamins (described by Gerace, 1978, as major proteins of nuclear envelope) during gametogenesis, fertilization, and early development was investigated in germ cells of a mouse (Mus musculus), an echinoderm (Lytechinus variegatus), and the surf clam (Spisula solidissima) was investigated in order to determine whether the differences detected could be correlated with differences in the function of cells in these stages of the germ cells. In order to monitor the behavior of lamins, the gametes and embryos were labeled with antibodies to lamins A, C, and B extracted from autoimmune sera of patients with scleroderma and Lupus erythematosus. Results indicated that lamin B could be identified in nuclear envelopes on only those nuclei where chromatin is attached and where RNA synthesis takes place.

  17. Design and Ballistic Performance of Hybrid Composite Laminates

    NASA Astrophysics Data System (ADS)

    Ćwik, Tomasz K.; Iannucci, Lorenzo; Curtis, Paul; Pope, Dan

    2017-06-01

    This paper presents an initial design assessment of a series of novel, cost-effective, and hybrid composite materials for applications involving high velocity impacts. The proposed hybrid panels were designed in order to investigate various physical phenomenon occurring during high velocity impact on compliant laminates from a previous study on Dyneema® and Spectra®. In the first, screening phase of the study twenty different hybrid composite laminates were impacted with 20 mm Fragment Simulating Projectiles at 1 km/s striking velocity. The best performing concepts were put forward to phase II with other hybrid concepts involving shear thickening fluids, commonly used in low velocity impacts. The results indicated that it is possible to design hybrid laminates of similar ballistic performance as the reference Dyneema® laminate, but with lower material costs. The optimal hybrid concept involves a fibre reinforced Polypropylene front and a Dyneema® backing.

  18. Fatigue of notched fiber composite laminates. Part 1: Analytical model

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P. V., Jr.; Kulkarni, S. V.; Huang, S. N.; Rosen, B. W.

    1975-01-01

    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given.

  19. Lamin A-dependent nuclear defects in human aging.

    PubMed

    Scaffidi, Paola; Misteli, Tom

    2006-05-19

    Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.

  20. Modelling of thick composites using a layerwise laminate theory

    NASA Technical Reports Server (NTRS)

    Robbins, D. H., Jr.; Reddy, J. N.

    1993-01-01

    The layerwise laminate theory of Reddy (1987) is used to develop a layerwise, two-dimensional, displacement-based, finite element model of laminated composite plates that assumes a piecewise continuous distribution of the tranverse strains through the laminate thickness. The resulting layerwise finite element model is capable of computing interlaminar stresses and other localized effects with the same level of accuracy as a conventional 3D finite element model. Although the total number of degrees of freedom are comparable in both models, the layerwise model maintains a 2D-type data structure that provides several advantages over a conventional 3D finite element model, e.g. simplified input data, ease of mesh alteration, and faster element stiffness matrix formulation. Two sample problems are provided to illustrate the accuracy of the present model in computing interlaminar stresses for laminates in bending and extension.

  1. Tensile stress-strain behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.

  2. Analysis of a unidirectional, symmetric buffer strip laminate with damage

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1984-01-01

    A method for predicting the fracture behavior of hybrid buffer strip laminates is presented in which the classical shear-lag model is used to represent the shear stress distribution between adjacent fibers. The method is demonstrated by applying it to a notched graphite/epoxy laminate, and the results show clearly the manner in which the most efficient combination of buffer strip properties can be selected in order to arrest the crack. The ultimate failure stress of the laminate is plotted vs the buffer strip width. It is shown that in the case of graphite-epoxy and S-glass epoxy laminates, the optimum buffer strip spacing to width ratio should be about four to one.

  3. Design and Ballistic Performance of Hybrid Composite Laminates

    NASA Astrophysics Data System (ADS)

    Ćwik, Tomasz K.; Iannucci, Lorenzo; Curtis, Paul; Pope, Dan

    2016-10-01

    This paper presents an initial design assessment of a series of novel, cost-effective, and hybrid composite materials for applications involving high velocity impacts. The proposed hybrid panels were designed in order to investigate various physical phenomenon occurring during high velocity impact on compliant laminates from a previous study on Dyneema® and Spectra®. In the first, screening phase of the study twenty different hybrid composite laminates were impacted with 20 mm Fragment Simulating Projectiles at 1 km/s striking velocity. The best performing concepts were put forward to phase II with other hybrid concepts involving shear thickening fluids, commonly used in low velocity impacts. The results indicated that it is possible to design hybrid laminates of similar ballistic performance as the reference Dyneema® laminate, but with lower material costs. The optimal hybrid concept involves a fibre reinforced Polypropylene front and a Dyneema® backing.

  4. Nuclear lamins during gametogenesis, fertilization and early development

    NASA Technical Reports Server (NTRS)

    Maul, G. G.; Schatten, G.

    1986-01-01

    The distribution of lamins (described by Gerace, 1978, as major proteins of nuclear envelope) during gametogenesis, fertilization, and early development was investigated in germ cells of a mouse (Mus musculus), an echinoderm (Lytechinus variegatus), and the surf clam (Spisula solidissima) was investigated in order to determine whether the differences detected could be correlated with differences in the function of cells in these stages of the germ cells. In order to monitor the behavior of lamins, the gametes and embryos were labeled with antibodies to lamins A, C, and B extracted from autoimmune sera of patients with scleroderma and Lupus erythematosus. Results indicated that lamin B could be identified in nuclear envelopes on only those nuclei where chromatin is attached and where RNA synthesis takes place.

  5. Laminated metamaterial flat lens at millimeter-wave frequencies.

    PubMed

    Kitayama, Daisuke; Yaita, Makoto; Song, Ho-Jin

    2015-09-07

    A flat and thin shape is obviously advantageous not only in terms of reducing the volume of a device, but also in handling and using it. Particularly, laminating or stacking flat devices is an intuitive and straightforward way of tailoring performance and functions. Here, we experimentally demonstrated a laminated flat lens for millimeter-wave frequencies that is based on split-ring resonators (SRRs) composed of multiple layers with different and/or identical index profiles and that exhibits characteristics that are linear combinations of those of the individual lenses. Since the characteristics of the lenses of each layer are preserved regardless of the neighbouring layers, the desired functionalities can be easily implemented simply by laminating elementary lenses designed already. When we laminated two lenses designed for bending or focusing incoming waves at 120 GHz, we clearly observed that the outgoing waves collimated and bended as desired.

  6. Characterization of delamination onset and growth in a composite laminate

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1981-01-01

    The onset and growth of delaminations in unnotched (+ or - 30/+ or - 30/90/90 bar) sub S graphite epoxy laminates is described quantitatively. These laminates, designed to delaminate at the edges under tensile loads, were tested and analyzed. Delamination growth and stiffness loss were monitored nondestructively. Laminate stiffness decreased linearly with delamination size. The strain energy release rate, G, associated with delamination growth, was calculated from two analyses. A critical G for delamination onset was determined, and then was used to predict the onset of delaminations in (+45 sub n/-45 sub n/o sub n/90 sub n) sub s (n=1,2,3) laminates. A delamination resistance curve (R curve) was developed to characterize the observed stable delamination growth under quasi static loading. A power law correlation between G and delamination growth rates in fatigue was established.

  7. Calculation of the room-temperature shapes of unsymmetric laminates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1981-01-01

    A theory explaining the characteristics of the cured shapes of unsymmetric laminates is presented. The theory is based on an extension of classical lamination theory which accounts for geometric nonlinearities. A Rayleigh-Ritz approach to minimizing the total potential energy is used to obtain quantitative information regarding the room temperature shapes of square T300/5208 (0(2)/90(2))T and (0(4)/90(4))T graphite-epoxy laminates. It is shown that, depending on the thickness of the laminate and the length of the side the square, the saddle shape configuration is actually unstable. For values of length and thickness that render the saddle shape unstable, it is shown that two stable cylindrical shapes exist. The predictions of the theory are compared with existing experimental data.

  8. Stairway fracture architecture in laminated to finely stratified rocks

    NASA Astrophysics Data System (ADS)

    Maggi, Matteo; Cianfarra, Paola; Salvini, Francesco

    2014-05-01

    In this work we present the result of a study dealing on the architecture of fractures in laminated rocks, where they develop accordingly to a stairway architecture. On a section perpendicular to the sedimentary layering/structure intersection, this architecture consists of stepping fracture segments running parallel to the lamination/layering (LaP) connected by ramp segments (R) cutting across the laminations. The presence of lamination produces an anisotropy that deviates the average fracture propagation. The presence of LaP segments strongly influences the fracture induced permeability in these rocks by increasing connectivity. These fractures are formed by either the coalescence of individual fractures (representing the ramp segments) or as the result of a single propagating fracture. Stairway fractures are likely to form during syn-diagenetic conditions. Depending on the original lamination dip, a component of rock sliding may trigger or enhance the fracturing process. The architecture of stairway fractures is parameterized by the L/R ratio (the ratio between the lengths of the Ramp and LaP segments), the original lamination dip, and the cut-off angle (the angle between the ramp segment of the fracture and the lamination), in turn depending from the stress regime. Successive tilting may tilt the original lamination dip. In this view, the cut-off angle results a particularly suited parameter being related to the interplay between the rheology of the layers and the stress conditions at failure. A physical model of stairway fractures has been developed considering the effect of the rheological contrast between the layer and the intra-layer infilling, the fluid overpressure and the overburden. The model has been successfully applied to laminated rocks outcrops. The rheological parameters needed to match the observed geometry were obtained using a Montecarlo approach. The obtained rheological parameters are comparable with those presented in the literature and

  9. Pharmacologic and alternative therapies for the horse with chronic laminitis.

    PubMed

    Sumano López, H; Hoyas Sepúlveda, M L; Brumbaugh, G W

    1999-08-01

    This article deals with treatment of the chronically foundered horse. The first section of this article is focused on aspects of the traditional pharmacologic approaches to management of digital pain and sepsis, dietary management, and thyroid supplementation. A second section introduces the concepts, principles, and agents that are used in homeopathic treatments for laminitis. Lastly, a third section of this article reviews the use of acupuncture and traditional Chinese medicine approaches to treatment of chronic laminitis.

  10. The pathophysiology of chronic laminitis. Pain and anatomic pathology.

    PubMed

    Morgan, S J; Grosenbaugh, D A; Hood, D M

    1999-08-01

    The potential pathologic manifestations of chronic laminitis are just as varied, and possibly more so, than the list of possible inciting agents of the disease itself. The extent to which rehabilitation and return to normal function can be attained, cannot always be accurately determined by physical examination. It should be remembered that significant physiologic and pathologic alterations occur in chronic laminitis; thus, even if radiographically the patient returns to a normal appearance, residual morphologic and structural defects are likely to remain.

  11. Clinical presentation, diagnosis, and prognosis of chronic laminitis in Europe.

    PubMed

    Eustace, Robert A

    2010-08-01

    The terminology relating to laminitis is confusing. This article describes how equine veterinarians, by using their eyes and fingers alone, can diagnose and evaluate a case of chronic laminitis. This evaluation will enable veterinarians to give a statistically significant prognosis that can be further refined by measurements taken from plain, weight-bearing lateromedial radiographs of the affected hooves. Should invasive techniques such as digital venography also be used, the results of both techniques are complementary.

  12. Laminated microchannel devices, mixing units and method of making same

    DOEpatents

    Bennett, Wendy D [Kennewick, WA; Hammerstrom, Donald J [West Richland, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA

    2002-10-17

    A laminated microchannel device is described in which there is a unit operation process layer that has longitudinal channel. The longitudinal channel is cut completely through the layer in which the unit process operation resides. Both the device structure and method of making the device provide significant advantages in terms of simplicity and efficiency. A static mixing unit that can be incorporated in the laminated microchannel device is also described.

  13. Time Domain Reflectometry for Damage Detection of Laminated CFRP plate

    DTIC Science & Technology

    2011-08-18

    Final Report PROJECT ID: AOARD-10-4112 Title: Time Domain Reflectometry for damage detection of laminated CFRP plate Researcher: Professor Akira...From July/2010 To July/2011 Abstract Recently, high toughness Carbon Fiber Reinforced Polymer ( CFRP ) laminates are used to primary structures. The...tough CFRP yields small fiber breakages when delamination crack is made in many cases. This requires a detection system of fiber breakages at low cost for

  14. Review on antibacterial biocomposites of structural laminated veneer lumber

    PubMed Central

    Chen, Zi-xiang; Lei, Qiong; He, Rui-lin; Zhang, Zhong-feng; Chowdhury, Ahmed Jalal Khan

    2015-01-01

    In this review, the characteristics and applications of structural laminated veneer lumber made from planted forest wood is introduced, and its preparation is explained, including various tree species and slab qualities, treatments for multiple effects and reinforced composites. The relevant factors in the bonding technology and pressing processes as well as the mechanical properties, research direction and application prospects of structural laminated veneer lumber made from planted forest wood are discussed. PMID:26858559

  15. Determination of the technical constants of laminates in oblique directions

    NASA Technical Reports Server (NTRS)

    Vidouse, F.

    1979-01-01

    An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.

  16. Stress analysis in laminated composites with fastener holes

    SciTech Connect

    Iarve, E.V.

    1995-12-31

    Spline approximation approach has been extended for three-dimensional stress analysis in composite laminates with elastic fastener holes. Contact problem describing the interaction between laminated composite and an elastic bolt has been solved by using variational approach and Lagrangian multiplier method. Rigorous criterion for definition of the contact zone size is derived from variational principle. Representative problems such as: bearing loading with zero and 4% clearance rigid bolt and filled hole tension problems were solved for homogeneous plates.

  17. Damage Tolerance of Composite Laminates from an Empirical Perspective

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2009-01-01

    Damage tolerance consists of analysis and experimentation working together. Impact damage is usually of most concern for laminated composites. Once impacted, the residual compression strength is usually of most interest. Other properties may be of more interest than compression (application dependent). A damage tolerance program is application specific (not everyone is building aircraft). The "Building Block Approach" is suggested for damage tolerance. Advantage can be taken of the excellent fatigue resistance of damaged laminates to save time and costs.

  18. Laminated ceramics with elastic interfaces: a mechanical advantage?

    PubMed

    Costa, Anna Karina F; Kelly, Robert D; Fleming, Garry J P; Borges, Alexandre Luiz S; Addison, Owen

    2015-03-01

    As CAD/CAM technologies improve we question whether adhesive lamination of ceramic materials could offer mechanical advantages over monolithic structures and improve clinical outcomes. The aim was to identify whether an adhesive interface (a chemically cured resin-cement) would influence the biaxial flexure strength (BFS) and slow-crack growth in a machinable dental ceramic. Monolithic and adhesively laminated (with a chemically cured dimethacrylate resin-cement) feldspathic ceramic discs of identical dimensions were fabricated. BFS testing was performed on the Group A monolithic specimens (n = 20), on Group B laminated specimens with the adhesive interface positioned below the neutral bending axis (n = 20) and Group C laminated specimens with the adhesive interface positioned above the neutral bending axis (n = 20). To study subcritical crack growth additional laminated specimens received controlled indentations and were exposed to thermo-mechanical fatigue. BFS data was analysed using parametric statistics (α = 0.05). Fractographic analyses were qualitatively assessed. No significant differences between the mean BFS data of Groups A and B were observed (p = 0.92) but the mean BFS of Group C was slightly reduced (p < 0.01). Lamination reduced the stiffness of the structure and fractographic analysis demonstrated that energy consuming crack deflection occurred. Thermo-mechanical fatigue caused subcritical extension of radial cracks associated with indentations adjacent to the adhesive interface. Crack growth was limited to parallel to the interface and was arrested or deflected in a direction normal to the interface. Ceramic lamination increased the damage tolerance of the structure and could limit or arrest subcritical crack growth at regions near the 'interlayer'. Lamination of a dental ceramic with a polymeric 'interlayer' could offer toughening effects which could potentially delay or arrest sub-critical crack growth at regions near the interface and thereby

  19. Support Assembly for Composite Laminate Materials During Roll Press Processing

    NASA Technical Reports Server (NTRS)

    Catella, Luke A.

    2011-01-01

    A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.

  20. Influence of chamber dimensions on the performance of a conduction micropump

    NASA Astrophysics Data System (ADS)

    Feng, Junyuan; Wan, Zhenping; Wen, Wanyu; Li, Yaochao; Tang, Yong

    2016-05-01

    An electrohydrodynamic (EHD) conduction micropump with symmetric planar electrodes is developed to investigate the effect of micropump chamber dimensions on static pressure and flow rate. The interdigitated electrodes are created on an FR-4 CCL (copper clad laminate) using photolithography. The micropump consists of an electrode plate, chamber plate, top and bottom end cover. A 2D numerical simulation study is conducted to provide details about the ion distribution and fluid flow behaviors within a local domain of micropumps with different chamber height. Experimental results show that, by increasing chamber height, the static pressure and flow rate rise with a big slope under a chamber height of 0.2 mm, and henceforth decrease dramatically. The variation trends of static pressure and flow rate with an increase in chamber height are determined by the combination of ion concentration distribution and fluidic circulation formed between the two electrodes. Additionally, the effect of the chamber width and length is experimentally analyzed for optimum pressure and output flow rate.

  1. Laminations from the Palmer Deep: A diatom-based interpretation

    NASA Astrophysics Data System (ADS)

    Leventer, Amy; Domack, Eugene; Barkoukis, Athan; McAndrews, Beth; Murray, Jane

    2002-06-01

    Highly laminated, Holocene age, diatomaceous sediments are characteristic of the Palmer Deep, western Antarctic Peninsula (Ocean Drilling Program (ODP) Leg 178, Site 1098). From ~10,000 years B.P. to the present, laminations are comprised of several groups of diatoms. Chaetoceros resting spores, the dominant laminae former, result from intense spring blooms. Rhizosolenia, Proboscia, Thalassiothrix, and Corethron are common also, the consequence of summer production marked by a well-stratified water column. Each lamination represents a single productivity event, but laminations are not necessarily annual. High concentrations of a subpolar form of Eucampia antarctica, in laminations between ~9000 and 6700 years B.P., suggest early Holocene warmth, a consequence of southward intrusion of more subpolar waters. The glacial-interglacial transition is distinguished by pairs of laminae most likely deposited annually. Laminations with an overwhelming dominance of Chaetoceros resting spores alternate with more ``terrigenous'' laminae, representing alternation of intense spring blooms, with more mixed deposition during the summer. Proximity to retreating glacial ice results in the supply of silt and sand that provides a marker bed between successive blooms.

  2. Tracer Lamination in the Stratosphere: A Global Climatology

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  3. Three dimensional inelastic finite element analysis of laminated composites

    NASA Technical Reports Server (NTRS)

    Griffin, O. H., Jr.; Kamat, M. P.

    1980-01-01

    Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners.

  4. Fatigue response of notched graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Kress, G. R.; Stinchcomb, W. W.

    1985-01-01

    Tests were performed to determine the damage states in quasi-isotropic graphite/epoxy laminates with center holes caused by cyclic tensile loading. The influence of the stacking sequence on the initiation and interaction of damage modes and the relationship between damage, strength, stiffness, and life of the laminates were also studied. X-ray radiography, moire interferometry, and stiffness change were used to monitor damage. Fatigue damage in both laminates began with matrix cracks around the holes leading to delaminations. In laminates cycled at the same percent of notched tensile strength the stacking sequence influenced the density of the matrix cracks and the modes and distribution of the damage. Ply cracking was also caused by the stacking sequence. The damage states in the two laminates produced stiffness changes of 15 to 20 percent, different rates of change in residual strength, and a factor of two to four difference in fatigue life. It was determined that continued cyclic loading produced matrix cracks which led to fatigue of the laminates.

  5. Response of automated tow placed laminates to stress concentrations

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.; Ilcewicz, Larry B.; Walker, Tom

    1993-01-01

    In this study, the response of laminates with stress concentrations is explored. Automated Tow Placed (ATP, also known as Fiber Placement) laminates are compared to conventional tape layup manufacturing. Previous tensile fracture tests on fiber placed laminates show an improvement in tensile fracture of large notches over 20 percent compared to tape layup laminates. A hierarchial modeling scheme is presented. In this scheme, a global model is developed for laminates with notches. A local model is developed to study the influence of inhomogeneities at the notch tip, which are a consequence of the fiber placement manufacturing technique. In addition, a stacked membrane model was developed to study delaminations and splitting on a ply-by-ply basis. The results indicate that some benefit with respect to tensile fracture (up to 11 percent) can be gained from inhomogeneity alone, but that the most improvement may be obtained with splitting and delaminations which are more severe in the case of fiber placement compared to tape layup. Improvements up to 36 percent were found from the model for fiber placed laminates with damage at the notch tip compared to conventional tape layup.

  6. The effect of lamination angle on polymer retention

    SciTech Connect

    Gao, H.W.

    1992-09-01

    Polymer retention may be affected by the reservoir geological structure due to lamination of the mineral surfaces. These laminae are very prevalent in Class I reservoirs. To account for the effect of lamination angle on polymer retention, several corefloods with three fired, rectangular, Berea sandstone cores were conducted. The three cores were cut at three different angles, 0, 30, and 90 degrees, with respect to the direction of laminations. A multiple slug retention method was used to determine the retention of a biopolymer in each core. Tracer tests were conducted before and after the biopolymer flow to determine how the retained biopolymer affected the fluid advance. A computed tomography (CT) scanning method was used to monitor the advance of the tracer. All corefloods and tracer tests were conducted at low flow rates similar to that in reservoirs. Coreflood tests revealed that polymer retention, which was mainly caused by mechanical entrapment, was higher in cores that had laminations parallel to the direction of flow than in cores that had crossbed laminae. In cores that had crossbed laminae, polymer retention increased with an increase in the lamination angle. Retained polymer is harmful to the stability of fluid front in cores that have laminations parallel to the direction of flow, but is helpful in cores that have crossbed laminae.

  7. Association of the glycoxidative stress marker pentosidine with equine laminitis.

    PubMed

    Valle, E; Storace, D; Sanguineti, R; Carter, R; Odetti, P; Geor, R; Bergero, D

    2013-06-01

    Ponies suffering from recurrent episodes of laminitis when grazed at pasture (pasture-associated laminitis) exhibit phenotypes similar to those associated with human metabolic syndrome. In humans, evidence suggests that the obesity-related morbidities associated with metabolic syndrome, including diabetes and cardiovascular disease, are caused by an increase in the production of advanced glycoxidation end-products (AGEs). These end-products have been recognised as putative pro-inflammatory mediators and are considered a 'risk factor' for human health. However, the evaluation of AGEs in laminitic ponies has not been explored. The aim of this study was to compare plasma concentrations of the AGE pentosidine (PENT) in ponies presenting with clinical features of equine metabolic syndrome (EMS) with a history of recent laminitis and/or showing signs of laminitis at the time of sampling (LP) with those with no prior history of clinical laminitis (NL). Age, body condition score (BCS) and bodyweight were recorded and blood samples collected for the measurement of plasma concentrations of PENT, glucose, insulin, triglycerides (TG), non-esterified fatty acids (NEFA) and cortisol. Insulin sensitivity was assessed by the reciprocal of the square root of insulin (RISQI) and the insulin:glucose ratio. Plasma PENT concentrations were twofold higher (P<0.005) in LP than in NL ponies. Significant (P<0.05) correlations were also evident between PENT and insulin, RISQI, TG and age. These preliminary findings are consistent with the hypothesis that glycoxidation in laminitis is associated with EMS.

  8. Coupled actin-lamin biopolymer networks and protecting DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Rocklin, D. Zeb; Mao, Xiaoming; Schwarz, J. M.

    The mechanical properties of cells are largely determined by networks of semiflexible biopolymers forming the cytoskeleton. Similarly, the mechanical properties of cell nuclei are also largely determined by networks of semiflexible biopolymers forming the nuclear cytoskeleton. In particular, a network of filamentous lamin sits just inside the inner nuclear membrane to presumably protect the heart of the cell nucleus--the DNA. It has been demonstrated over the past decade that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins bridging the outer and inner nuclear membranes, known as the LINC complex. We, therefore, probe the consequences of such a coupling in a model biopolymer network system via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the actin cytoskeletal network. We find, for example, that the force transmission across the coupled system can depend sensitively on the concentration of LINC complexes. Such study could have implications for mechanical mechanisms of the regulation of transcription since DNA couples to lamin via lamin-binding domains so that deformations in the lamin network may result in deformations in the DNA.

  9. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  10. Role of Lamin B1 in Chromatin Instability

    PubMed Central

    Butin-Israeli, Veronika; Adam, Stephen A.; Jain, Nikhil; Otte, Gabriel L.; Neems, Daniel; Wiesmüller, Lisa; Berger, Shelly L.

    2014-01-01

    Nuclear lamins play important roles in the organization and structure of the nucleus; however, the specific mechanisms linking lamin structure to nuclear functions are poorly defined. We demonstrate that reducing nuclear lamin B1 expression by short hairpin RNA-mediated silencing in cancer cell lines to approximately 50% of normal levels causes a delay in the cell cycle and accumulation of cells in early S phase. The S phase delay appears to be due to the stalling and collapse of replication forks. The double-strand DNA breaks resulting from replication fork collapse were inefficiently repaired, causing persistent DNA damage signaling and the assembly of extensive repair foci on chromatin. The expression of multiple factors involved in DNA replication and repair by both nonhomologous end joining and homologous repair is misregulated when lamin B1 levels are reduced. We further demonstrate that lamin B1 interacts directly with the promoters of some genes associated with DNA damage response and repair, including BRCA1 and RAD51. Taken together, the results suggest that the maintenance of lamin B1 levels is required for DNA replication and repair through regulation of the expression of key factors involved in these essential nuclear functions. PMID:25535332

  11. Advanced imaging with dynamic focus and extended depth using integrated FR4 platform.

    PubMed

    Isikman, Serhan O; Varghese, Samuel; Abdullah, Fahd; Augustine, Robin; Sprague, Randy B; Andron, Voytek; Urey, Hakan

    2009-09-14

    A two-degrees-of-freedom scanned beam imaging system with large dynamic range and dynamic focusing is demonstrated. The laser diode, photo-detector and the optical components are integrated on a moving platform that is made of FR4 (Flame-Retardant 4), a common polymeric substrate used in printed circuit boards. A scan angle of 52 degrees is demonstrated at 60 Hz resonant frequency while the laser is moved 250 um in the out-of-plane direction to achieve dynamic focusing. The laser is scanned by physically rotating the laser diode and the collection optics to achieve high signal-to-noise ratio and good ambient light rejection. The collection optics is engineered such that the collection efficiency decreases when collecting light from close distances to avoid detector saturation. The detection range is extended from contact distance up to 600 mm while the collected power level varies only by a factor of 30 within this long range. Slight modifications will allow increasing the detection range up to one meter. This is the first demonstration of a laser scan engine with such a high degree of integration of electronics, optoelectronics, optics and micromechanics on the same platform.

  12. A nonlinear stretching based electromagnetic energy harvester on FR4 for wideband operation

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Amann, Andreas; Roy, Saibal

    2015-01-01

    We report a nonlinear stretching-based electromagnetic energy harvester using FR4 as a vibrating spring material due to its low Young’s modulus. We show analytically that the nonlinearity is caused by the stretching, in addition to the bending, of the specially designed spring arms; this gives rise to a wider half-power bandwidth of 10 Hz at 1 g acceleration, which is almost 5 times higher than that of a comparable linear counterpart. The output spectra show the first reported experimental evidence of a symmetry broken nonlinear secondary peak in a single potential well system at frequencies close to the nonlinear jump frequency, which may appear to be due to the dynamic symmetry breaking of the oscillator or to the inherent asymmetry of the built prototype. The presence of this secondary peak is useful in generating a significant amount of power compared to the symmetric states, producing ˜3 times more power at the secondary peak than the nearby symmetric states. 110% of the peak power obtained for 0.5 g acceleration is achieved at the secondary peak during the frequency up-sweep. The experimental results are compared with a deterministic numerical model based on the Duffing oscillator, and we include a qualitative discussion on the influence of noise in an experimental energy harvesting system.

  13. Interface fracture and composite deformation of model laminates

    NASA Astrophysics Data System (ADS)

    Fox, Matthew R.

    Model laminates were studied to improve the understanding of composite mechanical behavior. NiAl/Mo and NiAl/Cr model laminates, with a series of interfaces, were bonded at 1100°C. Reaction layers were present in all laminates, varying in thickness with bonding conditions. Interface fracture strengths and resistances were determined under primarily mode II loading conditions using a novel technique, the asymmetrically-loaded shear (ALS) test, in which one layer of the laminate was loaded in compression, producing a stable interface crack. The NiAl/Mo interface was also fractured in four-point bending. A small amount of plasticity was found to play a role in crack initiation. During steady-state mode II interface fracture of NiAl/Mo model laminates, large-scale slip was observed near the crack tip in the NiAl adjacent to the interface. After testing, the local slope and curvature of the interface were characterized at intervals along the interface and at slip locations to qualitatively describe local stresses present at and just ahead of the crack tip. The greatest percentage of slip occurred where closing forces on the crack tip were below the maximum value and were decreasing with crack growth. A mechanism for crack propagation is presented describing the role of large-scale slip in crack propagation. The mechanical response of structural laminates in 3-D stress states, as would be present in a polycrystalline aggregate composed of lamellar grains, are lacking. In order to understand the response of laminates composed of hard and soft phases, Pb/Zn laminates were prepared and tested in compression with varying lamellar orientation relative to the loading axis. A model describing the mechanical response in a general state assuming elastic-perfectly plastic isotropic layers was developed. For the 90° laminate, a different approach was applied, using the friction hill concepts used in forging analyses. With increasing ratios of cross-sectional radius to layer

  14. Progressive Fracture of Laminated Composite Stiffened Plate

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Chamis, Christos C.; David, Kostantinos; Abdi, Frank

    2007-01-01

    Laminated fiber-reinforced composite stiffened plate with [0/90/plus or minus 45]s plies made of S-Glass/epoxy are evaluated via computational simulation to study damage and fracture progression. The loads are pressure and temperature which varies from 21 to 65.5 C (case I) and from 143.3 to 21 C (case II). An integrated computer code is used for the simulation of the damage progression. Results show that damage initiation begins at low load level, with matrix cracking at the 0 deg. (bottom and top) plies, fiber fracture at the bottom (0 deg.) ply and interply delamination at the top (0 deg. ) ply. Increasing the applied pressure, the damage growth is expended resulting in fracture through the thickness of the structure. At this stage, 90 percent of the plies damage at applied pressure 15.306 MPa for the case I and 15.036 MPa for the case II. After this stage the cracks propagate rapidly and the structure collapses.

  15. Benefits of oxygen incorporation in atomic laminates

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Martin

    2016-04-01

    Atomic laminates such as MAX phases benefit from the addition of oxygen in many ways, from the formation of a protective oxide surface layer with self-healing capabilities when cracks form to the tuning of anisotropic conductivity. In this paper oxygen incorporation and vacancy formation in M 2AlC (M  =  Ti, V, Cr) MAX phases have been studied using first-principles calculations where the focus is on phase stability and electronic structure for different oxygen and/or vacancy configurations. Oxygen prefers different lattice sites depending on M-element and this can be correlated to the number of available non-bonding M d-electrons. In Ti2AlC, oxygen substitutes carbon while in Cr2AlC it is located interstitially within the Al-layer. I predict that oxygen incorporation in Ti2AlC stabilizes the material, which explains the experimentally observed 12.5 at% oxygen (x  =  0.5) in Ti2Al(C1-x O x ). In addition, it is also possible to use oxygen to stabilize the hypothetical Zr2AlC and Hf2AlC. Hence, oxygen incorporation may be beneficial in many ways. Not only can it make a material more stable, but it also can act as a reservoir for internal self-healing with shorter diffusion paths.

  16. Damage growth in composite laminates with interleaves

    NASA Technical Reports Server (NTRS)

    Goree, James G.

    1987-01-01

    The influence of placing interleaves between fiber reinforced plies in multilayered composite laminates is investigated. The geometry of the composite is idealized as two dimensional, isotropic, linearly elastic media made of a damaged layer bonded between two half planes and separated by thin interleaves of low extensional and shear moduli. The damage in the layer is taken in the form of a symmetric crack perpendicular to the interface and may extend up to the interface. The case of an H-shaped crack in the form of a broken layer with delamination along the interface is also analyzed. The interleaves are modeled as distributed shear and tension springs. Fourier integral transform techniques are used to develop solutions in terms of singular integral equations. An asymptotic analysis of the integral equations based on Muskhelishvili's techniques reveals logarithmically singular axial stresses in the half plane at the crack tips for the broken layer. For the H shaped crack, similar singularities are found to exist in the axial stresses at the interface crack tips in the layer and the half plane. The solution of the equations is found numerically for the stresses and displacements by using the Hadamard's concept of direct differentiation of Cauchy integrals as well as Gaussian integration techniques.

  17. Analysis of damage in composite laminates under bending

    NASA Astrophysics Data System (ADS)

    Kuriakose, Sunil

    The focus of this research was damage formation in composite laminates subjected to bending. Matrix cracking and internal delamination are common damage modes before final failure for a composite laminate under thermo-mechanical loading. Two configurations of cross-ply laminates, namely [0m/90 n]s and [90m/0n]s, were considered for the study. Approximate analytical solutions for the stress states in the two laminates subjected to constant bending moment, with matrix cracks in the 90° layers, were derived using a variational approach. The evolution of matrix cracking under monotonically increasing load was studied for a number of composite materials. The analytical predictions showed an initial stage of rapid matrix crack multiplication followed by a slowing down in the crack multiplication. In the case of [0m/90n] s laminate, 0° ply failure in tension or compression was found to be likely even at the initial stages of matrix cracking for laminates with thin 90° layer. The 0° ply failure is delayed for laminates with thicker 90° layer. The analytical model for the stress state in the [90m/0 n]s laminate was extended to include delamination from the matrix crack-tip along the 0/90 interface. The bending moment required to initiate crack-tip delamination was computed as a function of the crack density. By comparing this result with matrix crack evolution, the relative dominance of the two modes of damage could be determined. The critical crack density beyond which delamination dominates matrix cracking is obtained from the analysis. The critical crack density is interpreted as the stage beyond which growth of delamination rather than matrix cracking is likely to occur. Parametric studies conducted by varying the laminate configuration showed that the critical crack density for delamination onset strongly depends on the thickness of the 90° layer and the distance of the 90° layer from the laminate mid-plane. Quasi-static growth of delamination under monotonic

  18. Tape cast bioactive metal-ceramic laminates for structural application

    NASA Astrophysics Data System (ADS)

    Clupper, Daniel Christopher

    Bioglass 45S5, is a silica based glass which is able to rapidly form strong bonds with bone and soft tissue in vivo. It is used clinically to replace damaged ear ossicles and in dental surgery to help maintain the structural integrity of the jaw bone. The goal of the research was to demonstrate that Bioglass can be toughened by lamination with metallic layers while maintaining bioactivity. Improvement of the mechanical properties of Bioglass 45SS would allow for additional clinical applications, such as fracture fixation plates, or vertebral spacers. Bioglass 45S5 was tape cast and laminated with clinically relevant metals (316L, stainless steel and titanium) as well as copper in an effort to demonstrate that the effective toughness, or area under the load-deflection diagram can be increased significantly through ductile layer lamination. The average strength of monolithic tape cast sintered Bioglass was as high as 150 MPa and the toughness measured approximately 1.0 MPa m1/2. Copper-Bioglass laminates clearly demonstrated the toughening effect of metal layers on tape cast sintered Bioglass 45S5. Steel-Bioglass laminates, although less tough than the copper-Bioglass laminates, showed higher strengths. In vitro bioactivity tests of both titanium and steel Bioglass laminates showed the formation of mature and thick hydroxyapatite layers after 24 hours in Tris buffer solution. Under the standard test conditions, the bioactivity of monolithic tape cast sintered Bioglass increased with increasing sintering temperature. For samples sintered at 1000°C, thick crystalline layers of hydroxyapatite formed within 24 hours in Tris buffer solution. The bioactivity of these samples approached that of amorphous bulk Bioglass. Samples processed at 800°C were able to form thick crystalline hydroxyapatite layer after 24 hours when the test solution volume was increased by eight times.

  19. Vascular Dysfunction in Horses with Endocrinopathic Laminitis

    PubMed Central

    Morgan, Ruth A.; Keen, John A.; Walker, Brian R.; Hadoke, Patrick W. F.

    2016-01-01

    Endocrinopathic laminitis (EL) is a vascular condition of the equine hoof resulting in severe lameness with both welfare and economic implications. EL occurs in association with equine metabolic syndrome and equine Cushing’s disease. Vascular dysfunction, most commonly due to endothelial dysfunction, is associated with cardiovascular risk in people with metabolic syndrome and Cushing’s syndrome. We tested the hypothesis that horses with EL have vascular, specifically endothelial, dysfunction. Healthy horses (n = 6) and horses with EL (n = 6) destined for euthanasia were recruited. We studied vessels from the hooves (laminar artery, laminar vein) and the facial skin (facial skin arteries) by small vessel wire myography. The response to vasoconstrictors phenylephrine (10−9–10-5M) and 5-hydroxytryptamine (5HT; 10−9–10-5M) and the vasodilator acetylcholine (10−9–10-5M) was determined. In comparison with healthy controls, acetylcholine-induced relaxation was dramatically reduced in all intact vessels from horses with EL (% relaxation of healthy laminar arteries 323.5 ± 94.1% v EL 90.8 ± 4.4%, P = 0.01, laminar veins 129.4 ± 14.8% v EL 71.2 ± 4.1%, P = 0.005 and facial skin arteries 182.0 ± 40.7% v EL 91.4 ± 4.5%, P = 0.01). In addition, contractile responses to phenylephrine and 5HT were increased in intact laminar veins from horses with EL compared with healthy horses; these differences were endothelium-independent. Sensitivity to phenylephrine was reduced in intact laminar arteries (P = 0.006) and veins (P = 0.009) from horses with EL. Horses with EL exhibit significant vascular dysfunction in laminar vessels and in facial skin arteries. The systemic nature of the abnormalities suggest this dysfunction is associated with the underlying endocrinopathy and not local changes to the hoof. PMID:27684374

  20. Vascular Dysfunction in Horses with Endocrinopathic Laminitis.

    PubMed

    Morgan, Ruth A; Keen, John A; Walker, Brian R; Hadoke, Patrick W F

    Endocrinopathic laminitis (EL) is a vascular condition of the equine hoof resulting in severe lameness with both welfare and economic implications. EL occurs in association with equine metabolic syndrome and equine Cushing's disease. Vascular dysfunction, most commonly due to endothelial dysfunction, is associated with cardiovascular risk in people with metabolic syndrome and Cushing's syndrome. We tested the hypothesis that horses with EL have vascular, specifically endothelial, dysfunction. Healthy horses (n = 6) and horses with EL (n = 6) destined for euthanasia were recruited. We studied vessels from the hooves (laminar artery, laminar vein) and the facial skin (facial skin arteries) by small vessel wire myography. The response to vasoconstrictors phenylephrine (10-9-10-5M) and 5-hydroxytryptamine (5HT; 10-9-10-5M) and the vasodilator acetylcholine (10-9-10-5M) was determined. In comparison with healthy controls, acetylcholine-induced relaxation was dramatically reduced in all intact vessels from horses with EL (% relaxation of healthy laminar arteries 323.5 ± 94.1% v EL 90.8 ± 4.4%, P = 0.01, laminar veins 129.4 ± 14.8% v EL 71.2 ± 4.1%, P = 0.005 and facial skin arteries 182.0 ± 40.7% v EL 91.4 ± 4.5%, P = 0.01). In addition, contractile responses to phenylephrine and 5HT were increased in intact laminar veins from horses with EL compared with healthy horses; these differences were endothelium-independent. Sensitivity to phenylephrine was reduced in intact laminar arteries (P = 0.006) and veins (P = 0.009) from horses with EL. Horses with EL exhibit significant vascular dysfunction in laminar vessels and in facial skin arteries. The systemic nature of the abnormalities suggest this dysfunction is associated with the underlying endocrinopathy and not local changes to the hoof.

  1. Multiphase laminates of extremal effective conductivity in two dimensions

    NASA Astrophysics Data System (ADS)

    Albin, Nathan; Cherkaev, Andrej; Nesi, Vincenzo

    2007-07-01

    This paper deals with two-dimensional composites made of several isotropic linearly conducting phases in prescribed volume fractions. The primary focus is on the three-phase case; the generalization to a larger number of phases is straightforward. A class of high- but finite-rank laminates is introduced. The laminates saturate the known inequality bounds—due to the work of Hashin and Shtrikman, Lurie and Cherkaev, Tartar, and Murat and Tartar—on the effective conductivity tensor of any composite. These bounds depend only on the constituent material properties and volume fractions and not on the placement of these materials in the composite. The bounds are known not to be optimal for all admissible choices of the conductivities and volume fractions. However, they are now known to be realizable in a much larger range of these parameters than was previously known. The range of effective properties of our multiphase laminates strictly includes those corresponding to the composites found earlier by Milton and Kohn, Lurie and Cherkaev, and Gibiansky and Sigmund. The new optimal laminates are found in a systematic fashion by satisfying sufficient conditions on the fields in each layer. This leads to a simple algorithm for generating optimal laminates. In addition a new supplementary bound for multiphase structures is also proven which must be satisfied by composites with smooth interfaces.

  2. Dynamic Stability of Uncertain Laminated Beams Under Subtangential Loads

    NASA Technical Reports Server (NTRS)

    Goyal, Vijay K.; Kapania, Rakesh K.; Adelman, Howard (Technical Monitor); Horta, Lucas (Technical Monitor)

    2002-01-01

    Because of the inherent complexity of fiber-reinforced laminated composites, it can be challenging to manufacture composite structures according to their exact design specifications, resulting in unwanted material and geometric uncertainties. In this research, we focus on the deterministic and probabilistic stability analysis of laminated structures subject to subtangential loading, a combination of conservative and nonconservative tangential loads, using the dynamic criterion. Thus a shear-deformable laminated beam element, including warping effects, is derived to study the deterministic and probabilistic response of laminated beams. This twenty-one degrees of freedom element can be used for solving both static and dynamic problems. In the first-order shear deformable model used here we have employed a more accurate method to obtain the transverse shear correction factor. The dynamic version of the principle of virtual work for laminated composites is expressed in its nondimensional form and the element tangent stiffness and mass matrices are obtained using analytical integration The stability is studied by giving the structure a small disturbance about an equilibrium configuration, and observing if the resulting response remains small. In order to study the dynamic behavior by including uncertainties into the problem, three models were developed: Exact Monte Carlo Simulation, Sensitivity Based Monte Carlo Simulation, and Probabilistic FEA. These methods were integrated into the developed finite element analysis. Also, perturbation and sensitivity analysis have been used to study nonconservative problems, as well as to study the stability analysis, using the dynamic criterion.

  3. Fracture behavior of unidirectional boron/aluminum composite laminates

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Jones, W. F.

    1983-01-01

    An experiment was conducted to verify the results of mathematical models which predict the stresses and displacements of fibers and the amount of damage growth in a center-notched lamina as a function of the applied remote stress and the matrix and fiber material properties. A brittle lacquer coating was used to detect the yielding in the matrix while X-ray techniques were used to determine the number of broken fibers in the laminate. The notched strengths and the amounts of damage found in the specimens agree well with those predicted by the mathematical model. It is shown that the amount of damage and the crack opening displacement does not depend strongly on the number of plies in the laminate for a given notch width. By heat-treating certain laminates to increase the yield stress of the alumina matrix, the effect of different matrix properties on the fracture behavior was investigated. The stronger matrix is shown to weaken the notched laminate by decreasing the amount of matrix damage, thereby making the laminate more notch sensitive.

  4. Glucocorticoid-induced laminitis with hepatopathy in a Thoroughbred filly.

    PubMed

    Ryu, Seung Ho; Kim, Byung Sun; Lee, Chang Woo; Yoon, Junghee; Lee, Yonghoon Lyon

    2004-09-01

    A 3-year-old Thoroughbred filly was referred to the Equine Hospital, Korea Racing Association for evaluation of hematuria, inappetite, weight loss and depression. From 25 days prior to admission, the horse was treated for right carpal lameness with 20 mg intramuscular administration of triamcinolone acetonide per day for consecutive 10 days by a local veterinarian. Clinical and laboratory findings included vaginal hyperemia, flare in bladder wall, neutrophilia, lymphopenia, polyuria, polydipsia and laminitis in the end. High activities of aspartate transaminase and gamma glutamyltransferase and high concentration of total bilirubin indicated hepatopathy. Further hematology, serum biochemistry and urinalysis did not reveal any abnormalities. Medical history, physical and clinicopathologic findings suggest that the laminitis and hepatopathy in this horse were most likely induced by repeated administration of exogenous corticosteroid. However, guarded prognosis of treating laminitis undermined the benefit of improvement of hematuria following electroacupuncture stimulation. The combined stimulation of kidney related acupoints (Shen Peng, Shen Shu), lumber related acupoints (Yao Qian, Yao Zhong) and associate acupoints (Guan Yuan Shu, Bai Hui) at 5Hz, 1-2V, for 40 minutes was of value in the treatment of hematuria. This case shows that horses under steroids may exhibit laminitis and steroid hepatopathy. Early recognition and good management of laminitis are important in the limitation of complications.

  5. Tension fatigue analysis and life prediction for composite laminates

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Rigamonti, M.; Zanotti, C.

    1988-01-01

    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth.

  6. The manufacture and properties of radiation resistant laminates

    SciTech Connect

    Benzinger, J.R.

    1982-01-01

    The fusion reactor applications of laminates, especially in the area of superconducting magnets and industrial thermoetting laminates, are large scale and potentially widespread. This study invesitigates several variants of G-10CR and G-11CR laminates with a view toward improving radiation resistance and mechanical strength as well as cost. The particle filler selected for the experiment was quartz (pure Si0/sub 2/); the polyimide variant was a selection from the aromatic diamine bismaleimide family (Kerimid 601); and, to improve both mechanical properties and radiation effects, a satin-style fabric woven from S-2 glass was used to reinforce one of the polyimide variants. The experiment was carried out at Spaulding Fibre Company. It was found that variants of the SCR grade laminants made with S-2 glass provide higher mechanical strength and less residual radioactivity than E-glass laminates. After irradiation it was found that the polyimide variant was less damaged and remained 5 to 10 times stronger than G-10CR and G-11CR epoxides. Results from other programs coincide.

  7. Effect of microcracks on the thermal expansion of composite laminates

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.

    1984-01-01

    A finite element analysis was used to quantitatively predict the effect of matrix microcracks in the 90 deg plies of graphite/epoxy composites on the coefficient of thermal expansion in the 0 deg direction, alpha (y) (perpendicular to the cracks). Results were generated for (0m/90n)s, (0/+ or 45/90)s and (0/90/ + or - 45)s graphite/epoxy laminate configurations. Analytical predictions were compared with experimental results for the two quasi-isotropic laminate configurations. Both analytical and experimental results showed that microcracks reduced the effective stiffness of the 90 deg plies, thus causing the laminates, thermal response to be more like that of a (0) laminate. The change in alpha(y) was a function of lamina material properties, microcrack density, fiber orientation, and stacking sequence. A combination of classical lamination theory and finite element analysis was used to predict the effect of microcracks in both the 90 deg and 0 deg plies. Analytical results showed that the addition of microcracks in the 0 deg plies do affect alpha(y), but to a lesser extent than those in the 90 deg plies.

  8. Leukocyte emigration in the early stages of laminitis.

    PubMed

    Black, Samuel J; Lunn, D Paul; Yin, Cailing; Hwang, Misako; Lenz, Stephen D; Belknap, James K

    2006-01-15

    The mechanisms that initiate the pathophysiologic changes in the digital laminae in equine laminitis are poorly understood. Due to the fact that (1) the horse at risk of laminitis has many similarities clinically to the human sepsis patient and (2) our recent finding of marked laminar proinflammatory cytokine expression at the developmental time point of the black walnut extract (BWE) model of laminitis, we tested the possibility that, similar to organ damage in human sepsis, leukocyte emigration is an early event in laminitis. Using immunoperoxidase methods with an anti-equine CD13 monoclonal antibody that recognizes neutrophils and monocytes, we discovered that, whereas the dermal microvasculature of the skin commonly has a marginal pool of leukocytes, the normal laminar dermal microvasculature has minimal to no perivascular leukocytes. However, increases in leukocyte numbers occurred around the dermal vasculature of both the laminae and the skin in the majority of BWE-treated horses in the developmental stage and at the onset of clinical signs of lameness in the BWE model. These findings indicate that, similar to organ failure in human sepsis, leukocyte emigration is likely to play a significant role in initiating numerous pathophysiologic mechanisms that lead to the development of laminitis.

  9. Analytical study for deformability of laminated sheet metal

    PubMed Central

    Serror, Mohammed H.

    2012-01-01

    While a freestanding high-strength sheet metal subject to tension will rupture at a small strain, it is anticipated that lamination with a ductile sheet metal will retard this instability to an extent that depends on the relative thickness, the relative stiffness, and the hardening exponent of the ductile sheet. This paper presents an analytical study for the deformability of such laminate within the context of necking instability. Laminates of high-strength sheet metal and ductile low-strength sheet metal are studied assuming: (1) sheets are fully bonded; and (2) metals obey the power law material model. The effect of hardening exponent, volume fraction and relative stiffness of the ductile component has been studied. In addition, stability of both uniform and nonuniform deformations has been investigated under plane strain condition. The results have shown the retardation of the high-strength layer instability by lamination with the ductile layer. This has been achieved through controlling the aforementioned key parameters of the ductile component, while the laminate exhibits marked enhancement in strength–ductility combination that is essential for metal forming applications. PMID:25685405

  10. [Animal welfare in prevention and therapy of laminitis].

    PubMed

    Winkelsett, S; Vervuert, I

    2008-03-01

    Laminitis is a systemic disease which is manifested as a non infectious condition in the foot. The management of feeding and housing conditions is necessary to treat the endocrinological and metabolic disturbances of laminitic horses. The Equine Metabolic Syndrome (EMS) is predisposing for developing laminitis, and it is characterised by obesity, insulin resistance, hypertension and dyslipidaemia. A genetical predisposition is supposed and EMS is accompanied by a lack of exercise and inadequate energy intake. Laboratory examinations are of great importance for diagnosis. Analyses of insulin, glucose and ACTH are of interest. Several approaches to treat laminitis are available, including pharmacological and orthopaedic strategies as well as the management of the feeding and housing conditions. However, the prophylaxis to prevent laminitis has to be emphasised. Predisposed horses should be detected and adequately treated; especially weight reduction in obese horses is in the focus of interest. Horses in the acute stage of laminitis have to be stabled. Furthermore redistributing weight from the most stressed wall is necessary to prevent pain and to minimise laminar damage and displacement of the distal phalanx. In cases of displacement of the distal phalanx a close communication between the veterinarian and the authorised farrier is necessary, in these cases treatment should be supported by x-ray diagnosis. Horses have to be treated with NSAISs to ensure a proper therapy to consider animal welfare. Horses have to be fed with hay and supplemented with minerals and vitamins. Feeding exclusively straw and feed restriction has to be avoided.

  11. Human Lamin B Contains a Farnesylated Cysteine Residue*

    PubMed Central

    Farnsworth, Christopher C.; Wolda, Sharon L.; Gelb, Michael H.; Glomset, John A.

    2012-01-01

    We recently showed that HeLa cell lamin B is modified by a mevalonic acid derivative. Here we identified the modified amino acid, determined its mode of link-age to the mevalonic acid derivative, and established the derivative’s structure. A cysteine residue is modified because experiments with lamin B that had been biosynthetically labeled with [3H] mevalonic acid or [35S] cysteine and then extensively digested with proteases yielded 3H- or 35S-labeled products that co-chromatographed in five successive systems. A thioether linkage rather than a thioester linkage is involved because the mevalonic acid derivative could be released from the 3H-labeled products in a pentane-extractable form by treatment with Raney nickel but not with methanolic KOH. The derivative is a farnesyl moiety because the Raney nickel-released material was identified as 2,6,10-trimethyl-2,6,10-dodecatriene by a combination of gas chromatography and mass spectrometry. The thioether-modified cysteine residue appears to be located near the carboxyl end of lamin B because treatment of 3H-labeled lamin B with cyanogen bromide yielded a single labeled polypeptide that mapped toward this end of the cDNA-inferred sequence of human lamin B. PMID:2684976

  12. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  13. 77 FR 61025 - Certain Prepregs, Laminates, and Finished Circuit Boards: Notice of Institution of Formal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Prepregs, Laminates, and Finished Circuit Boards: Notice of Institution of Formal... States after importation of certain prepregs, laminates, and finished circuit boards that infringe...

  14. Temperature stabilization of microwave ferrite devices

    NASA Technical Reports Server (NTRS)

    Kaminsky, R.; Wendt, E. J.

    1978-01-01

    Thin-film heating element for strip-line circulator is sandwiched between insulation and copper laminations. Disks conform to shape of circulator ferrite disks and are installed between copper-clad epoxy ground planes. Heater design eliminates external cartridges and reduces weight by approximately one-third.

  15. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection.

    PubMed

    Wei, Wenqiang; Wang, Hongju; Li, Xiaoya; Fang, Na; Yang, Shili; Liu, Hongyan; Kang, Xiaonan; Sun, Xiulian; Ji, Shaoping

    2016-05-07

    At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf) of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp)-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  16. Low-temperature mechanical properties of glass/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-01

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  17. Some engineering properties of cotton-phenolic laminates

    NASA Astrophysics Data System (ADS)

    Walsh, R. P.; Toplosky, V. J.

    2002-05-01

    Although cotton/phenolic laminates are commonly used at cryogenic temperatures as structural and insulating materials, the available low temperature materials properties data is limited. We have reviewed the existing low temperature database for cotton/phenolic and have identified areas of need. We have conducted a materials test program on the two common types (linen and canvas) of cotton/phenolic laminates to add to the existing database and to generate new data in areas where needed. Also included is a comparison of cotton/phenolic engineering properties to the properties of NEMA G-10 CR glass-cloth reinforced laminate. The properties studied here are tensile and compressive strength, elastic modulus, shear properties and thermal expansion characteristics over the temperature range from 295 K to 4 K.

  18. Laminations and microgranule formation in pediatric glomerular basement membranes.

    PubMed

    Craver, Randall; Crespo-Salgado, Janice; Aviles, Diego

    2014-01-01

    Glomerular basement membrane (GBM) splitting, laminations, and microgranular formation are classically encountered with Alport disease, but can be found in other glomerular diseases. We found moderate to marked GBM laminations/microgranular formations in 51 of 724 (7%) pediatric diagnostic renal biopsies. These included 12 Alport disease, 12 thin basement membrane disease (TBM), 13 mesangial hypercellularity (MH), 6 focal segmental glomerulosclerosis (FSGS), and 8 other diseases. Follow-up demonstrated progression in most of the Alport disease and FSGS, as expected, but also in 40% of TBM and 30% of MH. Basement membrane laminations/microgranular formations are not specific for Alport disease, may represent a non-specific injury, and may herald a progressive clinical course.

  19. Multiscale modeling of damage in multidirectional composite laminates

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Veer

    The problem of damage accumulation in laminated composite materials has received much attention due to their widespread application in the aerospace, automotive, civil, and sports industries. In the aerospace industry, composites are used to make light weight and efficient structural components. In the Boeing 787, for example, more than 50% of the structure is made of composite materials. Although there have been significant developments in analyzing cross-ply laminates, none of the present approaches provides reasonable predictions for multidirectional laminates in which intralaminar cracks may form in multiple orientations. Nevertheless, the prediction of damage accumulation and its effect on structural performance is a very difficult problem due to complexity of the cracking processes. This study presents a synergistic damage mechanics (SDM) methodology to analyze damage behavior in multidirectional composite laminates with intralaminar cracks in plies of multiple orientations. SDM combines the strengths of micro-damage mechanics (MDM) and continuum damage mechanics (CDM) in predicting the stiffness degradation due to these cracks. The micromechanics is performed on a representative unit cell using a three-dimensional finite element analysis to calculate the crack opening displacement accounting for the influence of the surrounding plies, the so-called constraint effect. This information is then incorporated in the CDM formulation dealing with laminates containing cracks in different ply orientations through a 'constraint parameter'. Following CDM, a separate damage mode is defined for each type of crack and the expressions for engineering moduli of the damaged laminate are then derived in terms of crack density and the constraint parameter. The SDM methodology is implemented for [0 m/+/- thetan/0 m/2]s laminates containing cracks in +/-theta plies. It is then extended to [0m /+/- thetan/90 r]s and [0m/90 r/+/- thetan] s laminates with cracks additionally in the

  20. Fracture behavior of unidirectional boron/aluminum composite laminates

    NASA Technical Reports Server (NTRS)

    Jones, F. W.; Goree, J. G.

    1983-01-01

    An experimental investigation of the fracture behavior of unidirectional boron/aluminum composite laminates was conducted in order to verify the results of mathematical models. These models predict the fiber stresses and displacements and the amount of damage growth in a center-notched lamina as a function of the applied remote stress and the matrix and fiber material properties. A brittle lacquer coating was used to detect the yielding in the matrix while X-ray techniques were used to determine the number of broken fibers in the laminate. The notched strengths and the amounts of damage found in the specimens agreed well with those predicted by the models. It was shown that for thin laminates the amount of damage and the fiber displacements do not depend strongly on the number of plies for a given notch width.

  1. Thermal modeling of carbon-epoxy laminates in fire environments.

    SciTech Connect

    McGurn, Matthew T. , Buffalo, NY); DesJardin, Paul Edward , Buffalo, NY); Dodd, Amanda B.

    2010-10-01

    A thermal model is developed for the response of carbon-epoxy composite laminates in fire environments. The model is based on a porous media description that includes the effects of gas transport within the laminate along with swelling. Model comparisons are conducted against the data from Quintere et al. Simulations are conducted for both coupon level and intermediate scale one-sided heating tests. Comparisons of the heat release rate (HRR) as well as the final products (mass fractions, volume percentages, porosity, etc.) are conducted. Overall, the agreement between available the data and model is excellent considering the simplified approximations to account for flame heat flux. A sensitivity study using a newly developed swelling model shows the importance of accounting for laminate expansion for the prediction of burnout. Excellent agreement is observed between the model and data of the final product composition that includes porosity, mass fractions and volume expansion ratio.

  2. Elastic Buckling of Laminated Plates Under Varying Axial Stresses

    NASA Technical Reports Server (NTRS)

    Badir, A.; Hu, H.

    1998-01-01

    The elastic buckling load of simply supported rectangular composite plates subjected to a second degree parabolic variation of axial stresses in the longitudinal direction is calculated using analytical methods. The variation of axial stresses is equilibrated by nonuniform shear stresses along the plate edges and transverse normal stresses. Numerical results are reported for three different cases: (1) orthotropic plates, (2) symmetrically laminated plates with multiple generally orthotropic layers exhibiting coupling between normal moments and twist, and twisting moment and normal curvatures, and (3) unsymmetrically laminated plates. Rayleigh-Ritz method is used to calculate the buckling load. An approximate solution using "reduced bending stiffness" is adopted for unsymmetrically laminated plates. The influence of the aspect ratio is examined, and the results are compared with plates subjected to uniform axial stresses.

  3. Hybrid Titanium Composite Laminates: A New Aerospace Material

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Cobb, Ted Q.; Lowther, Sharon; St.Clair, T. L.

    1998-01-01

    In the realm of aerospace design and performance, there are few boundaries in the never-ending drive for increased performance. This thirst for ever-increased performance of aerospace equipment has driven the aerospace and defense industries into developing exotic, extremely high-performance composites that are pushing the envelope in terms of strength-to-weight ratios, durability, and several other key measurements. To meet this challenge of ever-increasing improvement, engineers and scientists at NASA-Langley Research Center (NASA-LaRC) have developed a high-temperature metal laminate based upon titanium, carbon fibers, and a thermoplastic resin. This composite, known as the Hybrid Titanium Composite Laminate, or HTCL, is the latest chapter in a significant, but relatively short, history of metal laminates.

  4. Design, fabrication, and characterization of laminated hydroxyapatite-polysulfone composites

    NASA Astrophysics Data System (ADS)

    Wilson, Clifford Adams, II

    There exists a need to develop devices that can be used to replace hard tissues, such as bone, in load-bearing areas of the body. An ideal hard tissue replacement device is one that stimulates growth of natural tissues, and is slowly resorbed by the body. The implant is also required to have elastic modulus, strength, and toughness values similar to the tissues being replaced. Hydroxyapatite (HA) is the primary mineral phase of bone and has the potential for use in biomedical applications because it stimulates cell growth and is resorbable. Unfortunately, HA is a relatively low strength, low toughness material, which limits its application to only low load-bearing regions of the body. In order to apply HA to greater load-bearing areas of the body, strength and toughness must be improved through the formation of a composite structure. The goal of this study to show that a composite structure formed from HA and a biocompatible polymer can be fabricated with strength and toughness values that are within the range necessary for load-bearing biomedical applications. Therefore, Polysulfone-HA composites were developed and tested. Polysulfone (PSu) is a hard, glassy polymer that has been shown to be biocompatible. Composites were fabricated through a combination of tape casting, solvent casting, and lamination. Monolithic HA and laminate specimens were tested in biaxial flexure. A unique laminate theory solution was developed to characterize stress distributions for laminates. Failure loads, failure stress, work of fracture, and apparent toughness were compared for the laminates against monolithic HA specimens. Initial testing results showed that laminates had a failure stress of 60 +/- 10, which is a 170% improvement over the 22 +/- 2 MPa failure stress for monolithic HA. The work of fracture was improved by 5500% from 11 +/- 2 for the monolithic HA to 612 +/- 240 for the laminates. Work of fracture values gave the laminates an apparent fracture toughness of 7.2 MPa•m1

  5. Damage prediction in cross-plied curved composite laminates

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Jackson, Wade C.

    1991-01-01

    Analytical and experimental work is detailed which is required to predict delamination onset and growth in a curved cross plied composite laminate subjected to static and fatigue loads. The composite used was AS4/3501/6, graphite/epoxy. Analytically, a closed form stress analysis and 2-D and 3-D finite element analyses were conducted to determine the stress distribution in an undamaged curved laminate. The finite element analysis was also used to determine values of strain energy release rate at a delamination emanating from a matrix crack in a 90 deg ply. Experimentally, transverse tensile strength and fatigue life were determined from flat 90 deg coupons. The interlaminar tensile strength and fatigue life were determined from double cantilevered beam specimens. Cross plied curved laminates were tested statically and in fatigue to give a comparison to the analytical predictions. A comparison of the fracture mechanics life prediction technique and the strength based prediction technique is given.

  6. A comparison of simple shear characterization methods for composite laminates

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.; Brinson, H. F.

    1977-01-01

    Various methods for the shear stress-strain characterization of composite laminates are examined, and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the + or - 45 degs tensile test method and the 0 deg/90 degs symmetric rail shear test method. It is shown that the first technique indicates that the shear properties of the G/E laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that the G/E laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress-strain curves utilizing the various different shear behavior methods as input information are presented and discussed.

  7. Bending Behavior of Structural Glass Laminated With Different Interlayers

    NASA Astrophysics Data System (ADS)

    Serafinavicius, T.; Kvedaras, A. K.; Sauciuvenas, G.

    2013-09-01

    Experimental results on the bending strength of structural laminated glass are presented. Three different interlayer laminates were used: polyvinyl butyric (PVB), ethylene vinyl acetate (EVA), DuPont SentryGlas Plus (SGP), and a 6-mm-thick tempered soda-lime-silica glass. Four-point bending tests up to failure were carried out on test specimens according to the EN 1288-3 standard and deflections at the midspan of the specimens and the sliding displacement between their two structural glass sheets with different types of interlayer laminates were measured. A comparison between experimental results for the resistances of glass composite panels with various interlayers and monolithic glass sheets is presented too.

  8. An Historic Overview of the Development of Fibre Metal Laminates

    NASA Astrophysics Data System (ADS)

    Vermeeren, C. A. J. R.

    2003-07-01

    In this paper a brief overview of the history of Fibre Metal Laminates Arall and Glare is given as background information for the other, technical articles in this journal. The story of the development of Fibre Metal Laminates is rather a unique story in the history of aircraft materials: A university laboratory invented, developed and certified an aircraft material. Many parties were involved naturally, yet the very heart of the activity was the Structures and Materials Laboratory of the Faculty of Aerospace Engineering of Delft University of Technology in The Netherlands. At the break of the world's largest passenger transport aircraft, the Airbus A380, in which a substantial part of the fuselage will be made of Glare, the glass fibre-aluminium version of Fibre Metal Laminates, it is a good moment to tell some of its history.

  9. Laminated fabric as top electrode for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Steim, R.; Chabrecek, P.; Sonderegger, U.; Kindle-Hasse, B.; Siefert, W.; Kroyer, T.; Reinecke, P.; Lanz, T.; Geiger, T.; Hany, R.; Nüesch, F.

    2015-05-01

    A simple lamination technique for conductive and semitransparent fabrics on top of organic photovoltaic cells is presented. Conductive fabrics consisted of metal wires woven in a fabric with polymeric fibers. The lamination of this conductive fabric with help of a high conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulation results in well aligned low resistive metal wires as top electrode. Semitransparent flexible organic photovoltaic cells were processed with laminated fabrics as top electrode and sputtered layers of aluminum doped zinc oxide and Ag as bottom electrode. The organic photovoltaic cells showed similar performance when illuminated through the bottom or top electrode. Optical simulations were performed to investigate light scattering effects of the fabric. Results are very promising for photovoltaic and lightning devices as well as for all kinds of devices where semitransparent, highly conductive, and non-vacuum processed electrode materials are needed.

  10. Compression and compression fatigue testing of composite laminates

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1982-01-01

    The effects of moisture and temperature on the fatigue and fracture response of composite laminates under compression loads were investigated. The structural laminates studied were an intermediate stiffness graphite-epoxy composite (a typical angle ply laimna liminate had a typical fan blade laminate). Full and half penetration slits and impact delaminations were the defects examined. Results are presented which show the effects of moisture on the fracture and fatigue strength at room temperature, 394 K (250 F), and 422 K (300 F). Static tests results show the effects of defect size and type on the compression-fracture strength under moisture and thermal environments. The cyclic tests results compare the fatigue lives and residual compression strength under compression only and under tension-compression fatigue loading.

  11. Deformations of Flat Unsymmetric Laminates Subjected to Inplane Loads

    NASA Technical Reports Server (NTRS)

    Hyer, Michael W.; Ochinero, Tomoya T.; Majeed, Majed

    2004-01-01

    The geometrically nonlinear deformation response of initially flat unsymmetric cross-ply laminates subjected to an inplane compressive load and two sets of boundary conditions is studied. Stability of the deformations is considered. At issue is whether or not the plate remains flat with increased compressive loading, and whether it buckles. A semi-infinite unsymmetric cross-ply laminate is used to show the combined effects of geometric nonlinearities and bending-stretch coupling. Finite element results for finite laminates are then presented, and it is shown that to a large degree the boundary conditions control the character of the deformation response. It appears that clamped boundary conditions support buckling behavior, in the classic sense of bifurcation, whereas simply-supported conditions do not.

  12. Nonlinear temperature dependent failure analysis of finite width composite laminates

    NASA Technical Reports Server (NTRS)

    Nagarkar, A. P.; Herakovich, C. T.

    1979-01-01

    A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial.

  13. Mechanisms of compressive failure in woven composites and stitched laminates

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Morris, W. L.; Schroeder, S.

    1992-01-01

    Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band.

  14. Elastic Buckling of Laminated Plates Under Varying Axial Stresses

    NASA Technical Reports Server (NTRS)

    Badir, A.; Hu, H.

    1998-01-01

    The elastic buckling load of simply supported rectangular composite plates subjected to a second degree parabolic variation of axial stresses in the longitudinal direction is calculated using analytical methods. The variation of axial stresses is equilibrated by nonuniform shear stresses along the plate edges and transverse normal stresses. Numerical results are reported for three different cases: (1) orthotropic plates, (2) symmetrically laminated plates with multiple generally orthotropic layers exhibiting coupling between normal moments and twist, and twisting moment and normal curvatures, and (3) unsymmetrically laminated plates. Rayleigh-Ritz method is used to calculate the buckling load. An approximate solution using "reduced bending stiffness" is adopted for unsymmetrically laminated plates. The influence of the aspect ratio is examined, and the results are compared with plates subjected to uniform axial stresses.

  15. Snap-Through of Unsymmetric Laminates Using Piezocomposite Actuators

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Hyer, Michael W.; Williams, R. Brett; Wilkie, W. Keats; Inman, Daniel J.

    2006-01-01

    The paper discusses the concept of using a piezoceramic actuator bonded to one side of a two-layer unsymmetric cross-ply [0/90]T laminate to provide the moments necessary to snap the laminate from one stable equilibrium shape to another. This concept could be applied to the morphing of structures. A model of this concept, which is based on the Rayleigh-Ritz technique and the use of energy and variational methods, is developed. The experimental phase of the study is discussed, including the measurement of the voltage level needed to snap the laminate. The voltage measurements and shapes are compared with predictions of the models and the agreement between measurements and the predictions are reasonable, both qualitatively and quantitatively. Suggestions for future activities are presented.

  16. Evidence for the involvement of lamins in aging.

    PubMed

    Rodríguez, Sofía; Eriksson, Maria

    2010-07-01

    The molecular mechanisms that cause physiological aging are still not completely understood, most likely because of the complex nature of the aging process. Recent discoveries on segmental progeroid syndromes emphasize the importance of studying rare diseases to discover more common mechanisms. Since the identification of mutations in the LMNA gene that causes the segmental progeroid syndrome, Hutchinson-Gilford progeria syndrome (HGPS), there has been an increasing interest in the potential role for lamins in the normal aging process. Recent data provide support for the shared mechanisms between natural and pathological aging, and show that further studies of HGPS and segmental progeroid syndromes will be of use in solving the aging puzzle. In this review, we summarize the recent findings and discuss the existing evidence for an important functional link between lamins and the aging process. In addition, we discuss the evidence for a mechanism in which defects in lamins result in genomic instability and senescence.

  17. Low-temperature mechanical properties of glass/epoxy laminates

    SciTech Connect

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-27

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  18. Fabrication and Characterization of Planar Spring Based on FR4-PCB for Electrodynamics Vibration Energy Harvesting Application

    NASA Astrophysics Data System (ADS)

    Sugandi, Gandi; Mambu, Grace A.; Mulyadi, Dadang; Mulyana, Edi

    2017-07-01

    Planar spring as a mechanical resonator is very important in designing an electrodynamic vibration energy harvesting application (EVEH) to generate output power with high efficiency. Generally, component of the mechanical resonator is a cantilever beam that is designed using one cantilever with an inertial mass placed cantilever tip. In this study, a planar spring which has four arms cantilever beam was designed and fabricated using an extra-thin FR4-PCB material with a total thickness of 130 µm. There are four types of planar spring that were designed and fabricated in this research to produce resonant frequencies at about 30, 40, 50 and 60 Hz with 1 mm width cantilever arm and various length of 13.5, 11.2, 9.8 and 8.7 mm, respectively. FR4 resonator is fabricated using technology LASER-cutting in order to obtain results precisely. The resonant frequency generated by the mechanical resonator is characterized using vibrator system with certain acceleration. The resonant frequency of the planar spring was obtained at a frequency where the maximum induced voltage occurs. The resonant frequency generated by each type of planar spring was obtained at 24.81, 34.24, 40.2, and 46.8 Hz with three conditions of acceleration of 0.02, 0.06, and 0,1g (g=9.8 m/s2).

  19. Magnetic resonance imaging of the equine digit with chronic laminitis.

    PubMed

    Murray, Rachel C; Dyson, Sue J; Schramme, Michael C; Branch, Marion; Woods, Sarah

    2003-01-01

    Chronic laminitis is a severe disease affecting the equine digit. It was hypothesized that magnetic resonance (MR) imaging would improve visualization of structures within the foot and pathology associated with chronic laminitis. This study aimed to describe the MR imaging findings in chronic laminitis, compare different pulse sequences for visualization of pathology, and to compare MR imaging with standard radiography. Twenty (10 forelimb, 10 hindlimb) cadaver limbs from 10 horses clinically diagnosed with chronic laminitis (group L) and 10 limbs without laminitis (group N) were used. Lateromedial radiographs and sagittal and transverse MR images of the foot were obtained. Radiographs and MR images were evaluated for anatomic definition and evidence of pathology. Dorsal hoof wall thickness and angle of rotation and displacement distance of the distal phalanx were measured. Comparisons were made between group L and N, forelimb and hindlimb within each horse, and MR imaging and radiography. Features consistently noted with MR images in group L, but not detected using radiography, included laminar disruption, circumscribed areas of laminar gas, laminar fluid, and bone medullary fluid. Other findings seen only on MR images included increased size and number of vascular channels, alterations in the corium coronae, and distal interphalangeal joint distension. Magnetic resonance imaging allowed better definition of laminar gas lines and P3 surface irregularity observed on radiographs. Based on measurements, group L had a greater angle of rotation, distal displacement, and dorsal hoof wall thickness than group N; forelimb hoof wall thickness was greater than hindlimb; and distal displacement and hoof wall thickness measurements were smaller using MR imaging than radiography, but had a similar pattern. It is concluded that there are features of chronic laminitis consistently observed using MR imaging and that these may be additional to features observed radiographically.

  20. Nuclear lamins and oxidative stress in cell proliferation and longevity.

    PubMed

    Shimi, Takeshi; Goldman, Robert D

    2014-01-01

    In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.

  1. Development of laminated fiber-reinforced nanocomposites for bone regeneration

    NASA Astrophysics Data System (ADS)

    Xu, Weijie

    There have been numerous efforts to develop synthetic and/or natural tissue engineering scaffolds that are suitable for bone regeneration applications to replace autograft and allograft bones. Current biomaterials as a scaffold for bone regeneration are limited by the extent of degradation concurrent with bone formation, mechanical strength, and the extent of osteogenic differentiation of marrow stromal cells migrating from the surrounding tissues. In this project, a novel laminated nanocomposite scaffold is fabricated, consisting of poly (L-lactide ethylene oxide fumarate) (PLEOF) hydrogel reinforced with poly (L-lactic acid) (PLLA) electrospun nanofibers and hydroxyapatite (HA) nanoparticles. PLEOF is a novel in situ crosslinkable macromer synthesized from biocompatible building units which can be functionalized with bioactive peptides like the cell-adhesive Arg--Gly--Asp (RGD) amino acid sequence. The hydrophilicity and degradation rate of the macromer can be tailored to a particular application by controlling the ratio of PEG to PLA blocks in the macromer and the unsaturated fumarate units can be used for in-situ crosslinking. The PLLA nanofibers were electrospun from high molecular weight PLLA. The laminated nanocomposites were fabricated by dry-hand lay up technique followed by compression molding and thermal crosslinking. The laminated nanocomposites were evaluated with respect to degradation, water uptake, mechanical strength, and the extent of osteogenic differentiation of bone marrow stromal (BMS) cells. Laminates with or without HA nanoparticles showed modulus values much higher than that of trabecular bone (50-100 MPa). The effect of laminated nanocomposites on osteogenic differentiation of BMS cells was determined in terms of cell number, ALPase activity and calcium content. Our results demonstrate that grafting RGD peptide and HA nanoparticles to a PLEOF hydrogel reinforced with PLLA nanofibers synergistically enhance osteogenic differentiation of BMS

  2. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Chi; Wu, Chen-Wu; Huang, Yi-Hui; Song, Hong-Wei; Huang, Chen-Guang

    2017-01-01

    The interlaminar damages were investigated on the carbon fiber reinforced polymer (CFRP) composite laminate under laser irradiation. Firstly, the laminated T700/BA9916 composites were exposed to continuous wave laser irradiation. Then, the interface cracking patterns of such composite laminates were examined by optical microscopy and scanning electron microscopy. Finally, the Finite Element Analysis (FEA) was performed to compute the interface stress of the laminates under laser irradiation. And the effects of the laser parameters on the interlaminar damage were discussed.

  3. Prelamin A and lamin A appear to be dispensable in the nuclear lamina.

    PubMed

    Fong, Loren G; Ng, Jennifer K; Lammerding, Jan; Vickers, Timothy A; Meta, Margarita; Coté, Nathan; Gavino, Bryant; Qiao, Xin; Chang, Sandy Y; Young, Stephanie R; Yang, Shao H; Stewart, Colin L; Lee, Richard T; Bennett, C Frank; Bergo, Martin O; Young, Stephen G

    2006-03-01

    Lamin A and lamin C, both products of Lmna, are key components of the nuclear lamina. In the mouse, a deficiency in both lamin A and lamin C leads to slow growth, muscle weakness, and death by 6 weeks of age. Fibroblasts deficient in lamins A and C contain misshapen and structurally weakened nuclei, and emerin is mislocalized away from the nuclear envelope. The physiologic rationale for the existence of the 2 different Lmna products lamin A and lamin C is unclear, although several reports have suggested that lamin A may have particularly important functions, for example in the targeting of emerin and lamin C to the nuclear envelope. Here we report the development of lamin C-only mice (Lmna(LCO/LCO)), which produce lamin C but no lamin A or prelamin A (the precursor to lamin A). Lmna(LCO/LCO) mice were entirely healthy, and Lmna(LCO/LCO) cells displayed normal emerin targeting and exhibited only very minimal alterations in nuclear shape and nuclear deformability. Thus, at least in the mouse, prelamin A and lamin A appear to be dispensable. Nevertheless, an accumulation of farnesyl-prelamin A (as occurs with a deficiency in the prelamin A processing enzyme Zmpste24) caused dramatically misshapen nuclei and progeria-like disease phenotypes. The apparent dispensability of prelamin A suggested that lamin A-related progeroid syndromes might be treated with impunity by reducing prelamin A synthesis. Remarkably, the presence of a single Lmna(LCO) allele eliminated the nuclear shape abnormalities and progeria-like disease phenotypes in Zmpste24-/- mice. Moreover, treating Zmpste24-/- cells with a prelamin A-specific antisense oligonucleotide reduced prelamin A levels and significantly reduced the frequency of misshapen nuclei. These studies suggest a new therapeutic strategy for treating progeria and other lamin A diseases.

  4. Prelamin A and lamin A appear to be dispensable in the nuclear lamina

    PubMed Central

    Fong, Loren G.; Ng, Jennifer K.; Lammerding, Jan; Vickers, Timothy A.; Meta, Margarita; Coté, Nathan; Gavino, Bryant; Qiao, Xin; Chang, Sandy Y.; Young, Stephanie R.; Yang, Shao H.; Stewart, Colin L.; Lee, Richard T.; Bennett, C. Frank; Bergo, Martin O.; Young, Stephen G.

    2006-01-01

    Lamin A and lamin C, both products of Lmna, are key components of the nuclear lamina. In the mouse, a deficiency in both lamin A and lamin C leads to slow growth, muscle weakness, and death by 6 weeks of age. Fibroblasts deficient in lamins A and C contain misshapen and structurally weakened nuclei, and emerin is mislocalized away from the nuclear envelope. The physiologic rationale for the existence of the 2 different Lmna products lamin A and lamin C is unclear, although several reports have suggested that lamin A may have particularly important functions, for example in the targeting of emerin and lamin C to the nuclear envelope. Here we report the development of lamin C–only mice (Lmna+/+), which produce lamin C but no lamin A or prelamin A (the precursor to lamin A). Lmna+/+ mice were entirely healthy, and Lmna+/+ cells displayed normal emerin targeting and exhibited only very minimal alterations in nuclear shape and nuclear deformability. Thus, at least in the mouse, prelamin A and lamin A appear to be dispensable. Nevertheless, an accumulation of farnesyl–prelamin A (as occurs with a deficiency in the prelamin A processing enzyme Zmpste24) caused dramatically misshapen nuclei and progeria-like disease phenotypes. The apparent dispensability of prelamin A suggested that lamin A–related progeroid syndromes might be treated with impunity by reducing prelamin A synthesis. Remarkably, the presence of a single LmnaLCO allele eliminated the nuclear shape abnormalities and progeria-like disease phenotypes in Zmpste24–/– mice. Moreover, treating Zmpste24–/– cells with a prelamin A–specific antisense oligonucleotide reduced prelamin A levels and significantly reduced the frequency of misshapen nuclei. These studies suggest a new therapeutic strategy for treating progeria and other lamin A diseases. PMID:16511604

  5. Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells.

    PubMed

    Kolb, Thorsten; Maass, Kendra; Hergt, Michaela; Aebi, Ueli; Herrmann, Harald

    2011-01-01

    We have investigated and quantified the nuclear A-type lamin pool from human HeLa S3 suspension cells with respect to their distribution to detergent soluble and insoluble fractions. We devised a sequential extraction protocol and found that maximally 10% of A-type lamins are recovered in the soluble fraction. Notably, lamin C is enriched in low detergent fractions and only with 0.5% Nonidet P-40 lamin A and C are recovered in ratios nearly equivalent to those found in whole cell extracts and in the lamina fraction. Authentic nucleoplasmic proteins such as LAP2a, pRB and p53 are co-extracted to a large part together with the A-type lamins in these fractions. By sucrose density centrifugation we revealed that the majority of lamins co-sedimented with human IgG indicating they form rather small complexes in the range of dimers and slightly larger complexes. Some lamin A - but not lamin C - is obtained in addition in a much faster sedimenting fraction. Authentic nuclear proteins such as PCNA, p53 and LAP2a were found both in the light and the heavy sucrose fractions together with lamin A. Last but not least, immunoprecipitation experiments from both soluble fractions and from RIPA lysates of whole cells revealed that lamin A and lamin C do not form heterodimers but segregate practically completely. Correspondingly, immunofluorescence microscopy of formaldehyde-fixed cells clearly demonstrated that lamin A and C are localized at least in part to distinct patches within the lamina. Hence, the structural segregation of lamin A and C is indeed retained in the nuclear envelope to some extent too.

  6. Progression of venographic changes after experimentally induced laminitis.

    PubMed

    Baldwin, Gregory I; Pollitt, Christopher C

    2010-04-01

    Venography (retrograde venous angiography) is a relatively simple and practical method for vascular assessment of the digits in the standing horse. The technique is a useful adjunct to routine radiography. The clinical use of the laminitis venogram has resulted in a more comprehensive understanding of the collateral pathology associated with distal phalanx displacement and abnormal hoof growth. The effectiveness of therapeutic procedures such as hoof wall resection, coronary band grooving, deep digital flexor tenotomy, and therapeutic shoeing can be assessed by serial venography. This article discusses the venographic appearance during the transition from the clinically normal hoof to the severe chronic laminitis cases similar to those seen in practice.

  7. Boundary layer thermal stresses in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1979-01-01

    Boundary-layer thermal stress singularities and distributions of angle-ply composite laminates under uniform thermal loading are investigated through a system of sixth-order governing partial differential equations developed with the aid of the anisotropic elasticity field equations and Lekhnitskii's complex stress functions. Results are presented for cases of various angle-ply graphite/epoxy laminates, and it is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers.

  8. Fabrication of alumina films with laminated structures by ac anodization.

    PubMed

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  9. Damage Processes and Fracture Surface Morphology in Laminated Composites

    DTIC Science & Technology

    1990-08-01

    Morphology in Laminated Composites 6. AUTHOR(S) M Bryan H. Fortson 2 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION rijREPORT...LAMINATED COMPOSITES Approved: Erian A. Armanios, Chairman Stephq D. Antolovich Victor L. Berdichevsky Georgedyrdomateas Charles E. Uenr’( ’-6 Date...Introduction 2.2 Descriptions of Delam-ination 2.3 Analyses of Short-Bea- m Tests 2.4 Relevant Work in Materials Science 2.5 Survey of Composite Specimen

  10. Ultrasonic nondestructive evaluation of graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1990-01-01

    Quantitative ultrasonic techniques are summarized with applications to the measurement of frequency-dependent attenuation and backscatter and to the NDE of composite laminates. Results are listed for the ultrasonic NDE of graphite-epoxy composite laminates including impact and fatigue damage as well as porosity. The methods reviewed include transmission measurements of attenuation, reconstructive tomography based on attenuation, estimating attenuation from backscattered ultrasound, and backscatter approaches. Phase-sensitive and -insensitive detection techniques are mentioned such as phase cancellation at piezoelectric receiving transducers and acoustoelectric effects. The techniques permit the NDE of the parameters listed in inhomogeneous media and provide both images from the transmission mode and in the reflection mode.

  11. Metal Matrix Laminate Tailoring (MMLT) code: User's manual

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Morel, M. R.; Saravanos, D. A.

    1993-01-01

    The User's Manual for the Metal Matrix Laminate Tailoring (MMLT) program is presented. The code is capable of tailoring the fabrication process, constituent characteristics, and laminate parameters (individually or concurrently) for a wide variety of metal matrix composite (MMC) materials, to improve the performance and identify trends or behavior of MMC's under different thermo-mechanical loading conditions. This document is meant to serve as a guide in the use of the MMLT code. Detailed explanations of the composite mechanics and tailoring analysis are beyond the scope of this document, and may be found in the references. MMLT was developed by the Structural Mechanics Branch at NASA Lewis Research Center (LeRC).

  12. A higher order theory of laminated composite cylindrical shells

    NASA Technical Reports Server (NTRS)

    Krishna Murthy, A. V.; Reddy, T. S. R.

    1986-01-01

    A new higher order theory has been proposed for the analysis of composite cylindrical shells. The formulation allows for arbitrary variation of inplane displacements. Governing equations are presented in the form of a hierarchy of sets of partial differential equations. Each set describes the shell behavior to a certain degree of approximation. The natural frequencies of simply-supported isotropic and laminated shells and stresses in a ring loaded composite shell have been determined to various orders of approximation and compared with three dimensional solutions. These numerical studies indicate the improvements achievable in estimating the natural frequencies and the interlaminar shear stresses in laminated composite cylinders.

  13. How do mutations in lamins A and C cause disease?

    PubMed Central

    Worman, Howard J.; Courvalin, Jean-Claude

    2004-01-01

    Mutations in lamins A and C, nuclear intermediate-filament proteins in nearly all somatic cells, cause a variety of diseases that primarily affect striated muscle, adipocytes, or peripheral nerves or cause features of premature aging. Two new studies use lamin A/C–deficient mice, which develop striated muscle disease, as a model to investigate pathogenic mechanisms. These reports provide evidence for a stepwise process in which mechanically stressed cells first develop chromatin and nuclear envelope damage and then develop secondary alterations in the transcriptional activation of genes in adaptive and protective pathways. PMID:14755330

  14. Fabrication of alumina films with laminated structures by ac anodization

    NASA Astrophysics Data System (ADS)

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  15. Laminated structures and methods and compositions for producing same

    DOEpatents

    Fumei, Giancarlo J.; Karabedian, James A.

    1977-04-05

    Methods for bonding two substrates, one of which is polymeric, which comprise coating the surface of at least one substrate with an adhesive composition comprising a major component which is an adhesive for the first substrate and a minor disperse phase which is a solution of a polymer in a solvent for the polymeric substrate and contacting the coated surface of the one substrate with the surface of the other substrate, together with adhesive compositions useful for joining such substrates, laminates so formed, and articles comprised of such laminates.

  16. The fatigue behavior of composite laminates under various mean stresses

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  17. Wireless Damage Monitoring of Laminated CFRP Composites using Electrical Resistance Change

    DTIC Science & Technology

    2007-02-25

    Final report Project Title: Wireless Damage Monitoring of Laminated CFRP composites using Electrical Resistance Change Project number...07 NOV 2007 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Wireless Damage Monitoring of Laminated CFRP composites using Electrical...strain measuring sensors into laminated composite structures [12, 13]. This approach, however, may cause reductions in static and fatigue strengths

  18. Optimization-Based Monitoring of Laminated CFRP Composites using Electrical Resistance Changes

    DTIC Science & Technology

    2009-11-09

    ABSTRACT Impact load like a tool drop easily causes a delamination crack in a laminated Carbon Fiber Reinforced Polymer ( CFRP ). The delamination crack...Reinforced Polymer ( CFRP ). The delamination crack causes deterioration of structural reliability of a laminated CFRP . Monitoring of delamination is...Monitoring, Optimization Introduction Laminated Carbon Fiber Reinforced Polymer ( CFRP ) has been increasingly applied to the aerospace primary

  19. Damage Detection of Laminated CFRP Structures using Electric Pulse Wave Transmission

    DTIC Science & Technology

    2010-05-05

    SUPPLEMENTARY NOTES 14. ABSTRACT For laminated CFRP structures, it is quite difficult to detect internal damage such as delamination, matrix cracks, and...unclassified Abstract. Carbon Fiber Reinforced Polymer ( CFRP ) laminates are applied to many aerospace structures. For these laminated CFRP ...Carbon Fiber Reinforced Polymer ( CFRP ) has been increasingly applied to the aerospace primary structures because of its high specific strength and

  20. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.

    1985-01-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.

  1. Assessment and maintenance of a 15 year old stress-laminated timber bridge

    Treesearch

    T. Russell Gentry; Karl N. Brohammer; John Wells; James P. Wacker

    2006-01-01

    A timber bridge consisting of three 6.7 meter spans with a stress laminated deck was constructed in 1991 in the Spirit Creek State Forest near August, Georgia, USA. The stress laminated bridge uses a series of post-tensioning bars to hold the laminations together. The bridge remained in service until 2001 with no maintenance, at which time the bridge was inspected,...

  2. 75 FR 15418 - Laminated Woven Sacks from the People's Republic of China: Rescission of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... International Trade Administration Laminated Woven Sacks from the People's Republic of China: Rescission of... review of the countervailing duty order on laminated woven sacks (LWS) from the People's Republic of... request, and the review of Changshu was rescinded on December 4, 2009. See Laminated Woven Sacks From...

  3. Novel Bonding Process for CBW Protective Electrospun Fabric Laminates Phase 2

    DTIC Science & Technology

    2011-12-01

    BONDING TEXTILES PERMEABILITY ELECTROSPUN MEMBRANES LAMINATES BREATHABILITY CHEMICAL WARFARE AGENTS...PSI would vary adhesive areal density, formulation, and fiber diameter to optimize the bond to the laminate textile while retaining fabric...that the breathability and drape of the laminate textile will be maintained at 90% of the fabric value tested without the adhesive to ensure user

  4. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.

    1985-01-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.

  5. Analysis of interlaminar stresses in thick composite laminates with and without edge delamination

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.; Raju, I. S.

    1984-01-01

    The effect of laminate thickness on the interlaminar stresses in rectangular quasi-isotropic laminates under uniform axial strain was studied. Laminates from 8-ply to infinitely thick were analyzed. Thick laminates were synthesized by stacking (45/0/-45/90) ply groups, rather than grouping like plies. Laminates with and without delaminations were studied. In laminates without delaminations, the free-edge interlaminar normal stress distribution in the outer ply groups was insensitive to total laminate thickness. The interlaminar normal stress distribution for the interior ply groups was nearly the same as for an infinitely thick laminate. In contrast, the free-edge inter-laminar shear stress distribution was nearly the same for inner and outer ply groups and was insensitive to laminate thickness. In laminates with delaminations those delaminations near the top and bottom surfaces of a thick laminate have much larger total strain-energy-release rates (G sub t) and mode I-to-total (G sub t/G sub t) ratios than delaminations deep in the interior. Therefore, delaminations can be expected to grow more easily near the surfaces of a laminate than in the interior.

  6. Analysis of interlaminar stresses in thick composite laminates with and without edge delamination

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.; Raju, I. S.

    1985-01-01

    The effect of laminate thickness on the interlaminar stresses in rectangular quasi-isotropic laminates under uniform axial strain was studied. Laminates from 8-ply to infinitely thick were analyzed. Thick laminates were synthesized by stacking (45/0/-45/90) ply groups, rather than grouping like plies. Laminates with and without delaminations were studied. In laminates without delaminations, the free-edge interlaminar normal stress distribution in the outer ply groups was insensitive to total laminate thickness. The interlaminar normal stress distribution for the interior ply groups was nearly the same as for an infinitely thick laminate. In contrast, the free-edge inter-laminar shear stress distribution was nearly the same for inner and outer ply groups and was insensitive to laminate thickness. In laminates with delaminations those delaminations near the top and bottom surfaces of a thick laminate have much larger total strain-energy-release rates (G sub t) and mode I-to-total (G sub t/G sub t) ratios than delaminations deep in the interior. Therefore, delaminations can be expected to grow more easily near the surfaces of a laminate than in the interior.

  7. 75 FR 82376 - Laminated Woven Sacks From the People's Republic of China: Rescission of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... International Trade Administration Laminated Woven Sacks From the People's Republic of China: Rescission of... review of the countervailing duty order on laminated woven sacks (sacks) from the People's Republic of... duty order on sacks from the PRC. See Laminated Woven Sacks From the People's Republic of China...

  8. Microstructural and Mechanical Behavior Characterization of Ultrasonically Consolidated Titanium-Aluminum Laminates

    DTIC Science & Technology

    2009-02-01

    provide high hardness and stiffness, the consolidated laminates were heat-treated in a variety of conditions to form intermetallic titanium aluminide ...the consolidated laminates were heat-treated in a variety of conditions to form intermetallic titanium aluminide (TiAl3) layers. The resulting CP...Microstructural and Mechanical Behavior Characterization of Ultrasonically Consolidated Titanium - Aluminum Laminates by Tomoko Sano, James

  9. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    SciTech Connect

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G.G.; Chaly, N.

    1985-07-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase. 32 references.

  10. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection.

    PubMed

    Scott, E S; O'Hare, P

    2001-09-01

    During herpesvirus egress, capsids bud through the inner nuclear membrane. Underlying this membrane is the nuclear lamina, a meshwork of intermediate filaments with which it is tightly associated. Details of alterations to the lamina and the inner nuclear membrane during infection and the mechanisms involved in capsid transport across these structures remain unclear. Here we describe the fate of key protein components of the nuclear envelope and lamina during herpes simplex virus type 1 (HSV-1) infection. We followed the distribution of the inner nuclear membrane protein lamin B receptor (LBR) and lamins A and B(2) tagged with green fluorescent protein (GFP) in live infected cells. Together with additional results from indirect immunofluorescence, our studies reveal major morphologic distortion of nuclear-rim LBR and lamins A/C, B(1), and B(2). By 8 h p.i., we also observed a significant redistribution of LBR-GFP to the endoplasmic reticulum, where it colocalized with a subpopulation of cytoplasmic glycoprotein B by immunofluorescence. In addition, analysis by fluorescence recovery after photobleaching reveals that LBR-GFP exhibited increased diffusional mobility within the nuclear membrane of infected cells. This is consistent with the disruption of interactions between LBR and the underlying lamina. In addition to studying stably expressed GFP-lamins by fluorescence microscopy, we studied endogenous A- and B-type lamins in infected cells by Western blotting. Both approaches reveal a loss of lamins associated with virus infection. These data indicate major disruption of the nuclear envelope and lamina of HSV-1-infected cells and are consistent with a virus-induced dismantling of the nuclear lamina, possibly in order to gain access to the inner nuclear membrane.

  11. Polarized light reveals stress in machined laminated plastics

    NASA Technical Reports Server (NTRS)

    Frankowski, J.

    1967-01-01

    Polarized light applied to drilled laminated plastic components exposes to the human eye the locked-in stresses that will result in fractures and delaminations when the soldering procedure takes place. This technique detects stresses early in the production cycle before appreciable man-hours are invested in an item destined for rejection.

  12. Damage in woven CFRP laminates subjected to low velocity impacts

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Abdel-Wahab, A. A.; Harland, A. R.; Silberschmidt, V. V.

    2012-08-01

    Carbon fabric-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in these materials affects both their in-service properties and performance that can deteriorate with time. These processes need adequate means of analysis and investigation, the major approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in woven composite laminates due to low-velocity dynamic out-of-plane bending. Experimental tests are carried out to characterise the behaviour of such laminates under large-deflection dynamic bending in un-notched specimens in Izod tests using a Resil Impactor. A series of low-velocity impact tests is carried out at various levels of impact energy to assess the energy absorbed and force-time response of CFRP laminates. X-ray micro computed tomography (micro-CT) is used to investigate material damage modes in the impacted specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply delamination and intra-ply delamination, such as tow debonding and fabric fracture, were the prominent damage modes.

  13. Liquid crystals detect voids in fiber glass laminates

    NASA Technical Reports Server (NTRS)

    Hollar, W. T.

    1967-01-01

    Liquid crystal solution nondestructively detects voids or poor bond lines in fiber glass laminates. A thin coating of the solution is applied by spray or brush to the test article surface, and when heated indicates the exact location of defects by differences in color.

  14. 78 FR 23591 - Certain Prepregs, Laminates, and Finished Circuit Boards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Prepregs, Laminates, and Finished Circuit Boards AGENCY: U.S. International Trade... circuit boards that infringe certain claims of United States Patent Nos. 6,187,852 (``the `852 patent...

  15. Piezoelectrically strained bistable laminates with macro fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.

    2017-04-01

    The bistability and snap through capability of an unsymmetric laminate consisting of only Macro Fiber Composites (MFC) are investigated. The non-linear analysis predicts two cylindrically stable configurations when strain anisotropy is piezoelectrically induced within a [0MFC/90MFC]T laminate. This is achieved by bonding two MFCs in their actuated states and releasing the voltage post cure to create in-plane residual stresses. The minimization of total potential energy with the Rayleigh-Ritz method are used to analytically model the resulting laminate. A finite element analysis is conducted in MSC Nastran using the piezoelectric-thermal analogy approach to verify the analytical results. The effects of adhesive properties, bonding cure cycles, MFC layup, and its geometry on the curvatures, displacements, and bifurcation voltages are characterized. Finally, the snap through and reverse snap through capabilities with piezoelectric actuation are demonstrated. This adaptive laminate functions as both the actuator and the primary structure and allows large deformations under a non-continuous energy input. Its snap through capability allows full configuration control necessary in morphing applications.

  16. Development of High Performance CFRP/Metal Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  17. TeVatron I Small-Aperture Quad lamination analysis

    SciTech Connect

    Leininger, M.

    1982-09-24

    Stacking, compression, and welding of the laminations for the TeV I Small Aperture Quad results in a deformation due to springback which is unacceptable due to magnetic field requirements. ANSYS has been used to analyze a solution to this problem.

  18. A method for observing gas evolution during plastic laminate cure

    NASA Technical Reports Server (NTRS)

    Nicholls, A. H.

    1969-01-01

    Polyimide, phenolic, and other resins which develop volatiles during laminating or molding cure are studied using optimum cure cycles. The specimen is placed on a platen and sealed in a plastic bag, then heated and observed for gas evolution using a binocular microscope. A cover plate is added to sumulate an autoclave.

  19. Chapter 4: Lateral design of cross-laminated timber buildings

    Treesearch

    John W. van de Lindt; Douglas Rammer; Marjan Popovski; Phil Line; Shiling Pei; Steven E. Pryor

    2013-01-01

    Cross-laminated timber (CLT) is an innovative wood product that was developed approximately two decades ago in Europe and has since been gaining in popularity. Based on the experience of European researchers and designers, it is believed that CLT can provide the U.S. market the opportunity to build mid- and high-rise wood buildings. This Chapter presents a summary of...

  20. Low Velocity Impact Damage to Carbon/Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2011-01-01

    Impact damage tends to be more detrimental to a laminate's compression strength as compared to tensile strength. Proper use of Non Destructive Evaluation (NDE) Techniques can remove conservatism (weight) from many structures. Test largest components economically feasible as coupons. If damage tolerance is a driver, then consider different resin systems. Do not use a single knockdown factor to account for damage.

  1. Laminated plastic microfluidic components for biological and chemical systems

    SciTech Connect

    Martin, P.M.; Matson, D.W.; Bennett, W.D.; Lin, Y.; Hammerstrom, D.J.

    1999-07-01

    Laminated plastic microfluidic components are being developed for biological testing systems and chemical sensors. Applications include a DNA thermal cycler, DNA analytical systems, electrophoretic flow systems, dialysis systems, and metal sensors for ground water. This article describes fabrication processes developed for these plastic microfluidic components, and the fabrication of a chromium metal sensor and a microdialysis device. Most of the components have a stacked architecture. Using this architecture, the fluid flows, or is pumped through, as many as nine laminated functional levels. Functions include pumping, mixing, reaction, detection, reservoirs, separations, and electronics. Polyimide, poly(methylmethacrylate) (PMMA), and polycarbonate materials with thicknesses between 25 and 125 {mu}m are used to construct the components. This makes the components low cost, inert to many biological fluids and chemicals, and disposable. The components are fabricated by excimer laser micromachining the microchannel patterns and microstructures in the various laminates. In some cases, micropumps are integrated into these components to move the fluids. Vias and interconnects are also cut by the laser and integrated with micropumps. The laminates are sealed and bonded by adhesive and thermal processes and are leak tight. The parts withstand pressures as high as 790 kPa. Typical channel widths are 50 to 100 {mu}m, with aspect ratios near 5. {copyright} {ital 1999 American Vacuum Society.}

  2. Contact analysis for riveted and bolted joints of composite laminates

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Qi; Li, Wei; Shen, Guanqing

    The computational strategy and numerical technique developed are demonstrated to be efficient for the analysis of riveted and bolted joints of composite laminates. The 3D contact analysis provides more accurate results for the evaluation of strength of the mechanically fastened joints in the composite structures. The method described can be extended to multibody contact problems, it has been implemented in the computer codes.

  3. Thermal buckling and postbuckling of symmetrically laminated composite plates

    SciTech Connect

    Meyers, C.A.; Hyer, M.W. )

    1991-12-01

    The thermal buckling and postbuckling response of symmetrically laminated composite plates are discussed. Using variational methods in conjunction with a Rayleigh-Ritz formulation, thermal buckling and postbuckling are investigated for two laminates, a ({plus minus} 45/0/90) and a ({plus minus} 45/02), under two different simple support conditions, fixed and sliding. These laminates are subjected to the condition of a uniform temperature change. The effects of the principal material axis not being aligned with the edges of the plate, referred to here as material axis skewing, are also investigated. Although differences between buckling temperatures for the two support conditions were small, support conditions can have a large influence on thermal postbuckling response. In general, plates with fixed simple supports deflect more than plates with sliding simple supports. In addition, support conditions can influence modal interaction. Skewing of the material axis decreases the buckling temperatures of both laminates and, like fixed support conditions, causes increased postbuckling deflections. Skewing also influences modal interaction. 8 refs.

  4. Thermoviscoelastic characterization and prediction of Kevlar/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1990-01-01

    The thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material were studied. The four orthotropic material properties, S sub 11, S sub 12, S sub 22, and S sub 66, were characterized by 20 minute static creep tests on unidirectional (0) sub 8, (10) sub 8, and (90) sub 16 lamina specimens. The Time-Temperature Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use. The final phase involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperatures and load level for 4 to 5 weeks. These results were compared with the VCAP program predictions to verify the testing procedure and to check the numerical procedure used in the program. The actual tests and predictions agreed for all test cases which included 1, 2, 3, and 4 fiber direction laminates.

  5. Finite element analyses of wood laminated composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse

    2005-01-01

    Finite element analyses using ANSYS were conducted on orthotropic, polygonal, wood laminated composite poles subjected to a body force and a concentrated load at the free end. Deflections and stress distributions of small-scale and full-size composite poles were analyzed and compared to the results obtained in an experimental study. The predicted deflection for both...

  6. Purification of Lamins and Soluble Fragments of NETs.

    PubMed

    Makarov, Alexandr A; Rizzotto, Andrea; Meinke, Peter; Schirmer, Eric C

    2016-01-01

    Lamins and associated nuclear envelope transmembrane proteins (NETs) present unique problems for biochemical studies. Lamins form insoluble intermediate filament networks, associate with chromatin, and are also connected via specific NETs to the cytoskeleton, thus further complicating their isolation and purification from mammalian cells. Adding to this complexity, NETs at the inner nuclear membrane function in three distinct environments: (a) their nucleoplasmic domain(s) can bind lamins, chromatin, and transcriptional regulators; (b) they possess one or more integral transmembrane domains; and (c) their lumenal domain(s) function in the unique reducing environment of the nuclear envelope/ER lumen. This chapter describes strategic considerations and protocols to facilitate biochemical studies of lamins and NET proteins in vitro. Studying these proteins in vitro typically involves first expressing specific polypeptide fragments in bacteria and optimizing conditions to purify each fragment. We describe parameters for choosing specific fragments and designing purification strategies and provide detailed purification protocols. Biochemical studies can provide fundamental knowledge including binding strengths and the molecular consequences of disease-causing mutations that will be essential to understand nuclear envelope-genome interactions and nuclear envelope linked disease mechanisms. © 2016 Elsevier Inc. All rights reserved.

  7. Evaluation of laminated aluminum plate for shuttle applications

    NASA Technical Reports Server (NTRS)

    Martin, M. J.

    1973-01-01

    Flaw growth behavior in roll diffusion bonded and adhesive bonded 2219-T87 aluminum alloy was compared to that in monolothic 2219-T87. Based on tests at 40 KSI cyclic stress, for equivalent cyclic life, a .004 interlayer laminate can tolerate a surface flaw twice as wide as in monolithic material, or provide an 8% weight saving by operating at higher stress for the same initial flaw. Roll diffusion bonded material with three structural plies of 2219-T87 and two interlayers of 1100 aluminum was prepared with interlayer thicknesses of .004, .007 and .010 in. Total laminate thickness was .130 in. The .004 interlayer laminate was most effective and gave better results than monolithic material at 40 and 48 ksi. Adhesive bonded specimens were fabricated of three sheets of 2219-T87 aluminum alloy bonded with METLBOND 329 adhesive. Adhesive bonded specimens gave longer lives to failure than diffusion bonded specimens at 40 ksi the diffusion bonded material was superior. Flaws initiated in one ply of the laminate grew to the edges of the specimen in that ply but did not propagate into adjacent plies.

  8. Design of Multiple Bolted Connections for Laminated Veneer Lumber

    Treesearch

    Borjen Yeh; Douglas Rammer; Jeff Linville

    2014-01-01

    The design of multiple bolted connections in accordance with Appendix E of the National Design Specification for Wood Construction (NDS) has incorporated provisions for evaluating localized member failure modes of row and group tear-out when the connections are closely spaced. Originally based on structural glued laminated timber (glulam) members made with all L1...

  9. Nonlinear Temperature Dependent Failure Analysis of Finite Width Composite Laminates.

    DTIC Science & Technology

    1979-12-01

    tangent modulii obtained by Ramberg-Osgood parameters. It is shown that a’ring stresses and stresses due to tensile loading are significant as edge ... effect in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is

  10. Delamination failure in a unidirectional curved composite laminate

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1990-01-01

    Delamination failure in a unidirectional curved composite laminate was investigated. The curved laminate failed unstably by delaminations developing around the curved region of the laminate at different depths through the thickness until virtually all bending stiffness was lost. Delamination was assumed to initiate at the location of the highest radial stress in the curved region. A closed form curved beam elasticity solution and a 2-D finite element analysis (FEA) were conducted to determine this location. The variation in the strain energy release rate, G, with delamination growth was then determined using the FEA. A strength-based failure criteria adequately predicted the interlaminar tension failure which caused initial delamination onset. Using the G analysis the delamination was predicted to extend into the arm and leg of the laminate, predominantly in mode I. As the initial delamination grew arould the curved region, the maximum radial stress in the newly formed inner sublaminate increased to a level sufficient to cause a new delamination to initiate in the sublaminate with no increase in applied load. This failure progression was observed experimentally.

  11. An empirical modified fatigue damage model for impacted GFRP laminates

    NASA Astrophysics Data System (ADS)

    Naderi, S.; Hassan, M. A.; Bushroa, A. R.

    2014-10-01

    The aim of the present paper is to evaluate the residual strength of GFRP laminates following a low-velocity impact event under cyclic loading. The residual strength is calculated using a linear fatigue damage model. According to an investigation into the effect of low-velocity impact on the fatigue behavior of laminates, it seems laminate fatigue life decreases after impact. By normalizing the fatigue stress against undamaged static strength, the Fatigue Damage parameter “FD” is presented with a linear relationship as its slope which is a linear function of the initial impact energy; meanwhile, the constants were attained from experimental data. FD is implemented into a plane-stress continuum damage mechanics based model for GFRP composite laminates, in order to predict damage threshold in composite structures. An S-N curve is implemented to indicate the fatigue behavior for 2 mm thickness encompassing both undamaged and impacted samples. A decline in lifespan is evident when the impact energy level increases. Finally, the FD is intended to capture the unique GFRP composite characteristics.

  12. Chapter 1: CLT Introduction to cross-laminated timber

    Treesearch

    Sylvan Gagnon; E.M.(Ted) Bilek; Lisa Podesto; Pablo Crespell

    2013-01-01

    Cross-laminated timber ( CLT), a new generation of engineered wood product developed initially in Europe, has been gaining increased popularity in residential and non-residential applications in several countries. Many impressive low- and mid-rise buildings built around the world using CLT showcase the many advantages this product has to offer to the construction...

  13. Dynamic delamination crack propagation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Grady, J. E.; Sun, C. T.

    1991-01-01

    Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.

  14. Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly

    SciTech Connect

    Lu, Kun; Jacob, Jaby; Thiyagarajan, Pappannan; Conticello, Vincent P.; Lynn, David G.

    2003-05-01

    Fundamental questions about the relative arrangement of the {beta}-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of this hypothesis, a short seven-residue segment of the Alzheimer's disease-related A{beta} peptide, A{beta}(16-22), was allowed to self-assemble under conditions that maintained the basic amphiphilic character of A{beta}. Indeed, the number increased over 20-fold to 130 laminates, giving homogeneous bilayer structures that supercoil into long robust nanotubes. Small-angle neutron scattering and X-ray scattering defined the outer and inner radii of the nanotubes in solution to contain a 44-nm inner cavity with 4-nm-thick walls. Atomic force microscopy and transmission electron microscopy images further confirmed these homogeneous arrays of solvent-filled nanotubes arising from a flat rectangular bilayer, 130 nm wide x 4 nm thick, with each bilayer leaflet composed of laminated {beta}-sheets. The corresponding backbone H-bonds are along the long axis, and {beta}-sheet lamination defines the 130-nm bilayer width. This bilayer coils to give the final nanotube. Such robust and persistent self-assembling nanotubes with positively charged surfaces of very different inner and outer curvature now offer a unique, robust, and easily accessible scaffold for nanotechnology.

  15. Chapter 5: Connections Connections in cross-laminated timber buildings

    Treesearch

    Mohammad Mohammad; Bradford Douglas; Douglas Rammer; Steven E. Pryor

    2013-01-01

    The light weight of cross-laminated timber (CLT) products combined with the high level of prefabrication involved, in addition to the need to provide wood-based alternative products and systems to steel land concrete, have significantly contributed to the development of CLT products and systems, especially in mid-rise buildings (5 to 9 stories). While this product is...

  16. Bending strength of water-soaked glued laminated beams

    Treesearch

    Ronald W. Wolfe; Russell C. Moody

    1978-01-01

    The effects of water soaking on the bending strength and stiffness of laminated timber were determined by deriving wet-dry ratios for these properties. Values for these ratios, when compared to currently recommended wet use factors, confirm the value now used for modulus of rupture. For modulus of elasticity, the reduction due to water soaking was found to be less than...

  17. Repair of white oak glued-laminated beams

    Treesearch

    Lawrence A. Soltis; Robert J. Ross

    1999-01-01

    Connections between steel side plates and white oak glued-laminated beams subjected to tension perpendicular-to-grain stresses were tested to failure. The beams were then repaired with five different configurations using two sizes of lag screws, with and without steel reinforcing plates. The repaired beams were re-tested to failure. Results indicate that in all...

  18. Wave propagation in laminated orthotropic circular cylindrical shells

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1976-01-01

    An exact three-dimensional analysis of wave propagation in laminated orthotropic circular cylindrical-shells is developed. Numerical results are presented for three-ply shells, and for various axial wave lengths, circumferential wave numbers, and thicknesses. Results from a thin shell theory and a refined approximate theory are compared with the exact results.

  19. Southern pine veneer laminates at various moduli of elasticity

    Treesearch

    George E. Woodson

    1972-01-01

    Modulus of rigidity (GLT) of veneer laminates was shown to be unrelated to dynamic modulus of elasticity (Ed) of single veneers and also, within the range of samples tested, unrelated to specific gravity. Values determined by flexure test (GLR) were consistent with those from standard plate shear...

  20. Photodegradation in ballistic laminates: Spectroscopy and lifetime extension

    SciTech Connect

    Renschler, C.L.; Stallard, B.R.; White, C.A.; Garcia, M.J.; Morse, H.E.

    1996-06-01

    Several years ago, the Materials and Process Sciences Center (Org. 1800) was asked by Dept. 9613 to study the materials aging issues which had led to the loss of ballistic protection by Armored Tractor (AT) windshields and windows. The authors speculated that this loss of impact strength was due to photodegradation of the polycarbonate (PC) inboard ply. They developed a spectroscopic method to identify changes in the outboard surface of the PC, and showed that the changes in the surface which occurred upon natural aging in the field could be reproduced by exposing the laminates to a simulated solar flux. Based on these results, they recommended changes in the adhesive interlayers to filter out the ultraviolet (UV) light causing the aging problem. Working with the laminate vendor, PPG, they re-designed the laminates to implement these changes and block essentially all UV light from the inboard ply. The most recent phase of this work involved accelerated solar aging of laminates made with the new design to verify that photoaging effects have been blocked by the new materials. They report here the results of that study, and recommended follow-on work.

  1. Theoretical modeling and experimental analyses of laminated wood composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; Vijaya Gopu; Chung Y. Hse

    2005-01-01

    Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel...

  2. Mechanical properties of small-scale wood laminated composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; Chung Y. Hse

    2004-01-01

    Power companies in the United States consume millions of solid wood poles every year. These poles are from high-valued trees that are becoming more expensive and less available. wood laminated composite poles (LCP) are a novel alternative to solid wood poles. LCP consists of trapezoid wood strips that are bonded by a synthetic resin. The wood strips can be made from...

  3. Response to acupuncture treatment in horses with chronic laminitis.

    PubMed

    Faramarzi, Babak; Lee, Dongbin; May, Kevin; Dong, Fanglong

    2017-08-01

    There is a need for evidence-based scientific research to address the question of the effectiveness of acupuncture in improving clinical signs of laminitis in horses. The objective of this study was to compare lameness levels before and after 2 acupuncture treatments in horses with chronic laminitis. Twelve adult horses with chronic laminitis received 2 acupuncture treatments 1 week apart. The points were treated using dry needling, hemo-acupuncture, and aqua-acupuncture. Lameness level was objectively evaluated using an inertial sensor-based lameness evaluation system (Lameness Locator), as well as routine examinations following American Association of Equine Practitioners scoring before the first and 1 week after the second acupuncture treatment. Data were analyzed using Wilcoxon signed-rank test and P-values < 0.05 were considered statistically significant. Both the Lameness Locator (P = 0.0269) and routine lameness examination (P = 0.0039) showed a significant reduction in lameness severity. Our results support using acupuncture, along with other treatment options, in treating chronic equine laminitis.

  4. Lamination of organic solar cells and organic light emitting devices: Models and experiments

    SciTech Connect

    Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Anye, V. C.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2015-08-21

    In this paper, a combined experimental, computational, and analytical approach is used to provide new insights into the lamination of organic solar cells and light emitting devices at macro- and micro-scales. First, the effects of applied lamination force (on contact between the laminated layers) are studied. The crack driving forces associated with the interfacial cracks (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and computational models. Guidelines are developed for the lamination of low-cost organic electronic structures.

  5. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin

    PubMed Central

    Dechat, Thomas; Pfleghaar, Katrin; Sengupta, Kaushik; Shimi, Takeshi; Shumaker, Dale K.; Solimando, Liliana; Goldman, Robert D.

    2008-01-01

    Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections. PMID:18381888

  6. A limiting analysis for edge effects in angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses.

  7. Analysis of local delaminations and their influence on composite laminate behavior

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1985-01-01

    An equation was derived for the strain energy release rate, G, associated with local delamination growth from a matrix ply crack. The critical GC for edge delamination onset in 25/902s graphite epoxy laminates was measured and used in this equation to predict local delamination onset strains in 25/90ns, n = 4, 6, 8 laminates. A simple technique for predicting strain concentrations in the primary load bearing plies near local delaminations was developed. These strain concentrations were responsible for reduced laminate nominal failure strains in laminates containing local delaminations. The influence of edge delamination and matrix crack tip delamination on laminate stiffness and strength was compared.

  8. An experimental investigation on the three-point bending behavior of composite laminate

    NASA Astrophysics Data System (ADS)

    A, Azzam; W, Li

    2014-08-01

    The response of composite laminate structure to three-point bending load was investigated by subjecting two types of stacking sequences of composite laminate structure by using electronic universal tester (Type: WDW-20) machine. Optical microscope was selected in order to characterize bending damage, delamination, and damage shapes in composite laminate structures. The results showed that the [0/90/-45/45]2s exhibits a brittle behavior, while other laminates exhibit a progressive failure mode consisting of fiber failure, debonding (splitting), and delamination. The [45/45/90/0]2s laminate has a highly nonlinear load- displacement curve due to compressive yielding.

  9. Analysis of local delaminations and their influence on composite laminate behavior

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1984-01-01

    An equation was derived for the strain energy release rate, G, associated with local delamination growth from a matrix ply crack. The critical GC for edge delamination onset in 25/902s graphite epoxy laminates was measured and used in this equation to predict local delamination onset strains in 25/90ns, n = 4, 6, 8 laminates. A simple technique for predicting strain concentrations in the primary load bearing plies near local delaminations was developed. These strain concentrations were responsible for reduced laminate nominal failure strains in laminates containing local delaminations. The influence of edge delamination and matrix crack tip delamination on laminate stiffness and strength was compared.

  10. A geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to inplane mechanical loading

    NASA Technical Reports Server (NTRS)

    Norwood, D. Scott; Shuart, Mark J.; Herakovich, Carl T.

    1991-01-01

    The present analysis of interlaminar stresses in unsymmetrically laminates plates gives attention to the linear elastic large-deflection response of square laminated composite plates subjected to either uniaxial tension or compression loading. The effects of Poisson-ratio and mutual-influence coefficient mismatching between adjacent layers is evaluated in both cross-ply and angle-ply, and symmetric and asymmetric laminates. A global/local analysis procedure is used to obtain improved free-edge depictions; the results obtained indicate that the out-of-plane deflections of the unsymmetric laminates reduce interlaminar shear stresses, while reducing interlaminar normal stresses in some laminates and increasing them in others.

  11. A Novel Role of Lamins from Genetic Disease to Cancer Biomarkers

    PubMed Central

    Sakthivel, Kunnathur Murugesan; Sehgal, Poonam

    2016-01-01

    Lamins are the key components of the nuclear lamina and by virtue of their interactions with chromatin and binding partners act as regulators of cell proliferation and differentiation. Of late, the diverse roles of lamins in cellular processes have made them the topic of intense debate for their role in cancer progression. The observations about aberrant localization or misexpression of the nuclear lamins in cancerous tissues have often led to the speculative role of lamins as a cancer risk biomarker. Here we discuss the involvement of lamins in several cancer subtypes and their potential role in predicting the tumor progression. PMID:27994771

  12. A Micromechanics-Based Damage Model for the Strength Prediction of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Mayugo, Joan A.; Maimi, Pere; Davila, Carlos G.

    2006-01-01

    A new damage model based on a micromechanical analysis of cracked [+/-0deg/90deg(sub n)]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.

  13. A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates

    NASA Technical Reports Server (NTRS)

    Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.

    2006-01-01

    A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.

  14. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  15. 3-D Warping in Four-Bar Laminated Linkages

    NASA Astrophysics Data System (ADS)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2010-09-01

    This paper deals with the evaluation of the component-laminate load-carrying capacity, i.e., to calculate the loads that cause the failure of the individual layers and the component-laminate as a whole in four-bar mechanism. The component-laminate load-carrying capacity is evaluated using the Tsai-Wu-Hahn failure criterion for various layups. The reserve factor of each ply in the component-laminate is calculated by using the maximum resultant force and the maximum resultant moment occurring at different time steps at the joints of the mechanism. Here, all component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict more quickly and accurately than would otherwise be

  16. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    SciTech Connect

    Al-Saaidi, Rasha; Rasmussen, Torsten B.; Palmfeldt, Johan; Nissen, Peter H.; Beqqali, Abdelaziz; Hansen, Jakob; Pinto, Yigal M.; Boesen, Thomas; Mogensen, Jens; Bross, Peter

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  17. Shear degradation in fiber reinforced laminates due to matrix damage

    NASA Astrophysics Data System (ADS)

    Salavatian, Mohammedmahdi

    The objective of this study was to develop and implement a shear modulus degradation model to improve the failure analysis of the fiber reinforced composite structures. Matrix damage, involving transverse and shear cracks, is a common failure mode for composite structures, yet little is known concerning their interaction. To understand the material behavior after matrix failure, the nonlinear response of the composite laminate was studied using pressure vessels made from a [+/-o] bias orientation, which tend to exhibit a matrix dominated failure. The result of this work showed laminate matrix hardening in shear and softening in the transverse direction. A modified Iosipescu coupon was proposed to study the evolution of shear and transverse damage and their mutual effects. The proposed method showed good agreement with tubular results and has advantages of simplified specimen fabrication using standard test fixtures. The proposed method was extended by introducing a novel experimental technique to study the shear degradation model under biaxial loading. Experimental results of the transverse modulus reduction were in good agreement with material degradation models, while the predicted shear modulus reduction was higher than experiment. The discrepancy between available models and observations was due to the presence of a traction between the crack surfaces. Accordingly, a closed form solution was proposed for the shear stress-strain field of a cracked laminate by replacing the cracks with cohesive zones. The constitutive equations of the crack laminate were derived including the effects of internal tractions and transverse stress on the shear modulus. The proposed analytical model was shown to be the most comprehensive model for shear modulus degradation reduction of the fiber reinforced laminates. A numerical implementation of the shear degradation model was done using continuum damage mechanics. Through this work it was shown the common assumption of a linear

  18. Conserved lamin A protein expression in differentiated cells in the earthworm Eudrilus eugeniae.

    PubMed

    Kalidas, Ramamoorthy M; Raja, Subramanian Elaiya; Mydeen, Sheik Abdul Kader Nagoor Meeran; Samuel, Selvan Christyraj Johnson Retnaraj; Durairaj, Selvan Christyraj Jackson; Nino, Gopi D; Palanichelvam, Karuppaiah; Vaithi, Arumugaswami; Sudhakar, Sivasubramaniam

    2015-09-01

    Lamin A is an intermediate filament protein found in most of the differentiated vertebrate cells but absent in stem cells. It shapes the skeletal frame structure beneath the inner nuclear membrane of the cell nucleus. As there are few studies of the expression of lamin A in invertebrates, in the present work, we have analyzed the sequence, immunochemical conservation and expression pattern of lamin A protein in the earthworm Eudrilus eugeniae, a model organism for tissue regeneration. The expression of lamin A has been confirmed in E. eugeniae by immunoblot. Its localization in the nuclear membrane has been observed by immunohistochemistry using two different rabbit anti-sera raised against human lamin A peptides, which are located at the C-terminus of the lamin A protein. These two antibodies detected 70 kDa lamin A protein in mice and a single 65 kDa protein in the earthworm. The Oct-4 positive undifferentiated blastemal tissues of regenerating earthworm do not express lamin A, while the Oct-4 negative differentiated cells express lamin A. This pattern was also confirmed in the earthworm prostate gland. The present study is the first evidence for the immunochemical identification of lamin A and Oct-4 in the earthworm. Along with the partial sequence obtained from the earthworm genome, the present results suggest that lamin A protein and its expression pattern is conserved from the earthworm to humans.

  19. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells

    PubMed Central

    Shin, Jae-Won; Spinler, Kyle R.; Swift, Joe; Chasis, Joel A.; Mohandas, Narla; Discher, Dennis E.

    2013-01-01

    Hematopoietic stem and progenitor cells, as well as nucleated erythroblasts and megakaryocytes, reside preferentially in adult marrow microenvironments whereas other blood cells readily cross the endothelial barrier into the circulation. Because the nucleus is the largest organelle in blood cells, we hypothesized that (i) cell sorting across microporous barriers is regulated by nuclear deformability as controlled by lamin-A and -B, and (ii) lamin levels directly modulate hematopoietic programs. Mass spectrometry-calibrated intracellular flow cytometry indeed reveals a lamin expression map that partitions human blood lineages between marrow and circulating compartments (P = 0.00006). B-type lamins are highly variable and predominate only in CD34+ cells, but migration through micropores and nuclear flexibility in micropipette aspiration both appear limited by lamin-A:B stoichiometry across hematopoietic lineages. Differentiation is also modulated by overexpression or knockdown of lamins as well as retinoic acid addition, which regulates lamin-A transcription. In particular, erythroid differentiation is promoted by high lamin-A and low lamin-B1 expression whereas megakaryocytes of high ploidy are inhibited by lamin suppression. Lamins thus contribute to both trafficking and differentiation. PMID:24191023

  20. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells*

    PubMed Central

    Jevtić, Predrag; Edens, Lisa J.; Li, Xiaoyang; Nguyen, Thang; Chen, Pan; Levy, Daniel L.

    2015-01-01

    A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change. PMID:26429910

  1. a Study of 954-2A/IM7 Composite Laminates Containing a Central Hole

    NASA Astrophysics Data System (ADS)

    Kim, Hyungwon

    Predicting microcracking properties of the composite laminates in nonuniform stress conditions was the subject in this paper. The uniform stress field meant the stresses were independent of the width direction. The material was the 954-2A/IM7 laminates containing a central hole. Microcracks initiated at the edge of the hole and propagated into the laminate. Because the tensile stress concentration decreased with distance, the microcracks were arrested before the edge of the laminate. Because carbon fiber composites were opaque, a x-ray method was used to detect the length of the propagating microcracks. The microcracking at the near edge of the hole could be reasonably predicted by considering the local laminate stresses and the microcracking toughness measured in unnotched laminates. However, the data away from the hole did not agree with the predictions. The local microcrack density was always much higher than that predicted by the local laminate stress.

  2. Buckling of laminated composite plates subject to nonuniform in-plane edge loads

    SciTech Connect

    Kam, T.Y.; Chu, K.H.

    1995-08-01

    The buckling of laminated composite plates subjected to nonuniform in-plane edge loads is studied using a shear deformable finite element. The finite element formulation is based on Mindlin`s plate theory in which shear correction factors are derived from the exact expressions for orthotropic materials. Buckling testing of laminated composite plates with different lamination arrangements using the strain measurement technique is performed. The test results indicate that the proposed linear finite element method is unable to predict the buckling strength of imperfect laminated composite plates. The applications of the proposed finite element method are demonstrated by determining the optimal lamination arrangements of symmetrically laminated angle-ply plates comprised of different numbers of layer groups subject to various types of edge loads for attaining the maximum buckling strength. The so obtained optimal fiber angles and number of layer groups of the plates may be useful for practical buckling design of laminated composite plates.

  3. Thermal insulation, antibacterial and mold properties of breathable nanofiber-laminated wallpapers.

    PubMed

    Kim, Byoung-Suhk; Kimura, Naotaka; Kim, Han-Ki; Watanabe, Kei; Kim, Ick-Soo

    2011-06-01

    We studied the thermal insulation, antibacterial and mold properties of the nanofiber laminated wallpapers prepared by laminate-coating using electrospinning method. The thermal insulation capability of the nanofiber laminated wallpapers was evaluated by using a home-made insulated environmental chamber under different environmental conditions. It was found that the nanofiber laminated wallpapers exhibited better thermal insulation performance than the conventional silk wallpaper, which was commercialized silk wallpapers prepared by polyacrylic resin, suggesting that the laminate-coated nanofiber layer played an effective role in thermal insulation. Compared to the normal silk wallpaper, the nanofiber laminated wallpaper also exhibited good moisture vapor transmission rate (MVTR) due to excellent vapor permeability. In addition, TiO2-containing nanofiber laminated wallpapers exhibited good antibacterial activity against both E. Coli and P. Aeruginosa.

  4. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation.

    PubMed

    Swift, Joe; Ivanovska, Irena L; Buxboim, Amnon; Harada, Takamasa; Dingal, P C Dave P; Pinter, Joel; Pajerowski, J David; Spinler, Kyle R; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W; Discher, Dennis E

    2013-08-30

    Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.

  5. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage

    PubMed Central

    Gibbs-Seymour, Ian; Markiewicz, Ewa; Bekker-Jensen, Simon; Mailand, Niels; Hutchison, Christopher J

    2015-01-01

    Lamins A/C have been implicated in DNA damage response pathways. We show that the DNA repair protein 53BP1 is a lamin A/C binding protein. In undamaged human dermal fibroblasts (HDF), 53BP1 is a nucleoskeleton protein. 53BP1 binds to lamins A/C via its Tudor domain, and this is abrogated by DNA damage. Lamins A/C regulate 53BP1 levels and consequently lamin A/C-null HDF display a 53BP1 null-like phenotype. Our data favour a model in which lamins A/C maintain a nucleoplasmic pool of 53BP1 in order to facilitate its rapid recruitment to sites of DNA damage and could explain why an absence of lamin A/C accelerates aging. PMID:25645366

  6. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation

    PubMed Central

    Swift, Joe; Ivanovska, Irena L.; Buxboim, Amnon; Harada, Takamasa; Dingal, P. C. Dave P.; Pinter, Joel; Pajerowski, J. David; Spinler, Kyle R.; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W.; Discher, Dennis E.

    2014-01-01

    Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination. PMID:23990565

  7. Variable frequency microwave (VFM) curing, processing of thermoset prepreg laminates. Final report

    SciTech Connect

    Paulauskas, F.L.

    1996-09-30

    The objective of this work was to investigate the beneficial effect of the variable frequency microwave (VFM) technology to cure thermosetting prepreg laminates. Further, it was to investigate the interrelationship and effect on the curing process of frequency, band width, and curing time with different types of laminates. Previous studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and carbon fiber laminates with a fixed frequency of 2.45 GHz, have shown that a substantial reduction in the curing time was obtained. Results of this earlier work indicate that the microwave-assisted curing of multidirectional glass fiber laminates also show a substantial reduction of the required curing time. This may be explained by the penetration of microwave energy directly and throughout the laminate with enhancement of the kinetics of the chemical reaction. The fixed frequency microwave radiation of 2.45 GHz has been demonstrated to be a partially acceptable method to cure unidirectional carbon fiber laminates. Multidirectional carbon fiber/epoxy laminates demonstrate a lack of coupling during the curing process. A direct curing of these laminates was not possible by microwave radiation with the experimental approach used in agreement with previous work. In addition to this short coming, the unidirectional laminate samples cured with the fixed frequency are visually nonuniform. Localized areas of darker colors (burn, hot spots, overheating) are attributed to the formation of standing waves within the microwave cavity. For this reason, the laminates are subject to proper rotation while curing through fixed frequency. The present research indicates that variable frequency microwave technology is a sound and acceptable processing method to effectively cure uni-, bi- or multi-directional thermosetting glass fiber laminates. Also, this methodology will effectively cure unidirectional thermosetting carbon fiber laminates. For all these cases, this

  8. A Two-Way Shape Change Polymeric Laminate with Fast, Large and Controllable Deformation in Response to Joule Heat

    DTIC Science & Technology

    2011-08-12

    ABSTRACT In this project a polymeric laminate composite was fabricated from a carbon fiber reinforced plastic ( CFRP ) plate and a polyvinylchloride...PVC). The PVC- CFRP laminate worked as a bimorph actuator. Bending behavior of the PVC- CFRP laminate was tested by fully submerging the laminate in a...water bath and also changing the environmental temperature. It is observed that the PVC- CFRP laminate has a number of advantages compared to other

  9. A Comparative Study of Drosophila and Human A-Type Lamins

    PubMed Central

    Schulze, Sandra R.; Curio-Penny, Beatrice; Speese, Sean; Dialynas, George; Cryderman, Diane E.; McDonough, Caitrin W.; Nalbant, Demet; Petersen, Melissa; Budnik, Vivian; Geyer, Pamela K.; Wallrath, Lori L.

    2009-01-01

    Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm0, which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in

  10. Ancient and Modern Laminated Composites - From the Great Pyramid of Gizeh to Y2K

    SciTech Connect

    Wadsworth, J.; Lesuer, D.R.

    2000-03-14

    Laminated metal composites have been cited in antiquity; for example, a steel laminate that may date as far back as 2750 B.C., was found in the Great Pyramid in Gizeh in 1837. A laminated shield containing bronze, tin, and gold layers, is described in detail by Homer. Well-known examples of steel laminates, such as an Adze blade, dating to 400 B.C. can be found in the literature. The Japanese sword is a laminated composite at several different levels and Merovingian blades were composed of laminated steels. Other examples are also available, including composites from China, Thailand, Indonesia, Germany, Britain, Belgium, France, and Persia. The concept of lamination to provide improved properties has also found expression in modern materials. Of particular interest is the development of laminates including high carbon and low carbon layers. These materials have unusual properties that are of engineering interest; they are similar to ancient welded Damascus steels. The manufacture of collectable knives, labeled ''welded Damascus'', has also been a focus of contemporary knifemakers. Additionally, in the Former Soviet Union, laminated composite designs have been used in engineering applications. Each of the above areas will be briefly reviewed, and some of the metallurgical principles will be described that underlie improvement in properties by lamination. Where appropriate, links are made between these property improvements and those that may have been present in ancient artifacts.

  11. Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography

    PubMed Central

    1993-01-01

    We have used a combination of immunogold staining, optical sectioning light microscopy, intermediate voltage electron microscopy, and EM tomography to examine the distribution of lamin B over the nuclear envelope of CHO cells. Apparent inconsistencies between previously published light and electron microscopy studies of nuclear lamin staining were resolved. At light microscopy resolution, an apparent open fibrillar network is visualized. Colocalization of lamin B and nuclear pores demonstrates that these apparent fibrils, separated by roughly 0.5 micron, are anti-correlated with the surface distribution of nuclear pores; pore clusters lie between or adjacent to regions of heavy lamin B staining. Examination at higher, EM resolution reveals that this apparent lamin B network does not correspond to an actual network of widely spaced, discrete bundles of lamin filaments. Rather it reflects a quantitative variation in lamin staining over a roughly 0.5-micron size scale, superimposed on a more continuous but still complex distribution of lamin filaments, spatially heterogeneous on a 0.1-0.2-micron size scale. Interestingly, lamin B staining at this higher resolution is highly correlated to the underlying chromatin distribution. Heavy concentrations of lamin B directly "cap" the surface of envelope associated, large-scale chromatin domains. PMID:8276889

  12. Dynamics of lamin A/C in porcine embryos produced by nuclear transfer.

    PubMed

    Lee, Kiho; Fodor, William L; Machaty, Zoltan

    2007-09-01

    This study was conducted to investigate the presence of lamin A/C in porcine nuclear transfer embryos and to determine whether lamin A/C can serve as a potential marker for nuclear reprogramming. First, lamin A/C was studied in oocytes and embryos produced by fertilization or parthenogenetic oocyte activation. We found that lamin A/C was present in the nuclear lamina of oocytes at the germinal vesicle stage while it was absent in mature oocytes. Lamin A/C was detected throughout preimplantation development in both in vivo-derived and parthenogenetic embryos. Incubation of the activated oocytes in the presence of alpha-amanitin (an inhibitor of RNA polymerase II), or cycloheximide (a protein synthesis inhibitor) did not perturb lamin A/C assembly, indicating that the assembly resulted from solubilized lamins dispersed in the cytoplasm. In nuclear transfer embryos, the lamin A/C signal that had previously been identified in fibroblast nuclei disappeared soon after fusion. It became detectable again after the formation of the pronucleus-like structure, and all nuclear transfer embryos displayed lamin A/C staining during early development. Olfactory bulb progenitor cells lacked lamin A/C; however, when such cells were fused with enucleated oocytes, the newly formed nuclear envelopes stained positive for lamin A/C. These findings suggest that recipient oocytes remodel the donor nuclei using type A lamins dispersed in the ooplasm. The results also indicate that lamin A/C is present in the nuclear envelope of pig oocytes and early embryos and unlike in some other species, its presence after nuclear transfer is not an indicator of erroneous reprogramming.

  13. Slenderness effects in the free vibration of laminated magnetoelectroelastic beams

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Heyliger, Paul R.

    2017-08-01

    A semi-analytical discrete-layer approach is used to evaluate slenderness effects in the free vibration of laminated magnetoelectroelastic beams under various boundary conditions. Piecewise continuous approximations are used through the thickness direction of the beam and either continuous polynomial or trigonometric functions are used in the axial direction. Conventional beam models, including those of Euler-Bernoulli and Timoshenko, can be recovered to predict frequency estimates and are compared with results of the present model. Numerical examples are used to show the effects of beam slenderness on frequency and modal order for beams under simply-supported, fixed-fixed, and cantilever conditions. The results of these analyses clearly illustrate the thickness effects for axial, torsional, and bending modes and also provide some results useful for comparison for theses laminated beams.

  14. An inelastic constitutive equation of fiber reinforced plastic laminates

    SciTech Connect

    Kanagawa, Y.; Murakami, S.; Mizobe, T.

    1998-01-01

    A constitutive model for describing the time-dependent inelastic deformation of unidirectional and symmetric angle-ply CFRP (carbon Fiber Reinforced Plastics) laminates is developed. The kinematic hardening creep law of Malinin and Khadjinsky and the evolution equation of Armstrong and Frederick are extended to describe the creep deformation of initially anisotropic materials. In particular, the evolution equations of the back stresses of the anisotropic material were formulated by introducing a transformed strain tensor, by which the expression of the equivalent strain rate of the anisotropic material has the identical form as that of the isotropic materials. The resulting model is applied to analyze the time-dependent inelastic deformation of symmetric angle-ply laminates. Comparison between the predictions and the experimental observations shows that the present model can describe well the time-dependent inelastic behavior under different loadings.

  15. Design of multiple-ply laminated composite tapered beams

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.

    1993-01-01

    A study of a special case of symmetric laminated composite cantilever beams is presented. The approach models beams that are tapered both in depth and width and investigates the effect of the ply layup angle and the ply taper on bending and interlaminar shearing stresses. For the determination of stresses and deflections, the beam stiffness matrices are expressed as linear functions of the beam length. Using classical lamination theory (CLT) the stiffness matrices are determined and assembled at strategic locations along the length of the beam. They are then inverted and necessary stiffness parameters are obtained numerically and extracted for determination of design information at each location chosen. Several ply layup configurations are investigated, and design considerations are presented based on the findings. Finally, recommendations for the design of these beams are presented, and a means for anticipating the location of highest stresses is offered.

  16. Influence of bruxism on survival of porcelain laminate veneers.

    PubMed

    Granell-Ruíz, Maria; Agustín-Panadero, Rubén; Fons-Font, Antonio; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda

    2014-09-01

    This study aims to determine whether bruxism and the use of occlusal splints affect the survival of porcelain laminate veneers in patients treated with this technique. Restorations were made in 70 patients, including 30 patients with some type of parafunctional habit. A total of 323 veneers were placed, 170 in patients with bruxism activity, and the remaining 153 in patients without it. A clinical examination determined the presence or absence of ceramic failure (cracks, fractures and debonding) of the restorations; these incidents were analyzed for association with bruxism and the use of splints. Analysis of the ceramic failures showed that of the 13 fractures and 29 debonding that were present in our study, 8 fractures and 22 debonding were related to the presence of bruxism. Porcelain laminate veneers are a predictable treatment option that provides excellent results, recognizing a higher risk of failure in patients with bruxism activity. The use of occlusal splints reduces the risk of fractures.

  17. Experimental determination of material constants of a hybrid composite laminate

    SciTech Connect

    Ihekweazu, S.N.; Lari, S.B.; Unanwa, C.O.

    1999-07-01

    This paper discusses the results of the experimental study that was conducted in order to determine the material properties of a hybrid composite laminate made from Fiberite material MXM-7714/120 (a fabric prepreg consisting of woven Kevlar{reg_sign} 49 reinforcement impregnated with Fiberite 250 F (121 C) curing 7714 epoxy resin) and HYE-2448AIE (a 250 F (121 C) curing epoxy resin impregnated unidirectional graphite tape). First, each of the materials that comprise the hybrid laminate was fabricated separately according to ASTM-D-3039 specification in order to determine their material properties. The materials were then hybridized and the properties were determined. Data from this experiment reveal that a new class of material that can meet desired specifications can be created through hybridization. The data also revealed that the properties of the materials bonded together as a hybrid complement the properties of the constituent members of the hybrid.

  18. The mechanical behavior of an alumina carbon/epoxy laminate

    SciTech Connect

    Sherman, D.; Leckie, F.A.; Lemaitre, J.

    1995-12-01

    An experimental study has been made of a laminate consisting of monolithic thin alumina plates alternating with unidirectional carbon/epoxy (C/E) prepreg tapes. The main advantages of this system over the traditional means of reinforcing ceramics, are the avoidance of large flaws due to processing, which occur in fiber reinforced brittle matrix composites, and the nearly isotropic behavior under biaxial loading. In addition, the multiple fracture mechanism occurring in the system gives rise to pseudo ductile behavior and enhanced strain energy dissipation.The mechanical behavior of the laminate is explored. The effects of the number of layers, volume fraction and transverse properties are also investigated. The loss of stiffness with increase of the applied strain is estimated using a simple shear lag theory, which includes the plastic behavior of the interface.

  19. Development of lightweight reinforced plastic laminates for spacecraft interior applications

    NASA Technical Reports Server (NTRS)

    Hertz, J.

    1975-01-01

    Lightweight, Kevlar - reinforced laminating systems that are non-burning, generate little smoke in the space shuttle environment, and are physically equivalent to the fiberglass/polyimide system used in the Apollo program for non-structural cabin panels, racks, etc. Resin systems representing five generic classes were screened as matrices for Kevlar 49 reinforced laminates. Of the systems evaluated, the polyimides were the most promising with the phenolics a close second. Skybond 703 was selected as the most promising resin candidate. With the exception of compression strength, all program goals of physical and mechanical properties were exceeded. Several prototype space shuttle mobility and translation handrail segments were manufactured using Kevlar/epoxy and Kevlar-graphite/epoxy. This application shows significant weight savings over the baseline aluminum configuration used previous. The hybrid Kevlar-graphite/epoxy is more suitable from a processing standpoint.

  20. Exact solutions for laminated composite cylindrical shells in cylindrical bending

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.