el Amrani, F. Ben-Allal; Perelló, L.; Torres, L.
2000-01-01
Copper(II) complexes of several hydroxyflavones were prepared and characterised through their physico-chemical properties. The nuclease activity of three synthesised complexes is reported. These copper(II) complexes present more nuclease activity than the ligands and the copper(II) ion. PMID:18475969
NASA Astrophysics Data System (ADS)
Gönül, İlyas; Ay, Burak; Karaca, Serkan; Şahin, Onur; Serin, Selahattin
2018-03-01
In the present study, we describe the synthesis and characterization of two tridentate N2O donor ligands, namely, (E)-2-(((2-(diethylamino)ethyl)imino)methyl)-6-methoxyphenol (HL1) and (E)-2-(((2-(diethylamino)ethyl)imino)methyl)-6-ethoxyphenol (HL2), and their copper(II) complexes, [Cu(L1)(CH3COO)] (1), [Cu(L2)(CH3COO)] (2). They have been synthesized under conventional methods and characterized by elemental analysis, FTIR, 1H and 13C NMR, ICP-OES, TGA and GC/MS analysis. For the morphological analysis field emission scanning electron microscopy (FESEM) was used. The geometry of the copper(II) complexes was determined by single crystal X-ray diffraction analysis. The copper(II) ions are in distorted square-pyramidal coordination environments. Complexes crystallize in monoclinic space group, P21/c. The electrical conductivity and luminescence properties of 1-2 have been investigated.
Urquiza, Nora M; Manca, Silvia G; Moyano, María A; Dellmans, Raquel Arrieta; Lezama, Luis; Rojo, Teófilo; Naso, Luciana G; Williams, Patricia A M; Ferrer, Evelina G
2010-04-01
Methimazole (MeimzH) is an anti-thyroid drug and the first choice for patients with Grave's disease. Two new copper(II) complexes of this drug: [Cu(MeimzH)(2)(NO(3))(2)]*0.5H(2)O and [Cu(MeimzH)(2)(H(2)O)(2)](NO(3))(2)*H(2)O were synthesized and characterized by elemental analysis, dissolution behavior, thermogravimetric analysis and UV-vis, diffuse reflectance, FTIR and EPR spectroscopies. As it is known that copper(II) cation can act as an inhibitor of alkaline phosphatase (ALP), the inhibitory effect of methimazole and its copper(II) complexes on ALP activity has also been investigated.
NASA Astrophysics Data System (ADS)
Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.
2011-02-01
Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).
Discovery and development of microporous metal carboxylates.
Mori, Wasuke; Sato, Tomohiko; Kato, Chika Nozaki; Takei, Tohru; Ohmura, Tetsushi
2005-01-01
We have found a form of copper(II) terephthalate that occluded an enormous amount of gases such as N2, Ar, O2, and Xe. Copper(II) terephthalate is the first metal complex found capable of adsorbing gases. This complex has opened a new field of adsorbent chemistry and is recognized as a leader in the construction of microporous metal complexes. In extending the route for the synthesis of microporous complexes, we obtained many new porous materials that are widely recognized as useful materials for applications in areas such as gas storage, molecular sieves, catalysis, inclusion complexes, and surface science. 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sharma, Raj Pal; Saini, Anju; Kumar, Santosh; Kumar, Jitendra; Sathishkumar, Ranganathan; Venugopalan, Paloth
2017-01-01
A new anionic copper(II) complex, (MeImH)2 [Cu(pfbz)4] (1) where, MeImH = 2-methylimidazolium and pfbz = pentafluorobenzoate has been isolated by reacting copper(II) sulfate pentahydrate, pentafluorobenzoic acid and 2-methylimidazole in ethanol: water mixture in 1:2:2 molar ratio. This complex 1 has been characterized by elemental analysis, thermogravimetric analysis, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. The complex salt crystallizes in monoclinic crystal system with space group C2/c. Single crystal X-ray structure determination revealed the presence of discrete ions: [Cu(pfbz)4]2- anion and two 2-methylimidazolium cation (C4H7N2)+. The crystal lattice is stabilized by strong hydrogen bonding and F⋯F interactions between cationic-anionic and the anionic-anionic moieties respectively, besides π-π interactions.
NASA Astrophysics Data System (ADS)
Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka
2018-03-01
The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.
Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John
2014-07-07
In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.
NASA Astrophysics Data System (ADS)
Salavati-Niasari, Masoud; Bazarganipour, Mehdi
2009-06-01
Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.
NASA Astrophysics Data System (ADS)
Xu, Jun; Zhou, Tao; Xu, Zhou-Qing; Gu, Xin-Nan; Wu, Wei-Na; Chen, Hong; Wang, Yuan; Jia, Lei; Zhu, Tao-Feng; Chen, Ru-Hua
2017-01-01
Five complexes, [Cu(L)2]·4.5H2O (1), [Cu(HL)2](NO3)2·CH3OH (2) {[Cu2(L)2(NO3)(H2O)2]·(NO3)}n (3), [Cu2(HL)2(SO4)2]·2CH3OH (4) and [Cu4(L)4Cl4]·5H2O (5) based on HL (where HL = 2-acetylpyrazine isonicotinoyl hydrazone) have been synthesized and characterized by X-ray diffraction analyses. The counter anion and organic base during the synthesis procedure influence the structures of the complexes efficiently, which generate five complexes as mono-, bi-, tetra-nuclear and one-dimensional structures. The antitumor activities of the complexes 1-5 (except for complex 3 with the poor solubility) against the Patu8988 human pancreatic cancer, ECA109 human esophagus cancer and SGC7901 human gastric cancer cell lines are screened by MTT assay. The results indicate that the chelation of Cu(II) with the ligand is responsible for the observed high cytotoxicity of the copper(II) complexes and the 1:2 copper species 1 and 2 demonstrate lower antitumor activities than that of the 1:1 copper species 4 and 5. In addition, the in vitro apoptosis inducing activity of the copper(II) complex 5 against SGC7901 cell line is determined. And the results show that the complex can bring about apoptosis of the cancerous cells in vitro.
Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex
NASA Astrophysics Data System (ADS)
Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.
2002-08-01
Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.
Kasumov, Veli T; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet
2013-03-01
New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.
2017-09-01
A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.
NASA Astrophysics Data System (ADS)
Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M. R. Prathapachandra
2015-03-01
Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N4-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ = 0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)sbnd I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g|| > g⊥ > 2.0023 and the g values in frozen DMF are consistent with the dx2-y2 ground state. The thermal stabilities of some of the complexes were also determined.
NASA Astrophysics Data System (ADS)
Bian, He-Dong; Yang, Xiao-E.; Yu, Qing; Chen, Zi-Lu; Liang, Hong; Yan, Shi-Ping; Liao, Dai-Zheng
2008-01-01
Two helical coordination polymeric copper(II) complexes bearing amino acid Schiff bases HL or HL', which are condensed from 2-hydroxy-1-naphthaldehyde with 2-aminobenzoic acid or L-valine, respectively, have been prepared and characterised by X-ray crystallography. In [CuL] n ( 1) the copper(II) atoms are bridged by syn- anti carboxylate groups giving infinite 1-D right-handed helical chains which are further connected by weak C-H⋯Cu interactions to build a 2-D network. While in [CuL'] n ( 2) the carboxylate group acts as a rare monatomic bridge to connect the adjacent copper(II) atoms leading to the formation of a left-handed helical chain. Magnetic susceptibility measurements indicate that 1 exhibits weak ferromagnetic interactions whereas an antiferromagnetic coupling is established for 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data.
Firmino, Gisele S S; de Souza, Marcus V N; Pessoa, Claudia; Lourenco, Maria C S; Resende, Jackson A L C; Lessa, Josane A
2016-12-01
In this study, the N,N,O metal chelator 2-pyridinecarboxaldehydeisonicotinoyl hydrazone (HPCIH, 1) and its derivatives 2-acetylpyridine-(HAPIH 2), 2-pyridineformamide-(HPAmIH, 3) and pyrazineformamide-(HPzAmIH, 4) were employed in the synthesis of four copper(II) complexes, [Cu(HPCIH)Cl 2 ]·0.4H 2 O (5), [Cu(HAPIH)Cl 2 ]·1.25H 2 O (6), [Cu(HPAmIH)Cl 2 ]·H 2 O (7) and [Cu(HPzAmIH)Cl 2 ]·1.25H 2 O (8). The compounds were assayed for their action toward Mycobacterium tuberculosis H37Rv ATCC 27294 strain and the human tumor cell lines OVCAR-8 (ovarian cancer), SF-295 (glioblastoma multiforme) and HCT-116 (colon adenocarcinoma). All copper(II) complexes were more effective in reducing growth of HCT-116 and SF-295 cells than the respective free hydrazones at 5 µg/mL, whereas only complex 7 was more cytotoxic toward OVCAR-8 lines than its ligand HPAmIH. 6 proved to be cytotoxic at submicromolar doses, whose IC 50 values (0.39-0.86 µM) are similar to those ones found for doxorubicin (0.23-0.43 µM). Complexes 5 and 6 displayed high activity against M. tuberculosis (MIC = 0.85 and 1.58 µM, respectively), as compared with isoniazid (MIC = 2.27 µM), which suggests the compounds are attractive candidates as antitubercular drugs.
Jayakumar, K; Sithambaresan, M; Aiswarya, N; Kurup, M R Prathapachandra
2015-03-15
Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N(4)-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ=0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g||>g⊥>2.0023 and the g values in frozen DMF are consistent with the d(x2-y2) ground state. The thermal stabilities of some of the complexes were also determined. Copyright © 2014 Elsevier B.V. All rights reserved.
The Synthesis of Copper(II) Carboxylates Revisited
ERIC Educational Resources Information Center
Kushner, Kevin; Spangler, Robert E.; Salazar, Ralph A., Jr.; Lagowski, J. J.
2006-01-01
An electrochemical synthesis of copper(II) carboxylates has been developed and used in the general chemistry laboratory course for chemistry majors. This synthesis, using nonaqueous solutions, supplements the strategy of providing experiences in synthetic chemistry described by Yoder et al. ("J. Chem. Educ." 1995, 72, 267). (Contains 1 table.)
Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K
2014-11-01
New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.
Kalinowska-Lis, Urszula; Szewczyk, Eligia M; Chęcińska, Lilianna; Wojciechowski, Jakub M; Wolf, Wojciech M; Ochocki, Justyn
2014-01-01
Two silver(I) complexes--[Ag(4-pmOpe)]NO₃}(n) and [Ag(2-bimOpe)₂]NO₃--and three copper(II) complexes--[Cu₄Cl₆O(2-bimOpe)₄], [CuCl₂(4-pmOpe)₂], and [CuCl₂(2-bis(pm)Ope]--were synthesized by reaction of silver(I) nitrate or copper(II) chloride with phosphate derivatives of pyridine and benzimidazole, namely diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe), 1H-benzimidazol-2-ylmethyl diethyl phosphate (2-bimOpe), and ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope). These compounds were characterized by ¹H, ¹³C, and ³¹P NMR as well as IR spectroscopy, elemental analysis, and ESIMS spectrometry. Additionally, molecular and crystal structures of {[Ag(4-pmOpe)]NO₃}n and [Cu₄Cl₆O(2-bimOpe)₄] were determined by single-crystal X-ray diffraction analysis. The antimicrobial profiles of synthesized complexes and free ligands against test organisms from the ATCC and clinical sources were determined. Silver(I) complexes showed good antimicrobial activities against Candida albicans strains (MIC values of ∼19 μM). [Ag(2-bimOpe)₂]NO₃ was particularly active against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus epidermidis, with MIC values of ∼5 and ∼10 μM, respectively. Neither copper(II) complexes nor the free ligands inhibited the growth of test organisms at concentrations below 500 μg mL⁻¹. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Joseph, J.; Suman, A.; Nagashri, K.; Joseyphus, R. Selwin; Balakrishnan, Nisha
2017-06-01
Novel series of four copper(II) complexes with 2-aminobenzimidazole derivatives (obtained from the Knoevenagel condensate of acetylacetone (obtained from acetylacetone and halogen substituted benzaldehydes) and 2-aminobenzimidazole) were synthesized. They were structurally characterized using elemental analysis, molar conductance, FAB mass, FT- IR, 1H &13C-NMR, UV-Vis., and EPR techniques. On the basis of analytical and spectral studies, the distorted square planar geometry was assigned for all the complexes. The antibacterial screening of the ligands and their copper complexes indicated that all the complexes showed higher anti microbial activities than the free ligands. Superoxide dismutase and antioxidant activities of the copper complexes have also been performed. In the electrochemical technique, the shift in ΔEp, E1/2 and Ipc values were explored for the interaction of the complexes with CT-DNA. During the electrolysis process, the present ligand system stabilizes unusual oxidation state of copper in the complexes. It is believed that the copper complexes with curcumin analogs may enhance chemotherapeutic behavior.
Belousoff, Matthew J; Tjioe, Linda; Graham, Bim; Spiccia, Leone
2008-10-06
Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.
Paderes, Monissa C.; Belding, Lee; Fanovic, Branden; Dudding, Travis; Keister, Jerome B.
2012-01-01
Alkene difunctionalization reactions are important in organic synthesis. We have recently shown that copper(II) complexes can promote and catalyze intramolecular alkene aminooxygenation, carboamination, and diamination reactions. In this contribution, we report a combined experimental and theoretical examination of the mechanism of the copper(II)-promoted olefin aminooxygenation reaction. Kinetics experiments revealed a mechanistic pathway involving an equilibrium reaction between a copper(II) carboxylate complex and the γ-alkenyl sulfonamide substrate and a rate-limiting intramolecular cis-addition of N–Cu across the olefin. Kinetic isotope effect studies support that the cis-aminocupration is the rate-determining step. UV/Vis spectra support a role for the base in the break-up of copper(II) carboxylate dimer to monomeric species. Electron paramagnetic resonance (EPR) spectra provide evidence for a kinetically competent N–Cu intermediate with a CuII oxidation state. Due to the highly similar stereochemical and reactivity trends among the CuII-promoted and catalyzed alkene difunctionalization reactions we have developed, the cis-aminocupration mechanism can reasonably be generalized across the reaction class. The methods and findings disclosed in this report should also prove valuable to the mechanism analysis and optimization of other copper(-II) carboxylate promoted reactions, especially those that take place in aprotic organic solvents. PMID:22237868
NASA Astrophysics Data System (ADS)
Pramanik, Harun A. R.; Das, Dharitri; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.
2014-02-01
Synthesis of a series of newer mixed ligand copper(II) complexes of aminoacid Schiff base of the type [CuL(X)] (L = N-(2‧-hydroxy acetophenone) glycinate, X = imidazole (im) 2, benzimidazole (benz) 3, pyridine (py) 4, hydrazine (hz) 5,8-hydroxyquinoline (8-hq) 6, pyrrolidine (pyrr) 7, piperidine (pip) 8, and nicotinamide (nic) 9) have been accomplished from the interaction of an aquated Schiff base complex, [CuL(H2O)]·H2O, 1 with some selected neutral nitrogen-donor ligands. The copper(II) Schiff base complex, [CuL(H2O)]·H2O, L = N-(2‧-hydroxy acetophenone) glycinate was synthesized from the reaction of glycine and 2‧ hydroxy acetophenone and copper(II) acetate. The compounds were characterised by elemental analysis, spectral, magnetic and thermal studies. The density functional theory calculations were performed using LANL2DZ and 6-311 G(d, p) basis sets with B3LYP correlation functional to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the mixed ligand complexes. A distorted square planar geometry has been conjectured for the complexes. Antibacterial activities of the ligand and its metal complexes have been tested against selected gram-positive and gram-negative strains and correlated with computational docking scores.
NASA Astrophysics Data System (ADS)
Shebl, Magdy; Adly, Omima M. I.; Abdelrhman, Ebtesam M.; El-Shetary, B. A.
2017-10-01
A new Schiff base ligand was synthesized by the reaction of 4-acetyl-5,6-diphenyl-3(2H)-pyridazinone with ethylenediamine. A series of binary copper(II) Schiff base complexes have been synthesized by using various copper(II) salts; AcO-, NO3-, ClO4-, Cl- and Br-. Ternary complexes were synthesized by using auxiliary ligands (L‧) [N,O-donor; 8-hydroxyquinoline and glycine or N,N-donor; 1,10-phenanthroline, bipyridyl and 2-aminopyridine]. The structures of the Schiff base and its complexes were characterized by elemental and thermal analyses, IR, electronic, mass, 1H NMR and ESR spectra in addition to conductivity and magnetic susceptibility measurements. The obtained complexes include neutral binuclear complexes as well as neutral and cationic mononuclear complexes according to the anion used and the experimental conditions. The ESR spin Hamiltonian parameters of some complexes were calculated and discussed. The metal complexes exhibited octahedral and square planar geometrical arrangements depending on the nature of the anion. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages were evaluated using Coats-Redfern equations. The antimicrobial activity of the Schiff base and its complexes was screened against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). The antitumor activity of the Schiff base and some of its Cu(II) complexes was investigated against HepG-2 cell line.
Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes
NASA Astrophysics Data System (ADS)
Shabbir, Muhammad; Akhter, Zareen; Ismail, Hammad; Mirza, Bushra
2017-10-01
Novel ether based Schiff bases (HL1- HL4) were synthesized from 5-chloro-2-hydroxy benzaldehyde and primary amines (1-amino-4-phenoxybenzene, 4-(4-aminophenyloxy) biphenyl, 1-(4-aminophenoxy) naphthalene and 2-(4-aminophenoxy) naphthalene). From these Schiff bases copper(II) complexes (Cu(L1)2-Cu(L4)2)) were synthesized and characterized by elemental analysis and spectroscopic (FTIR, NMR) techniques. The synthesized Schiff bases and copper(II) complexes were further assessed for various biological studies. In brine shrimp assay the copper(II) complexes revealed 4-fold higher activity (LD50 3.8 μg/ml) as compared with simple ligands (LD50 12.4 μg/ml). Similar findings were observed in potato disc antitumor assay with higher activities for copper(II) complexes (IC50 range 20.4-24.1 μg/ml) than ligands (IC50 range 40.5-48.3 μg/ml). DPPH assay was performed to determine the antioxidant potential of the compounds. Significant antioxidant activity was shown by the copper(II) complexes whereas simple ligands have shown no activity. In DNA protection assay significant protection behavior was exhibited by simple ligand molecules while copper(II) complexes showed neutral behavior (neither protective nor damaging).
NASA Astrophysics Data System (ADS)
Poyraz, Mehmet; Sari, Musa; Banti, Christina N.; Hadjikakou, Sotiris K.
2017-10-01
The synthesis of the complex {[Cu(BZIMU)2](NO3)2} (1) (BZIMU = 2-Benzimidazolyl-urea) is reported here. The complex 1 was characterized by elemental analysis, FT-IR, magnetic susceptibility and molar conductance measurements. The crystal structures of 1 and of the nitrate salt of [(BZIMUH+)(NO3)-] (2) were determined by X-ray diffraction analysis. The copper complex 1 and [(BZIMUH+)(NO3)-] (2) were evaluated for their in vitro cytotoxic activity (cell viability) against human cervix adenocarcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cell line and normal human fetal lung fibroblast cells (MRC-5) with SRB assay.
Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...
2015-07-13
The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less
NASA Astrophysics Data System (ADS)
Camí, G.; Chacón Villalba, E.; Di Santi, Y.; Colinas, P.; Estiu, G.; Soria, D. B.
2011-05-01
4-Chloro-2-nitrobenzenesulfonamide (ClNbsa) was purified and characterized. A new copper(II) complex, [Cu(ClNbsa) 2(NH 3) 2], has been prepared using the sulfonamide as ligand. The thermal behavior of both, the ligand and the Cu(II) complex, was investigated by thermogravimetric analyses (TG) and differential thermal analysis (DT), and the electronic characteristics analyzed by UV-VIS, FTIR, Raman and 1H NMR spectroscopies. The experimental IR, Raman and UV-VIS spectra have been assigned on the basis of DFT calculations at the B3LYP level of theory using the standard (6-31 + G ∗∗) basis set. The geometries have been fully optimized in vacuum and in modeled dimethylsulfoxide (DMSO) solvent, using for the latter a continuum solvation model that reproduced the experimental conditions of the UV-VIS spectroscopy. The theoretical results converged to stable conformations for the free sulfonamide and for the complex, suggesting for the latter a distorted square planar geometry in both environments.
NASA Astrophysics Data System (ADS)
Tella, Adedibu C.; Owalude, Samson O.; Ajibade, Peter A.; Simon, Nzikahyel; Olatunji, Sunday J.; Abdelbaky, Mohammed S. M.; Garcia-Granda, Santiago
2016-12-01
A novel complex was synthesized from Cu(II), nicotinamide and itaconic acid and is formulated as [Cu(C5H4O4)2(C6H6N2O)2(H2O)2·2(H2O)] (1). The compound was characterized by elemental analysis, FTIR spectroscopy, UV-Vis and single crystal X-ray diffraction. The complex crystallizes in the triclinic P-1 space group, with a = 7.5111(2) Å, b = 9.8529(3) Å, c = 10.5118(4) Å, α = 116.244(3)°, β = 90.291(3)°, γ = 103.335(3)°, V = 673.81(4) Å3, Z = 1.The octahedral geometry around the copper(II) ion is of the form CuN2O4 consisting of two molecules of nicotinamide acting as monodentate ligand through the nitrogen atoms, two molecules itaconate ligand and two coordinated water molecules each coordinating through the oxygen atoms. The structure of 1 showed infinite chains build up linking the molecules together via strong Osbnd H⋯O and Nsbnd H⋯O intermolecular hydrogen bonds generating a two dimensional network sheet along c axis. The antimicrobial study of the synthesized complex 1 was investigated and showed higher antibacterial activity against all the organisms comparing with Copper(II) nicotinamide 2 and Copper(II) itaconate 3.
Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P
2013-11-01
Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.
Zhou, Tongliang; Cai, Yuanbo; Liang, Lei; Yang, Lingfei; Xu, Fengrong; Niu, Yan; Wang, Chao; Zhang, Jun-Long; Xu, Ping
2016-12-01
We reported the synthesis, characterization and biological activity of several copper(II) Schiff base complexes, which exhibit high proteasome inhibitory activities with particular selectivity of β 2 subunit. Structure-activity relationships information obtained from complex Na 2 [Cu(a4s1)] demonstrated that distinct bonding modes in β 2 and β 5 subunits determines its selectivity and potent inhibition for β 2 subunit. Copyright © 2016 Elsevier Ltd. All rights reserved.
David, Tomáš; Kubíček, Vojtěch; Gutten, Ondrej; Lubal, Přemysl; Kotek, Jan; Pietzsch, Hans-Jürgen; Rulíšek, Lubomír; Hermann, Petr
2015-12-21
Cyclam derivatives bearing one geminal bis(phosphinic acid), -CH2PO2HCH2PO2H2 (H2L(1)), or phosphinic-phosphonic acid, -CH2PO2HCH2PO3H2 (H3L(2)), pendant arm were synthesized and studied as potential copper(II) chelators for nuclear medical applications. The ligands showed good selectivity for copper(II) over zinc(II) and nickel(II) ions (log KCuL = 25.8 and 27.7 for H2L(1) and H3L(2), respectively). Kinetic study revealed an unusual three-step complex formation mechanism. The initial equilibrium step leads to out-of-cage complexes with Cu(2+) bound by the phosphorus-containing pendant arm. These species quickly rearrange to an in-cage complex with cyclam conformation II, which isomerizes to another in-cage complex with cyclam conformation I. The first in-cage complex is quantitatively formed in seconds (pH ≈5, 25 °C, Cu:L = 1:1, cM ≈ 1 mM). At pH >12, I isomers undergo nitrogen atom inversion, leading to III isomers; the structure of the III-[Cu(HL(2))] complex in the solid state was confirmed by X-ray diffraction analysis. In an alkaline solution, interconversion of the I and III isomers is mutual, leading to the same equilibrium isomeric mixture; such behavior has been observed here for the first time for copper(II) complexes of cyclam derivatives. Quantum-chemical calculations showed small energetic differences between the isomeric complexes of H3L(2) compared with analogous data for isomeric complexes of cyclam derivatives with one or two methylphosphonic acid pendant arm(s). Acid-assisted dissociation proved the kinetic inertness of the complexes. Preliminary radiolabeling of H2L(1) and H3L(2) with (64)Cu was fast and efficient, even at room temperature, giving specific activities of around 70 GBq of (64)Cu per 1 μmol of the ligand (pH 6.2, 10 min, ca. 90 equiv of the ligand). These specific activities were much higher than those of H3nota and H4dota complexes prepared under identical conditions. The rare combination of simple ligand synthesis, very fast copper(II) complex formation, high thermodynamic stability, kinetic inertness, efficient radiolabeling, and expected low bone tissue affinity makes such ligands suitably predisposed to serve as chelators of copper radioisotopes in nuclear medicine.
Pasán, Jorge; Sanchiz, Joaquín; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel
2005-10-31
Two new phenylmalonate-bridged copper(II) complexes with the formulas [Cu(4,4'-bpy)(Phmal)](n).2nH(2)O (1) and [Cu(2,4'-bpy)(Phmal)(H(2)O)](n)() (2) (Phmal = phenylmalonate dianion, 4,4'-bpy = 4,4'-bipyridine, 2,4'-bpy = 2,4'-bipyridine) have been synthesized and characterized by X-ray diffraction. Complex 1 crystallizes in monoclinic space group P2(1), Z = 4, with unit cell parameters of a = 9.0837(6) Angstroms, b = 9.3514(4) Angstroms, c = 11.0831(8) Angstroms, and beta = 107.807(6) degrees , whereas complex 2 crystallizes in orthorhombic space group C2cb, Z = 8, with unit cell parameters of a = 10.1579(7) Angstroms, b = 10.3640(8) Angstroms, and c = 33.313(4) Angstroms. The structures of 1 and 2 consist of layers of copper(II) ions with bridging bis-monodentate phenylmalonate (1 and 2) and 4,4'-bpy (1) ligands and terminal monodentate 2,4'-bpy (2) groups. Each layer in 1 contains rectangles with dimensions of 11.08 x 4.99 Angstroms(2), the edges being defined by the Phmal and 4,4'-bpy ligands. The intralayer copper-copper separations in 1 through the anti-syn equatorial-apical carboxylate-bridge and the 4,4'-bpy molecule are 4.9922(4) and 11.083(1) Angstroms, respectively. The anti-syn equatorial-equatorial carboxylate bridge links the copper(II) atoms in complex 2 within each layer with a mean copper-copper separation of 5.3709(8) Angstroms. The presence of 2,4'-bpy as a terminal ligand accounts for the large interlayer separation of 15.22 Angstroms. The copper(II) environment presents a static pseudo-Jahn-Teller disorder which has been studied by EPR and low-temperature X-ray diffraction. Magnetic susceptibility measurements of both compounds in the temperature range 2-290 K show the occurrence of weak antiferromagnetic [J = -0.59(1) cm(-1) (1)] and ferromagnetic [J = +0.77(1) cm(-1) (2)] interactions between the copper(II) ions. The conformation of the phenylmalonate-carboxylate bridge and other structural factors, such as the planarity of the exchange pathway in 1, account for the different nature of the magnetic interaction.
NASA Astrophysics Data System (ADS)
Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia
2009-09-01
Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.
NASA Astrophysics Data System (ADS)
Demirbaş, Ümit; Akyüz, Duygu; Akçay, Hakkı Türker; Barut, Burak; Koca, Atıf; Kantekin, Halit
2017-09-01
In this study novel substituted phthalonitrile (3) and non-peripherally tetra 5-Methyl-1,3,4-thiadiazole substituted copper(II) (4), iron(II) (5) and oxo-titanium (IV) (6) phthalocyanines were synthesized. These novel compounds were fully characterized by FT-IR, 1H NMR, UV-vis and MALDI-TOF mass spectroscopic techniques. Voltammetric and in situ spectroelectrochemical measurements were performed for metallo-phthalocyanines (4-6). TiIVOPc and FeIIPc showed metal-based and ligand-based electron transfer reactions while CuIIPc shows only ligand-based electron transfer reaction. Voltammetric measurements indicated that the complexes have reversible, diffusion controlled and one-electron redox reactions. The assignments of the redox processes and color of the electrogenerated species of the complexes were determined with in-situ spectroelectrochemical and electrocolorimetric measurements. These measurements showed that the complexes can be used as the electrochromic materials for various display technologies.
NASA Astrophysics Data System (ADS)
Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi
2017-09-01
In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing L and HDNNS in the non-polar organic phase, the structures of the two copper(II) complexes were further investigated by Fourier transform infrared spectroscopy (FT-IR) and electrospray ionization mass spectrometry (ESI-MS), and the results indicated that the extracted copper(II) complex in the non-polar organic phase might possess a similar coordination structure as the copper(II) synergist complex.
1993-05-01
urease which contains two nickel ions in the active site. Catalytic hydrolysis studies are in progress. 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21...for hydrolytic metalloenzymes. In contrast, the enzyme urease has becti show’n tU coftifl two nickel(II) ions in the active site," but as yet the
NASA Astrophysics Data System (ADS)
Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed
2017-07-01
Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.
Boiocchi, Massimo; Fabbrizzi, Luigi; Garolfi, Mauro; Licchelli, Maurizio; Mosca, Lorenzo; Zanini, Cristina
2009-10-26
Copper(II) azacyclam complexes 3(2+) and 4(2+) were obtained through a metal-templated procedure involving the pertinent open-chain tetramine, formaldehyde and a phenylurea derivative as a locking fragment. Both metal complexes can establish interactions with anions through the metal centre and the amide NH group. Equilibrium studies in DMSO by a spectrophotometric titration technique were carried out to assess the affinity of 3(2+) and 4(2+) towards anions. While the NH group of an amide model compound and the metal centre of the plain Cu(II)(azacyclam)(2+) complex do not interact at all with anions, 3(2+) and 4(2+) establish strong interactions with oxo anions, profiting from a pronounced cooperative effect. In particular, 1) they form stable 1:1 and 1:2 complexes with H(2)PO(4) (-) ions in a stepwise mode with both hydrogen-bonding and metal-ligand interactions, and 2) in the presence of CH(3)COO(-), they undergo deprotonation of the amido NH group and thus profit from axial coordination of the partially negatively charged carbonyl oxygen atom in a scorpionate binding mode.
Zabawa, Thomas P; Chemler, Sherry R
2007-05-10
The copper(II) carboxylate promoted diamination reaction has been improved by the use of the organic soluble copper(II) neodecanoate [Cu(ND)2]. Cu(ND)2 allowed the less-polar solvent dichloroethane (DCE) to be used, and as a consequence, decomposition of less-reactive substrates could be avoided. High diastereoselectivity was observed in the synthesis of 2,5-disubstituted pyrrolidines. Ureas, bis(anilines), and alpha-amido pyrroles derived from 2-allylaniline could also participate in the diamination reaction.
NASA Astrophysics Data System (ADS)
Rahardjo, Sentot B.; Endah Saraswati, Teguh; Pramono, Edy; Fitriana, Nur
2016-02-01
Complex of copper(II) with 2-cyano-1-methyl-3-{2-{{(5-methylimidazol-4- yl)methyl}thio}ethyl)guanidin(xepamet) had been synthesized in 1 : 4 mole ratio of metal to the ligand in methanol. The complex was characterized by metal analysis, thermal gravimetry/differential thermal analyzer (TG/DTA), molar conductivity meter, (Fourier transform infrared spectroscopy) FT-IR, UV-Vis spectroscopy, and magnetic susceptibility balance. The molar conductivity measurement shows that the complex was 2: 1 for electrolyte and SO42- which was acting as a counter ion. The thermal analysis by Thermogravimetric (TG) indicates that the complex contained four molecules of H2O. The Infrared spectral data indicates that functional groups of (C=N) imidazole and (C-S) are coordinated to the center ion Cu2+. Magnetic moment measurement shows that the complex is paramagnetic with peff = 1.78 ± 0.01 BM. Electronic spectra of the complex show a broad band at 608 nm (16447.23 cm-1) are due to Eg→T2g transition. Based on those of characteristics, The complex formula was estimated as [Cu(xepamet)2]SO4.4H2O. The structure of [Cu(xepamet)2]SO4.4H2O complex is probably square planar.
NASA Astrophysics Data System (ADS)
Barache, Umesh B.; Shaikh, Abdul B.; Lokhande, Tukaram N.; Kamble, Ganesh S.; Anuse, Mansing A.; Gaikwad, Shashikant H.
2018-01-01
The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH 4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414 nm which remains stable for > 48 h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5 μg mL- 1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5 μg mL- 1 to 17.5 μg mL- 1. The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813 × 104 L mol- 1 cm- 1, 0.01996 μg cm- 2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy vegetables, and water samples. The results are compared with those obtained with a reference procedure. Good agreement was attained. All the obtained results are indicative of a convenient, fast method for the extraction and quantification of micro levels of copper(II) from various environmental matrices without use of sophisticated instrumentation and procedure. The method showed a relative standard deviation of 0.42%.
Barache, Umesh B; Shaikh, Abdul B; Lokhande, Tukaram N; Kamble, Ganesh S; Anuse, Mansing A; Gaikwad, Shashikant H
2018-01-15
The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414nm which remains stable for >48h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5μgmL -1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5μgmL -1 to 17.5μgmL -1 . The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813×10 4 Lmol -1 cm -1 , 0.01996μgcm -2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy vegetables, and water samples. The results are compared with those obtained with a reference procedure. Good agreement was attained. All the obtained results are indicative of a convenient, fast method for the extraction and quantification of micro levels of copper(II) from various environmental matrices without use of sophisticated instrumentation and procedure. The method showed a relative standard deviation of 0.42%. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arif, Rizwan; Nayab, Pattan Sirajuddin; Ansari, Istikhar A.; Shahid, M.; Irfan, Mohammad; Alam, Shadab; Abid, Mohammad; Rahisuddin
2018-05-01
In the present research work, we prepared N-substituted phthalimide, 2-(-(2-(2-(2-(1,3-dioxoisoindoline-2-yl-ethylamino)ethylamino)ethyl)isoindoline-1,3-dione (DEEI) and its copper(II) complex. The ligand (DEEI) and its Cu(II) complex were structurally identified using absorption, FTIR, NMR, electron spin resonance, X-ray diffraction spectral studies, thermogravimetric and elemental analyses. The electronic spectrum and magnetic moment value proposed that Cu(II) complex has square planar geometry. The DNA interaction ability of the ligand (DEEI) and Cu(II) complex was studied by means of absorption and fluorescence spectrophotometer, viscosity measurements, cyclic voltammetery, and circular dichroism methods. The extent of DNA binding (Kb) with Calf thymus (Ct-DNA) follows the order of Cu(II) complex (1.11 × 106 M-1) > DEEI (1.0 × 105 M-1), indicating that Cu(II) complex interact with Ct-DNA through groove binding mode and more sturdily than ligand (DEEI). Interestingly, in silico predictions were corroborated with in vitro DNA binding studies. The antibacterial evaluation of these compounds was screened against a panel of bacterial strains Pseudomonas aeruginosa (MTCC 2453), Salmonella enterica (MTCC 3224), Streptococcus pneumoniae (MTCC 655), Enterococcus faecalis (MTCC 439), Klebsiella pneumonia and Escherichia coli (ATCC 25922). The results showed that the copper(II) complex has significant antibacterial potential (IC50 = 0.0019 μg/mL) against Salmonella enteric comparable with ligand (DEEI) and standard drug ciprofloxacin. Growth curve study of Cu(II) complex against only three bacterial strains S. enterica, E. faecalis and S. pneumoniae showed its bactericidal nature. Cu(II) complex showed less than 2% hemolysis on human RBCs indicating its non toxic nature. The results of antioxidant assay demonstrated that scavenging activity of Cu(II) complex is higher as compared to ligand and ascorbic acid as standard.
NASA Astrophysics Data System (ADS)
Nirmala, G.; Rahiman, A. Kalilur; Sreedaran, S.; Jegadeesh, R.; Raaman, N.; Narayanan, V.
2010-09-01
A series of N-benzoylated cyclam ligands incorporating three different benzoyl groups 1,4,8,11-tetra-(benzoyl)-1,4,8,11-tetraazacyclotetradecane (L 1), 1,4,8,11-tetra-(2-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 2) and 1,4,8,11-tetra-(4-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 3) and their nickel(II) and copper(II) complexes are described. Crystal structure of L 1 is also reported. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-benzoylation causes red shift in the λmax values of the complexes. The cyclic voltammogram of the complexes of ligand L 1 show one-electron, quasi-reversible reduction wave in the region -1.00 to -1.04 V, whereas that of L 2 and L 3 show two quasi-reversible reduction peaks. Nickel complexes show one-electron quasi-reversible oxidation wave at a positive potential in the range +1.05 to +1.15 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment values μeff 1.70-1.73 BM which is close to the spin-only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. All the ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.
Synthesis and luminescence properties of iridium(III) azide- and triazole-bisterpyridine complexes.
Goldstein, Daniel C; Peterson, Joshua R; Cheng, Yuen Yap; Clady, Raphael G C; Schmidt, Timothy W; Thordarson, Pall
2013-07-26
We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the "chemistry on the complex" strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition "click chemistry" reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in "click chemistry" facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.
NASA Astrophysics Data System (ADS)
Demirbaş, Ümit; Akçay, Hakkı Türker; Koca, Atıf; Kantekin, Halit
2017-08-01
In this study novel peripherally tetra 4-phenylthiazole-2-thiol substituted metal-free phthalocyanine (4) and its zinc(II) (5), copper(II) (6) and cobalt(II) (7) derivatives were synthesized and characterized by a combination of various spectroscopic techniques such as FT-IR, 1H-NMR, UV-vis and MALDI-TOF mass. Electrochemical characterizations of metallo-phthalocyanine complexes were conducted by voltammetric and in situ spectroelectrochemical measurements. CoIIPc went [CoIIPc-2]/[CoIPc-2]1-, [CoIPc-2]1-/[CoIPc-3]2-, [CoIPc-3]2-/[CoIPc-4]3- and [CoIIPc-2]/[CoIIPc-2]1+ reduction and oxidation processes respectively. Differently ZnIIPc only showed four ligand-based reductions and two ligand based oxidation processes.
Zabawa, Thomas P.
2008-01-01
The copper(II) carboxylate promoted diamination reaction has been improved by the use of the organic soluble copper(II) neodecanoate [Cu(ND)2]. Cu(ND)2 allowed the less polar solvent, dichloroethane (DCE) to be used, and as a consequence, decomposition of less reactive substrates could be avoided. High diastereoselectivity was observed in the synthesis of 2,5-disubstituted pyrrolidines. Ureas, bis(anilines) and α-amido pyrroles derived from 2-allylaniline could also participate in the diamination reaction. PMID:17447781
Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite
NASA Astrophysics Data System (ADS)
Tiberg, Charlotta; Sjöstedt, Carin; Persson, Ingmar; Gustafsson, Jon Petter
2013-11-01
Transport of lead(II) and copper(II) ions in soil is affected by the soil phosphorus status. Part of the explanation may be that phosphate increases the adsorption of copper(II) and lead(II) to iron (hydr)oxides in soil, but the details of these interactions are poorly known. Knowledge about such mechanisms is important, for example, in risk assessments of contaminated sites and development of remediation methods. We used a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and surface complexation modeling with the three-plane CD-MUSIC model to study the effect of phosphate on sorption of copper(II) and lead(II) to ferrihydrite. The aim was to identify the surface complexes formed and to derive constants for the surface complexation reactions. In the batch experiments phosphate greatly enhanced the adsorption of copper(II) and lead(II) to ferrihydrite at pH < 6. The largest effects were seen for lead(II).
Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry
2013-05-20
A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.
Nagatomi, Hisanori; Yanai, Nobuhiro; Yamada, Teppei; Shiraishi, Kanji; Kimizuka, Nobuo
2018-02-06
Complexation of copper(II) 2,3,9,10,16,17,23,24-octahydroxy-29H,31H-phthalocyanine (CuPcOH) with copper(II) ions gives a two-dimensional (2D) metal-organic framework (MOF). This is the first report of a phthalocyanine-based MOF. This 2D MOF was obtained as a black powder and showed an electrical conductivity of 1.6×10 -6 S cm -1 at 80 °C. When this MOF is used as a cathode of lithium ion battery (LIB), large charge/discharge capacities of 151/128 mAh g -1 were obtained. In addition, it showed a good stability during 200 charge/discharge cycles. The obtained LIB performance mainly originates from the electrically conductive and redox-active framework of the phthalocyanine-based 2D MOF and its hierarchical microporous/mesoporous structure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash
2017-02-01
Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.
NASA Astrophysics Data System (ADS)
Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.
2014-11-01
A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.
Surface Structures Formed by a Copper(II) Complex of Alkyl-Derivatized Indigo
Honda, Akinori; Noda, Keisuke; Tamaki, Yoshinori; Miyamura, Kazuo
2016-01-01
Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II) ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM) analysis revealed that the copper(II) complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed. PMID:28773957
NASA Astrophysics Data System (ADS)
Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko
2017-04-01
Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.
NASA Astrophysics Data System (ADS)
Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh
2016-11-01
New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.
Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand
2016-12-17
In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans . All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.
Liu, Chen-Jiang; Wang, Ji-De
2009-02-13
A simple, efficient procedure for the one-pot Biginelli condensation reaction of aldehydes, beta-ketoesters and urea or thiourea employing copper(II) sulfamate as a novel catalyst is described. Compared to the classical Biginelli reaction conditions, the present method has the advantages of good yields, short reaction times and experimental simplicity.
NASA Astrophysics Data System (ADS)
Olshin, Pavel K.; Myasnikova, Olesya S.; Kashina, Maria V.; Gorbunov, Artem O.; Bogachev, Nikita A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Pulkin, Sergey A.; Kochemirovsky, Vladimir A.; Skripkin, Mikhail Yu.; Mereshchenko, Andrey S.
2018-03-01
The results of spectrophotometric study and quantum chemical calculations for copper(II) chloro- and bromocomplexes in acetonitrile are reported. Electronic spectra of the individual copper(II) halide complexes were obtained in a wide spectral range 200-2200 nm. Stability constants of the individual copper(II) halide complexes in acetonitrile were calculated: log β1 = 8.5, log β2 = 15.6, log β3 = 22.5, log β4 = 25.7 for [CuCln]2-n and log β1 = 17.0, log β2 = 24.6, log β3 = 28.1, log β4 = 30.4 for [CuBrn]2-n. Structures of the studied complexes were optimized and electronic spectra were simulated using DFT and TD-DFT methodologies, respectively. According to the calculations, the more is the number of halide ligands the less is coordination number of copper ion.
NASA Astrophysics Data System (ADS)
Azeredo, Nathália F. B.; Souza, Fabrícia P.; Demidoff, Felipe C.; Netto, Chaquip D.; Resende, Jackson A. L. C.; Franco, Roberto W. A.; Colepicolo, Pio; Ferreira, Ana M. C.; Fernandes, Christiane
2018-01-01
The syntheses, physico-chemical characterization and cytotoxicity toward three human cell lines (standard and resistant sarcoma cells, and fibroblast) of a new copper(II) complex [Cu(HBPA)(L1)Cl]·3H2O 2 are reported. Complex 2 was obtained through the reaction between the ligand stilbene-quinone (HL1) and Cu[HBPA]Cl21, where HBPA = 2-hydroxybenzyl-2pyridylmethylamine. The synthesis of HL1 was performed in high yield through Heck reaction on PEG-400. X-ray diffraction and solution studies (UV-Vis, EPR, ESI(+)-MS and ESI(+)-MS/MS) were performed for complex 2, in which the copper(II) center is coordinated to the quinone in its deprotonated form, to the ligand HBPA and to a chloro ligand. Similar reaction employing CuCl2·2H2O, instead of Cu[HBPA]Cl21 and HL1, has resulted in the obtainment of a furano-o-naphtoquinone (L2) with 99% selectivity, suggesting a new methodology to cyclize the ligand HL1. In order to obtain the analogous para-isomer (L3), and to evaluate the isomerism influence on cytotoxicity activity, a cyclization reaction of HL1 with NBS (N-bromosuccinimide) was also performed, which resulted in the obtainment of L2 (8%) and L3 (13%). X-ray diffraction studies were performed for L2 and complex 2, and the description of their structure elucidated. Results from MTT assay revealed that complex 2 is more active against sarcoma cell lines (MES-SA/Dx5 and MES-SA) than both the free ligand HL1 and complex 1, reducing cell viability to less than 50 μmol L-1. L2 was the most active in the series, presenting cytotoxicity against resistant MES-SA/Dx5 and its standard MES-SA cell line, respectively, three and ten times higher than the current drug doxorubicin.
Singh, Vinod P
2008-11-01
This paper describes the preparation of [Cu(bh)2(H2O)2](NO3)2], [Cu(ibh)2(NO3)2], [Cu(ibh)2(H2O)2](NO3)2 and [Cu(iinh)2(NO3)2] (bh = benzoyl hydrazine (C6H5CONHNH2); ibh = isonicotinoyl hydrazine (NC5H4CONHNH2); ibh = isopropanone benzoyl hydrazone (C6H5CONHN=C(CH3)2; iinh = isopropanone isonicotinoyl hydrazone (NC5H4CONHN=C(CH3)2). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300 K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77 K in DMSO solution. The trend g(||) > g(perpendicular) > g(e,) observed in all the complexes suggests the presence of an unpaired electron in the d x2-y2 orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >C=O and -NH2 groups whereas, ibh and iinh bond through >C=O and >C=N- groups. The IR spectra of bh and ibh complexes also show H-O-H stretching and bending modes of coordinated water.
Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng
2015-03-01
Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.
2015-01-01
A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.
Pramanik, Anup K; Siddikuzzaman; Palanimuthu, Duraippandi; Somasundaram, Kumaravel; Samuelson, Ashoka G
2016-12-21
The synthesis and anticancer activity of a copper(II) diacetyl-bis(N4-methylthiosemicarbazone) complex and its nanoconjugates are reported. The copper(II) complex is connected to a carboxylic acid group through a cleavable disulfide link to enable smart delivery. The copper complex is tethered to highly water-soluble 20 nm gold nanoparticles (AuNPs), stabilized by amine terminated lipoic acid-polyethylene glycol (PEG). The gold nanoparticle carrier was further decorated with biotin to achieve targeted action. The copper complex and the conjugates with and without biotin, were tested against HeLa and HaCaT cells. They show very good anticancer activity against HeLa cells, a cell line derived from cervical cancer and are less active against HaCaT cells. Slow and sustained release of the complex from conjugates is demonstrated through cleavage of disulfide linker in the presence of glutathione (GSH), a reducing agent intrinsically present in high concentrations within cancer cells. Biotin appended conjugates do not show greater activity than conjugates without biotin against HeLa cells. This is consistent with drug uptake studies, which suggests similar uptake profiles for both conjugates in vitro. However, in vivo studies using a HeLa cell xenograft tumor model shows 3.8-fold reduction in tumor volume for the biotin conjugated nanoparticle compared to the control whereas the conjugate without biotin shows only 2.3-fold reduction in the tumor volume suggesting significant targeting.
Tak, Aijaz Ahmad; Arjmand, Farukh
2002-01-01
Five coordinated novel complexes of Cu II and Ni II have been synthesized from benzil and 1,3- diaminopropane- Cu II / Ni II complex and characterized by elemental analysis, i.r., n.m.r., e.p.r, molar conductance and u.v-vis, spectroscopy. The complexes are ionic in nature and exhibit pentaeoordinated geometry around the metal ion. The reaction kinetics of C 25 H 36 N 5 O 2 CuCl with calf thymus DNA was studied by u.v-vis, spectroscopy in aqueous medium. The complex after interaction with calf thymus DNA shows shift in the absorption spectrum and hypochromicity indicating an intercalative binding mode. The K obs values have been calculated under pseudo-first order conditions. The redox behaviour of complex C 25 H 36 N 5 O 2 CuCl in the presence and in the absence of calf thymus DNA in the aqueous solution has been investigated by cyclic voltammetry. The cyclic voitammogram exhibits one quasi-reversible redox wave corresponding to Cu II / Cu I redox couple with E 1 / 2 values of -0.377 and -0.237 V respectively at a scan rate of 0.1V s - 1 .On interaction with calf thymus DNA, the complex C 25 H 36 N 5 O 2 CuCl exhibits shifts in both E p as well as in E 1 / 2 values, indicating strong binding of the complex to the calf thymus DNA. PMID:18475428
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo
2015-02-01
Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.
Photochemistry of copper(II) complexes with macrocyclic amine ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidharan, S.; Ferraudi, G.
1981-07-01
The photochemical properties of Cu(dl-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ and Cu(rac-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ in the presence and absence of axially coordinated ligands have been investigated by continuous and flash irradiations. Flash photolysis of the complexes in deaerated aqueous solutions revealed the presence of copper-ligand radical complexes with closed- and open-cycle ligands. Flash photolysis of methanolic solutions of the complexes, in the presence of halides and pseudohalides, shows Cu(III) macrocyclic intermediates. The experimental observations can be explained in terms of two primary photoprocesses with origins in distinctive charge transfer to metal states. These states have been assigned as aminomore » to copper(II) charge-transfer state and acido to copper(II) charge-transfer state.« less
Synthesis and coordination chemistry of 1,1,1-tris-(pyrid-2-yl)ethane.
Santoro, Amedeo; Sambiagio, Carlo; McGowan, Patrick C; Halcrow, Malcolm A
2015-01-21
A new synthesis of 1,1,1-tris(pyrid-2-yl)ethane (L), and a survey of its coordination chemistry, are reported. The complexes [ML2](n+) (M(n+) = Fe(2+), Co(2+), Co(3+), Cu(2+) and Ag(+)), [PdCl2L] and [CuI(L)] have all been crystallographically characterised. Noteworthy results include an unusual square planar silver(i) complex [Ag(L)2]X (X(-) = NO3(-) and SbF6(-)); the oxidative fixation of aerobic CO2 by [CuI(L)] to yield [Cu2I(L)2(μ-CO3)]2[CuI3] and [Cu(CO3)(L)]; and, water/carbonato tape and water/iodo layer hydrogen bonding networks in hydrate crystals of two of the copper(ii) complexes. Cyclic voltammetric data on [Fe(L)2](2+) and [Co(L)2](2+/3+) imply that the peripheral methyl substituent has a weak influence on the ligand field exerted by L onto a coordinated metal ion.
Copper complexes as a source of redox active MRI contrast agents.
Dunbar, Lynsey; Sowden, Rebecca J; Trotter, Katherine D; Taylor, Michelle K; Smith, David; Kennedy, Alan R; Reglinski, John; Spickett, Corinne M
2015-10-01
The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.
NASA Astrophysics Data System (ADS)
Kamble, Ganesh S.; Kolekar, Sanjay S.; Anuse, Mansing A.
2011-05-01
A simple and selective spectrophotometric method was developed for the determination of copper(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The procedure was based on the synergistic extraction of copper(II) with 2',4'-dinitro APTPT in the presence of 0.5 mol L -1 pyridine to give green colored ternary complex of a molar ratio 1:2:2 (M:L:Py) in the pH range 8.7-10.5. It exhibits a maximum absorption of colored complex at 445 nm and 645 nm in chloroform against the reagent blank. Beer's law was followed in the concentration range 10-80 μg mL -1 of copper(II) and optimum range of 20-70 μg mL -1 the metal as evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of copper(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 0.87 × 10 3 L mol -1 cm -1 and 0.072 μg cm -2, respectively. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The proposed method is rapid, reproducible and successfully applied for the determination of copper(II) in binary and synthetic mixtures, alloys, pharmaceutical formulations, environmental and fertilizer samples. Comparison of the results with those obtained using an atomic absorption spectrophotometer also tested the validity of the method.
DeStefano, Matthew R.; Lewis, Robert A.
2017-01-01
Copper(II) complexes of benzimidazole are known to exhibit biological activity that makes them of interest for chemotherapeutic and other pharmaceutical uses. The complex bis(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κ2 N 2,N 3}copper(II), has been prepared. The absorption spectrum has features attributed to intraligand and ligand-field transitions and the complex exhibits ligand-centered room-temperature luminescence in solution. The acetonitrile monosolvate, [Cu(C2H3O2)2(C20H18N4)]·C2H3N (1), and the ethanol hemisolvate, [Cu(C2H3O2)2(C20H18N4)]·0.5C2H6O (2), have been structurally characterized. Compound 2 has two copper(II) complexes in the asymmetric unit. In both 1 and 2, distorted square-planar N2O2 coordination geometries are observed and the Cu—N(Im) bond distance is slightly shorter than the Cu—N(py) bond distance. Intermolecular π–π interactions are found in 1 and 2. A weak C—H⋯π interaction is observed in 1. PMID:29152336
NASA Astrophysics Data System (ADS)
Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.
2008-09-01
The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).
NASA Astrophysics Data System (ADS)
Arthi, P.; Mahendiran, D.; Shobana, S.; Srinivasan, P.; Rahiman, A. Kalilur
2018-06-01
A new series of pendant-armed heteroleptic copper(II) phenolate complexes of the type [CuL1-3(diimine)] (1-6) have been synthesized by the reaction of pendant-armed ligands 2,2'-(benzoyliminodiethylene)bissalicylidene (H2L1), 2,2'-(4-nitrobenzoyliminodiethylene)bissalicylidene (H2L2) or 2,2'-(3,5-dinitrobenzoyliminodiethylene)bissalicylidene (H2L3) with coligands (diimine; 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen)) in the presence of copper(II) chloride, and characterized by spectroscopic techniques. The seven coordinated pentagonal-bipyramidal geometry around the copper(II) center was inferred from the electronic spectra of the complexes. The bond length, bond angle and HOMO-LUMO energy gap calculations were carried out by DFT studies, using Gaussian 03 program. Electrochemical studies of the mononuclear complexes evidenced one-electron irreversible reduction wave in the cathodic region (Epc = -0.61 to -0.65 V). Experimental and in silico molecular docking studies support groove mode of binding with DNA. Further, the molecular docking studies of complexes with B-DNA indicate the binding of the guanine-cytosine residues in the minor groove of the DNA. Molecular docking studies also revealed the interaction of complexes with protein ERK2 kinase and significant topoisomerase (Topo-I) inhibitory activity. All the complexes display pronounced cleavage activity against supercoiled pBR322 DNA in the presence of H2O2. In vitro cytotoxicity of the complexes was tested against liver cancer cell line (HepG2) by MTT reduction assay.
NASA Astrophysics Data System (ADS)
Ferreira, Isabella P.; de Lima, Geraldo M.; Paniago, Eucler B.; Takahashi, Jacqueline A.; Krambrock, Klaus; Pinheiro, Carlos B.; Wardell, James L.; Visentin, Lorenzo C.
2013-09-01
Three new copper(II) dithiocarbamates (DTC), [Cu{S2CN(Me)(R1)}2] (1), [Cu{S2CN(Me)(R2)}2] (2) and [Cu{S2CN(R3)(R4)}2] (3) with R1 = CH2CH(OMe)2, R2 = 2-methyl-1,3-dioxolane, R3 = CH2(CH2)2NCHPhOCH2Ph and R4 = CH2CH2OH, have been synthesized and characterized by different spectroscopic techniques. Complexes (1) and (2) display typical EPR spectra for separated Cu(II) centers, and the spectrum of (3) is characteristic of two magnetically coupled Cu(II) ions with S = 1. The X-ray crystallographic determination has shown that complexes (1) and (2) crystallise in the triclinic and monoclinic systems. In addition both complexes are monomers in which the geometry at each Cu(II) is square planar. The in vitro antimicrobial activity of the sodium salts of ligands, and of the Cu(II)-DTC complexes have been screened against Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Penicillium citrinum and Curvularia senegalensis, as well as Gram positive and Gram negative bacteria. Finally, the toxic effects of complexes (1)-(3) were performed using Chlorella vulgaris.
Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes
NASA Astrophysics Data System (ADS)
Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan
2014-10-01
Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.
NASA Astrophysics Data System (ADS)
Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan
2016-09-01
Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.
NASA Astrophysics Data System (ADS)
Burov, D. M.; Ledenkov, S. F.; Vandyshev, V. N.
2013-05-01
Constants of the acid dissociation and complexation of L-phenylalanine (HPhe) with copper(II) ions are determined by potentiometry in aqueous ethanol solutions containing 0 to 0.7 molar fraction of alcohol. Changes in the Gibbs energy for the transfer from water to a binary solvent of L-phenylalanine, Phe- anion, and [CuPhe]+ complex are calculated. It is found that the weakening of solvation of the ligand donor groups in solvents with high ethanol contents is accompanied by an increase in the stability of [CuPhe]+ complex.
NASA Astrophysics Data System (ADS)
Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada
2014-01-01
Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.
Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter
2006-01-17
Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.
Kadej, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Urbański, Arkadiusz; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa
2016-10-01
Copper(II) complex formation processes between the alloferon 1 (Allo1) (HGVSGHGQHGVHG) analogues where the tryptophan residue is introducing in the place His residue H1W, H6W, H9W and H12W have been studied by potentiometric, UV-visible, CD and EPR spectroscopic, and MS methods. For all analogues of alloferon 1 complex speciation have been obtained for a 1:1 metal-to-ligand molar ratio and 2:1 of H1W because of precipitation at higher (2:1, 3:1 and 4:1) ratios. At physiological pH7.4 and a 1:1 metal-to-ligand molar ratio the tryptophan analogues of alloferon 1 form the CuH -1 L and/or CuH -2 L complexes with the 4N binding mode. The introduction of tryptophan in place of histidine residues changes the distribution diagram of the complexes formed with the change of pH and their stability constants compared to the respective substituted alanine analogues of alloferon 1. The CuH -1 L, CuH -2 L and CuH -3 L complexes of the tryptophan analogues are more stable from 1 to 5 log units in comparison to those of the alanine analogues. This stabilization of the complexes may result from cation(Cu(II))-π and indole/imidazole ring interactions. The induction of apoptosis in vivo, in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 was studied. The biological results show that copper(II) ions in vivo did not cause any apparent apoptotic features. The most active were the H12W peptide and Cu(II)-H12W complex formed at pH7.4. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Koch, Angira; Kumar, Arvind; Singh, Suryabhan; Borthakur, Rosmita; Basumatary, Debajani; Lal, Ram A.; Shangpung, Sankey
2015-03-01
The synthesis of the heterobinuclear copper-zinc complex [CuZn(bz)3(bpy)2]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 Å. The complex is normal paramagnetic having μeff value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants Aav = 63 × 10-4 cm-1, characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g|| = 2.254 and g⊥ = 2.071 and A|| = 160 × 10-4 cm-1. The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution.
Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan
2005-04-28
Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.
Gao, Detian; Back, Thomas G
2012-11-12
A versatile new synthesis of indoles was achieved by the conjugate addition of N-formyl-2-haloanilines to acetylenic sulfones, ketones, and esters followed by a copper-catalyzed intramolecular C-arylation. The conjugate addition step was conducted under exceptionally mild conditions at room temperature in basic, aqueous DMF. Surprisingly, the C-arylation was performed most effectively by employing copper(II) acetate as the catalyst in the absence of external ligands, without the need for protection from air or water. An unusual feature of this process, for the case of acetylenic ketones, is the ability of the initial conjugate-addition product to serve as a ligand for the catalyst, which enables it to participate in the catalysis of its further transformation to the final indole product. Mechanistic studies, including EPR experiments, indicated that copper(II) is reduced to the active copper(I) species by the formate ion that is produced by the base-catalyzed hydrolysis of DMF. This process also served to recycle any copper(II) that was produced by the adventitious oxidation of copper(I), thereby preventing deactivation of the catalyst. Several examples of reactions involving acetylenic sulfones attached to a modified Merrifield resin demonstrated the feasibility of solid-phase synthesis of indoles by using this protocol, and tricyclic products were obtained in one pot by employing acetylenic sulfones that contain chloroalkyl substituents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AlAjmi, Mohamed F.; Hussain, Afzal; Khan, Azmat Ali; Shaikh, Perwez Alam; Khan, Rais Ahmad
2018-01-01
Herein, we have synthesized and characterized a new benzimidazole-derived “BnI” ligand and its copper(II) complex, [Cu(BnI)2], 1, and zinc(II) complex, [Zn(BnI)2], 2, using elemental analysis and various spectroscopic techniques. Interaction of complexes 1 and 2 with the biomolecules viz. HSA (human serum albumin) and DNA were studied using absorption titration, fluorescence techniques, and in silico molecular docking studies. The results exhibited the significant binding propensity of both complexes 1 and 2, but complex 1 showed more avid binding to HSA and DNA. Also, the nuclease activity of 1 and 2 was analyzed for pBR322 DNA, and the results obtained confirmed the potential of the complexes to cleave DNA. Moreover, the mechanistic pathway was studied in the presence of various radical scavengers, which revealed that ROS (reactive oxygen species) are responsible for the nuclease activity in complex 1, whereas in complex 2, the possibility of hydrolytic cleavage also exists. Furthermore, the cytotoxicity of the ligand and complexes 1 and 2 were studied on a panel of five different human cancer cells, namely: HepG2, SK-MEL-1, HT018, HeLa, and MDA-MB 231, and compared with the standard drug, cisplatin. The results are quite promising against MDA-MB 231 (breast cancer cell line of 1), with an IC50 value that is nearly the same as the standard drug. Apoptosis was induced by complex 1 on MDA-MB 231 cells predominantly as studied by flow cytometry (FACS). The adhesion and migration of cancer cells were also examined upon treatment of complexes 1 and 2. Furthermore, the in vivo chronic toxicity profile of complexes 1 and 2 was also studied on all of the major organs of the mice, and found them to be less toxic. Thus, the results warrant further investigations of complex 1. PMID:29772746
AlAjmi, Mohamed F; Hussain, Afzal; Rehman, Md Tabish; Khan, Azmat Ali; Shaikh, Perwez Alam; Khan, Rais Ahmad
2018-05-16
Herein, we have synthesized and characterized a new benzimidazole-derived "BnI" ligand and its copper(II) complex, [Cu(BnI)₂], 1 , and zinc(II) complex, [Zn(BnI)₂], 2 , using elemental analysis and various spectroscopic techniques. Interaction of complexes 1 and 2 with the biomolecules viz. HSA (human serum albumin) and DNA were studied using absorption titration, fluorescence techniques, and in silico molecular docking studies. The results exhibited the significant binding propensity of both complexes 1 and 2 , but complex 1 showed more avid binding to HSA and DNA. Also, the nuclease activity of 1 and 2 was analyzed for pBR322 DNA, and the results obtained confirmed the potential of the complexes to cleave DNA. Moreover, the mechanistic pathway was studied in the presence of various radical scavengers, which revealed that ROS (reactive oxygen species) are responsible for the nuclease activity in complex 1 , whereas in complex 2 , the possibility of hydrolytic cleavage also exists. Furthermore, the cytotoxicity of the ligand and complexes 1 and 2 were studied on a panel of five different human cancer cells, namely: HepG2, SK-MEL-1, HT018, HeLa, and MDA-MB 231, and compared with the standard drug, cisplatin. The results are quite promising against MDA-MB 231 (breast cancer cell line of 1 ), with an IC 50 value that is nearly the same as the standard drug. Apoptosis was induced by complex 1 on MDA-MB 231 cells predominantly as studied by flow cytometry (FACS). The adhesion and migration of cancer cells were also examined upon treatment of complexes 1 and 2 . Furthermore, the in vivo chronic toxicity profile of complexes 1 and 2 was also studied on all of the major organs of the mice, and found them to be less toxic. Thus, the results warrant further investigations of complex 1 .
Li, Hang; Ha, Emmeline; Donaldson, Robert P.; ...
2015-09-09
Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreasmore » that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin oligomerization and fibril formation. Finally and more generally, this rapid technique opens the door for high-throughput screening of potential inhibitors of amyloid protein aggregation.« less
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael
2015-11-01
We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b
Zhao, Chen; Wang, Chong-Chen; Li, Jun-Qi; Wang, Peng; Ou, Jia-Qi; Cui, Jing-Rui
2018-01-01
Dissolved organic matter (DOM) can strongly interact with both organic and inorganic contaminants to influence their transportation, transformation, bioavailability, toxicity and even their ultimate fate. Within this work, DOM was extracted from urban stormwater runoff samples collected from a regular sampling site of a typical residential area in Beijing, China. Copper(II) ions were selected as model to investigate the interactions between DOM and typical heavy metals. Both ultraviolet (UV) absorbance and fluorescence titration methods were introduced to determine the complex capacities (C L ) and conditional stability constants (log K M ) of bonding between DOM and copper (II) ions, which revealed that the values of C L were 85.62 and 87.23 μmol mg -1 and the log K M values were 5.37 and 5.48, respectively. The results suggested the successful complexation between DOM and copper(II) ions. Furthermore, morphology of the DOM binding to copper(II) ions was confirmed by both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), which can facilitate to clarify the corresponding mechanism. The Cu 2p 3/2 peak at 933.7 eV and the characteristic shake-up peaks of Cu-O were found in the XPS spectra, implying that copper(II) ions might coordinate with hydroxyl (aliphatic or phenolic) or carboxyl groups. With these profitable results, it can be concluded that DOM in urban stormwater runoff has a strong binding affinity with copper(II) ions, which may further lead to potentially significant influence on their migration and transformation.
Inomata, Yoshie; Yamaguchi, Takeshi; Tomita, Airi; Yamada, Dai; Howell, F Scott
2005-08-01
Copper(II) complexes with glycyl-DL-alpha-amino-n-butyric acid (H2gly-DL-but), glycyl-DL-valine (H2gly-DL-val), glycyl-DL-norleucine (H2gly-DL-norleu), glycyl-DL-threonine (H2gly-DL-thr), glycyl-DL-serine (H2gly-DL-ser), glycyl-DL-phenylalanine (H2gly-DL-phe), and glycyl-L-valine (H2gly-L-val), have been prepared and characterized by IR, powder diffuse reflection, CD and ORD spectra, and magnetic susceptibility measurements, and by single-crystal X-ray diffraction. The crystal structures of the copper complex with H2gly-DL-but, the copper complex with H2gly-DL-val, and [Cu(gly-L-val)]n.0.5nH2O have been determined by a single-crystal X-ray diffraction method. As for the structure of the copper complex with H2gly-DL-but, the configuration around the asymmetric carbon atom is similar to that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-DL-but is [Cu(gly-L-but)]n.nH2O. On the contrary, as for the structure of the copper complex with H2gly-DL-val, the configuration around the asymmetric carbon atom is different from that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-dl-val is [Cu(gly-D-val)]n.0.5nH2O. So during the crystallization of the copper(II) complexes with H2gly-DL-but and H2gly-DL-val, spontaneous resolution has been observed; the four complexes have separated as [Cu(gly-D-but)]n.nH2O, [Cu(gly-L-but)]n.nH2O, [Cu(gly-D-val)]n.0.5nH2O, and [Cu(gly-L-val)]n.0.5nH2O, respectively. [Cu(gly-L-but)]n.nH2O is orthorhombic with the space group P2(1)2(1)2(1). [Cu(gly-D-val)]n.0.5nH2O and [Cu(gly-L-val)]n.0.5nH2O are monoclinic with the space group C2. In these complexes, the copper atom is in a square-pyramidal geometry, ligated by a peptide nitrogen atom, an amino nitrogen atom, a carboxyl oxygen atom, and a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. So these complexes consist of a two-dimensional polymer chain bridged by a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. The axial oxygen atom is located above the basal plane and the side chain of an amino acid is located below it. These polymer chains consist of only one or the other type of optical isomers; no racemic dipeptides are found. Therefore, spontaneous resolution has been observed in the crystallization of copper(II) complexes with H2gly-DL-but and H2gly-DL-val. The crystal structure of [Cu(gly-D-val)]n.0.5nH2O agrees almost completely with that of [Cu(gly-L-val)]n.0.5nH2O, except for the configuration around the asymmetric carbon atom.
Microporous Materials of Metal Carboxylates
NASA Astrophysics Data System (ADS)
Mori, Wasuke; Takamizawa, Satoshi
2000-06-01
Copper(II) terephthalate absorbs a large amount of gases such as N2, Ar, O2, and Xe. The maximum amounts of absorption of gases were 1.8, 1.9, 2.2, and 0.9 mole per mole of the copper(II) salt for N2, Ar, O2, and Xe, respectively, indicating that the gases were not adsorbed on the surface but occluded within the solid. Other microporous copper(II) dicarboxylates are also reviewed. The porous structure of copper(II) terephthalate, in which the gas is occluded, is deduced from the temperature dependence of magnetic susceptibilities and the linear structure of terephthalate. Microporous molybdenum(II) and ruthenium(II, III) dicarboxylates are discussed. We describe that rhodium(II) monocarboxylate bridged by pyrazine form stable micropores by self-assembly of infinite linear chain complexes.
Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa
2018-05-07
In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.
Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone
2011-01-17
Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA cleavage by C2 is twice that measured for [Cu(tacn)(OH2)2](2+), suggesting some degree of cooperativity between the copper center and guanidinium pendants in the hydrolysis of the phosphate ester linkages of DNA. A predominantly hydrolytic cleavage mechanism was confirmed through experiments performed either in the presence of various radical scavengers or under anaerobic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hang; Ha, Emmeline; Donaldson, Robert P.
Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreasmore » that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin oligomerization and fibril formation. Finally and more generally, this rapid technique opens the door for high-throughput screening of potential inhibitors of amyloid protein aggregation.« less
Mosalkova, Anastasiya P; Voitekhovich, Sergei V; Lyakhov, Alexander S; Ivashkevich, Ludmila S; Lach, Jochen; Kersting, Berthold; Gaponik, Pavel N; Ivashkevich, Oleg A
2013-02-28
For the first time, a representative of the 2,5-disubstituted tetrazoles, namely, 2-tert-butyl-5-(2-pyridyl)-2H-tetrazole (L), has been found to participate in oxidative dissolution of copper powder in homometalic systems Cu0–L–NH4X–DMSO (X = Cl, SCN, ClO4) and heterobimetallic ones Cu0–Mn(OAc)2–L–NH4OAc–Solv (Solv = DMSO, DMF), providing the formation of molecular homometallic complexes [CuL2Cl2] (1), [CuL2(SCN)2] (2), and [CuL2(H2O)](ClO4)2 (3), heterobimetallic complex [Cu2MnL2(OAc)6] (4) from DMF solution and its mixture with complex [Cu2MnL2(OAc)6]·2DMSO (5) from DMSO solution. Free ligand L and complexes 1–4 were characterized by elemental analysis, IR spectroscopy, thermal and X-ray single crystal analyses, whereas complex 5 was characterized by X-ray analysis only. Compounds 1–3 are mononuclear complexes, with chelating coordination mode of L via the tetrazole ring N4 and pyridine ring N7 atoms. Heterobimetallic complexes 4 and 5 possess trinuclear structures, with a linear Cu–Mn–Cu arrangement of the metal atoms, linked by the acetate anions; each copper(II) atom is decorated by a chelating unit of L via the tetrazole ring N1 and pyridine ring N7 atoms in complex 4, and via the N4, N7 atoms in complex 5. Temperature-dependent magnetic susceptibility measurements of complex 4 revealed a weak antiferromagnetic coupling between the paramagnetic copper(II) and manganese(II) ions (J = −2.5 cm(−1), g(Cu) = 2.25 and g(Mn) = 2.01), with magnetic exchange through the acetato bridges.
Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.
Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N
2012-09-19
α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.
Wegner, Rainer; Dubs, Manuela; Görls, Helmar; Robl, Christian; Schönecker, Bruno; Jäger, Ernst-G
2002-09-01
Copper is next to iron the most important element in the biological transport, storage and in redox reactions of dioxygen. A bioanalogous activation of dioxygen with copper complexes is used for catalytical epoxidation, allylic hydroxylation and oxidative coupling of aromatic substrates, for example. With stereochemical information in form of chiral ligands, enantioselective reactions may be possible. Another aspect of interest on copper catalyzed reactions with dioxygen is that the exact mechanism and biological function of some enzymes (especially catechol oxidase) is yet not fully clear. For studies mimicking the copper-containing catechol oxidase appropriate chiral steroid ligands with defined stereochemistry and conformation have been synthesized. The four diastereomeric 16,17-aminoalcohols of the 3-methoxy-estra-1,3,5(10)-triene series have been condensed with salicylic aldehyde and different beta-ketoenols to the chiral ligand types 1-5. These compounds with different steric and electronic properties and different arrangements of the neighboring hydroxy and nitrogen functions were reacted with copper(II) acetate to copper complexes. The structure of these complexes will be discussed. The bioanalogous oxidation of 3,5-di-tbutyl-catechol (dtbc) to the corresponding quinone was catalyzed by most of the complexes, indicating their ability to activate dioxygen. The trans configurations c and d showed an activity one magnitude higher than the cis configurations a and b. Comparing compounds with the same diastereomeric configuration, the main influence was that of the peripheral R(1-3) substituents at the beta-ketoenaminic group which are useful for the fine-tuning of the properties of the copper atoms like redox potential and Lewis acidity.
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Shah, Naseer Ali
2017-09-01
This paper reports the synthesis, X-ray crystal structure, DNA-binding, antibacterial and antifungal studies of a rare dihydroxo-bridged dinuclear copper(II) complex including 1,10-phenanthroline (Phen) ligands and phenylacetate (L) anions, [Cu2(Phen)2(OH)2(H2O)2].2L.6H2O. Structural data revealed distorted square-pyramidal geometry for each copper(II) atom with the basal plane formed by the two nitrogen atoms of the phenantroline ligand and the oxygen atoms of two bridging hydroxyl groups. The apical positions are filled by the oxygen atom from a water molecule. This forms a centrosymmetric cationic dimer where the uncoordinated phenylacetate ligands serve to balance the electrical charge. The dimers interact by means of hydrogen bonds aided by the coordinated as well as uncoordinated water molecules and phenyl-acetate moieties in the crystal lattice. The binding ability of the complex with salmon sperm DNA was determined using cyclic voltammetry and absorption spectroscopy yielding binding constants 2.426 × 104 M-1 and 1.399 × 104 M-1, respectively. The complex was screened against two Gram-positive (Micrococcus luteus and Bacillus subtilis) and one Gram-negative (Escherichia coli) bacterial strains exhibiting significant activity against all the three strains. The complex exhibited significant, moderate and no activity against fungal strains Mucor piriformis, Helminthosporium solani and Aspergillus Niger, respectively. These preliminary tests indicate the competence of the complex towards the development of a potent biological drug.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benda, F.; Kouba, J.
1991-03-01
In this paper, the authors examined the accumulation of copper(II) in, and its toxic effect on, duckweed, a plant which exhibits extremely high concentration factors. The effect of copper(II) was investigated by adding it to the minimal medium in two forms: CuSO{sub 4} and (Cu(Gly){sub 2}). The neutral (2:1) tetracoordinated bis(glycinate)-copper(II) complex is constituted by two five-membered rings bonded to the central copper atom with the cis configuration. This complex was chosen to model the function of a neutral species (eliminating the charge effect) involving a nontoxic ligand, for which - in contrast to the hydrated Cu{sup 2+} species -more » direct permeation through the cell wall is conceivable.« less
ATR-FTIR spectroscopic investigation of the cis- and trans-bis-(α-amino acids) copper(II) complexes
NASA Astrophysics Data System (ADS)
Berestova, Tatyana V.; Kuzina, Lyudmila G.; Amineva, Natalya A.; Faizrakhmanov, Ilshat S.; Massalimov, Ismail A.; Mustafin, Akhat G.
2017-06-01
The crystalline phases of the trans-(a) and cis-(b)-isomers of bis-(α-amino acids) copper(II) complexes [Cu(bL)2] 1-5 (bL - bidentate ligand: gly (1), S-ala (2), R,S-val (3), (±)-thr (4), R,S-phe (5)) were studied by ATR-FTIR spectroscopy in the mid region IR spectrum. It was established that asymmetric νas(COO) and symmetric νs(COO) stretching vibrations of carboxylic groups of 1-5 are sensitive to change of the geometric structure and have a different maxima for the trans(a)- and cis(b)-isomers. It found that νas(COO) and νs(COO) stretching vibrations of cis-isomers are broadened and shifted to longer wavelengths (b) as compared with trans-isomers (a). Shown that peculiarities of crystal packing molecules of geometric isomers may affect on carboxylate stretching vibration bis-α-amino acids complexes copper(II) 1-5 a,b.
NASA Astrophysics Data System (ADS)
Bai, Hong-Ye; Fan, Wei-Qiang; Liu, Chun-Bo; Shi, Wei-Dong; Yan, Yong-Sheng
2014-05-01
Using an flexible amide-type tripodal ligand N,N‧,N″-tris(3-pyridyl)-1,3,5-benzenetricarboxamide (L) and 1,4-benzenedicarboxylic acid (H2bdc), a three-dimensional copper(II) metal-organic framework (MOF) formulated as [Cu(bdc)(L)]n has been hydrothermally synthesized and structurally characterized by IR, elemental, X-ray single-crystal diffraction and thermal analysis. The complex crystallizes in the triclinic, space group P - 1, a = 8.891(2) Å, b = 11.760(2) Å, c = 15.348(3) Å, α = 96.73(3)°, β = 105.96(3)°, γ = 106.47(3)°, V = 1446.2(5) Å3, Mr = 666.10, Dc = 1.530 g/cm3, Z = 2, F(000) = 682, GOOF = 1.0560, μ(MoKα) = 0.817 mm-1, R = 0.0366 and wR = 0.0885. The structural analyses reveal that the title compound consists of one Cu(II) atom, two halves of bdc, and one L ligand. Each Cu(II) atom is linked by two bdc ligands and three L ligands to form a three-dimensional network. In addition, the electrochemical behavior of title compound has been studied. CCDC No. 990526.
Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta
2018-03-21
X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.
Pan, Lin; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Zhu, Hailiang; Zhao, Xinlu; Qu, Dan; Niu, Fang; You, Zhonglu
2016-06-01
A series of new copper(II) complexes were prepared. They are [CuL(1)(NCS)] (1), [CuClL(1)]·CH3OH (2), [CuClL(2)]·CH3OH (3), [CuL(3)(NCS)]·CH3OH (4), [CuL(4)(NCS)]·0.4H2O (5), and [CuL(5)(bipy)] (6), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, 4-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide and 2-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, respectively, L(5) is the dianionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra and single crystal X-ray diffraction. The Cu atoms in complexes 1, 2, 3, 4 and 5 are coordinated by the NOO donor set of the aroylhydrazone ligands, and one Cl or thiocyanate N atom, forming square planar coordination. The Cu atom in complex 6 is in a square pyramidal coordination, with the NOO donor set of L(1), and one N atom of bipy defining the basal plane, and with the other N atom of bipy occupying the apical position. Complexes 1, 2, 3, 4 and 5 show effective urease inhibitory activities, with IC50 values of 5.14, 0.20, 4.06, 5.52 and 0.26μM, respectively. Complex 6 has very weak activity against urease, with IC50 value over 100μM. Molecular docking study of the complexes with the Helicobacter pylori urease was performed. The relationship between structures and urease inhibitory activities indicated that copper complexes with square planar coordination are better models for urease inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Emirik, Mustafa; Karaoğlu, Kaan; Serbest, Kerim; Menteşe, Emre; Yilmaz, Ismail
2016-02-01
A new ferrocenyl-substituted heterocyclic hydrazide ligand and its Cu(II) complex were prepared. The DFT calculations were performed to determine the electronic and molecular structures of the title compounds. The electronic spectra were calculated by using time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the compounds. The bands assignments of IR spectra were achieved in the light of the theoretical vibrational spectral data and total energy distribution values calculated at DFT/B3LYP/6-311++G(d,p) level. The redox behaviors of the ferrocene derivatives were investigated by cyclic voltammetry. The compounds show reversible redox couple assignable to Fc+/Fc couple. The copper(II) complex behaves as an effective catalyst towards oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone derivative in DMF saturated with O2. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers 2.32 × 103.
Alberti, Giancarla; Biesuz, Raffaela; D'Agostino, Girolamo; Scarponi, Giuseppe; Pesavento, Maria
2007-02-15
The distribution of copper(II) in species of different stability in some estuarine and sea water samples (Adriatic Sea) was investigated by a method based on the sorption of the metal ion on a strongly sorbing resin, Chelex 100, whose sorbing properties have been previously characterized. From them, it is possible to predict very high values of detection windows at the considered conditions, for example side reaction coefficient as high as 10(10) at pH 7.5. Strong copper(II) species in equilibrium with Chelex 100 were detected, at concentration 2-20nM, with a reaction coefficient approximately 10(10.6) at pH 7.45 in sea water, strictly depending on the acidity. They represent 50-70% of the total metal ion and are the strongest copper(II) complexes found in sea water. Weak complexes too were detected in all the samples, with reaction coefficient lower than ca. 10(9) at the same pH. The method applied, named resin titration (RT), was described in a previous investigation, and is here modified in order to be carried out on oceanographic boat during a cruise in the Adriatic Sea.
NASA Astrophysics Data System (ADS)
Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan
2013-05-01
Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.
Enantioselective Synthesis of α-Oxy Amides via Umpolung Amide Synthesis
Leighty, Matthew W.; Shen, Bo
2012-01-01
α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes, and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids. PMID:22967461
Sherman, Eric S.; Fuller, Peter H.; Kasi, Dhanalakshmi; Chemler, Sherry R.
2008-01-01
An expanded substrate scope and in depth analysis of the reaction mechanism of the copper(II) carboxylate promoted intramolecular carboamination of unactivated alkenes is described. This method provides access to N-functionalized pyrrolidines and piperidines. Both aromatic and aliphatic γ- and δ-alkenyl N-arylsulfonamides undergo the oxidative cyclization reaction efficiently. N-Benzoyl-2-allylaniline also underwent the oxidative cyclization. The terminal olefin substrates examined were more reactive than those with internal olefins, and the latter terminated in elimination rather than carbon-carbon bond formation. The efficiency of the reaction was enhanced by the use of more organic soluble copper(II) carboxylate salts, copper(II) neodecanoate in particular. The reaction times were reduced by the use of microwave heating. High levels of diastereoselectivity were observed in the synthesis of 2,5-disubstituted pyrrolidines, wherein the cis substitution pattern predominates. The mechanism of the reaction is discussed in the context of the observed reactivity and in comparison to analogous reactions promoted by other reagents and conditions. Our evidence supports a mechanism wherein the N-C bond is formed via intramolecular syn aminocupration and the C-C bond is formed via intramolecular addition of a primary carbon radical to an aromatic ring. PMID:17428100
NASA Astrophysics Data System (ADS)
Yousef Ebrahimipour, S.; Sheikhshoaie, Iran; Crochet, Aurelien; Khaleghi, Moj; Fromm, Katharina M.
2014-08-01
A tridentate hydrazone Schiff base ligand, (E)-N";-(2-hydroxybenzylidene)acetohydrazide [HL], and its mixed-ligand Cu(II) complex [CuL(phen)], have been synthesized and characterized by elemental analyses, FT-IR, molar conductivity, UV-Vis spectroscopy. The structure of the complex has been determined by X-ray diffraction. This complex has square pyramidal geometry and the positions around central atom are occupied with donor atoms of Schiff base ligand and two nitrogens of 1,10-phenanthroline. Computational studies of compounds were performed by using DFT calculations. The linear polarizabilities and first hyperpolarizabilities of the studied molecules indicate that these compounds can be good candidates of nonlinear optical materials. It is in accordance with experimental data. In addition, invitro antimicrobial results show that these compounds specially [CuL(phen)] have great potential of antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes bacteria and antifungal activity against Candida Albicans in comparison to some standard drugs.
Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita
2018-05-11
The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.
Graham, B; Hearn, M T; Junk, P C; Kepert, C M; Mabbs, F E; Moubaraki, B; Murray, K S; Spiccia, L
2001-03-26
Hydroxo- and methoxo-bridged tetranuclear copper(II) complexes of the tetramacrocyclic ligand 1,2,4,5-tetrakis(1,4,7-triazacyclonon-1-ylmethyl)benzene (Ldur), have been prepared from [Cu4Ldur(H2O)8](ClO4)8.9H2O (1). Addition of base to an aqueous solution of 1 gave [Cu4Ldur(mu2-OH)4](ClO4)4 (2). Diffusion of MeOH into a DMF solution of 2 produces [Cu4Ldur(mu2-OMe)4](ClO4)4.HClO4.2/3MeOH (3), a complex which hydrolyzes on exposure to moisture regenerating 2. The structurally related azido-bridged complex, [Cu4Ldur(mu2-N3)4](PF6)4.4H2O.6CH3CN (4), was produced by reaction of Ldur with 4 molar equiv of Cu(OAc)2.H2O and NaN3 in the presence of excess KPF6. Compounds 2-4 crystallize in the triclinic space group P1 (No. 2) with a = 10.248(1) A, b = 12.130(2) A, c = 14.353(2) A, alpha = 82.23(1) degrees, beta = 80.79(1) degrees, gamma = 65.71(1) degrees, and Z = 1 for 2, a = 10.2985(4) A, b = 12.1182(4) A, c = 13.9705(3) A, alpha = 89.978(2) degrees, beta = 82.038(2) degrees, gamma = 65.095(2) degrees, and Z = 1 for 3, and a = 12.059(2) A, b = 12.554(2) A, c = 14.051(2) A, alpha = 91.85(1) degrees, beta = 98.22(1) degrees, gamma = 105.62(1) degrees, and Z = 1 for 4. The complexes feature pairs of isolated dibridged copper(II) dimers with "roof-shaped" Cu2(mu2-X)2 cores (X = OH-, OMe-, N3-), as indicated by the dihedral angle between the two CuX2 planes (159 degrees for 2, 161 degrees for 3, and 153 degrees for 4). This leads to Cu.Cu distances of 2.940(4) A for 2, 2.962(1) A for 3, and 3.006(5) A for 4. Variable-temperature magnetic susceptibility measurements indicate weak antiferromagnetic coupling (J = -27 cm(-1)) for the hydroxo-bridged copper(II) centers in 2 and very strong antiferromagnetic coupling (J = -269 cm(-1)) for the methoxo-bridged copper(II) centers in 3. Pairs of copper(II) centers in 4 display the strongest ferromagnetic interaction (J = 94 cm(-1)) reported thus far for bis(mu2-1,1-azido)-bridged dicopper units. Spectral measurements on a neat powdered sample of 4 at 33.9 GHz or 90 Ghz confirm the spin-triplet ground state for the azido-bridged copper(II) pairs.
Spectroscopic studies on Solvatochromism of mixed-chelate copper(II) complexes using MLR technique
NASA Astrophysics Data System (ADS)
Golchoubian, Hamid; Moayyedi, Golasa; Fazilati, Hakimeh
2012-01-01
Mixed-chelate copper(II) complexes with a general formula [Cu(acac)(diamine)]X where acac = acetylacetonate ion, diamine = N,N-dimethyl,N'-benzyl-1,2-diaminoethane and X = BPh 4-, PF 6-, ClO 4- and BF 4- have been prepared. The complexes were characterized on the basis of elemental analysis, molar conductance, UV-vis and IR spectroscopies. The complexes are solvatochromic and their solvatochromism were investigated by visible spectroscopy. All complexes demonstrated the positive solvatochromism and among the complexes [Cu(acac)(diamine)]BPh 4·H 2O showed the highest Δ νmax value. To explore the mechanism of interaction between solvent molecules and the complexes, different solvent parameters such as DN, AN, α and β using multiple linear regression (MLR) method were employed. The statistical results suggested that the DN parameter of the solvent plays a dominate contribution to the shift of the d-d absorption band of the complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.
A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complexmore » crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.« less
NASA Astrophysics Data System (ADS)
Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.
2018-01-01
The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.
NASA Astrophysics Data System (ADS)
Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.
2015-02-01
The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.
Deshmukh, Rupali; Calvo, Micha; Schreck, Murielle; Tervoort, Elena; Sologubenko, Alla S; Niederberger, Markus
2018-06-20
We report a solution-phase approach to the synthesis of crystalline copper nanowires (Cu NWs) with an aspect ratio >1000 via a new catalytic mechanism comprising copper ions. The synthesis involves the reaction between copper(II) chloride and copper(II) acetylacetonate in a mixture of oleylamine and octadecene. Reaction parameters such as the molar ratio of precursors as well as the volume ratio of solvents offer the possibility to tune the morphology of the final product. A simple low-cost spray deposition method was used to fabricate Cu NW films on a glass substrate. Post-treatment under reducing gas (5% H 2 + 95% N 2 ) atmosphere resulted in Cu NW films with a low sheet resistance of 24.5 Ω/sq, a transmittance of T = 71% at 550 nm (including the glass substrate), and a high oxidation resistance. Moreover, the conducting Cu NW networks on a glass substrate can easily be transferred onto a polycarbonate substrate using a simple hot-press transfer method without compromising on the electrical performance. The resulting flexible transparent electrodes show excellent flexibility ( R/ R o < 1.28) upon bending to curvatures of 1 mm radius.
Ali, Imran; Wani, Waseem A; Khan, Amber; Haque, Ashanul; Ahmad, Aijaz; Saleem, Kishwar; Manzoor, Nikhat
2012-08-01
A pyrazoline based ligand; (5-(4-chlorophenyl)-3-phenyl-4, 5-dihydro-1H-pyrazole-1-carbothioamide) has been synthesized by Claisen-Schmidt condensation of acetophenone with p-chlorobenzaldehyde, followed by sodium hydroxide assisted cyclization of the resulting chalcone with thiosemicarbazide. Metal ion complexes of the synthesized ligand were prepared with Cu(II) and Ni(II) metal ions, separately and respectively. Ligand and the metal complexes were characterized by elemental analysis, FT-IR, UV-Vis, (1)HNMR, ESI-MS and (13)CNMR spectroscopic techniques. Molar conductance measurements in DMSO suggested non-electrolytic nature of the complexes. Tetragonally distorted octahedral geometry for copper and octahedral geometry for the nickel complexes was proposed on the basis of UV-Vis spectroscopic studies and magnetic moment measurements. The complexes were investigated for their ability to kill human fungal pathogen Candida by determining MICs (Minimum inhibitory concentrations), inhibition in solid media and ability to produce a possible synergism with conventional most clinically practiced antifungals by disc diffusion assay and FICI (fractional inhibitory concentration index). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri
2014-08-01
Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.
Huang, Jie; Lebœuf, David; Frontier, Alison J.
2011-01-01
A general reaction sequence is described that involves Nazarov cyclization followed by two sequential Wagner Meerwein migrations, to afford spirocyclic compounds from divinyl ketones in the presence of one equivalent of copper(II) complexes. A detailed investigation of this sequence is described including a study of substrate scope and limitations. It was found that after 4π electrocyclization, two different pathways are available to the oxyallyl cation intermediate: elimination of a proton can give the usual Nazarov cycloadduct, or ring contraction can give an alternative tertiary carbocation. After ring contraction, either [1,2]-hydride or carbon migration can occur, depending upon the substitution pattern of the substrate, to furnish spirocyclic products. The rearrangement pathway is favored over the elimination pathway when catalyst loading was high and the copper(II) counterion is noncoordinating. Several ligands were found to be effective for the reaction. Thus, the reaction sequence can be controlled by judicious choice of reaction conditions to allow selective generation of richly functionalized spirocycles. The three steps of the sequence are stereospecific: electrocyclization followed by two [1,2]-suprafacial Wagner-Meerwein shifts: the ring contraction and then an hydride, alkenyl or aryl shift. The method allows stereospecific installation of adjacent stereocenters or adjacent quaternary centers arrayed around a cyclopentenone ring. PMID:21466152
Nunes, Cléia Justino; Borges, Beatriz Essenfelder; Nakao, Lia Sumie; Peyroux, Eugénie; Hardré, Renaud; Faure, Bruno; Réglier, Marius; Giorgi, Michel; Prieto, Marcela Bach; Oliveira, Carla Columbano; Da Costa Ferreira, Ana M
2015-08-01
In this work, the influence of two new dinuclear copper(II) complexes in the viability of melanoma cells (B16F10 and TM1MNG3) was investigated, with the aim of verifying possible correlations between their cytotoxicity and their structure. One of the complexes had a polydentate dinucleating amine-imine ligand (complex 2), and the other a tridentate imine and a diamine-bridging ligand (complex 4). The analogous mononuclear copper(II) species (complexes 1 and 3, respectively) were also prepared for comparative studies. Crystal structure determination of complex 2 indicated a square-based pyramidal geometry around each copper, coordinated to three N atoms from the ligand and the remaining sites being occupied by either solvent molecules or counter-ions. Complex 4 has a tetragonal geometry. Interactions of these complexes with human albumin protein (HSA) allowed an estimation of their relative stabilities. Complementary studies of their reactivity towards DNA indicated that all of them are able of causing significant oxidative damage, with single and double strand cleavages, in the presence of hydrogen peroxide. However, nuclease activity of the dinuclear species was very similar and much higher than that of the corresponding mononuclear compounds. Although complex 2, with a more flexible structure, exhibits a much higher tyrosinase activity than complex 4, having a more rigid environment around the metal ion, both complexes showed comparable cytotoxicity towards melanoma cells. Corresponding mononuclear complexes showed to be remarkably less reactive as tyrosinase mimics as well as cytotoxic agents. Moreover, the dinuclear complexes showed higher cytotoxicity towards more melanogenic cells. The obtained results indicated that the structure of these species is decisive for its activity towards the malignant tumor cells tested. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travnicek, Zdenek, E-mail: zdenek.travnicek@upol.c; Herchel, Radovan; Mikulik, Jiri
2010-05-15
Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN){sub 5}NO].H{sub 2}O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN){sub 5}NO].2H{sub 2}O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]octadecane and [Cu(nme){sub 2}Fe(CN){sub 5}NO].H{sub 2}O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, {sup 57}Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, {sup 57}Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe{sub 2}O{sub 4} and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN){sub 5}NO].xH{sub 2}O, wheremore » L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and {sup 57}Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.« less
NASA Astrophysics Data System (ADS)
Singh, Bibhesh K.; Jetley, Umesh K.; Sharma, Rakesh K.; Garg, Bhagwan S.
2007-09-01
A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML 2 composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.
Singh, Bibhesh K; Jetley, Umesh K; Sharma, Rakesh K; Garg, Bhagwan S
2007-09-01
A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML(2) composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.
Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa
2014-09-01
Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. Copyright © 2014 Elsevier Inc. All rights reserved.
Stereoselective Synthesis of Morpholines Via Copper-Promoted Oxyamination of Alkenes
Sequeira, Fatima C.
2012-01-01
A new copper(II) 2-ethylhexanoate promoted addition of an alcohol and an amine across an alkene (oxyamination) is reported. The alcohol addition is intramolecular while coupling with the amine occurs intermolecularly. Several 2-aminomethyl morpholines were synthesized in good to excellent yields and diastereoselectivities. PMID:22894680
NASA Astrophysics Data System (ADS)
Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng
2014-08-01
This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.
Synthesis and Elucidation Structure of Tetrakis-diphenylaminecopper(II) Chloride Hexahydrate
NASA Astrophysics Data System (ADS)
Syaima, H.; Rahardjo, S. B.; Suciningrum, E.
2017-11-01
CuCl2·2H2O with diphenylamine formed a complex compound in 1:4-mole ratio of metal to the ligand in methanol. Its structural properties were investigated by employing metal content analysis by Atomic Absorption Spectroscopy (AAS), magnetic susceptibility, UV-vis and FTIR spectroscopy. The forming of the complex was indicated by shifting of UV-Vis spectra. The result of analysis Cu(II) in the complex showed empirical formula of the complex were Cu(diphenylamine)4Cl2(H2O)6. The electrical conductivity of complex showed the charge ratio of cation and anion = 2:1. Finally, the proposed formula of the complex was [Cu(diphenylamine)4]Cl2·6H2O. Based on infrared spectra, it was revealed that diphenylamine existed as monodentate bind to copper(II) through the functional group of N-H. The electronic spectral study of the complex showed three transition peaks on 861, 592, and 419 nm corresponding to the 2B1g → 2A1g, 2B1g → 2B2g dan 2B1g → 2Eg transitions. The complex was paramagnetic and indicated that ligands form square planar geometry around the Cu(II).
Rauf, Abdur
1996-01-01
Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896
NASA Astrophysics Data System (ADS)
Vlasenko, Valery G.; Vasilchenko, Igor S.; Pirog, Irina V.; Shestakova, Tatiana E.; Uraev, Ali I.; Burlov, Anatolii S.; Garnovskii, Alexander D.
2007-02-01
Binuclear copper complexes are known to be models for metalloenzymes containing copper active sites, and some of them are of considerable interest due to their magnetic and charge transfer properties. The reactions of the complex formation of bibasic tridentate heterocyclic imines with copper acetate leads to two types of chelates with mono deprotonated ligands and with totally deprotonated ligands. Cu K-edge EXAFS has been applied to determine the local structure around the metal center in copper(II) azomethine complexes with five tridentate ligands: 1-(salycilideneimino)- or 1-(2-tosylaminobenzilideneimino)-2-amino(oxo, thio)benzimidazoles. It has been found that some of the chelates studied are bridged binuclear copper complexes, and others are mononuclear complexes. The copper-copper interatomic distances in the bridged binuclear copper complexes were found to be 2.85-3.01 Å. Variable temperature magnetic susceptibility data indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former is dominating at low temperatures and the latter at high temperatures.
Rajmohan, Rajamani; Ayaz Ahmed, Khan Behlol; Sangeetha, Sampathkumar; Anbazhagan, Veerappan; Vairaprakash, Pothiappan
2017-09-08
Copper(ii) ion mediated C-H oxidation of dipyrromethanes (DPMs) to the corresponding dipyrrins followed by complexation invoked the selective sensing of copper(ii) ions in aqueous solutions. On the addition of copper, the colour of the DPM solution instantaneously changes from yellow to pink with the detection limit of 0.104 μM measured by absorption spectroscopy, whereas visible colour changes could be observed by the naked eye for concentrations as low as 3 μM.
Zhang, Xuejun; Zhang, Yanshi; Huang, Jian; Hsung, Richard P; Kurtz, Kimberly C M; Oppenheimer, Jossian; Petersen, Matthew E; Sagamanova, Irina K; Shen, Lichun; Tracey, Michael R
2006-05-26
A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.
Anjomshoa, Marzieh; Hadadzadeh, Hassan; Torkzadeh-Mahani, Masoud; Fatemi, Seyed Jamilaldin; Adeli-Sardou, Mahboubeh; Rudbari, Hadi Amiri; Nardo, Viviana Mollica
2015-01-01
The copper(II) complex of 1,2,4-triazine derivatives, [Cu(dppt)2(H2O)](PF6)2(dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), has been synthesized and fully characterized by spectroscopic methods and single crystal X-ray diffraction. The in vitro DNA-binding studies of the complex have been investigated by several methods. The results showed that the complex intercalates into the base pairs of DNA. The complex also indicated good binding propensity to BSA. The results of molecular docking and molecular dynamic simulation methods confirm the experimental results. Finally, the in vitro cytotoxicity indicate that the complex has excellent anticancer activity against the three human carcinoma cell lines, MCF-7, A-549, and HT-29, with IC50 values of 9.8, 7.80, and 4.50 μM, respectively. The microscopic analyses of the cancer cells demonstrate that the Cu(II) complex apparently induced apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Borghi, Elena; Casella, Luigi
2010-02-21
In this study copper(ii) complexes with the tridentate nitrogen ligand bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB) are considered as model compounds for the Cu-tris(imidazole) array found in several copper proteins. 2-BB chelates copper(ii) forming two six-membered rings and the complexes contain methanol, nitrite, azide and water as ancillary ligands; both the coordination numbers and stereochemistries differ in these complexes. Their key structural features were investigated by using full multiple-scattering theoretical analysis of the copper K-edge X-ray absorption spectrum with the MXAN code. We showed that using cluster sizes large enough to include all atoms of the ligand, the analysis of the XANES region can give both a structural model of the metal centre and map the structure of the 2-BB complexes. Complex [Cu(2-BB)(N(3))](+) provided a critical test through the comparison of the XANES simulation results with crystallographic data, thus permitting the extension of the method to the complex [Cu(2-BB)(H(2)O)(n)](+) (n = 1 or 2), for which crystallographic data are not available but is expected to bear a five-coordinated Cu(3N)(2O) core (n = 2). The structural data of [Cu(2-BB)(MeOH)(ClO(4))](+) and [Cu(2-BB)(NO(2))](+), both with a Cu(3N)(2O) core but with a different stereochemistry, were used as the starting parameters for two independent simulations of the XANES region of the [Cu(2-BB)(H(2)O)(2)](+) cation. The two structural models generated by simulation converge towards a structure for the aqua-cation with a lower coordination number. New calculations, where four-coordinated Cu(3N)(O) cores were considered as the starting structures, validated that the structure of the aqua-complex in the powder state has a copper(ii) centre with a four-coordinated Cu(3N)(O) core and a molecular formula [Cu(2-BB)(H(2)O)](ClO(4)).(H(2)O). A water solvation molecule, presumed to be disordered from the simulations with the two Cu(3N)(2O) cores, is present. The successful treatment of this Cu-2-BB complex system allows the extension of the method to other biomimetic compounds when a structural characterization is lacking.
Lanza, Valeria; Bellia, Francesco; D'Agata, Roberta; Grasso, Giuseppe; Rizzarelli, Enrico; Vecchio, Graziella
2011-02-01
Carnosine (β-alanyl-L-histidine) is an endogenous dipeptide widely and abundantly distributed in muscle and nervous tissues of several animal species. Many functions have been proposed for this compound, such as antioxidant and metal ion-chelator properties. However, the main limitation on therapeutic use of carnosine on pathologies related to increased oxidative stress and/or metal ion dishomeostasis is associated with the hydrolysis by the specific dipeptidase carnosinase. Several attempts have been made to overcome this limitation. On this basis, we functionalized carnosine and its amide derivative with small sugars such as glucose and lactose. The resistance of these derivatives to the carnosinase hydrolysis was tested and compared with that of carnosine. We found that the glycoconjugation protects the dipeptide moiety from carnosinase hydrolysis, thus potentially improving the availability of carnosine. The copper(II) binding properties of all the new synthesized compounds were investigated by spectroscopic (UV-Visible and circular dichroism) and ESI-MS studies. Particularly, the new family of amide derivatives that are not significantly hydrolyzed by carnosinase is a very promising class of carnosine derivatives. The sugar moiety can act as a recognition element. These new derivatives are potentially able to act as chelating agents in the development of clinical approaches for the regulation of metal homeostasis in the field of medicinal inorganic chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
Chavan, S S; Sawant, V A; Jadhav, A N
2014-01-03
Some copper(II) complexes of the type [Cu(L1-3)(phen]·CH2Cl2 (1a-3a) and [Cu(L1-3) (bipy)]·CH2Cl2 (1b-3b) (where L1=N-(2-{[(2E)-2-(2-Hydroxy-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L2=N-(2-{[(2E)-2-(2-Hydroxy-(5-bromo)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L3=N-(2-{[(2E)-2-(2-Hydroxy-(5-methoxy)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide; phen=1,10-phenanthroline, bipy=2,2'-bipyridine) have been prepared and characterized on the basis of elemental analyses, IR, UV-Vis and EPR spectral studies. IR spectra indicate that the ligand L1-3 exists in the keto form in the solid state, while at the time of complexation, it tautomerises into enol form. The single crystal X-ray diffraction study of the representative complex [Cu(L1) (phen)]·CH2Cl2 (1a) reveals the distorted square pyramidal geometry around copper(II). Crystal data of (1a): space group=P21/n, a=11.5691(16) Å, b=11.0885(15) Å, c=24.890(4) Å, V=3166.2(8) Å(3), Z=4. The electrochemical behavior of all the complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its stronger π acidic character. All the complexes exhibit blue-green emission as a result of the fluorescence from the intra-ligand (π→π(*)) emission excited state. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chavan, S. S.; Sawant, V. A.; Jadhav, A. N.
2014-01-01
Some copper(II) complexes of the type [Cu(L1-3)(phen]ṡCH2Cl2 (1a-3a) and [Cu(L1-3) (bipy)]ṡCH2Cl2 (1b-3b) (where L1 = N-(2-{[(2E)-2-(2-Hydroxy-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L2 = N-(2-{[(2E)-2-(2-Hydroxy-(5-bromo)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L3 = N-(2-{[(2E)-2-(2-Hydroxy-(5-methoxy)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide; phen = 1,10-phenanthroline, bipy = 2,2‧-bipyridine) have been prepared and characterized on the basis of elemental analyses, IR, UV-Vis and EPR spectral studies. IR spectra indicate that the ligand L1-3 exists in the keto form in the solid state, while at the time of complexation, it tautomerises into enol form. The single crystal X-ray diffraction study of the representative complex [Cu(L1) (phen)]ṡCH2Cl2 (1a) reveals the distorted square pyramidal geometry around copper(II). Crystal data of (1a): space group = P21/n, a = 11.5691(16) Å, b = 11.0885(15) Å, c = 24.890(4) Å, V = 3166.2(8) Å3, Z = 4. The electrochemical behavior of all the complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its stronger π acidic character. All the complexes exhibit blue-green emission as a result of the fluorescence from the intra-ligand (π → π∗) emission excited state.
Rochford, Garret; Molphy, Zara; Browne, Niall; Surlis, Carla; Devereux, Michael; McCann, Malachy; Kellett, Andrew; Howe, Orla; Kavanagh, Kevin
2018-06-01
Herein we report the in-vivo characterisation and metabolic changes in Galleria mellonella larvae to a series of bis-chelate copper(II) phenanthroline-phenazine cationic complexes of [Cu(phen) 2 ] 2+ (Cu-Phen), [Cu(DPQ)(Phen)] 2+ (Cu-DPQ-Phen) and [Cu(DPPZ)(Phen)] 2+ (Cu-DPPZ-Phen) (where phen = 1,10-phenanthroline, DPQ = dipyrido[3,2-ƒ:2',3'-h]quinoxaline and DPPZ = dipyrido[3,2-a:2',3'-c]phenazine). Our aim was to investigate the influence of the systematic extension of the ligated phenazine ligand in the G. mellonella model as a first step towards assessing the in-vivo tolerance and mode of action of the complex series with respect to the well-studied oxidative chemical nuclease, Cu-Phen. The Lethal Dose 50 (LD 50 ) values were established over dose ranges of 2 - 30 μg at 4-, 24-, 48- and 72 h by mortality assessment, with Cu-Phen eliciting the highest mortality at 4 h (Cu-Phen, 12.62 μg < Cu-DPQ-Phen, 21.53 μg < Cu-DPPZ-Phen, 26.07 μg). At other timepoints, a similar profile was observed as the phenazine π-backbone within the complex scaffold was extended. Assessment of both cellular response and related gene expression demonstrated that the complexes did not initiate an immune response. However, Label-Free Quantification proteomic data indicated the larval response was associated with upregulation of key proteins such as Glutathione S-transferase, purine synthesis and glycolysis/gluconeogenesis (e.g. fructose-bisphosphate aldolase and glyceraldehyde-3-phosphate). Both Cu-Phen and Cu-DPQ-Phen elicited a similar in-vivo response in contrast to Cu-DPPZ-Phen, which displayed a substantial increase in nitrogen detoxification proteins and proteins with calcium binding sites. Overall, the response of G. mellonella larvae exposure to the complex series is dominated by detoxification and metabolic proteome response mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.
Ahmad, Munirah; Suhaimi, Shazlan-Noor; Chu, Tai-Lin; Abdul Aziz, Norazlin; Mohd Kornain, Noor-Kaslina; Samiulla, D S; Lo, Kwok-Wai; Ng, Chew-Hee; Khoo, Alan Soo-Beng
2018-01-01
Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.
Reger, Daniel L; Pascui, Andrea E; Foley, Elizabeth A; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew
2014-02-17
The reactions of M(ClO4)2·xH2O and the ditopic ligands m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) or m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (Lm*) in the presence of triethylamine lead to the formation of monohydroxide-bridged, dinuclear metallacycles of the formula [M2(μ-OH)(μ-Lm)2](ClO4)3 (M = Fe(II), Co(II), Cu(II)) or [M2(μ-OH)(μ-Lm*)2](ClO4)3 (M = Co(II), Ni(II), Cu(II)). With the exception of the complexes where the ligand is Lm and the metal is copper(II), all of these complexes have distorted trigonal bipyramidal geometry around the metal centers and unusual linear (Lm*) or nearly linear (Lm) M-O-M angles. For the two solvates of [Cu2(μ-OH)(μ-Lm)2](ClO4)3, the Cu-O-Cu angles are significantly bent and the geometry about the metal is distorted square pyramidal. All of the copper(II) complexes have structural distortions expected for the pseudo-Jahn-Teller effect. The two cobalt(II) complexes show moderate antiferromagnetic coupling, -J = 48-56 cm(-1), whereas the copper(II) complexes show very strong antiferromagnetic coupling, -J = 555-808 cm(-1). The largest coupling is observed for [Cu2(μ-OH)(μ-Lm*)2](ClO4)3, the complex with a Cu-O-Cu angle of 180°, such that the exchange interaction is transmitted through the dz(2) and the oxygen s and px orbitals. The interaction decreases, but it is still significant, as the Cu-O-Cu angle decreases and the character of the metal orbital becomes increasingly d(x(2)-y(2)). These intermediate geometries and magnetic interactions lead to spin Hamiltonian parameters for the copper(II) complexes in the EPR spectra that have large E/D ratios and one g matrix component very close to 2. Density functional theory calculations were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with the experiments.
Imbri, Dennis; Netz, Natalie; Kucukdisli, Murat; Kammer, Lisa Marie; Jung, Philipp; Kretzschmann, Annika; Opatz, Till
2014-12-05
An electrocyclic ring closure is the key step of an efficient one-pot method for the synthesis of pyrrole-2-carboxylates and -carboxamides from chalcones and glycine esters or amides. The 3,4-dihydro-2H-pyrrole intermediates generated in situ are oxidized to the corresponding pyrroles by stoichiometric oxidants or by catalytic copper(II) and air in moderate to high yields. A wide range of functional groups are tolerated, and further combination with an in situ bromination gives access to polyfunctional pyrrole scaffolds.
Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands.
Sumathi, S; Tharmaraj, P; Sheela, C D; Anitha, C
2012-11-01
Transition metal complexes of various acetylacetone based ligands of the type ML [where M=Cu(II), Ni(II), Co(II); L=3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, (1)H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate). Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands
NASA Astrophysics Data System (ADS)
Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.
2012-11-01
Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).
Genistein Binding to Copper(II)-Solvent Dependence and Effects on Radical Scavenging.
Yang, Jing; Xu, Yi; Liu, Hao-Yu; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H
2017-10-18
Genistein, but not daidzein, binds to copper(II) with a 1:2 stoichiometry in ethanol and with a 1:1 stoichiometry in methanol, indicating chelation by the 5-phenol and the 4-keto group of the isoflavonoid as demonstrated by the Jobs method and UV-visible absorption spectroscopy. In ethanol, the stability constants had the value 1.12 × 10 11 L²∙mol -2 for the 1:2 complex and in methanol 6.0 × 10⁵ L∙mol -1 for the 1:1 complex at 25 °C. Binding was not detected in water, as confirmed by an upper limit for the 1:1 stability constant of K = 5 mol -1 L as calculated from the difference in solvation free energy of copper(II) between methanol and the more polar water. Solvent molecules compete with genistein as demonstrated in methanol where binding stoichiometry changes from 1:2 to 1:1 compared to ethanol and methanol/chloroform (7/3, v / v ). Genistein binding to copper(II) increases the scavenging rate of the stable, neutral 2,2-diphenyl-1-picrylhydrazyl radical by more than a factor of four, while only small effects were seen for the short-lived but more oxidizing β -carotene radical cation using laser flash photolysis. The increased efficiency of coordinated genistein is concluded to depend on kinetic rather than on thermodynamic factors, as confirmed by the small change in reduction potential of -0.016 V detected by cyclic voltammetry upon binding of genistein to copper(II) in methanol/chloroform solutions.
Cesme, Mustafa; Tarinc, Derya; Golcu, Aysegul
2011-01-01
A new, simple, sensitive and accurate spectrophotometric method has been developed for the assay of metoprolol tartrate (MPT), which is based on the complexation of drug with copper(II) [Cu(II)] at pH 6.0, using Britton-Robinson buffer solution, to produce a blue adduct. The latter has a maximum absorbance at 675 nm and obeys Beer's law within the concentration range 8.5-70 μg/mL. Regression analysis of the calibration data showed a good correlation coefficient (r = 0.998) with a limit of detection of 5.56 μg/mL. The proposed procedure has been successfully applied to the determination of this drug in its tablets. In addition, the spectral data and stability constant for the binuclear copper(II) complex of MPT (Cu2MPT2Cl2) have been reported.
NASA Astrophysics Data System (ADS)
Patel, R. N.; Singh, Nripendra; Gundla, V. L. N.; Chauhan, U. K.
2007-03-01
A series of ternary copper(II) complexes containing same coordination sphere but difference in the counter ions, viz., [Cu(PMDT)(OAc)]PF 6(1); [Cu(PMDT)(OAc)]ClO 4(2); [Cu(PMDT)(OAc)]BF 4(3) and [Cu(PMDT)(OAc)]BPh 4(4) where PMDT = N, N, N', N″, N″-pentamethyldiethylenetriamine, OAc = Acetate ion were synthesized and characterized by means of spectroscopic, magnetic and cyclic voltammetric measurements. In frozen solution e.p.r. spectra, an interesting relation g|| > g⊥ has been observed which is a typical of the axially symmetric d 9 Cu II ( SCu = 1/2) having an unpaired electron in a d orbital. Single crystal X-ray analysis of (1) has revealed the presence of distorted square planar geometry. The influence of the counter ion on the complexes has been examined by performing some biological experiments like superoxide dismutase and anti-microbial activity.
NASA Astrophysics Data System (ADS)
Khattar, Raghvi; Yadav, Anjana; Mathur, Pavan
2015-05-01
Two new mononuclear copper(II) complexes [Cu (L) (NO3)2] (1) and [Cu (L) Br2] (2) where (L = bis(1-(pyridin-2-ylmethyl)-benzimidazol-2-ylmethyl)ether) are synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, UV-Visible, IR spectroscopy, EPR and cyclic voltammetry. The complexes exhibit different coordination structures; the E1/2 value of the complex (1) is found to be relatively more cathodic than that of complex (2). X-band EPR spectra at low temperature in DMF supports a tetragonally distorted complex (1) while complex (2) shows three different g values suggesting a rhombic geometry. These complexes were utilized as a catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine assisted by molecular oxygen. The initial rate of reaction is dependent on the concentration of Cu(II) complex as well as substrate, and was found to be higher for the nitrate bound complex, while presence of acetate anion acts as a mild inhibitor of the reaction, as it is likely to pick up protons generated during the course of reaction. The inhibition suggests that the generated protons are further required in another important catalytic step.
ERIC Educational Resources Information Center
Wriedt, Mario; Sculley, Julian P.; Aulakh, Darpandeep; Zhou, Hong-Cai
2016-01-01
A simple and straightforward synthesis of an ultrastable porous metal-organic framework (MOF) based on copper(II) and a mixed N donor ligand system is described as a laboratory experiment for chemistry undergraduate students. These experiments and the resulting analysis are designed to teach students basic research tools and procedures while…
Copper(II) mediated facile and ultra fast peptide synthesis in methanol.
Mali, Sachitanand M; Jadhav, Sandip V; Gopi, Hosahudya N
2012-07-18
A novel, ultrafast, mild and scalable amide bond formation strategy in methanol using simple thioacids and amines is described. The mechanism suggests that the coupling reactions are initially mediated by CuSO(4)·5H(2)O and subsequently catalyzed by in situ generated copper sulfide. The pure peptides were isolated in satisfactory yields in less than 5 minutes.
External anion effect on the synthesis of new MOFs based on formate and a twisted divergent ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lago, Ana Belén, E-mail: ablago@uvigo.es; Carballo, Rosa; Lezama, Luis
2015-11-15
New copper(II) metal–organic compounds with the formulae [Cu{sub 3}Cl(HCO{sub 2}){sub 5}(SCS){sub 3}(H{sub 2}O){sub 2}]·8H{sub 2}O·EtOH (1) and [Cu{sub 3}(HCO{sub 2}){sub 4}(SCS){sub 4}(H{sub 2}O){sub 2}](NO{sub 3}){sub 2}·9H{sub 2}O (2) (SCS=bis(4-pyridylthio)methane) have been synthesized after a careful study of the reaction of the SCS ligand with copper(II) formate. The compounds were obtained in the presence of sodium chloride and nitrate salts under microwave irradiation. The influence of the anion at different metal/anion ratios on the final architecture has been studied. The new chloride-MOF 1 has been characterized by electron paramagnetic resonance (EPR), magnetic properties and single crystal X-ray diffraction studies. The thermalmore » stability and topological analysis have also been investigated. - Highlights: • Microwave synthesis of coordination polymers. • Anion-derived structural changes. • Influence of anions at different metal/anion ratios on the final architectures. • EPR and magnetic characterization of a MOF compound.« less
Exploring a novel preparation method of 1D metal organic frameworks based on supercritical CO2.
López-Periago, A; Vallcorba, O; Frontera, C; Domingo, C; Ayllón, J A
2015-04-28
The preparation of copper(II) one-dimensional MOFs using an eco-efficient method is reported here. This method is based exclusively on using supercritical CO2 as a solvent, without the addition of any other additive or co-solvent. Neutral acetylacetonate copper complexes and two linear linkers, namely, the bidentate 4,4'-bipyridine and 4,4'-trimethylenedipyridine molecules, were reacted under compressed CO2 at 60 °C and 20 MPa for periods of 4 or 24 h. The success achieved in the synthesis of the different studied 1D-MOFs was related to the solubility of the reagents in supercritical CO2. The reaction yield of the synthesized coordination polymers via the supercritical route was close to 100% because both the reactants were almost completely depleted in the performed experiments.
NASA Astrophysics Data System (ADS)
Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.
2018-04-01
A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.
Zhao, Wei; Fan, Jian; Song, You; Kawaguchi, Hiroyuki; Okamura, Taka-aki; Sun, Wei-Yin; Ueyama, Norikazu
2005-04-21
Three novel metal-organic frameworks (MOFs), [Cu(1)SO4].H2O (4), [Cu2(2)2(SO4)2].4H2O (5) and [Cu(3)(H2O)]SO4.5.5H2O (6), were obtained by hydrothermal reactions of CuSO4.5H2O with the corresponding ligands, which have different flexibility. The structures of the synthesized complexes were determined by single-crystal X-ray diffraction analyses. Complex 4 has a 2D network structure with two types of metallacycles. Complex 5 also has a 2D network structure in which each independent 2D sheet contains two sub-layers bridged by oxygen atoms of the sulfate anions. Complex 6 has a 2D puckered structure in which the sulfate anions serve as counter anions, which are different from those in complexes 4 (terminators) and 5 (bridges). The different structures of complexes 4, 5 and 6 indicate that the nature of organic ligands affected the structures of the assemblies greatly. The magnetic behavior of complex 5 and anion-exchange properties of complex 6 were investigated.
NASA Astrophysics Data System (ADS)
Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.
2007-07-01
New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T < 10 K. For this complex, the structure is identified and the distance between the copper ions is determined. It is shown that the nitrate counterion plays the role of a bridge between the hexaaqua copper(II) complex and the dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.
Kuninobu, Yoichiro; Kawata, Atsushi; Noborio, Taihei; Yamamoto, Syun-Ichi; Matsuki, Takashi; Takata, Kazumi; Takai, Kazuhiko
2010-04-01
Esterification reactions from cyclic 1,3-diketones and alcohols are carried out in the presence of several Lewis acids. In particular, indium(III) triflate, In(OTf)(3), iron(III) triflate, Fe(OTf)(3), copper(II) triflate, Cu(OTf)(2), and silver(I) triflate, AgOTf, show high catalytic activities. These reactions proceed through the carbon-carbon bond cleavage by a retro-aldol reaction and were found to be highly regioselective even in the presence of other functional groups. This type of reaction can also be applied to the preparation of the keto esters during the synthesis of seratrodast, which is an antiasthmatic and eicosanoid antagonist.
Li, Hsin-Yi; Chen, Chien-Yuan; Cheng, Hui-Ting; Chu, Yen-Ho
2016-10-13
Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5- a ]pyridine, a number of bicyclic triazolium ionic liquids 1 - 3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1 , 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.
NASA Astrophysics Data System (ADS)
Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni
2018-03-01
The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.
NASA Astrophysics Data System (ADS)
Rajasekhar, Bathula; Patowary, Nidarshana; K. Z., Danish; Swu, Toka
2018-07-01
Hundred and forty-five novel molecules of Wittig-based Schiff-base (WSB), including copper(II) complex and precursors, were computationally screened for nonlinear optical (NLO) properties. WSB ligands were derived from various categories of amines and aldehydes. Wittig-based precursor aldehydes, (E)-2-hydroxy-5-(4-nitrostyryl)benzaldehyde (f) and 2-hydroxy-5-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl) benzaldehyde (g) were synthesised and spectroscopically confirmed. Schiff-base ligands and copper(II) complex were designed, optimised and their NLO property was studied using GAUSSIAN09 computer program. For both optimisation and hyperpolarisability (finite-field approach) calculations, Density Functional Theory (DFT)-based B3LYP method was applied with LANL2DZ basis set for metal ion and 6-31G* basis set for C, H, N, O and Cl atoms. This is the first report to present the structure-activity relationship between hyperpolarisability (β) and WSB ligands containing mono imine group. The study reveals that Schiff-base ligands of the category N-2, which are the ones derived from the precursor aldehyde, 2-hydroxy-5-(4nitro-styryl)benzaldehyde and pre-polarised WSB coordinated with Cu(II), encoded as Complex-1 (β = 14.671 × 10-30 e.s.u) showed higher β values over other categories, N-1 and N-3, i.e. WSB derived from precursor aldehydes, 2-hydroxy-5-styrylbenzaldehyde and 2-hydroxy-5-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl)benzaldehyde, respectively. For the first time here we report the geometrical isomeric effect on β value.
Khalifa, M E; Akl, M A; Ghazy, S E
2001-06-01
Copper(II) forms 1:1 and 1:2 intense red complexes with phenanthraquinone monophenylthiosemicarbazone (PPT) at pH 3-3.5 and > or =6.5, respectively. These complexes exhibit maximal absorbance at 545 and 517 nm, the molar absorptivity being 2.3 x 10(4) and 4.8 x 10(4) l mol(-1) cm(-1), respectively. However, the 1:1 complex was quantitatively floated with oleic acid (HOL) surfactant in the pH range 4.5-5.5, providing a highly selective and sensitive procedure for the spectrophotometric determination of CuII. The molar absorptivity of the floated Cu-PPT complex was 1.5 x 10(5) l mol)(-1) cm(-1). Beer's law was obeyed over the range 3-400 ppb at 545 nm. The analytical parameters affecting the flotation process and hence the determination of copper traces were reported. Also, the structure of the isolated solid complex and the mechanism of flotation were suggested. Moreover, the procedure was successfully applied to the analysis of CuII in natural waters, serum blood and some drug samples.
Surface complexation model for multisite adsorption of copper(II) onto kaolinite
NASA Astrophysics Data System (ADS)
Peacock, Caroline L.; Sherman, David M.
2005-08-01
We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO 4H n) n-6 and binuclear (Cu 2O 6H n) n-8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu 2+ on ion exchangeable ≡X-H + sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH) 6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH) 2Cu(OH) 20, tridentate (≡Al 3O(OH) 2)Cu 2(OH) 30 and ≡X-Cu 2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions
Copper(II) acetate promoted intramolecular diamination of unactivated olefins.
Zabawa, Thomas P; Kasi, Dhanalakshmi; Chemler, Sherry R
2005-08-17
A concise method for the synthesis of cyclic sulfamides and vicinal diamines is presented. This method is enabled by Cu(OAc)2 and demonstrates a new transformation for this metal. Both five- and six-membered vicinal diamine-containing heterocycles have been synthesized in good to excellent yields, and substrate-based asymmetric induction has been achieved. This is the first reported example of intramolecular diamination of olefins.
Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi
2015-02-28
The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.
NASA Astrophysics Data System (ADS)
Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.
2014-11-01
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).
NASA Astrophysics Data System (ADS)
Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj
2017-09-01
Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.
Aronica, Christophe; Jeanneau, Erwann; El Moll, Hani; Luneau, Dominique; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Carvajal, Maria Angels; Robert, Vincent
2007-01-01
A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.
Shebl, Magdy
2009-07-15
A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.
NASA Astrophysics Data System (ADS)
Batool, Syeda Shahzadi; Gilani, Syeda Rubina; Tahir, Muhammad Nawaz; Rüffer, Tobias
2017-11-01
Two ternary copper(II) complexes of N,N,N‧,N'-tetramethylethylenediamine (tmen = C6H16N2) with benzoic acid and p-aminobenzoic acid, having the formula [Cu(tmen)(BA)2(H2O)2] (1), and [Cu(tmen)(pABA)2]. 1/2 CH3OH (2) {(Where BA1- = benzoate1- (C6H5CO21-), pABA1- = p-aminobenzoate1- (p-H2NC6H5CO21-)} have been prepared and characterized by elemental combustion analysis, Uv-Visible spectroscopy, FT-IR spectroscopy, thermal, and single crystal X-ray diffraction analyses. The complex 1 is a monomer with distorted octahedral geometry. In its CuN2O4 chromophore, the Cu(II) centre is coordinated by two N atoms of a symmetrically chelating tmen ligand, by two carboxylate-O atoms from two monodentate benzoate1- anions, and by two apical aqua-O atoms, which define the distorted octahedral structure. The complex 2 is a monomer with a distorted square planar coordination geometry. In CuN2O2 chromophore, tmen is coordinated to Cu(II) ion in a chelating bidentate fashion, while the two p-aminobenzoate1- anions coordinate to Cu(II) centre through their carboxylate-O atoms in a monodentate manner, forming a square planar structure. The observed difference between asymmetric ѵas(OCO) and symmetric ѵs(OCO) stretching IR vibrations of the carboxylate moieties for 1 and 2 is 220 cm-1 and 232 cm-1, respectively, which suggests monodentate coordination mode (Δν OCO>200) of the carboxylate groups to Cu(II) ion. Thermogravimetric studies of 1 indicates removal of two water molecules at 171 °C, elimination of a tmen upto 529 °C and of two benzoate groups upto 931 °C. In tga curve of 2, methanol is lost upto 212 °C, while tmen is lost from 212 to 993 °C. The antibacterial activities of these new compounds against various bacterial strains were also investigated.
Shebl, Magdy
2008-09-01
A tetradentate N2O2 donor Schiff base ligand, H2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl-, NO3-, AcO-, ClO4- and SO42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO(4)(-) anion as compared to the strongly coordinating power of SO42- and Cl- anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.
NASA Astrophysics Data System (ADS)
Bulut, İclal; Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet
2007-05-01
Crystal structure of [Cu(hsm) 2(sac) 2] (hsm is histamine and sac is saccharinate) complex has been determined by X-ray diffraction analyses and its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystallizes in the monoclinic system, space group P 21/ c with a = 7.4282(4), b = 22.5034(16), c = 8.3300(5) Å, β = 106.227(4)°, V = 1336.98(14) Å 3, and Z = 2. The structure consist of discrete [Cu(hsm) 2(sac) 2] molecules in which the copper ion is centrosymmetrically coordinated by two histamine ligands forming an equatorial plane [Cu-N hsm = 2.024(2) and Cu-N hsm = 2.0338(18) Å]. Two N atoms from the saccharinate ligands coordinate on the elongated axial positions with Cu-N sac being 2.609(5) Å. The complex is also characterized by spectroscopic (IR, UV/Vis) and thermal (TG, and TDA) methods. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centred electroactivity in the potential range - 1.25-1.5 V versus Ag/AgCl reference electrode. The molecular orbital bond coefficients of Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters.
NASA Astrophysics Data System (ADS)
Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali
2018-05-01
This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.
Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity
NASA Astrophysics Data System (ADS)
Tarlani, Aliakbar; Narimani, Khashayar; Mohammadipanah, Fatemeh; Hamedi, Javad; Tahermansouri, Hasan; Amini, Mostafa M.
2015-06-01
In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the ID/IG ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1985-01-01
Background information, procedures, and typical results obtained are provided for two demonstrations. The first involves the colorful complexes of copper(II). The second involves reverse-phase separation of Food, Drug, and Cosmetic (FD & C) dyes using a solvent gradient. (JN)
Kato, Merii; Sah, Ajay Kumar; Tanase, Tomoaki; Mikuriya, Masahiro
2006-08-21
Tetranuclear copper(II) complexes containing alpha-D-glucose-1-phosphate (alpha-D-Glc-1P), [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(bpy)4(H2O)2]X3 [X = NO3 (1a), Cl (1b), Br (1c)], and [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(phen)4(H2O)2](NO3)3 (2) were prepared by reacting the copper(II) salt with Na2[alpha-D-Glc-1P] in the presence of diimine ancillary ligands, and the structure of 2 was characterized by X-ray crystallography to comprise four {Cu(phen)}2+ fragments connected by the two sugar phosphate dianions in 1,3-O,O' and 1,1-O mu4-bridging fashion as well as a mu-hydroxo anion. The crystal structure of 2 involves two chemically independent complex cations in which the C2 enantiomeric structure for the trapezoidal tetracopper(II) framework is switched according to the orientation of the alpha-D-glucopyranosyl moieties. Temperature-dependent magnetic susceptibility data of 1a indicated that antiferromagnetic spin coupling is operative between the two metal ions joined by the hydroxo bridge (J = -52 cm(-1)) while antiferromagnetic interaction through the Cu-O-Cu sugar phosphate bridges is weak (J = -13 cm(-1)). Complex 1a readily reacted with carboxylic acids to afford the tetranuclear copper(II) complexes, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-CA)2(bpy)4](NO3)2 [CA = CH3COO (3), o-C6H4(COO)(COOH) (4)]. Reactions with m-phenylenediacetic acid [m-C6H4(CH2COOH)2] also gave the discrete tetracopper(II) cationic complex [Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)(CH2COOH))2(bpy)4](NO3)2 (5a) as well as the cluster polymer formulated as {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)2)(bpy)4](NO3)2}n (5b). The tetracopper structure of 1a is converted into a symmetrical rectangular core in complexes 3, 4, and 5b, where the hydroxo bridge is dissociated and, instead, two carboxylate anions bridge another pair of Cu(II) ions in a 1,1-O monodentate fashion. The similar reactions were applied to incorporate sugar acids onto the tetranuclear copper(II) centers. Reactions of 1a with delta-D-gluconolactone, D-glucuronic acid, or D-glucaric acid in dimethylformamide resulted in the formation of discrete tetracopper complexes with sugar acids, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-SA)2(bpy)4](NO3)2 [SA = D-gluconate (6), D-glucuronate (7), D-glucarateH (8a)]. The structures of 6 and 7 were determined by X-ray crystallography to be almost identical with that of 3 with additional chelating coordination of the C-2 hydroxyl group of D-gluconate moieties (6) or the C-5 cyclic O atom of D-glucuronate units (7). Those with D-glucaric acid and D-lactobionic acid afforded chiral one-dimensional polymers, {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-glucarate)(bpy)4](NO3)2}n (8b) and {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-lactobionate)(bpy)4(H2O)2](NO3)3}n (9), respectively, in which the D-Glc-1P-bridged tetracopper(II) units are connected by sugar acid moieties through the C-1 and C-6 carboxylate O atoms in 8b and the C-1 carboxylate and C-6 alkoxy O atoms of the gluconate chain in 9. When complex 7 containing d-glucuronate moieties was heated in water, the mononuclear copper(II) complex with 2-dihydroxy malonate, [Cu(mu-O2CC(OH)2CO2)(bpy)] (10), and the dicopper(II) complex with oxalate, [Cu2(mu-C2O4)(bpy)2(H2O)2](NO3)2 (11), were obtained as a result of oxidative degradation of the carbohydrates through C-C bond cleavage reactions.
Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda
2018-01-01
Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes. Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly. Copyright © 2017 Elsevier B.V. All rights reserved.
Bivián-Castro, Egla Yareth; López, Mercedes G.; Pedraza-Reyes, Mario; Bernès, Sylvain; Mendoza-Díaz, Guillermo
2009-01-01
A mixed copper complex with deprotonated nalidixic acid (nal) and histamine (hsm) was synthesized and characterized by FTIR, UV-Vis, elemental analysis, and conductivity. The crystal structure of [Cu(hsm)(nal)H2O]Cl·3H2O (chn) showed a pentacoordinated cooper(II) in a square pyramidal geometry surrounded by two N atoms from hsm, two O atoms from the quinolone, and one apical water oxygen. Alteration of bacterial DNA structure and/or associated functions in vivo by [Cu(hsm)(nal)H2O]Cl·3H2O was demonstrated by the induction of a recA-lacZ fusion integrated at the amyE locus of a recombinant Bacillus subtilis strain. Results from circular dichroism and denaturation of calf thymus DNA (CT-DNA) suggested that increased amounts of copper complex were able to stabilize the double helix of DNA in vitro mainly by formation of hydrogen bonds between chn and the sugars of DNA minor groove. In vivo and in vitro biological activities of the chn complex were compared with the chemical nuclease [Cu(phen)(nal)H2O]NO3 · 3H2O (cpn) where phen is phenanthroline. PMID:19557138
Sato, Mariana R; Oshiro Junior, João A; Machado, Rachel TA; de Souza, Paula C; Campos, Débora L; Pavan, Fernando R; da Silva, Patricia B; Chorilli, Marlus
2017-01-01
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. Cessation of treatment before the recommended conclusion may lead to the emergence of multidrug-resistant strains. The aim of this study was to develop nanostructured lipid carriers (NLCs) for use in the treatment of M. tuberculosis. The NLCs comprised the following lipid phase: 2.07% polyoxyethylene 40 stearate, 2.05% caprylic/capric triglyceride, and 0.88% polyoxyl 40 hydrogenated castor oil; the following aqueous phase: 3.50% poloxamer 407 (F1–F6), and 0.50% cetyltrimethylammonium bromide (F7–F12); and incorporated the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2), and [Cu(NCO)2(INH)2]·4H2O (3) to form compounds F11.1, F11.2, and F11.3, respectively. The mean diameter of F11, F11.1, F11.2, and F11.3 ranged from 111.27±21.86 to 134.25±22.72 nm, 90.27±12.97 to 116.46±9.17 nm, 112.4±10.22 to 149.3±15.82 nm, and 78.65±6.00 to 122.00±8.70 nm, respectively. The polydispersity index values for the NLCs ranged from 0.13±0.01 to 0.30±0.09. The NLCs showed significant changes in zeta potential, except for F11.2, with F11, F11.1, F11.2, and F11.3 ranging from 18.87±4.04 to 23.25±1.13 mV, 17.03±1.77 to 21.42±1.87 mV, 20.51±1.88 to 22.60±3.44 mV, and 17.80±1.96 to 25.25±7.78 mV, respectively. Atomic force microscopy confirmed the formation of nanoscale spherical particle dispersions by the NLCs. Differential scanning calorimetry determined the melting points of the constituents of the NLCs. The in vitro activity of copper(II) complex-loaded NLCs against M. tuberculosis H37Rv showed an improvement in the anti-TB activity of 55.4, 27.1, and 41.1 times the activity for complexes 1, 2, and 3, respectively. An in vivo acute toxicity study of complex-loaded NLCs demonstrated their reduced toxicity. The results suggest that NLCs may be a powerful tool to optimize the activity of copper(II) complexes against M. tuberculosis. PMID:28356717
da Silva, Patricia B; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus
2015-12-16
The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij(®) 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC(®) 25923 and Escherichia coli ATCC(®) 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC(®) CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the Vero cell line, especially compound 1 (IC50 from 109.5 to 319.3 μg/mL). The compound 2- and 3-loaded MEs displayed the best SI for E. coli and S. aureus, respectively. These results indicated that the Cu(II) complex-loaded MEs were considerably more selective than the free compounds, in some cases, up to 40 times higher.
Silva, Patricia B da; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus
2015-12-16
The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij® 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC® 25923 and Escherichia coli ATCC® 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC® CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the Vero cell line, especially compound 1 (IC50 from 109.5 to 319.3 μg/mL). The compound 2- and 3-loaded MEs displayed the best SI for E. coli and S. aureus, respectively. These results indicated that the Cu(II) complex-loaded MEs were considerably more selective than the free compounds, in some cases, up to 40 times higher.
Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius
2018-04-06
Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pathak, Sudipta; Chakraborty, Koushik; Ghosh, Surajit; Roy, Kunal; Jana, Barnali; Konar, Saugata
2018-01-01
[Cu(pydc)(apyz)(H2O)2] (1) (where pydcH2 = pyridine-2,6-dicarboxylic acid; apyz = 2- aminopyrazine) has been synthesized and characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction techniques. Crystallographic analysis revealed that complex 1 has distorted octahedral geometry with pydcH2 coordinated as tridentate ligands to metal ion through two oxygen atoms of each carboxylate group, nitrogen atom of the pyridine ring and the auxiliary ligand pyrazine nitrogen atom form basal plane and apical positions are occupied by two oxygen atoms of water molecules. In addition, the coordination compounds are connected by a variety of non covalent interactions like OH … π, lone pair … π, π … π and hydrogen bonds. The evaluation of these noncovalent interactions is useful for rationalizing their influence in the crystal packing. In addition, electrical current measured at room temperature on thin film before and after annealed is in the order of 229 μA and 246 μA respectively with bias voltage 1 V.
Ciesielczyk, Filip; Bartczak, Przemysław; Klapiszewski, Łukasz; Jesionowski, Teofil
2017-04-15
A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m 2 /g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Trávníček, Zdeněk; Herchel, Radovan; Mikulík, Jiří; Zbořil, Radek
2010-05-01
Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN) 5NO]·H 2O ( 1), where tet= N,N' -bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN) 5NO]·2H 2O ( 2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9]octadecane and [Cu(nme) 2Fe(CN) 5NO]·H 2O ( 3), where nme= N-methylethylenediamine, were synthesized and characterized by elemental analyses, 57Fe Mössbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, 57Fe Mössbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe 2O 4 and CuO.
Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M
2017-03-01
The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi
2018-02-01
Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic)2·H2O]·H2O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis.
Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi
2018-02-05
Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Zhang, Li-Juan; Zhang, Zhi-Hong; Zhu, Qin-Sheng; Wu, Ming-He; Teng, Bao-Hua
2017-10-01
Density functional theory (DFT) calculations of the structures and the Cu2+ g factors (gx, gy and gz ) and hyperfine coupling tensor A (Ax , Ay and Az ) were performed for the paddle-wheel (PW)-type binuclear copper(II) complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) powder and single crystal. Calculations were carried out with the ORCA software using the functionals BHandHlyp, B3P86 and B3LYP with five different basis sets: 6-311g, 6-311g(d,p), VTZ, def-2 and def2-TZVP. Results were tested by the MPAD analysis to find the most suitable functional and basis sets. The electronic structure and covalency between copper and oxygen were investigated by the electron localisation function and the localised orbital locator as well as the Mayer bond order for the [CuO5] group. The optical spectra were theoretically calculated by the time-dependent DFT module and plotted by the Multiwfn program for the [CuO5] group and reasonably associated with the local structure in the vicinity of the central ion copper. In addition, the interactions between the OCNH2CH3, NH3 and H2O molecules and the uncoordinated PW copper(II) complex were studied, and the corresponding adsorption energies, the frequency shifts with respect to the free molecules and the changes of the Cu-Cu distances were calculated and compared with the relevant systems.
Catalytic and inhibiting effect of amino acids on the porphyrin metallation reactions
NASA Astrophysics Data System (ADS)
Mamardashvili, Galina M.; Zhdanova, Daria Yu.; Mamardashvili, Nugzar Zh.; Koifman, Oskar I.; Dehaen, Wim
In the present work, using the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride as an example, it has been shown how different amino acid additives (glycine, valine, leucine and tryptophan) catalyze or inhibit the formation of Cu-porphyrin as a function of the chemical environment (borate buffer (pH7.4), DMSO) and the concentration of the additive. It has been demonstrated that the type of amino acid affects the complexation reaction rate. Possible mechanisms of metalloporphyrin formation and the ways of their acceleration are discussed. Ways in which different amino acid additives catalyze or inhibit the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride are examined.
Gómez-Saiz, Patricia; García-Tojal, Javier; Maestro, Miguel A; Arnaiz, Francisco J; Rojo, Teófilo
2002-03-25
The addition of pyridine-2-carbaldehyde 4N-methylthiosemicarbazone (C8H10N4S) to an aqueous solution of copper(II) nitrate yields [[Cu(C8H9N4S)(NO3)]2] (1). This complex consists of centrosymmetric dinuclear entities containing square-pyramidal copper(II) ions bridged through the sulfur thioamide atoms. The oxidation of 1 with KBrO3 or KIO3 gives rise to a compound with formula [[Cu(C8H8N4O)(H2O)2(SO4)]2]*2H2O (2) (C8H8N4O = 2-methylamino-5-pyridin-2-yl-1,3,4-oxadiazole). The structure of 2 is made up of centrosymmetric dimers where the copper(II) ions exhibit a distorted octahedral coordination and are connected by the oxadiazole moiety. The metal ions in 2 can be removed by addition of K4[Fe(CN)6], and then the oxadiazole ligand can be isolated and recrystallized as (C8H8N4O)*3H2O (3).
Hamulakova, Slavka; Poprac, Patrik; Jomova, Klaudia; Brezova, Vlasta; Lauro, Peter; Drostinova, Lenka; Jun, Daniel; Sepsova, Vendula; Hrabinova, Martina; Soukup, Ondrej; Kristian, Pavol; Gazova, Zuzana; Bednarikova, Zuzana; Kuca, Kamil; Valko, Marian
2016-08-01
Alzheimer's disease is a multifactorial disease that is characterized mainly by Amyloid-β (A-β) deposits, cholinergic deficit and extensive metal (copper, iron)-induced oxidative stress. In this work we present details of the synthesis, antioxidant and copper-chelating properties, DNA protection study, cholinergic activity and amyloid-antiaggregation properties of new multifunctional tacrine-7-hydroxycoumarin hybrids. The mode of interaction between copper(II) and hybrids and interestingly, the reduction of Cu(II) to Cu(I) species (for complexes Cu-5e-g) were confirmed by EPR measurements. EPR spin trapping on the model Fenton reaction, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap, demonstrated a significantly suppressed formation of hydroxyl radicals for the Cu-5e complex in comparison with free copper(II). This suggests that compound 5e upon coordination to free copper ion prevents the Cu(II)-catalyzed decomposition of hydrogen peroxide, which in turn may alleviate oxidative stress-induced damage. Protective activity of hybrids 5c and 5e against DNA damage in a Fenton system (copper catalyzed) was found to be in excellent agreement with the EPR spin trapping study. Compound 5g was the most effective in the inhibition of acetylcholinesterase (hAChE, IC50=38nM) and compound 5b was the most potent inhibitor of butyrylcholinesterase (hBuChE, IC50=63nM). Compound 5c was the strongest inhibitor of A-β1-40 aggregation, although a significant inhibition (>50%) was detected for compounds 5b, 5d, 5e and 5g. Collectively, these results suggest that the design and investigation of multifunctional agents containing along with the acetylcholinesterase inhibitory segment also an antioxidant moiety capable of alleviating metal (copper)-induced oxidative stress, may be of importance in the treatment of Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.
2018-04-01
The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.
NASA Astrophysics Data System (ADS)
Alaghaz, Abdel-Nasser M. A.; Bayoumi, Hoda A.; Ammar, Yousry A.; Aldhlmani, Sharah A.
2013-03-01
Chromium(III), Manganese(II), Cobalt(II), nickel(II), copper(II) and cadmium(II) complexes of 4-[4-hydroxy-3-(phenyliminomethyl)-phenylazo]benzenesulfonamide, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Dimeric complexes are obtained with 2:2 molar ratio except chromium(III) complex is monomeric which is obtained with 1:1 molar ratios. The IR spectra of the prepared complexes were suggested that the Schiff base ligand(HL) behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. Thermal studies suggest a mechanism for degradation of HL and its metal complexes as function of temperature supporting the chelation modes. Also, the activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS* and ΔG* for the different thermal decomposition steps of HL and its metal complexes were calculated. The pathogenic activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024) as Gram positive bacteria, Klebsiella pneumonia (RCMB 010093), Shigella flexneri (RCMB 0100542), as Gram negative bacteria and Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035) as fungus strain, and the results are discussed.
Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa
2016-02-01
Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.
Marino, Nadia; Armentano, Donatella; De Munno, Giovanni; Cano, Joan; Lloret, Francesc; Julve, Miguel
2012-04-02
The preparation and X-ray crystal structure of four 2,2'-bipyrimidine (bpm)-containing copper(II) complexes of formula {[Cu(2)(μ-bpm)(H(2)O)(4)(μ-OH)(2)][Mn(H(2)O)(6)](SO(4))(2)}(n) (1), {[Cu(2)(μ-bpm)(H(2)O)(4)(μ-OH)(2)]SiF(6)}(n) (2), {Cu(2)(μ-bpm)(H(2)O)(2)(μ-F)(2)F(2)}(n) (3), and [Cu(bpm)(H(2)O)(2)F(NO(3))][Cu(bpm)(H(2)O)(3)F]NO(3)·2H(2)O (4) are reported. The structures of 1-3 consist of chains of copper(II) ions with regular alternation of bis-bidentate bpm and di-μ-hydroxo (1 and 2) or di-μ-fluoro (3) groups, the electroneutrality being achieved by either hexaaqua manganese(II) cations plus uncoordinated sulfate anions (1), uncoordinated hexafluorosilicate anions (2), or terminally bound fluoride ligands (3). Each copper(II) ion in 1-4 is six-coordinated in elongated octahedral surroundings. 1 and 2 show identical, linear chain motifs with two bpm-nitrogen atoms and two hydroxo groups building the equatorial plane at each copper(II) ion and the axial position being filled by water molecules. In the case of 3, the axial sites at the copper atom are occupied by a bpm-nitrogen atom and a bis-monodentate fluoride anion, producing a "step-like" chain motif. The values of the angle at the hydroxo and fluoro bridges are 94.11(6) (1), 94.75(4) (2), and 101.43(4)° (3). In each case, the copper-copper separation through the bis-bidentate bpm [5.428(1) (1), 5.449(1) (2), and 5.9250(4) Å (3)] is considerably longer than that through the di-μ-hydroxo [2.8320(4) (1) and 2.824(1) Å (2)] or di-μ-fluoro [3.3027(4) Å (3)] bridges. Compound 4 is a mononuclear species whose structure is made up of neutral [Cu(bpm)(H(2)O)(2)F(NO(3))] units, [Cu(bpm)(H(2)O)(3)F](+) cations, uncoordinated nitrate anions, and crystallization water molecules, giving rise to a pseudo-helical, one-dimensional (1D) supramolecular motif. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-300 K. Relatively large, alternating antiferro- [J = -149 (1) and -141 cm(-1) (2) across bis-bidentate bpm] and ferromagnetic [αJ = +194 (1) and +176 cm(-1) (2) through the dihydroxo bridges] interactions occur in 1 and 2 [the Hamiltonian being defined as H = -J∑(i=1)(n/2) (S(2i)·S(2i-1) - αS(2i)·S(2i+1))]. These values compare well with those previously reported for parent examples. Two weak intrachain antiferromagnetic interactions [J = -0.30 and αJ = -8.1 cm(-1) across bpm and the di-μ-fluoro bridges, respectively] whose values were substantiated by density functional theory (DFT)-type calculations occur in 3.
Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone
ERIC Educational Resources Information Center
Montangero, Marc
2015-01-01
When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…
NASA Astrophysics Data System (ADS)
Mansour, Ahmed M.; Shehab, Ola R.
2014-07-01
Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, 1H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80 °C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO-], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]ṡ4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional.
Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.
Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk
2014-07-01
Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.
Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D
2012-02-15
Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Haraveen, K. J. S.; Tee, Tiam-Ting; Rahmat, A. R.
2015-10-01
In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.
NASA Astrophysics Data System (ADS)
Koch, Angira; Kumar, Arvind; De, Arjun K.; Phukan, Arnab; Lal, Ram A.
2014-08-01
Three new homotrinuclear copper(II) complexes [Cu3(slmh)(μ-Cl)2(CH3OH)3]ṡ0.5CH3OH (1), [Cu3(slmh)(NO3)2(CH3OH)5]ṡ1.5CH3OH (2) and [Cu3(slmh)(μ-ClO4)2(CH3OH)3]ṡ2CH3OH (3) from disalicylaldehyde malonoyldihydrazone have been synthesized and characterized. The composition of the complexes has been established on the basis of data obtained from analytical and thermoanalytical data. The structure of the complexes has been discussed in the light of molar conductance, electronic, FT-IR and far-IR spectral data, magnetic moment and EPR spectral studies. The molar conductance values for the complexes in DMSO solution indicate that all of them are non-electrolyte. The magnetic moment values for the complexes suggest considerable metal-metal intramolecular interaction between metal ions in the structural unit of the complexes. The EPR spectral features reveal that at RT, the ground state for the complexes is a mixture of the quartet state (S = 3/2) and doublet state (S = ½). At lower temperature, the ground state for the complexes is dx2-y2 with considerable contribution from dz2 orbital. Dihydrazone ligand is present in enol form in all of the complexes. The complexes have distorted square pyramidal stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Hydrogen peroxide mediated oxidation of benzyl alcohol catalyzed by complex 1 has been studied.
Ku, Kyo-Sun; Kumar, Rangaraju Satish; Son, Young-A
2018-03-01
We have designed and synthesized novel symmetrical anthracene substituted zinc(II), copper(II), cobalt(II) and nickel(II) phthalocyanines (PC1, PC2, PC3 and PC4) in this work. For this synthesis, we started from base-catalysed aromatic displacement reaction of 4-nitrophthalonitrile with 9-hydroxyanthracene. The resulting four phthalocyanines (PCs) have been fully characterized by a series of spectroscopic methods including electronic absorption, elemental analysis, MALDI-TOF mass, and IR spectroscopy. The aggregation behavior of these PCs was investigated in different concentrations of chloroform solution. Further thermal stability also investigated by TG analysis. Finally we successfully made phthalocyanine (PC1) blended polyurethane electrospun (ES) nanofibers.
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamed M.; Ramadan, Abd El-Motaleb M.; Shaban, Shaban Y.; Mersal, Gaber A. M.; El-Shazly, Samir A.; Al-Juaid, Salih
2017-04-01
A series of mixed-ligand complexes, viz., [CuLL'X]Y {L = bipyridine; L' = glycine; X = 0, Y = ClO4- (1); X = Cl, Y = 2H2O (2); X = H2O, Y = NO3- (3); X = CH3COO-, Y = H2O (4)} and {[Cu(Gly)(BPy)]2-μ-(SO4)}(5)} have been synthesized and characterized by means of elemental analysis, spectroscopic (FT-IR, UV-Vis and ESR), and thermal analysis, as well as magnetic moment measurements. Spectral and X-ray structural features led to the conclusion that complexes 2-5 have square-pyramidal environments around copper(II) center with coordination chromophores CuN3OCl and CuN3O2, respectively. Whereas complex 1 displays square planar geometry. The quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. Additionally, the antioxidant (superoxide dismutase and catalase) biomimetic catalytic activities of the obtained complexes have been tested and found to be promising candidates as dual functional mimic enzyme to serve for complete reactive oxygen species (ROS) detoxification, both with respect to the superoxide radicals and the related peroxides.
NASA Astrophysics Data System (ADS)
Mori, Wasuke; Sato, Tomohiko; Ohmura, Tesushi; Nozaki Kato, Chika; Takei, Tohru
2005-08-01
Copper(II) terephthalate is the first transition metal complex found capable of adsorbing gases. This complex has opened the new field of adsorbent complex chemistry. It is recognized as the lead complex in the construction of microporous complexes. This specific system has been expanded to a systematic series of derivatives of other isomorphous transition metals, molybdenum(II), ruthenium(II, III), and rhodium(II). These complexes with open frameworks are widely recognized as very useful materials for applications to catalysis, separation at molecular level, and gas storage.
Hardouin Duparc, V; Schaper, F
2017-10-14
Sulfonato-imine copper complexes with either chloride or triflate counteranions were prepared in a one-step reaction followed by anion-exchange. They are highly active in Chan-Evans-Lam couplings under mild conditions with a variety of amines or anilines, in particular with sterically hindered substrates. No optimization of reaction conditions other than time and/or temperature is required.
Klingele, Julia; Prikhod'ko, Alexander I; Leibeling, Guido; Demeshko, Serhiy; Dechert, Sebastian; Meyer, Franc
2007-05-28
The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x
The Analysis of Cyanide and Its Breakdown Products in Biological Samples
2010-01-01
simultaneous GC-mass spectrometric (MS) analysis of cyanide and thiocyanate, and Funazo et al. (53) quantita- tively methylated cyanide and thiocyanate for...selective membrane electrode for thiocyanate ion based on a bis-taurine- salicylic binuclear copper(II) complex as ionophore. Chinese Journal of Chemistry
NASA Astrophysics Data System (ADS)
Binzet, Gun; Gumus, Ilkay; Dogen, Aylin; Flörke, Ulrich; Kulcu, Nevzat; Arslan, Hakan
2018-06-01
We synthesized four new N,N-dialkyl-N‧-3-chlorobenzoylthiourea ligands (Alkyl: Dimethyl, diethyl, di-n-propyl and di-n-butyl) and their metal complexes with copper and nickel atoms. The structure of all synthesized compounds was fully characterized by physicochemical, spectroscopic and single crystal X-ray diffraction analysis techniques. The physical, spectral and analytical data of the newly synthesized metal complexes have shown the formation of 1:2 (metal:ligand) ratio. The benzoylthiourea ligands coordinate with metal atoms through oxygen and sulphur atoms. The metal atoms are in slightly distorted square-planar coordination geometry in Ni(II) or Cu(II) complex. Two oxygen and two sulphur atoms are mutually cis to each other in Ni(II) or Cu(II) complex. The intermolecular contacts in the compounds, which are HL1 and HL3, were examined by Hirshfeld surfaces and fingerprint plots using the data obtained from X-ray single crystal diffraction measurement. Besides these, their antimicrobial activities against Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and anti-yeast activity (Candida glabrata, Candida parapsilosis and Candida albicans) were investigated. This exhibited some promising results towards testing organism. Among all the compounds, Ni(L1)2 complex showed high activity against Bacillus subtilis with MIC values at 7.81 μg/mL.
Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping
2013-01-01
Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397
NASA Astrophysics Data System (ADS)
Ahumada, Guillermo; Fuentealba, Mauricio; Roisnel, Thierry; Kahlal, Samia; Córdova, Ricardo; Carrillo, David; Saillard, Jean-Yves; Hamon, Jean-René; Manzur, Carolina
2017-12-01
In this work, we present the synthesis of the unsymmetrical β-diketone 1-(2-thienyl)-3-(4-fluorophenyl)-propane-1,3-dione (HL) and its corresponding Co(II), Ni(II) and Cu(II) bis(β-diketonato) complexes 1-3, respectively. The four new compounds were isolated in good yields (65-70%), and characterized by mass spectrometry, elemental analysis, FT-IR and UV-Vis spectroscopy and, in the case of HL, by 1H, 13C and 19F NMR spectroscopy. In addition, the molecular identities and the geometries of the β-diketone HL and complex 3 were confirmed by X-ray diffraction analysis. The dicarbonyl derivative HL does exist as the diketo tautomeric form in DMSO solution and as its keto-enol tautomer in the solid-state with the sbnd OH group adjacent to the 4-fluorophenyl unit. The keto-enol isomer was computed to be more stable by 8.2 kcal/mol in free energy at room temperature. In 3, the Cu(II) center adopts a perfect square-planar geometry. Two reduction processes were observed in the cyclovoltammogram of 3 at -1.30 and -1.80 V vs. Fc/Fc+, with copper deposit on the surface of the electrode. DFT and TD-DFT calculations on HL and complex 3 allow rationalizing their stability, bonding and properties.
Le Bihan, Thomas; Navarro, Anne-Sophie; Le Bris, Nathalie; Le Saëc, Patricia; Gouard, Sébastien; Haddad, Ferid; Gestin, Jean-François; Chérel, Michel; Faivre-Chauvet, Alain; Tripier, Raphaël
2018-04-27
In view of the excellent copper(ii) and 64-copper(ii) complexation of a TE1PA ligand, a monopicolinate cyclam, in both aqueous medium and in vivo, we looked for a way to make it bifunctional, while maintaining its chelating properties. Overcoming the already known drawback of grafting via its carboxyl group, which is essential to the overall properties of the ligand, a TE1PA bifunctional derivative bearing an additional isothiocyanate coupling function on a carbon atom of the macrocyclic ring was synthesized. This led to an architecture that is comparable to that of other commercially available bifunctional copper(ii) chelators such as p-SCN-Bn-DOTA already used in clinical trials for 64Cu-immuno-PET imaging. The C-functionalization of TE1PA on one carbon atom in the β-N position of the cyclam backbone was successfully achieved by adapting our patented methodology to the huge challenge, allowing the regiospecific mono-N-functionalization of the unsymmetrical ligand. The obtained ligand p-SCN-Bn-TE1PA was coupled to a 9E7.4 murine antibody (mAb), an IgG2a anti CD-138 for multiple myeloma (MM) targeting. The conjugation efficiency was assessed by looking at the 64Cu radiolabeling and the radiopharmaceutical 64Cu-9E7.4-p-SCN-Bn-TE1PA immunoreactivity, and in particular by comparing with 9E7.4-p-SCN-Bn-NOTA and 9E7.4-p-SCN-Bn-DOTA obtained from commercial and presumably highly efficient chelators NOTA and DOTA, respectively. The results are quite clear, showing that p-SCN-Bn-TE1PA has a coupling rate 5 times higher and an immunoreactivity 1.5 to 2 times greater than those of its two competitors. p-SCN-Bn-TE1PA also outperforms TE1PA conjugated via its carboxylic function on the same antibody. The first 64Cu-immuno-PET preclinical study in a syngeneic model of MM was performed, confirming the good in vivo properties of 64Cu-9E7.4-p-SCN-Bn-TE1PA for PET imaging, considering the high clearance even after 24 h and the particularly important tumor-to-liver ratio that was increasing at 48 h.
NASA Astrophysics Data System (ADS)
Koch, Angira; Phukan, Arnab; Chanu, Oinam B.; Kumar, A.; Lal, R. A.
2014-02-01
Five manganese(IV) complexes [Mn(L)(bpy)] (1) and heterobimetallic complexes [MMn(L)Cl2(H2O)4]·1.5H2O (M = ZnII(2), CuII(3)) and [MnM(L)(bpy)Cl2] (M = ZnII(4), CuII(5)] have been synthesized from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4L) in methanol medium. The composition of the complexes have been established based on the data obtained from analytical, thermoanalytical and mass spectral studies. The structures of the complexes have been discussed in the light of molar conductance, magnetic moment, electronic, EPR, IR, FT-IR spectroscopic studies and transmission electron microscopies. The molar conductance values of these complexes in DMSO suggest their non-electrolytic nature. The μeff value for the complexes (1), (2) and (4) fall in the range 3.82-4.12 BM characteristic of the presence of the manganese(IV) in them. The complex (3) has μeff value of 3.70 BM at RT indicating considerable antiferromagnetic interaction between Mn(IV) and Cu(II). The μeff value of 4.72 BM for complex (5) is slightly lower than 4.90 BM for S = 2 ground state. In the complex (1) to (3), the ligand is coordinated to the metal centres as tetradentate ligand while in the complexes (4) and (5) as hexadentate ligand. Manganese(IV) has distorted octahedral stereochemistry in all complexes. Copper(II) has distorted octahedral and square planar stereochemistry in complexes (3) and (5) while zinc has distorted octahedral and tetrahedral stereochemistry, respectively. EPR studies of the complexes are also reported. The electron transfer reactions of the complexes have also been investigated by cyclic voltammetry.
NASA Astrophysics Data System (ADS)
Calatayud, M. Luisa; Castro, Isabel; Julve, Miguel; Sletten, Jorunn
2008-03-01
Four new complexes of copper(II) and/or copper(I) with 1,2-dtsq as a ligand have been synthesized and characterized by single crystal X-ray diffraction methods, [Cu II(terpy)(1,2-dtsq)] ( 1), [Cu II(dmen)(1,2-dtsq)] n ( 2), {[Cu II(dmen) 2][Cu I(1,2-dtsq)] 2} n·2nH 2O( 3) and {[Cu II(men) 2][Cu I (1,2-dtsq)] 2} n·nH 2O ( 4) (1,2-dtsq = 1,2-dithiosquarate, dianion of 3,4-dimercapto-1-cyclobutene-1,2-dione; dmen = N, N-dimethylethylenediamine; men = N-methylethylenediamine, terpy = 2,2':6,2″-terpyridine). Compound 1 consists of neutral [Cu II(terpy)(1,2-dtsq)] mononuclear units which are held together by O⋯H-C and van der Waals interactions. Compound 2 is built of neutral [Cu II(dmen)(1,2-dtsq)] entities which are connected through weak Cu-S (pairs) and Cu-O (single) interactions into a layer structure. The structures of 3 and 4 feature polynuclear [Cu(1,2-dtsq)]nn- chains, in which dtsq groups are linking copper(I) ions in the μ-1,1, μ-1,1,1 and μ-1,2 bridging modes. The dtsq groups in these chains connect to the copper(II) ions of the [Cu IIL 2] 2+ cations [L being the bidentate dmen ( 3) and men ( 4) ligands], but in different manners in the two structures. The connections in compound 3 are unsymmetrical, so that columns of {[Cu II(dmen) 2][Cu I(1,2-dtsq)] 2} n where the copper(II) ions bind to 1,2-dtsq oxygen atoms with relatively strong axial bonds may be identified. These columns are further connected to each other through weak axial Cu II⋯S interactions, creating a three-dimensional (3D) network with channels containing the solvent water. In compound 4, on the other hand, the two crystallographically independent cations each forms a symmetrical link between the anionic chains through, respectively, O-Cu II-O and S-Cu II-S axial bonds, again creating a 3D structure with channels running parallel to the chain axis. The reduction of copper(II) to copper(I) by 1,2-dtsq is precluded when the coordination sphere of the copper(II) ion is partially blocked with the tridentate terpy ligand whereas this process occurs when the blocking ligands are the bidentate dmen and men groups.
Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)
NASA Astrophysics Data System (ADS)
Crowder, Janell M.
beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the first investigation of the synthesis, isolation and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated Cu(II) and Co(II) complexes of bis(pentafluorobenzoyl)methanide ligand. These studies demonstrate how the electrophilicity of a coordinatively unsaturated metal complexed to highly-fluorinated â-diketone ligands can be utilized for the formation of new adducts or new and interesting heterometallic complexes. This body of work provides a basis upon which future research into unsolvated and unligated bis(pentafluorobenzoyl)methanide metal complexes can expand.
El-Ayaan, Usama; El-Metwally, Nashwa M; Youssef, Magdy M; El Bialy, Serry A A
2007-12-31
The present work carried out a study on perchlorate mixed-ligand copper(II) complexes which have been synthesized from ethylenediamine derivatives (3a-c) and beta-diketones. These complexes, namely [Cu(DA-Cl)(acac)H(2)O]ClO(4)4, [Cu(DA-Cl)(bzac)H(2)O]H(2)O.ClO(4)5, [Cu(DA-OMe)(acac)H(2)O]ClO(4)6, [Cu(DA-OMe)(bzac)H(2)O]ClO(4)7, [Cu(DA-H)(acac)H(2)O]2H(2)O.ClO(4)8 and [Cu(DA-H)(bzac)H(2)O]ClO(4)9 (where acac, acetylacetonate and bzac, benzoylacetonate) were characterized by elemental analysis, spectral (IR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters (E, A, DeltaH, DeltaS and DeltaG) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, the diamines 3a-c have powerful effects on degradation of DNA and protein. The antibacterial screening demonstrated that, the diamine (DA-Cl), 3b has the maximum and broad activities against Gram +ve and Gram -ve bacterial strains.
NASA Astrophysics Data System (ADS)
Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia
2015-03-01
In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).
Prout, Keith; Edwards, Alison; Mtetwa, Victor; Murray, Jon; Saunders, John F.; Rossotti, Francis J. C.
1997-06-18
The crystal structure of trans-diaquabis(methoxyacetato)copper(II), C(6)H(14)O(8)Cu, has been determined by neutron diffraction at 4.2 K (monoclinic, P2(1)/n, a = 6.88(1), b = 7.19(1), c = 9.77(2) Å, gamma = 95.7(1) degrees, (Z = 2)) and by X-ray diffraction at 125, 165, 205, 240, 265, 295, and 325 K. These measurements show that there is no phase change in the temperature range 4.2-325 K. The copper(II) coordination at 4.2 K is a tetragonally distorted elongated rhombic octahedron (Cu-OOC 1.955(1), Cu-OMe 2.209(1), and Cu-OH(2) 2.031(2) Å). As the temperature increases to 325 K, the Cu-OOC bonds shorten slightly to 1.934(5) Å, the Cu-OMe bonds shorten more markedly to 2.137(4) Å, and Cu-OH(2) lengthens to 2.155(6) Å to give a tetragonally distorted compressed rhombic octahedron. For comparison the structure of the isomorphous nickel(II) complex (monoclinic, P2(1)/n, a = 6.633(1), b = 7.192(1), c = 10.016(2) Å, gamma = 98.30(2) degrees, (Z = 2)) has been redetermined at 295 K and the structure of the analogous zinc(II) complex (orthorhombic, F2dd, a = 7.530(1), b = 13.212(1), c = 21.876(2) Å (Z = 8)) has also been determined. The nickel(II) complex has an almost regular trans (centrosymmetric) octahedral coordination (Ni-OOC 2.022(1), Ni-OMe 2.043(1), and Ni-OH(2) 2.077(2) Å). However, zinc(II) has a very distorted octahedral coordination with the zinc atom on a 2-fold axis with the water molecules and the methoxy ligators cis and the carboxylate ligators trans (Zn-OOC 1.985(1), Zn-OMe 2.304(2), and Zn-OH(2) 2.038(2) Å). The variation in the dimensions of the copper(II) coordination sphere is discussed in terms of static (low temperature) and planar dynamic (high temperature) pseudo-Jahn-Teller effects.
Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A
2016-02-01
The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Lebœuf, David; Huang, Jie; Gandon, Vincent
2012-01-01
Highly functionalized cyclopentenones are prepared stereospecifically based on a chemoselective copper(II)-mediated Nazarov/Wagner-Meerwein rearrangement sequence. After the initial 4π electrocyclization, this reaction involves two sequential [1,2]-migrations depending upon both migratory ability and steric bulk of the substituents at C1 and C5. This sequence can be achieved by using a catalytic quantity of copper(II) in combination with a weak Lewis acid. The mechanism of the reaction is also supported by DFT computations. PMID:21953873
Spectroscopic and electrochemical behavior of the novel tetra-2-methyl-pyrazinoporphyrazines
NASA Astrophysics Data System (ADS)
Pişkin, Mehmet; Öztürk, Naciye; Durmuş, Mahmut
2017-12-01
This study presents the synthesis and characterization of novel metal-free (H2Pc) and metallo porphyrazines (magnesium(II) (MgPz), copper(II) (CuPz), iron(II) (FePz), manganese(II) (MnPz) and nickel(II) (NiPz)) substituted with four 2-methylpyrazine groups on the peripheral positions. The spectroscopic properties of newly synthesized porphyrazines were investigated. The electrochemical behaviors of these porphyrazines were also determined in DMSO solution by cyclic voltammetry (CV) and square wave voltammetry (SWV) methods on edge plane pyrolytic graphite electrode (EPPG) electrode.
Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda
2015-03-05
This study investigates chromotropism of newly synthesized 3,3'-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the CuO to CuN bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the CuN/CuO isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the CuO isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Xiaona; Li, Airong; Long, Mingzhong; Tian, Xingjun
2015-01-01
Ceriporia lacerata, a strain of white-rot fungus isolated from the litter of an invasive plant (Solidago canadensis) in China, was little known about its properties and utilization. In this work, the copper(II) biosorption characteristics of formaldehyde inactivated C. lacerata biomass were examined as a function of initial pH, initial copper(II) concentration and contact time, and the adsorptive equilibrium and kinetics were simulated, too. The optimum pH was found to be 6.0 at experimental conditions of initial copper(II) concentration 100 mg/L, biomass dose 2 g/L, contact time 12 h, shaking rate 150 r/min and temperature 25°C. Biosorption equilibrium cost about 1 hour at experimental conditions of pH 6.0, initial copper(II) concentration 100 mg/L, C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C. At optimum pH 6.0, highest copper(II) biosorption amounts were 6.79 and 7.76 mg/g for initial copper(II) concentration of 100 and 200 mg/L, respectively (with other experimental parameters of C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C). The pseudo second-order adsorptive model gave the best adjustment for copper(II) biosorption kinetics. The equilibrium data fitted very well to both Langmuir and Freundlich adsorptive isotherm models. Without further acid or alkali treatment for improving adsorption properties, formaldehyde inactivated C. lacerata biomass possesses good biosorption characteristics on copper(II) removal from aqueous solutions.
Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.
2016-01-01
A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174
NASA Astrophysics Data System (ADS)
Al-Noaimi, Mousa; Awwadi, Firas F.; Al-Razagg, Raiid; Esmadi, Fatima T.
2016-12-01
Flexible unsymmetrical Schiff base ligand (L) which is derived from the half unit Y = C6H5COCH2C(Ndbnd CH2C6H4NH2)CH3 (obtained from the reaction of benzoylacetone and 2-aminobenzylamine) and 2- quinolinecarboxaldehyde have been successfully co-assembled with Cu(ClO4)2 to give out the [Cu(L)]ClO4 complex. The complex crystallizes in two different space groups; P21/n and P-1. The crystal structure of the P-1 phase indicates the presence of tunnels; the volume of these tunnels is 157 Å3 which is big enough to accommodate solvent molecules. The X-ray data indicates that these tunnels are most probably filled by highly disordered solvent molecules or solvent molecules with partial occupancy. The tunneled structure is stabilized via π-π stacking interactions to give a supramolecular MOF with 1D rhomboidal tunnels array. The copper(II) atom assumes a distorted-square pyrimidal coordination geometry where the perchlorate is located on the apex of the pyramide. In addition, this work presents and discusses the spectroscopic (IR, UV/vis), electro-chemical (cyclic voltammetry) behavior of the Cu(II) complexes. The Cu(II) oxidation state is stabilized by the novel tetradentate ligands, showing Cu(I/II) couple around 0.1 vs. Cp2Fe/Cp2Fe+.
NASA Astrophysics Data System (ADS)
Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad
2018-02-01
Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.
NASA Astrophysics Data System (ADS)
Paul, Aparup; Bertolasi, Valerio; Figuerola, Albert; Manna, Subal Chandra
2017-05-01
Three novel tetranuclear copper(II) complexes namely [Cu4(L1)4]•2(dmf) (1), [Cu4(L1)4] (2) and [Cu4(L2)2(HL2)2(H2O)2]•2(ClO4)·6(H2O) (3) (H2L1, (E)-2-((1-hydroxybutan-2-ylimino)methyl)phenol; H2L2, (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol)) were synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligands. The structural determination reveals that complex 1 crystallizes in the monoclinic system with space group C2/c, whereas both the complexes 2 and 3 crystallize in the triclinic system with space group P-1. Complexes 1 and 2 possess face-sharing dicubane core, on the other hand complex 3 has double open cubane core structure. The copper(II) ions in the cubane core are in distorted square planar geometries, and weak π…π and C-H…π interactions lead to formation of a 2D supramolecular architecture for complexes 1 and 2. At room temperature complexes 1, 2 and 3, exhibit fluorescence with a quantum yield (Φs) of 0.47, 0.49 and 0.38, respectively. Variable temperature magnetic susceptibility measurements in the range 2-300 K indicate an overall weak antiferromagnetic exchange coupling in all complexes. The PHI program was used to study their magnetic behaviour. In agreement with their face-sharing dicubane structure, a Hamiltonian of the type H =- J1(S1S2+S1S2'+S1'S2+S1'S2') - J2S1S1', where S1 = S1' = S2 = S2' = SCu =1/2, was used for studying complexes 1 and 2. Simulations performed suggest magnetic exchange constants with values close to J1 =-20 cm-1 and J2 =0 cm-1 for these complexes. On the other hand, the spin Hamiltonian H =- J1(S1S4+S2S3) - J2(S1S3+S2S4) - J3S1S2, where S1 = S2 = S3 = S4 = SCu =1/2, was used to study the magnetic behaviour of the double open cubane core of complex 3 and a good agreement between the experimental and simulated results was found by using the parameters g1 = g2 =2.20, g3 = g4 =2.18, J1 =-36 cm-1, J2 =-44 cm-1 and J3 =0 cm-1.
Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi
2014-05-01
A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.
Zhang, Xuepeng; Liu, Xueping; Phillips, David Lee; Zhao, Cunyuan
2016-01-28
The hydrolysis mechanisms of DNA dinucleotide analogue BNPP(-) (bis(p-nitrophenyl) phosphate) catalyzed by mononuclear/dinuclear facial copper(ii) complexes bearing single alkyl guanidine pendants were investigated using density functional theory (DFT) calculations. Active catalyst forms have been investigated and four different reaction modes are proposed accordingly. The [Cu2(L(1))2(μ-OH)](3+) (L(1) is 1-(2-guanidinoethyl)-1,4,7-triazacyclononane) complex features a strong μ-hydroxo mediated antiferromagnetic coupling between the bimetallic centers and the corresponding more stable open-shell singlet state. Three different reaction modes involving two catalysts and a substrate were proposed for L(1) entries and the mode 1 in which an inter-complex nucleophilic attack by a metal bound hydroxide was found to be more favorable. In the L(3)-involved reactions (L(3) is 1-(4-guanidinobutyl)-1,4,7-triazacyclononane), the reaction mode in which an in-plane intracomplex scissoring-like nucleophilic attack by a Cu(ii)-bound hydroxide was found to be more competitive. The protonated guanidine pendants in each proposed mechanism were found to play crucial roles in stabilizing the reaction structures via hydrogen bonds and in facilitating the departure of the leaving group via electrostatic attraction. The calculated results are consistent with the experimental observations that the Cu(ii)-L(3) complexes are hydrolytically more favorable than their L(1)-involved counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Aparup; Bertolasi, Valerio; Figuerola, Albert
Three novel tetranuclear copper(II) complexes namely [Cu{sub 4}(L{sup 1}){sub 4}]∙2(dmf) (1), [Cu{sub 4}(L{sup 1}){sub 4}] (2) and [Cu{sub 4}(L{sup 2}){sub 2}(HL{sup 2}){sub 2}(H{sub 2}O){sub 2}]∙2(ClO{sub 4})·6(H{sub 2}O) (3) (H{sub 2}L{sup 1}, (E)−2-((1-hydroxybutan-2-ylimino)methyl)phenol; H{sub 2}L{sup 2}, (E)−2-((1-hydroxybutan-2-ylimino)methyl)−6-methoxyphenol)) were synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligands. The structural determination reveals that crystallizes in the monoclinic system with space group C2/c, whereas both the and crystallize in the triclinic system with space group P-1. and possess face-sharing dicubane core, on the other hand complex 3 has double open cubane core structure. The copper(II) ions in the cubanemore » core are in distorted square planar geometries, and weak π…π and C–H…π interactions lead to formation of a 2D supramolecular architecture for and . At room temperature and , exhibit fluorescence with a quantum yield (Φ{sub s}) of 0.47, 0.49 and 0.38, respectively. Variable temperature magnetic susceptibility measurements in the range 2–300 K indicate an overall weak antiferromagnetic exchange coupling in all complexes. The PHI program was used to study their magnetic behaviour. In agreement with their face-sharing dicubane structure, a Hamiltonian of the type H =– J{sub 1}(S{sub 1}S{sub 2}+S{sub 1}S{sub 2’}+S{sub 1'}S{sub 2}+S{sub 1'}S{sub 2’}) – J{sub 2}S{sub 1}S{sub 1’}, where S{sub 1} = S{sub 1’} = S{sub 2} = S{sub 2’} = S{sub Cu} =1/2, was used for studying and . Simulations performed suggest magnetic exchange constants with values close to J{sub 1} =−20 cm{sup −1} and J{sub 2} =0 cm{sup -1} for these complexes. On the other hand, the spin Hamiltonian H =– J{sub 1}(S{sub 1}S{sub 4}+S{sub 2}S{sub 3}) – J{sub 2}(S{sub 1}S{sub 3}+S{sub 2}S{sub 4}) – J{sub 3}S{sub 1}S{sub 2}, where S{sub 1} = S{sub 2} = S{sub 3} = S{sub 4} = S{sub Cu} =1/2, was used to study the magnetic behaviour of the double open cubane core of and a good agreement between the experimental and simulated results was found by using the parameters g{sub 1} = g{sub 2} =2.20, g{sub 3} = g{sub 4} =2.18, J{sub 1} =−36 cm{sup -1}, J{sub 2} =−44 cm{sup -1} and J{sub 3} =0 cm{sup -1}. - Graphical abstract: Tetranuclear Cu(II) complexes with face-sharing-dicubane / double-open-cubane like core frameworks were synthesized and characterized by crystal structure and magnetic analysis. Variable temperature magnetic properties corroborate with their structural arrangement. - Highlights: • Novel tetranuclear copper(II) complexes have been structurally characterized. • Complexes possess face-sharing dicubane/double open cubane core structures. • Variable temperature magnetic measurements reveal antiferromagnetic coupling. • PHI program was used to explain the observed magnetic properties.« less
Regulska, E; Kalinowska, M; Wojtulewski, S; Korczak, A; Sienkiewicz-Gromiuk, J; Rzączyńska, Z; Swisłocka, R; Lewandowski, W
2014-11-11
The DFT calculations (B3LYP method with 6-311++G(d,p) mixed with LanL2DZ for transition metals basis sets) for different conformers of 2,5-dihydroxybenzoic acid (gentisic acid), sodium 2,5-dihydroxybenzoate (gentisate) and copper(II) and cadmium(II) gentisates were done. The proposed hydrated structures of transition metal complexes were based on the results of experimental findings. The theoretical geometrical parameters and atomic charge distribution were discussed. Moreover Na, Cu(II) and Cd(II) gentisates were synthesized and the composition of obtained compounds was revealed by means of elemental and thermogravimetric analyses. The FT-IR and FT-Raman spectra of gentisic acid and gentisates were registered and the effect of metals on the electronic charge distribution of ligand was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Praveen, Marapaka; Sherazi, Syed K. A.
1998-01-01
Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857
Yan, Xue; Zhang, Xue-Jiao; Yuan, Ya-Xian; Han, San-Yang; Xu, Min-Min; Gu, Ren'ao; Yao, Jian-Lin
2013-11-01
A new approach was developed for the magnetic separation of copper(II) ions with easy operation and high efficiency. p-Mercaptobenzoic acid served as the modified tag of Fe2O3@Au nanoparticles both for the chelation ligand and Raman reporter. Through the chelation between the copper(II) ions and carboxyl groups on the gold shell, the Fe2O3@Au nanoparticles aggregated to form networks that were enriched and separated from the solution by a magnet. A significant decrease in the concentration of copper(II) ions in the supernatant solution was observed. An extremely sensitive method based on surface-enhanced Raman spectroscopy was employed to detect free copper(II) ions that remained after the magnetic separation, and thus to evaluate the separation efficiency. The results indicated the intensities of the surface-enhanced Raman spectroscopy bands from p-mercaptobenzoic acid were dependent on the concentration of copper(II) ions, and the concentration was decreased by several orders of magnitude after the magnetic separation. The present protocol effectively decreased the total amount of heavy metal ions in the solution. This approach opens a potential application in the magnetic separation and highly sensitive detection of heavy metal ions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holloway, Andrew C; Mueller-Harvey, Irene; Gould, Simon W J; Fielder, Mark D; Naughton, Declan P; Kelly, Alison F
2012-12-01
Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H(2)O(2)via the action of added metal(II) ions. H(2)O(2) generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin-iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhuqin; Yu, Fengxiang; Gong, Ping
2014-04-15
Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxicmore » concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation. - Highlights: • Subneurotoxic copper(II) triggers NF-κB-dependent microglial activation. • This activation leads to hippocampal neuronal death. • This activation may involve mitochondria-derived reactive oxygen species.« less
Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk
2016-07-25
The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pham Thi, L.; Usacheva, T. R.; Tukumova, N. V.; Koryshev, N. E.; Khrenova, T. M.; Sharnin, V. A.
2016-10-01
The stability constants of monoligand complexes of copper(II) ions with glycyl-glycyl-glycine zwitterions (triglycine, HL±) and triglycinate ions (L-) in a water-ethanol solvent with 0.0, 0.1, 0.3, and 0.5 mole fractions of ethanol at an ionic strength of 0.1 created by sodium perchlorate and temperature T = 298.15 K are determined by means of potentiometric titration. It is found that an increase of ethanol content improves the stability of the investigated complexes, due mainly to the resolvation of ligands.
Gou, Yi; Qi, Jinxu; Ajayi, Joshua-Paul; Zhang, Yao; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong
2015-10-05
To synergistically enhance the selectivity and efficiency of anticancer copper drugs, we proposed and built a model to develop anticancer copper pro-drugs based on the nature of human serum albumin (HSA) IIA subdomain and cancer cells. Three copper(II) compounds of a 2-hydroxy-1-naphthaldehyde benzoyl hydrazone Schiff-base ligand in the presence pyridine, imidazole, or indazole ligands were synthesized (C1-C3). The structures of three HSA complexes revealed that the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. Among them, the pyridine and imidazole ligands of C1 and C2 are replaced by Lys199, and His242 directly coordinates with Cu(II). The indazole and Br ligands of C3 are replaced by Lys199 and His242, respectively. Compared with the Cu(II) compounds alone, the HSA complexes enhance cytotoxicity in MCF-7 cells approximately 3-5-fold, but do not raise cytotoxicity levels in normal cells in vitro through selectively accumulating in cancer cells to some extent. We find that the HSA complex has a stronger capacity for cell cycle arrest in the G2/M phase of MCF-7 by targeting cyclin-dependent kinase 1 (CDK1) and down-regulating the expression of CDK1 and cyclin B1. Moreover, the HSA complex promotes MCF-7 cell apoptosis possibly through the intrinsic reactive oxygen species (ROS) mediated mitochondrial pathway, accompanied by the regulation of Bcl-2 family proteins.
NASA Astrophysics Data System (ADS)
Ferraresso, L. G.; de Arruda, E. G. R.; de Moraes, T. P. L.; Fazzi, R. B.; Da Costa Ferreira, A. M.; Abbehausen, C.
2017-12-01
First series transition metals are used abundantly by nature to perform catalytic transformations of several substrates. Furthermore, the cooperative activity of two proximal metal ions is common and represents a highly efficient catalytic system in living organisms. In this work three dinuclear μ-phenolate bridged metal complexes were prepared with copper(II) and zinc(II), resulting in a ZnZn, CuCu and CuZn with the ligand 2-ethylaminodimethylamino phenol (saldman) as model compounds of superoxide dismutase (CuCu and CuZn) and metallo-β-lactamases (ZnZn). Metals are coordinated in a μ-phenolate bridged symmetric system. Cu(II) presents a more distorted structure, while zinc is very symmetric. For this reason, [CuCu(saldman)] shows higher water solubility and also higher lability of the bridge. The antioxidant and hydrolytic beta-lactamase-like activity of the complexes were evaluated. The lability of the bridge seems to be important for the antioxidant activity and is suggested to because of [CuCu(saldman)] presents a lower antioxidant capacity than [CuZn(saldman)], which showed to present a more stable bridge in solution. The hydrolytic activity of the bimetallic complexes was assayed using nitrocefin as substrate and showed [ZnZn(saldman)] as a better catalyst than the Cu(II) analog. The series demonstrates the importance of the nature of the metal center for the biological function and how the reactivity of the model complex can be modulated by coordination chemistry.
NASA Astrophysics Data System (ADS)
Ermakov, A. I.; Mashutin, V. Y.; Vishnjakov, A. V.
With the help of the results of semiempirical (parametric method 3) and ab initio (second-order Møller-Plesset [MP2] unrestricted Hartree-Fock [UHF] 6-31G**, unrestricted density functional theory [UDFT] 6-31G** Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar [B3LYP] and UDFT LANL2DZ B3LYP) quantum-chemical calculations has been studied the complexation CO and NO with molecular hydroxide of copper(I). The influence of charge defects has been simulated by the calculations of anionic, neutral, and cationic systems. It is shown that CO and NO are mainly coordinated by nonoxygen atom on an atom of copper(I) hydroxide as one- and two-center forms. These forms are suitable for appearance of prereactionary complexes of catalytic oxidation CO by molecular oxygen and decomposition NO into atoms of nitrogen and oxygen. The corresponding prereactionary complexes for systems with participation of copper(II) hydroxide and copper(III) hydroxide are not revealed. The calculations predict inhibiting impact of copper(II) and copper(III) of the observed reactions. Computed stability of complexes CO and NO with copper(I) hydroxide and activation energy of catalytic conversion of monooxides essentially depend on an excessive charge of the system. Introduction of electron-donating additives into copper(I) hydroxide promotes rise of catalytic activity of copper(I) compound.
NASA Astrophysics Data System (ADS)
Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.
2013-10-01
Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.
Constable, Edwin C; Decurtins, Silvio; Housecroft, Catherine E; Keene, Tony D; Palivan, Cornelia G; Price, Jason R; Zampese, Jennifer A
2010-03-07
The reaction between Cu(NO(3))(2).3H(2)O, 2,2':6',2''-terpyridine (tpy) and 3,6-di(pyrid-2-yl)pyridazine (1) in a 2 : 2 : 1 molar equivalent ratio in aqueous MeCN in the presence of excess NH(4)PF(6) leads to competition between the assembly of the dinuclear half-grid [Cu(2)(1)(tpy)(2)][PF(6)](4).2H(2)O and the mononuclear complex [Cu(1)(2)(OH(2))][PF(6)](2). The yield of [Cu(2)(1)(tpy)(2)][PF(6)](4).2H(2)O has been optimized using microwave conditions. [Cu(1)(2)(OH(2))][PF(6)](2) can be selectively produced by treating Cu(NO(3))(2).3H(2)O with 1 (1 : 2 molar equivalents) in aqueous MeCN in the presence of NH(4)PF(6). The single crystal structures of [Cu(2)(1)(tpy)(2)][PF(6)](4).4MeNO(2) and [Cu(1)(2)(OH(2))][PF(6)](2) are presented. In the [Cu(2)(1)(tpy)(2)](4+) cation, ligand 1 bridges the two copper(II) centres, each of which is further coordinated by a tpy ligand. The copper(II) coordination geometry is closely associated with the arrangement of the two tpy ligands which engage in efficient face-to-face pi-stacking. Magnetic data for crystalline [Cu(2)(1)(tpy)(2)][PF(6)](4).4MeNO(2) are consistent with a weak antiferromagnetic interaction between the two copper(II) centres. EPR spectroscopic data for a powder sample of [Cu(2)(1)(tpy)(2)][PF(6)](4).2H(2)O are consistent with the dinuclear structure, but in frozen DMF and DMSO solutions, the data indicate that the dinuclear structure of [Cu(2)(1)(tpy)(2)](4+) is not preserved.
Hattori, Shigeki; Wada, Yuji; Yanagida, Shozo; Fukuzumi, Shunichi
2005-07-06
The electron self-exchange rate constants of blue copper model complexes, [(-)-sparteine-N,N'](maleonitriledithiolato-S,S')copper ([Cu(SP)(mmt)])(0/)(-), bis(2,9-dimethy-1,10-phenanthroline)copper ([Cu(dmp)(2)](2+/+)), and bis(1,10-phenanthroline)copper ([Cu(phen)(2)](2+/+)) have been determined from the rate constants of electron transfer from a homologous series of ferrocene derivatives to the copper(II) complexes in light of the Marcus theory of electron transfer. The resulting electron self-exchange rate constant increases in the order: [Cu(phen)(2)](2+/+) < [Cu(SP)(mmt)](0/)(-) < [Cu(dmp)(2)](2+/+), in agreement with the order of the smaller structural change between the copper(II) and copper(I) complexes due to the distorted tetragonal geometry. The dye-sensitized solar cells (DSSC) were constructed using the copper complexes as redox couples to compare the photoelectrochemical responses with those using the conventional I(3)(-)/I(-) couple. The light energy conversion efficiency (eta) values under illumination of simulated solar light irradiation (100 mW/cm(2)) of DSSCs using [Cu(phen)(2)](2+/+), [Cu(dmp)(2)](2+/+), and [Cu(SP)(mmt)](0/)(-) were recorded as 0.1%, 1.4%, and 1.3%, respectively. The maximum eta value (2.2%) was obtained for a DSSC using the [Cu(dmp)(2)](2+/+) redox couple under the light irradiation of 20 mW/cm(2) intensity, where a higher open-circuit voltage of the cell was attained as compared to that of the conventional I(3)(-)/I(-) couple.
Effect of copper(II) the activity of glutathione peroxidase in patients with head and neck cancer.
Malinowska, Katarzyna; Morawiec-Sztandera, Alina; Majsterek, Ireneusz; Kaczmarczyk, Dariusz
2016-11-20
Head and neck squamous cell carcinoma (HNSCC) accounts for about 6% of all malignant cancers. In the epidemiology of oral cavity neoplasm, important risk factors include: tobacco smoking, alcohol abuse, bad oral hygiene, papilloma virus infection, riboflavin and iron deficiency. The objective of the investigation was a synthesis of Cu(II) complex and the evaluation of antioxidative enzymatic barrier in red blood cells of patients with head and neck tumor as well as in the control group. For the investigation conduction, a consent of Bioethics Committee number RNN/142/09/KB was obtained. Blood for the examination was obtained from the patients of the Dapartment of Head and Neck Neoplasms Surgery Medical University of Łódź. The experiment was conducted on the group of 40 patients with HNSCC and 40 healthy people, using spectrophotometric method, glutathione peroxidase was marked. The investigation was conducted on the hemolysate obtained from the patients that were divided into two groups - a study group (1 and 2), which consisted of patients diagnosed with head and neck cancer and a control group (1 and 2) - healthy people. A significant statistical result for GPX occurred in control-1 and study-1 group with complex compound Cu(II) (p<0,001). Presented research prove, that complex compound Cis-dichlorobis(N1-hydroxymethyl-3methylpyrazole-κN2)copper (II) has an impact on the activity of the antioxidative GPX enzyme.
Catalytic fixation of atmospheric carbon dioxide by copper(ii) complexes of bidentate ligands.
Muthuramalingam, Sethuraman; Khamrang, Themmila; Velusamy, Marappan; Mayilmurugan, Ramasamy
2017-11-28
New copper(ii) complexes, [Cu(L1) 2 (H 2 O)](ClO 4 ) 2 , 1 [L1 = 2-pyridin-2-yl-quinoline], [Cu(L2) 2 (H 2 O)](ClO 4 ) 2 , 2 [L2 = 2-pyridin-2-yl-quinoxaline], [Cu(L3) 2 (H 2 O)](ClO 4 ) 2 , 3 [L3 = 6,7-dimethyl-2-pyridin-2-yl-quinoxaline], [Cu(L4) 2 (H 2 O)](ClO 4 ) 2 , 4 [L4 = 4-phenyl-2-pyridin-2-yl-quinoline] and [Cu(L5) 2 (H 2 O)](ClO 4 ) 2 , 5 [L5 = 4-phenyl-2-pyridin-2-yl-quinazoline], were synthesized and characterized as catalysts for selective fixation of atmospheric CO 2 . The molecular structure of 2 was determined by single-crystal X-ray studies and shown to have an unusual trigonal bipyramid geometry (τ, 0.936) around the copper(ii) center, with the coordination of two ligand units and a water molecule. The Cu-N quin (2.040, 2.048 Å) bonds are slightly longer than the Cu-N pyr (1.987 Å) bonds but shorter than the Cu-O water bond (2.117 Å). Well-defined Cu(ii)/Cu(i) redox potentials of around 0.352 to 0.401 V were observed for 1-5 in acetonitrile. The electronic absorption spectra of 1-5 showed ligand-based transitions at around 208-286 nm with a visible shoulder at around 342-370 nm. The d-d transitions appeared at around 750-800 and 930-955 nm in acetonitrile. The rhombic EPR spectra of 1-5 exhibited three different g values g x , 2.27-2.34; g y , 2.06-2.09; and g z , 1.95-1.98 at 70 K. Atmospheric CO 2 was successfully fixed by 1-5 using Et 3 N as a sacrificial reducing agent, resulting in CO 3 2- -bound complexes of type [Cu(L)CO 3 (H 2 O)] that display an absorption band at around 614-673 nm and a ν st at 1647 cm -1 . This CO 3 2- -bound complex of 1 was crystallized from the reaction mixture and it displayed a distorted square pyramidal geometry (τ, 0.369) around the copper(ii) center via the coordination of only one ligand unit, a carbonate group, and water molecules. Furthermore, treatment of the carbonate-bound Cu(ii) complexes with one equivalent of H + under N 2 atmosphere resulted in the liberation of bicarbonate (HCO 3 - ) and regenerated the parent complexes. These regenerated catalysts were active enough to fix CO 2 in eight repeating cycles without any change in efficiency. The fixation of CO 2 possibly occurs via the formation of Cu(i)-species, which is accompanied by the formation of an MLCT band at around 450-500 nm. The rates of Cu(i)-species formation, k obs , were determined and found to be 5.41-10.31 × 10 -3 s -1 in the presence of Et 3 N in acetonitrile at 25 °C. Interestingly, the copper(i)-species of 3 has been successfully crystallized and displayed a distorted tetrahedral geometry through the coordination of two units of ligand L3.
Determination of stability constants of aminoglycoside antibiotics with their metal complexes
NASA Astrophysics Data System (ADS)
Tiwow, Vanny M. A.
2014-03-01
One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.
Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D
2009-11-01
Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.
NASA Astrophysics Data System (ADS)
Mansournia, Mohammadreza; Arbabi, Akram
2017-01-01
Shape control of inorganic nanostructures generally requires using surfactants or ligands to passivate certain crystallographic planes. This paper describes a novel additive-free synthesis of cupric oxide nanostructures with different morphologies from the aqueous solutions of copper(II) with Cl-, NO3 -, and SO4 2- as counter ions. Through a one-step approach, CuO nanoleaves, nanoparticles and flower-like microspheres were directly synthesized at 80°C upon exposure to ammonia vapor using a cupric solution as a single precursor. Furthermore, during a two-step process, Cu(OH)2 nanofibers and nanorods were prepared under an ammonia atmosphere, then converted to CuO nanostructures with morphology preservation by heat treatment in air. The as-prepared Cu(OH)2 and CuO nanostructures are characterized using x-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy techniques.
Lennon, David; Winfield, John M
2017-01-28
Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.
Lisboa, Cinthia da S; Santos, Vanessa G; Vaz, Boniek G; de Lucas, Nanci C; Eberlin, Marcos N; Garden, Simon J
2011-07-01
The oxidative addition of anilines (2) with 1,4-naphthoquinone (3) to give N-aryl-2-amino-1,4-naphthoquinones (1) was found to be catalyzed by copper(II) acetate. In the absence of the catalyst, the reactions are slower and give lower yields with the formation of many colateral products. In the presence of 10 mol % hydrated copper(II) acetate, the reactions are generally more efficient in that they are cleaner, higher yielding, and faster.
Liu, Qi; Liu, Xiuxiu; Shi, Changdong; Zhang, Yanpeng; Feng, Xuejun; Cheng, Mei-Ling; Su, Seng; Gu, Jiande
2015-11-28
A copper-based layered coordination polymer ([Cu(hmt)(tfbdc)(H2O)]; hmt = hexamethylenetetramine, tfbdc = 2,3,5,6-tetrafluoroterephthalate; Cu-LCP) has been synthesized, and it has been structurally and magnetically characterized. The Cu-LCP shows ferromagnetic interactions between the adjacent copper(II) ions. Density functional theory calculations on the special model of Cu-LCP support the occurrence of ferromagnetic interactions. As an electrode material for supercapacitors, Cu-LCP exhibits a high specific capacitance of 1274 F g(-1) at a current density of 1 A g(-1) in 1 M LiOH electrolyte, and the capacitance retention is about 88% after 2000 cycles.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Feng; Du, Ke-Jie; Wang, Hong-Qing; Zhang, Xue-Li; Nie, Chang-Ming
2017-06-01
A new polynuclear Cu(II) compound, [Cu4(bpy)4(OH)4(H2O)(BTC)]NO3·8H2O (1), was prepared by self-assembly from the solution of copper(II) nitrate and two kinds of ligands, 2,2‧-bipyridine (bpy) and benzene-tricarboxylic acid (H3BTC). Single crystal structure analysis reveals that 1 features a rare asymmetric chair-like hydroxyl-bridged tetra-copper cluster: [Cu4(OH)4] core along with one H2O and one BTC3- occupied each terminal coordinated site. In addition, the magnetic property has been investigated.
Evans, Ryan W; Zbieg, Jason R; Zhu, Shaolin; Li, Wei; MacMillan, David W C
2013-10-30
The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino-substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst is reconstituted. The practical value of this transformation is highlighted through one-step syntheses of two high-profile pharmaceutical agents, Plavix and amfepramone.
Evans, Ryan W.; Zbieg, Jason R.; Zhu, Shaolin; Li, Wei; MacMillan, David W. C.
2014-01-01
The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst is reconstituted. The practical value of this transformation is highlighted through one-step syntheses of two high–profile pharmaceutical agents, Plavix and amfepramone. PMID:24107144
NASA Astrophysics Data System (ADS)
Lavrenyuk, H.; Mykhalichko, O.; Zarychta, B.; Olijnyk, V.; Mykhalichko, B.
2015-09-01
The crystals of a new aqua-(diethylenetriamine-N, N‧, N‧‧)-copper(II) sulfate monohydrate have been synthesized by direct interaction of solid copper(II) sulfate pentahydrate with diethylenetriamine (deta). The crystal structure of [Cu(deta)H2O]SO4ṡH2O (1) has been determined by X-ray diffraction methods at 100 K and characterized using X-ray powder diffraction pattern: space group P 1 bar, a = 7.2819(4), b = 8.4669(4), c = 8.7020(3) Å, α = 83.590(3), β = 89.620(4), γ = 84.946(4)°, Z = 2. The environment of the Cu(II) atom is a distorted, elongated square pyramid which consists of three nitrogen atoms of the deta molecule and oxygen atom of the water molecule in the basal plane of the square pyramid (the average lengths of the in-plane Cu-N and Cu-O bonds are 2.00 Å). The apical position of the coordination polyhedron is occupied by complementary oxygen atom of the sulfate anion (the length of the axial Cu-O bond is 2.421(1) Å). The crystal packing is governed by strong hydrogen bonds of O-H⋯O and N-H⋯O types. The ab initio quantum-chemical calculations have been performed by the restricted Hartree-Fock method with a basis set 6-31∗G using the structural data of [Cu(deta)H2O]SO4ṡH2O. It has been ascertained that the degenerate d-orbitals of the Cu2+ ion split under the co-action of both the square-pyramidal coordination and the chelation. It is significant that visually observed crystals color (blue-violet) of the [Cu(deta)H2O]SO4ṡH2O complex is in good agreement with the calculated value of wavelength of visible light (λ = 5735 Å) which is closely related to the energy of the absorbed photon (Δ = 2.161 eV). Furthermore, the stereo-chemical aspect of influence of the CuSO4 upon combustibility of modified epoxy-amine polymers has been scrutinized.
NASA Astrophysics Data System (ADS)
Kharadi, G. J.
2014-01-01
An octahedral complexes of copper with clioquinol(CQ) and substituted terpyridine have been synthesized. The Cu(II) complexes have been characterized by elemental analyses, thermogravimetric analyses, magnetic moment measurements, FT-IR, electronic, 1H NMR and FAB mass spectra. Antimycobacterial screening of ligand and its copper compound against Mycobacterium tuberculosis shows clear enhancement in the antitubercular activity upon copper complexation. Ferric-reducing anti-oxidant power of all complexes were measured. The fluorescence spectra of complexes show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The antimicrobial efficiency of the complexes were tested on five different microorganisms and showed good biological activity.
Mutti, Francesco G.; Pievo, Roberta; Sgobba, Maila; Gullotti, Michele; Santagostini, Laura
2008-01-01
The biomimetic catalytic oxidations of the dinuclear and trinuclear copper(II) complexes versus two catechols, namely, D-(+)-catechin and L-( − )-epicatechin to give the corresponding quinones are reported. The unstable quinones were trapped by the nucleophilic reagent, 3-methyl-2-benzothiazolinone hydrazone (MBTH), and have been calculated the molar absorptivities of the different quinones. The catalytic efficiency is moderate, as inferred by kinetic constants, but the complexes exhibit significant enantio-differentiating ability towards the catechols, albeit for the dinuclear complexes, this enantio-differentiating ability is lower. In all cases, the preferred enantiomeric substrate is D-(+)-catechin to respect the other catechol, because of the spatial disposition of this substrate. PMID:18825268
Borghi, Elena; Solari, Pier Lorenzo; Beltramini, Mariano; Bubacco, Luigi; Di Muro, Paolo; Salvato, Benedetto
2002-01-01
The binuclear copper sites of the met and met-azido derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 were characterized by high-resolution x-ray absorption spectroscopy in the low energy region (XANES) and in the higher region (EXAFS). The accuracy of the analysis of the data was tested with two mononuclear and six binuclear copper(II) complexes of the poly(benzimidazole) ligand systems 2-BB, L-5,5 and L-6,6 (Casella et al., 1993, Inorg. Chem. 32:2056-2067; 1996, Inorg. Chem. 35:1101-1113). Their structural and reactivity properties are related to those of the protein's derivatives. The results obtained for those models with resolved x-ray structure (the 2-BB-aquo and azido mononuclear complexes, and the binuclear L-5,5 Cu(II)-bis(hydroxo) (Casella et al., unpublished)), extends the validity of our approach to the other poly(benzimidazole)-containing complexes and to the hemocyanin derivatives. Comparison between the protein's and the complexes' data, support a description of the met-derivatives as a five-coordinated O-bridged binuclear copper(II) center and favors, for both species, a bis(hydroxo) structure with a 3-A Cu-Cu distance. For O. vulgaris met-azido derivative a mu-1,3 bridging mode for the ligand appears the most likely. The structural situation of C. aestuarii met-azido-derivative is less clear: a mu-1,1 mode is favored, but a terminal mode cannot be excluded. PMID:12023249
Pousaneh, Elaheh; Korb, Marcus; Dzhagan, Volodymyr; Weber, Marcus; Noll, Julian; Mehring, Michael; Zahn, Dietrich R T; Schulz, Stefan E; Lang, Heinrich
2018-06-19
The synthesis of ketoiminato copper(ii) complexes [Cu(OCRCHC(CH3)NCH2CH2X)(μ-OAc)]2 (X = NMe2: 4a, R = Me; 4b, R = Ph. X = OMe: 5, R = Me) and [Cu(OCRCHCMeNCH2CH2NEt2)(OAc)] (6, R = Me) from RC(O)CHC(CH3)N(H)CH2CH2X (X = NMe2: 1a, R = Me; 1b, R = Ph. X = NEt2: 1c, R = Me. X = OMe: 2, R = Me) and [Cu(OAc)2·H2O] (3) is reported. The molecular solid-state structures of 4-6 were determined by single crystal X-ray diffraction studies, showing that 4a,b and 5 are dimers which are set up by two [{Cu(μ-OAc)L}] (L = ketoiminato ligand) units featuring a square-planar Cu2O2 core with a distorted square-pyramidal geometry at Cu(ii). In contrast, 6 is monomeric with a tridentate-coordinated OCMeCHCMeNCH2CH2NEt2 ligand and a σ-bonded acetate group, thus inducing a square-planar environment around Cu(ii). The thermal behavior of all complexes was studied by TG (Thermogravimetry) and DSC (Differential Scanning Calorimetry) under an atmosphere of Ar and O2. Complex 4b shows the highest first onset temperature at 213 °C (under O2) and 239 °C (Ar). PXRD studies confirmed the formation of CuO under an atmosphere of O2 and Cu/Cu2O under Ar. TG-MS studies, exemplarily carried out with 4a, indicate the elimination of the ketoiminato ligands with detectable fragments such as m/z = 15, 28, 43, 44, 45, and 60 at a temperature above 250 °C. Vapor pressure measurements displayed that 5 shows the highest volatility of 3.6 mbar at 70 °C (for comparison, 4a, 1.4; 4b, 1.3; 6, 0.4 mbar) and hence 4a and 5 were used as MOCVD precursors for Cu/Cu2O deposition on Si/SiO2 at substrate temperatures of 450 °C and 510 °C. The deposition experiments were carried out under an atmosphere of nitrogen as well as oxygen. The as-obtained layers were characterized by SEM, EDX, XPS, and PXRD, showing that with oxygen as the reactive gas a mixture of metallic copper and copper(i) oxide without carbon impurities was formed, while under N2 Cu films with 53-68 mol% C contamination were produced. In a deposition experiment using precursor 5 at 510 °C under N2 a pure copper film was obtained.
NASA Astrophysics Data System (ADS)
Peacock, Caroline L.; Sherman, David M.
2004-06-01
We measured the adsorption of Cu(II) onto goethite (α-FeOOH), hematite (α-Fe 2O 3) and lepidocrocite (γ-FeOOH) from pH 2-7. EXAFS spectra show that Cu(II) adsorbs as (CuO 4H n) n-6 and binuclear (Cu 2O 6H n) n-8 complexes. These form inner-sphere complexes with the iron (hydr)oxide surfaces by corner-sharing with two or three edge-sharing Fe(O,OH) 6 polyhedra. Our interpretation of the EXAFS data is supported by ab initio (density functional theory) geometries of analogue Fe 2(OH) 2(H 2O) 8Cu(OH) 4and Fe 3(OH) 4(H 2O) 10Cu 2(OH) 6 clusters. We find no evidence for surface complexes resulting from either monodentate corner-sharing or bidentate edge-sharing between (CuO 4H n) n-6 and Fe(O,OH) 6 polyhedra. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed even though we are supersaturated with respect to CuO and Cu(OH) 2. Having identified the bidentate (FeOH) 2Cu(OH) 20 and tridentate (Fe 3O(OH) 2)Cu 2(OH) 30 surface complexes, we are able to fit the experimental copper(II) adsorption data to the reactions 3( FeOH)+2 Cu2++3 H2O=( Fe3O( OH) 2) Cu2( OH) 30+4 H+ and 2( FeOH)+ Cu2++2 H2O=( FeOH) 2Cu( OH) 20+2 H+. The two stability constants are similar for the three iron (hydr)oxide phases investigated.
NASA Astrophysics Data System (ADS)
Chen, Anting
Fluorescent conjugated polymers (FCPs) represent an exciting area of research in chemosensors and biosensors. Previously, the polymer tmeda-PPETE, N,N,N'-trimethylethylenediamino (tmeda) receptors on a poly[2,5-thiophenediyl-1,2-ethynediyl-1,4-phenylenediyl-1,2-ethynediyl] (PPETE) backbone, showed significant quenching when copper(II) was added. Tmeda-PPETE polymer preloaded with copper(II) was found to be a fluorescent "turn-on" sensor for iron cations. Additional investigation of this metallopolymer revealed a selective sensory system toward carbonate and phosphorus anions through a competitive binding of copper(II) between the polymer tmeda-PPETE and the anions. Fluorescent turn-on response under systematically varied pH was affected by the equilibrium shift of the ionization of polyprotic ions. A sterically hindered pentiptycene group was introduced to the PPETE polymer backbone aiming to reduce aggregation and self-quenching in the solid state. A new FCP, tmeda-PPpETE (poly[(pentiptycene ethynylene)-alt-(thienylene ethynylene)] with tmeda receptors, has been designed and synthesized via Sonogashira cross-coupling reaction. Absorption and emission spectra of tmeda-PPpETE showed blue shifting from tmeda-PPETE, suggesting increased rigidity of polymer backbone. Tmeda-PPpETE showed a high selectivity towards copper(II) with improved sensitivity compared to tmeda-PPETE. The fluorescent quenching response is over 120-fold at emission maximum, and the detection limit is 1.04 ppb, significantly lower than the EPA action level of 1.3 ppm for copper(II). A small turn-off fluorescent response of tmeda-PPpETE was also observed upon addition of iron cations. To further investigate the interaction between pentiptycene containing polymers and iron cations, tmpda-PPpETE containing N,N,N'-trimethylpropylenediamino (tmpda) receptors was designed and synthesized. The absorption and emission spectra for tmpda-PPpETE were analogous to those of tmeda-PPpETE, with a higher quantum yield for tmpda-PPpETE. The cation selectivity test in solution showed selective fluorescent quenching for iron cations. Investigation of the polymer-iron interaction showed that two binding mechanisms were involved. This is the first report of pentiptycene-derived polymer participating in a metal complex formation. By using 1,3,5-triethynylbenzene as the linker group, a network of PPETE polymer backbone loaded with tmeda receptors was designed and synthesized. This transformed the linear FCP, tmeda-PPETE into a network polymer. Two derivatives of this polymer were also successfully synthesized. The metal cation selectivity test showed similar fluorescent response as tmeda-PPETE, which revealed the potential in developing solid state sensors.
Antibacterial and antifungal metal based triazole Schiff bases.
Chohan, Zahid H; Hanif, Muhammad
2013-10-01
A new series of four biologically active triazole derived Schiff base ligands (L(1)-L(4)) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (1-16) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.
CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.
Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah
2018-04-01
This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.
Effect of Dioxygen on Copper(II) Binding to α-Synuclein
Lucas, Heather R.; Lee, Jennifer C.
2010-01-01
Using the fluorescent amino acid tryptophan (Trp), we have characterized the copper(II) binding of F4W α-synuclein in the presence and absence of dioxygen at neutral pH. Variations in Trp fluorescence indicate that copper(II) binding is enhanced by the presence of dioxygen, with the apparent dissociation constant (Kd(app)) changing from 100 nM (anaerobic) to 10 nM (aerobic). To investigate the possible role of methionine oxidation, complementary work focused on synthetic peptide models of the N-terminal Cu(II)-α-syn site, MDV(F/W) and M*DV(F/W), where M*= methionine sulfoxide. Furthermore, we employed circular dichroism (CD) spectroscopy to demonstrate that the phenyl-to-indole (F→W) substitution does not alter copper(II) binding properties and to confirm the 1:1 metal-peptide binding stoichiometry. CD comparisons also revealed that Met1 oxidation does not affect the copper-peptide conformation and further suggested the possible existence of a CuII-Trp/Phe (cation-π) interaction. PMID:20064662
El-Sherif, Ahmed A; Shoukry, Mohamed M
2007-03-01
The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.
NASA Astrophysics Data System (ADS)
Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.
2012-10-01
A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 μm.
Escuer, Albert; Mautner, Franz A.; Peñalba, Evaristo; Vicente, Ramon
1998-08-24
Four new &mgr;-CO(3)(2-) copper(II) complexes with different coordination modes for the carbonato bridge have been obtained by fixation of atmospheric CO(2): {(&mgr;(3)-CO(3))[Cu(3)(ClO(4))(3)(Et(3)dien)(3)]}(ClO(4)) (1), Et(3)dien = N,N',N"-triethylbis(2-aminoethane)amine; {(&mgr;-CO(3))[Cu(2)(H(2)O)(Et(4)dien)(2)]}(ClO(4))(2).H(2)O (2), Et(4)dien = N,N,N",N"-tetraethyl-bis(2-aminoethane)amine; {(&mgr;-CO(3))[Cu(2)(H(2)O)(2)(EtMe(4)dien)(2)]} (ClO(4))(2).2H(2)O (3), EtMe(4)dien = N'-ethyl-N,N,N",N"-tetramethylbis(2-aminoethane)amine; and {(&mgr;-CO(3))[Cu(2)(H(2)O)(Me(5)dien)(2)]}(ClO(4))(2).H(2)O (4), Me(5)dien = N,N,N',N",N"-pentamethylbis(2-aminoethane)amine. The crystal structures have been solved for 2, monoclinic system, space group P2(1)/n, formula [C(25)H(62)Cl(2)Cu(2)N(6)O(13)] with a = 12.763(6) Å, b = 25.125(8) Å, c = 13.261(4) Å, beta = 111.85(3) degrees, Z = 4, and for 3, triclinic system, space group P&onemacr;, formula [C(21)H(58)Cl(2)Cu(2)N(6)O(15)] with a = 8.412(3) Å, b = 14.667(4) Å, c = 16.555(5) Å, alpha = 99.66(2) degrees, beta = 102.14(2) degrees, gamma = 104.72(2) degrees, Z = 2. Susceptibility measurements show ferromagnetic behavior (J = +6.7(6) cm(-)(1)) for the trinuclear compound 1 whereas 2-4 are antiferromagnetically coupled with J = -17.8(8), -125.5(9), and -21.2(3) cm(-)(1) respectively. Certain synthetic aspects that may be related to the nuclearity of the copper(II) &mgr;-CO(3)(2-) compounds and the superexchange pathway for the different coordination modes of the carbonato bridge are discussed.
Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin
2016-01-01
We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.
Pîrlea, Sorina; Puiu, Mihaela; Răducan, Adina; Oancea, Dumitru
2017-03-01
In this study, it was demonstrated that the DNA Chelex extraction combined with the permanganate assisted-oxidation is highly efficient in removing the PCR inhibitors often found in clothing materials, such as phthalocyanine. The extraction assays were conducted in saliva, blood and epithelial cells samples mixed with three oxidation-resistant dye copper(II) α-phthalocyanine, copper(II) β-phthalocyanine and tetrasulfonated copper(II) β-phthalocyanine. After DNA amplification, all samples were able to provide full DNA profiles. The permanganate/Chelex system was tested further on denim-stained samples and displayed the same ability to remove the PCR inhibitors from the commercial textile materials.
Ariza-Avidad, M; Agudo-Acemel, M; Salinas-Castillo, A; Capitán-Vallvey, L F
2015-05-04
A sulphide selective colorimetric metal complexing indicator-displacement assay has been developed using an immobilized copper(II) complex of the azo dye 1-(2-pyridylazo)-2-naphthol printed by inkjetting on a nylon support. The change in colour measured from the image of the disposable membrane acquired by a digital camera using the H coordinate of the HSV colour space as the analytical parameter is able to sense sulphide in aqueous solution at pH 7.4 with a dynamic range up to 145 μM, a detection limit of 0.10 μM and a precision between 2 and 11%. Copyright © 2015 Elsevier B.V. All rights reserved.
Rao, H Surya Prakash; Rao, A Veera Bhadra
2015-02-06
Copper(II) trifluoromethanesulfonate (Cu(OTf)2) efficiently catalyzes the C-C coupling of 3-hydoxyisoindolinones with a variety of aryl-, heteroaryl-, and alkenylboronic acids to furnish C(3) aryl-, heteroaryl-, and alkenyl-substituted isoindolinones. The coupling reactions work smoothly in 1,2-dicholoroethane (DCE) reflux, to effect both inter- and intramolecular versions. This is the first report on C(sp(3))-OH cleavage with concomitant C-C coupling. The photolabile 2-nitrobenzyl protecting group is most appropriate for promotion of the coupling reaction and for deprotection. The tetracyclic ring motif of the alkaloid neuvamine was prepared by applying the newly developed copper-catalyzed C-C coupling.
Vafazadeh, Rasoul; Willis, Anthony C
2016-01-01
Two copper(II) clusters Cu(4)OCl(6)(pyrazole)4, 1, and Cu(4)OBr(6)(Br-pyrazole)4, 2, have been synthesized by reacting acetylacetone and benzohydrazide (1:1 ratio) with CuX(2) (X = Cl for 1 and X= Br for 2) in methanol solutions. The structures of both clusters have been established by X-ray crystallography. The clusters contain four Cu, one O, six μ(2)-X atoms, and four pyrazole ligands. The pyrazoles was prepared in situ by the reaction of acetylacetone with benzohydrazide in methanol under reflux. In 2, the methine hydrogens of the pyrazole ligands have been replaced by bromine atoms. The four copper atoms encapsulate the central O atom in a tetrahedral arrangement. All copper atoms are five-coordinate and have similar coordination environments with slightly distorted trigonal bipyramidal geometry. The cyclic voltammogram of the clusters 1 and 2 show a one-electron quasi-reversible reduction wave in the region 0.485 to 0.731 V, and a one-electron quasi-reversible oxidation wave in the region 0.767 to 0.898 V. In 1, one irreversible oxidative response is observed on the positive of side of the voltammogram at 1.512 V and this can be assigned to Cu(II) to Cu(III) oxidation.
NASA Astrophysics Data System (ADS)
Shebl, Magdy; Adly, Omima M. I.; Taha, A.; Elabd, N. N.
2017-11-01
The compound in the title (L) was synthesized and reacted with Cu(II) metal ion with different anions (OAc-, NO3-, SO42-, ClO4-, Cl- and Br-) in absence and presence of auxiliary ligands (L‧); N,O-donor; or N,N-donor; to form binary and ternary Cu(II)-chelates. The metal complexes were fully characterized by analytical and spectral techniques in addition to thermal, conductivity and magnetic susceptibility measurements. The obtained results showed that the ligand behaves as a neutral bidentate, forming chelates with molar ratios: 1:1, 1:2 and 1:3; M:L for binary and 1:2:1 and 1:1:1; M:L:L‧ for ternary complexes, which can be formulated as: [LmCuXn(H2O)y]·zH2O, m = 1 or 2, n = 0, 1 or 2, X = OAc-, SO42-, Cl- or Br-, y = 0 or 2, z = 0 or 0.5; [LmCu(H2O)n]X2·zMeOH, m = 2 or 3, n = 0 or 2, X = ClO4- or NO3-, z = 0 or 1 and [Lm L'Cu(H2O)n](NO3)x·yS, m = 1 or 2, n = 0 or 2, X = 1 or 2, y = 0.5 or 4, S = H2O or MeOH. The ESR spin Hamiltonian parameters of some complexes were calculated. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data. The metal complexes exhibited octahedral and square planar geometrical arrangements according to the nature of the anion. The ligand and its metal complexes showed antibacterial activity towards Gram-positive bacteria, Gram-negative bacteria, yeast and fungus.
NASA Astrophysics Data System (ADS)
Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi
2016-05-01
Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01492e
Howard, Karen L; Boyer, Gregory L
2007-01-01
A novel method for simplifying adduct patterns to improve the detection and identification of peptide toxins using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry is presented. Addition of 200 microM zinc sulfate heptahydrate (ZnSO(4) . 7H(2)O) to samples prior to spotting on the target enhances detection of the protonated molecule while suppressing competing adducts. This produces a highly simplified spectrum with the potential to enhance quantitative analysis, particularly for complex samples. The resulting improvement in total signal strength and reduction in the coefficient of variation (from 31.1% to 5.2% for microcystin-LR) further enhance the potential for sensitive and accurate quantitation. Other potential additives tested, including 18-crown-6 ether, alkali metal salts (lithium chloride, sodium chloride, potassium chloride), and other transition metal salts (silver chloride, silver nitrate, copper(II) nitrate, copper(II) sulfate, zinc acetate), were unable to achieve comparable results. Application of this technique to the analysis of several microcystins, potent peptide hepatotoxins from cyanobacteria, is illustrated. Copyright (c) 2007 John Wiley & Sons, Ltd.
Copper(II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions.
Aresta, M; Boscolo, M; Franco, D W
2001-06-01
The role of copper(II) species in the oxidation of inorganic cyanide to cyanate and in the conversion of cyanate or urea into ethyl carbamate was investigated. The oxidation process has been shown to be independent from the dissolved oxygen. Elemental analysis and infrared spectroscopy have shown the formation of a mixed copper carbonate/hydroxide in the process of oxidation of cyanide to cyanate in water/ethanol. The complexation to Cu(II) of cyanate formed upon cyanide oxidation makes the former more susceptible to nucleophilic attack from ethanol, with conversion into ethyl carbamate. Comparatively, urea has a minor role with respect to cyanide in the formation of ethyl carbamate. Therefore, the urea present in some samples of Brazilian sugar cane spirit (cachaça) has been shown to have almost no influence on the ethyl carbamate content of cachaças, which comes essentially from cyanide. Fe(II,III) affords results similar to those found with Cu(II). Some suggestions are presented to avoid ethyl carbamate formation in spirits during distillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Koksharova, T. V.; Antsyshkina, A. S.
2008-07-15
The copper(II) phthalate complex with nicotinamide [CuL{sub 2}({mu}-Pht)(H{sub 2}O)] . 0.5H{sub 2}O(I) (where L is nicotinamide and Pht{sup 2-} is an anion of phthalic acid) is synthesized and investigated using IR spectroscopy and X-ray diffraction. The crystals of compound I are monoclinic, a = 13.368(2) A, b = 7.891(3) A, c = 20.480(2) A, {beta} = 108.69(2){sup o}, Z = 4, and space group P2{sub 1}/c. The structural units of crystal I are linear chains formed by bridging phthalate anions and crystallization water molecules. The copper atom is coordinated by two pyridine nitrogen atoms of two nicotinamide ligands (Cu-N, 2.001more » and 2.045 A), two oxygen atoms of different phthalate anions (Cu-O, 1.964 and 2.235 A), and the oxygen atom of the H{sub 2} O molecule (Cu-O, 2.014 A). The coordination polyhedron of the copper atom is completed to an elongated (4 + 1 + 1) tetragonal bipyramid by the second (chelating) oxygen atom of the carboxyl group (Cu-O, 2.587 A), which is one of the anions of phthalic acid. The linear polymer molecules are joined into complex macromolecular dimers with the closest internal contacts of the specific type. The macromolecular dimers are the main supramolecular ensembles of the crystal structure.« less
Preparation and Analysis of Libethenite: A Project for the First-Year Laboratory
ERIC Educational Resources Information Center
Ginion, Kelly E.; Yoder, Claude H.
2004-01-01
The preparation of libethenite, a double salt of copper(II) phosphate and copper(II) hydroxide presents the opportunity to discuss the prevalence of double salts in the environment, the relationship between solubility and stability in aqueous solution, the origin of the color of transition metal compounds and gravimetric analyses. Typical results…
Pivetta, Tiziana; Trudu, Federica; Valletta, Elisa; Isaia, Francesco; Castellano, Carlo; Demartin, Francesco; Tuveri, Rossana; Vascellari, Sarah; Pani, Alessandra
2014-12-01
The cytotoxic properties of copper(II) complexes with 1,10-phenanthroline (phen) can be modified by substitution in the phen backbone. For this purpose, Cu(II) complexes with phen, 1,10-phenanthrolin-5,6-dione (phendione) and 1,10-phenanthrolin-5,6-diol (phendiol) have been synthesised and characterised. The crystal structure of [Cu(phendione)2(OH2)(OClO3)](ClO4) is discussed. The complex formation equilibria between Cu(II) and phen or phendione were studied by potentiometric measurements at 25 and 37°C in 0.1 M ionic strength (NaCl). The antitumour activity of the compounds has been tested in vitro against a panel of tumour (DU-145, HEP-G2, SK-MES-1, CCRF-CEM, CCRF-SB) and normal (CRL-7065) human cell lines. The studied compounds generally present an antiproliferative effect greater than that of cisplatin. The phen and phendione ligands present a similar antiproliferative effect against all the tested cells. Phendiol presents an antiproliferative effect 1.3 to 18 times greater than that of phen or phendione for leukemic, lung, prostatic and fibroblast cells, while it presents less activity towards hepatic cells. Complexes with two ligands are more cytotoxic towards all the tested cell lines than complexes with one ligand and are generally more cytotoxic than the ligand alone. Complexes [Cu(phendiol)2(OH2)](ClO4)2 and [Cu(phendione)2(OH2)(OClO3)](ClO4) appear to be the most active compounds for the treatment of SK-MES-1 and HEP-G2 cells, respectively, being at least 18 times more cytotoxic than cisplatin. The studied Cu(II) complexes are characterised by a strong DNA affinity and were found to interact with DNA mainly by groove binding or electrostatic interactions. The complexes appear to act on cells with a mechanism different from that of cisplatin. Copyright © 2014 Elsevier Inc. All rights reserved.
Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.
Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela
2010-02-19
The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.
Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates.
Allen, C Liana; Miller, Scott J
2013-12-20
Catalyst-controlled regioselective functionalization of partially protected saccharide molecules is a highly important yet under-developed area of carbohydrate chemistry. Such reactions allow for the reduction of protecting group manipulation steps required in syntheses involving sugars. Herein, an approach to these processes using enantiopure copper-bis(oxazoline) catalysts to control couplings of electrophiles to various partially protected sugars is reported. In a number of cases, divergent regioselectivity was observed as a function of the enantiomer of catalyst that is used.
Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan
2015-01-01
The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668
Silva, Patricia B da; Souza, Paula C de; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O; Frem, Regina C G; Netto, Adelino V G; Mauro, Antonio E; Pavan, Fernando R; Chorilli, Marlus
2016-05-17
Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin(®) HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl₂(INH)₂]·H₂O (1), [Cu(NCS)₂(INH)₂]·5H₂O (2) and [Cu(NCO)₂(INH)₂]·4H₂O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from -0.00690 ± 0.0896 to -8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC(®) CCL-81), J774A.1 (ATCC(®) TIB-67), and MRC-5 (ATCC(®) CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB.
Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo
2008-01-01
The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.
NASA Astrophysics Data System (ADS)
Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar
2013-03-01
In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.
Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar
2013-03-15
In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.
Cazacu, Maria; Shova, Sergiu; Soroceanu, Alina; Machata, Peter; Bucinsky, Lukas; Breza, Martin; Rapta, Peter; Telser, Joshua; Krzystek, J; Arion, Vladimir B
2015-06-15
Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry.
Interpretation of the Electron Paramagnetic Resonance Spectra of Copper(II)-Tyrosine Complex
NASA Astrophysics Data System (ADS)
Xu, Xiao-Hui; Kuang, Min-Quan
2017-12-01
The electron paramagnetic resonance (EPR) spectra of [Cu(l-tyrosine)2]n (CuA) were interpreted based on the fourth-order perturbation treatments where the contributions due to the local distortion, ligand orbit and spin-orbit coupling were included. The calculated band transitions d_{x^2} - y^2 to dxy (≈16412 cm-1) and d_{z^2} (≈14845 cm-1) agree well with the band analysis results (d_{x^2} - y^2 \\to d_{xy} ≈16410 and d_{x^2} - y^2 \\to d_{z^2} ≈14850 cm-1). The unresolved separations d_{x^2} - y^2 \\to d_{xz} and d_{x^2} - y^2 \\to d_{yz} in the absorption spectra were evaluated as 26283 and 26262 cm-1, respectively. For CuA, copper chromophores in 1,3-diaminorpropane isophtalate copper(II) complex (CuB) and N-methyl-1,2-diaminoetaane-bis copper(II) polymer (CuC), the transition d_{x^2} - y^2 \\to d_{xy} (=E1≈10Dq) suffered an increase with a decrease in R̅L which was evaluated as the mean value of the copper-ligand bond lengths. The correlations between the tetragonal elongation ratio ρ (=(Rz-R̅L)/R̅L) (or the ratio G=(gz-ge)/((gx+gy)/2-ge)) and the g isotropy gav (=(gx+gy+gz)/3) (or the covalency factor N) for CuA, CuB and CuC were acquired and all the results were discussed.
Moghadam, Mahboube Eslami; Divsalar, Adeleh; Zare, Marziye Shahraki; Gholizadeh, Roghayeh; Mahalleh, Doran; Saghatforosh, Lotfali; Sanati, Soheila
2017-11-02
Two new nickel(II) and copper(II) complexes of 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP), imidazophen derivatives were synthesized. The structures of the compounds were determined by UV-visible and FT-IR spectroscopic methods and elemental analysis. The biological activities of Ni and Cu complexes, as anticancer agents, were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The MTT studies showed Cc 50 values are 21 and 160 µM for Cu and Ni(II) complexes, respectively; suggesting that Ni (II) complex has Cc 50 almost seven times of that obtained for cisplatin. Biological activity of the Ni(II) and Cu(II) complexes were also assayed against selective microorganisms by disc diffusion method. These results showed that the Cu(II) complex is antifungal agent but Ni(II) complex has antibacterial activity.
Lv, Longyun; Zheng, Sichao; Cai, Xiaotie; Chen, Zhipeng; Zhu, Qiuhua; Liu, Shuwen
2013-04-08
We previously reported the novel efficient proton/heat-promoted four-component reactions (4CRs) of but-2-ynedioates, two same/different primary amines, and aldehydes for the synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles. If aromatic and aliphatic amines were used as reagents, four different series of products should be obtained via the permutation and combination of aromatic and aliphatic primary amines. However, only three/two rather four different series of tetra-/pentasubstisuted dihydropyrroles could be prepared via the proton/heat-promoted 4CRs. Herein, Cu(OAc)2·H2O, a Lewis acid being stable in air and water, was found to be an efficient catalyst for the 4CR synthesis of all the four different series of tetra-/pentasubstisuted dihydropyrroles. The copper-catalyzed 4CR could produce target products at room temperature in good to excellent yields. Interestingly, benzaldehyde, in addition to being used as a useful reactant for the synthesis of pentasubstituted dihydropyrroles, was found to be an excellent additive for preventing the oxidation of aromatic amines with copper(II) and ensuring the sooth conduct of the 4CRs for the synthesis of tetrasubstituted dihydropyrroles with aryl R(3). In addition, salicylic acid was found to be needed to increase the activities and yields of the copper-catalyzed 4CRs for the synthesis of petasubstituted diyhydropyrroles. On the basis of experimental results, the enamination/amidation/intramolecular cyclization mechanism was proposed and amidation is expected to be the rate-limited step in the copper-catalyzed 4CRs.
Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.
Hiraide, M; Mizuike, A
1975-06-01
Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.
Altaf, Muhammad; Stoeckli-Evans, Helen
2017-10-01
Tranexamic acid [systematic name: trans -4-(amino-meth-yl)cyclo-hexane-1-carb-oxy-lic acid], is an anti-fibrinolytic amino acid that exists as a zwitterion [ trans -4-(ammonio-meth-yl)cyclo-hexane-1-carboxyl-ate] in the solid state. Its reaction with copper chloride leads to the formation of a compound with a copper(II) paddle-wheel structure that crystallizes as a hexa-hydrate, [Cu 2 Cl 2 (C 8 H 15 NO 2 ) 4 ] 2+ ·2Cl - ·6H 2 O. The asymmetric unit is composed of a copper(II) cation, two zwitterionic tranexamic acid units, a coordinating Cl - anion and a free Cl - anion, together with three water mol-ecules of crystallization. The whole structure is generated by inversion symmetry, with the Cu⋯Cu axle of the paddle-wheel dication being located about a center of symmetry. The cyclo-hexane rings of the zwitterionic tranexamic acid units have chair conformations. The carboxyl-ate groups that bridge the two copper(II) cations are inclined to one another by 88.4 (8)°. The copper(II) cation is ligated by four carboxyl-ate O atoms in the equatorial plane and by a Cl - ion in the axial position. Hence, it has a fivefold O 4 Cl coordination sphere with a perfect square-pyramidal geometry and a τ 5 index of zero. In the crystal, the paddle-wheel dications are linked by a series of N-H⋯Cl hydrogen bonds, involving the coordinating and free Cl - ions, forming a three-dimensional network. This network is strengthened by a series of N-H⋯O water , O water -H⋯Cl and O water -H⋯O hydrogen bonds.
Fondo, Matilde; García-Deibe, Ana M; Corbella, Monstserrat; Ruiz, Eliseo; Tercero, Javier; Sanmartín, Jesús; Bermejo, Manuel R
2005-07-11
The new tetranuclear carbonate complex [Cu2L)2(CO3)] x 8H2O (1 x 8H2O) (H3L = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) has been obtained by two different synthetic routes and fully characterized. Recrystallization of 1 x 8H2O in methanol yields single crystals of {[(Cu2L)2(CO3)]}2 x 12H2O (1 x 6H2O), suitable for X-ray diffraction studies. The crystal structure of 1 x 6H2O shows two crystallographically different tetranuclear molecules in the asymmetric unit, 1a and 1b. Both molecules can be understood as self-assembled from two dinuclear [Cu2L]+ cations, joined by a mu4-eta(2):eta(1):eta(1) carbonate ligand. The copper atoms of each crystallographically different [(Cu2L)2(CO3)] molecule present miscellaneous coordination polyhedra: in both 1a and 1b, two metal centers are in square pyramidal environments, one displays a square planar chromophore and the other one has a geometry that can be considered as an intermediate between square pyramid and trigonal bipyramid. Magnetic studies reveal net intramolecular ferromagnetic coupling between the metal atoms. Density functional calculations allow the assignment of the different magnetic coupling constants and explain the unexpected ferromagnetic behavior, because of the presence of an unusual NCN bridging moiety and countercomplementarity of the phenoxo (or carbonate) and NCN bridges.
Mahyari, Mojtaba; Laeini, Mohammad Sadegh; Shaabani, Ahmad
2014-07-25
Copper(ii) tetrasulfophthalocyanine supported on three-dimensional nitrogen-doped graphene-based frameworks was synthesized and introduced as a bifunctional catalyst for selective aerobic oxidation of alkyl arenes and alcohols to the corresponding carbonyl compounds. The ease of catalyst separation, high turnover, low catalyst loading and recyclability could potentially render it applicable in industrial setting.
Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu
2016-05-25
We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component.
NASA Astrophysics Data System (ADS)
Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam
2017-09-01
In the synthesis of polymer-graphene nanocomposites, for improving properties of nanocomposites, two factors dispersion and strong interfacial interactions between graphene and the polymer, are essential. In the present work, poly(vinyl alcohol) PVA/GO-Cu-alanine nanocomposite films were manufactured using concentrations 0, 1, 3 and 5 wt% of GO-Cu-alanine in water solution. For this purpose, L-alanine amino acid was located on the surface and edges of GO through copper(II) ion as a coordinating function. Then, flexible PVA/GO-Cu-alanine nanocomposite films were fabricated using GO-Cu-alanine as filler and PVA as matrix. Due to the existence of affective interaction between GO-Cu-alanine and PVA matrix, the acquired PVA/GO-Cu-alanine nanocomposites demonstrated great thermal and mechanical properties. Properties of manufactured materials were characterized by Fourier transform infrared, X-ray photoelectron spectroscopies (XPS), X-ray diffraction (XRD), Thermal gravimetric analysis, elemental analysis, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX).
Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid-base and coordination properties.
David, Tomáš; Procházková, Soňa; Havlíčková, Jana; Kotek, Jan; Kubíček, Vojtěch; Hermann, Petr; Lukeš, Ivan
2013-02-21
Three symmetrical methylene-bis[(aminomethyl)phosphinic acids] bearing different substituents on the central carbon atom, (NH(2)CH(2))PO(2)H-C(R(1))(R(2))-PO(2)H(CH(2)NH(2)) where R(1) = OH, R(2) = Me (H(2)L(1)), R(1) = OH, R(2) = Ph (H(2)L(2)) and R(1),R(2) = H (H(2)L(3)), were synthesized. Acid-base and complexing properties of the ligands were studied in solution as well as in the solid state. The ligands show unusually high basicity of the nitrogen atoms (log K(1) = 9.5-10, log K(2) = 8.5-9) if compared with simple (aminomethyl)phosphinic acids and, consequently, high stability constants of the complexes with studied divalent metal ions. The study showed the important role of the hydroxo group attached to the central carbon atom of the geminal bis(phosphinate) moiety. Deprotonation of the hydroxo group yields the alcoholate anion which tends to play the role of a bridging ligand and induces formation of polynuclear complexes. Solid-state structures of complexes [H(2)N=C(NH(2))(2)][Cu(2)(H(-1)L(2))(2)]CO(3)·10H(2)O and Li(2)[Co(4)(H(-1)L(1))(3)(OH)]·17.5H(2)O were determined by X-ray diffraction. The complexes show unexpected geometries forming dinuclear and cubane-like structures, respectively. The dinuclear copper(II) complex contains a bridging μ(2)-alcoholate group with the (-)O-P(=O)-CH(2)-NH(2) fragments of each ligand molecule chelated to the different central ion. In the cubane cobalt(II) complex, one μ(3)-hydroxide and three μ(3)-alcoholate anions are located in the cube vertices and both phosphinate groups of one ligand molecule are chelating the same cobalt(II) ion while each of its amino groups are bound to different neighbouring metal ions. All such three metal ions are bridged by the alcoholate group of a given ligand.
NASA Astrophysics Data System (ADS)
Bhattacharya, Arnab; Saha, Pinki; Saha, Baptu; Maiti, Debasish; Mitra, Partha; Naskar, Jnan Prakash; Chowdhury, Shubhamoy
2017-10-01
Reaction of N,N‧-bis(2-pyridylmethyl)oxamide (H2L), and copper(II)nitrate trihydrate in 1:2 M proportion in methanol generates oxamido bridged dimeric copper(II) compound, [Cu2L(H2O)2(NO3)2]H2O (1a.H2O) in good yield. 1a.H2O has been characterized by C, H and N microanalyses, copper estimation, FT-IR, UV-Vis and room temperature magnetic susceptibility measurements. The X-ray crystal structure of 1a.H2O has been determined. Bond Valence Sum (BVS) analysis was undertaken to assign the oxidation state of each copper center in 1a. Thermal behavior of 1a.H2O has been studied by TGA. Electrochemical studies on 1a.H2O shows single electron two step sequential reductions of Cu(II) to Cu(I) in dimethyl sulphoxide. Our optimized geometry of 1a as obtained through conceptual Density Functional Theory (DFT) corroborates well with that obtained from single crystal X-ray diffraction. TD-DFT method was also adopted to delve into the electronic properties of 1a. We have taken recourse to employ our optimized structure of 1a to investigate systematically the relative stabilities of various dimeric Cu(II) complexes obtained through variation of ligands bearing uni-donor anion through substitution of nitrate in 1a. The in vitro antibacterial potentiality of 1a.H2O was also tested against some bacterial cell lines, pathogenic to mankind.
Dul, Marie-Claire; Ottenwaelder, Xavier; Pardo, Emilio; Lescouëzec, Rodrigue; Journaux, Yves; Chamoreau, Lise-Marie; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc
2009-06-15
A series of trinuclear copper(II) complexes of general formula A(6)[Cu(3)L(2)] x nH(2)O [L = benzene-1,3,5-tris(oxamate); A = Li(+) (n = 8), 1a; Na(+) (n = 11.5), 1b; and K(+) (n = 8.5), 1c] have been synthesized, and they have been structurally and magnetically characterized. X-ray diffraction on single crystals of 1c shows the presence of three square-planar copper(II)-bis(oxamato) moieties which are connected by a double benzene-1,3,5-triyl skeleton to give a unique metallacyclophane-type triangular cage. The copper basal planes are virtually orthogonal to the two benzene rings, which adopt an almost perfect face-to-face alignment. Complexes 1a-c exhibit a quartet (S = 3/2) ground spin state resulting from the moderate ferromagnetic coupling (J values in the range of +7.3 to +16.5 cm(-1)) between the three Cu(II) ions across the two benzene-1,3,5-tris(amidate) bridges [H = -J(S(1) x S(2) + S(2) x S(3) + S(3) x S(1)) with S(1) = S(2) = S(3) = S(Cu) = 1/2]. Density functional theory calculations on the S = 3/2 Cu(II)(3) ground spin state of 1c support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction, as evidenced by the sign alternation of the spin density in the 1,3,5-substituted benzene spacers.
Yang, Zhen; Jia, Shuying; Zhuo, Ning; Yang, Weiben; Wang, Yuping
2015-12-01
Insufficient research is available on flocculation of combined pollutants of heavy metals and antibiotics, which widely exist in livestock wastewaters. Aiming at solving difficulties in flocculation of this sort of combined pollution, a novel pH- and temperature-responsive biomass-based flocculant, carboxymethyl chitosan-graft-poly(N-isoproyl acrylamide-co-diallyl dimethyl ammonium chloride) (denoted as CND) with two responsive switches [lower critical solution temperature (LCST) and isoelectric point (IEP)], was designed and synthesized. Its flocculation performance at different temperatures and pHs was evaluated using copper(II) and tetracycline (TC) as model contaminants. CND exhibited high efficiency for coremoval of both contaminants, whereas two commercial flocculants (polyaluminum chloride and polyacrylamide) did not. Especially, flocculation performance of the dual-responsive flocculant under conditions of temperature>LCST and IEP(contaminants)
Kuesel, Jana T; Hardeland, Rüdiger; Pfoertner, Henrike; Aeckerle, Nelia
2010-01-01
N-[2-(6-methoxyquinazolin-4-yl)-ethyl] acetamide (MQA) is a compound formed from the melatonin metabolite N(1)-acetyl-5-methoxykynuramine (AMK). We followed MQA production in reaction systems containing various putative reaction partners, in the absence and presence of hydrogen peroxide and/or copper(II). Although MQA may be formally described as a condensation product of either N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) with ammonia, or AMK with formamide, none of these combinations led to substantial quantities of MQA. However, MQA formation was observed in mixtures containing AMK, hydrogen peroxide, hydrogen carbonate and ammonia, or AMK, hydrogen peroxide, copper(II) and potentially carbamoylating agents, such as potassium cyanate or, more efficiently, carbamoyl phosphate. In the presence of hydrogen peroxide, copper(II) and carbamoyl phosphate, MQA was the major product obtained from AMK, but the omission of copper(II) mainly led to another metabolite, 3-acetamidomethyl-6-methoxycinnolinone (AMMC). This was caused by nitric oxide (NO) generated under oxidative conditions from carbamoyl phosphate, as shown by an NO spin trap. MQA formation with carbamoyl phosphate was not due to the possible decomposition product, formamide. The reaction of AMK with carbamoyl phosphate under oxidative conditions, in which inorganic phosphate and water are released and which differs from the typical process of carbamoylation via isocyanate, may be considered as a new physiological route of MQA formation.
Aufderheide, Michaela; Hochrainer, Dieter
2013-01-01
The EU Regulation on Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) demands the implementation of alternative methods for analyzing the hazardous effects of chemicals including particulate formulations. In the field of inhalation toxicology, a variety of in vitro models have been developed for such studies. To simulate the in vivo situation, an adequate exposure device is necessary for the direct exposure of cultivated lung cells at the air-liquid interface (ALI). The CULTEX RFS fulfills these requirements and has been optimized for the exposure of cells to atomized suspensions, gases, and volatile compounds as well as micro- and nanosized particles. This study provides information on the construction and functional aspects of the exposure device. By using the Computational Fluid Dynamics (CFD) analysis, the technical design was optimized to realize a stable, reproducible, and homogeneous deposition of particles. The efficiency of the exposure procedure is demonstrated by exposing A549 cells dose dependently to lactose monohydrate, copper(II) sulfate, copper(II) oxide, and micro- and nanoparticles. All copper compounds induced cytotoxic effects, most pronounced for soluble copper(II) sulfate. Micro- and nanosized copper(II) oxide also showed a dose-dependent decrease in the cell viability, whereby the nanosized particles decreased the metabolic activity of the cells more severely. PMID:23509768
Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Gandi, Devadas A; Thirunalasundari, Thyagarajan; Vignesh, Sivanandham; James, Rathinam A
2017-05-01
Ultraviolet-visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine-copper(II) complexes [Cu(phen)(l-Tyr)BPEI]ClO 4 (where phen =1,10-phenanthroline, l-Tyr = l-tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine-copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye-exclusion, sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays of a polyethyleneimine-copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens. Copyright © 2016 John Wiley & Sons, Ltd.
Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups
NASA Astrophysics Data System (ADS)
Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.
2016-02-01
In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.
Ultrafast photochemistry of polyatomic molecules containing labile halogen atoms in solution
NASA Astrophysics Data System (ADS)
Mereshchenko, Andrey S.
Because breaking and making of chemical bonds lies at the heart of chemistry, this thesis focuses on dynamic studies of labile molecules in solutions using ultrafast transient absorption spectroscopy. Specifically, my interest is two-fold: (i) novel reaction intermediates of polyhalogenated carbon, boron and phosphorus compounds; (ii) photophysics and photochemistry of labile copper(II) halide complexes. Excitation of CH2Br2, CHBr3, BBr 3, and PBr3 into n(Br)sigma*(X-Br) states, where X=C, B, or P, leads to direct photoisomerization with formation of isomers having Br-Br bonds as well as rupture of one of X-Br bonds with the formation of a Br atom and a polyatomic radical fragment, which subsequently recombine to form similar isomer products. Nonpolar solvation stabilizes the isomers, consistent with intrinsic reaction coordinate calculations of the isomer ground state potential energy surfaces at the density functional level of theory, and consequently, the involvement of these highly energetic species on chemically-relevant time scales needs to be taken into account. Monochlorocomplexes in methanol solutions promoted to the ligand-to-metal charge transfer (LMCT) excited state predominantly undergo internal conversion via back electron transfer, giving rise to vibrationally hot ground-state parent complexes. Copper-chloride homolitical bond dissociation yielding the solvated copper(I) and Cl- atom/solvent CT complexes constitutes a minor pathway. Insights into ligand substitution mechanisms were acquired by monitoring the recovery of monochloro complexes at the expense of two unexcited dichloro- and unsubstituted forms of Cu(II) complexes also present in the solution. Detailed description of ultrafast excited-state dynamics of CuCl 42- complexes in acetonitrile upon excitation into all possible Ligand Field (LF) excited states and two most intense LMCT transitions is reported. The LF states were found to be nonreactive with lifetimes remarkably longer than those for copper(II) complexes studied so far, in particular, copper blue proteins. The highest 2A1 and lowest 2E LF states relax directly to the ground electronic state whereas the intermediate 2B1 LF state relaxes stepwise through the 2E state. The LMCT excited states are short-lived undergoing either ionic dissociation (CuCl3- + Cl-) or cascading relaxation through the manifold of vibrationally hot LF states to the ground state.
Double interpenetration in a chiral three-dimensional magnet with a (10,3)-a structure.
Grancha, Thais; Mon, Marta; Lloret, Francesc; Ferrando-Soria, Jesús; Journaux, Yves; Pasán, Jorge; Pardo, Emilio
2015-09-21
A unique chiral three-dimensional magnet with an overall racemic double-interpenetrated (10,3)-a structure of the formula [(S)-(1-PhEt)Me3N]4[Mn4Cu6(Et2pma)12](DMSO)3]·3DMSO·5H2O (1; Et2pma = N-2,6-diethylphenyloxamate) has been synthesized by the self-assembly of a mononuclear copper(II) complex acting as a metalloligand toward Mn(II) ions in the presence of a chiral cationic auxiliary, constituting the first oxamato-based chiral coordination polymer exhibiting long-range magnetic ordering.
Iodometric determination of peroxydiphosphate in the presence of copper(II) or iron(II) as catalyst.
Kapoor, S; Sharma, P D; Gupta, Y K
1975-09-01
Peroxydiphosphate can be determined iodometrically in the presence of a large excess of potassium iodide with copper(II) or iron(II) as catalyst through the operation of the Cu(II)/Cu(I) or Fe(II)/Fe(III) cycle. The method is applicable in HClO(4), H(2)SO(4), HCl and CH(3)COOH acid media in the range 0.1-1.0M studied. Nickel, manganese(II), cobalt(II), silver, chloride and phosphate are without effect.
Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K
2007-04-01
Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.
NASA Astrophysics Data System (ADS)
Demirbaş, Ümit; Akyüz, Duygu; Akçay, Hakkı Türker; Koca, Atıf; Bekircan, Olcay; Kantekin, Halit
2018-03-01
In the present study novel tetra 4-(4-fluorophenyl)-5-(4-methoxyphenyl)-4H-1,2,4-triazole-3-thio substituted non-peripherally metal free (4), zinc(II) (5), lead (II) (6) and copper(II) (7) phthalocyanines were synthesized. The obtained novel compounds were characterized by a combination of FT-IR, 1H NMR, UV-Vis and MALDI-TOF techniques. The redox properties of the complexes have been investigated via cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemistry. The compounds displayed ring-based, reversible and/or quasi-reversible reduction and oxidation processes and aggregation of the complexes influenced the redox character of the processes. The color changes during the redox processes of metallo phthalocyanine were recorded by in-situ spectroelectrochemical measurements. In situ UV-vis spectroelectrochemical measurements, which was associated with color change of the complexes, showed their applicability in the fields of the electrochemical technologies.
Beil, Andreas; Müller, Georgina; Käser, Debora; Hattendorf, Bodo; Li, Zhongshu; Krumeich, Frank; Rosenthal, Amos; Rana, Vijay Kumar; Schönberg, Hartmut; Benkő, Zoltán; Grützmacher, Hansjörg
2018-05-16
Bismesitoylphosphinic acid, (HO)PO(COMes) 2 (BAPO-OH), is an efficient photoinitiator for free-radical polymerizations of olefins in aqueous phase. Described here are the structures of various copper(II) and copper(I) complexes with BAPO-OH as the ligand. The complex Cu II (BAPO-O) 2 (H 2 O) 2 is photoactive, and under irradiation with UV light in aqueous phase, it serves as a source of metallic copper in high purity and yield (>80 %). Simultaneously, the radical polymerization of acrylates can be initiated and allows the preparation of nanoparticle/polymer nanocomposites in which the metallic Cu nanoparticles are protected against oxidation. The determination of the stoichiometry of the photoreductions suggests an almost quantitative conversion from Cu II into Cu 0 with half an equivalent of BAPO-OH, which serves as a four-electron photoreductant. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Petrova, Yu. S.; Pestov, A. V.; Alifkhanova, L. M. k.; Neudachina, L. K.
2017-04-01
Optimum conditions of the dynamic concentration of copper(II) and silver(I) ions simultaneously present in a solution with N-(2-sulfoethyl)chitosan with a degree of modification equal to 0.5 and different degrees of crosslinking by glutaraldehyde are determined. The values of coefficients of selectivity K Ag/Cu are determined under dynamic conditions. It is shown that the selectivity of the sorption of silver(I) increases (compared to copper(II)) as the degree of crosslinking of sorbents based on N-(2-sulfoethyl)chitosan is raised. Mathematical treatment of the obtained dynamic curves is performed according to the Thomas, Adams-Bohart, and Yoon and Nelson models. As a result, the values of dynamic capacity of sorbents, the rate constant of the reaction, and the release time of 50% of the sorbate are determined. The quantitative desorption of copper and silver from the surface of sorbents is achieved by using 1 mol/dm3 solution of nitric acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksu, Z.; Acikel, U.; Kutsal, T.
1999-02-01
Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studiesmore » the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingtian; Luo, Deliang; Yang, Chengju
2013-07-15
Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a bandmore » gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup −1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper(II) imidazolate frameworks were first applied in the photo-reduction of CO{sub 2}. • The photocatalytic activities of the frameworks depend on their band gap and phase structures. • The photocatalytic activity of orthorhombic frameworks is 3 times that of monoclinic frameworks. • The degradation kinetics of MB over three photocatalysts followed the first-order rate equation. • The largest yield for reduction of CO{sub 2} into methanol on green framworks was 1712.7 μmol/g over 5 h.« less
Lance, E A; Rhodes, C W; Nakon, R
1983-09-01
Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.
Crystal structures and vibrational spectroscopy of copper(I) thiourea complexes.
Bowmaker, Graham A; Hanna, John V; Pakawatchai, Chaveng; Skelton, Brian W; Thanyasirikul, Yupa; White, Allan H
2009-01-05
Several synthetic strategies using copper(I) starting materials or copper(II) compounds and an in situ sulfite reductant have been used to systematically explore the chemistry of copper(I) complexes with thiourea and substituted thiourea ligands. This has resulted in the discovery of several new complexes and methods for the bulk synthesis of some previously reported complexes that had been prepared adventitiously in small quantity. The new complexes are (tu = thiourea, dmtu = N,N'-dimethylthiourea, etu = ethylenethiourea): [I(4)Cu(4)(tu)(6)].H(2)O, [Cu(4)(tu)(10)](NO(3)).tu.3H(2)O, [BrCu(dmtu)(3)], [ICu(dmtu)(3)](2), [BrCu(etu)(2)](2), [ICu(etu)(2)], [ICu(etu)(2)](3). [I(4)Cu(4)(tu)(6)].H(2)O has an adamantanoid structure, with four terminal iodide ligands and six doubly bridging tu ligands. In contrast to this, [Cu(4)(tu)(10)](NO(3)).tu.3H(2)O contains a tetranuclear cluster in which four of the tu ligands are terminal and the other six are doubly bridging. [BrCu(dmtu)(3)] is a mononuclear complex with tetrahedral coordination of copper by one bromide and three dmtu ligands, whereas [Cu(dmtu)(3)](2)I(2) has a centrosymmetric dimeric cation with two uncoordinated iodides, four terminal dmtu and two doubly bridging dmtu ligands, [(dmtu)(2)Cu(mu-S-dmtu)(2)Cu(dmtu)(2)]I(2). A reversal of this monomer to dimer trend from bromide to iodide is seen for the etu counterparts: [BrCu(etu)(2)](2) is a centrosymmetric dimer with two doubly bridging etu ligands, [(etu)BrCu(mu-S-etu)(2)CuBr(etu)], whereas [ICu(etu)(2)] is a trigonal planar monomer, although the novel [I(3)Cu(3)(etu)(6)] is also defined. Infrared and Raman spectra of the synthesized complexes were recorded and the metal-ligand vibrational frequencies have been assigned in many cases. The results confirm previously observed correlations between the vibrational frequencies and the corresponding bond lengths for complexes of the unsubstituted tu ligand. A mechanochemical/infrared method was used to synthesize [I(3)Cu(3)(etu)(6)] from CuI and etu, and to demonstrate the polymorphic transition from [ICu(etu)(2)] to [I(3)Cu(3)(etu)(6)].
Patel, R N; Singh, Nripendra; Shukla, K K; Gundla, V L N
2005-06-01
X-band E.S.R., magnetic and electronic spectra of some imidazolate-bridged homometallic complexes [(en)2Cu-R-Im-Cu(en)2](ClO4)3 where en, ethylenediamine; R-ImH, R = H imidazole (ImH); if R = CH3, 2-methylimidazole (M-ImH) and if R = C2H5, 2-ethylimidazole (E-ImH), and mononuclear complexes [(en)Cu-dien](ClO4)2 and [(en)Cu-PMDT](ClO4)2 where dien, diethylenetriamine; PMDT, pentamethyldiethylenetriamine have been described. Superoxide dismutase (SOD) activity has also been measured and compared with earlier reported complexes. In frozen solution at 77 K, the spectra show axial symmetry with a d(x2-y2) ground state. Difference in lambda(max) between mononuclear and binuclear complexes was found to be approximately 65-75 nm. Magnetic susceptibility and E.S.R. spectral measurements for all these binuclear complexes revealed that the copper(II) ions are involved in antiferromagnetic exchange interactions propagated by the imidazolate bridge.
NASA Astrophysics Data System (ADS)
Fukaya, Keisuke; Srifa, Atthapon; Isikawa, Eri; Naruke, Haruo
2010-08-01
The self-assembly reaction of tungstate and copper(II) in the presence of aniline (ANI) and phosphoric acid led to the formation of an anilinium (ANIH +) salt of mono-substituted Keggin-type polyoxotungstophosphate (ANIH) 5[PCu(H 2O)W 11O 39](ANI)·8H 2O ( 1), while the reaction of heptamolybdate in the coexistence of copper(II), phosphoric acid and ANI yielded an ANIH + salt of Strandberg-type pentamolybdodiphosphate, (ANIH) 2[(PO 4) 2Mo 5O 15{Cu(ANI) 2(H 2O)} 2](ANI)·2H 2O ( 2). These compounds were characterized by elemental analysis, infrared spectroscopy and X-ray single-crystal analysis. The compound 1, crystallizing in trigonal, P3¯,a = 13.883(4), c = 10.187(3) Å, Z = 1, consists of copper mono-substituted Keggin-typed [PCu(H 2O)W 11O 39] 5- anion surrounded by six ANI molecules, of which five are protonated (ANIH +). The compound 2, crystallizing in triclinic, P1¯,a = 13.98(2), b = 14.73(1), c = 16.24(1) Å, α = 111.27(3), β = 97.42(3), γ = 99.54(4)°, Z = 2, consists of Strandberg-type pentamolybdodiphospate [(PO 4) 2Mo 5O 15] 6- anions interconnected by two Cu(ANI) 2(H 2O) linkers to form a 1D-chain structure. A potentiostatic electrolysis of 1 in aqueous solution gave rise to electropolymerization of the ANIH + cations (and ANI) and deposition with the [PCu(H 2O)W 11O 39] 5- anion on an ITO electrode, forming a nano-structured polyaniline/[PCu(H 2O)W 11O 39] 5- hybrid thin film.
Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2).
Majano, Gerardo; Pérez-Ramírez, Javier
2013-02-20
Copper(II) hydroxide is converted directly to HKUST-1 (Cu(3) (btc)(2) ) after only 5 min at room-temperature in aqueous ethanolic solution without the need of additional solvents. Scale up to the kilogram scale does not influence porous properties yielding pure-phase product with a remarkable total surface area exceeding 1700 m(2) g(-1) featuring aggregates of nanometer-sized crystals (<600 nm) and extremely high space-time yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pardo, Emilio; Ferrando-Soria, Jesús; Dul, Marie-Claire; Lescouëzec, Rodrigue; Journaux, Yves; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc; Cañadillas-Delgado, Laura; Pasán, Jorge; Ruiz-Pérez, Catalina
2010-11-15
Double-stranded copper(II) string complexes of varying nuclearity, from di- to tetranuclear species, have been prepared by the Cu(II)-mediated self-assembly of a novel family of linear homo- and heteropolytopic ligands that contain two outer oxamato and either zero (1 b), one (2 b), or two (3 b) inner oxamidato donor groups separated by rigid 2-methyl-1,3-phenylene spacers. The X-ray crystal structures of these Cu(II) (n) complexes (n=2 (1 d), 3 (2 d), and 4 (3 d)) show a linear array of metal atoms with an overall twisted coordination geometry for both the outer CuN(2)O(2) and inner CuN(4) chromophores. Two such nonplanar all-syn bridging ligands 1 b-3 b in an anti arrangement clamp around the metal centers with alternating M and P helical chiralities to afford an overall double meso-helicate-type architecture for 1 d-3 d. Variable-temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 d-3 d show the occurrence of S=nS(Cu) (n=2-4) high-spin ground states that arise from the moderate ferromagnetic coupling between the unpaired electrons of the linearly disposed Cu(II) ions (S(Cu)=1/2) through the two anti m-phenylenediamidate-type bridges (J values in the range of +15.0 to 16.8 cm(-1)). Density functional theory (DFT) calculations for 1 d-3 d evidence a sign alternation of the spin density in the meta-substituted phenylene spacers in agreement with a spin polarization exchange mechanism along the linear metal array with overall intermetallic distances between terminal metal centers in the range of 0.7-2.2 nm. Cyclic voltammetry (CV) and rotating-disk electrode (RDE) electrochemical measurements for 1 d-3 d show several reversible or quasireversible one- or two-electron steps that involve the consecutive metal-centered oxidation of the inner and outer Cu(II) ions (S(Cu)=1/2) to diamagnetic Cu(III) ones (S(Cu)=0) at relatively low formal potentials (E values in the range of +0.14 to 0.25 V and of +0.43 to 0.67 V vs. SCE, respectively). Further developments may be envisaged for this family of oligo-m-phenyleneoxalamide copper(II) double mesocates as electroswitchable ferromagnetic 'metal-organic wires' (MOWs) on the basis of their unique ferromagnetic and multicenter redox behaviors.
NASA Astrophysics Data System (ADS)
Liu, Dong-Sheng; Chen, Wen-Tong; Ye, Guang-Ming; Zhang, Jing; Sui, Yan
2017-12-01
A new multifunctional mixed-valence copper(I/II) coordination polymer, {[CuCN][Cu(isonic)2]}n(1) (Hisonic = isonicotinic acid), was synthesized by treating isonicotinic acid and 5-amino-tetrazolate (Hatz = 5-amino-tetrazolate) with copper(II) salts under hydrothermal conditions, and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction, respectively. The X-ray diffraction analysis reveals that compound exhibit noncentrosymmetric polar packing arrangement. It is three-dimensional (3D) framework with (3,5)-connected 'seh-3' topological network constructed from metal organic framework {[Cu(isonic)2]}n and the inorganic linear chain{Cu(CN)}n subunits. A remarkable feature of 1 is the rhombic open channels that are occupied by a linear chain of {Cu(CN)}n. Impressively compound 1 displays not only a second harmonic generation (SHG) response, but also a ferroelectric behavior and magnetic properties.
Concise and diversity-oriented synthesis of ligand arm-functionalized azoamides.
Urankar, Damijana; Kosmrlj, Janez
2008-01-01
Azoamides, previously established as bioactive intracellular GSH-depleting agents, were decorated with a terminal alkyne moiety to 4 and then were transformed, by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), into different ligand-arm functionalized azoamides 6. Azides 5 having ligand-arms amenable for binding to platinum(II) were selected for this study. Because, for the fragile azoamides 4, the typically employed reaction conditions for CuAAC failed, several alternative solvents and copper catalysts were tested. Excellent results were obtained with copper(II) sulfate pentahydrate/metallic copper and especially with heterogeneous catalysts, such as copper-in-charcoal, cupric oxide, and cuprous oxide. The heterogeneous catalysts were employed to obtain the desired products in almost quantitative yields by a simple three-step "stir-filter-evaporate" protocol with no or negligible contamination with copper impurities. This is of particular importance because compounds 6 have been designed for coordination.
Park, Seong-Hun; Lee, Cheol Eui
2005-01-27
A series of hybrid inorganic-organic copper(II) hydroxy n-alkylsulfonate with a triangular lattice, Cu(2)(OH)(3)(C(n)H(2)(n)(+1)SO(3)) (n = 6, 8, 10), are prepared by anion exchange, starting from copper hydroxy nitrate Cu(2)(OH)(3)NO(3). These compounds show a layered structure as determined by X-ray diffraction, with interlayer distances of 14.3-34.8 A in alternation with interdigitated bilayer packing. Magnetic properties have been investigated by means of dc and ac measurements. All the compounds show similar metamagnet behaviors, with a Neel temperature of about 11 K. A subtle difference in the ac magnetic susceptibility among the compounds is understood by the existence of hydrogen bonding between the sulfonate headgroup and the hydroxide anion. A detailed molecular structure of the alkyl chains incorporated to the inorganic copper hydroxide layer is also discussed from the FTIR data.
NASA Astrophysics Data System (ADS)
Rathi, Parveen; Singh, D. P.
2015-08-01
Bioactive cobalt(II), nickel(II), copper(II) and zinc(II) complexes of octaazamacrocycle, 19, 20-dioxa-2,3,5,6,11,12,14,15-octaazatricyclo[14.2.1.1]icosa-1,6,8,10,15,17-hexaene-4,13-dithione, derived from furan-2,5-dione and thiocarbonohydrazide in the mole ratio 2:2:1 have been engineered via template methodology. The synthesized metal complexes have also been structurally characterized in the light of various physicochemical techniques and evaluated for antimicrobial and antioxidant activities. All these studies point toward the formation of divalent macrocyclic complexes possessing distorted octahedral geometry and having significant antimicrobial and antioxidant properties as compared to the starting precursors. Virtual screening of a representative complex was done through docking to the binding site of COX-2 to evaluate the anti-inflammatory activity of the series. Non-electrolytic nature of the complexes has been predicted on the basis of low value of molar conductivity in DMSO. All the complexes were having notable activities against pathogenic microbes as compared to precursors-thiocarbonohydrazide and furan-2,5-dione however, the complex 5, [Ni (C10H8N8O2S2) (NO3)2], shows the best antimicrobial activity.
[1,1′-Diphenyl-3,3′-(propane-1,3-diyldinitrilo)dibut-1-enolato]copper(II)
Salehi, Mehdi; Meghdadi, Soraia; Amirnasr, Mehdi; Mereiter, Kurt
2009-01-01
The title compound, [Cu(C23H24N2O2)] or [Cu{(BA)2pn}], where (BA)2pn is 1,1′-diphenyl-3,3′-(propane-1,3-diyldinitrilo)dibut-1-enolate, is a mononuclear copper(II) complex, located on a twofold axis. The four-coordinate CuII atom is in a tetrahedrally distorted square plane defined by the N and O atoms of the Schiff base ligand. In the tetradentate ligand, the two chelate rings are twisted relative to each other, making a dihedral angle of 36.57 (3)°. PMID:21581795
Matsumoto, Yasumasa; Yamada, Ken-ichi; Tomioka, Kiyoshi
2008-06-20
The asymmetric construction of quaternary carbon centers by conjugate addition of Grignard reagents to 3-methyl- and 3-ethylcyclohexenones was realized in a maximum enantioselectivity of 80% by using a C 2 symmetric chiral N-heterocyclic carbene (NHC)-copper catalyst, generated from (4 S,5 S)-1,3-bis(2-methoxyphenyl)-4,5-diphenyl-4,5-dihydro-1 H-imidazol-3-ium tetrafluoroborate and copper(II) triflate. The stereostructures of the NHC-Au complexes were analyzed by X-ray crystallography, which rationalized the good stereocontrolling ability of N-aryl NHCs.
Castro-Ramírez, Rodrigo; Ortiz-Pastrana, Naytzé; Caballero, Ana B; Zimmerman, Matthew T; Stadelman, Bradley S; Gaertner, Andrea A E; Brumaghim, Julia L; Korrodi-Gregório, Luís; Pérez-Tomás, Ricardo; Gamez, Patrick; Barba-Behrens, Norah
2018-05-23
Novel tinidazole (tnz) coordination compounds of different geometries were synthesised, whose respective solid-state packing appears to be driven by inter- and intramolecular lone pairπ interactions. The copper(ii) compounds exhibit interesting redox properties originating from both the tnz and the metal ions. These complexes interact with DNA through two distinct ways, namely via electrostatic interactions or/and groove binding, and they can mediate the generation of ROS that damage the biomolecule. Cytotoxic studies revealed an interesting activity of the dinuclear compound [Cu(tnz)2(μ-Cl)Cl]2 7, which is further more efficient towards cancer cells, compared with normal cells.
Copper-mercury film electrode for cathodic stripping voltammetric determination of Se(IV).
Sladkov, Vladimir; David, François; Fourest, Blandine
2003-01-01
The copper-mercury film electrode has been suggested for the determination of Se(IV) in a wide range of concentration from 1x10(-9) to 1x10(-6) mol L(-1)by square-wave cathodic stripping voltammetry. Insufficient reproducibility and sensitivity of the mercury film electrode have been overcome by using copper(II) ions during the plating procedure. Copper(II) has been found to be reduced and form a reproducible copper-mercury film on a glassy carbon electrode surface. The plating potential and time, the concentration of copper(II) and the concentration of the supporting electrolyte have been optimised. Microscopy has been used for a study of the morphology of the copper-mercury film. It has been found that it is the same as for the mercury one. The preconcentration step consists in electrodeposition of copper selenide on the copper-mercury film. The relative standard deviation is 4.3% for 1x10(-6) mol L(-1) of Se(IV). The limit of detection is 8x10(-10) mol L(-1) for 5 min of accumulation.
Rhaman, Md Mhahabubur; Powell, Douglas R; Hossain, Md Alamgir
2017-11-30
Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate-covalent interactions with phosphates and π-π stackings with nucleobases and TMP through coordinate-covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay.
Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.
van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan
2002-03-01
The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.
Castro, Isabel; Calatayud, M Luisa; Barros, Wdeson P; Carranza, José; Julve, Miguel; Lloret, Francesc; Marino, Nadia; De Munno, Giovanni
2014-06-02
A novel series of heteroleptic copper(II) compounds of formulas {[Cu2(μ-H2O)(μ-pz)2(μ-bpm)(ClO4)(H2O)]ClO4·2H2O}n (1), {[Cu2(μ-H2O)(μ-3-Mepz)2(μ-bpm)](ClO4)2·2H2O}n (2), and {[Cu2(μ-OH)(μ-3,5-Me2pz)(μ-bpm)(H-3,5-Me2pz)2](ClO4)2}n (3) [bpm = 2,2'-bipyrimidine, Hpz = pyrazole, H-3-Mepz = 3-methylpyrazole, and H-3,5-Me2pz = 3,5-dimethylpyrazole] have been synthesized and structurally characterized by X-ray diffraction methods. The crystal structures of 1 and 2 consist of copper(II) chains with regular alternating bpm and bis(pyrazolate)(aqua) bridges, whereas that of 3 is made up of copper(II) chains with regular alternating bpm and (pyrazolate)(hydroxo) bridges. The copper centers are six- (1) or five-coordinate (2) in axially elongated, octahedral (1) or square-pyramidal (2) environments in 1 and 2, whereas they are five-coordinate in distorted trigonal-bipyramidal surroundings in 3. The values of the copper-copper separations across the bpm/pyrazolate bridges are 5.5442(7)/3.3131(6) (1), 5.538(1)/3.235(1) (2), and 5.7673(7)/3.3220(6) Å (3). The magnetic properties of 1-3 have been investigated in the temperature range of 25-300 K. The analysis of their magnetic susceptibility data through the isotropic Hamiltonian for an alternating antiferromagnetic copper(II) chain model [H = -J∑i=1-n/2 (S2i·S2i-1 + αS2i·S2i+1), with α = J'/J and Si = SCu = 1/2] reveals the presence of a strong to moderate antiferromagnetic coupling through the bis(pyrazolate)(aqua) [-J = 217 (1) and 215 cm(-1) (2)] and (pyrazolate)(hydroxo) bridges [-J = 153 cm(-1) (3)], respectively, whereas a strong to weak antiferromagnetic coupling occurs through the bis-bidentate bpm [-J' = 211 (1), 213 (2), and 44 cm(-1) (3)]. A simple orbital analysis of the magnetic exchange interaction within the bpm- and pyrazolate-bridged dicopper(II) fragments of 1-3 visualizes the σ-type pathways involving the (dx(2)-y(2)) (1 and 2) or d(z(2)) (3) magnetic orbitals on each metal ion, which account for the variation of the magnetic properties in these three novel examples of one-dimensional copper(II) compounds with regular alternating intrachain antiferromagnetic interactions.
Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes
NASA Astrophysics Data System (ADS)
El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Shoair, A. F.; Hussein, M. A.; El-Boz, R. A.
2017-08-01
New complexes of copper(II) with azo compounds of 5-amino-2-(aryl diazenyl)phenol (HLn) are prepared and investigated by elemental analyses, molar conductance, IR, 1H NMR, UV-Visible, mass, ESR spectra, magnetic susceptibility measurements and thermal analyses. The complexes have a square planar structure and general formula [Cu(Ln)(OAc)]H2O. Study the catalytic activities of Cu(II) complexes toward oxidation of benzyl alcohol derivatives to carbonyl compounds were tested using H2O2 as the oxidant. The intrinsic binding constants (Kb) of the ligands (HLn) and Cu(II) complexes (1-4) with CT-DNA are determined. The formed compounds have been tested for biological activity of antioxidants, antibacterial against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and yeast Candida albicans. Antibiotic (Ampicillin) and antifungal against (Colitrimazole) and cytotoxic compounds HL1, HL2, HL3 and complex (1) showed moderate to good activity against S. aureus, E. coli and Candida albicans, and also to be moderate on antioxidants and toxic substances. Molecular docking is used to predict the binding between the ligands with the receptor of breast cancer (2a91).
Moons, Hans; Łapok, Łukasz; Loas, Andrei; Van Doorslaer, Sabine; Gorun, Sergiu M
2010-10-04
The synthesis, crystal structure, and electronic properties of perfluoro-isopropyl-substituted perfluorophthalocyanine bearing a copper atom in the central cavity (F(64)PcCu) are reported. While most halogenated phthalocyanines do not exhibit long-term order sufficient to form large single crystals, this is not the case for F(64)PcCu. Its crystal structure was determined by X-ray analysis and linked to the electronic properties determined by electron paramagnetic resonance (EPR). The findings are corroborated by density functional theory (DFT) computations, which agree well with the experiment. X-band continuous-wave EPR spectra of undiluted F(64)PcCu powder, indicate the existence of isolated metal centers. The electron-withdrawing effect of the perfluoroalkyl (R(f)) groups significantly enhances the complexes solubility in organic solvents like alcohols, including via their axial coordination. This coordination is confirmed by X-band (1)H HYSCORE experiments and is also seen in the solid state via the X-ray structure. Detailed X-band CW-EPR, X-band Davies and Mims ENDOR, and W-band electron spin-echo-detected EPR studies of F(64)PcCu in ethanol allow the determination of the principal g values and the hyperfine couplings of the metal, nitrogen, and fluorine nuclei. Comparison of the g and metal hyperfine values of F(64)PcCu and other PcCu complexes in different matrices reveals a dominant effect of the matrix on these EPR parameters, while variations in the ring substituents have only a secondary effect. The relatively strong axial coordination occurs despite the diminished covalency of the C-N bonds and potentially weakening Jahn-Teller effects. Surprisingly, natural abundance (13)C HYSCORE signals could be observed for a frozen ethanol solution of F(64)PcCu. The (13)C nuclei contributing to the HYSCORE spectra could be identified as the pyrrole carbons by means of DFT. Finally, (19)F ENDOR and easily observable paramagnetic NMR were found to relate well to the DFT computations, revealing negligible isotropic hyperfine (Fermi contact) contributions. The single-site isolation in solution and solid state and the relatively strong coordination of axial ligands, both attributed to the introduction of R(f) groups, are features important for materials and catalyst design.
Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora
Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less
Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase
O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora
2016-12-22
Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less
Indirect spectrophotometric determination of trace cyanide with cationic porphyrins.
Ishii, H; Kohata, K
1991-05-01
Three highly sensitive methods for the determination of cyanide have been developed, based on the fact that the complexation of silver ions with three cationic porphyrins, 5,10,15,20-tetrakis-(1-methyl-2-pyridinio)porphine [T(2-MPy)P], 5,10,15,20-tetrakis(1-methyl-3-pyridinio)porphine [T(3-MPy)P] and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine [T(4-MPy)P], in alkaline media is inhibited by cyanide and the decrease in absorbance of the silver(II) complex is proportional to the cyanide concentration. Sensitivities of the procedures developed are 0.133, 0.126 and 0.234 ng/cm(2), respectively for an absorbance of 0.001. Cadmium(II), copper(II), mercury(II), zinc(II), iodide and sulfide interfere with the cyanide determination. One of the proposed methods was applied to the determination of cyanide in waste-water samples, with satisfactory results.
2017-01-01
Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate–covalent interactions with phosphates and π–π stackings with nucleobases and TMP through coordinate–covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay. PMID:29214233
Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide
2016-05-01
In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance. Copyright © 2016 Elsevier B.V. All rights reserved.
Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea
NASA Technical Reports Server (NTRS)
Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John
2003-01-01
A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.
Metal isotope and density functional study of the tetracarboxylatodicopper(II) core vibrations
NASA Astrophysics Data System (ADS)
Drożdżewski, Piotr; Brożyna, Anna
2005-11-01
Vibrational spectra of tetrakis(acetato)diaquadicopper(II) complex have been deeply examined in order to provide a detailed description of dynamics of [Cu 2O 8C 4] core being a typical structural unit of most copper(II) carboxylates. Low frequency bands related to significant motions of metal atoms were detected by metal isotope substitution. Observed spectra and isotope shifts were reproduced in DFT calculations. For clear presentation of computed normal vibrations, a D 4h symmetry approximation was successfully applied. Basing on observed isotope shifts and calculation results, all skeletal vibrations have been analyzed including normal mode with the largest Cu ⋯Cu stretching amplitude assigned to Raman band at 178 cm -1.
Rivilla, Iván; de Cózar, Abel; Schäfer, Thomas; Hernandez, Frank J; Bittner, Alexander M; Eleta-Lopez, Aitziber; Aboudzadeh, Ali; Santos, José I; Miranda, José I; Cossío, Fernando P
2017-10-01
A novel catalytic system based on covalently modified DNA is described. This catalyst promotes 1,3-dipolar reactions between azomethine ylides and maleimides. The catalytic system is based on the distortion of the double helix of DNA by means of the formation of Pt(ii) adducts with guanine units. This distortion, similar to that generated in the interaction of DNA with platinum chemotherapeutic drugs, generates active sites that can accommodate N -metallated azomethine ylides. The proposed reaction mechanism, based on QM(DFT)/MM calculations, is compatible with thermally allowed concerted (but asynchronous) [π4s + π2s] mechanisms leading to the exclusive formation of racemic endo -cycloadducts.
NASA Astrophysics Data System (ADS)
Baran, Talat; Menteş, Ayfer
2016-07-01
In this study, a new eco-friendly Schiff base based on O-carboxymethyl chitosan ([OCMCS-7a]) and its copper(II) and palladium(II) complexes were synthesized. Characterizations of [OCMCS-7a] and its metal complexes were conducted using FTIR, 1H NMR, 13C NMR, TG/DTG, XRD, SEM-EDAX, ICP, UV-VIS, GC-MS, elemental analysis, magnetic moment and molar conductivity measurements. The degree of substitution (DS) of [OCMCS-7a] was determined by elemental analysis to be 0.44. It was shown by the solubility test that [OCMCS-7a] was completely soluble in water. Surface images of chitosan, [OCMCS-7a] and its Cu(II) and Pd(II) complexes were investigated using the SEM-EDAX technique. Their thermal behaviors and crystallinities of the synthesized complexes were determined by TG/DTG and X-ray powder diffraction techniques, respectively. The metal contents of the obtained complexes were determined using an ICP-OES instrument. From the analyses, it was noted that the thermal stabilities and crystallinities of [OCMCS-7a] and its complexes decreased compared to chitosan. As a consequence of surface screening, it was also noted that the surface structure of the chitosan was smoother than that of the obtained compounds.
Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding
NASA Astrophysics Data System (ADS)
Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep
2014-10-01
Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.
Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide
NASA Astrophysics Data System (ADS)
Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.
2016-06-01
Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.
NASA Astrophysics Data System (ADS)
Wang, Tong; Su, Wen; Fu, Yingyi; Hu, Jingbo
2016-12-01
In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments' characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm-2 mM-1 with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.
Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo
2015-03-01
Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.
Yan, Mingquan; Dryer, Deborah; Korshin, Gregory V; Benedetti, Marc F
2013-02-01
This study examined the binding of copper(II) by Suwannee River fulvic acid (SRFA) using the method of differential absorbance that was used at environmentally-relevant concentrations of copper and SRFA. The pH- and metal-differential spectra were processed via numeric deconvolution to establish commonalities seen in the changes of absorbance caused by deprotonation of SRFA and its interactions with copper(II) ions. Six Gaussian bands were determined to be present in both the pH- and Cu-differential spectra. Their maxima were located, in the order of increasing wavelengths at 208 nm, 242 nm, 276 nm, 314 nm, 378 nm and 551 nm. The bands with these maxima were denoted as A0, A1, A2, A3, A4 and A5, respectively. Properties of these bands were compared with those existing in the spectra of model compounds such as sulfosalicylic acid (SSA), tannic acid (TA), and polystyrenesulfonic acid-co-maleic acid (PSMA). While none of the features observed in differential spectra of the model compound were identical to those present in the case of SRFA, Gaussian bands A1, A3 and possibly A2 were concluded to be largely attributable to a combination of responses of salicylic- and polyhydroxyphenolic groups. In contrast, bands A4 and A5 were detected in the differential spectra of SRFA only. Their nature remains to be elucidated. To examine correlations between the amount of copper(II) bound by SRFA and changes of its absorbance, differential absorbances measured at indicative wavelengths 250 nm and 400 nm were compared with the total amount of SRFA-bound copper estimated based on Visual MINTEQ calculations. This examination showed that the differential absorbances of SRFA in a wide range of pH values and copper concentrations were strongly correlated with the concentration of SRFA-bound copper. The approach presented in this study can be used to generate in situ information concerning the nature of functional groups in humic substances engaged in interactions with metals ions. This information can be useful for further elaboration and development of detailed theoretic models that describe the complexation of metals in the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kumar, Ilango Aswin; Viswanathan, Natrayasamy
2018-03-01
A tetra-amine copper(II) chitosan bead system (TAC@CS composite beads) was developed by grafting tetra-amine copper(II) (TAC) with chitosan (CS) and utilized for phosphate removal. The prepared TAC@CS composite beads possess enhanced phosphate sorption capacity (SC) of 41.42 ± 0.071 mg/g than copper grafted chitosan (Cu@CS) composite, TAC and chitosan which were found to be 37.01 ± 0.803, 33.20 ± 0.650 and 7.24 ± 0.059 mg/g respectively. In batch mode, various adsorption influencing parameters like contact time, initial phosphate concentration, solution pH, co-anions and temperature were optimized for maximum phosphate sorption. The prepared adsorbents were characterized by FTIR, XRD, UV-Visible, SEM and EDAX analysis. The adsorption isotherms and thermodynamic parameters of the adsorbent were studied. The feasible phosphate uptake mechanism of TAC@CS biocomposite beads was reported. The reusability studies of TAC@CS composite beads were carried out using NaOH as elutant. The suitability of TAC@CS composite beads at field conditions was tested with phosphate contaminated field water samples collected from nearby areas of Dindigul district. Copyright © 2017 Elsevier Ltd. All rights reserved.
Celar, Franci A; Kos, Katarina
2016-11-01
The in vitro fungicidal effects of six commonly used fungicides, namely fluazinam, propineb, copper(II) hydroxide, metiram, chlorothalonil and mancozeb, and herbicides, namely isoxaflutole, fluazifop-P-butyl, flurochloridone, foramsulfuron, pendimethalin and prosulfocarb, on mycelial growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana (ATCC 74040) were investigated. Mycelial growth rates and sporulation at 15 and 25 °C were evaluated on PDA plates containing 100, 75, 50, 25, 12.5, 6.25 and 0% of the recommended application rate of each pesticide. The tested pesticides were classified in four scoring categories based on reduction in mycelial growth and sporulation. All pesticides, herbicides and fungicides tested had fungistatic effects of varying intensity, depending on their rate in the medium, on B. bassiana. The most inhibitory herbicides were flurochloridone and prosulfocarb, and fluazinam and copper(II) hydroxide were most inhibitory among the fungicides, while the least inhibitory were isoxaflutole and chlorothalonil. Sporulation and conidial germination of B. bassiana were significantly inhibited by all tested pesticides compared with the control treatment. Flurochloridone, foramsulfuron, prosulfocarb and copper(II) hydroxide inhibited sporulation entirely at 100% rate (99-100% inhibition), and the lowest inhibition was shown by fluazifop-P-butyl (22%) and metiram (33%). At 100% dosage, all herbicides in the test showed a high inhibitory effect on conidial germination. Conidial germination inhibition ranged from 82% with isoxaflutole to 100% with fluorochloridone, pendimethalin and prosulfocarb. At 200% dosage, inhibition rates even increased (96-100%). All 12 pesticides tested had a fungistatic effect on B. bassiana of varying intensity, depending on the pesticide and its concentration. B. bassiana is highly affected by some herbicides and fungicides even at very low rates. Flurochloridone, foramsulfuron, prosulfocarb and copper(II) hydroxide stopped sporulation. Of all tested pesticides, isoxaflutole, fluazifop-P-butyl and chlorothalonil showed the least adverse effects and therefore probably could be compatible with B. bassiana in the field. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Gramajo Feijoo, M.; Fernández-Liencres, M. P.; Gil, D. M.; Gómez, M. I.; Ben Altabef, A.; Navarro, A.; Tuttolomondo, M. E.
2018-03-01
Density Functional Theory (DFT) calculations were performed with the aim of investigating the vibrational, electronic and structural properties of [Cu(uracilato-N1)2 (NH3)2]ṡ2H2O complex. The IR and Raman spectra were recorded leading to a complete analysis of the normal modes of vibration of the metal complex. A careful study of the intermolecular interactions observed in solid state was performed by using the Hirshfeld surface analysis and their associated 2D fingerprint plots. The results indicated that the crystal packing is stabilized by Nsbnd H⋯O hydrogen bonds and π-stacking interactions. In addition, Csbnd H···π interactions were also observed. Time-dependent density functional theory (TD-DFT) calculations revealed that all the low-lying electronic states correspond to a mixture of intraligand charge transfer (ILCT) and ligand-to-metal charge transfer (LMCT) transitions. Finally, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) analysis were performed to shed light on the intermolecular interactions in the coordination sphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Pingping; Li, Jie; Bu, Huaiyu, E-mail: 7213792@qq.com
2014-07-01
Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O–more » are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.« less
Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F
1999-06-15
Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.
NASA Astrophysics Data System (ADS)
Rose, Francis; Hodak, Miroslav; Bernholc, Jerry
2007-03-01
The Non-Amyloid-Beta Component Precursor (NACP) is a natively unfolded synaptic protein that is implicated in Alzheimers and Parkinsons diseases. Its aggregation into fibrillar structures is accelerated by the binding of copper(II). Experimental studies suggest that the dominant copper binding site is located at the histidine residue in NACP. Based on this evidence we assembled a model fragment of the binding site and used DFT to analyze the conformational details of the most probable binding motifs. We investigated the overall conformational effects with classical MD by constraining the copper binding site to the most energetically favorable geometry obtained from the DFT calculations. These results are compared and contrasted with those of the unbound NACP.
Selective time-resolved binding of copper(II) by pyropheophorbide-a methyl ester.
Ghosh, Indrajit; Saleh, Na'il; Nau, Werner M
2010-05-01
The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water-DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu(2+) ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu(2+) depended on concentration and time. Upon addition of Cu(2+), the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 +/- 90 M(-1) s(-1) at 298 K for metallochlorin formation. The potential implications of Cu(2+) binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu(2+).
Ateş, Bürke Meltem; Ercan, Filiz; Svoboda, Ingrid; Fuess, Hartmut; Atakol, Orhan
2008-01-01
The title linear trinuclear copper(II) complex, [Cu3(C17H20N2O2)2Cl2], was obtained from N,N′-bis(2-hydroxybenzyl)-1,3-propanediamine and CuCl2. The overall charge of the three Cu2+ ions is balanced by four deprotonated phenol groups and two Cl− ligands. The complex is centrosymmetric with the central Cu2+ occupying a special position (). This Cu2+ ion is coordinated by the four phenolate O atoms in a square-planar fashion. The second Cu2+ occupies a general position in a square-pyramidal fashion. Two phenolate O atoms and two amine N form the basal plane, with Cl− ligands occupying the fifth coordination site. PMID:21201868
Pivetta, Tiziana; Valletta, Elisa; Ferino, Giulio; Isaia, Francesco; Pani, Alessandra; Vascellari, Sarah; Castellano, Carlo; Demartin, Francesco; Cabiddu, Maria Grazia; Cadoni, Enzo
2017-12-01
Coumarins show biological activity and are widely exploited for their therapeutic effects. Although a great number of coumarins substituted by heterocyclic moieties have been prepared, few studies have been carried out on coumarins containing pyridine heterocycle, which is known to modulate their physiological activities. We prepared and characterized three novel 3-(pyridin-2-yl)coumarins and their corresponding copper(II) complexes. We extended our investigations also to three known similar coumarins, since no data about their biochemical activity was previously been reported. The antiproliferative activity of the studied compounds was tested against human derived tumor cell lines and one human normal cell line. The DNA binding constants were determined and docking studies with DNA carried out. Selected Quantitative Structure-Activity Relationship (QSAR) descriptors were calculated in order to relate a set of structural and topological descriptors of the studied compounds to their DNA interaction and cytotoxic activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Fathima, Nishtar Nishad; Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni
2008-01-01
Catalytic wet hydrogen peroxide oxidation of an anionic dye has been explored in this study. Copper(II) complex of NN'-ethylene bis(salicylidene-aminato) (salenH2) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by Fourier transforms infra red spectroscopy, X-ray powder diffractograms, Thermo-gravimetric and differential thermal analysis and nitrogen adsorption studies. The effects of various parameters such as pH, catalyst and hydrogen peroxide concentration on the oxidation of dye were studied. The results indicate that complete removal of color has been obtained after a period of less than 1h at 60 degrees C, 0.175M H2O2 and 0.3g l(-1) catalyst. More than 95% dye removal has been achieved using this catalyst for commercial effluent. These studies indicate that copper salen complex encapsulated in zeolite framework is a potential heterogeneous catalyst for removal of color from wastewaters.
NASA Astrophysics Data System (ADS)
Kong, Xiang-Ping; Wang, Juan
2016-12-01
The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.
NASA Astrophysics Data System (ADS)
Valle, Eliana Maira A.; Maltarollo, Vinicius Gonçalves; Almeida, Michell O.; Honorio, Kathia Maria; dos Santos, Mauro Coelho; Cerchiaro, Giselle
2018-04-01
In this work, we studied the complexation mode between copper(II) ion and the specific ligand investigated as carriers of metals though biological membranes, diethyldithiocarbamate (Et2DTC). It is important to understand how this occurs because it is an important intracellular chelator with potential therapeutic applications. Theoretical and experimental UV visible studies were performed to investigate the complexation mode between copper and the ligand. Electrochemical studies were also performed to complement the spectroscopic analyses. According to the theoretical calculations, using TD-DFT (Time dependent density functional theory), with B3LYP functional and DGDVZP basis set, implemented in Gaussian 03 package, it was observed that the formation of the complex [Cu(Et2DTC)2] is favorable with higher electron density over the sulfur atoms of the ligand. UV/Vis spectra have a charge transfer band at 450 nm, with the DMSO-d6 band shift from 800 to 650 nm. The electrochemical experiments showed the formation of a new redox process, referring to the complex, where the reduction peak potential of copper is displaced to less positive region. Therefore, the results obtained from this study give important insights on possible mechanisms involved in several biological processes related to the studied system.
Seng, Hoi-Ling; Ong, Han-Kiat Alan; Rahman, Raja Noor Zaliha Raja Abd; Yamin, Bohari M; Tiekink, Edward R T; Tan, Kong Wai; Maah, Mohd Jamil; Caracelli, Ignez; Ng, Chew Hee
2008-11-01
The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.
Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj
2014-01-01
Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO 4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493
Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG.
Samai, Mohamed; Hague, Theresa; Naughton, Declan P; Gard, Paul R; Chatterjee, Prabal K
2008-02-15
Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.
Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S
2016-03-21
The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis applied to the second reaction path (p2) in mechanism 1 was also taken into account to assess the changes that take place in TS1-i (transition state of mechanism 1) and to perfectly characterize the mechanism described herein.
Wang, Li; Ou-Yang, Liangyue; Yau, Shueh-Lin
2008-01-01
Electrochemical scanning tunneling microscopy (ECSTM) has been used to examine the adlayer of octa-alkoxy-substituted copper(II) phthalocyanines (CuPc(OC(8)H(17))(8)) on Au(111) in 0.1 M HClO(4), where the molecular adlayer was prepared by spontaneous adsorption from a benzene solution containing this molecule. Topography STM scans revealed long-range ordered, interweaved arrays of CuPc(OC(8)H(17))(8) with coexistent rectangular and hexagonal symmetries. High-quality STM molecular resolution yielded the internal molecular structure and the orientation of CuPc(OC(8)H(17))(8) admolecules. These STM results could shed insight into the method of generating ordered molecular assemblies of phthalocyanine molecules with long-chained substitutes on metal surface. 2007 Wiley-Liss, Inc
Bromidotetrakis(1H-2-ethyl-5-methylimidazole-κN 3)copper(II) bromide
Godlewska, Sylwia; Baranowska, Katarzyna; Socha, Joanna; Dołęga, Anna
2011-01-01
The CuII ion in the title compound, [CuBr(C6H10N2)4]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the CuII and Br− atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C6H10N2)4]+ complex cations are linked to the uncoordinated Br− anions (site symmetry ) by N—H⋯Br hydrogen bonds, generating a three-dimensional network. The ethyl group of the imidazole ligand was modelled as disordered over two orientations with occupancies of 0.620 (8) and 0.380 (8). PMID:22199662
Tomina, Veronika V; Melnyk, Inna V; Zub, Yuriy L; Kareiva, Aivaras; Vaclavikova, Miroslava; Kessler, Vadim G
2017-01-01
Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature. PMID:28243572
Jaividhya, Paramasivam; Ganeshpandian, Mani; Dhivya, Rajkumar; Akbarsha, Mohammad Abdulkadher; Palaniandavar, Mallayan
2015-07-14
A series of mixed ligand copper(ii) complexes of the type [Cu(L)(phen)(ACN)](ClO4)21-5, where L is a bidentate Schiff base ligand (N(1)-(anthracen-10-ylmethylene)-N(2)-methylethane-1,2-diamine (L1), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-dimethylethane-1,2-diamine (L2), N(1)-(anthracen-10-yl-methylene)-N(2)-ethylethane-1,2-diamine (L3), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-diethylethane-1,2-diamine (L4) and N(1)-(anthracen-10-ylmethylene)-N(3)-methylpropane-1,3-diamine (L5)) and phen is 1,10-phenanthroline, have been synthesized and characterized by spectral and analytical methods. The X-ray crystal structure of 5 reveals that the coordination geometry around Cu(ii) is square pyramidal distorted trigonal bipyramidal (τ, 0.76). The corners of the trigonal plane of the geometry are occupied by the N2 nitrogen atom of phen, the N4 nitrogen atom of L5 and the N5 nitrogen of acetonitrile while the N1 nitrogen of phen and the N3 nitrogen of L5 occupy the axial positions with an N1-Cu1-N3 bond angle of 176.0(3)°. All the complexes display a ligand field band (600-705 nm) and three less intense anthracene-based bands (345-395 nm) in solution. The Kb values calculated from absorption spectral titration of the complexes (π→π*, 250-265 nm) with Calf Thymus (CT) DNA vary in the order 5 > 4 > 3 > 2 > 1. The fluorescence intensity of the complexes (520-525 nm) decreases upon incremental addition of CT DNA, which reveals the involvement of phen rather than the appended anthracene ring in partial DNA intercalation with the DNA base stack. The extent of quenching is in agreement with the DNA binding affinities and the relative increase in the viscosity of DNA upon binding to the complexes as well. Thus 5 interacts with DNA more strongly than 4 on account of the stronger involvement in hydrophobic DNA interaction of the anthracenyl moiety, which is facilitated by the propylene ligand backbone with chair conformation. The ability of complexes (100 μM) to cleave DNA (pUC19 DNA) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.1 in the absence of a reducing agent or light varies in the order 5 > 4 > 3 > 2 > 1, which is in conformity with their DNA binding affinities. Interestingly, cytotoxicity studies on the MCF-7 human breast cancer cell line show that the IC50 value of 5 is less than that of cisplatin for the same cell line, revealing that it can act as an effective cytotoxic drug in a time-dependent manner.
Mohapatra, Subash Chandra; Tiwari, Hemandra Kumar; Singla, Manisha; Rathi, Brijesh; Sharma, Arun; Mahiya, Kuldeep; Kumar, Mukesh; Sinha, Saket; Chauhan, Shyam Singh
2010-03-01
A new class of copper(II) nanohybrid solids, LCu(CH(3)COO)(2) and LCuCl(2), have been synthesized and characterized by transmission electron microscopy, dynamic light scattering, and IR spectroscopy, and have been found to be capped by a bis(benzimidazole) diamide ligand (L). The particle sizes of these nanohybrid solids were found to be in the ranges 5-10 and 60-70 nm, respectively. These nanohybrid solids were evaluated for their in vitro antimalarial activity against a chloroquine-sensitive isolate of Plasmodium falciparum (MRC 2). The interactions between these nanohybrid solids and plasmepsin II (an aspartic protease and a plausible novel target for antimalarial drug development), which is believed to be essential for hemoglobin degradation by the parasite, have been assayed by UV-vis spectroscopy and inhibition kinetics using Lineweaver-Burk plots. Our results suggest that these two compounds have antimalarial activities, and the IC(50) values (0.025-0.032 microg/ml) are similar to the IC(50) value of the standard drug chloroquine used in the bioassay. Lineweaver-Burk plots for inhibition of plasmepsin II by LCu(CH(3)COO)(2) and LCuCl(2) show that the inhibition is competitive with respect to the substrate. The inhibition constants of LCu(CH(3)COO)(2) and LCuCl(2) were found to be 10 and 13 microM, respectively. The IC(50) values for inhibition of plasmepsin II by LCu(CH(3)COO)(2) and LCuCl(2) were found to be 14 and 17 microM, respectively. Copper(II) metal capped by a benzimidazole group, which resembles the histidine group of copper proteins (galactose oxidase, beta-hydroxylase), could provide a suitable anchoring site on the nanosurface and thus could be useful for inhibition of target enzymes via binding to the S1/S3 pocket of the enzyme hydrophobically. Both copper(II) nanohybrid solids were found to be nontoxic against human hepatocellular carcinoma cells and were highly selective for plasmepsin II versus human cathepsin D. The pivotal mechanism of antimalarial activity of these compounds via plasmepsin II inhibition in the P. falciparum malaria parasite is demonstrated.
Kumar, Amit; Pandey, Rampal; Kumar, Ashish; Gupta, Rakesh Kumar; Dubey, Mrigendra; Mohammed, Akbar; Mobin, Shaikh M; Pandey, Daya Shankar
2015-10-21
Novel asymmetric Schiff base ligands 2-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-phenol (H2L(1)) and 1-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-naphthalen-2-ol (H2L(2)) possessing dissimilar N,O-chelating sites and copper(ii) metallacycles (CuL(1))4 (1) and (CuL(2))4 (2) based on these ligands have been described. The ligands and complexes have been thoroughly characterized by satisfactory elemental analyses, and spectral (IR, (1)H, (13)C NMR, ESI-MS, UV/vis) and electrochemical studies. Structures of H2L(2) and 1 have been unambiguously determined by X-ray single crystal analyses. The crystal structure of H2L(2) revealed the presence of two distinct N,O-chelating sites on dissimilar cores (naphthalene and β-ketoaminato groups) offering a diverse coordination environment. Metallacycles 1 and 2 having a cavity created by four Cu(ii) centres coordinated in a homo- and heteroleptic fashion with respective ligands act as efficient hosts for adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) respectively, over other nucleoside polyphosphates (NPPs). The disparate sensitivity of these metallacycles toward ADP and ATP has been attributed to the size of the ligands assuming diverse dimensions and spatial orientations. These are attuned for π-π stacking and electrostatic interactions suitable for different guest molecules under analogous conditions, metallacycle 1 offers better orientation for ADP, while 2 for ATP. The mechanism of the host-guest interaction has been investigated by spectral and electrochemical studies and supported by molecular docking studies.
Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc
2016-05-01
The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.
Molla, Rostam Ali; Iqubal, Md Asif; Ghosh, Kajari; Kamaluddin; Islam, Sk Manirul
2015-04-14
A new copper-grafted mesoporous poly-melamine-formaldehyde (Cu-mPMF) has been synthesized from melamine and paraformaldehyde in DMSO medium, followed by grafting of Cu(ii) at its surface. Cu-mPMF has been characterized by elemental analysis, powder XRD, HR TEM, FE-SEM, N2 adsorption study, FT-IR, UV-vis DRS, TGA-DTA, EPR spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The Cu-grafted mesoporous material showed very good catalytic activity in methyl esterification of benzylic alcohols and amidation of nitriles. Moreover, the catalyst is easily recoverable and can be reused seven times without appreciable loss of catalytic activity in the above reactions. The highly dispersed and strongly bound Cu(ii) sites in the Cu-grafted mesoporous polymer could be responsible for the observed high activities of the Cu-mPMF catalyst. Due to strong binding with the functional groups of the polymer, no evidence of leached copper from the catalyst during the course of reaction emerged, suggesting true heterogeneity in the catalytic process.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Wu, Xiang Xia; Guo, Jian-Hua; Huo, Jian-Zhong; Ding, Bin
2017-01-01
In this work a flexible multi-dentate 1-(4-aminobenzyl)-1,2,4-triazole (abtz) ligand has been employed, two novel triazole-Cu(II) coordination polymers {[Cu(abtz)2(Br)2]·(H2O)2}n (1) and {[Cu(abtz)2]·(SiF6)·(H2O)2}n (2) have been isolated under solvo-thermal conditions. 1 is a 2D neutral CuII coordination polymer while 2 is 2D cation micro-porous CuII coordination polymer with the channel dimensionalities of 11.852(1) Å × 11.852(1) Å (metal-metal distances). Variable-temperature magnetic susceptibility data of 1 and 2 have been recorded in the 2-300 K temperature range indicating weak anti-ferromagnetic interactions. Further absorption properties of anion pollutants for 2 also have been investigated. 2 presents the novel example of cationic triazole-copper(II) coordination framework for effectively capturing anion pollutants Cr2O72- in the water solutions and selectively capturing Congo Red in the methanol solutions.
Finazzo, Cinzia; Calle, Carlos; Stoll, Stefan; Van Doorslaer, Sabine; Schweiger, Arthur
2006-04-28
The effect of the electron withdrawing or donating character of groups located at the periphery of the phthalocyanine ligand, as well as the influence of polar and nonpolar solvents are of importance for the redox chemistry of metal phthalocyanines. Continuous wave and pulse electron paramagnetic resonance and pulse electron nuclear double resonance spectroscopy at X- and Q-band are applied to investigate the electronic structure of the complexes Cu(II)phthalocyanine (CuPc), copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuPc(t)), and copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine (CuPc(F)) in various matrices. Isotope substitutions are used to determine the g values, the copper hyperfine couplings and the hyperfine interactions with the 14N, 1H and 19F nuclei of the macrocycle and the surrounding matrix molecules. Simulations and interpretations of the spectra are shown and discussed, and a qualitative analysis of the data using previous theoretical models is given. Density functional computations facilitate the interpretation of the EPR parameters. The experimental g, copper and nitrogen hyperfine and nuclear quadrupole values are found to be sensitive to changes of the solvent and the structure of the macrocycle. To elucidate the electronic, structural and bonding properties the changes in the g principal values are related to data from UV/Vis spectroscopy and to density functional theory (DFT) computations. The analysis of the EPR data indicates that the in-plane metal-ligand sigma bonding is more covalent for CuPc(t) in toluene than in sulfuric acid. Furthermore, the out-of-plane pi bonding is found to be less covalent in the case of a polar sulfuric acid environment than with nonpolar toluene or H2Pc environment, whereby the covalency of this bonding is increased upon addition of tert-butyl groups. No contribution from in-plane pi bonding is found.
Ding, Lijun; Gao, Yan; Di, Junwei
2016-09-15
Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Pavelka, Matej; Shukla, Manoj K; Leszczynski, Jerzy; Burda, Jaroslav V
2008-01-17
Optimization of the hydrated Cu(II)(N7-guanine) structures revealed a number of minima on the potential energy surface. For selected structures, energy decompositions together with the determination of electronic properties (partial charges and electron spin densities) were performed. In the complexes of guanine with the bare copper cation and that with the monoaqua ligated cation, an electron transfer from guanine to Cu(II) was observed, resulting in a Cu(I)-guanine(+) type of complex. Conformers with two aqua ligands are borderline systems characterized by a Cu partial charge of +0.7e and a similar value of the spin density (0.6e) localized on guanine. When tetracoordination of copper was achieved, only then the prevailing electron spin density is unambiguously localized on copper. The energetic preference of diaqua-Cu-(N7,O6-guanine) over triaqua-Cu-(N7-guanine) was found for the four-coordinate structures. However, the energy difference between these two conformations decreases with the number of water molecules present in the systems, and in complexes with five water molecules this preference is preserved only at DeltaG level where thermal and entropy terms are included.
Martín-Caballero, Jagoba; San José Wéry, Ana; Reinoso, Santiago; Artetxe, Beñat; San Felices, Leire; El Bakkali, Bouchra; Trautwein, Guido; Alcañiz-Monge, Juan; Vilas, José Luis; Gutiérrez-Zorrilla, Juan M
2016-05-16
The first decavanadate-based microporous hybrid, namely, [Cu(cyclam)][{Cu(cyclam)}2(V10O28)]·10H2O (1, cyclam = 1,4,8,11-tetraazacyclotetradecane) was prepared by reaction of (VO3)(-) anions and {Cu(cyclam)}(2+) complexes in NaCl (aq) at pH 4.6-4.7 and characterized by elemental analyses, thermogravimetry, and X-ray diffraction (powder, single-crystal) techniques. Compound 1 exhibits a POMOF-like supramolecular open-framework built of covalent decavanadate/metalorganic layers with square-like voids, the stacking of which is aided by interlamellar cementing complexes and generates water-filled channels with approximate cross sections of 10.4 × 8.8 Å(2). The framework is robust enough to remain virtually unaltered upon thermal evacuation of all water molecules of hydration, as demonstrated through single-crystal X-ray diffraction studies on the anhydrous phase 1a. This permanent microporosity renders interesting functionality to 1, such as selective adsorption of CO2 over N2 and remarkable activity as heterogeneous catalyst toward the H2O2-based oxidation of the highly-stable, tricyclic alkane adamantane.
Petković, B B; Stanković, D; Milčić, M; Sovilj, S P; Manojlović, D
2015-01-01
A novel efficient differential pulse voltammetric (DPV) method for determination gallic acid (GA) was developed by using an electrochemical sensor based on [Cu2tpmc](ClO4)4 immobilized in PVC matrix and coated on graphite (CGE) or classy carbon rod (CGCE). The proposed method is based on the gallic acid oxidation process at formed [Cu2tpmcGA](3+) complex at the electrode surface. The complexation was explored by molecular modeling and DFT calculations. Voltammograms for both sensors, recorded in a HNO3 as a supporting electrolyte at pH 2 and measured in 2.5×10(-7) to 1.0×10(-4) M of GA, resulted with two linear calibration curves (for higher and lower GA concentration range). The detection limit at CGE was 1.48×10(-7) M, while at CGCE was 4.6×10(-6) M. CGE was successfully applied for the determination of the antioxidant capacity based on GA equivalents for white, rosé and red wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming
2018-05-19
To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.
Vibrational investigation on the copper(II) binding mode of carcinine and its pH dependence
NASA Astrophysics Data System (ADS)
Torreggiani, Armida; Reggiani, Matteo; Manco, Immacolata; Tinti, Anna
2007-05-01
A comparative FT-Raman and FT-IR study of Carcinine (Carc), a natural imidazole dipeptide, and its complexes with Cu(II) ions was performed at different pH's. Both Raman and IR spectra present marker bands useful for the identification of the predominant complexes; in particular, Raman spectroscopy appears useful for identifying the metal-coordination site of the imidazole ring (N π or N τ atoms) of Carc. Free Carc shows a strong network of H-bonds and tautomer I (N τ-H) is the preferred form of the imidazolic ring (bands at 1578, 1292 and 988 cm -1). The presence of Cu(II) does not affect the tautomeric equilibrium at pH 7, whereas the deprotonation of both N-imidazolic nitrogens is strongly induced at higher pH. Under neutral and alkaline conditions the primary amino group takes part to the Cu(II) chelation, whereas all the peptidic moieties are involved in coordination only at pH 7. Thus, Carc acts as a tri-dentate ligand at neutral pH, mainly giving a monomeric complex, [CuLH -1], containing tautomer I, whereas an oligonuclear complex, probably [Cu 4L 4H -8], where metal-imidazolate ions connect different ligand molecules, predominates at alkaline pH.
Aranda, Esther Escribano; Matias, Tiago Araújo; Araki, Koiti; Vieira, Adriana Pires; de Mattos, Elaine Andrade; Colepicolo, Pio; Luz, Carolina Portela; Marques, Fábio Luiz Navarro; da Costa Ferreira, Ana Maria
2016-12-01
Herein, the design and syntheses of two new mononuclear oxindolimine-copper(II) (1 and 2) and corresponding heterobinuclear oxindolimine Cu(II)Pt(II) complexes (3 and 4), are described. All the isolated complexes were characterized by spectroscopic techniques (UV/Vis, IR, EPR), in addition to elemental analysis and mass spectrometry. Cyclic voltammetry (CV) measurements showed that in all cases, one-electron quasi-reversible waves were observed, and ascribed to the formation of corresponding copper(I) complexes. Additionally, waves related to oxindolimine ligand reduction was verified, and confirmed using analogous oxindolimine-Zn(II) complexes. The Pt(IV/II) reduction, and corresponding oxidation, for complexes 3 and 4 occurred at very close values to those observed for cisplatin. By complementary fluorescence studies, it was shown that glutathione (GSH) cannot reduce any of these complexes, under the experimental conditions (room temperature, phosphate buffer 50mM, pH7.4), using an excess of 20-fold [GSH]. All these complexes showed characteristic EPR spectral profile, with parameters values g ǁ >g ⊥ suggesting an axially distorted environment around the copper(II) center. Interactions with calf thymus-DNA, monitored by circular dichroism (CD), indicated different effects modulated by the ligands. Finally, the cytotoxicity of each complex was tested toward different tumor cells, in comparison to cisplatin, and low values of IC 50 in the range 0.6 to 4.0μM were obtained, after 24 or 48h incubation at 37°C. The obtained results indicate that such complexes can be promising alternative antitumor agents. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Abdul Razak, Ibrahim; Refahi, Masoud; Moghimi, Abolghasem; Rosli, Mohd Mustaqim
2015-09-01
The complex [DAPH][H3O][Cu(dipic)2]·3H2O, (1) (dipicH2 = 2,6-pyridinedicarboxylic acid and DAP = 2,3-diaminophenazine) was prepared from the reaction of Cu(NO3)2·2H2O with mixture of o-phenylenediamine (OPD) and 2,6-pyridinedicarboxylic acid in water. The complex was characterized by FTIR, elemental analysis, UV-Vis and the single-crystal X-ray diffraction. The crystal system is monoclinic with the space group P21/c. This complex is stabilized in the solid state by an extensive network of hydrogen bonds between crystallized water, anionic and cationic fragments, which form a three-dimensional network. Furthermore, hydrogen bonds, π⋯π and Csbnd O⋯π stacking interactions seem to be effective in stabilizing the crystal structures. The protonation constants of dipic (L) and DAP (Q), the equilibrium constants for the dipic-DAP proton transfer system and the stoichiometry and stability constants of binary complexes including each of ligands (dipic, DAP) in presence Cu2+ ion, ternary complexes including, both of ligands (dipic-DAP) in presence of metal ion were calculated in aqueous solutions by potentiometric pH titration method using the Hyperquad2008 program. The stoichiometry of the most complexes species in solution was found to be very similar to the solid-state of cited metal ion complex.
Metals in Metal Salts: A Copper Mirror Demonstration
ERIC Educational Resources Information Center
Pike, Robert D.
2010-01-01
A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.
Łodyga-Chruscińska, Elżbieta; Pilo, Maria; Zucca, Antonio; Garribba, Eugenio; Klewicka, Elżbieta; Rowińska-Żyrek, Magdalena; Symonowicz, Marzena; Chrusciński, Longin; Cheshchevik, Vitalij T
2018-03-01
Fisetin (3,3',4',7-tetrahydroxyflavone) metal chelates are of interest as this plant polyphenol has revealed broad prospects for its use as natural medicine in the treatment of various diseases. Metal interactions may change or enhance fisetin biological properties so understanding fisetin metal chelation is important for its application not only in medicine but also as a food additive in nutritional supplements. This work was aimed to determine and characterize copper complexes formed in different pH range at applying various metal/ligand ratios. Fisetin and Cu(II)-fisetin complexes were characterized by potentiometric titrations, UV-Vis (Ultraviolet-visible spectroscopy), EPR, ESI-MS, FTIR and cyclic voltammetry. Their effects on DNA were investigated by using circular dichroism, spectrofluorimetry and gel electrophoresis methods. The copper complex with the ratio of Cu(II)/fisetin 1/2 exhibited significant DNA cleavage activity, followed by complete degradation of DNA. The influence of copper(II) ions on antioxidant activity of fisetin in vitro has been studied using DPPH, ABTS and mitochondrial assays. The results have pointed out that fisetin or copper complexes can behave both as antioxidants or pro-oxidants. Antimicrobial activity of the compounds has been investigated towards several bacteria and fungi. The copper complex of Cu(II)/fisetin 1/2 ratio showed higher antagonistic activity against bacteria comparing to the ligand and it revealed a promising antifungal activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Jing; Zuo, Wei; Zhang, Wei; Liu, Jian; Wang, Zhiyi; Yang, Zhengyin; Wang, Baodui
2014-10-07
Ultrasensitive, accurate detection and separation of heavy metal ions is very important in environmental monitoring and biological detection. In this paper, a highly sensitive and specific detection method for Cu(2+) based on the fluorescence quenching of a europium(III) hybrid magnetic nanoprobe is presented. This nanoprobe can detect Cu(2+) over a wide pH range (5.0-10.0) with a detection limit as low as 0.1 nM and it can be used for detecting Cu(2+) in living cells. After the magnetic separation, the Cu(2+) concentration decreased to 1.18 ppm, which is less than the US EPA drinking water standard (1.3 ppm), and more than 70% Cu(2+) could be removed when the amount of nanocomposite 1 reached 1 mg.
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-12-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students' mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students' simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students' formulation and combination of equations. Several reasons may explain this difference, including the students' different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.
Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M
2004-11-01
A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.
Removal of Cu(II) from leachate using natural zeolite as a landfill liner material.
Turan, N Gamze; Ergun, Osman Nuri
2009-08-15
All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.
NASA Astrophysics Data System (ADS)
Bukalov, Sergey S.; Aysin, Rinat R.; Leites, Larissa A.; Kurykin, Mikhail A.; Khrustalev, Victor N.
2015-10-01
Calculation of potential energy surface (PES) of isolated molecule of copper(II) diiminate Cu[CF3С(NH)C(F)C(NH)CF3]2 (1) resulted a double-well curve with the minima corresponding to equivalent screwed conformations. The low barrier leads to molecular non-rigidity which seems to be the reason of conformational polymorphism in crystals, reported in [1]. For one of newly found polymorphs, the X-ray structure was determined. The differences in the Raman and UV-vis spectra between differently colored species and their solutions were revealed, they are determined by different geometries of Cu(II) coordination polyhedron and different systems of intermolecular interactions in crystals. Transformations of the polymorphs under thermal, mechanical and photo exposures were studied.
Bolos, C. A.; Nikolov, G. St.; Ekateriniadou, L.; Kortsaris, A.; Kyriakidis, D. A.
1998-01-01
Ethylenediamine (en), putrescine (pu), diethylenetriamine (dien), dipropylenetriamine (dpta), spermidine (spmd) and their CuII compounds as well as the Schiff bases with 2-furaldehyde (dienOO), 2- thiophenecarboxaldehyde (dienSS) and pyrrole-2-carboxaldehyde (dienNN) of dien and that of dpta with 2- thiophenecarboxaldehyde (dptaSS), were prepared and characterised. They were tested against Bacillus substilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Proteus vulgaris and Xanthomonas campestris as antibacterial reagents, the highest activity being exhibited by Cu(dptaSS)(NO3)2 complex, which acts as antibiotic. In the antiproliferative tests (vs. T47D,L929 and BHK21/c13 cell lines) the best results were obtained with Cu(dptaSS)2+ and Cu(dienSS)2+. Electronic structure calculations gave for dptaSS and dienSS the higher negative charges on the N atoms. The counter-ions (Br-, NO3- and SO42-) play an important role by modulating the reagent's selectivity versus the bacteria [Gram(+) or Gram(-)], but they have no effect on the antiproliferative activity. PMID:18475868
Bolos, C A; Nikolov, G S; Ekateriniadou, L; Kortsaris, A; Kyriakidis, D A
1998-01-01
Ethylenediamine (en), putrescine (pu), diethylenetriamine (dien), dipropylenetriamine (dpta), spermidine (spmd) and their Cu(II) compounds as well as the Schiff bases with 2-furaldehyde (dienOO), 2- thiophenecarboxaldehyde (dienSS) and pyrrole-2-carboxaldehyde (dienNN) of dien and that of dpta with 2- thiophenecarboxaldehyde (dptaSS), were prepared and characterised. They were tested against Bacillus substilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Proteus vulgaris and Xanthomonas campestris as antibacterial reagents, the highest activity being exhibited by Cu(dptaSS)(NO(3))(2) complex, which acts as antibiotic. In the antiproliferative tests (vs. T(47)D,L(929) and BHK(21/c13) cell lines) the best results were obtained with Cu(dptaSS)(2+) and Cu(dienSS)(2+). Electronic structure calculations gave for dptaSS and dienSS the higher negative charges on the N atoms. The counter-ions (Br(-), NO(3) (-) and SO(4) (2-)) play an important role by modulating the reagent's selectivity versus the bacteria [Gram(+) or Gram(-)], but they have no effect on the antiproliferative activity.
Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes
NASA Astrophysics Data System (ADS)
Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan
2012-11-01
DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of Kb, 5.21 × 104 M-1 that are higher than that obtained for 2 (red-shift, 2 nm; Kb, 1.73 × 104 M-1) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10 nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the Epc and E0' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HOrad ) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.
The Thermal Decomposition of Basic Copper(II) Sulfate.
ERIC Educational Resources Information Center
Tanaka, Haruhiko; Koga, Nobuyoshi
1990-01-01
Discussed is the preparation of synthetic brochantite from solution and a thermogravimetric-differential thermal analysis study of the thermal decomposition of this compound. Other analyses included are chemical analysis and IR spectroscopy. Experimental procedures and results are presented. (CW)
Metamagnetism in hydrophobically induced carboxylate (phenylmalonate)-bridged copper(II) layers.
Pasán, Jorge; Sanchiz, Joaquín; Ruiz-Pérez, Catalina; Campo, Javier; Lloret, Francesc; Julve, Miguel
2006-07-21
Self-assembly of copper(l) ions, phenylmalonate and pyrimidine yields the layered compound [Cu(pym)(Phmal)n (1) where intralayer ferro- and interlayer antiferromagnetic interactions occur with three-dimensional antiferromagnetic ordering at T(c) = 2.15 K.
Petticrew, Mark; Rehfuess, Eva; Noyes, Jane; Higgins, Julian P T; Mayhew, Alain; Pantoja, Tomas; Shemilt, Ian; Sowden, Amanda
2013-11-01
Although there is increasing interest in the evaluation of complex interventions, there is little guidance on how evidence from complex interventions may be reviewed and synthesized, and the relevance of the plethora of evidence synthesis methods to complexity is unclear. This article aims to explore how different meta-analytical approaches can be used to examine aspects of complexity; describe the contribution of various narrative, tabular, and graphical approaches to synthesis; and give an overview of the potential choice of selected qualitative and mixed-method evidence synthesis approaches. The methodological discussions presented here build on a 2-day workshop held in Montebello, Canada, in January 2012, involving methodological experts from the Campbell and Cochrane Collaborations and from other international review centers (Anderson L, Petticrew M, Chandler J, et al. systematic reviews of complex interventions. In press). These systematic review methodologists discussed the broad range of existing methods and considered the relevance of these methods to reviews of complex interventions. The evidence from primary studies of complex interventions may be qualitative or quantitative. There is a wide range of methodological options for reviewing and presenting this evidence. Specific contributions of statistical approaches include the use of meta-analysis, meta-regression, and Bayesian methods, whereas narrative summary approaches provide valuable precursors or alternatives to these. Qualitative and mixed-method approaches include thematic synthesis, framework synthesis, and realist synthesis. A suitable combination of these approaches allows synthesis of evidence for understanding complex interventions. Reviewers need to consider which aspects of complex interventions should be a focus of their review and what types of quantitative and/or qualitative studies they will be including, and this will inform their choice of review methods. These may range from standard meta-analysis through to more complex mixed-method synthesis and synthesis approaches that incorporate theory and/or user's perspectives. Copyright © 2013 Elsevier Inc. All rights reserved.
Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose
2015-10-14
In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.
ESI-MS measurements for the equilibrium constants of copper(II)-insulin complexes.
Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan
2018-06-01
Trace elements regulate many biological reactions in the body. Copper(II) is known as one of trace elements and capable of binding to proteins. Insulin is a blood glucose-lowering peptide hormone and it is secreted by the pancreatic β-cells. In this study, Cu(II)-insulin complexes were investigated by using ESI-MS method. Insulin molecule gives ESI-MS peaks at +4, +5, +6 and +7 charged states. Cu(II)-insulin complexes can be monitored and quantified on the ESI-MS spectra as the shifted peaks according to insulin peaks. The solutions of Cu(II)-insulin complexes at different pHs and mole ratios of Cu(II) ions to insulin molecule were measured on the ESI-MS. The highest complex formation ratio for Cu(II)-insulin were found at pH 7. The multiple bindings of Cu(II) ions to insulin molecule was observed. The formation equilibrium constants of Cu(II)-insulin complexes were calculated as Kf 1 : 3.34 × 10 4 , Kf 2 : 2.99 × 10 4 , Kf 3 : 7.00 × 10 3 and Kf 4 :2.86 × 10 3 . The specific binding property of Cu(II) ions was controlled by using different spray ion sources including electrospray and nano-electrospray. The binding property of Cu(II) also investigated by MS/MS fragmentation. It was concluded from the ESI-MS measurements that Cu(II) ion has a high affinity to insulin molecules to form stable complexes. Copyright © 2018 Elsevier B.V. All rights reserved.
Rapid determination of ions by combined solid-phase extraction--diffuse reflectance spectroscopy
NASA Technical Reports Server (NTRS)
Fritz, James S.; Arena, Matteo P.; Steiner, Steven A.; Porter, Marc D.
2003-01-01
We introduce colorimetric solid-phase extraction (C-SPE) for the rapid determination of selected ions. This new technique links the exhaustive concentration of an analyte by SPE onto a membrane disk surface for quantitative measurement with a hand-held diffuse reflectance spectrometer. The concentration/measurement procedure is complete in approximately 1 min and can be performed almost anywhere. This method has been used to monitor iodine and iodide in spacecraft water in the 0.1-5.0 ppm range and silver(I) in the range of 5.0-1000 microg/l. Applications to the trace analysis of copper(II), nickel(II), iron(III) and chromium(VI) are described. Studies on the mechanism of extraction showed that impregnation of the disk with a surfactant as well as a complexing reagent results in uptake of additional water, which markedly improves the extraction efficiency.
Alshahrani, Lina Abdullah; Li, Xi; Luo, Hui; Yang, Linlin; Wang, Mengmeng; Yan, Songling; Liu, Peng; Yang, Yuqin; Li, Quanhua
2014-01-01
A glassy carbon electrode was modified with a copper(II) complex [Cu(Sal-β-Ala) (3,5-DMPz)2] (Sal = salicylaldehyde, β-Ala = β-alanine, 3,5-DMPz = 3,5-dimethylpyrazole) and single-walled carbon nanotubes (SWCNTs). The modified electrode was used to detect catechol (CT) and hydroquinone (HQ) and exhibited good electrocatalytic activities toward the oxidation of CT and HQ. The peak currents were linear with the CT and HQ concentrations over the range of 5–215 μmol·L−1 and 5–370 μmol·L−1 with corresponding detection limits of 3.5 μmol·L−1 and 1.46 μmol·L−1 (S/N = 3) respectively. Moreover, the modified electrode exhibited good sensitivity, stability and reproducibility for the determination of CT and HQ, indicating the promising applications of the modified electrode in real sample analysis. PMID:25429411
NASA Astrophysics Data System (ADS)
Willans, Mathew J.; Sears, Devin N.; Wasylishen, Roderick E.
2008-03-01
The use of continuous-wave (CW) 1H decoupling has generally provided little improvement in the 13C MAS NMR spectroscopy of paramagnetic organic solids. Recent solid-state 13C NMR studies have demonstrated that at rapid magic-angle spinning rates CW decoupling can result in reductions in signal-to-noise and that 1H decoupling should be omitted when acquiring 13C MAS NMR spectra of paramagnetic solids. However, studies of the effectiveness of modern 1H decoupling sequences are lacking, and the performance of such sequences over a variety of experimental conditions must be investigated before 1H decoupling is discounted altogether. We have studied the performance of several commonly used advanced decoupling pulse sequences, namely the TPPM, SPINAL-64, XiX, and eDROOPY sequences, in 13C MAS NMR experiments performed under four combinations of the magnetic field strength (7.05 or 11.75 T), rotor frequency (15 or 30 kHz), and 1H rf-field strength (71, 100, or 140 kHz). The effectiveness of these sequences has been evaluated by comparing the 13C signal intensity, linewidth at half-height, LWHH, and coherence lifetimes, T2', of the methine carbon of copper(II) bis( DL-alanine) monohydrate, Cu(ala) 2·H 2O, and methylene carbon of copper(II) bis( DL-2-aminobutyrate), Cu(ambut) 2, obtained with the advanced sequences to those obtained without 1H decoupling, with CW decoupling, and for fully deuterium labelled samples. The latter have been used as model compounds with perfect 1H decoupling and provide a measure of the efficiency of the 1H decoupling sequence. Overall, the effectiveness of 1H decoupling depends strongly on the decoupling sequence utilized, the experimental conditions and the sample studied. Of the decoupling sequences studied, the XiX sequence consistently yielded the best results, although any of the advanced decoupling sequences strongly outperformed the CW sequence and provided improvements over no 1H decoupling. Experiments performed at 7.05 T demonstrate that the XiX decoupling sequence is the least sensitive to changes in the 1H transmitter frequency and may explain the superior performance of this decoupling sequence. Overall, the most important factor in the effectiveness of 1H decoupling was the carbon type studied, with the methylene carbon of Cu(ambut) 2 being substantially more sensitive to 1H decoupling than the methine carbon of Cu(ala) 2·H 2O. An analysis of the various broadening mechanisms contributing to 13C linewidths has been performed in order to rationalize the different sensitivities of the two carbon sites under the four experimental conditions.
Photocatalytic Conversion of CO2 to CO by a Copper(II) Quaterpyridine Complex.
Guo, Zhenguo; Yu, Fei; Yang, Ying; Leung, Chi-Fai; Ng, Siu-Mui; Ko, Chi-Chiu; Cometto, Claudio; Lau, Tai-Chu; Robert, Marc
2017-10-23
The invention of efficient systems for the photocatalytic reduction of CO 2 comprising earth-abundant metal catalysts is a promising approach for the production of solar fuels. One bottleneck is to design highly selective and robust molecular complexes that are able to transform the CO 2 gas. The Cu II quaterpyridine complex [Cu(qpy)] 2+ (1) is found to be a highly efficient and selective catalyst for visible-light driven CO 2 reduction in CH 3 CN using [Ru(bpy) 3 ] 2+ (bpy: bipyridine) as photosensitizer and BIH/TEOA (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole/triethanolamine) as sacrificial reductant. The photocatalytic reaction is greatly enhanced by the presence of H 2 O (1-4 % v/v), and a turnover number of >12 400 for CO production can be achieved with 97 % selectivity, which is among the highest of molecular 3d CO 2 reduction catalysts. Results from Hg poisoning and dynamic light scattering experiments suggest that this photocatalyst is homogenous. To the best of our knowledge, 1 is the first example of molecular Cu-based catalyst for the photoreduction of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Qin-Yu; Liu, Yu; Lu, Wen; Zhang, Yong; Bian, Guo-Qing; Niu, Gai-Yan; Dai, Jie
2007-11-26
A protonated bifunctional pyridine-based tetrathiafulvalene (TTF) derivative (DMT-TTF-pyH)NO3 and a copper(II) complex Cu(acac)2(DMT-TTF-py)2 have been obtained and studied. Electronic spectra of the protonated compound show a large ICT (intramolecular charge transfer) band shift (Deltalambda=136 nm) compared with that of the neutral compound. Cyclic voltammetry also shows a large shift of the redox potentials (DeltaE1/2(1)=77 mV). Theoretical calculation suggests that the pyridium substituent is a strong pi-electron acceptor. Crystal structures of the protonated compound and the metal complex have been obtained. The dihedral angle between least-squares planes of the pyridyl group and the dithiole ring might reflect the intensity of the ICT effect between the TTF moiety and the pyridyl group. It is also noteworthy that the TTF moiety could be oxidized to TTF2+ dication by Fe(ClO4)(3).6H2O when forming a metal complex, while the protonated TTF derivative can only be oxidized to the TTF*+ radical cation by Fe(ClO4)(3).6H2O even with an excess amount of the Fe(III) salt, which can be used to control the oxidation process to obtain neutral TTF, TTF*+ radical cation, or TTF2+ dication.
Spectrometric determination of platinum with methoxypromazine maleate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmegowda, A.; Sankegowda, H.; Gowda, N.M.M.
1984-03-01
A simple, rapid, and sensitive spectrophotometric method has been developed for the determination of platinum in solution. The chromogenic reagent, methoxypromazine maleate, reacts with platinum(IV) almost instantaneously in phosphoric acid medium containing copper(II) catalyst to form a bluish pink 1:1 complex with an absorption maximum at 562 nm. The complexation is complete within 1 min. A 30-fold molar excess of the reagent over metal ion is necessary for completion of the reaction. Beer's law is obeyed over the concentration range of 0.4-9.8 ppm of platinum(IV) with an optimal range of 1.5-8.6 ppm. The molar absorptivity is 1.71 x 10/sub 4/more » L mol/sup -1/ cm/sup -1/ and the Sandell sensitivity is 11.4 ng cm/sup -2/. The apparent stability constant of the complex is log K = 5.58 +/- 0.1 at 27/sup 0/C. The effects of acid concentration, time, temperature, concentration of the reagent and copper, order of addition of reagents, and the interferences from various ions are investigated. The method has been used for the determination of platinum in synthetic solutions that approximate the composition of some alloys and minerals. 25 references, 1 figure, 2 tables.« less
NASA Astrophysics Data System (ADS)
Tukumova, N. V.; Usacheva, T. R.; Thuan, Tran Thi Dieu; Sharnin, V. A.
2014-10-01
The composition and stability of coordination compounds of the anions of maleic (H2L) and succinic (H2Y) acids with copper(II) ions in water-ethanol solutions is studied by means of potentiometric titration at a sodium perchlorate ionic strength of 0.1 and a temperature of 298.15 K. The composition of the water-ethanol solvent was varied from 0 to 0.7 molar parts of ethanol for maleic acid and from 0 to 0.4 molar parts for succinic acid. The stability of monoligand complexes of copper ions with the anions of maleic and succinic acids grows with increase of ethanol concentration from 3.86 to 6.62 for logβCuL and from 2.98 to 6.01 for logβCuY. It is shown that a monotonic rise in stability upon an increase in the content of ethanol in solution is observed, while the values of logβCuL change more sharply. The succinic acid anion forms a stronger complex with copper ions than maleic acid anions do at an ethanol content of 0.4 molar parts. The possibility of the formation of a protonated CuHY+ particle is established.
Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation
Markoulaki, Vassiliki Ι.; Papadas, Ioannis T.; Kornarakis, Ioannis; Armatas, Gerasimos S.
2015-01-01
Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER). In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II) oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1) with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1) and pure mesoporous CeO2 (~1 µmol·h−1). PMID:28347106
Ghattas, Wadih; Giorgi, Michel; Mekmouche, Yasmina; Tanaka, Tsunehiro; Rockenbauer, Antal; Réglier, Marius; Hitomi, Yutaka; Simaan, A Jalila
2008-06-02
Several Cu(II) complexes with ACC (=1-aminocyclopropane carboxylic acid) or AIB (=aminoisobutyric acid) were prepared using 2,2'-bipyridine, 1,10-phenanthroline, and 2-picolylamine ligands: [Cu(2,2'-bipyridine)(ACC)(H2O)](ClO4) (1a), [Cu(1,10-phenanthroline)(ACC)](ClO4) (2a), [Cu(2-picolylamine)(ACC)](ClO4) (3a), and [Cu(2,2'-bipyridine)(AIB)(H2O)](ClO4) (1b). All of the complexes were characterized by X-ray diffraction analysis. The Cu(II)-ACC complexes are able to convert the bound ACC moiety into ethylene in the presence of hydrogen peroxide, in an "ACC-oxidase-like" activity. A few equivalents of base are necessary to deprotonate H2O2 for optimum activity. The presence of dioxygen lowers the yield of ACC conversion into ethylene by the copper(II) complexes. During the course of the reaction of Cu(II)-ACC complexes with H2O2, brown species (EPR silent and lambda max approximately 435 nm) were detected and characterized as being the Cu(I)-ACC complexes that are obtained upon reduction of the corresponding Cu(II) complexes by the deprotonated form of hydrogen peroxide. The geometry of the Cu(I) species was optimized by DFT calculations that reveal a change from square-planar to tetrahedral geometry upon reduction of the copper ion, in accordance with the observed nonreversibility of the redox process. In situ prepared Cu(I)-ACC complexes were also reacted with hydrogen peroxide, and a high level of ethylene formation was obtained. We propose Cu(I)-OOH as a possible active species for the conversion of ACC into ethylene, the structure of which was examined by DFT calculation.
Yuan, Chao; Liu, Bianhua; Liu, Fei; Han, Ming-Yong; Zhang, Zhongping
2014-01-21
A new "turn on" fluorescence nanosensor for selective Hg(2+) determination is reported based on bis(dithiocarbamato)copper(II) functionalized carbon nanodots (CuDTC2-CDs). The CuDTC2 complex was conjugated to the prepared amine-coated CDs by the condensation of carbon disulfide onto the nitrogen atoms in the surface amine groups, followed by the coordination of copper(II) to the resulting dithiocarbamate groups (DTC) and finally by the additional coordination of ammonium N-(dithicarbaxy) sarcosine (DTCS) to form the CuDTC2-complexing CDs. The CuDTC2 complex at surface strongly quenched the bright-blue fluorescence of the CDs by a combination of electron transfer and energy transfer mechanism. Hg(2+) could immediately switch on the fluorescence of the CuDTC2-CDs by promptly displacing the Cu(2+) in the CuDTC2 complex and thus shutting down the energy transfer pathway, in which the sensitive limit for Hg(2+) as low as 4 ppb was reached. Moreover, a paper-based sensor has been fabricated by printing the CuDTC2-CDs probe ink on a piece of cellulose acetate paper using a commercial inkjet printer. The fluorescence "turn on" on the paper provided the most conveniently visual detection of aqueous Hg(2+) ions by the observation with naked eye. The very simple and effective strategy reported here facilitates the development of portable and reliable fluorescence nanosensors for the determination of Hg(2+) in real samples.
A selectively rhodamine-based colorimetric probe for detecting copper(II) ion.
Zhang, Jiangang; Zhang, Li; Wei, Yanli; Chao, Jianbing; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan
2014-11-11
A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene.
Hu, Rui; Yang, Pengfei; Pan, Yongning; Li, Yunpeng; He, Yufei; Feng, Junting; Li, Dianqing
2017-10-10
A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO 2 -, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that Cu II of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.
Cheon, Ja Young; Park, Won Ho
2016-01-01
This articles reports a simple and green method for preparing uniform silver nanoparticles (AgNPs), for which self-polymerized 3,4-dihydroxy-l-phenylalanine (polyDOPA) is used as the reducing and stabilizing agent in aqueous media. The AgNPs functionalized by polyDOPA were analyzed by UV–Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Raman spectrophotometry, and X-ray diffraction (XRD) techniques. The results revealed that the polyDOPA-AgNPs with diameters of 25 nm were well dispersed due to the polyDOPA. It was noted that the polyDOPA-AgNPs showed selectivity for Pb2+ and Cu2+ detection with the detection limits for the two ions as low as 9.4 × 10−5 and 8.1 × 10−5 μM, respectively. Therefore, the polyDOPA-AgNPs can be applied to both Pb2+ and Cu2+ detection in real water samples. The proposed method will be useful for colorimetric detection of heavy metal ions in aqueous media. PMID:27916894
Synthesis and characterization of an N-(2-hydroxyethyl)-ethylenediaminetriacetic acid resin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Yuet Fan
1977-10-01
A chelating ion-exchange resin with N-(2-hydroxyethyl)ethylene-diaminetriacetic acid (HEDTA) used as the ligand chemically bonded to XAD-4 by an ester linkage, HEDTA-4, was synthesized. It is stable under normal experimental conditions with the liquid chromatograph. The structure of the resin was confirmed by an infrared spectrum, and by potentiometric titrations. The capacity of the resin was also obtained by potentiometric titration and by a nitrogen analysis. The resin was used to pack a column of 5 mm internal diameter and 5 cm long. The effect of pH on the retention of different metal ions on the resin was studied. It wasmore » found that the resin was most selective for chromium(III), copper(II), lead(II), mercury(II), uranium(VI), zirconium(IV) and zinc(II) at a pH of less than 3. Furthermore, the resin proves to be functioning with a chelating mechanism rather than ion-exchange, and it can concentrate trace metal ions in the presence of a large excess of calcium and magnesium. This makes the resin potentially useful for purifying and analyzing drinking water.« less
Kato, Merii; Tanase, Tomoaki; Mikuriya, Masahiro
2006-04-03
Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X-ray crystallography to involve two different tetranuclear complexes with alpha- and beta-anomers of D-Fru-1,6-P2, [Cu4(mu-alpha-D-Fru-1,6-P2)(XDK)2(phen)4] and [Cu4(mu-beta-D-Fru-1,6-P2)(XDK)2(phen)4], in which the D-Fru-1,6-P2 tetravalent anion bridges the two [Cu2(XDK)(phen)2]2+ units through the C1 and C6 phosphate groups in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.042(2)-4.100(2) A). Notably, the structure with alpha-D-Fru-1,6-P2 demonstrated the presence of a strong hydrogen bond between the C2 hydroxyl group and the C1 phosphate oxygen atom, which may support the previously proposed catalytic mechanism in the active site of fructose-1,6-bisphosphatase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathias, C.J.; Welch, M.J.; Raichle, M.E.
1990-03-01
Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon single-pass cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM andmore » Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of (64Cu)-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and (64Cu)-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the single-pass study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that (62Cu)-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.« less
Students' conceptual performance on synthesis physics problems with varying mathematical complexity
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-06-01
A body of research on physics problem solving has focused on single-concept problems. In this study we use "synthesis problems" that involve multiple concepts typically taught in different chapters. We use two types of synthesis problems, sequential and simultaneous synthesis tasks. Sequential problems require a consecutive application of fundamental principles, and simultaneous problems require a concurrent application of pertinent concepts. We explore students' conceptual performance when they solve quantitative synthesis problems with varying mathematical complexity. Conceptual performance refers to the identification, follow-up, and correct application of the pertinent concepts. Mathematical complexity is determined by the type and the number of equations to be manipulated concurrently due to the number of unknowns in each equation. Data were collected from written tasks and individual interviews administered to physics major students (N =179 ) enrolled in a second year mechanics course. The results indicate that mathematical complexity does not impact students' conceptual performance on the sequential tasks. In contrast, for the simultaneous problems, mathematical complexity negatively influences the students' conceptual performance. This difference may be explained by the students' familiarity with and confidence in particular concepts coupled with cognitive load associated with manipulating complex quantitative equations. Another explanation pertains to the type of synthesis problems, either sequential or simultaneous task. The students split the situation presented in the sequential synthesis tasks into segments but treated the situation in the simultaneous synthesis tasks as a single event.
Does Cu(acac)2 Quench Benzene Fluorescence? A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Marciniak, Bronislaw
1986-01-01
Describes a laboratory experiment in which benzene fluorescence is quenched by bis(acetylacetonato) copper(II). Discusses how this experiment can demonstrate a special technique used in the field of photochemistry. Provides an outline of the experimental procedure and discusses its results. (TW)
Suwalsky, Mario; Castillo, Ivan; Sánchez-Eguía, Brenda N; Gallardo, María José; Dukes, Nathan; Santiago-Osorio, Edelmiro; Aguiñiga, Itzen; Rivera-Martínez, Ana R
2018-01-01
Two cytotoxic copper(II) complexes with N-H and N-methylated benzimidazole-derived ligands (Cu-L 1 and Cu-L 1Me ; L 1 =bis(2-methylbenzimidazolyl)(2-methylthioethyl)amine, L 1Me =bis(1-methyl-2-methylbenzimidazolyl)(2-methylthioethyl)amine) were synthesized and exposed to human erythrocytes and molecular models of its membrane. The latter were bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), classes of lipids present in the external and internal moieties of the human red cell membrane, respectively. Scanning electron microscopy (SEM) of erythrocytes incubated with solutions of both Cu(II) complexes showed that they induced morphological changes to the normal cells to echinocytes, and hemolysis at higher concentrations. Real-time observation of the dose-dependent effects of the complexes on live erythrocytes by defocusing microscopy (DM) confirmed SEM results. The formation of echinocytes implied that complex molecules inserted into the outer moiety of the red cell membrane. X-ray diffraction studies on DMPC and DMPE showed that none of these complexes interacted with DMPE and only Cu-L 1 interacted with DMPC. This difference was explained by the fact that Cu-L 1Me complex is more voluminous than Cu-L 1 because it has two additional methyl groups; on the other hand, DMPC molecule has three methyl groups in its bulky terminal amino end. Thus, by steric hindrance Cu-L 1Me molecules cannot intercalate into DMPC bilayer, which besides is present in the gel phase. These results, together with the increased antiproliferative capacity of the N-methylated complex Cu-L 1Me over that of Cu-L 1 are rationalized mainly based on its higher lipophilicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh
2005-09-01
A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.
Nandi, Mahasweta; Roy, Partha; Uyama, Hiroshi; Bhaumik, Asim
2011-12-14
Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to obtain copper and nickel anchored mesoporous materials, designated as Cu-AMM and Ni-AMM, respectively. The materials have been characterized by Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance (DRS) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption studies and (13)C CP MAS NMR spectroscopy. The metal-grafted mesoporous materials have been used as catalysts for the efficient and selective epoxidation of alkenes, viz. cyclohexene, trans-stilbene, styrene, α-methyl styrene, cyclooctene and norbornene to their corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant under mild liquid phase conditions.
Rezende, Patrícia Sueli; Carmo, Geraldo Paulo do; Esteves, Eduardo Gonçalves
2015-06-01
We report the use of a method to determine the refractive index of copper(II) serum (RICS) in milk as a tool to detect the fraudulent addition of water. This practice is highly profitable, unlawful, and difficult to deter. The method was optimized and validated and is simple, fast and robust. The optimized method yielded statistically equivalent results compared to the reference method with an accuracy of 0.4% and quadrupled analytical throughput. Trueness, precision (repeatability and intermediate precision) and ruggedness are determined to be satisfactory at a 95.45% confidence level. The expanded uncertainty of the measurement was ±0.38°Zeiss at the 95.45% confidence level (k=3.30), corresponding to 1.03% of the minimum measurement expected in adequate samples (>37.00°Zeiss). Copyright © 2015 Elsevier B.V. All rights reserved.
Shintani, H
1985-05-31
Studies were made of the analytical conditions required for indirect photometric ion chromatography using ultraviolet photometric detection (UV method) for the determination of serum cations following a previously developed serum pre-treatment. The sensitivities of the conductivity detection (CD) and UV methods and the amounts of serum cations determined by both methods were compared. Attempts to improve the sensitivity of the conventional UV method are reported. It was found that the mobile phase previously reported by Small and Miller showed no quantitative response when more than 4 mM copper(II) sulphate pentahydrate was used. As a result, there was no significant difference in the amounts of serum cations shown by the CD and UV methods. However, by adding 0.5-5 mM cobalt(II) sulphate heptahydrate, nickel(II) sulphate hexahydrate, zinc(II) sulphate heptahydrate or cobalt(II) diammonium sulphate hexahydrate to 0.5-1.5 mM copper(II) sulphate pentahydrate, higher sensitivity and a quantitative response were attained.
Kumar, Jutika; Bhattacharyya, Pradip K; Das, Diganta Kumar
2015-03-05
Schiff base derived from naphthylamine and benzil (L) binds to two Cu(2+) ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu(2+) ion over the metal ions - Na(+), K(+), Ca(2+) Mn(2+), Co(2+) Ni(2+), Zn(2+), Pb(2+), Cd(2+), Hg(2+), Ag(+), Hg(2+) and Al(3+) in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5×10(-5) to 3×10(-4)M and detection limit 10(-5)M. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Jutika; Bhattacharyya, Pradip K.; Das, Diganta Kumar
2015-03-01
Schiff base derived from naphthylamine and benzil (L) binds to two Cu2+ ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu2+ ion over the metal ions - Na+, K+, Ca2+ Mn2+, Co2+ Ni2+, Zn2+, Pb2+, Cd2+, Hg2+, Ag+, Hg2+ and Al3+ in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5 × 10-5 to 3 × 10-4 M and detection limit 10-5 M.
Efficient plasmid DNA cleavage by a mononuclear copper(II) complex.
Sissi, Claudia; Mancin, Fabrizio; Gatos, Maddalena; Palumbo, Manlio; Tecilla, Paolo; Tonellato, Umberto
2005-04-04
The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed.
Synthesis and Study of Metallonitride Complexes and Polymers
1992-03-02
heterobimetallic nitride-bridged complexes, examples of homobimetallic nitride-bridged complexes, and new linear chain metallonitride polymers. We...the Nitride Bridge. Synthesis and Reactivity of Early-Late Heterobimetallic Nitride-Bridged Complexes," C. M. Jones, D. M.-T. Chan, J. C. Calabrese
STUDIES ON BIOSORPTION OF ZINC(II) AND COPPER(II) ON DESULFOVIBRIO DESULFURICANS
The objectives of thes studies are to determine the equilibrium concentration and kinetics of metal sorption on sulfate-reducing bacteria (SRB) isolates. Adsorption establishes the net reversible cellular metal uptake and is related to SRB metal toxicity and the effects of enviro...
NASA Astrophysics Data System (ADS)
Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.
2015-04-01
Studies on the physicochemical properties of biomimetic compounds of multicopper oxidases are fundamental to understand their reaction mechanisms and catalytic behavior. In this work, electronic, optical, and chiroptical properties of copper(II) complexes with amino-alcohol chiral ligands are theoretically studied by means of time-dependent density functional theory. The calculated absorption and circular dichroism spectra are compared with experimental measurements of these spectra for an uncoordinated pseudoephedrine derivative, as well as for the corresponding mononuclear and trinuclear copper(II)-coordinated complexes. This comparison is useful to gain insights into their electronic structure, optical absorption and optical activity. The optical absorption and circular dichroism bands of the pseudoephedrine derivative are located in the UV-region. They are mainly due to transitions originated from n to π anti-bonding orbitals of the alcohol and amino groups, as well as from π bonding to π anti-bonding orbitals of carboxyl and phenyl groups. In the case of the mononuclear and trinuclear compounds, additional signals in the visible spectral region are present. In both systems, the origin of these bands is due to charge transfer from ligand to metal and d-d transitions.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Nour El-Dien, F. A.; El-Nahas, R. G.
2011-10-01
The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. The Cu(II) chelates with coupled products of dopamine hydrochloride (DO.HCl) and vanillymandelic acid (VMA) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical techniques namely IR, magnetic and UV-vis spectra are used to investigate the structure of these chelates. Cu(II) forms 1:1 (Cu:DO) and 1:2 (Cu:VMA) chelates. DO behave as a uninegative tridentate ligand in binding to the Cu(II) ion while VMA behaves as a uninegative bidentate ligand. IR spectra show that the DO is coordinated to the Cu(II) ion in a tridentate manner with ONO donor sites of the phenolic- OH, -NH and carbonyl- O, while VMA is coordinated with OO donor sites of the phenolic- OH and -NH. Magnetic moment measurements reveal the presence of Cu(II) chelates in octahedral and square planar geometries with DO and VMA, respectively. The thermal decomposition of Cu(II) complexes is studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Michael Edward
1993-10-01
The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C 5-symmetrical cyclopentadienyl rings.
ERIC Educational Resources Information Center
Ison, Elon A.; Ison, Ana
2012-01-01
A multistep experiment for an advanced synthesis lab course that incorporates topics in organic-inorganic synthesis and catalysis and highlights green chemistry principles was developed. Students synthesized two "N"-heterocyclic carbene ligands, used them to prepare two well-defined copper(I) complexes and subsequently utilized the complexes as…
Jomova, Klaudia; Lawson, Michael; Drostinova, Lenka; Lauro, Peter; Poprac, Patrik; Brezova, Vlasta; Michalik, Martin; Lukes, Vladimir; Valko, Marian
2017-12-01
The radical scavenging and metal chelating properties of flavonoids indicate that they may play a protective role in diseases with perturbed metal homeostasis such as Alzheimer's disease. In this work we investigated the effect of the coordination of quercetin to copper(II) in view of the formation of ROS in Cu-catalyzed Fenton reaction. ABTS and DPPH assays confirmed that the copper(II)-quercetin complex exhibits a stronger radical scavenging activity than does quercetin alone. EPR spin trapping experiments have shown that chelation of quercetin to copper significantly suppressed the formation of hydroxyl radicals in the Cu(II)-Fenton reaction. DNA damage experiments revealed a protective effect for quercetin, but only at higher stoichiometric ratios of quercetin relative to copper. DNA protective effect of quercetin against ROS attack was described by two mechanisms. The first mechanism lies in suppressed formation of ROS due to the decreased catalytic action of copper in the Fenton reaction, as a consequence of its chelation and direct scavenging of ROS by free quercetin. Since the Cu-quercetin complex intercalates into DNA, the second mechanism was attributed to a suppressed intercalating ability of the Cu-quercetin complex due to the mildly intercalating free quercetin into DNA, thus creating a protective wall against stronger intercalators. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Eldesoky, A. M.; Morgan, Sh. M.
2015-01-01
An interesting azodye heterocyclic ligand of copper(II), cobalt(II), nickel(II) and uranyl(II) complexes have been synthesized by the reaction of metal salts with 5-(2,3-dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, magnetic moments, spectral (UV-Vis, IR, 1H and 13C NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structures of the ligand tautomers are optimized theoretically and the quantum chemical parameters are calculated. The IR spectra showed that the ligand (HL) act as monobasic tridentate/neutral bidentate through the (sbnd Ndbnd N), enolic (Csbnd O)- and/or oxygen keto moiety groups forming a five/six-membered structures. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The molar conductivities show that all the complexes are non-electrolytes. The ESR spectra indicate that the free electron is in dxy orbital. The calculated bonding parameter indicates that in-plane σ-bonding is more covalent than in-plane π-bonding. The coordination geometry is five/six-coordinated trigonal bipyramidal for complex (1) and octahedral for complexes (2-6). The value of covalency factor β12 and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. The synthesized ligand (HL) and its Cu(II) complexes (1, 2 and 4) are screened for their biological activity against bacterial and fungal species. The ligand (HL) showed antimicrobial activities against Escherichia coli. The ligand (HL) and its Cu(II) complexes (2 and 4) have very high antifungal activity against Penicillium italicum. The inhibitive action of ligand (HL), against the corrosion of C-steel in 2 M HCl solution has been investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).
ERIC Educational Resources Information Center
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-01-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking,…
Synthesis and Characterization of Heterobimetallic Iridium-Aluminum and Rhodium-Aluminum Complexes.
Brewster, Timothy P; Nguyen, Tan H; Li, Zhongjing; Eckenhoff, William T; Schley, Nathan D; DeYonker, Nathan J
2018-02-05
We demonstrate the synthesis and characterization of a new class of late-transition-metal-aluminum heterobimetallic complexes via a novel synthetic pathway. Complexes of this type are exceedingly rare. Joint experimental and theoretical data sheds light on the electronic effect of ligands containing aluminum moieties on late-transition-metal complexes.
NASA Astrophysics Data System (ADS)
Shi, Jingwen; Lan, Wenlong; Ren, Yanjie; Liu, Qingyun; Liu, Hui; Dong, Yunhui; Zhang, Daopeng
2018-04-01
Four pyridinecarboxamide trans-dicyanideiron(III) building blocks and one macrocyclic copper(II) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a serials of cyanide-bridged FeIII-CuII complexes with different structure types. The series of complexes can be formulated as: {[Cu(Cyclam)][Fe(bpb)(CN)2]2}·4H2O (1), {{[Cu(Cyclam)][Fe(bpb)(CN)2]}ClO4}n·nH2O (2), and {[Cu(Cyclam)][Fe(bpmb)(CN)2]2}·4H2O (3), {[Cu(Cyclam)][Fe(bpClb)(CN)2]2}·4H2O (4) and {{[Cu(Cyclam)][Fe(bpdmb)(CN)2]}ClO4}n·2nCH3OH (5) (bpb2- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2- = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2- = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate, bpdmb2- = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, Cyclam = 1,4,8,11-tetraazacyclotetradecane). All the complexes have been characterized by elemental analysis, IR spectra and structural determination. Single X-ray diffraction analysis shows the similar neutral sandwich-like structures for complexes 1, 3 and 4, in which the two cyano precursors acting as monodentate ligand through one of their two cyanide groups were coordinated face to face to central Cu(II) ion. The complexes 2 and 5 can be structurally characterized as one-dimensional cationic single chain consisting of alternating units of [Cu(Cyclam)]2+ and [Fe(bpb/bpdmb)(CN)2]- with free ClO4- as balanced anion. Investigation over magnetic properties of the whole serials of complexes reveals the antiferromagnetic magnetic coupling between the neighboring cyanide-bridged Fe(III) and Cu(II) ions in complexes 3 and 4 and the ferromagnetic interaction in complexes 1, 2 and 5, respectively.
Roy, Sanjay; Mondal, Palash; Sengupta, Partha Sarathi; Dhak, Debasis; Santra, Ramesh Chandra; Das, Saurabh; Guin, Partha Sarathi
2015-03-28
A 1 : 2 copper(II) complex of 1-amino-4-hydroxy-9,10-anthraquinone (QH) having the molecular formula CuQ2 was prepared and characterized by elemental analysis, NMR, FTIR, UV-vis and mass spectroscopy. The powder diffraction of the solid complex, magnetic susceptibility and ESR spectra were also recorded. The presence of the planar anthraquinone moiety in the complex makes it extremely difficult to obtain a single crystal suitable for X-ray diffraction studies. To overcome this problem, density functional theory (DFT) was used to evaluate an optimized structure of CuQ2. In the optimized structure, it was found that there is a tilt of the two planar aromatic anthraquinone rings of the complex with respect to each other in the two planes containing the O-Cu(II)-O plane. The present study is an important addition to the understanding of the structural aspects of metal-anthracyclines because there are only a few reports on the actual structures of metal-anthracyclines. The theoretical vibrational spectrum of the complex was assigned with the help of vibrational energy distribution analysis (VEDA) using potential energy distribution (PED) and compared with experimental results. Being important in producing the biochemical action of this class of molecules, the electrochemical behavior of the complex was studied in aqueous and non-aqueous solvents to find certain electrochemical parameters. In aqueous media, reduction involves a kinetic effect during electron transfer at an electrode surface, which was characterized very carefully using cyclic voltammetry. Electrochemical studies showed a significant modification in the electrochemical properties of 1-amino-4-hydroxy-9,10-anthraquinone (QH) when bound to Cu(II) in the complex compared to those observed for free QH. This suggests that the copper complex might be a good choice as a biologically active molecule, which was reflected in the lack of stimulated superoxide generation by the complex.
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-10-01
X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.
Simple Potentiometric Determination of Reducing Sugars
ERIC Educational Resources Information Center
Moresco, Henry; Sanson, Pedro; Seoane, Gustavo
2008-01-01
In this article a potentiometric method for reducing sugar quantification is described. Copper(II) ion reacts with the reducing sugar (glucose, fructose, and others), and the excess is quantified using a copper wire indicator electrode. In order to accelerate the kinetics of the reaction, working conditions such as pH and temperature must be…
Some More Microscale Gas Experiments
ERIC Educational Resources Information Center
Worley, Bob
2011-01-01
In 1984, a teacher was successfully prosecuted by the Health and Safety Executive. The case centred around chemically prepared hydrogen that was dried by bubbling it through concentrated sulfuric(VI) acid and then passed over hot copper(II) oxide. The procedure was often carried out quantitatively to find the mass of copper in a sample of…
ANALYSIS OF ANIONIC METALLIZED AZO AND FORMAZAN DYES BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY
Capillary electrophoresis-mass spectrometry was applied to the separation of several anionic dyes containing copper(II), chromium(III), or cobalt(III) as part of the dye molecule. The dyes were separated using a 110 cmX50 mu m uncoated fused-silica capillary and a 5 mM ammonium a...
Characterization of Cu(II)-reconstituted ACC Oxidase using experimental and theoretical approaches.
El Bakkali-Tahéri, Nadia; Tachon, Sybille; Orio, Maylis; Bertaina, Sylvain; Martinho, Marlène; Robert, Viviane; Réglier, Marius; Tron, Thierry; Dorlet, Pierre; Simaan, A Jalila
2017-06-01
1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II). Continuous wave (cw) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopies as well as Density Functional Theory (DFT) calculations were performed and models for the copper(II) binding sites were deduced. In all investigated enzymes, the copper ion is equatorially coordinated by the two histidine residues (H177 and H234) and probably two water molecules. The copper-containing enzymes are inactive, even when hydrogen peroxide is used in peroxide shunt approach. EPR experiments and DFT calculations were undertaken to investigate substrate's (ACC) binding on the copper ion and the results were used to rationalize the lack of copper-mediated activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu
2016-09-28
In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition.
Sobotta, Lukasz; Wierzchowski, Marcin; Mierzwicki, Michal; Gdaniec, Zofia; Mielcarek, Jadwiga; Persoons, Leentje; Goslinski, Tomasz; Balzarini, Jan
2016-02-01
Manganese(III), cobalt(II), copper(II), magnesium(II), zinc(II) and metal-free phthalocyanines, possessing 1,4,7-trioxanonyl substituents, at their non-peripheral positions, were subjected to photochemical, photodynamic and biological activity studies. Demetallated phthalocyanine and its metallated d-block analogues, with copper(II), cobalt(II), manganese(III) chloride, were found to be less efficient singlet oxygen generators in comparison to the zinc(II) analogue and zinc(II) phthalocyanine reference. Irradiation of several phthalocyanines for short time periods resulted in a substantially increased cytostatic activity against both suspension (leukemic/lymphoma at 85nM) and solid (cervix carcinoma at 72nM and melanoma at 81nM) tumour cell lines (up to 200-fold). Noteworthy is that enveloped viruses, such as for herpesvirus and influenza A virus, but not, non-enveloped virus strains, such as Coxsackie B4 virus and reovirus-1, exposed to irradiation in the presence of the phthalocyanines, markedly lost their infectivity potential. Copyright © 2015 Elsevier Inc. All rights reserved.
Grasso, G; Komatsu, H; Axelsen, P H
2017-09-01
Amyloid β peptides (Aβ) and metal ions are associated with oxidative stress in Alzheimer's disease (AD). Oxidative stress, acting on ω-6 polyunsaturated fatty acyl chains, produces diverse products, including 4-hydroxy-2-nonenal (HNE), which can covalently modify the Aβ that helped to produce it. To examine possible feedback mechanisms involving Aβ, metal ions and HNE production, the effects of HNE modification and fibril formation on metal ion binding was investigated. Results indicate that copper(II) generally inhibits the modification of His side chains in Aβ by HNE, but that once modified, copper(II) still binds to Aβ with high affinity. Fibril formation protects only one of the three His residues in Aβ from HNE modification, and this protection is consistent with proposed models of fibril structure. These results provide insight into a network of biochemical reactions that may be operating as a consequence of oxidative stress in AD, or as part of the pathogenic process. Copyright © 2016. Published by Elsevier Inc.
Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M
2017-04-04
The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.
Biosorption of Cu(II) by powdered anaerobic granular sludge from aqueous medium.
Zhou, Xu; Chen, Chuan; Wang, Aijie; Jiang, Guangming; Liu, Lihong; Xu, Xijun; Yuan, Ye; Lee, Duu-Jung; Ren, Nanqi
2013-01-01
Copper(II) biosorption processes by two pre-treated powdered anaerobic granular sludges (PAGS) (original sludges were methanogenic anaerobic granules and denitrifying sulfide removal (DSR) anaerobic granules) were investigated through batch tests. Factors affecting the biosorption process, such as pH, temperature and initial copper concentrations, were examined. Also, the physico-chemical characteristics of the anaerobic sludge were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy image, surface area and elemental analysis. A second-order kinetic model was applied to describe the biosorption process, and the model could fit the biosorption process. The Freundlich model was used for describing the adsorption equilibrium data and could fit the equilibrium data well. It was found that the methanogenic PAGS was more effective in Copper(II) biosorption process than the DSR PAGS, whose maximum biosorption capacity was 39.6% lower. The mechanisms of the biosorption capacities for different PAGS were discussed, and the conclusion suggested that the environment and biochemical reactions during the growth of biomass may have affected the structure of the PAGS. The methanogenic PAGS had larger specific surface area and more biosorption capacity than the DSR PAGS.
A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging
NASA Astrophysics Data System (ADS)
He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun
2018-04-01
In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765 nm when excited at 704 nm. The emission at 765 nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45 μM-36.30 μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.
A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging.
He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun
2018-04-15
In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765nm when excited at 704nm. The emission at 765nm responded differently to Cu 2+ and Mn 2+ ions, respectively. The BPN coordinated with Cu 2+ forming [BPNCu] 2+ complex with quenched emission, while Mn 2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu 2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu 2+ ions in serum with linear detection range of 0.45μM-36.30μM. Results indicate that BPN is a good sensor for the detection of Cu 2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood. Copyright © 2018 Elsevier B.V. All rights reserved.
Fu, Nina; Wang, Suiliang; Zhang, Yuqian; Zhang, Caixia; Yang, Dongliang; Weng, Lixing; Zhao, Baomin; Wang, Lianhui
2017-08-18
Candida is an important opportunistic human fungal pathogen. The cis-2-dodecenoic acid (BDSF) showing in vitro activity of against C. albicans growth, germ-tube germination and biofilm formation has been a potential inhibitor for Candida and other fungi. In this study, facile synthetic strategies toward a novel family of BDSF analogue, 1-alkyl-1H-1,2,3-triazole-4-carboxylic acids (ATCs) was developed. The straightforward synthetic method including converting the commercial available alkyl bromide to alkyl azide, consequently with a typical click chemistry method, copper(II) sulfate and sodium ascorbate as catalyst in water to furnish ATCs with mild to good yields. According to antifungal assay, 1-decyl-4,5-dihydro-1H-1,2,3-triazole-4-carboxylic acid (5d) showed antifungal capability slightly better than BDSF. The 1,2,3-triazole unit played a crucial role for the bioactivity of ATCs was also confirmed when compared with two alkyl-aromatic carboxylic acids. Given its simplicity, high antifungal activity, and wide availability of compounds with halide atoms on the end part of the alkyl chains, the method can be extended to develop more excellent ATC drugs for accomplishing the challenges in future antifungal applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Novel Dialkylamino Derivatives of Phosphorus and Silicon.
1987-10-19
Metal Carbonyl Complexes ," Inorg. Chem. 1985, 24, 3136-3139. (7) King, R. B., Fu, W.-K.; Holt, E. M. "The Synthesis of Heterobimetallic Complexes from...Carbonyl Complexes of Diisopropylaminohalophosphines and their Application for the Synthesis of Novel Bimetallic Complexes ," presented by W.-K. Fu at the...necessary and identify by block number) FIELD -GROUP SUB-GROUP Phosphorus /Metal Complexes Silicon Dialkylamino Metal Carbonyls Boron Cyclopolyphosphinesl
Pöller, Sascha; Beyl, Yvonne; Vivekananthan, Jeevanthi; Guschin, Dmitrii A; Schuhmann, Wolfgang
2012-10-01
A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin
2014-04-01
Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D frameworkmore » with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.« less
Wave field synthesis of moving virtual sound sources with complex radiation properties.
Ahrens, Jens; Spors, Sascha
2011-11-01
An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.
Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude
2014-11-28
Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.
Kubiak, Katarzyna; Malinowska, Katarzyna; Langer, Ewa; Dziki, Łukasz; Dziki, Adam; Majsterek, Ireneusz
2011-03-01
Colorectal cancer (CRC) is a serious medical and economical problem of our times. It is the most common gastrointestinal cancer in the world. In Poland, the treatment and detection of CRC are poorly developed and the pathogenesis is still unclear. One hypothesis suggests a role of reactive oxygen species (ROS) in the pathogenesis of CRC. Experimental studies in recent years confirm the participation of ROS in the initiation and promotion of CRC. The aim of the study was to examine the effect of the following coordination compounds coordination compounds: dinitrate (V) tetra(3,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dichloro di(3,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dinitrate (V) di(1,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dichloro di(1,3,4,5-tetramethyl-N1-pyrazole-κN2) copper(II) on the activity of antioxidant enzymes superoxide dismutase (SOD, ZnCu-SOD) and catalase (CAT) in a group of patients with colorectal cancer (CRC) and in the control group consisting of patients with minor gastrointestinal complaints. The study was conducted in 20 patients diagnosed with colorectal cancer at the age of 66.5±10.2 years (10 men and 10 women) versus the control group of 20 people (10 men and 10 women) aged 57.89±17.10 years without cancer lesions in the biological material - hemolysate prepared in a proportion of 1ml of water per 1 ml of blood. CAT activity was measured by the Beers method (1952), while SOD activity was measured by the Misra and Fridovich method (1972). We found that patients with CRC showed a statistically significant decrease of SOD and CAT activity (CAT - 12,75±1.97 U/g Hb, SOD - 1111.52±155.52 U/g Hb) in comparison with the control group (CAT - 19.65±2,17 U/g Hb, SOD - 2046.26±507.22 U/g Hb). Simultaneously, we observed that the investigated coordination compounds of Cu(II) significantly increased the antioxidant activity of CAT and SOD in patients with CRC (mean: CAT 25.23±4.86 U/g Hb, SOD - 3075.96±940.20 U/g Hb). Patients with colorectal cancer are characterized by reduced activity of antioxidant enzymes catalase and superoxide dismutase which suggests impaired antioxidant barrier. Therefore, coordination compounds of Cu (II), which enhance the activity of CAT and SOD, may prove useful in the prevention and treatment of colorectal cancer.
XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-08-01
X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.
Yang, Liangru; von Zelewsky, Alex; Nguyen, Huong P.; Muller, Gilles; Labat, Gaël; Stoeckli-Evans, Helen
2009-01-01
The stereoselective synthesis of a highly luminescent neutral Ir(III) complex comprising two bidentate chiral, cyclometalating phenylpyridine derivatives, and one acetylacetonate as ligands is described. The final complex and some intermediates were characterized by X-ray structural analysis, NMR-, CD-, and CPL-spectroscopy. PMID:20161195
Wagner, Thomas; Zeglis, Brian M.; Groveman, Sam; Hille, Claudia; Pöthig, Alexander; Francesconi, Lynn C.; Herrmann, Wolfgang A.; Kühn, Fritz E.; Reiner, Thomas
2015-01-01
A novel approach towards the synthesis of radiolabeled organometallic rhenium complexes is presented. We successfully synthesized and analyzed the first 188Re-labeled N-heterocyclic biscarbene complex, trans-dioxobis(1,1′-methylene-bis(3,3′-diisopropylimidazolium-2-ylidene))188rhenium(V) hexafluorophosphate (188Re-4) via transmetalation using an air-stable and moisture-stable silver(I) biscarbene complex. In order to assess the viability of this complex as a potential lead structure for in vivo applications, the stability of the 188Re-NHC complex was tested in physiologically relevant media. Ultimately, our studies illustrate that the complex we synthesized dissociates rapidly and is therefore unsuitable for use in radiopharmaceuticals. However, it is clear that the transmetalation approach we have developed is a rapid, robust, and mild method for the synthesis of new 188Re-labeled carbene complexes. PMID:24889257
Copper-promoted sulfenylation of sp2 C-H bonds.
Tran, Ly Dieu; Popov, Ilya; Daugulis, Olafs
2012-11-07
An auxiliary-assisted, copper catalyzed or promoted sulfenylation of benzoic acid derivative β-C-H bonds and benzylamine derivative γ-C-H bonds has been developed. The method employs disulfide reagents, copper(II) acetate, and DMSO solvent at 90-130 °C. Application of this methodology to the direct trifluoromethylsulfenylation of C-H bonds was demonstrated.
Chemical synthesis of water-soluble, chiral conducting-polymer complexes
Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng
2003-01-01
The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.
Garner, Ethan C; Bernard, Remi; Wang, Wenqin; Zhuang, Xiaowei; Rudner, David Z; Mitchison, Tim
2011-07-08
Rod-shaped bacteria elongate by the action of cell wall synthesis complexes linked to underlying dynamic MreB filaments. To understand how the movements of these filaments relate to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-precision particle tracking in Bacillus subtilis. We found that MreB and the elongation machinery moved circumferentially around the cell, perpendicular to its length, with nearby synthesis complexes and MreB filaments moving independently in both directions. Inhibition of cell wall synthesis by various methods blocked the movement of MreB. Thus, bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that insert radial hoops of new peptidoglycan during their transit, possibly driving the motion of the underlying MreB filaments.
Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia
2003-09-22
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.
Hoffmann, S K; Goslar, J; Bregier-Jarzebowska, R; Gasowska, A; Zalewska, A; Lomozik, L
2017-12-01
The mode of interaction and thermodynamic stability of complexes formed in binary and ternary Cu(II)/ATP/triamines systems were studied using potentiometric and spectroscopic (NMR, EPR, UV-Vis) methods. It was found that in binary metal-free systems ATP/H x PA species are formed (PA: Spd=spermidine or 3,3-tri=1,7-diamino-4-azaheptane) where the phosphate groups from nucleotides are preferred negative centers and protonated amine groups of amines are positive centers of reaction. In the ternary systems Cu/ATP/H x (PA) as well as Cu/(ATP)(PA) species are formed. The type of the formed Cu(II) complexes depends on pH of the solution. For a low pH value the complexation appears between Cu(II) and ATP molecules via oxygen atoms of phosphate groups. For a very high pH value, where ATP is hydrolyzed, the Cu(II) ions are bound to the nitrogen atoms of polyamine molecules. We did not detect any direct coordination of the N7 nitrogen atom of adenosine to Cu(II) ions. It means that the CuN7 interaction is an indirect type and can be due to noncovalent interplay including water molecule. EPR studies were performed at glassy state (77K) after a fast freezing both for binary and ternary systems. The glassy state EPR spectra do not reflect species identified in titration studies indicating significant effect of rapid temperature decrease on equilibrium of Cu(II) complexes. We propose the molecular structure of all the studied complexes at the glassy state deduced from EPR and optical spectroscopy results. Copyright © 2017 Elsevier Inc. All rights reserved.
Lomozik, Lechoslaw; Jastrzab, Renata
2003-01-15
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.
Mena, Silvia; Mirats, Andrea; Caballero, Ana B; Guirado, Gonzalo; Barrios, Leoní A; Teat, Simon J; Rodriguez-Santiago, Luis; Sodupe, Mariona; Gamez, Patrick
2018-04-06
The binding and electrochemical properties of the complexes Cu II -HAH, Cu II -HWH, Cu II -Ac-HWH, Cu II -HHW, and Cu II -WHH have been studied by using NMR and UV/Vis spectroscopies, CV, and density functional calculations. The results obtained highlight the importance of the peptidic sequence on the coordination properties and, consequently, on the redox properties of their Cu II complexes. For Cu II -HAH and Cu II -HWH, no cathodic processes are observed up to -1.2 V; that is, the complexes exhibit very high stability towards copper reduction. This behaviour is associated with the formation of very stable square-planar (5,5,6)-membered chelate rings (ATCUN motif), which enclose two deprotonated amides. In contrast, for non-ATCUN Cu II -Ac-HWH, Cu II -HHW complexes, simulations seem to indicate that only one deprotonated amide is enclosed in the coordination sphere. In these cases, the main electrochemical feature is a reductive irreversible one electron-transfer process from Cu II to Cu I , accompanied with structural changes of the metal coordination sphere and reprotonation of the amide. Finally, for Cu II -WHH, two major species have been detected: one at low pH (<5), with no deprotonated amides, and another one at high pH (>10) with an ATCUN motif, both species coexisting at intermediate pH. The present study shows that the use of CV, using glassy carbon as a working electrode, is an ideal and rapid tool for the determination of the redox properties of Cu II metallopeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Mata, Jose A.; Poyatos, Macarena; Mas-Marza, Elena
2011-01-01
The preparation and characterization of two air-stable Rh(I) complexes bearing a chelating N-heterocyclic carbene (NHC) ligand is described. The synthesis involves the preparation of a Ag(I)-NHC complex and its use as carbene transfer agent to a Rh(I) precursor. The so obtained complex can be further reacted with carbon monoxide to give the…
Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex.
Boniecki, Michal T; Freibert, Sven A; Mühlenhoff, Ulrich; Lill, Roland; Cygler, Miroslaw
2017-11-03
Iron-sulfur (Fe/S) clusters are essential protein cofactors crucial for many cellular functions including DNA maintenance, protein translation, and energy conversion. De novo Fe/S cluster synthesis occurs on the mitochondrial scaffold protein ISCU and requires cysteine desulfurase NFS1, ferredoxin, frataxin, and the small factors ISD11 and ACP (acyl carrier protein). Both the mechanism of Fe/S cluster synthesis and function of ISD11-ACP are poorly understood. Here, we present crystal structures of three different NFS1-ISD11-ACP complexes with and without ISCU, and we use SAXS analyses to define the 3D architecture of the complete mitochondrial Fe/S cluster biosynthetic complex. Our structural and biochemical studies provide mechanistic insights into Fe/S cluster synthesis at the catalytic center defined by the active-site Cys of NFS1 and conserved Cys, Asp, and His residues of ISCU. We assign specific regulatory rather than catalytic roles to ISD11-ACP that link Fe/S cluster synthesis with mitochondrial lipid synthesis and cellular energy status.
DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.
MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M
2015-09-14
The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.
Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.
2008-01-30
The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.
NASA Astrophysics Data System (ADS)
Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.
2011-09-01
A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.
Smith, Rose-Michelle; Sayen, Stéphanie; Nuns, Nicolas; Berrier, Elise; Guillon, Emmanuel
2018-05-23
The bioavailability of pharmaceuticals is governed by their sorption in soils/sediments, as the retention processes determine their concentration in surface- and ground-water. The adsorption of these contaminants can involve various solid components such as organic matter, clays and metallic oxides, and their distribution among these solid components depends on contaminant and solid properties. In this paper we studied the adsorption of the pharmaceutical propranolol - a beta-blocker - on eight different solids (six soils, one sediment and one kaolinite-based sample) by batch experiments. The influence of contact time, propranolol concentration and pH was considered, as well as the presence of copper(II). The investigated solids displayed a wide variability in terms of CEC (cationic exchange capacity) and organic carbon and carbonates contents. The influence of pH was negligible in the pH range from 5.5 to 8.6. The adsorbed amounts were greatly dependent on the solid and two groups of solids were evidenced: three soils of high CEC and organic carbon contents which retained high amounts of propranolol, and three soils, the sediment and the kaolinite-based sample (low CEC and organic carbon content) displaying a low adsorption capacity for the beta-blocker. A linear model enabling the determination of the sorption parameters K d and K oc was pertinent to describe the adsorption isotherms but the K oc values showed a great variability. It was shown that organic carbon content alone could not explain propranolol adsorption. The CEC value was identified as influent parameter and a simple empirical model was proposed to describe propranolol adsorption. At microscopic and molecular scales, ToF-SIMS experiments indicated (i) a decrease of potassium on the surface upon propranolol adsorption with a distribution of the beta-blocker similarly to alumino-silicates, iron and organic carbon on the surface confirming a cation exchange mechanism and (ii) the absence of degradation products and copper-propranolol complexes. Copyright © 2018. Published by Elsevier B.V.
Zhou, Ying-Hua; Chen, Li-Qing; Tao, Jun; Shen, Jun-Li; Gong, Dao-Yu; Yun, Rui-Rui; Cheng, Yong
2016-10-01
To construct the model of metallohydrolase, two inclusion complexes [MLCl 2 (β-CD)] (1, M=Zn(II); 2, M=Cu(II); L=N,N'-bis(2-pyridylmethyl)amantadine; β-CD=β-cyclodextrin) were synthesized by mixing β-CDs with the pre-synthesized complexes G1, [ZnLCl 2 ] and G2, [CuLCl 2 ]. Structures of G1, G2, 1 and 2 were characterized by X-ray crystallography, respectively. In solution, two chloride anions of G1 and G2 underwent ligand exchange with solvent molecules according to ESI-MS analysis. The chemical equilibrium constants were determined by potentiometric pH titration. The kinetics of bis(4-nitrophenyl) phosphate (BNPP) hydrolysis catalyzed by G1, G2, 1 and 2 were examined at pHs ranging from 7.50 to 10.50 at 308±0.1K. The pH profile of rate constant of BNPP hydrolysis catalyzed by 1 exhibited an exponential increase with the second-order rate constant of 2.68×10 -3 M -1 s -1 assigned to the di-hydroxo species, which was approximately an order of magnitude higher than those of reported mono-Zn(II)-hydroxo species. The high reactivity was presumably hydroxyl-rich microenvironment provided by β-CDs, which might effect in stabilizing either the labile zinc-hydroxo species or the catalytic transition state. Copyright © 2016 Elsevier Inc. All rights reserved.
Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods
2015-01-01
Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828
Sutradhar, Narottam; Sinhamahapatra, Apurba; Pahari, Sandip Kumar; Bajaj, Hari C; Panda, Asit Baran
2011-07-21
We report the synthesis of peroxo titanium carbonate complex solution as a novel water-soluble precursor for the direct synthesis of layered protonated titanate at room temperature. The synthesized titanates showed excellent removal capacity for Pb(2+) and methylene blue. Based on experimental observations, a probable mechanism for the formation of protonated layered dititanate sheets is also discussed.
Plant cellulose synthesis: CESA proteins crossing kingdoms.
Kumar, Manoj; Turner, Simon
2015-04-01
Cellulose is a biopolymer of considerable economic importance. It is synthesised by the cellulose synthase complex (CSC) in species ranging from bacteria to higher plants. Enormous progress in our understanding of bacterial cellulose synthesis has come with the recent publication of both the crystal structure and biochemical characterisation of a purified complex able to synthesis cellulose in vitro. A model structure of a plant CESA protein suggests considerable similarity between the bacterial and plant cellulose synthesis. In this review article we will cover current knowledge of how plant CESA proteins synthesise cellulose. In particular the focus will be on the lessons learned from the recent work on the catalytic mechanism and the implications that new data on cellulose structure has for the assembly of CESA proteins into the large complex that synthesis plant cellulose microfibrils. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Basal, Lina A.; Allen, Matthew J.
2018-03-01
Considerable research effort has focused on the in vivo use of responsive imaging probes that change imaging properties upon reacting with oxygen because hypoxia is relevant to diagnosing, treating, and monitoring diseases. One promising class of compounds for oxygen-responsive imaging is Eu(II)-containing complexes because the Eu(II/III) redox couple enables imaging with multiple modalities including magnetic resonance and photoacoustic imaging. The use of Eu(II) requires care in handling to avoid unintended oxidation during synthesis and characterization. This review describes recent advances in the field of imaging agents based on discrete Eu(II)-containing complexes with specific focus on the synthesis, characterization, and handling of aqueous Eu(II)-containing complexes.
Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E
2007-05-31
A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.
Reduction of Iodine by Phosphorus(I): Integration of the Rate Equation
ERIC Educational Resources Information Center
Kustin, Kenneth; Ross, Edward W.
2005-01-01
A. D. Mitchell's work on the phosphorus(I) reduction of the halogens and of mercury(II) and copper(II) chlorides is examined. A review of some salient characteristics of the Mitchell mechanism is presented, together with a discussion on how a student might benefit from a case study of the phosphorus(I) reduction of iodine or the similarly behaving…
NASA Astrophysics Data System (ADS)
Singh, Prashant; Kumar, Pradeep; Katyal, Anju; Kalra, Rashmi; Dass, Sujata K.; Prakash, Satya; Chandra, Ramesh
2010-03-01
In the present work, we report the synthesis and characterization of novel charge-transfer complexes of thiazolidine-2,4-dione (TZD) with sigma acceptor (iodine) and pi acceptors (chloranil, dichlorodicyanoquinone, picric acid and duraquinone). We also evaluated their thermal and electrochemical properties and we conclude that these complexes are frequency dependent. Charge-transfer complex between thiazolidine-2,4-dione and iodine give best conductivity. In conclusion, complex with sigma acceptors are more conducting than with pi acceptors.
Taha, A; Farag, A A M; Ammar, A H; Ahmed, H M
2014-03-25
In this work, a new solvatochromic mononuclear mixed ligand complex with the formula, Cu(DMCHD)(Me5dien)NO3 (where, DMCHD=5,5-Dimethyl cyclohexanate 1,3-dione and (Me5dien)=N,N,N',N'N″-pentamethyldiethylenetriamine was synthesized and characterized by analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The formation constant-value for copper (II)-DMCHD was found to be much lower than the expected for similar β-diketones, revealing monobasic unidentate nature of this ligand. The d-d absorption bands of the prepared complex exhibit a color changes in various solvent (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multi Parametric Linear Regression Analysis (MLRA). Structural parameters of the free ligands and their Cu (II) - complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The crystallite size and morphology of Cu(DMCHD)(Me5dien)NO3 were examined using XRD analysis and TEM, revealing that the complex is well crystalline and correspond to the monoclinic crystal structure. The lattice strain and mean crystallite size were estimated by Williamson-Hall (W-H) plot using X-ray diffraction data. The main important absorption parameters such as extinction molar coefficient, oscillator strength and electric dipole strength of the principal optical transitions in the UV-Vis region were calculated. The analysis of absorption coefficient near the fundamental absorption edge reveals that the optical band gaps are direct allowed transitions with values of 2.78 eV and 3.59 eV. The present copper (II) complex was screened for its antimicrobial activity against Staphylococcus Aureus and Bacillus Subtilis as Gram-positive bacteria, Escherichia Coli and Salmonella Typhimurium as Gram-negative bacteria and Candida Albicans as fungus strain. Copyright © 2013 Elsevier B.V. All rights reserved.
Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.
Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David
2017-04-01
Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical Synthesis of Complex Molecules Using Nanoparticle Catalysis
Cong, Huan; Porco, John A.
2011-01-01
Nanoparticle catalysis has emerged as an active topic in organic synthesis. Of particular interest is the development of enabling methodologies to efficiently assemble complex molecules using nanoparticle catalysis. This Viewpoint highlights recent developments and discusses future perspectives in this emerging field. PMID:22347681
NASA Astrophysics Data System (ADS)
Zhang, Weidong; Pan, Feng; Li, Jinjun; Wang, Zhen; Ding, Wei; Qin, Yi; Wu, Feng
2018-06-01
Silica-supported highly dispersed cobalt oxides prepared by adsorption are likely to be poorly reducible Co-phyllosilicates or CoO species. Here we report the synthesis of silica-supported monodispersed spinel nano-Co3O4 catalysts by inner-sphere complexation using CoIII ammine hydroxo complexes as precursors. The precursors were facilely prepared by stirring ammoniacal CoII solutions exposed to air. The cobalt loadings (up to 188 mg/g) and particle sizes (3-10 nm) were tailored by successive complexation-calcination cycles. Such catalysts showed significantly superior reducibility and catalytic activity in complete propane oxidation in comparison to supported Co-phyllosilicates and CoO. A further development of this synthesis process may provide a variety of cobalt-based catalysts for important catalytic applications.
Dearomatization Strategies in the Synthesis of Complex Natural Products
Roche, Stéphane P.; Porco, John A.
2014-01-01
Evolution in the field of the total synthesis of natural products has led to exciting developments over the last decade. Numerous chemo-selective and enantioselective methodologies have emerged from total syntheses, resulting in efficient access to many important natural product targets. This Review highlights recent developments concerning dearomatization, a powerful strategy for the total synthesis of architecturally complex natural products wherein planar, aromatic scaffolds are converted to three-dimensional molecular architectures. PMID:21506209
Cellulose microfibril structure: inspirations from plant diversity
NASA Astrophysics Data System (ADS)
Roberts, A. W.
2018-03-01
Cellulose microfibrils are synthesized at the plasma membrane by cellulose synthase catalytic subunits that associate to form cellulose synthesis complexes. Variation in the organization of these complexes underlies the variation in cellulose microfibril structure among diverse organisms. However, little is known about how the catalytic subunits interact to form complexes with different morphologies. We are using an evolutionary approach to investigate the roles of different catalytic subunit isoforms in organisms that have rosette-type cellulose synthesis complexes.
Tomabechi, Yusuke; Katoh, Toshihiko; Kunishima, Munetaka; Inazu, Toshiyuki; Yamamoto, Kenji
2017-08-01
For chemo-enzymatic synthesis of a glycosylated peptide, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was used for the synthesis of a N-acetylglucosaminyl peptide and a pseudoglycopeptide by solid-phase peptide synthesis without the requirement of protecting groups on the carbohydrate. We also performed transglycosylation of an N-glycan to the N-acetylglucosaminyl peptide using endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) to synthesize a glycopeptide containing a complex N-glycan.
Leonhartsberger, S; Lafferty, R M; Korneti, L
1993-09-01
Optimal conditions for both biomass formation and penicillin synthesis by a strain of Penicillium chrysogenum were determined when using a collagen-derived nitrogen source. Preliminary investigations were carried out in shaken flask cultures employing a planned experimental program termed the Graeco-Latin square technique (Auden et al., 1967). It was initially determined that up to 30% of a conventional complex nitrogen source such as cottonseed meal could be replaced by the collagen-derived nitrogen source without decreasing the productivity with respect to the penicillin yield. In the pilot scale experiments using a 30 l stirred tank type of bioreactor, higher penicillin yields were obtained when 70% of the conventional complex nitrogen source in the form of cottonseed meal was replaced by the collagen hydrolysate. Furthermore, the maximum rate of penicillin synthesis continued for over a longer period when using collagen hydrolysate as a complex nitrogen source. Penicillin synthesis rates were determined using a linear regression.
ERIC Educational Resources Information Center
Petrusevski, Vladimir M.; Stojanovska, Marina
2010-01-01
The colour of the copper layer deposited on a graphite electrode during electrolysis of an aqueous solution of copper(II) sulfate looks whitish-grey when inspected in situ. Taking the electrode out of the solution reveals the familiar orange-red colour of deposited copper. The explanation is found in terms of the almost ideal complementary colours…
Chen, Huayao; Lin, Yueshun; Zhou, Hongjun; Zhou, Xinhua; Gong, Sheng; Xu, Hua
2016-11-02
The salicylaldehyde-modified mesoporous silica (SA-MCM-41) was prepared through a co-condensation method. Through the bridge effect from the copper ion, which also acts as the nutrition of the plant, the model drug chlorpyrifos (CH) was supported on the copper(II) Schiff base mesoporous silica (Cu-MCM-41) to form a highly efficient sustained-release system (CH-Cu-MCM-41) for pesticide delivery. The experimental results showed that the larger the concentration of the copper ion, the more adsorption capacity (AC) of Cu-MCM-41 for chlorpyrifos and the smaller its release rate. The results confirmed the existence of a coordination bond between SA-MCM-41 and copper ions as well as a coordination bond between Cu-MCM-41 and chlorpyrifos. The AC of SA-MCM-41 is 106 mg/g, while that of Cu-MCM-41 is 295 mg/g. The as-synthesized system showed significant pH sensitivity. Under the condition of pH ≤ 7, the release rate of chlorpyrifos decreased with increasing pH, whereas its release rate in weak base conditions was slightly larger than that in weak acid conditions. Meanwhile, the drug release rate of the as-synthesized system was also affected by the temperature. Their sustained-release curves can be described by the Korsmeyer-Peppas equation.
Clegg, William; Harrington, Ross W; North, Michael; Villuendas, Pedro
2010-09-17
The combined use of the bimetallic aluminum(salen) complex [Al(salen)](2)O and tetrabutylammonium bromide (or tributylamine) is found to catalyze the reaction between epoxides and carbon disulfide. In most cases, at 50 °C, the reaction produces 1,3-oxathiolane-2-thiones, while at 90 °C, 1,3-dithiolane-2-thiones are the main product. The structure and stereochemistry of three of the 1,3-dithiolane-2-thiones is unambiguously determined by X-ray crystallographic analysis, and this is used to correct errors in the literature concerning the synthesis of cyclic di- and trithiocarbonates. The kinetics of 1,3-oxathiolane-2-thione synthesis are determined, and the resulting rate equation, along with a stereochemical analysis of the reaction and catalyst modification studies, is used to determine a mechanism for the synthesis of 1,3-oxathiolane-2-thiones which contrasts with the mechanism previously determined for cyclic carbonate synthesis using the same bimetallic aluminum(salen) complex.
Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.
Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho
2018-04-16
We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.
Mechanism for priming DNA synthesis by yeast DNA Polymerase α
Perera, Rajika L; Torella, Rubben; Klinge, Sebastian; Kilkenny, Mairi L; Maman, Joseph D; Pellegrini, Luca
2013-01-01
The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI: http://dx.doi.org/10.7554/eLife.00482.001 PMID:23599895
NASA Technical Reports Server (NTRS)
Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw
1990-01-01
Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.
Synthesis of rhodium-containing heterobimetallic hydride complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, C.P.; Whiteker, G.T.
1990-02-21
The reduction chemistry of heterobimetallic dihydrides are of much interest. Three heterobimetallic monohydride complexes containing Rh bound to either Re or Ta were isolated during synthetic attempts at preparing heterobimetallic dihydrides. The mode of synthesis, characterization, and reactivity of these three heterobimetallic compounds are discussed herein. 19 refs.
Synthesis and biological evaluation of new diisocyanide- and triisocyanide-99mTc complexes.
Chemin, N; du Moulinet d'Hardemare, A; Bouquillon, S; Fagret, D; Vidal, M
1996-01-01
This paper describes the synthesis of four new polyisocyanides (three diisocyanides and one triisocyanide). The complexation of 99mTc with these ligands is also studied through chromatography and revealed the formation of hexacoordinated 99mTc+1 complexes. Finally, biodistributions of these complexes in mice are given and compared. Heart captations are lower than the ones with [99mTc(MIBI)6]+ but remain constant and a satisfactory lungs clearance, probably due to the metabolization of the ligands, is observed.
Step-by-step growth of complex oxide microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Step-by-step growth of complex oxide microstructures
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
2015-06-10
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Holland, Jason P; Green, Jennifer C
2010-04-15
The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) < 3.5% and epsilon(SF) values close to unity (>0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes. 2009 Wiley Periodicals, Inc.
Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes
Boscencu, Rica; Oliveira, Anabela Sousa; Ferreira, Diana P.; Ferreira, Luís Filipe Vieira
2012-01-01
Synthesis and spectral evaluation of new zinc and copper unsymmetrical mesoporphyrinic complexes are reported. Zn(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Zn(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Cu(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin and Cu(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin were synthesized using microwave-assisted synthesis. The complexes were characterized by elemental analysis, FT-IR, UV-Vis, EPR and NMR spectroscopy, which fully confirmed their structure. The spectral absorption properties of the porphyrinic complexes were studied in solvents with different polarities. Fluorescence emission and singlet oxygen formation quantum yields were evaluated for the compounds under study, revealing high yields for the zinc derivatives. The copper complexes are not emissive and only display residual capacity for singlet oxygen formation. PMID:22942693
Type synthesis for 4-DOF parallel press mechanism using GF set theory
NASA Astrophysics Data System (ADS)
He, Jun; Gao, Feng; Meng, Xiangdun; Guo, Weizhong
2015-07-01
Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity( GCC), kinematic pair complexity( KPC), and type complexity( TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.
Copper-Hydroperoxo Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monoxygenases
Maiti, Debabrata; Narducci Sarjeant, Amy A.; Karlin, Kenneth D.
2008-01-01
Substantial oxidative N-debenzylation reaction along with PhCH=O formation occurs from a hydroperoxo copper(II) complex which has a dibenzylamino substrate (-N(CH2Ph)2 appended as a substituent on one pyridyl group of its tripodal tetradentate TMPA {≡ TPA ≡ tris(2-pyridylmethyl)amine)} ligand framework. During the course of the (LN(CH2Ph)2)CuII(−OOH) reactivity, formation of a substrate and −OOH (an oxygen atom) derived alkoxo CuII(−OR) complex occurs. The observation that the same CuII(−OR) species occurs from CuI/PhIO chemistry suggests the possibility that a copper-oxo (cupryl) reactive intermediate forms during alkoxo species formation, and new ESI-MS data obtained provides some further support for this high-valent intermediate. Net H-atom abstraction chemistry is proposed, based on kinetic isotope effect studies provided here and that previously published for a closely related CuII(−OOH) species incorporating dimethylamine (-N(CH3)2) as the internal substrate (J. Am. Chem. Soc. 2007, 129, 6720-6721); the CuI/PhIO reactivity, with similar isotope effect results, provides further support. The reactivity of these chemical systems closely resembles proposed oxidative N-dealkylation mechanisms effected by the copper-monooxygenases dopamine β-monooxygenase (DβM) or peptidylglycine-α-hydroxylating monooxygenase (PHM). PMID:18783212
Merlos Rodrigo, Miguel Angel; Molina-López, Jorge; Jimenez Jimenez, Ana Maria; Planells Del Pozo, Elena; Adam, Pavlina; Eckschlager, Tomas; Zitka, Ondrej; Richtera, Lukas; Adam, Vojtech
2017-01-01
The translation of metallothioneins (MTs) is one of the defense strategies by which organisms protect themselves from metal-induced toxicity. MTs belong to a family of proteins comprising MT-1, MT-2, MT-3, and MT-4 classes, with multiple isoforms within each class. The main aim of this study was to determine the behavior of MT in dependence on various externally modelled environments, using electrochemistry. In our study, the mass distribution of MTs was characterized using MALDI-TOF. After that, adsorptive transfer stripping technique with differential pulse voltammetry was selected for optimization of electrochemical detection of MTs with regard to accumulation time and pH effects. Our results show that utilization of 0.5 M NaCl, pH 6.4, as the supporting electrolyte provides a highly complicated fingerprint, showing a number of non-resolved voltammograms. Hence, we further resolved the voltammograms exhibiting the broad and overlapping signals using curve fitting. The separated signals were assigned to the electrochemical responses of several MT complexes with zinc(II), cadmium(II), and copper(II), respectively. Our results show that electrochemistry could serve as a great tool for metalloproteomic applications to determine the ratio of metal ion bonds within the target protein structure, however, it provides highly complicated signals, which require further resolution using a proper statistical method, such as curve fitting. PMID:28287470
Origins of contrasting copper coordination geometries in crystalline copper sulfate pentahydrate.
Ruggiero, Michael T; Erba, Alessandro; Orlando, Roberto; Korter, Timothy M
2015-12-14
Metal-aqua ion ([M(H2O)n](X+)) formation is a fundamental step in mechanisms that are central to enzymatic and industrial catalysis. Past investigations of such ions have yielded a wealth of information regarding their properties, however questions still exist involving the exact structures of these complexes. A prominent example of this is hexaaqua copper(II) ([Cu(H2O)6](2+)), with the solution versus gas-phase configurations under debate. The differences are often attributed to the intermolecular interactions between the bulk solvent and the aquated complex, resulting in structures stabilized by extended hydrogen-bonding networks. Yet solution phase systems are difficult to study due to the lack of atomic-level positional details. Crystalline solids are ideal models for comparative study, as they contain fixed structures that can be fully characterized using diffraction techniques. Here, crystalline copper sulfate pentahydrate (CuSO4·5H2O), which contains two unique copper-water geometries, was studied in order to elucidate the origin of these contrasting hydrated metal envrionments. A combination of solid-state density functional theory and low-temperature X-ray diffraction was used to probe the electronic origins of this phenomenon. This was accomplished through implementation of crystal orbital overlap population and crystal orbital Hamiltonian population analyses into a developmental version of the CRYSTAL14 software. These new computational methods help highlight the delicate interplay between electronic structure and metal-water geometries.
Liu, Yankai; Nappi, Manuel; Escudero-Adán, Eduardo C; Melchiorre, Paolo
2012-03-02
Expanding upon the recently developed aminocatalytic asymmetric indole-2,3-quinodimethane strategy, a straightforward synthesis of structurally and stereochemically complex tetrahydrocarbazoles has been devised. The chemistry's complexity-generating power was further harnessed by designing a multicatalytic, one-pot Diels-Alder/benzoin reaction sequence to stereoselectively access trans-fused tetracyclic indole-based compounds having four stereogenic centers with very high fidelity. © 2012 American Chemical Society
ERIC Educational Resources Information Center
Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.
2017-01-01
A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…
Costas, Miquel; Ribas, Xavi; Poater, Albert; López Valbuena, Josep Maria; Xifra, Raül; Company, Anna; Duran, Miquel; Solà, Miquel; Llobet, Antoni; Corbella, Montserrat; Usón, Miguel Angel; Mahía, José; Solans, Xavier; Shan, Xiaopeng; Benet-Buchholz, Jordi
2006-05-01
Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.
Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile
NASA Astrophysics Data System (ADS)
Grishin, D. F.; Grishin, I. D.
2015-07-01
Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.