Science.gov

Sample records for copperii schiff-base complexes

  1. Coordination chemistry, thermodynamics and DFT calculations of copper(II) NNOS Schiff base complexes.

    PubMed

    Esmaielzadeh, Sheida; Azimian, Leila; Shekoohi, Khadijeh; Mohammadi, Khosro

    2014-12-10

    Synthesis, magnetic and spectroscopy techniques are described for five copper(II) containing tetradentate Schiff bases are synthesized from methyl-2-(N-2'-aminoethane), (1-methyl-2'-aminoethane), (3-aminopropylamino)cyclopentenedithiocarboxylate. Molar conductance and infrared spectral evidences indicate that the complexes are four-coordinate in which the Schiff bases are coordinated as NNOS ligands. Room temperature μeff values for the complexes are 1.71-1.80B.M. corresponding to one unpaired electron respectively. The formation constants and free energies were measured spectrophotometrically, at constant ionic strength 0.1M (NaClO4), at 25˚C in DMF solvent. Also, the DFT calculations were carried out to determine the structural and the geometrical properties of the complexes. The DFT results are further supported by the experimental formation constants of these complexes.

  2. Spectroscopic, structural and theoretical studies of copper(II) complexes of tridentate NOS Schiff bases

    NASA Astrophysics Data System (ADS)

    Olalekan, Temitope E.; Ogunlaja, Adeniyi S.; VanBrecht, Bernardus; Watkins, Gareth M.

    2016-10-01

    Two newly synthesized Schiff bases (L4 and L5) were derived from the condensation reaction of 2-(methylthiomethyl)anilines and 4-methoxysalicylaldehyde. Coordination complexes of these and four previously reported NOS Schiff bases, Cu(L1)2-Cu(L6)2, were synthesized via the reflux reaction of the various Schiff base ligands with CuCl2·2H2O. The compounds were characterized by means of elemental analysis, FTIR and UV-Vis. The crystal structures of Cu(L1)2 and Cu(L2)2 were obtained by X-ray diffraction. The Schiff bases were coordinated to copper ion as monobasic tridentate ligands through the phenolic oxygen, azomethine nitrogen and thioether sulfur. The microanalyses of the coordination complexes were agreeable with bimolar binding of the ligands to the copper metal ion. The crystal structures of the copper complexes confirmed an octahedral geometry around the metal centre and showed they are mononuclear. The magnetic moment values indicated the presence of a lone electron in each copper(II) orbital and confirmed the mononuclearity of the complexes. The electronic spectra of the coordination compounds consist of the intraligand, charge transfer and d→d bands. Molecular modeling studies on the complexes (Cu(L1)2-Cu(L6)2) by employing DFT revealed that complex Cu(L5)2 possessed the smallest optimization energy as well as a small HOMO-LUMO energy gap which may best explain its higher polarizability as well as reactivity in comparison to the other complexes.

  3. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II) Complexes.

    PubMed

    Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand

    2016-12-17

    In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans. All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.

  4. A new tetranuclear copper(II) Schiff base complex containing Cu 4O 4 cubane core: Structural and spectral characterizations

    NASA Astrophysics Data System (ADS)

    Shit, Shyamapada; Rosair, Georgina; Mitra, Samiran

    2011-04-01

    A new tetra-nuclear coordination complex [Cu 4(HL) 4] ( 1) containing Cu 4O 4 cubane core has been synthesized by using Schiff base ligand [(OH)C 6H 4CH dbnd N sbnd C(CH 3)(CH 2OH) 2] (H 3L), obtained by the 1:1 condensation of 2-amino-2-methyl-1,3-propanediol with salicylaldehyde and thoroughly characterized by micro-analytical, FT-IR, UV-Vis, thermal and room temperature magnetic susceptibility measurements. Structural characterization of the complex has been done by single crystal X-ray diffraction analysis. Structural elucidation reveals versatile coordination modes for two identical alkoxo oxygen atoms of the Schiff base ligand; one in its deprotonated form exhibits μ 3-bridging to bind three similar copper(II) centers whilst the protonated one remains as monodentate or non-coordinating. Structural analysis also shows that the Cu 4O 4 cubane core in 1 consists of four μ 3-alkoxo oxygen bridged copper(II) atoms giving an approximately cubic array of alternating oxygen atoms and copper(II) atoms where the metal centers display both distorted square pyramidal and distorted octahedral geometries.

  5. A new copper(II) Schiff base complex containing asymmetrical tetradentate N2O2 Schiff base ligand: Synthesis, characterization, crystal structure and DFT study

    NASA Astrophysics Data System (ADS)

    Grivani, Gholamhossein; Baghan, Sara Husseinzadeh; Vakili, Mohammad; Khalaji, Aliakbar Dehno; Tahmasebi, Vida; Eigner, Václav; Dušek, Michal

    2015-02-01

    A new copper (II) Schiff base complex, CuL1, was prepared from the reaction of asymmetrical Schiff base ligand of L1 and Cu(OAC)2 (L1 = salicylidene imino-ethylimino-pentan-2-one). The Schiff base ligand, L1, and its copper (II) complex, CuL1, have been characterized by elemental analysis (CHN) and FT-IR and UV-vis spectroscopy. In addition, 1H NMR was employed for characterization of the ligand. Thermogrametric analysis of the CuL1 reveals its thermal stability and its decomposition pattern shows that it is finally decomposed to the copper oxide (CuO). The crystal structure of CuL1 was determined by the single crystal X-ray analysis. The CuL1 complex crystallizes in the monoclinic system, with space group P21/n and distorted square planar coordination around the metal ion. The Schiff base ligand of L1 acts as a chelating ligand and coordinates via two nitrogen and two oxygen atoms to the copper (II) ion with C1 symmetry. The structure of the CuL1 complex was also studied theoretically at different levels of DFT and basis sets. According to calculated results the Csbnd O bond length of the salicylate fragment is slightly higher than that in the acetylacetonate fragment of ligand, which could be interpreted by resonance increasing between phenyl and chelated rings in ligand in relative to the acetylacetonate fragment.

  6. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges

    NASA Astrophysics Data System (ADS)

    Bahaffi, Saleh O.; Abdel Aziz, Ayman A.; El-Naggar, Maher M.

    2012-08-01

    A novel series of four copper(II) complexes were synthesized by thermal reaction of copper acetate salt with symmetrical tetradentate Schiff bases, N,N'bis(o-vanillin)4,5-dimethyl-l,2-phenylenediamine (H2L1), N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L2), N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylenediamine (H2L3) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L4), respectively. All the new synthesized complexes were characterized by using of microanalysis, FT-IR, UV-Vis, magnetic measurements, ESR, and conductance measurements, respectively. The data revealed that all the Schiff bases (H2L1-4) coordinate in their deprotonated forms and behave as tetradentate NOON coordinated ligands. Moreover, their copper(II) complexes have square planar geometry with general formula [CuL1-4]. The binding of the complexes with calf thymus DNA (CT-DNA) was investigated by UV-Vis spectrophotometry, fluorescence quenching and viscosity measurements. The results indicated that the complexes bind to CT-DNA through an intercalative mode. From the biological activity view, the copper(II) complexes and their parent ligands were screened for their in vitro antibacterial activity against the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosai by well diffusion method. The complexes showed an increased activity in comparison to some standard drugs.

  7. Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: Synthesis, spectral, nonlinear optical and density functional studies

    NASA Astrophysics Data System (ADS)

    Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan

    2016-09-01

    Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.

  8. Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Şenol, Cemal; Hayvali, Zeliha; Dal, Hakan; Hökelek, Tuncer

    2011-06-01

    New Schiff base derivatives ( L 1 and L 2) were prepared by the condensation of 2-hydroxy-3-methoxybenzaldehyde ( o-vanillin) and 3-hydroxy-4-methoxybenzaldehyde ( iso-vanillin) with 5-methylfurfurylamine. Two new complexes [Ni(L 1) 2] and [Cu(L 1) 2] have been synthesized with bidentate NO donor Schiff base ligand ( L 1). The Ni(II) and Cu(II) atoms in each complex are four coordinated in a square planar geometry. Schiff bases ( L 1 and L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] were characterized by elemental analyses, FT-IR, UV-vis, mass and 1H, 13C NMR spectroscopies. The crystal structures of the ligand ( L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] have also been determined by using X-ray crystallographic technique.

  9. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  10. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity.

    PubMed

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-25

    The mononuclear copper(II) complexes (1&2) of ligands L(1) [N,N'-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L(2) [N,N'-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L(1) and L(2) crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  11. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    NASA Astrophysics Data System (ADS)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  12. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

    PubMed Central

    Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  13. Interaction of copper(II) complex of compartmental Schiff base ligand N,N'-bis(3-hydroxysalicylidene)ethylenediamine with bovine serum albumin.

    PubMed

    Boghaei, Davar M; Farvid, Shokouh S; Gharagozlou, Mehrnaz

    2007-03-01

    Circular dichroism (CD) spectroscopy, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the interaction between copper(II) complex of compartmental Schiff base ligand (L), N,N'-bis(3-hydroxysalicylidene)ethylenediamine, and bovine serum albumin (BSA) in 0.1 mol dm(-3) phosphate buffer solution adjusted to physiological pH 7.0 containing 20% (w/w) dimethylsulfoxide at room temperature. CD spectra show that the interaction of the copper(II) complex with BSA leads to changes in the alpha-helical content of BSA and therefore changes in secondary structure of the protein with the slight red shift (2 nm) in CD spectra. From the voltammetric data, i.e. changes in limiting current with addition of BSA, the binding constant (K) of the interaction of copper(II) complex with BSA was found to be 1.96 x 10(4)dm(3)mol(-1). From the shifts in potential with the addition of BSA, the equilibrium constant ratio (K(2)/K(1)) for the binding of the oxidized Cu(II)L (K(1)) and reduced Cu(I)L (K(2)) species to BSA was found to be 3.77, which shows that the reduced form Cu(I)L is bound more strongly to BSA than the oxidized form Cu(II)L.

  14. Oxidation of phenyl propyne catalyzed by copper(II) complexes of a benzimidazolyl schiff base ligand: Effect of acid/base, oxidant, surfactant and morphology

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Mathur, Pavan

    2015-02-01

    Copper(II) complexes with a new N-Substituted benzimidazolyl schiff base ligand are used as catalyst for the oxidation of 1-phenyl propyne. The oxidation is carried out under mild conditions using stoichiometric amounts of oxidant and catalytic amounts of Cu(II) complex as catalyst. Effect of acid/base, oxidant, morphology and surfactant has been studied. Two major products of phenyl propyne oxidation are the α-diketonic product and a terminal aldehyde. Diketone is the major product under acidic conditions while aldehyde formation is highest under basic conditions. The maximum conversion is found with the NO3- bound complex. GC-MS is used to find the percentage yields of products. SEM and PXRD of the reused complexes as catalyst suggest that morphology affects the catalytic efficiency.

  15. Oxidation of phenyl propyne catalyzed by copper(II) complexes of a benzimidazolyl schiff base ligand: effect of acid/base, oxidant, surfactant and morphology.

    PubMed

    Kumar, Ravinder; Mathur, Pavan

    2015-02-05

    Copper(II) complexes with a new N-Substituted benzimidazolyl schiff base ligand are used as catalyst for the oxidation of 1-phenyl propyne. The oxidation is carried out under mild conditions using stoichiometric amounts of oxidant and catalytic amounts of Cu(II) complex as catalyst. Effect of acid/base, oxidant, morphology and surfactant has been studied. Two major products of phenyl propyne oxidation are the α-diketonic product and a terminal aldehyde. Diketone is the major product under acidic conditions while aldehyde formation is highest under basic conditions. The maximum conversion is found with the NO3(-) bound complex. GC-MS is used to find the percentage yields of products. SEM and PXRD of the reused complexes as catalyst suggest that morphology affects the catalytic efficiency.

  16. Synthesis, characterization, crystal structure and antimicrobial activity of copper(II) complexes with the Schiff base derived from 2-hydroxy-4-methoxybenzaldehyde.

    PubMed

    Pahonțu, Elena; Ilieș, Diana-Carolina; Shova, Sergiu; Paraschivescu, Codruța; Badea, Mihaela; Gulea, Aurelian; Roșu, Tudor

    2015-04-02

    A novel Schiff base, ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl)methylene-amino]benzoate (HL), was prepared and structurally characterized on the basis of elemental analyses, (1)H NMR, (13)C NMR, UV-Vis and IR spectral data. Six new copper(II) complexes, [Cu(L)(NO3)(H2O)2] (1), [Cu(L)2] (2), [Cu(L)(OAc)] (3), [Cu2 (L)2Cl2(H2O)4] (4), [Cu(L)(ClO4)(H2O)] (5) and [Cu2(L2S)(ClO4)(H2O)]ClO4·H2O (6) have been synthesized. The characterization of the newly formed compounds was done by IR, UV-Vis, EPR, FAB mass spectroscopy, elemental and thermal analysis, magnetic susceptibility measurements and molar electric conductivity. The crystal structures of Schiff base and the complex [Cu2(L2S)(ClO4)(H2O)]ClO4·H2O (6) have been determined by single crystal X-ray diffraction studies. Both copper atoms display a distorted octahedral coordination type [O4NS]. This coordination is ensured by three phenol oxygen, two of which being related to the µ-oxo-bridge, the nitrogen atoms of the azomethine group and the sulfur atoms that come from the polydentate ligand. The in vitro antimicrobial activity against Escherichia coli ATCC 25922, Salmonella enteritidis, Staphylococcus aureus ATCC 25923, Enterococcus and Candida albicans strains was studied and compared with that of free ligand. The complexes 1, 2, 5 showed a better antimicrobial activity than the Schiff base against the tested microorganisms.

  17. Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and beta-alanine.

    PubMed

    Vanco, Ján; Marek, Jaromír; Trávnícek, Zdenek; Racanská, Eva; Muselík, Jan; Svajlenová, Ol'ga

    2008-04-01

    A series of copper(II) and zinc(II) complexes involving a tridentate O,N,O'-donor Schiff base derived from salicylaldehyde and beta-alanine {i.e. N-salicylidene-beta-alanine(2-), (L)}, having the composition [Cu(2)(L)(2)(H(2)O)].H(2)O (1), [Cu(L)(H(2)O)](n) (2), and [Zn(L)(H(2)O)](n) (3), have been prepared and characterized by elemental analyses, UV-visible (UV-VIS), FT-IR and ESI-MS spectra, and thermal analyses. Complexes 1 and 2 have been investigated by single crystal X-ray analysis and also by temperature dependent magnetic susceptibility measurements (294-80K). All prepared complexes have been evaluated by the antiperoxynitrite activity assay and alloxan-induced diabetes model. The significant antioxidant and antidiabetic activities have been found in the case of both copper(II) complexes 1 and 2. In spite of first two complexes, the zinc(II) complex 3, as well as the potassium salt of the ligand (KHL) showed only insignificant protective effect against the tyrosine nitration in vitro.

  18. Effect of substituents on prediction of TLC retention of tetra-dentate Schiff bases and their Copper(II) and Nickel(II) complexes.

    PubMed

    Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M

    2017-03-01

    The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity.

  19. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  20. Synthesis, characterization and DNA interaction of new copper(II) complexes of Schiff base-aroylhydrazones bearing naphthalene ring.

    PubMed

    Gökçe, Cansu; Gup, Ramazan

    2013-05-05

    Two new copper(II) complexes with the condensation products of methyl 2-naphthyl ketone with 4-hydroxybenzohydrazide, 4-hydroxy-N'-[(1Z)-1-(naphthalen-2-yl)ethylidene]benzohydrazide [HL(1)] and (Z)-ethyl 2-(4-(2-(1-(naphthalen-2-yl)ethylidene)hydrazinecarbonyl)phenoxy)acetate (HL(2)) were synthesized and characterized by elemental analysis, infrared spectra, UV-Vis electronic absorption spectra, magnetic susceptibility measurements, TGA, powder XRD and SEM-EDS. The binding properties of the copper(II) complexes with calf thymus DNA were studied by using the absorption titration method. DNA cleavage activities of the synthesized copper complexes were examined by using agarose gel electrophoresis. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The experimental results suggest that the copper complexes bind significantly to calf thymus DNA by both groove binding and intercalation modes and cleavage effectively pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide-derived species and singlet oxygen ((1)O2) are the active oxidative species for DNA cleavage.

  1. Four-coordinate nickel(II) and copper(II) complex based ONO tridentate Schiff base ligands: synthesis, molecular structure, electrochemical, linear and nonlinear properties, and computational study.

    PubMed

    Novoa, Néstor; Roisnel, Thierry; Hamon, Paul; Kahlal, Samia; Manzur, Carolina; Ngo, Hoang Minh; Ledoux-Rak, Isabelle; Saillard, Jean-Yves; Carrillo, David; Hamon, Jean-René

    2015-11-07

    We report the synthesis, characterization, crystal structures, nonlinear-optical (NLO) properties, and density functional theory (DFT) calculations of nickel(ii) and copper(ii) complex based ONO tridentate Schiff base ligands: two mononuclear compounds, [Ni(An-ONO)(NC5H5)] (5) and [Cu(An-ONO)(4-NC5H4C(CH3)3)] (6), and two heterobimetallic species, [M(Fc-ONO)(NC5H5)] (M = Ni, 7; Cu, 8), where An-ONOH2 (3) and Fc-ONOH2 (4) are the 1 : 1 condensation products of 2-aminophenol and p-anisoylacetone and ferrocenoylacetone, respectively. These compounds were characterised by microanalysis, FT-IR and X-ray crystallography in the solid state and in solution by UV-vis and (1)H and (13)C NMR spectroscopy. The crystal structures of 3-5, 7 and 8 have been determined and show for Schiff base complexes 5, 7 and 8 a four-coordinated square-planar environment for nickel and copper ions. The electrochemical behavior of all derivatives 3-8 was investigated by cyclic voltammetry in dichloromethane, and discussed on the basis of DFT-computed electronic structures of the neutral and oxidized forms of the compounds. The second-order NLO responses of 3-8 have been determined by harmonic light scattering measurements using a 10(-2) M solution of dichloromethane and working with a 1.91 μm incident wavelength, giving rather high β1.91 values of 350 and 290 × 10(-30) esu for the mononuclear species 5 and 6, respectively. The assignment and the nature of the electronic transitions observed in the UV-vis spectra were analyzed using time-dependent (TD) DFT calculations. They are dominated by LMCT, MLCT and π-π* transitions.

  2. Structure-Activity Relationships for Some Diamine, Triamine and Schiff Base Derivatives and Their Copper(II) Complexes

    PubMed Central

    Bolos, C. A.; Nikolov, G. St.; Ekateriniadou, L.; Kortsaris, A.; Kyriakidis, D. A.

    1998-01-01

    Ethylenediamine (en), putrescine (pu), diethylenetriamine (dien), dipropylenetriamine (dpta), spermidine (spmd) and their CuII compounds as well as the Schiff bases with 2-furaldehyde (dienOO), 2- thiophenecarboxaldehyde (dienSS) and pyrrole-2-carboxaldehyde (dienNN) of dien and that of dpta with 2- thiophenecarboxaldehyde (dptaSS), were prepared and characterised. They were tested against Bacillus substilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Proteus vulgaris and Xanthomonas campestris as antibacterial reagents, the highest activity being exhibited by Cu(dptaSS)(NO3)2 complex, which acts as antibiotic. In the antiproliferative tests (vs. T47D,L929 and BHK21/c13 cell lines) the best results were obtained with Cu(dptaSS)2+ and Cu(dienSS)2+. Electronic structure calculations gave for dptaSS and dienSS the higher negative charges on the N atoms. The counter-ions (Br-, NO3- and SO42-) play an important role by modulating the reagent's selectivity versus the bacteria [Gram(+) or Gram(-)], but they have no effect on the antiproliferative activity. PMID:18475868

  3. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(II) and nickel(II) complexes with a Schiff base ligand derived from vitamin B6.

    PubMed

    Mukherjee, Tirtha; Costa Pessoa, João; Kumar, Amit; Sarkar, Asit R

    2013-02-21

    Three new complexes of Cu(II) and Ni(II), [Cu(II)(H(2)pydmedpt)](2+)·2Cl(-) (1), [Ni(II)(H(2)pydmedpt)](2+)·2Cl(-) (2) and [Ni(II)(pydmedpt)(OH)](-)·K(+) (3) of the Schiff base ligand [H(2)pydmedpt](2+)·2Cl(-) were synthesized by the in situ reaction of pyridoxal (pyd), a vitamer of vitamin B(6), N,N-bis[3-aminopropyl]methylamine (medpt) and copper(II) acetate or nickel(II) acetate, respectively. The molecular structures of 1 and 2 were determined by single crystal X-ray diffraction studies. The structure of 3 in the solid state was inferred by elemental analysis, diffuse reflectance spectrum, variable temperature magnetic moment studies and DFT calculations. The binding of the Schiff base ligand to the metal centers involves two phenolato oxygens, two imine nitrogens and one amine nitrogen. The coordination geometry around Cu in 1 is distorted square pyramidal and that around the Ni atom in 2 is intermediate between square-pyramidal and trigonal-bipyramidal. In the crystals the compounds form supramolecular one dimensional chain structures stabilized by hydrogen bonding and π-π stacking interactions. Variable temperature magnetic moment data of 2 indicate the presence of a momomeric high spin Ni(II) centre in the complex. The solid state diffuse reflectance spectrum, conductance and elemental analysis suggest that 3 is a Ni(II) complex with a tetragonally distorted octahedral field, the sixth position being occupied by the oxygen atom of a hydroxyl group. The variable temperature magnetic moment of 3 indicates the presence of a ferromagnetic dinuclear species (29.2%) along with the major monomeric species, the intra-dimer exchange term J value being 14.3 cm(-1). The competitive binding of 1 and 2 with DNA was studied in the concentration range 40 to 400 μM, the apparent binding constants being K = 2.9 × 10(3) and 6.7 × 10(3) M(-1), respectively. Human Serum Albumin (HSA) binding studies were carried out at concentrations of 800-1000 μM and 400-500

  4. Synthesis, CMC Determination, Antimicrobial Activity and Nucleic Acid Binding of A Surfactant Copper(II) Complex Containing Phenanthroline and Alanine Schiff-Base.

    PubMed

    Nagaraj, Karuppiah; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-03-01

    A new water-soluble surfactant copper(II) complex [Cu(sal-ala)(phen)(DA)] (sal-ala = salicylalanine, phen = 1,10-phenanthroline, DA = dodecylamine), has been synthesized and characterized by physico-chemical and spectroscopic methods. The critical micelle concentration (CMC) values of this surfactant-copper(II) complex in aqueous solution were obtained from conductance measurements. Specific conductivity data (at 303, 308, 313. 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG(0)m, ΔH(0)m and ΔS(0)m). The interaction of this complex with nucleic acids (DNA and RNA) has been explored by using electronic absorption spectral titration, competitive binding experiment, cyclic voltammetry, circular dichroism (CD) spectra, and viscosity measurements. Electronic absorption studies have revealed that the complex can bind to nucleic acids by the intercalative binding mode which has been verified by viscosity measurements. The DNA binding constants have also been calculated (Kb = 1.2 × 10(5) M(-1) for DNA and Kb = 1.6 × 10(5) M(-1) for RNA). Competitive binding study with ethidium bromide (EB) showed that the complex exhibits the ability to displace the DNA-bound-EB indicating that the complex binds to DNA in strong competition with EB for the intercalative binding site. The presence of hydrophobic ligands, alanine Schiff-base, phenanthroline and long aliphatic chain amine in the complex were responsible for this strong intercalative binding. The surfactant-copper (II) complex was screened for its antibacterial and antifungal activities against various microorganisms. The results were compared with the standard drugs, amikacin(antibacterial) and ketokonazole(antifungal).

  5. Fluorescent mixed ligand copper(II) complexes of anthracene-appended Schiff bases: studies on DNA binding, nuclease activity and cytotoxicity.

    PubMed

    Jaividhya, Paramasivam; Ganeshpandian, Mani; Dhivya, Rajkumar; Akbarsha, Mohammad Abdulkadher; Palaniandavar, Mallayan

    2015-07-14

    A series of mixed ligand copper(ii) complexes of the type [Cu(L)(phen)(ACN)](ClO4)21-5, where L is a bidentate Schiff base ligand (N(1)-(anthracen-10-ylmethylene)-N(2)-methylethane-1,2-diamine (L1), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-dimethylethane-1,2-diamine (L2), N(1)-(anthracen-10-yl-methylene)-N(2)-ethylethane-1,2-diamine (L3), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-diethylethane-1,2-diamine (L4) and N(1)-(anthracen-10-ylmethylene)-N(3)-methylpropane-1,3-diamine (L5)) and phen is 1,10-phenanthroline, have been synthesized and characterized by spectral and analytical methods. The X-ray crystal structure of 5 reveals that the coordination geometry around Cu(ii) is square pyramidal distorted trigonal bipyramidal (τ, 0.76). The corners of the trigonal plane of the geometry are occupied by the N2 nitrogen atom of phen, the N4 nitrogen atom of L5 and the N5 nitrogen of acetonitrile while the N1 nitrogen of phen and the N3 nitrogen of L5 occupy the axial positions with an N1-Cu1-N3 bond angle of 176.0(3)°. All the complexes display a ligand field band (600-705 nm) and three less intense anthracene-based bands (345-395 nm) in solution. The Kb values calculated from absorption spectral titration of the complexes (π→π*, 250-265 nm) with Calf Thymus (CT) DNA vary in the order 5 > 4 > 3 > 2 > 1. The fluorescence intensity of the complexes (520-525 nm) decreases upon incremental addition of CT DNA, which reveals the involvement of phen rather than the appended anthracene ring in partial DNA intercalation with the DNA base stack. The extent of quenching is in agreement with the DNA binding affinities and the relative increase in the viscosity of DNA upon binding to the complexes as well. Thus 5 interacts with DNA more strongly than 4 on account of the stronger involvement in hydrophobic DNA interaction of the anthracenyl moiety, which is facilitated by the propylene ligand backbone with chair conformation. The ability of complexes (100 μM) to cleave DNA (p

  6. Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes

    NASA Astrophysics Data System (ADS)

    Yang, Jianjie; Shi, Rufei; Zhou, Pei; Qiu, Qiming; Li, Hui

    2016-02-01

    Asymmetric Schiff bases, due to its asymmetric structure, can be used as asymmetric catalyst, antibacterial, and mimic molecules during simulate biological processes, etc. In recent years, research on synthesis and properties of asymmetric Schiff bases have become an increase interest of chemists. This review summarizes asymmetric Schiff bases derived from diaminomaleonitrile (DAMN) and DAMN-based asymmetric Schiff bases metal complexes. Applications of DAMN-based asymmetric Schiff bases are also discussed in this review.

  7. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  8. Dinuclear cadmium(II), zinc(II), and manganese(II), trinuclear nickel(II), and pentanuclear copper(II) complexes with novel macrocyclic and acyclic Schiff-base ligands having enantiopure or racemic camphoric diamine components.

    PubMed

    Jiang, Jue-Chao; Chu, Zhao-Lian; Huang, Wei; Wang, Gang; You, Xiao-Zeng

    2010-07-05

    Four novel [3 + 3] Schiff-base macrocyclic ligands I-IV condensed from 2,6-diformyl-4-substituted phenols (R = CH(3) or Cl) and enantiopure or racemic camphoric diamines have been synthesized and characterized. Metal-ion complexations of these enantiopure and racemic [3 + 3] macrocyclic ligands with different cadmium(II), zinc(II), manganese(II), nickel(II), and copper(II) salts lead to the cleavage of Schiff-base C horizontal lineN double bonds and subsequent ring contraction of the macrocyclic ligands due to the size effects and the spatial restrictions of the coordination geometry of the central metals, the steric hindrance of ligands, and the counterions used. As a result, five [2 + 2] and one [1 + 2] dinuclear cadmium(II) complexes (1-6), two [2 + 2] dinuclear zinc(II) (7 and 8), and two [2 + 2] dinuclear manganese(II) (9 and 10) complexes together with one [1 + 1] trinuclear nickel(II) complex (11) and one [1 + 2] pentanuclear copper(II) complex (12), bearing enantiopure or racemic ligands, different substituent groups in the phenyl rings, and different anionic ligands (Cl(-), Br(-), OAc(-), and SCN(-)), have been obtained in which the chiral carbon atoms in the camphoric backbones are arranged in different ways (RRSS for the enantiopure ligands in 1, 2, 4, 5, and 7-10 and RSRS for the racemic ligands in 3, 6, 11, and 12). The steric hindrance effects of the methyl group bonded to one of the chiral carbon atoms of camphoric diamine units are believed to play important roles in the formation of the acyclic [1 + 1] trinuclear complex 11 and [1 + 2] dinuclear and pentanuclear complexes 6 and 12. In dinuclear cadmium(II), zinc(II), and manganese(II) complexes 1-10, the sequence of separations between the metal centers is consistent with that of the ionic radii shortened from cadmium(II) to manganese(II) to zinc(II) ions. Furthermore, UV-vis, circular dichroism, (1)H NMR, and fluorescence spectra have been used to characterize and compare the structural

  9. Copper(II) and nickel(II) complexes of tetradentate Schiff base ligand: UV-Vis and FT-IR spectra and DFT calculation of electronic, vibrational and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Zarei, Seyed Amir; Khaledian, Donya; Akhtari, Keivan; Hassanzadeh, Keyumars

    2015-11-01

    The experimental fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectra of copper(II) and nickel(II) complexes of the deprotonated tetradentate Schiff base ligand N,N‧-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine (H2L) are compared with their corresponding theoretical ones. The applied theoretical method is based on the density functional theory and time-dependent density functional theory at the UPBE0/PBE0 levels using Def2-TZVP basis set. The computational optimised geometric parameters of the complexes are in good agreement with their corresponding experimental data. The FT-IR and UV-Vis spectra of the complexes were reproduced on the basis of their optimised structures. The vibrational assignments of some fundamental modes of the complexes are performed. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies are calculated. The analyses of the calculated electronic absorption spectra of the complexes are carried out to elucidate the electronic transitions assignments and their characters. Second-order nonlinear optical property of the complexes is evaluated by the above-mentioned theoretical method that implies much greater values for the complexes in comparison with the corresponding value of urea.

  10. Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity.

    PubMed

    Geeta, B; Shravankumar, K; Reddy, P Muralidhar; Ravikrishna, E; Sarangapani, M; Reddy, K Krishna; Ravinder, V

    2010-11-01

    A binucleating new Schiff-base ligand with a phenylene spacer, afforded by the condensation of glycyl-glycine and o-phthalaldehyde has been served as an octadentate N₄O₄ ligand in designing some binuclear complexes of cobalt(II), nickel(II), copper(II), and palladium(II). The binding manner of the ligand to the metal and the composition and geometry of the metal complexes were examined by elemental analysis, conductivity measurements, magnetic moments, IR, ¹H, ¹³C NMR, ESR and electronic spectroscopies, and TGA measurements. There are two different coordination/chelation environments present around two metal centers of each binuclear complex. The composition of the complexes in the coordination sphere was found to be [M₂(L)(H(2)O)₄] (where M=Co(II) and Ni(II)) and [M₂(L)] (where M=Cu(II) and Pd(II)). In the case of Cu(II) complexes, ESR spectra provided further information to confirm the binuclear structure and the presence of magnetic interactions. All the above metal complexes have shown moderate to good antibacterial activity against Gram-positive and Gram-negative bacteria.

  11. Synthesis, characterization, crystal structure determination and computational study of a new Cu(II) complex of bis [2-{(E)-[2-chloroethyl)imino]methyl}phenolato)] copper(II) Schiff base complex

    NASA Astrophysics Data System (ADS)

    Grivani, Gholamhossein; Vakili, Mohammad; Khalaji, Aliakbar Dehno; Bruno, Giuseppe; Rudbari, Hadi Amiri; Taghavi, Maedeh

    2016-07-01

    The copper (II) Schiff base complex of [CuL2] (1), HL = 2-{(E)-[2-chloroethyl) imino]methyl}phenol, has been synthesized and characterized by elemental (CHN) analysis, UV-Vis and FT-IR spectroscopy. The molecular structure of 1 was determined by single crystal X-ray diffraction technique. The conformational analysis and molecular structures of CuL2 were investigated by means of density functional theory (DFT) calculations at B3LYP/6-311G* level. An excellent agreement was observed between theoretical and experimental results. The Schiff base ligand of HL acts as a chelating ligand and coordinates via one nitrogen atom and one oxygen atom to the metal center. The copper (II) center is coordinated by two nitrogen atoms and two oxygen atoms from two Schiff base ligands in an approximately square planar trans-[MN2O2] coordination geometry. Thermogravimetric analysis of CuL2 showed that it was decomposed in five stages. In addition, the CuL2 complex thermally decomposed in air at 660 °C and the XRD pattern of the obtained solid showed the formation of CuO nanoparticles with an average size of 34 nm.

  12. Synthesis, characterization, X-ray crystal structures and antibacterial activities of Schiff base ligands derived from allylamine and their vanadium(IV), cobalt(III), nickel(II), copper(II), zinc(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Amiri Rudbari, Hadi; Iravani, Mohammad Reza; Moazam, Vahid; Askari, Banafshe; Khorshidifard, Mahsa; Habibi, Neda; Bruno, Giuseppe

    2016-12-01

    A new Schiff base ligand, HL2, and four new Schiff base complexes, NiL12, PdL12, NiL22 and ZnL22, have been prepared and characterized by elemental analysis (CHN), FT-IR and UV-Vis spectroscopy. 1H and 13C NMR techniques were employed for characterization of the ligand (HL2) and the diamagnetic complexes (PdL12 and ZnL22). The molecular structures of PdL12, NiL22 and ZnL22 complexes were determined by the single crystal X-ray diffraction technique. The crystallographic data reveal that in these complexes the metal centers are four-coordinated by two phenolate oxygen and two imine nitrogen atoms of two Schiff base ligands. The geometry around the metal center in the PdL12 and NiL22 complexes is square-planar and for ZnL22 it is a distorted tetrahedral.In the end, five new (HL2, NiL12, PdL12, NiL22 and ZnL22) and six reported (HL1, VOL12, CoL13, CuL12, ZnL12 and Zn2L14) Schiff base compounds were tested for their in vitro antimicrobial activity against Staphylococcus aureus and Escherichia coli as examples of Gram-positive and Gram-negative bacterial strains, respectively, by disc diffusion method.

  13. Experimental and theoretical investigation of a novel mononuclear copper(II) azido compound with tridentate (NNO) Schiff base

    NASA Astrophysics Data System (ADS)

    Karahan, Ahmet; Karabulut, Sedat; Dal, Hakan; Kurtaran, Raif; Leszczynski, Jerzy

    2015-08-01

    The tridentate (NNO) Schiff base (HL), has been prepared by the condensation of 2-(aminomethyl)pyridine with 5-chloro-salicylaldehyde. The mononuclear [N-(2-pyridylmethyl)-3-chloro-salicylaldiminato] (azido) copper(II) complex of general formula [Cu(L)(N3)] (1) has been synthesized by the treatment of HL and CuCl2·2H2O with sodium azide. The ligand and complex have been investigated by various methods including IR, TG-DTA and X-ray diffraction techniques. The complex crystallizes in monoclinic space group P21/c, with unit cell dimensions a = 6.7369(4), b = 11.6058(8), c = 17.1379(11) Å, β = 93.823(2)°. The distorted square-planar Cu(II) ion in complex is chelated by one imino N, one phenolic O and one pyridine N atoms of Schiff base ligand and one N atom of azide ion. The electrochemical behavior of the mononuclear copper azido complex was studied with cyclic voltammetry. Tautomer stability of the ligand and the complex has been determined by molecular modeling techniques. It has been concluded that the HL is more stable than its tautomeric form (THL) both as ligand and complex structures.

  14. Novel copper-based therapeutic agent for anti-inflammatory: synthesis, characterization, and biochemical activities of copper(II) complexes of hydroxyflavone Schiff bases.

    PubMed

    Joseph, J; Nagashri, K

    2012-07-01

    Four hydroxyflavone derivatives have been synthesized with the aim of obtaining a good model of superoxide dismutase. Better to mimic the natural metalloenzyme, copper complexes have been designed. The Cu(II) complexes of general formulae, [CuL] where L = 5-hydroxyflavone-o-phenylenediamine (L¹H₂)/m-phenylenediamine (L²H₂) and 3-hydroxyflavone-o-phenylenediamine (L³H₂)/m-phenylenediamine (L⁴H₂) have been synthesized. The structural features have been determined from their analytical and spectral data. All the Cu(II) complexes exhibit square planar geometry. Redox behavior of copper complexes was studied and the present ligand systems stabilize the unusual oxidation state of the copper ion during electrolysis. The in vitro antimicrobial activities of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola, and Candida albicans. Superoxide dismutase and anti-inflammatory activities of the copper complexes have also been measured and discussed.

  15. Syntheses, crystal structure and biological evaluation of Schiff bases and copper complexes derived from 4-formylpyrazolone

    NASA Astrophysics Data System (ADS)

    Joseph, V. A.; Pandya, J. H.; Jadeja, R. N.

    2015-02-01

    Two new pyrazolone based Schiff base ligands 4-((2,4-dimethylphenylimino)methyl)-4,5-dihydro-3-methyl-1-p-tolyl-1H-pyrazol-5-ol [PTPMP-ME] and 4-((3,4-difluorophenylimino)methyl)-4,5-dihydro-3-methyl-1-p-tolyl-1H-pyrazol-5-ol [PTPMP-F] were synthesized. Using these Schiff base ligands two new Copper(II) complexes, [Cu(PTPMP-ME)2] (1) and [Cu(PTPMP-F)2] (2) were synthesized. The ligands and their copper complexes were characterized by IR, 1H NMR, mass, UV-Visible spectroscopy, molar conductivity and magnetic measurement. The molecular geometry of Schiff base ligand PTPMP-ME and copper complexes were determined by single-crystal X-ray analysis. On the basis of single crystal X-ray analysis and spectroscopic techniques, square planar geometry of the complexes was proposed. The Schiff base ligands and their metal complexes were tested for antimicrobial activity against Gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis and Gram-negative bacteria; Escherichia coli and Pseudomonas aeruginosa.

  16. Synthesis, characterization and antibacterial activity of a tridentate Schiff base derived from cephalothin and sulfadiazine, and its transition metal complexes.

    PubMed

    Anacona, J R; Noriega, Natiana; Camus, Juan

    2015-02-25

    Metal(II) coordination compounds of a cephalothin Schiff base (H2L) derived from the condensation of cephalothin antibiotic with sulfadiazine were synthesized. The Schiff base ligand, mononuclear [ML(H2O)3] (M(II)=Mn,Co,Ni,Zn) complexes and magnetically diluted dinuclear copper(II) complex [CuL(H2O)3]2 were characterized by several techniques, including elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, EPR and (1)H NMR spectral studies. The cephalothin Schiff base ligand H2L behaves as a dianionic tridentate NOO chelating agent. The biological applications of complexes have been studied on two bacteria strains (Escherichia coli and Staphylococcus aureus) by agar diffusion disc method.

  17. Synthesis and Characterization with Antineoplastic, Biochemical, Cytotoxic, and Antimicrobial Studies of Schiff Base Cu(II) Ion Complexes

    PubMed Central

    Haque, M. M.; Kudrat-E-Zahan, Md.; Banu, Laila Arjuman; Islam, Md. Shariful; Islam, M. S.

    2015-01-01

    Copper(II) complexes containing two Schiff base ligands derived from 2-hydroxybenzaldehyde with 2-aminophenol and 3-aminophenol have been synthesized and characterized by means of analytical, magnetic, and spectroscopic methods. Bacteria, fungus, Entamoeba histolytica, and antineoplastic activities of the synthesized complexes have been determined by monitoring the parameters cell growth inhibition, survival time of tumour mice, time-body relation, causing of intraperitoneal cells and macrophages, alkaline phosphatase activity, hematological effect, and biopsy of tumour. PMID:26294901

  18. Cobalt(II), Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as photosensitizers: Quantum yield of 1O2 generation and its promising role in anti-tumor activity.

    PubMed

    Pradeepa, S M; Bhojya Naik, H S; Vinay Kumar, B; Indira Priyadarsini, K; Barik, Atanu; Ravikumar Naik, T R

    2013-01-15

    In the present investigation, a Schiff base N'1,N'3-bis[(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-dicarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant Kb of 2.6×10(4) M(-1), 5.7×10(4) M(-1) and 4.5×10(4) M(-1), respectively and they exhibited potent photodamage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions.

  19. Cobalt(II), Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as photosensitizers: Quantum yield of 1O2 generation and its promising role in anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Ravikumar Naik, T. R.

    2013-01-01

    In the present investigation, a Schiff base N'1,N'3-bis[(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-dicarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant Kb of 2.6 × 104 M-1, 5.7 × 104 M-1 and 4.5 × 104 M-1, respectively and they exhibited potent photodamage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions.

  20. Mössbauer investigation of novel pentadentate schiff base complexes

    NASA Astrophysics Data System (ADS)

    Heyer, L.; Dreyer, B.; Preiss, A.; Menze, M.; Klimke, S.; Jahns, M.; Sindelar, R.; Klingelhöfer, G.; O. Costa, B. F.; Renz, F.

    2016-12-01

    We synthesised a series of seven mononuclear and two trinuclear Schiff base coordination compounds. All nine complexes have been analysed by Mössbauer and IR spectroscopy. The Mössbauer spectra reveal a doublet, which are related to the high spin state (S = 5/2) of the iron(III) centres.

  1. Metal complexes of ONO donor Schiff base ligand as a new class of bioactive compounds; Synthesis, characterization and biological evolution

    NASA Astrophysics Data System (ADS)

    Kumar Naik, K. H.; Selvaraj, S.; Naik, Nagaraja

    2014-10-01

    Present work reviews that, the synthesis of (E)-N";-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide [L] ligand and their metal complexes. The colored complexes were prepared of type [M2+L]X2, where M2+ = Mn, Co, Ni, Cu, Sr and Cd, L = (7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide, X = Cl-. Ligand derived from the condensation of 8-formyl-7-hydroxy-4-methylcoumarin and benzohydrazide in the molar ratio 1:1 and in the molar ratio 1:2 for metal complexes have been prepared. The chelation of the ligand to metal ions occurs through the both oxygen groups, as well as the nitrogen atoms of the azomethine group of the ligand. Reactions of the Schiff base ligand with Manganese(II), Cobalt(II), Nickel(II), Copper(II), Strontium(II), and Cadmium(II) afforded the corresponding metal complexes. The structures of the obtained ligand and their respective metal complexes were elucidated by infra-red, elemental analysis, Double beam UV-visible spectra, conductometric measurements, magnetic susceptibility measurements and also thermochemical studies. The metal complex exhibits octahedral coordination geometrical arrangement. Schiff base ligand and their metal complexes were tested against antioxidants, antidiabetic and antimicrobial activities have been studied. The Schiff base metal complexes emerges effective α-glucosidase inhibitory activity than free Schiff base ligand.

  2. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine.

    PubMed

    Singh, Kiran; Barwa, Manjeet Singh; Tyagi, Parikshit

    2007-03-01

    A few (1:1) and (1:2) metal complexes of cobalt(II), nickel(II), copper(II) and zinc(II) have been isolated with ligand derived from the condensation of 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine with 2-acetylpyridine (L(1)) and characterized by elemental analysis, conductivity measurements, infrared, electronic, (1)H NMR spectral data, magnetic and thermogravimetric analyses. Due to insolubility in water and most of the common organic solvents and infusibility at higher temperatures, all the complexes are thought to be polymeric in nature. A square-planar geometry was suggested for copper(II) and octahedral proposed for cobalt(II), nickel(II) and zinc(II). Some of the chemically synthesized compounds have been screened in vitro against the three Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and two Gram-negative (Salmonella typhi and Escherichia coli) organisms. It is observed that the coordination of metal ion has pronounced effect on the microbial activities of the ligand. The metal complexes have higher antimicrobial effect than the free ligands.

  3. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  4. Manganese-Schiff base complexes as catalysts for water photolysis.

    PubMed

    González-Riopedre, Gustavo; Fernández-García, M Isabel; González-Noya, Ana M; Vázquez-Fernández, M Ángeles; Bermejo, Manuel R; Maneiro, Marcelino

    2011-10-28

    Four manganese(III)-Schiff base complexes (1-4) of formula [MnL(n)(H(2)O)(2)](2)(ClO(4))(2)·mH(2)O (n = 1-4; m = 0, 1) have been prepared. The multidentate H(2)L(n) Schiff base ligands consist of 3R,5R-substituted N,N'-bis(salicylidene)-1,2-diimino-2,2-dimethylethane, where R = OEt, OMe, Br or Cl. The complexes have been thoroughly characterized by elemental analysis, mass spectrometry, magnetic susceptibility measurements, IR, UV, paramagnetic (1)H NMR and EPR spectroscopies. Other properties, including redox studies and molar conductivity measurements, have also been assessed. The crystal structure of 1 was solved by X-ray diffraction, which revealed the dimeric nature of the compound through μ-aqua bridges. The ability of these complexes to split water has been studied by water photolysis experiments, with the oxygen evolution measured in aqueous media in the presence of a hydrogen acceptor (p-benzoquinone), the reduction of which was followed by UV-spectroscopy. The discussion of the photolytic behaviour includes advances in the knowledge of the structural motifs and the chemical activity of this type of complex, as revealed by the development of several characterization techniques in the last decade. Parallel-mode Mn(III) EPR shows that complexes 1-4 not only mimic reactivity but also share some structural characteristics from partially assembled natural OEC clusters.

  5. Mixed ligand copper(II) complexes of 1,10-phenanthroline with tridentate phenolate/pyridyl/(benz)imidazolyl Schiff base ligands: covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity.

    PubMed

    Rajarajeswari, Chandrasekaran; Ganeshpandian, Mani; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkadher

    2014-11-01

    A series of copper(II) complexes of the types [Cu(L)(phen)](ClO4) 1-2, where HL is a tridentate ligand with two nitrogen and one oxygen donor atoms (2NO) such as 2-(2-(1H-benzimidazol-2-yl)ethyliminomethyl)phenol (HL1) and 2-(2-(1H-benzimidazol-2-yl)ethyl-imino)methyl)-4-methylphenol (HL2), phen is 1,10-phenanthroline and [Cu(L)(phen)](ClO4)23-6, where L is a tridentate ligand with three nitrogen donor atoms (3N) such as (2-pyridin-2-ylethyl)pyridin-2-ylmethyleneamine (L3), 2-(1H-benzimidazol-2-yl)ethyl)-pyridin-2-yl-methyleneamine (L4), 2-(1H-benzimidazol-2-yl)ethyl)(1H-imidazol-2-ylmethylene)-amine (L5) and 2-(1H-benzimidazol-2-yl)ethyl)(4,4a-dihydroquinolin-2-ylmethylene)amine (L6), has been isolated and characterized by different spectral techniques. In single crystal X-ray structures, 1 possesses square pyramidal distorted trigonal bipyramidal (SPDTBP), geometry whereas 3 and 4 possess trigonal bipyramidal distorted square pyramidal (TBDSP) geometry. UV-Vis and fluorescence spectral studies reveal that the complexes 1-6 bind non-covalently to calf thymus DNA more strongly than the corresponding covalently bound chlorido complexes [Cu(2NO)Cl] 1a-2a and [Cu(3N)Cl2] 3a-6a. On prolonged incubation, all the complexes 1-6 exhibit double strand cleavage of supercoiled (SC) plasmid DNA in the absence of an activator. Also, they exhibit cytotoxicity against human breast cancer cell lines (HBL-100) more potent than their corresponding chlorido complexes 1a-6a, and have the potential to act as efficient cytotoxic drugs.

  6. Remarkable photocytotoxicity in hypoxic HeLa cells by a dipyridophenazine copper(II) Schiff base thiolate.

    PubMed

    Lahiri, Debojyoti; Majumdar, Ritankar; Mallick, Dibyendu; Goswami, Tridib K; Dighe, Rajan R; Chakravarty, Akhil R

    2011-08-01

    Copper(II) complexes [Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H2satp) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near -0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (~1.85 μB) are avid DNA binders giving Kb values within 1.0×10(5)-8.0×10(5) M(-1). Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC50=8.3(±1.0) μM) in visible light, while showing lower dark toxicity (IC50=17.2(±1.0) μM). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC50=30.0(±1.0) μM in dark), while retaining its photocytotoxicity (IC50=8.0(±1.0) μM).

  7. Newer mixed ligand Schiff base complexes from aquo-N-(2‧-hydroxy acetophenone) glycinatocopper(II) as synthon: DFT, antimicrobial activity and molecular docking study

    NASA Astrophysics Data System (ADS)

    Pramanik, Harun A. R.; Das, Dharitri; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.

    2014-02-01

    Synthesis of a series of newer mixed ligand copper(II) complexes of aminoacid Schiff base of the type [CuL(X)] (L = N-(2‧-hydroxy acetophenone) glycinate, X = imidazole (im) 2, benzimidazole (benz) 3, pyridine (py) 4, hydrazine (hz) 5,8-hydroxyquinoline (8-hq) 6, pyrrolidine (pyrr) 7, piperidine (pip) 8, and nicotinamide (nic) 9) have been accomplished from the interaction of an aquated Schiff base complex, [CuL(H2O)]·H2O, 1 with some selected neutral nitrogen-donor ligands. The copper(II) Schiff base complex, [CuL(H2O)]·H2O, L = N-(2‧-hydroxy acetophenone) glycinate was synthesized from the reaction of glycine and 2‧ hydroxy acetophenone and copper(II) acetate. The compounds were characterised by elemental analysis, spectral, magnetic and thermal studies. The density functional theory calculations were performed using LANL2DZ and 6-311 G(d, p) basis sets with B3LYP correlation functional to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the mixed ligand complexes. A distorted square planar geometry has been conjectured for the complexes. Antibacterial activities of the ligand and its metal complexes have been tested against selected gram-positive and gram-negative strains and correlated with computational docking scores.

  8. Chemistry and applications of organotin(IV) complexes of Schiff bases.

    PubMed

    Nath, Mala; Saini, Pramendra K

    2011-07-21

    Schiff bases are the most widely used versatile ligands, able to coordinate many elements and to stabilize them in various oxidation states. Recently, this class of compounds has been employed as models for biological systems, and in control of stereochemistry in six-coordinate transition metal complexes. Recently, the chemistry of organotin(IV) complexes of Schiff bases has also stemmed from their antitumour, antimicrobial, antinematicidal, anti-insecticidal and anti-inflammatory activities. Furthermore, organotin(IV) complexes of Schiff bases present a wide variety of interesting structural possibilities. Both aliphatic and aromatic Schiff bases in their neutral and deprotonated forms have been used to yield adducts and chelates with variable stoichiometry and different modes of coordination. This critical review (>155 references) focuses upon the chemistry and biological applications of organotin(IV) complexes of Schiff bases reported in the past 15 years. Thermal behavior of these complexes is also discussed.

  9. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  10. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, A. A.; Linert, Wolfgang

    2015-04-01

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  11. A sandwich-type triple-decker lanthanide complex with mixed phthalocyanine and Schiff base ligands.

    PubMed

    Gao, Feng; Li, Yu-Yang; Liu, Cai-Ming; Li, Yi-Zhi; Zuo, Jing-Lin

    2013-08-21

    A new triple-decker dinuclear sandwich-type dysprosium complex based on both the phthalocyanine ligand and the tetradentate Schiff base ligand was synthesized, which is of interest for synthetic chemistry and also shows single-molecule magnetic behaviour.

  12. Interaction of a copper(II)-Schiff base complexes with calf thymus DNA and their antimicrobial activity.

    PubMed

    Sabolová, D; Kožurková, M; Plichta, T; Ondrušová, Z; Hudecová, D; Simkovič, M; Paulíková, H; Valent, A

    2011-03-01

    The interaction of a copper complexes containing Schiff bases with calf thymus (CT) DNA was investigated by spectroscopic methods. UV-vis, fluorescence and CD spectroscopies were conducted to assess their binding ability with CT DNA. The binding constants K have been estimated from 0.8 to 9.1×10(4) M(-1). The percentage of hypochromism is found to be over 70% (from spectral titrations). The results showed that the copper(II) complexes could bind to DNA with an intercalative mode. Synergic action of Cu(II) complexes with ascorbic acid against Candida albicans induced the generation of free radicals and increased (more than 60 times) antimicrobial effect of these complexes.

  13. Mn(II) and Cu(II) complexes of a bidentate Schiff's base ligand: Spectral, thermal, molecular modelling and mycological studies

    NASA Astrophysics Data System (ADS)

    Tyagi, Monika; Chandra, Sulekh; Tyagi, Prateek

    2014-01-01

    Complexes of manganese(II) and copper(II) of general composition M(L)2X2 have been synthesized [L = 2-acetyl thiophene thiosemicarbazone and X = Cl- and NO3-]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a bidentate manner. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Mn(II) and tetragonal geometry for Cu(II) complexes. The thermal studies suggested that the complexes are more stable as compared to ligand. In molecular modelling the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31g(d,p) basis set. The mycological studies of the compounds were examined against the plant pathogenic fungi i.e. Rhizoctonia bataticola, Macrophomina phaseolina, Fusarium odum.

  14. Mn(II) and Cu(II) complexes of a bidentate Schiff's base ligand: spectral, thermal, molecular modelling and mycological studies.

    PubMed

    Tyagi, Monika; Chandra, Sulekh; Tyagi, Prateek

    2014-01-03

    Complexes of manganese(II) and copper(II) of general composition M(L)2X2 have been synthesized [L=2-acetyl thiophene thiosemicarbazone and X=Cl(-) and NO3(-)]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a bidentate manner. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Mn(II) and tetragonal geometry for Cu(II) complexes. The thermal studies suggested that the complexes are more stable as compared to ligand. In molecular modelling the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31g(d,p) basis set. The mycological studies of the compounds were examined against the plant pathogenic fungi i.e. Rhizoctonia bataticola, Macrophomina phaseolina, Fusarium odum.

  15. Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.; Ammar, Reda A. A.; Chinnathambi, Arunachalam

    2015-05-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been synthesized [L = 4-pyridin-2-yl-methylene amino-4H-1,2,4-triazole-3-thiol]. The elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (SNN). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.34-10.46 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tridentate ligand coordinated through deprotonated thiolic sulfur, azomethine nitrogen and pyridine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coast-Redfern, Horowitz-Metzger (HM), Piloyan-Novikova (PN) and Broido's equations. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. Both the Schiff's base ligand and its complexes have been screened for antibacterial activities.

  16. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    ERIC Educational Resources Information Center

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  17. Synthesis, spectral, thermal and magnetic studies of Mn(II), Ni(II) and Cu(II) complexes with some benzopyran-4-one Schiff bases.

    PubMed

    el-Ansary, Aida L; Abdel-Fattah, Hussein M; Abdel-Kader, Nora S

    2011-08-01

    The Schiff bases of N(2)O(2) dibasic ligands, H(2)La and H(2)Lb are prepared by the condensation of ethylenediamine (a) and trimethylenediamine (b) with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one. Also tetra basic ligands, H(4)La and H(4)Lb are prepared by the condensation of aliphatic amines (a) and (b) with 6-formyl-5,7-dihydroxy-2-methylbenzopyran-4-one. New complexes of H(4)La and H(4)Lb with metal ions Mn(II), Ni(II) and Cu(II) are synthesized, in addition Mn(II) complexes with ligands H(2)La and H(2)Lb are also synthesized. Elemental and thermal analyses, infrared, ultraviolet-visible as well as conductivity and magnetic susceptibility measurements are used to elucidate the structure of the newly prepared metal complexes. The structures of copper(II) complexes are also assigned based upon ESR spectra study. All the complexes separated with the stoichiometric ratio (1:1) (M:L) except Mn-H(4)La and Mn-H(4)Lb with (2:1) (M:L) molar ratio. In metal chelates of the type 1:1 (M:L), the Schiff bases behave as a dinegative N(2)O(2) tetradentate ligands. Moreover in 2:1 (M:L) complexes, the Schiff base molecules act as mono negative bidentate ligand and binuclear complex is then formed. The Schiff bases were assayed by the disc diffusion method for antibacterial activity against Staphylococcus aureus and Escherichia coli. The antifungal activity of the Schiff bases was also evaluated against the fungi Aspergillus flavus and Candida albicans.

  18. Mononuclear Ru(III) Schiff base complexes: Synthesis, spectral, redox, catalytic and biological activity studies

    NASA Astrophysics Data System (ADS)

    Priya, N. Padma; Arunachalam, S.; Manimaran, A.; Muthupriya, D.; Jayabalakrishnan, C.

    2009-04-01

    An octahedral ruthenium(III) Schiff base complexes of the type [RuX(EPh 3)(L)] (where, X = Cl/Br; E = As/P; L = dianion of the Schiff bases derived from acetoacetanilide with o-phenylenediamine and salicylaldehyde/ o-hydroxyacetophenone/ o-vanillin/2-hydroxy-1-naphthaldehyde) have been synthesized from the reactions of equimolar reactions of [RuX 3(EPh 3) 3] and Schiff bases in benzene. The new Ru(III) Schiff base complexes have been characterized by elemental analyses, FT-IR, electronic, 1H NMR and 13C NMR spectra, EPR spectral studies, powder X-ray diffraction (XRD) and electrochemical studies. The new complexes were found to be effective catalysts for aryl-aryl coupling and the oxidation of alcohols into their corresponding carbonyl compounds, respectively, using molecular oxygen atmosphere at ambient temperature. Further, the new Ru(III) Schiff base complexes were screened for their antibacterial activity against Pseudomonas aeruginosa, Vibrio cholera, Salomonella typhi and Staphylococcus aureaus.

  19. Synthesis, characterization and electrochemical study of synthesis of a new Schiff base (H₂cddi(t)butsalen) ligand and their two asymmetric Schiff base complexes of Ni(II) and Cu(II) with NN'OS coordination spheres.

    PubMed

    Menati, Saeid; Azadbakht, Azadeh; Taeb, Abbas; Kakanejadifard, Ali; Khavasi, Hamid Reza

    2012-11-01

    A novel Schiff base (H(2)cddi(t)butsalen) ligand was prepared via condensation of Methyl-2-{N-(2'-aminoethane)}-amino-1-cyclopentenedithiocarboxylate(Hcden) and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. The ligand and Ni(II) and Cu(II) complexes were characterized based on elemental analysis, IR, (1)H NMR, (13)C NMR, UV-Vis spectrometry and cyclic voltammetry. The structure of copper{methyl-2-{N-[2-(3,5-di-tert-butyl-2-hydroxyphenyl)methylidynenitrilo]ethyl}amino-1-cyclopentedithiocarboxylate has been determined by X-ray crystallography. The X-ray results confirm that the geometry of the complex is slightly distorted square-planar structure. The copper(II) ion coordinates to two nitrogen atoms from the imine moiety of the ligand, a sulfur atom the methyl dithiocarboxylate moiety and phenolic oxygen atom.

  20. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  1. Synthesis, characterization and antibacterial studies of ruthenium(III) complexes derived from chitosan schiff base.

    PubMed

    Vadivel, T; Dhamodaran, M

    2016-09-01

    Chitosan can be modified chemically by condensation reaction of deacetylated chitosan with aldehyde in homogeneous phase. This condensation is carried by primary amine (NH2) with aldehyde (CHO) to form corresponding schiff base. The chitosan biopolymer schiff base derivatives are synthesized with substituted aldehydes namely 4-hydroxy-3-methoxy benzaldehyde, 2-hydroxy benzaldehyde, and 2-hydroxy-3-methoxy benzaldehyde, becomes a complexing agent or ligand. The Ruthenium(III) complexes were obtained by complexation of Ruthenium with schiff base ligands and this product exhibits as an excellent solubility and more biocompatibility. The novel series of schiff base Ruthenium(III) complexes are characterized by Elemental analysis, FT-IR spectroscopy, and Thermo-gravimetric analysis (TGA). The synthesized complexes have been subjected to antibacterial study. The antibacterial results indicated that the antibacterial activity of the complexes were more effective against Gram positive and Gram negative pathogenic bacteria. These findings are giving suitable support for developing new antibacterial agent and expand our scope for applications.

  2. Self-assembled copper(II) metallacycles derived from asymmetric Schiff base ligands: efficient hosts for ADP/ATP in phosphate buffer.

    PubMed

    Kumar, Amit; Pandey, Rampal; Kumar, Ashish; Gupta, Rakesh Kumar; Dubey, Mrigendra; Mohammed, Akbar; Mobin, Shaikh M; Pandey, Daya Shankar

    2015-10-21

    Novel asymmetric Schiff base ligands 2-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-phenol (H2L(1)) and 1-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-naphthalen-2-ol (H2L(2)) possessing dissimilar N,O-chelating sites and copper(ii) metallacycles (CuL(1))4 (1) and (CuL(2))4 (2) based on these ligands have been described. The ligands and complexes have been thoroughly characterized by satisfactory elemental analyses, and spectral (IR, (1)H, (13)C NMR, ESI-MS, UV/vis) and electrochemical studies. Structures of H2L(2) and 1 have been unambiguously determined by X-ray single crystal analyses. The crystal structure of H2L(2) revealed the presence of two distinct N,O-chelating sites on dissimilar cores (naphthalene and β-ketoaminato groups) offering a diverse coordination environment. Metallacycles 1 and 2 having a cavity created by four Cu(ii) centres coordinated in a homo- and heteroleptic fashion with respective ligands act as efficient hosts for adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) respectively, over other nucleoside polyphosphates (NPPs). The disparate sensitivity of these metallacycles toward ADP and ATP has been attributed to the size of the ligands assuming diverse dimensions and spatial orientations. These are attuned for π-π stacking and electrostatic interactions suitable for different guest molecules under analogous conditions, metallacycle 1 offers better orientation for ADP, while 2 for ATP. The mechanism of the host-guest interaction has been investigated by spectral and electrochemical studies and supported by molecular docking studies.

  3. Spectrometric study of tautomeric and protonation equilibria of o-vanillin Schiff base derivatives and their complexes with Cu(II)

    NASA Astrophysics Data System (ADS)

    Galić, Nives; Cimerman, Zvjezdana; Tomišić, Vladislav

    2008-12-01

    Electronic absorption and emission properties of a series of Schiff bases derived from 2-hydroxy-3-methoxybenzaldehyde and 2-aminopyridine, 2,3-diaminopyridine, 2,6-diaminopyridine, or 3-aminomethylpyridine were studied in solvents of different polarities. The interconversion of the enolimine to the ketoamine tautomeric form was observed for compound 1, 6-methoxy-2-(3-pyridylmethyliminomethyl)phenol, and the corresponding equilibrium constant was estimated in several solvents. Protonation constants of all the investigated compounds were determined spectrophotometrically in the methanol/water 1/4 system. The effect of copper(II) ions on absorption and on the emission spectra of these ligands was examined in the buffered dioxane/water 1/1 system (pH 5.8). Strong complexation of Cu(II) and formation of a 1:1 complex were observed for the bis-Schiff base derived from 2,3-diaminopyridine. The complex of copper(II) with compound 1 was isolated and characterized by elemental analysis, magnetic susceptibility measurement, UV-vis and IR spectrometry.

  4. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  5. Effect of the Schiff base complex diaqua-(N-salicylidene-l-glutamato)copper(II) monohydrate on human tumor cells.

    PubMed

    Konarikova, Katarina; Andrezalova, Lucia; Rapta, Peter; Slovakova, Marianna; Durackova, Zdenka; Laubertova, Lucia; Gbelcova, Helena; Danisovic, Lubomir; Bohmer, Daniel; Ruml, Tomas; Sveda, Martin; Zitnanova, Ingrid

    2013-12-05

    The aim of our study was to estimate cytostatic/cytotoxic activity of the copper(II) Schiff base complex of the composition [Cu(N-salicylidene-l-glutamato)(H2O)2]·H2O, further Cu(SG-L)H2O, against human colon carcinoma cell line HT-29, as well as to determine type of cell death and to find out the molecular mechanism of apoptosis induced by this complex. Two highest concentrations (50, 100 µmol/l) of the complex showed a strong cytotoxic activity against human colon carcinoma cells HT-29 after 72 h of influence. Other concentrations had a cytostatic activity. Unchelated copper(II) ions and free ligands had no effect on the cell growth. Cu(SG-L)H2O preferentially reduced cancer cell viability compared to healthy cells (NIH-3T3). Cu(SG-L)H2O induced apoptosis of cells HT-29 at all concentrations used (1-100 µmol/l) after 48 h of influence. Apoptosis was carried out by the mitochondrial pathway with active caspases 3 and 9. By the spin-trapping technique combined with electron paramagnetic resonance we found that our complex is photochemically stable in aqueous systems and does not exhibit radical-scavenging activity when 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) cation radical was used as an oxidant. The complex exhibits a strong prooxidant property in the initial stages of thermal decomposition of K2S2O8 in water solutions leading to the massive production of (·)OH radicals. Therefore, this complex could strongly participate in anticancer action via a free radical mechanism.

  6. Docking of ethanamine Schiff base imines & metal (II) complexes, cytotoxicity & DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Sujarani, S.; Ramu, A.

    2015-01-01

    The present study deals with a series of biologically and stereo chemically important novel transition metal (II) Schiff base chelates. The Cu (II), Co (II), Mn (II) and Ni (II) ions containing complexes were synthesized by using diphenylethanamine and 2-hydroxy/2, 4-dihydroxy/2-hydroxy-4-methoxybenzaldehydes. The synthesized complexes were characterized using micro analytical, IR, NMR, ESI-Mass, UV-Visible, cyclic voltammetry and the EPR spectroscopic techniques. The spectral data evidenced the action of ligands as a neutral bidentate Schiff bases, coordinating through azomethine nitrogen and oxygen atom of hydroxyl group. The interaction studies revealed the groove binding nature of complexes with CT-DNA. The ligand and synthesized metal complexes showed cytotoxicity against cancerous cells. The strong binding affinity of the imine and metal complexes was also confirmed by molecular docking studies.

  7. Transition Metal(II) Complexes with Cefotaxime-Derived Schiff Base: Synthesis, Characterization, and Antimicrobial Studies

    PubMed Central

    Amzoiu, Emilia; Spînu, Cezar Ionuţ

    2014-01-01

    New [ML2(H2O)2] complexes, where M = Co(II), Ni(II), Cu(II), and Zn(II) while L corresponds to the Schiff base ligand, were synthesized by condensation of cefotaxime with salicylaldehyde in situ in the presence of divalent metal salts in ethanolic medium. The complexes were characterized by elemental analyses, conductance, and magnetic measurements, as well as by IR and UV-Vis spectroscopy. The low values of the molar conductance indicate nonelectrolyte type of complexes. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for Co(II), Ni(II), and Zn(II) complexes while a tetragonal geometry for Cu(II) complex. Molecular structure of the Schiff base ligand and its complexes were studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. All the synthesized complexes were tested for in vitro antibacterial activity against some pathogenic bacterial strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. The MIC values shown by the complexes against these bacterial strains revealed that the metal complexes possess superior antibacterial activity than the Schiff base. PMID:24688454

  8. Synthesis and spectral characterization of ternary mixed-vanadyl β-diketonate complexes with Schiff bases.

    PubMed

    Baranwal, Balram Prasad; Tripathi, Kiran; Singh, Alok Kumar; Tripathi, Saurabh

    2012-06-01

    A new method to synthesize some mononuclear ternary oxovanadium(IV) complexes of the general formula [VO(β-dike)(SB)] (where Hβ-dike=acetylacetone; benzoylacetone or dibenzoylmethane, HSB=Schiff bases) has been explored by stepwise substitutions of acetylacetonate ion of VO(acac)(2) with Schiff bases. The substituted acetylacetone could be fractionated out with p-xylene as an azeotrope. The complexes were characterized by elemental analyses, molecular weight determinations, spectral (electronic, infrared, (1)H NMR, EPR and powder XRD) studies, magnetic susceptibility measurements and cyclic voltammetry. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bidentate chelating nature of β-diketones and Schiff base anions in the complexes was established by infrared and NMR spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. The EPR spectra illustrated coupling of the unpaired electron with (51)V nucleus (I=7/2). Cyclic voltammograms of all the complexes displayed two-step oxidation processes. The oxidation peak potential corresponded to the quasireversible one-electron oxidation process of the metal center, yielding V(V) species. Transmission electron microscopy (TEM) indicated spherical particles of ∼200 nm diameter. The synthesized complexes are mixed-ligand complexes showing a considerable hydrolytic stability in which vanadium is having coordination number 5. A square pyramidal geometry around vanadium has been assigned in all the complexes.

  9. In vitro anticancer activities of Schiff base and its lanthanum complex

    NASA Astrophysics Data System (ADS)

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-01

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L1)2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L1), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2 M ratio with ligands L1 and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L2) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, 1H/13C NMR, thermogravimetric, XRD, and SEM analysis.

  10. Langmuir films of amphiphilic schiff base of O-Vaniline and its metal complexes

    NASA Astrophysics Data System (ADS)

    Hemakanthi, G.; Unni Nair, Balachandran; Dhathathreyan, Aruna

    2001-06-01

    Stable monolayers of the Schiff base of O-Vaniline have been formed at the air/water interface and on a subphase containing Cu 2+, Ni 2+ and Zn 2+ ions. Polarized UV-Visible spectra of the Langmuir-Blodgett (LB) films of the pure Schiff base and those of the metal complexes on solid substrates have been studied. The LB films indicate that the aromatic rings in the polar plane are oriented slightly out of plane to the solid substrate and the orientation remains nearly the same for the ligand and for the complexes. Low angle XRD shows that the copper complex and the ligand stack into multimeric structures as the monolayer is compressed on the water surface.

  11. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Shiju, C.; Arish, D.; Bhuvanesh, N.; Kumaresan, S.

    2015-06-01

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, 1H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a = 7.032(2) Ǻ, b = 9.479(3) Ǻ, c = 12.425(4) Ǻ, α = 101.636(3)°, β = 99.633(3)°, γ = 94.040(3)°, V = 795.0(4) Ǻ3, Z = 2, F(0 0 0) = 352, Dc = 1.405 mg/m3, μ = 0.099 mm-1, R = 0.0378, and wR = 0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active.

  12. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes.

    PubMed

    Shiju, C; Arish, D; Bhuvanesh, N; Kumaresan, S

    2015-06-15

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, (1)H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a=7.032(2)Ǻ, b=9.479(3)Ǻ, c=12.425(4)Ǻ, α=101.636(3)°, β=99.633(3)°, γ=94.040(3)°, V=795.0(4)Ǻ(3), Z=2, F(000)=352, Dc=1.405 mg/m(3), μ=0.099 mm(-1), R=0.0378, and wR=0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active.

  13. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole

    NASA Astrophysics Data System (ADS)

    Song, Wen-Ji; Cheng, Jian-Ping; Jiang, Dong-Hua; Guo, Li; Cai, Meng-Fei; Yang, Hu-Bin; Lin, Qiu-Yue

    2014-03-01

    Two novel copper(II) complexes with Schiff base of benzimidazole [Cu(L)Cl]2·CH3OH have been synthesized. HL1 (N-(benzimidazol-2-ymethyl)-5-chlorosalicylideneimine, C15H11ClN3O) and HL2 (N-(benzimidazol-2-ymethyl)-salicylideneimine, C15H12N3O) are ligands of complex (1) and complex (2), respectively. The complexes were characterized by elemental analysis, IR, UV-Vis, TGA and X-ray diffraction. Within the complexes, Cu(II) ions were four coordinated by two nitrogen atom of azomethine and imine, one phenolic oxygen atom from HL and one chloride atom. A distorted quadrilateral structure was formed. Complex (1) crystallized in the triclinic crystal system. Results showed that π-π stacking effect occurred due to the existence of aromatic ring from Schiff base and hydrogen bonding between methanol and adjacent atoms. The DNA binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra and viscosity measurements. Results indicated that complexes bound to DNA via partial intercalation mode. The DNA binding constants Kb/(L mol-1) were 1.81 × 104 (1), 1.37 × 104 (2), 6.27 × 103 (HL1) and 3.14 × 103 (HL2) at 298 K. The title complexes could quench the emission intensities of EB-DNA system significantly. The results of agarose gel electrophoresis indicated complex (1) could cleave supercoiled DNA through the oxidative mechanism. The inhibition ratios revealed that complex (1) and HL1 had strong antiproliferative activities against human breast cancer cells (MCF-7) lines and human colorectal cancer cells (COLO205) lines in vitro. The antiproliferative activities of complex (1) against MCF-7 lines (IC50 = 16.9 ± 1.5 μmol L-1) and against COLO205 lines (IC50 = 16.5 ± 3.4 μmol L-1) is much stronger than that of HL1, which had the potential to develop anti-cancer drug.

  14. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  15. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    NASA Astrophysics Data System (ADS)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  16. Highly fluorescent BF2 complexes of hydrazine-Schiff base linked bispyrrole.

    PubMed

    Yu, Changjiang; Jiao, Lijuan; Zhang, Ping; Feng, Zeya; Cheng, Chi; Wei, Yun; Mu, Xiaolong; Hao, Erhong

    2014-06-06

    A series of BF2 complexes of hydrazine-Schiff base linked bispyrrole have been prepared from a simple two-step reaction from commercially available substances and are highly fluorescent in solution, film, and solid states with larger Stokes shift and excellent photostabilities comparable or even super to those of their BODIPY analogues. These resultant fluorescent dyes are highly susceptible to the postfunctionalization, as demonstrated in this work via the Knoevenagel condensation to introducing functionalities or tether groups to the chromophore.

  17. One-step electrochemical deposition of Schiff base cobalt complex as effective water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Binbin; Wang, Yan; Zhan, Shuzhong; Ye, Jianshan

    2017-02-01

    Schiff base metal complexes have been applied in many fields, especially, a potential homogeneous catalyst for water splitting. However, the high overpotential, time consumed synthesis process and complicated working condition largely limit their application. In the present work, a one-step approach to fabricate Schiff base cobalt complex modified electrode is developed. Microrod clusters (MRC) and rough spherical particles (RSP) can be obtained on the ITO electrode through different electrochemical deposition condition. Both of the MRC and RSP present favorable activity for oxygen evolution reaction (OER) compared to the commercial Co3O4, taking an overpotential of 650 mV and 450 mV to drive appreciable catalytic current respectively. The highly active and stable RSP shows a Tafel plot of 84 mV dec-1 and negligible decrease of the current density for 12 h bulk electrolysis. The synthesis strategy of effective and stable catalyst in this work provide a simple method to fabricate heterogeneous OER catalyst with Schiff base metal complex.

  18. Antibacterial and antifungal metal based triazole Schiff bases.

    PubMed

    Chohan, Zahid H; Hanif, Muhammad

    2013-10-01

    A new series of four biologically active triazole derived Schiff base ligands (L(1)-L(4)) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (1-16) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.

  19. One-dimensional organic photoconductive nanoribbons built on Zn-Schiff base complex

    SciTech Connect

    Liu Li; Shao Mingwang; Wang Xiuhua

    2010-03-15

    One-dimensional organic nanoribbons built on N-p-nitrophenylsalicylaldimine zinc complex were synthesized via a facile solvothermal route. The scanning electron microscope images revealed that the as-synthesized products were ribbon-like with width mainly of 300-600 nm, thickness of about 50 nm, and length of up to tens of micrometers. Fourier transform infrared spectrum was employed to characterize the structure. Ultraviolet-visible absorption and photoluminescence spectra showed that the products had good photoluminescent property and exhibited blue emission. The conductivity of a bundle of nanoribbons was also measured, which showed that the Schiff base zinc nanoribbons had good photoconductive property. This work might enrich the organic photoconductive materials and be applicable in light-controlled micro-devices or nano-devices in the future. - Graphical abstract: The Schiff base zinc nanoribbons nanowires exhibited good photoresponse under an incandescent lamp, which indicated their potential application as organic semiconductive or photoconductive nanodevices in the future.

  20. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    NASA Astrophysics Data System (ADS)

    Lekshmy, R. K.; Thara, G. S.

    2014-10-01

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

  1. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    SciTech Connect

    Lekshmy, R. K. E-mail: tharapradeepkumar@yahoo.com; Thara, G. S. E-mail: tharapradeepkumar@yahoo.com

    2014-10-15

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

  2. Co (II) Complexes with Schiff Base Ligands: Synthesis and EXAFS Study

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Mansuri, Amantulla; Ninama, Samrath; Trivedi, Apurva; Patidar, Sushma; Jamod, Mahesh; Awate, Ruchita

    2016-10-01

    Thesynthesis of transition metal Schiff base complexes of Co(II) are prepared by chemical root method. Obtained by the condensation of O-phenylenediamine, salicylaldehyde and isatin / 2-hydroxy- 1 Naphthaldehyde is presented. The complexes were characterized by Co- K- edge EXAFS measurements using the dispersive beam line at 2.5GeV energy of Indus-2 synchrotron radiation source RRCAT Indore. The recorded EXAFS data were analyzed using the computer software Athena for determine the nearest neighboring distances (bond lengths) of these complexes with conventional methods and were compared with Fourier transform (FT) analysis.

  3. New sandwich-type lanthanide complexes based on closed-macrocyclic Schiff base and phthalocyanine molecules.

    PubMed

    Gao, Feng; Feng, Xiaowan; Yang, Liu; Chen, Xiaoyu

    2016-04-25

    Two new sandwich-type lanthanide complexes with the general formula [(Pc)2Ln3(L)(OAc)(OCH3)2] (Ln(3+) = Dy(3+) () and Er(3+) ()) were successfully synthesized and structurally characterized based on closed-macrocyclic Schiff base and phthalocyanine molecules. The magnetic properties and structure-property relationship in this multi-decker system were investigated. Interestingly, the corresponding dysprosium complex shows typical single-molecule magnetic behavior with ferromagnetic dipole-dipole interactions and the slow relaxation of magnetization.

  4. Zinc (II) complex with a cationic Schiff base ligand: Synthesis, characterization, and biological studies

    NASA Astrophysics Data System (ADS)

    Lee, Sze Koon; Tan, Kong Wai; Ng, Seik Weng; Ooi, Kah Kooi; Ang, Kok Pian; Abdah, Md Akim

    2014-03-01

    A cationic Schiff base ligand, TSB (L) and its Zn (II) complex (1) were synthesized and characterized by using CHN, 1H-NMR, FT-IR, UV, LC-MS, and X-ray methods. Their ability to inhibit topoisomerase I, DNA cleavage activities, and cytotoxicity were studied. X-ray diffraction study shows that the mononuclear complex 1 is four coordinated with distorted tetrahedral geometry. The singly deprotonated Schiff base ligand L acts as a bidentate ON-donor ligand. Complexation of L increases the inhibitory strength on topoisomerase I activity. Complex 1 could fully inhibit topoisomerase I activity at 250 μM, while L did not show any inhibitory effect on topoisomerase I activity. In addition, L and complex 1 could cleave pBR322 DNA in a concentration and time dependent profile. Surprisingly, L has better DNA cleavage activity than complex 1. The cleavage of DNA by complex 1 is altered in the presence of hydrogen peroxide. Furthermore, L and complex 1 are mildly cytotoxic towards human ovarian cancer A2780 and hepatocellular carcinoma HepG2.

  5. Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II).

    PubMed

    Joseyphus, R Selwin; Nair, M Sivasankaran

    2008-06-01

    Two Schiff base ligands L1and L2 were obtained by the condensation of glycylglycine respectively with imidazole-2-carboxaldehyde and indole-3-carboxaldehyde and their complexes with Zn(II) were prepared and characterized by microanalytical, conductivity measurement, IR, UV-Vis., XRD and SEM. The molar conductance measurement indicates that the Zn(II) complexes are 1: 1electrolytes. The IR data demonstrate the tetradentate binding of L1and tridentate binding of L2. The XRD data show that Zn(II) complexes with L1and L2 have the crystallite sizes of 53 and 61nm respectively. The surface morphology of the complexes was studied using SEM. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by the disc diffusion method. A comparative study of inhibition values of the Schiff base ligands and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. Zinc ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium.

  6. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine.

    PubMed

    Nitha, L P; Aswathy, R; Mathews, Niecy Elsa; Kumari, B Sindhu; Mohanan, K

    2014-01-24

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, (1)HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X=Cl, OAc; ISAP=2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  7. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  8. Synthesis and characterization of chromium(III) Schiff base complexes: antimicrobial activity and its electrocatalytic sensing ability of catechol.

    PubMed

    Kumar, S Praveen; Suresh, R; Giribabu, K; Manigandan, R; Munusamy, S; Muthamizh, S; Narayanan, V

    2015-03-15

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  9. Synthesis and characterization of chromium(III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol

    NASA Astrophysics Data System (ADS)

    Praveen Kumar, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Muthamizh, S.; Narayanan, V.

    2015-03-01

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  10. The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy

    PubMed Central

    Milosavljevic, Vedran; Haddad, Yazan; Merlos Rodrigo, Miguel Angel; Moulick, Amitava; Polanska, Hana; Hynek, David; Heger, Zbynek; Kopel, Pavel; Adam, Vojtech

    2016-01-01

    Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug. PMID:27727290

  11. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  12. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases.

    PubMed

    Hanif, Muhammad; Chohan, Zahid H

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L(1)-L(3) have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  13. Synthesis, spectroscopic characterization and antibacterial studies of lanthanide(III) Schiff base complexes containing N, O donor atoms

    NASA Astrophysics Data System (ADS)

    Lekha, L.; Raja, K. Kanmani; Rajagopal, G.; Easwaramoorthy, D.

    2014-01-01

    A series of six Ln(III) Schiff base complexes, Pr(III), Sm(III), Gd(III), Tb(III), Er(III) and Yb(III), were synthesized using sodium salt of Schiff base, 2-[(5-bromo-2-hydroxy-benzylidene)-amino]-3-hydroxy-propionic acid, derived from L-serine and 5-bromosalicylaldehyde. These complexes having general formula [Ln(L)(NO3)2(H2O)]·NO3 were characterized by elemental analysis, conductivity measurements, UV-Vis, FT-IR, mass spectrometry and fluorescence studies. Elemental analysis and conductivity measurements suggest the complexes have a 1:1 stoichiometry. From the spectral studies it has been concluded that Ln(III) complexes display eight coordination. The Schiff base and its Ln(III) metal complexes have also been screened for their antibacterial activities by Agar diffusion method.

  14. Spacer-dependent structural and physicochemical diversity in copper(II) complexes with salicyloyl hydrazones: a monomer and soluble polymers.

    PubMed

    Matoga, Dariusz; Szklarzewicz, Janusz; Gryboś, Ryszard; Kurpiewska, Katarzyna; Nitek, Wojciech

    2011-04-18

    Complexation of copper(II) with a series of heterodonor chelating Schiff bases (LL) of salicylic acid hydrazide and aliphatic or cycloaliphatic ketones affords soluble one-dimensional (1D) metallopolymers containing Schiff bases as bridging ligands. Single-crystal X-ray diffraction results reveal nanometer-sized metallopolymeric wires [Cu(μ-LL)(2)](n) with off-axis linkers and a zigzag geometry. Octahedrally coordinated copper centers, exhibiting a Jahn-Teller distortion, are doubly bridged by two Schiff-base molecules in the μ(2)-η(1),η(2) coordination mode. The use of dibutylketone with long alkyl chains as a component for Schiff base formation leads to a distorted square planar monomeric copper(II) complex [Cu(LL)(2)], as evidenced by its X-ray crystal structure. The compounds are characterized by elemental analyses and IR and UV-vis spectroscopy, as well as magnetic susceptibility and cyclic voltammetry measurements. Electrochemical studies on the complexes reveal an existence of polymeric and monomeric forms in solution and the dependence of Cu(II)/Cu(I) reduction potentials on alkyl groups of salicyloyl hydrazone ligands. Polymeric complexes form conducting films on Pt electrodes upon multicycle potential sweeps.

  15. Enolic schiff base aluminum complexes and their catalytic stereoselective polymerization of racemic lactide.

    PubMed

    Pang, Xuan; Du, Hongzhi; Chen, Xuesi; Wang, Xianhong; Jing, Xiabin

    2008-01-01

    A series of enolic Schiff base aluminum(III) complexes LAlR (where L=NNOO-tetradentate enolic Schiff base ligand) containing ligands that differ in their steric and electronic properties were synthesized. Their single crystals showed that these complexes are five-coordinated around the aluminum center. Their coordination geometries are between square pyramidal and trigonal bipyramidal. Their catalytic properties in the solution polymerization of racemic lactide (rac-LA) were examined. The modifications in the auxiliary ligand exhibited a dramatic influence on the catalytic performance. Lengthening the backbone from C(2) alkylene to C(3) alkylene resulted in remarkable enhancement of both the stereoselectivity and the polymerization rate because of the increasing flexibility of the diimine backbone. Electron-withdrawing substituents in the diketone also highly improved the activity and the stereoselectivity. Among these complexes, 4 b had the highest activity and the stereoselectivity owing to the C(3) alkylene backbone and the two gem-methyl groups on the middle carbon atom. The value of the polymerization rate constant (k(p)) catalyzed by 4 b in 70 degrees C was 1.90 L mol(-1) min(-1), the activation energy of the polymerization (35.4 kJ mol(-1)) was calculated according to the Arrhenius equation. Other factors that influenced the polymerization, such as the polymerization time, the temperature, and the monomer concentration, are also discussed in detail.

  16. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: Synthesis, characterization and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-01

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L1), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L2) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L4). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L3) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, 1H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1 M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  17. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  18. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes

    PubMed Central

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.

  19. In vitro antibacterial, antifungal and cytotoxic activities of some triazole Schiff bases and their oxovanadium(IV) complexes.

    PubMed

    Sumrra, Sajjad H; Chohan, Zahid H

    2013-12-01

    The condensation reaction of 3,5-diamino-1,2,4-triazole with methoxy-, chloro-, bromo-, iodo- and nitro-substituted 2-hydroxybenzaldehydes formed triazole Schiff bases (L(1))-(L(6)). The synthesized ligands have been characterized through physical, spectral and analytical data. Furthermore, the reaction of synthesized Schiff bases with the oxovanadium(IV) sulphate in (1:2) (metal:ligand) molar ratio afforded the oxovanadium(IV) complexes (1)-(6). All the complexes were non-electrolytic and showed a square-pyramidal geometry. The synthesized compounds have been screened for in-vitro antibacterial, antifungal and brine shrimp bioassay. The bioactivity data showed the complexes to be more active than the original Schiff bases.

  20. The NMR and X-ray study of L-arginine derived Schiff bases and its cadmium complexes

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Grech, E.; Schilf, W.; Kamieński, B.; Pazio, A.; Woźniak, K.

    2014-04-01

    The structure study of five Schiff bases derived from L-arginine (L-Arg) and 2-hydroxy carbonyl compounds were performed in both solution and solid state using NMR and X-ray methods. Both analytical methods applied to the solid state sample of two Schiff bases showed a significant difference in molecular structures of unsubstituted and 7-CH3 substituted compounds. This effect was explained as a steric interaction of methyl group. Additionally the structure of two Cd2+ complexes with some Schiff bases were determined by NMR methods in DMSO solution and in the solid state. On the base of heteronuclear NMR measurement (13C, 15N and 113Cd) it was possible to define the complexation site on nitrogen atom. The large set of spectral parameters: chemical shifts, homo- and heteronuclear coupling constants, were used in structure study.

  1. Spectroscopic and density functional theory investigation of novel Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Hassan, Walid M. I.; Zayed, Ehab M.; Elkholy, Asmaa K.; Moustafa, H.; Mohamed, Gehad G.

    2013-02-01

    Novel Schiff base (H2L, 1,2-bis[(2-(2-mercaptophenylimino)methyl)phenoxy] ethane) derived from condensation of bisaldehyde and 2-aminothiophenol was prepared in a molar ratio 1:2. The ligand and its metal complexes are fully characterized with analytical and spectroscopic techniques. The metal complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Th(IV) have been prepared and characterized by elemental analyses, IR and 1H-NMR spectroscopy, thermal and magnetic measurements. The results suggested that the Schiff base is a bivalent anion with hexadentate OONNSS donors derived from the etheric oxygen (O, O'), azomethine nitrogen (N, N') and thiophenolic sulphur (S, S'). The formulae of the complexes were found to be [ML]·xH2O (M = Mn(II) (x = 0), Co(II) (x = 1), Ni(II), (x = 1), Cu(II) (x = 2) and Zn(II) (x = 0)) and [ML]·nCl (M = Cr(III) (n = 1), Fe(III) (n = 1) and Th(IV) (n = 2)). The thermogravimetric analysis of the complexes shows metal oxide remaining as the final product at 700-1000 °C. Density functional theory at the B3LYP/6-31G* level of theory was used to investigate molecular geometry, Mulliken atomic charges and energetics. The synclinal-conformer was found to be responsible for complex formation. The calculation showed that ligand has weak field. Structural deformation and the dihedral angles rotation during complexation were investigated. The binding energy of each complex was calculated. The calculated results are in good agreement with experimental data.

  2. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    PubMed

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  3. Spectral and thermal studies of some chromium and molybdenum complexes with ONO donor Schiff bases.

    PubMed

    Soliman, Ahmed A; Ali, Saadia A; Orabi, Adel

    2006-11-01

    Reactions of M(CO)(6), where M=Cr and Mo with Schiff bases prepared by the condensation of ethanolamine with either acetylacetone or benzoylacetone were investigated. The reactions of Cr(CO)(6) in benzene resulted in the formation of the tricarbonyl drivatives [Cr(CO)(3)(HL)], HL=acaceaH or baceaH. The HL proved to act as a tridentate ligand. The corresponding reactions with Mo(CO)(6) in dioxane gave the oxo complexes [Mo(2)O(6)(HL)(2)] with HL was a bidentate. All prepared complexes were investigated using elemental analysis, IR, mass spectrometry, UV-vis absorption spectra and magnetic measurement. Thermal behaviors of the complexes were studied using by thermogravimetry (TG). Schemes for the thermal decomposition were proposed along with their mass fragmentation patterns.

  4. Manganese(III) Schiff base complexes: chemistry relevant to the copolymerization of epoxides and carbon dioxide.

    PubMed

    Darensbourg, Donald J; Frantz, Eric B

    2007-07-23

    Schiff base complexes of the form (acacen)Mn(III)X (acacen = N,N'-bis(acetylacetone)-1,2-ethylenediimine), where X = OAc, Cl, or N(3), have been evaluated for their ability to couple CO(2) and cyclohexene oxide in the presence of a variety of cocatalysts to provide cyclic or polycarbonates. These complexes proved to be ineffective at catalyzing this process; however, valuable information related to the coordination chemistry of these manganese Schiff bases was elucidated. Of importance, mechanistic findings as revealed by comprehensive studies involving structurally related (salen)CrX and (salen)CoX complexes strongly support the requirement of six-coordinate metal species for the effective copolymerization of CO(2) and epoxides. In the case of these Mn(III) complexes, it was determined that in chloroform or toluene solution a five-coordinate species was greatly favored over a six-coordinate species even in the presence of 20 equiv or more of various Lewis bases. Significantly epoxide monomers such as propylene oxide and cyclohexene oxide displayed no tendency to bind to these (acacen)MnX derivatives, even when used as solvents. Only in the case of excessive quantities of heterocyclic amines such as pyridine, DMAP, and DBU was spectral evidence of a six-coordinate Mn derivative observed in solution. X-ray crystal structures are provided for many of the complexes involved in this study, including the one-dimensional polymeric structures of [(acacen)MnOAc x 2H(2)O](n), [(acacen)MnN(3)](n) (mu(1,3)-N(3)), and a rare mixed bridging species [(acacen)MnN(3)](n) (mu(1,3)-N(3)/mu(1,1)-N(3)). In addition, a structure was obtained in which the unit cell contains both a (acacen)MnN(3)(DMAP) and a (acacen)MnN(3) species.

  5. Schiff base triphenylphosphine palladium (II) complexes: Synthesis, structural elucidation, electrochemical and biological evaluation

    NASA Astrophysics Data System (ADS)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Shafiq, Maryam; Mirza, Bushra; McKee, Vickie; Munawar, Khurram Shahzad; Ashraf, Ahmad Raza

    2016-08-01

    The complexes N-(2-oxidophenyl)salicylideneiminatotriphenylphosphine palladium(II) (1) and N-(2-sulfidophenyl)salicylideneiminato triphenylphosphine palladium(II) (2) of tridentate Schiff bases derived from salicylaldehyde and an amino- or thiophenol, have been synthesized and characterized by various spectroscopic, analytical and electro-analytical techniques. X-ray single crystal analysis of complex 1 has revealed its square planar geometry. The thermal analysis has shown the absence of coordinated water and final degradation product is PdO. The alkaline phosphatase studies have indicated that enzymatic activity is concentration dependent which is inversely proportional to the concentration of the compounds. The biological assays (brine shrimp cytotoxicity, DPPH) have reflected their biologically active and mild antioxidant nature. However, results of DNA protection assay have shown that they possess moderate protective activity against hydroxyl free radicals (rad OH). The voltammetric studies ascertain two-electron reduction of the compounds through purely diffusion controlled process and reveal intercalative mode of drug DNA interactions.

  6. A Study of Complexation-ability of Neutral Schiff Bases to Some Metal Cations

    PubMed Central

    Topal, Giray; Tümerdem, Recep; Basaran, Ismet; Gümüş, Arzu; Cakir, Umit

    2007-01-01

    The constants of the extraction equilibrium and the distribution for dichloromethane as an organic solvent having low dielectric constant of metal cations with chiral Schiff bases, benzaldehydene-(S)-2-amino-3-phenylpropanol (I), ohydroxybenzaldehydene-( S)-2-amino-3-phenyl-propanol (II), benzaldehydene-(S)-2- amino-3-methylbutanol (III) with anionic dyes [4-(2-pyridylazo)-resorcinol mono sodium monohydrate (NaPar), sodium picrat (NaPic) and potassium picrat (KPic)] and some heavy metal chlorides were determined at 25 ºC. All the ligands have given strongest complexation for NaPar. In contrast, similar behaviour for both alkali metal picrates is not apparent in the complexation of corresponding ligands.

  7. PM3 semi-empirical IR spectra simulations for metal complexes of schiff bases of sulfa drugs

    NASA Astrophysics Data System (ADS)

    Topacli, C.; Topacli, A.

    2003-06-01

    The molecular structures and infrared spectra of Co, Ni, Cu and Zn complexes of two schiff base ligands, viz N-( o-vanillinidene)sulfanilamide ( oVSaH) and N-( o-vanillinidene)sulfamerazine ( oVSmrzH) are studied in detail by PM3 method. It has been shown that the proposed structures for the compounds derived from microanalytical, magnetic and various spectral data were consistent with the IR spectra simulated by PM3 method. Coordination effects on ν(CN) and ν(C-O) modes in the schiff base ligands are in close agreement with the observed results.

  8. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases

    PubMed Central

    Ejidike, Ikechukwu P.

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N′-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  9. X-ray and DFT studies of a mono- and binuclear copper(II) ionic compound containing a Schiff base.

    PubMed

    Langer, Vratislav; Mach, Pavol; Gyepesová, Dalma; Andrezálová, Lucia; Kohútová, Mária

    2012-11-01

    In the structure of trans-bis(ethanol-κO)tetrakis(1H-imidazole-κN(3))copper(II) bis[μ-N-(2-oxidobenzylidene)-D,L-glutamato]-κ(4)O(1),N,O(2'):O(2');κ(4)O(2'):O(1),N,O(2')-bis[(1H-imidazole-κN(3))cuprate(II)], [Cu(C(3)H(4)N(2))(4)(C(2)H(6)O)(2)][Cu(2)(C(15)H(14)N(3)O(5))(2)], both ions are located on centres of inversion. The cation is mononuclear, showing a distorted octahedral coordination, while the anion is a binuclear centrosymmetric dimer with a square-pyramidal copper(II) coordination. An extensive three-dimensional hydrogen-bonding network is formed between the ions. According to B3LYP/6-31G* calculations, the two equivalent components of the anion are in doublet states (spin density located mostly on Cu(II) ions) and are coupled as a triplet, with only marginal preference over an open-shell singlet.

  10. Synthesis, characterization and the interaction of some new water-soluble metal Schiff base complexes with human serum albumin

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Sadi, Somaye Barzegar; Zarei, Leila; Baigi, Fatemeh Moosavi; Amirghofran, Zahra

    2014-03-01

    Some new water-soluble Schiff base complexes of Na2[M(L)(H2O)n]; (M = Zn, Cu, Ni, Mn) with a new water-soluble Schiff base ligand where L denotes an asymmetric N2O2 Schiff base ligands; N,N";-bis(5-sulfosalicyliden)-3,4-diaminobenzophenone (5-SO3-3,4-salbenz) were synthesized and characterized. The formation constants of the water soluble Schiff base complexes were calculated by Ketelaar's equation. The theoretical molecular structure for the complexes was computed by using the HF method and the 6-311G basis set. The mechanism of binding of Na2[M(L)(H2O)n] with human serum albumin (HSA) was studied by fluorescence spectroscopic technique. The results of fluorescence titration showed that the intrinsic fluorescence of HSA was quenched by the complexes; which was rationalized in terms of the dynamic quenching mechanism. The values of Stern-Volmer constants, quenching rate constants, binding constants, binding sites and average aggregation number of HSA have been determined. The thermodynamic parameters, were calculated by van't Hoff equation, indicate that the binding is entropy driven and enthalpically disfavored. Based on the Förster theory of non-radiation energy transfer, the efficiency of energy transfer and the distance between the donor (Trp residues) and the acceptor (complex) were obtained. Finally, the growth inhibitory effects of the complexes toward the K562 cancer cell line were measured.

  11. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    PubMed Central

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet–visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms. PMID:24070648

  12. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  13. DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy)benzothiazole Schiff base ligands.

    PubMed

    Rambabu, Aveli; Pradeep Kumar, Marri; Tejaswi, Somapangu; Vamsikrishna, Narendrula; Shivaraj

    2016-12-01

    Four novel Schiff base ligands, L(1) (1-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)naphthalen-2-ol, C19H11F3N2O2S), L(2) (3-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)benzene-1,2-diol, C15H9F3N2O3S), L(3) (2-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol, C16H11F3N2O3S) and L(4) (2-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)-4-bromophenol, C15H8BrF3N2O2S) and their binary copper(II) complexes 1 [Cu(L(1))2], 2 [Cu(L(2))2], 3 [Cu(L(3))2] and 4 [Cu(L(4))2] have been synthesized and characterized by elemental analysis, (1)H NMR, (13)C NMR, ESI mass, FT-IR, ESR, UV-Visible, magnetic susceptibility, TGA, SEM and powder XRD studies. Based on spectral and analytical data, a square planar geometry is assigned for all Cu(II) complexes. The ligands and their Cu(II) complexes have been screened for antimicrobial activity against bacterial species E. coli, P. aeruginosa, B. amyloliquefaciens and S. aureus and fungal species S. rolfsii and M. phaseolina and it is observed that all Cu(II) complexes are more potent than corresponding ligands. DNA binding (UV absorption, fluorescence and viscosity titrations) and cleavage (oxidative and photo cleavage) studies of Cu(II) complexes have also been investigated against calf thymus DNA (CT-DNA) and supercoiled pBR322 DNA respectively. From the experimental results, it is found that the complexes bound effectively to CT-DNA through an intercalative mode and also cleaved pBR322 DNA in an efficient manner. The DNA binding and cleavage affinities of newly synthesized Cu(II) complexes are in the order of 2>1>3>4.

  14. Origin of SMM behaviour in an asymmetric Er(III) Schiff base complex: a combined experimental and theoretical study.

    PubMed

    Das, Chinmoy; Upadhyay, Apoorva; Vaidya, Shefali; Singh, Saurabh Kumar; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2015-04-11

    An asymmetric erbium(III) Schiff base complex [Er(HL)2(NO3)3] was synthesized which shows SMM behaviour with an Ueff of 5.2 K. Dipolar interaction in 1 significantly reduced upon dilution which increases the barrier height to 51.5 K. Ab initio calculations were performed to shed light on the mechanism of magnetization relaxation.

  15. Synthesis, characterization, and antipathogenic studies of some transition metal complexes with N,O-chelating Schiff's base ligand incorporating azo and sulfonamide Moieties

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Bayoumi, Hoda A.; Ammar, Yousry A.; Aldhlmani, Sharah A.

    2013-03-01

    Chromium(III), Manganese(II), Cobalt(II), nickel(II), copper(II) and cadmium(II) complexes of 4-[4-hydroxy-3-(phenyliminomethyl)-phenylazo]benzenesulfonamide, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Dimeric complexes are obtained with 2:2 molar ratio except chromium(III) complex is monomeric which is obtained with 1:1 molar ratios. The IR spectra of the prepared complexes were suggested that the Schiff base ligand(HL) behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. Thermal studies suggest a mechanism for degradation of HL and its metal complexes as function of temperature supporting the chelation modes. Also, the activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS* and ΔG* for the different thermal decomposition steps of HL and its metal complexes were calculated. The pathogenic activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024) as Gram positive bacteria, Klebsiella pneumonia (RCMB 010093), Shigella flexneri (RCMB 0100542), as Gram negative bacteria and Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035) as fungus strain, and the results are discussed.

  16. A novel 1D chain of azido bridged copper(II) with a salen-type di-Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Biswas, Saptarshi; Ghosh, Ashutosh

    2012-07-01

    One new complex of Cu(II), [(CuL)2Cu3(N3)6]n (1) has been synthesized by reacting the "ligand complex", [CuL] with copper acetate and sodium azide (NaN3) in methanol-water where the di-Schiff base ligand H2L = N,N‧-bis(α-methylsalicylidene)-1,3-propanediamine. The X-ray single crystal structural analysis shows that complex 1 consists of an incomplete face-sharing double cube of four Cu(II) ions with the formula of [(CuL)2Cu2(N3)2]2+ which are connected by [Cu(N3)4]2- unit to form a novel 1D chain.

  17. Synthesis, spectroscopic characterization and DNA nuclease activity of Cu(II) complexes derived from pyrazolone based NSO-donor Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Vyas, Komal M.; Joshi, Rushikesh G.; Jadeja, R. N.; Ratna Prabha, C.; Gupta, Vivek K.

    2011-12-01

    Two neutral mononuclear Cu(II) complexes have been prepared in EtOH using Schiff bases derived from 4-toluoyl pyrazolone and thiosemicarbazide. Both the ligands have been characterized on the basis of elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data. The molecular geometry of one of these ligands has been determined by single crystal X-ray study. It reveals that these ligands exist in amine-one tautomeric form in the solid state. Microanalytical data, Cu-estimation, molar conductivity, magnetic measurements, IR, UV-Visible, FAB-Mass, TG-DTA data and ESR spectral studies were used to confirm the structures of the complexes. Electronic absorption and IR spectra of the complexes suggest a square-planar geometry around the central metal ion. The interaction of complexes with pET30a plasmid DNA was investigated by spectroscopic measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode and can quench the fluorescence intensity of EB bound to DNA. The interaction between the complexes and DNA has also been investigated by agarose gel electrophoresis, interestingly, we found that the copper(II) complexes can cleave circular plasmid DNA to nicked and linear forms.

  18. Tautomeric effect of hydrazone Schiff bases in tetranuclear Cu(II) complexes: magnetism and catalytic activity towards mild hydrocarboxylation of alkanes.

    PubMed

    Sutradhar, Manas; Kirillova, Marina V; Guedes da Silva, M Fátima C; Liu, Cai-Ming; Pombeiro, Armando J L

    2013-12-21

    Three new tetranuclear copper(II) complexes [Cu(HL(1))]4·4EtOH (1·4EtOH), [Cu(HL(2))]4 (2) and [Cu(H2L(3))]4(NO3)4·2H2O (3·2H2O) have been synthesized using three different hydrazone Schiff base ligands derived from the condensation of the aromatic acid hydrazides 2-hydroxybenzo-, 2-aminobenzo- or benzo-hydrazide, with 2,3-dihydroxybenzaldehyde. Complexes 1 and 3 have been characterized by single crystal X-ray diffraction analysis. The coordinating behaviour of the ligand depends on the nature of the ortho substituent present in the hydrazide moiety. The ligands bearing a strong electron donating group (by resonance) in the ortho position undergo complexation via enolization and deprotonation, whereas the absence of such an effect leads to complexation via the keto form, and two different types of tetranuclear Cu(II) clusters, viz. open-cubane and cubane, are obtained. Variable temperature magnetic susceptibility measurements of complexes 1 and 3 have been carried out to examine the nature of magnetic interaction between the Cu(II) centres. All the three complexes (1-3) act as good catalyst precursors towards mild hydrocarboxylation of linear and cyclic alkanes into carboxylic acids in water-acetonitrile medium.

  19. Polymeric material prepared from Schiff base based on O-carboxymethyl chitosan and its Cu(II) and Pd(II) complexes

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Menteş, Ayfer

    2016-07-01

    In this study, a new eco-friendly Schiff base based on O-carboxymethyl chitosan ([OCMCS-7a]) and its copper(II) and palladium(II) complexes were synthesized. Characterizations of [OCMCS-7a] and its metal complexes were conducted using FTIR, 1H NMR, 13C NMR, TG/DTG, XRD, SEM-EDAX, ICP, UV-VIS, GC-MS, elemental analysis, magnetic moment and molar conductivity measurements. The degree of substitution (DS) of [OCMCS-7a] was determined by elemental analysis to be 0.44. It was shown by the solubility test that [OCMCS-7a] was completely soluble in water. Surface images of chitosan, [OCMCS-7a] and its Cu(II) and Pd(II) complexes were investigated using the SEM-EDAX technique. Their thermal behaviors and crystallinities of the synthesized complexes were determined by TG/DTG and X-ray powder diffraction techniques, respectively. The metal contents of the obtained complexes were determined using an ICP-OES instrument. From the analyses, it was noted that the thermal stabilities and crystallinities of [OCMCS-7a] and its complexes decreased compared to chitosan. As a consequence of surface screening, it was also noted that the surface structure of the chitosan was smoother than that of the obtained compounds.

  20. Synthesis, molecular structure, and properties of a neutral Schiff base phenolic complex of magnesium

    SciTech Connect

    Polyakov, V.R.; Sharma, V.; Crankshaw, C.L.; Piwnica-Worms, D.

    1998-09-07

    Multidrug resistance (MDR) in cancer mediated by the MDR1 P-glycoprotein (Pgp), a 140--180 kDa plasma membrane protein, renders chemotherapeutic treatment ineffective by pumping a variety of natural product cytotoxic agents and xenobiotic compounds out of cancer cells. Pgp has been a major target for synthesis and development of both therapeutic antagonists that block its transport function and diagnostic radiopharmaceuticals that are transported by the protein for use in functional imaging of Pgp transport activity in tumors in vivo. Most, but not all, compounds that interact with Pgp are hydrophobic and cationic at physiological pH. To further understand the Pgp targeting properties, the authors sought to directly evaluate the effect of charge of the complex on Pgp interactions. This could be done by comparing the cytotoxicity profile of a neutral complex to that of an identical, but positively charged, complex in both drug-sensitive and multidrug-resistant cancer cells. Thus, a neutral analogue of the Ga(III) and Fe(III) complexes was desired. Herein the authors describe the synthesis and structure of a novel neutral Schiff base Mg complex and evaluate its cytotoxic potency in human drug-sensitive KB-3-1 and multi-drug-resistant KB-8-5 tumor cells.

  1. Modulation of amyloid-β aggregation by histidine-coordinating Cobalt(III) Schiff base complexes.

    PubMed

    Heffern, Marie C; Velasco, Pauline T; Matosziuk, Lauren M; Coomes, Joseph L; Karras, Constantine; Ratner, Mark A; Klein, William L; Eckermann, Amanda L; Meade, Thomas J

    2014-07-21

    Oligomers of the Aβ42 peptide are significant neurotoxins linked to Alzheimer's disease (AD). Histidine (His) residues present at the N terminus of Aβ42 are believed to influence toxicity by either serving as metal-ion binding sites (which promote oligomerization and oxidative damage) or facilitating synaptic binding. Transition metal complexes that bind to these residues and modulate Aβ toxicity have emerged as therapeutic candidates. Cobalt(III) Schiff base complexes (Co-sb) were evaluated for their ability to interact with Aβ peptides. HPLC-MS, NMR, fluorescence, and DFT studies demonstrated that Co-sb complexes could interact with the His residues in a truncated Aβ16 peptide representing the Aβ42 N terminus. Coordination of Co-sb complexes altered the structure of Aβ42 peptides and promoted the formation of large soluble oligomers. Interestingly, this structural perturbation of Aβ correlated to reduced synaptic binding to hippocampal neurons. These results demonstrate the promise of Co-sb complexes in anti-AD therapeutic approaches.

  2. Experimental and theoretical spectroscopic study and structural determination of nickel(II) tridentate Schiff base complexes.

    PubMed

    Kianfar, Ali Hossein; Farrokhpour, Hossein; Dehghani, Parin; Khavasi, Hamid Reza

    2015-11-05

    Some new complexes of [NiL(PR3)] (where L=(E)-1-[(2-amino-5-nitrophenyl)iminio-methyl]naphthalene-2-olate (L(1)), (E)-1-[(2-hydroxiphenyl)iminio-methyl]naphthalene-2-olate (L(2)), R=Bu and Ph) containing tridentate ONN and ONO Schiff bases were synthesized and characterized by IR, UV-Vis, (1)H-NMR spectroscopy and elemental analysis. The geometry of [NiL(1)(PBu3)] and [NiL(2)(PBu3)] complexes were determined by X-ray crystallography. It was indicated that the complexes have a square planar structure and four coordinates in the solid state. Theoretical calculations were also performed to optimize the structures of the ligands and complexes in the gas phase and ethanol solvent, separately to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of the complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification.

  3. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al Momani, Waleed; Al-Ghzawi, Abeer A.

    2011-10-01

    A tetradentate Schiff base ligand L (N,N'-bis(1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. New eight lanthanide metal complexes [Ln L(NO 3) 2(H 2O) x](NO 3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, x = 0 for Nd, Sm, 1 for La, Gd, Pr, Nd, Dy, and 2 for Tb} were prepared. The characterization and nature of bonding of these complexes were elucidated by elemental analysis, spectral analysis ( 1H NMR, FT-IR, UV-vis), molar conductivity measurements, luminescence spectra and thermogravimetric studies. Analytical and spectral data revealed that the ligand L coordinates to the central Ln(III) ions by its two imine nitrogen atoms and two phenolic oxygen atoms with 1:1 stoichiometry. Under the excitation with 329 nm at room temperature, Tb and Dy complexes exhibited characteristic luminescence of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of Ln(III) complexes found to exhibit antibacterial activities against a number of pathogenic bacteria. We found that the antioxident activity of Ln(III) complexes on DPPH rad is concentration dependent and higher than that of the free ligand L.

  4. Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior.

    PubMed

    Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang

    2013-11-21

    Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.

  5. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  6. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: a comparative approach.

    PubMed

    Raman, N; Sakthivel, A; Pravin, N

    2014-05-05

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 10(2) to 10(5) indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  7. A combined spectroscopic, docking and molecular dynamics simulation approach to probing binding of a Schiff base complex to human serum albumin

    NASA Astrophysics Data System (ADS)

    Fani, N.; Bordbar, A. K.; Ghayeb, Y.

    2013-02-01

    The molecular mechanism of a Schiff base complex ((E)-((E)-2-(3-((E)-((E)-3(mercapto (methylthio) methylene)cyclopentylidene) amino) propylimino) cyclopentylidene) (methylthio) methanethiol) binding to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation procedures. The fluorescence emission of HSA was quenched by this Schiff base complex that has been analyzed for estimation of binding parameters. The titration of Schiff base solution by various amount of HSA was also followed by UV-Vis absorption spectroscopy and the corresponding data were analyzed by suitable models. The results revealed that this Schiff base has an ability to bind strongly to HSA and formed 1:1 complex. Energy transfer mechanism of quenching was discussed and the value of 5.45 ± 0.06 nm was calculated as the mean distance between the bound complex and the Trp residue. This is implying the high possibility of energy transfer from HSA to this Schiff base complex. Molecular docking results indicated that the main active binding site for this Schiff base complex is site III in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, without affecting the secondary structure of HSA but probably with a slight modification of its tertiary structure. MD simulations, molecular docking and experimental data reciprocally supported each other.

  8. A combined spectroscopic, docking and molecular dynamics simulation approach to probing binding of a Schiff base complex to human serum albumin.

    PubMed

    Fani, N; Bordbar, A K; Ghayeb, Y

    2013-02-15

    The molecular mechanism of a Schiff base complex ((E)-((E)-2-(3-((E)-((E)-3(mercapto (methylthio) methylene)cyclopentylidene) amino) propylimino) cyclopentylidene) (methylthio) methanethiol) binding to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation procedures. The fluorescence emission of HSA was quenched by this Schiff base complex that has been analyzed for estimation of binding parameters. The titration of Schiff base solution by various amount of HSA was also followed by UV-Vis absorption spectroscopy and the corresponding data were analyzed by suitable models. The results revealed that this Schiff base has an ability to bind strongly to HSA and formed 1:1 complex. Energy transfer mechanism of quenching was discussed and the value of 5.45 ± 0.06 nm was calculated as the mean distance between the bound complex and the Trp residue. This is implying the high possibility of energy transfer from HSA to this Schiff base complex. Molecular docking results indicated that the main active binding site for this Schiff base complex is site III in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, without affecting the secondary structure of HSA but probably with a slight modification of its tertiary structure. MD simulations, molecular docking and experimental data reciprocally supported each other.

  9. Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha

    2015-01-01

    Mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with various uninegative tridentate ligands derived from isatin monohydrazone with 2-hydroxynapthaldehyde/substituted salicylaldehyde and heterocyclic nitrogen base 8-hydroxyquinoline have been synthesized and characterized by elemental analysis, conductometric studies, magnetic susceptibility and spectroscopic techniques (IR, UV-VIS, NMR, mass and ESR). On the basis of these characterizations, it was revealed that Schiff base ligands existed as monobasic tridentate ONO bonded to metal ion through oxygen of carbonyl group, azomethine nitrogen and deprotonated hydroxyl oxygen and heterocyclic nitrogen base 8-hydroxyquinoline existed as monobasic bidentate ON bonded through oxygen of hydroxyl group and nitrogen of quinoline ring with octahedral or distorted octahedral geometry around metal ion. All the compounds have been tested in vitro against various pathogenic Gram positive bacteria, Gram negative bacteria and fungi using different concentrations (25, 50, 100, 200 μg/mL) of ligands and their complexes. Comparative study of antimicrobial activity of ligands, and their mixed complexes indicated that complexes exhibit enhanced activity as compared to free ligands and copper(II) Cu(LIV)(Q)ṡH2O complex was found to be most potent antimicrobial agent.

  10. Self-assembled nanostructures of specially designed Schiff-bases and their zinc complexes: Preparation, characterization and photoluminescence property

    NASA Astrophysics Data System (ADS)

    Guha, Averi; Sanyal, Ria; Chattopadhyay, Tanmay; Han, YounGyu; Mondal, Tapan Kumar; Das, Debasis

    2013-06-01

    Four specially designed Schiff bases 2-formyl-4-R-6-(3N-4-hydroxybenzoicacid)-iminomethyl-phenolato (where R = methyl/tert-butyl/chloro for L1, L2, L3 respectively) and 2-(3N-4-hydroxybenzoicacid)-iminomethyl-phenolato (L4) having ability to form hydrogen bonding and their zinc complexes (1-4) have been synthesized and characterized. These complexes gave various types of nano-sized materials via self-assembly in solid state. FE-SEM was employed to investigate their morphology. Using a variety of analytical techniques such as elemental analysis, infrared spectroscopy (FT-IR), ESI-MS and 1H NMR spectroscopy, a consistent picture of structures of these complexes are obtained. All the Schiff-bases and their zinc complexes exhibit photoluminescence property. Density functional theory calculation has been performed to rationalize the origin of the spectral bands of the ligands as well as the complexes.

  11. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A.

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR (1H, 13C, and 29Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands. PMID:23983671

  12. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids.

    PubMed

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR ((1)H, (13)C, and (29)Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands.

  13. Two new heterodinuclear Schiff base complexes: synthesis, crystal structure and thermal studies.

    PubMed

    Yardan, Alper; Hopa, Cigdem; Yahsi, Yasemin; Karahan, Ahmet; Kara, Hulya; Kurtaran, Raif

    2015-02-25

    Two new heterodinuclear Schiff base complexes, [Hg(L)NiCl2(DMF)2] 1, and [Zn(L)NiCl2(DMF)2] 2, where H2L = N,N'-bis(salicylidene)-1,3-diaminopropane and DMF = dimethylformamide have been synthesized and characterized using elemental analysis, IR spectroscopy, thermal analysis and X-ray diffraction. Structural studies on 1 and 2 reveal the presence of a heterodinuclear [Ni(II)Hg(II)] unit and [Zn(II)Ni(II)] in which the central metal ions are connected to each other by two phenolate oxygen bridges. For complex 1 the Ni(II) ion adopts an elongated octahedral geometry (NiN2O4) while the Hg(II) ion assumes a distorted tetrahedral arrangement (HgO2Cl2) whereas for complex 2 the Zn(II) ion adopts an elongated octahedral geometry (ZnN2O4) while the Ni(II) ion assumes a distorted tetrahedral arrangement (NiO2Cl2). There are intermolecular C-H···Cl-M interactions among the dinuclear complexes which are interconnected for 1 and 2. These intermolecular interactions result in the formation of a three dimensional structure for 1 and one dimensional zig-zag chains for 2.

  14. Coordination geometry around copper in a Schiff-base trinuclear copper complex using EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaur, Abhijeet; Shrivastava, B. D.; Gaur, D. C.; Prasad, J.; Srivastava, K.; Jha, S. N.; Bhattacharyya, D.; Poswal, A.

    2012-05-01

    In the present investigation, we have studied extended X-ray absorption fine structure (EXAFS) spectra of a trinuclear Schiff-base copper complex tetraaqua-di-μ3-(N-salicylidene-DL-glutamato)-tricopper(II)heptahydrate, [Cu3(C12H10NO5)2 (H2O)4]. 7H2O, in which three metal sites are present. One metal site is square-pyramidal (4+1) and other two similar metal sites are tetragonally distorted octahedral (4+2). EXAFS has been recorded at the K-edge of copper in the complex at the dispersive EXAFS beamline at 2 GeV Indus-2 synchrotron source at RRCAT, Indore, India. The analysis of EXAFS spectra of multinuclear metal complexes pose some problems due to the presence of many absorbing atoms, even when the absorbing atoms may be of the same element. Hence, using the available crystal structure of the complex, theoretical models have been generated for the different copper sites separately, which are then fitted to the experimental EXAFS data. The two coordination geometries around the copper sites have been determined. The contributions of the different copper sites to the experimental spectrum have been estimated. The structural parameters, which include bond-lengths, coordination numbers and thermal disorders, for the two types of copper sites have been reported. Further, copper has been found to be in +2 oxidation state at these metal sites.

  15. Synthesis, characterization and experimental, theoretical, electrochemical, antioxidant and antibacterial study of a new Schiff base and its complexes

    NASA Astrophysics Data System (ADS)

    Baykara, Haci; Ilhan, Salih; Levent, Abdulkadir; Salih Seyitoglu, M.; Özdemir, Sadin; Okumuş, Veysi; Öztomsuk, Abdussamet; Cornejo, Mauricio

    2014-09-01

    A new Schiff base ligand was synthesized by reaction of salicylaldehyde with 1,6-bis(4-chloro-2-aminophenoxy)hexane. Then the Schiff base complexes were synthesized by metal salts and the Schiff base. The metal to ligand ratio of metal complexes was found to be 1:1. The Cu(II) complex is proposed to be square planar and the Co(II), Ni(II), Mn(II) and Zn(II) complexes are proposed to be tetrahedral geometry. The Ti(III) and V(III) complexes are proposed to be a capped octahedron in which a seventh ligand has been added to triangular face. The complexes are non-electrolytes as shown by their molar conductivities (ΛM). The structure of metal complexes is proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, Mass Spectra and thermal gravimetric analysis. In addition antimicrobial and antioxidant studies, cyclic voltammetry of the complexes, theoretical 1H NMR and HOMO-LUMO energy calculations of the new di-functional ligand were done.

  16. Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases.

    PubMed

    Singh, Atresh Kumar; Singh, Alok Kumar

    2012-10-01

    Some novel trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes of the general formula [Fe(3)O(OOCR)(3)(SB)(3)L(3)] (where R=C(13)H(27), C(15)H(31) or C(17)H(35,) HSB=Schiff bases and L=Ethanol) have been synthesized by the stepwise substitutions of acetate ions from μ(3)-oxo-hexa(acetato)tri(aqua)iron(II)diiron(III), first with straight chain carboxylic acids and then with Schiff bases. The complexes were characterized by elemental analyses, molecular weight determinations and spectral (electronic, infrared, FAB mass, Mössbauer and powder XRD) studies. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bridging nature of carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Mössbauer spectroscopic studies indicated two quadrupole-split doublets due to Fe(II) and Fe(III) ions at 80, 200 and 295K, confirming the complexes are mixed-valence species. This was also supported by the observed electronic spectra of the complexes. Magnetic susceptibility measurements displayed octahedral geometry around iron in mixed-valence state and a net antiferromagnetic exchange coupling via μ-oxo atom. Trinuclear nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. A plausible structure for these complexes has been established on the basis of spectral and magnetic moment data.

  17. Synthesis, characterization and experimental, theoretical, electrochemical, antioxidant and antibacterial study of a new Schiff base and its complexes.

    PubMed

    Baykara, Haci; Ilhan, Salih; Levent, Abdulkadir; Salih Seyitoglu, M; Özdemir, Sadin; Okumuş, Veysi; Öztomsuk, Abdussamet; Cornejo, Mauricio

    2014-09-15

    A new Schiff base ligand was synthesized by reaction of salicylaldehyde with 1,6-bis(4-chloro-2-aminophenoxy)hexane. Then the Schiff base complexes were synthesized by metal salts and the Schiff base. The metal to ligand ratio of metal complexes was found to be 1:1. The Cu(II) complex is proposed to be square planar and the Co(II), Ni(II), Mn(II) and Zn(II) complexes are proposed to be tetrahedral geometry. The Ti(III) and V(III) complexes are proposed to be a capped octahedron in which a seventh ligand has been added to triangular face. The complexes are non-electrolytes as shown by their molar conductivities (ΛM). The structure of metal complexes is proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, Mass Spectra and thermal gravimetric analysis. In addition antimicrobial and antioxidant studies, cyclic voltammetry of the complexes, theoretical 1H NMR and HOMO-LUMO energy calculations of the new di-functional ligand were done.

  18. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Abu Serea, Maha R.; Sayed, Abeer S. S.

    2015-02-01

    A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV-Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats-Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes exhibited intraligand (π-π∗) fluorescence and can potentially serve as photoactive materials. Both the ligand and its complexes have been screened for antibacterial activities.

  19. Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Atresh Kumar; Singh, Alok Kumar

    2012-10-01

    Some novel trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes of the general formula [Fe3O(OOCR)3(SB)3L3] (where R = C13H27, C15H31 or C17H35, HSB = Schiff bases and L = Ethanol) have been synthesized by the stepwise substitutions of acetate ions from μ3-oxo-hexa(acetato)tri(aqua)iron(II)diiron(III), first with straight chain carboxylic acids and then with Schiff bases. The complexes were characterized by elemental analyses, molecular weight determinations and spectral (electronic, infrared, FAB mass, Mössbauer and powder XRD) studies. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bridging nature of carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Mössbauer spectroscopic studies indicated two quadrupole-split doublets due to Fe(II) and Fe(III) ions at 80, 200 and 295 K, confirming the complexes are mixed-valence species. This was also supported by the observed electronic spectra of the complexes. Magnetic susceptibility measurements displayed octahedral geometry around iron in mixed-valence state and a net antiferromagnetic exchange coupling via μ-oxo atom. Trinuclear nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. A plausible structure for these complexes has been established on the basis of spectral and magnetic moment data.

  20. DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases

    NASA Astrophysics Data System (ADS)

    Sallam, S. A.; Orabi, A. S.; Abbas, A. M.

    2011-12-01

    Ni(II) complexes of (S,E)-2-(2-OHbenzilydene)aspartic acid; (S,E)-2-(2,3-diOHbenzilydene)aspartic acid-; (S,E)-2-(2,4-diOH-benzilydene)aspartic acid; (S,E)-2-(2,5-diOHbenzilydene)aspartic acid and (S,E)-2-((2-OHnaphthalene-1-yl)methylene)aspartic acid Schiff-bases have been synthesized by template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1H nmr spectra as well as thermal analysis (TG, DTG, DTA). The Schiff-bases are dibasic tridentate or tetradentate donors and the complexes have square planar and octahedral structures. The complexes decompose in two or three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy.

  1. Calix[4]pyrrole Schiff base macrocycles. Novel binucleating ligands for mu-oxo iron complexes.

    PubMed

    Veauthier, Jacqueline M; Cho, Won-Seob; Lynch, Vincent M; Sessler, Jonathan L

    2004-02-23

    New bimetallic mu-oxo diferric complexes of several previously reported calix[4]pyrrole Schiff base macrocycles are described. The synthesis of a new member of this class of macrocycles is also reported; it was prepared via an acid-catalyzed condensation between 1,9-bisformyl-5,5-dipropyldipyrromethane and o-phenylenediamine. Reactions of the free base macrocycles or their bis-HCl salts with Fe(II) mesitylene, followed by air oxidation, gave the binuclear mu-oxo bis-Fe(III) compounds 6-10 in moderate yield. X-ray crystallography data reveal two different coordination environments for the Fe-O-Fe subunit in 6-10 that it is suggested can be controlled by altering the reaction conditions. Structural properties of these metalated pyrrolic macrocycles are also compared to those of mu-oxo diferric porphyrins and mu-oxo diferric texaphyrin. Complexes 6-10 exhibit two distinct types of M-N bonds that are similar in length to the bonds observed in metallotexaphyrin complexes. However, the electronics of the present systems are very different from those of texaphyrins and porphyrins in that no delocalized bonding patterns are observed within the ligands as a whole.

  2. Oxovanadium (IV) complexes of bidentate [N,O] donor Schiff-base ligands: synthesis and mesomorphism

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chira R.; Datta, Chitraniva; Das, Gobinda; Mondal, Paritosh

    2012-11-01

    A series of new oxovanadium(IV) Schiff-base complexes of the type [VO(L)2], [L = N-(4-n-alkoxysalicylaldimine)-4‧-dodecyloxyaniline, n = 6, 8, 16, and 18] have been synthesized. The compounds were characterized by FT-IR, 1H-NMR, 13C-NMR, UV-Vis, FAB-mass, and magnetic susceptibility measurements. The mesomorphic behavior of the compounds was studied by polarized optical microscopy and differential scanning calorimetry. The compounds are all highly thermally stable exhibiting smectic mesomorphism. Non-electrolytic nature of the complexes was ascertained by solution electrical conductance measurements. Cyclic voltammetry revealed a quasireversible single-electron response for VO(V)/VO(IV) couple. A νV=O stretching mode at ∼970 cm-1 indicates absence of any intermolecular V=O ... V=O interactions. Density functional theory study was carried out using DMol3 at BLYP/DNP level to determine energy optimized structure revealed a distorted square pyramidal geometry for the vanadyl complexes.

  3. Synthesis, characterization and crystal structure of some bidentate heterocyclic Schiff base ligands of 4-toluoyl pyrazolones and its mononuclear Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Vyas, Komal M.; Jadeja, R. N.; Gupta, Vivek K.; Surati, K. R.

    2011-03-01

    We depict the synthesis of a new set of six bidentate heterocyclic Schiff base ligands, formed by the condensation of three different 4-toluoyl pyrazolones with various aromatic amines in ethanolic medium. All of these ligands have been characterized on the basis of elemental analysis, IR, 1H NMR, 13C NMR and Mass spectral data. The molecular geometries of three of these ligands have been determined by single crystal X-ray study. It reveals that these ligands exist in amine-one tautomeric form in the solid state. The reaction of these ligands with copper(II) resulted in the formation of mononuclear complexes having the general composition [CuL 2(H 2O) 2] with two water molecules at axial positions. These complexes have been characterized on the basis of elemental analysis, Cu-estimation, molar conductivity, magnetic measurements, IR, UV-Visible, FAB-Mass, TG-DTA-DSC data, cyclic voltametric measurements and ESR spectral studies. ESR spectra and magnetic susceptibility measurements indicates distorted octahedral stereochemistry of Cu(II) complexes, while non-electrolytic behaviour of complexes indicates the absence of counter ion.

  4. Synthesis, spectroscopy, thermal analysis, magnetic properties and biological activity studies of Cu(II) and Co(II) complexes with Schiff base dye ligands.

    PubMed

    Ahmadi, Raziyeh Arab; Amani, Saeid

    2012-05-29

    Three azo group-containing Schiff base ligands, namely 1-{3-[(3-hydroxypropylimino) methyl]-4-hydroxyphenylazo}-4-nitrobenzene (2a), 1-{3-[(3-hydroxypropylimino) methyl]-4-hydroxyphenylazo}-2-chloro-4-nitrobenzene (2b) and 1-{3-[(3-hydroxypropylimino) methyl]-4-hydroxyphenylazo}-4-chloro-3-nitrobenzene (2c) were prepared. The ligands were characterized by elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, ¹³C- and ¹H-NMR spectroscopy and thermogravimetric analysis. Next the corresponding copper(II) and cobalt(II) metal complexes were synthesized and characterized by the physicochemical and spectroscopic methods of elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, magnetic moment measurements, and thermogravimetric analysis (TGA) and (DSC). The room temperature effective magnetic moments of complexes are 1.45, 1.56, 1.62, 2.16, 2.26 and 2.80 B.M. for complexes 3a, 3b, 3c, 4a 4b, and 4c, respectively, indicating that the complexes are paramagnetic with considerable electronic communication between the two metal centers.

  5. Theoretical spectroscopic study of seven zinc(II) complex with macrocyclic Schiff-base ligand.

    PubMed

    Sayin, Koray; Kariper, Sultan Erkan; Sayin, Tuba Alagöz; Karakaş, Duran

    2014-12-10

    Seven zinc complexes, which are [ZnL(1)](2+), [ZnL(2)](2+), [ZnL(3)](2+), [ZnL(4)](2+), [ZnL(5)](2+), [ZnL(6)](2+) and [ZnL(7)](2+), are studied as theoretically. Structural parameters, vibration frequencies, electronic absorption spectra and (1)H and (13)C NMR spectra are obtained for Zn(II) complexes of macrocyclic penta and heptaaza Schiff-base ligand. Vibration spectra of Zn(II) complexes are studied by using Density Functional Theory (DFT) calculations at the B3LYP/LANL2DZ. The UV-VIS and NMR spectra of the zinc complexes are obtained by using Time Dependent-Density Functional Theory (TD-DFT) method and Giao method, respectively. The agreements are found between experimental data of [ZnL(5)](2+), [ZnL(6)](2+) and [ZnL(7)](2+) complex ions and their calculated results. The geometries of complexes are found as distorted pentagonal planar for [ZnL(1)](2+), [ZnL(2)](2+) and [ZnL(3)](2+) complex ions, distorted tetrahedral for [ZnL(4)](2+) complex ion and distorted pentagonal bipyramidal for [ZnL(5)](2+), [ZnL(6)](2+) and [ZnL(7)](2+) complex ions. Ranking of biological activity is determined by using quantum chemical parameters and this ranking is found as: [ZnL(7)](2+)>[ZnL(6)](2+)>[ZnL(5)](2+)>[ZnL(3)](2+)>[ZnL(2)](2+)>[ZnL(1)](2+).

  6. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  7. In-vitro antibacterial, antifungal and cytotoxic properties of sulfonamide--derived Schiff's bases and their metal complexes.

    PubMed

    Chohan, Zahid H; Mahmood-Ul-Hassan; Khan, Khalid M; Supuran, Claudiu T

    2005-04-01

    A series of new antibacterial and antifungal Schiff's bases derived from sulfonamides, as well as their transition metal complexes incorporating cobalt (II), copper (II), nickel (II) and zinc (II) were synthesized, characterized and screened for their in-vitro antibacterial activity against six Gram-negative (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Shigella dysentriae) and four Gram-positive (Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureous and Streptococcus pyogenes) bacterial strains and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed Schiffs' bases. The brine shrimp bioassay was also carried out to study the in-vitro cytotoxic properties of these synthesized ligands and their complexes.

  8. Novel Organotin(IV) Schiff Base Complexes with Histidine Derivatives: Synthesis, Characterization, and Biological Activity

    PubMed Central

    Garza-Ortiz, Ariadna; Camacho-Camacho, Carlos; Sainz-Espuñes, Teresita; Rojas-Oviedo, Irma; Gutiérrez-Lucas, Luis Raúl; Gutierrez Carrillo, Atilano; Vera Ramirez, Marco A.

    2013-01-01

    Five novel tin Schiff base complexes with histidine analogues (derived from the condensation reaction between L-histidine and 3,5-di-tert-butyl-2-hydroxybenzaldehyde) have been synthesized and characterized. Characterization has been completed by IR and high-resolution mass spectroscopy, 1D and 2D solution NMR (1H, 13C  and 119Sn), as well as solid state 119Sn NMR. The spectroscopic evidence shows two types of structures: a trigonal bipyramidal stereochemistry with the tin atom coordinated to five donating atoms (two oxygen atoms, one nitrogen atom, and two carbon atoms belonging to the alkyl moieties), where one molecule of ligand is coordinated in a three dentate fashion. The second structure is spectroscopically described as a tetrahedral tin complex with four donating atoms (one oxygen atom coordinated to the metal and three carbon atoms belonging to the alkyl or aryl substituents), with one molecule of ligand attached. The antimicrobial activity of the tin compounds has been tested against the growth of bacteria in vitro to assess their bactericidal properties. While pentacoordinated compounds 1, 2, and 3 are described as moderate effective to noneffective drugs against both Gram-positive and Gram-negative bacteria, tetracoordinated tin(IV) compounds 4 and 5 are considered as moderate effective and most effective compounds, respectively, against the methicillin-resistant Staphylococcus aureus strains (Gram-positive). PMID:23864839

  9. Preparation and biodistribution of copper-67 complexes with tetradentate Schiff-base ligands.

    PubMed

    John, E K; Bott, A J; Green, M A

    1994-04-01

    Uncharged, lipophilic, low molecular weight copper complexes labeled with generator-produced copper-62 are of interest as potential radiopharmaceutials for imaging the brain with positron emission tomography (PET). We report here the synthesis and biodistribution of a series of [67Cu]copper(II) complexes with tetradentate N2O2(2-)Schiff-base ligands. The compounds studied varied in lipophilicity from log P = 1.7 to log P = 3.6, where P is the octanol/water partition coefficient. In rat biodistribution studies the tracers were generally found to penetrate the blood-brain barrier following intravenous injection, but some far better than others. For closely related compounds brain uptake at 1 min postinjection increased with increasing lipophilicity, although log P was clearly not the sole determinant of high brain uptake. Substantial variations were also observed in the rate at which these various compounds are cleared from brain, with a few exhibiting the prolonged cerebral retention of tracer that would be desired for imaging with 62Cu and PET.

  10. Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. A.; Zaitone, S. A.; Ammar, A. M.; Sallam, S. A.

    2016-03-01

    A series of Cr3+ complexes with Schiff-bases of metformin with each of salicylaldehyde (HL1); 2,3-dihydroxybenzaldehyde (H2L2); 2,4-dihydroxybenzaldehyde (H2L3); 2,5-dihydroxybenzaldehyde (H2L4); 3,4-dihydroxybenzaldehyde (H2L5) and 2-hydroxynaphthaldehyde (HL6) were synthesized by template reaction. The new compounds were characterized through elemental analysis, conductivity and magnetic moment measurements, IR, UV-Vis., NMR and mass spectroscopy. The complexes have octahedral structure with μ value of hexacoordinated chromium ion. TGA, DTG and DTA analysis confirm the proposed stereochemistry and a mechanism for thermal decomposition was proposed. Thermodynamic parameters are calculated for the second and third decomposition steps. [CrL4Cl(H2O)2].3H2O and [CrL5Cl(H2O)2].2½H2O were able to produce significant decreases in the blood glucose level.

  11. Metal-Based Biologically Active Compounds: Synthesis, Spectral, and Antimicrobial Studies of Cobalt, Nickel, Copper, and Zinc Complexes of Triazole-Derived Schiff Bases

    PubMed Central

    Singh, Kiran; Kumar, Yogender; Puri, Parvesh; Sharma, Chetan; Aneja, Kamal Rai

    2011-01-01

    A series of cobalt, nickel, copper, and zinc complexes of bidentate Schiff bases derived from the condensation reaction of 4-amino-5-mercapto-3-methyl/ethyl-1,2,4-triazole with 2,4-dichlorobenzaldehyde were synthesized and tested as antimicrobial agents. The synthesized Schiff bases and their metal complexes were characterized with the aid of elemental analyses, magnetic moment measurements, spectroscopic and thermogravimetric techniques. The presence of coordinated water in metal complexes was supported by infrared and thermal gravimetric studies. A square planar geometry was suggested for Cu(II) and octahedral geometry proposed for Co(II), Ni(II), and Zn(II) complexes. The Schiff bases and their metal complexes have been screened for antibacterial (Pseudomonas aeruginosa, Bacillus subtilis) and antifungal activities (Aspergillus niger, A. flavus). The metal complexes exhibited significantly enhanced antibacterial and antifungal activity as compared to their simple Schiff bases. PMID:22216017

  12. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Abdulnabi, Zuhair A.; Bolandnazar, Zeinab

    2014-01-01

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, 13C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical 13C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  13. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes.

    PubMed

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S; Abdulnabi, Zuhair A; Bolandnazar, Zeinab

    2014-01-03

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR, (13)C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical (13)C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  14. Synthesis and characterization of Schiff base octaazamacrocyclic complexes and their biological studies.

    PubMed

    Zafar, Hina; Kareem, Abdul; Sherwani, Asif; Mohammad, Owais; Ansari, Mohammad Azam; Khan, Haris M; Khan, Tahir Ali

    2015-01-01

    A condensation reaction between 1,2-diphenylethane-1,2-dione dihydrazone (DPEDDH) and dimethyl or diethyloxalate in methanol resulted in a novel Schiff base octaazamacrocyclic ligand, (L): (6,7,14,15-tetraoxa-2,3,10,11-tetraphenyl-1,4,5,8,9,12,13,16-octaazacyclohexadecane-1,3,9,11-tetraene). Subsequently metal complexes of the type [MLX2] and [CuL]X2; (M=Mn(II), Co(II), Ni(II) and Zn(II); X=Cl or NO3) were synthesized by the reaction of the free macrocyclic ligand (L) with the corresponding metal salts in 1:1 molar ratio. These complexes were characterized on the basis of analytical data, molar conductivity and magnetic susceptibility measurements, ESI-mass, IR, NMR ((1)H and (13)C), EPR and electronic spectral studies. The thermal stability of the complexes was also studied by TGA and DTA analyses. These studies show that all the complexes have octahedral arrangement around the metal ions except copper complexes which are square planar. The ligand and its complexes were screened for their antibacterial activity in vitro against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and were also studied for their anticancer activity against the human cancer cells lines: HeLa (Human cervical carcinoma), MCF7 (Human breast adenocarcinoma) and Hep3B (Human Hepatocellular carcinoma). The recorded IC50 values for the tested compounds show moderate to good cytotoxicity against these cancer cell lines. The copper complex, [CuL]Cl2, showed excellent antimicrobial activity against tested microorganisms which is almost equivalent to the standard drug ciprofloxacin.

  15. Synthesis and characterization of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based azo-linked Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Johnson Raja, S.

    2012-12-01

    Azo-Schiff-base complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR, mass spectra, molar conductance, magnetic susceptibility measurement, electron spin resonance (EPR), CV, fluorescence, NLO and SEM. The conductance data indicate the nonelectrolytic nature of the complexes, except VO(II) complex which is electrolytic in nature. On the basis of electronic spectra and magnetic susceptibility octahedral geometry has been proposed for the complexes. The EPR spectra of copper and oxovanadium complexes in DMSO at 300 and 77 K were recorded and its salient features are reported. The redox behavior of the copper(II) complex was studied using cyclic voltammetry. The in vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella enterica typhi, Bacillus subtilis and Candida strains was studied and compared with that of free ligand by well-diffusion technique. The azo Schiff base exhibited fluorescence properties originating from intraligand (π-π∗) transitions and metal-mediated enhancement is observed on complexation and so the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. On the basis of the optimized structures, the second-order nonlinear optical properties (NLO) are calculated by using second-harmonic generation (SHG) and also the surface morphology of the complexes was studied by SEM.

  16. Synthesis, characterization and biological properties of thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2012-04-01

    A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds.

  17. Antibacterial Co(II), Cu(II), Ni(II) and Zn(II) Complexes of Thiadiazoles Schiff Bases

    PubMed Central

    Jaffery, Maimoon F.; Supuran, Claudiu T.

    2001-01-01

    Schiff bases were obtained by condensation of 2-amino-l,3,4-thiadiazole with 5-substituted-salicylaldehydes which were further used to obtain complexes of the type [M(L)2]Cl2, where M=Co(II), Cu(II), Ni(II) or Zn(II). The new compounds described here have been characterized by physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of these Schiff bases increased upon chelation/complexation, against the tested bacterial species, opening new aproaches in the fight against antibiotic resistant strains. PMID:18475981

  18. Silver(I) complexes of 2,4-dihydroxybenzaldehyde-amino acid Schiff bases-Novel noncompetitive α-glucosidase inhibitors.

    PubMed

    Zheng, Jingwei; Ma, Lin

    2015-01-01

    A series of silver(I) complexes of 2,4-dihydroxybenzaldehyde-amino acid Schiff bases were designed and tested for α-glucosidase inhibition. Our results indicate that all the silver complexes (4a-18a) possessed strong inhibitory activity at μmolL(-1) level, especially glutamine (12a) and histidine (18a) Schiff base silver(I) complexes exhibited an IC50 value of less than 0.01μmolL(-1). This series of compounds exhibited noncompetitive inhibition characteristics in kinetic studies. In addition, we investigated the mechanism of inhibition and the structure-activity relationships of the amino acid Schiff base silver complexes. Our results reveal that Schiff base silver complexes may be explored for their therapeutic potential as alternatives of α-glucosidase inhibitors.

  19. Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine.

    PubMed

    Singh, Har Lal; Singh, Jangbhadur

    2014-01-01

    New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and α-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance ((1)H, (13)C, and (119)Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gram-negative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands.

  20. Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur

    2014-01-01

    New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and α-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance (1H, 13C, and 119Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gram-negative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands. PMID:25525422

  1. New asymmetric heptaaza Schiff base macrocyclic complex of Mn(II): Crystal structure, biological and DFT studies.

    PubMed

    Khanmohammadi, Hamid; Amani, Saeid; Abnosi, Mohammad H; Khavasi, Hamid R

    2010-10-01

    A new asymmetric heptaaza Schiff base macrocyclic bis(pendant donor) manganese(II) complex, [MnL(1)](ClO(4))(2).CH(3)CN (1), has been prepared and characterized by X-ray diffraction and spectroscopic methods. The antimicrobial activity of 1 and a series of its familiar symmetric heptaaza [15]pydieneN(5), [16]pydieneN(5), and [17]pydieneN(5)-based bis-(2-aminoethyl) pendant armed Schiff base macrocyclic complexes of Mn(II) were tested against Escherichia coli, Staphylococcus aureus and Candida albicans. The results showed that the symmetric heptaaza [16]pydieneN(5), and [17]pydieneN(5)-based Schiff base macrocyclic complexes of Mn(II) had remarkable inhibition zone on the culture of S. aureus and E. coli as compared with standard drugs. The optimized geometry of the prepared complex has been obtained from density functional method, DFT, using B3LYP/6-31G* basis set.

  2. New asymmetric heptaaza Schiff base macrocyclic complex of Mn(II): Crystal structure, biological and DFT studies

    NASA Astrophysics Data System (ADS)

    Khanmohammadi, Hamid; Amani, Saeid; Abnosi, Mohammad H.; Khavasi, Hamid R.

    2010-10-01

    A new asymmetric heptaaza Schiff base macrocyclic bis(pendant donor) manganese(II) complex, [MnL 1](ClO 4) 2·CH 3CN ( 1), has been prepared and characterized by X-ray diffraction and spectroscopic methods. The antimicrobial activity of 1 and a series of its familiar symmetric heptaaza [15]pydieneN 5, [16]pydieneN 5, and [17]pydieneN 5-based bis-(2-aminoethyl) pendant armed Schiff base macrocyclic complexes of Mn(II) were tested against Escherichia coli, Staphylococcus aureus and Candida albicans. The results showed that the symmetric heptaaza [16]pydieneN 5, and [17]pydieneN 5-based Schiff base macrocyclic complexes of Mn(II) had remarkable inhibition zone on the culture of S. aureus and E. coli as compared with standard drugs. The optimized geometry of the prepared complex has been obtained from density functional method, DFT, using B3LYP/6-31G* basis set.

  3. Spectral, Magnetic and Biological Studie on Some Bivalent 3d Metal Complexes of Hydrazine Derived Schiff-Base Ligands

    PubMed Central

    Sherazi, Syed K. A.

    1997-01-01

    Metal(II) complexes of hydrazine derived Schiff-base ligands of the type M(L)2Cl2 where M = Co, Cu, Ni and Zn and L = L1 and L2 have been prepared and characterised by molar conductance, magnetic moment, elemental analysis and electronic, IR, H-NMR and 13C spectral data.The different modes of chelation of the ligands and their comparative biological properties against different bacterial species are reported. PMID:18475770

  4. Immobilization of cobalt(II) Schiff base complexes on polystyrene resin and a study of their catalytic activity for the aerobic oxidation of alcohols.

    PubMed

    Jain, Suman; Reiser, Oliver

    2008-01-01

    The copper-catalyzed [3+2] azide-alkyne cycloaddition and the Staudinger ligation are readily applicable and highly efficient for the immobilization of cobalt Schiff base complexes onto polystyrene resins. Stepwise synthesis of polymer-bound Schiff bases followed by their subsequent complexation with metal ions were successfully carried out. Direct covalent attachment of preformed homogeneous cobalt Schiff base complexes to the resins was also possible. The catalytic efficiency of the so-prepared polystyrene-bound cobalt Schiff bases was studied for the oxidation of alcohols to carbonyl compounds using molecular oxygen as oxidant. The immobilized complexes were highly efficient and even more reactive than the corresponding homogenous analogues, thus affording better yields of oxidized products within shorter reaction times. The supported catalysts could easily be recovered from the reaction mixture by simple filtration and reused for subsequent experiments with consistent catalytic activity.

  5. Synthesis, characterization, crystal structure determination and catalytic activity in epoxidation reaction of two new oxidovanadium(IV) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Vida; Grivani, Gholamhossein; Bruno, Giuseppe

    2016-11-01

    The five coordinated vanadium(IV) Schiff base complexes of VOL1 (1) and VOL2 (2), HL1 = 2-{(E)-[2-bromoethyl)imino]methyl}-2- naphthol, HL2 = 2-{(E)-[2-chloroethyl)imino]methyl}-2- naphthol, have been synthesized and they were characterized by using single-crystal X-ray crystallography, elemental analysis (CHN) and FT-IR spectroscopy. Crystal structure determination of these complexes shows that the Schiff base ligands (L1 and L2) act as bidentate ligands with two phenolato oxygen atoms and two imine nitrogen atoms in the trans geometry. The coordination geometry around the vanadium(IV) is distorted square pyramidal in which vanadium(IV) is coordinated by two nitrogen and two oxygen atoms of two independent ligands in the basal plane and by one oxygen atom in the apical position. The catalytic activity of the Schiff base complexes of 1 and 2 in the epoxidation of alkenes were investigated using different reaction parameters such as solvent effect, oxidant, alkene/oxidant ratio and the catalyst amount. The results showed that in the presence of TBHP as oxidant in 1: 4 and 1:3 ratio of the cyclooctene/oxidant ratio, high epoxide yield was obtained for 1 (76%) and 2 (80%) with TON(= mole of substrate/mole of catalyst) of 27 and 28.5, respectively, in epoxidation of cyclooctene.

  6. Synthesis, spectroscopic characterization, molecular modeling and potentiometric studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane-Schiff base

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.

    2014-08-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)(H2O)2]·2H2O have been synthesized [L = N,N";-bis(2-hydroxybenzylidene)-1,1-diaminobutane]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR, SEM, EDX, thermal and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a tetradentate manner. The molar conductance of the complexes in fresh solution of DMSO lies in the range of 7.46-9.13 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tetradentate ligand, coordinated through deprotonated phenolic oxygen and azomethine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The molecular parameters of the ligand and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been calculated. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M sodium perchlorate.

  7. Comparative Study of Aluminum Complexes Bearing N,O- and N,S-Schiff Base in Ring-Opening Polymerization of ε-Caprolactone and L-Lactide.

    PubMed

    Chang, Meng-Chih; Lu, Wei-Yi; Chang, Heng-Yi; Lai, Yi-Chun; Chiang, Michael Y; Chen, Hsing-Yin; Chen, Hsuan-Ying

    2015-12-07

    A series of Al complexes bearing Schiff base and thio-Schiff base ligands were synthesized, and their application for the ring-opening polymerization of ε-caprolactone (CL) and l-lactide (LA) was studied. It was found that steric effects of the ligands caused higher polymerization rate and most importantly the Al complexes with N,S-Schiff base showed significantly higher polymerization rate than Al complexes with N,O-Schiff base (5-12-fold for CL polymerization and 2-7-fold for LA polymerization). The reaction mechanism of CL polymerization was investigated by density functional theory (DFT). The calculations predicted a lower activation energy for a process involved with an Al complex bearing an N,S-Schiff base ligand (17.6 kcal/mol) than for that of an Al complex bearing an N,O-Schiff base ligand (19.0 kcal/mol), and this magnitude of activation energy reduction is comparable to the magnitude of rate enhancement observed in the experiment. The reduction of activation energy was attributed to the catalyst-substrate destabilization effect. Using a sulfur-containing ligand to decrease the activation energy in the ring-opening polymerization process may be a new strategy to design a new Al complex with high catalytic activity.

  8. Selective coordination ability of sulfamethazine Schiff-base ligand towards copper(II): molecular structures, spectral and SAR study.

    PubMed

    Mansour, Ahmed M

    2014-04-05

    In the present work, a combined experimental and theoretical study of the N-(4,6-Dimethyl-pyrimidin-2-yl)-4-[(2-hydroxy-benzylidene)amino]benzenesulfonamide ligand (H2L) and its mononuclear and magnetically diluted binuclear Cu(II) complexes has been performed using IR, TG/DTA, magnetic, EPR, and conductivity measurements. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using the MPW1PW91 functional. Coordination of H2L to a Cu(II) center, regardless of the binding site and Cu:L stoichiometry, leads to a significant decrease in the antibacterial activity compared to the free ligand as well as reference drugs in the case of Staphylococcus aureus. Structural-activity relationship suggests that ELUMO, ΔE, dipole moment, polarizability and electrophilicity index were the most significant descriptors for the correlation with the antibacterial activity.

  9. Reversible methanol addition to copper Schiff base complexes: a kinetic, structural and spectroscopic study of reactions at azomethine C[double bond, length as m-dash]N bonds.

    PubMed

    Zhang, Wuyu; Saraei, Nina; Nie, Hanlin; Vaughn, John R; Jones, Alexis S; Mashuta, Mark S; Buchanan, Robert M; Grapperhaus, Craig A

    2016-10-12

    The reversible methanolysis of an azomethine C[double bond, length as m-dash]N in a series of copper(ii) Schiff base complexes has been investigated through combined spectroscopic, structural, and kinetic studies. Pentadentate copper(ii) complexes [L1-Cu(X)]Y (L1 = 1,2-bis[(1-methyl-2-imidazolyl)methyleneamino]ethane; X = Y = ClO4(-) (1); X = Y = TfO(-) (2); X = Y = BF4(-) (3); X = H2O, Y = (ClO4(-))2 (4) spontaneously add methanol in a ligand centered reaction to yield stable, isolable hemiaminal ether product complexes 5-8. In methanol free solution, 5-8 spontaneously release alcohol to regenerate 1-4. The methanol addition reaction is first-order in methanol and first-order in complex with second-order rate constants varying from 1.1 × 10(-4) to 187 × 10(-4) M(-1) s(-1) dependent on the donor ability of the axial ligand. Rate constants for methanol elimination vary from 0.67 to 3.7 × 10(-4) s(-1) with dependence on the counterion and water content of the solvent. Equilibrium constants for methanolysis range from 1.5 to 51 M(-1). Structural comparisons of the Schiff base complexes 1-4 and the hemiaminal ether complexes 5-8 suggest methanol addition is favored by the release of ligand strain associated with three planar five-membered chelates in 1-4.

  10. Experimental and theoretical study on a new copper(II) complex derived from pyridoxal hydrochloride and 1,2-diaminocyclohexane

    NASA Astrophysics Data System (ADS)

    Mandal, Senjuti; Sikdar, Yeasin; Sanyal, Ria; Goswami, Sanchita

    2017-01-01

    In this work, guided by a pyridoxal derived Schiff base ligand, H2PydChda [5-Hydroxymethyl-4-({2-[5-hydroxymethyl-2-methylpyridin-3-hydroxy-4-ylethylene)-amino]-cyclohexylimino}-methyl)-2-methylpyridin-3-ol], a new copper(II) complex, [Cu(PydChda-2H+)]2·4ClO4·2H2O was constructed and structurally characterized by single crystal X-ray diffraction study. DFT calculations further substantiate the experimental features. Additionally, experiments were performed to demonstrate the accessibility to any enzymatic activity and the complex provides positive response for phosphatase activity towards 4-NPP substrate.

  11. Doubly chloro bridged dimeric copper(II) complex: magneto-structural correlation and anticancer activity.

    PubMed

    Sikdar, Yeasin; Modak, Ritwik; Bose, Dipayan; Banerjee, Saswati; Bieńko, Dariusz; Zierkiewicz, Wiktor; Bieńko, Alina; Das Saha, Krishna; Goswami, Sanchita

    2015-05-21

    We have synthesized and structurally characterized a new doubly chloro bridged dimeric copper(II) complex, [Cu2(μ-Cl)2(HL)2Cl2] (1) based on a Schiff base ligand, 5-[(pyridin-2-ylmethylene)-amino]-pentan-1-ol). Single crystal X-ray diffraction shows the presence of dinuclear copper(II) centres in a square pyramidal geometry linked by obtuse double chloro bridge. The magnetic study illustrated that weak antiferromagnetic interactions (J = -0.47 cm(-1)) prevail in complex 1 which is well supported by magneto-structural correlation. This compound adds to the library of doubly chloro bridged copper(ii) complexes in the regime of spin state cross over. DFT calculations have been conducted within a broken-symmetry (BS) framework to investigate the exchange interaction further which depicts that the approximate spin projection technique yields the best corroboration of the experimental J value. Spin density plots show the presence of an ∼0.52e charge residing on the copper atom along with a substantial charge on bridging and peripheral chlorine atoms. The potential of complex1 to act as an anticancer agent is thoroughly examined on a series of liver cancer cell lines and screening shows the HepG2 cell line exhibits maximum cytotoxicity by phosphatidyl serine exposure in the outer cell membrane associated with ROS generation and mitochondrial depolarization with increasing time in the in vitro model system.

  12. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases.

    PubMed

    Bagihalli, Gangadhar B; Avaji, Prakash Gouda; Patil, Sangamesh A; Badami, Prema S

    2008-12-01

    A series of metal complexes of cobalt(II), nickel(II) and copper(II) have been synthesized with newly synthesized biologically active 1,2,4-triazole Schiff bases derived from the condensation of 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 8-formyl-7-hydroxy-4-methylcoumarin, which have been characterized by elemental analyses, spectroscopic measurements (IR, UV-vis, fluorescence, ESR), magnetic measurements and thermal studies. Electrochemical study of the complexes is also reported. All the complexes are soluble to limited extent in common organic solvents but soluble to larger extent in DMF and DMSO and are non-electrolytes in DMF and DMSO. All these Schiff bases and their complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus and Cladosporium) by MIC method. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties.

  13. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-01-24

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), (1) H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN)3 -Eu(III) and the ternary complex PSF-(SAN)3 -Eu(III)-(Phen)1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA)3 -Tb(III) and the ternary complex PSF-(SCA)3 -Tb(III)-(Phen)1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III).

  14. Spectral and thermal characterization of salophen type Schiff base and its implementation as solid contact electrode for quantitative monitoring of copper(II) ion.

    PubMed

    Demir, Serkan; Yılmaz, Hakan; Dilimulati, Maowulidan; Andac, Müberra

    2015-11-05

    Salophen templated Schiff base 2,3-bis(salicylaldimino)pyridine (H2IF) has been synthesized and fully characterized by a series of different spectroscopic methods and thermogravimetric analysis (TGA). It has been also further probed electrochemically and explored as a cation recognition ionophore in the form of a polymeric membrane as selective sensor for quantitative monitoring of Cu(2+). Dielectric properties of the membrane have been studied by electrochemical impedance spectroscopy (EIS). The potentiometric results have demonstrated that the sensor exhibits very good selectivity and sensitivity towards Cu(2+) over a wide variety of cations. The electrode has a linear response to Cu(2+) with a detection limit of 4.46×10(-8) and displays a Nernstian slope (29.14 mV/decade) between pH 3.0 and 6.0 with a fast response time less than 10s. The solid contact electrodes have been exploited over five mounts period with good reproducibility. The analytical availability of the proposed electrode has been evaluated by applying in the determination of Cu(2+) ions in water samples. The structural features and complexation of ionophore with Cu(2+) have been monitored by UV-Vis spectroscopy and spectral findings have been further supported by DFT and TD-DFT calculations.

  15. Immobilization of cobalt(III) Schiff base complexes onto Montmorillonite-K10: Synthesis, experimental and theoretical structural determination.

    PubMed

    Kianfar, Ali Hossein; Kamil Mahmood, Wan Ahmad; Dinari, Mohammad; Farrokhpour, Hossein; Enteshari, Majid; Azarian, Mohammad Hossein

    2015-02-05

    The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen=bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, (1)H NMR, (13)C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures.

  16. Immobilization of cobalt(III) Schiff base complexes onto Montmorillonite-K10: Synthesis, experimental and theoretical structural determination

    NASA Astrophysics Data System (ADS)

    Kianfar, Ali Hossein; Kamil Mahmood, Wan Ahmad; Dinari, Mohammad; Farrokhpour, Hossein; Enteshari, Majid; Azarian, Mohammad Hossein

    2015-02-01

    The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen = bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, 1H NMR, 13C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures.

  17. Crystal structures of type I dehydroquinate dehydratase in complex with quinate and shikimate suggest a novel mechanism of Schiff base formation.

    PubMed

    Light, Samuel H; Antanasijevic, Aleksandar; Krishna, Sankar N; Caffrey, Michael; Anderson, Wayne F; Lavie, Arnon

    2014-02-11

    A component of the shikimate biosynthetic pathway, dehydroquinate dehydratase (DHQD) catalyzes the dehydration of 3-dehydroquniate (DHQ) to 3-dehydroshikimate. In the type I DHQD reaction mechanism a lysine forms a Schiff base intermediate with DHQ. The Schiff base acts as an electron sink to facilitate the catalytic dehydration. To address the mechanism of Schiff base formation, we determined structures of the Salmonella enterica wild-type DHQD in complex with the substrate analogue quinate and the product analogue shikimate. In addition, we determined the structure of the K170M mutant (Lys170 being the Schiff base forming residue) in complex with quinate. Combined with nuclear magnetic resonance and isothermal titration calorimetry data that revealed altered binding of the analogue to the K170M mutant, these structures suggest a model of Schiff base formation characterized by the dynamic interplay of opposing forces acting on either side of the substrate. On the side distant from the substrate 3-carbonyl group, closure of the enzyme's β8-α8 loop is proposed to guide DHQ into the proximity of the Schiff base-forming Lys170. On the 3-carbonyl side of the substrate, Lys170 sterically alters the position of DHQ's reactive ketone, aligning it at an angle conducive for nucleophilic attack. This study of a type I DHQD reveals the interplay between the enzyme and substrate required for the correct orientation of a functional group constrained within a cyclic substrate.

  18. Synthesis, crystal structures and magnetic properties of dinuclear copper(II) compounds with NNO tridentate Schiff base ligands and bridging aliphatic diamine and aromatic diimine linkers.

    PubMed

    Rigamonti, Luca; Forni, Alessandra; Pievo, Roberta; Reedijk, Jan; Pasini, Alessandro

    2011-04-07

    The synthesis and the characterization of new dinuclear copper(II) compounds of general formula [(L(a-d))(2)Cu(2)(μ-N-N)](ClO(4))(2) (1-6) with either neutral aliphatic diamine (N-N = piperazine, pip) or aromatic diimine (N-N = 4,4'-bipyridine, 4,4'-bipy) linker are reported. The copper ligands L(-) (L(a-) = (E)-2-((2-aminoethylimino)methyl)phenolate, L(b-) = (E)-2-((2-aminopropylimino)methyl)-phenolate, L(c-) = (E)-2-((2-aminoethylimino)methyl)4-nitrophenolate, L(d-) = (E)-2-((2-aminoethylimino)methyl)4-methoxyphenolate) are NNO tridentate Schiff bases derived from the monocondensation of a substituted salicylaldehyde 5-G-salH (G = NO(2), H, OMe) with ethylenediamine, en, or 1,3-propylenediamine, tn. The crystal structures of compounds [(L(a))(2)Cu(2)(MeOH)(2)(μ-4,4'-bipy)](ClO(4))(2) (1·2MeOH), [(L(b))(2)Cu(2)(MeOH)(2)(μ-4,4'-bipy)](ClO(4))(2) (2·2MeOH), [(L(d))(2)Cu(2)(μ-4,4'-bipy)](ClO(4))(2) (4), [(L(a))(2)Cu(2)(μ-pip)](ClO(4))(2) (5) and [(L(b))(2)Cu(2)(μ-pip)](ClO(4))(2) (6) have been determined, revealing the preferred (e-e)-chair conformation of the bridging piperazine in compounds 5 and 6. The presence of hydrogen-bond-mediated intermolecular interactions, that involve the methanol molecules, yields dimers of dinuclear units for 1·2MeOH, and infinite zig-zag chains for 2·2MeOH. The temperature dependences of the magnetic susceptibilities χ(M)(T) for all compounds were measured, indicating the presence of antiferromagnetic Cu-Cu exchange. For the compounds 2-4 with 4,4'-bipy, the coupling constants J are around -1 cm(-1), while in compound 1 no interaction could be detected. The compounds 5 and 6 with piperazine display higher Cu-Cu magnetic interactions through the σ-bonding backbone of the bridging molecule, with J around -8 cm(-1), and the coupling is favoured by the (e-e)-chair conformation of the diamine ring. The non-aromatic, but shorter, linker piperazine gives rise to stronger Cu-Cu antiferromagnetic couplings than the aromatic, but

  19. Synthesis, spectral characterization, molecular modeling, thermal study and biological evaluation of transition metal complexes of a bidentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Qanungo, Kushal; Sharma, Saroj K.

    2013-09-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized [where L = 3-Bromoacetophenone thiosemicarbazone and X = CH3COO-, Cl- and NO3-]. All the complexes were characterized by elemental analysis, magnetic moments, IR, electronic and EPR spectral studies. The ligand behaved as bidentate and coordinated through sulfur of sbnd Cdbnd S group and nitrogen atoms of sbnd Cdbnd N group. The copper(II) and nickel(II) complexes were found to have magnetic moments 1.94-2.02 BM, 2.96-3.02 BM respectively which was corresponding to one and two unpaired electrons respectively. The molar conductance of the complexes in solution of DMSO lies in the range of 10-20 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of EPR, electronic and infrared spectral studies, tetragonal geometry has been assigned for copper(II) complexes and an octahedral geometry for nickel(II) complexes. The values of Nephelauxetic parameter β lie in the range 0.19-0.37 which indicated the covalent character in metal ligand ‘σ' bond. Synthesized ligand and its copper(II) and nickel(II) complexes have also been screened against different bacterial and fungal species which suggested that complexes are more active than the ligands in antimicrobial activities.

  20. Synthesis, spectral characterization, molecular modeling and antimicrobial studies of tridentate azo-dye Schiff base metal complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    Nine mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pt(IV) complexes of azo-dye Schiff's base ligand were synthesized and determined by different physical techniques. All the nine metal complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV-Vis, thermal analysis and 1H NMR, 13C NMR, mass, SEM, TEM, EDX, XRD spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complex which was four coordinate, square planar. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. In molecular modeling the geometries of azo-dye Schiff base ligand HL and its metal (II/III/IV) complexes were fully optimized with respect to the energy using the 6-31G basis set. These ligand and its metal complexes have also been screened for their in vitro antimicrobial activities.

  1. Spectrophotometric study on the binding of two water soluble Schiff base complexes of Mn(III) with ct-DNA.

    PubMed

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khlegh; Mehrgardi, Masood Ayatolahi; Mirkhani, Valiolah

    2011-07-01

    In this work, binding of two water soluble Schiff base complexes: Bis sodium (5-sulfosalicylaldehyde) o-phenylendiiminato) Manganese (III) acetate (Salophen complex) and Bis sodium (5-sulfosalicylaldehyde) 1, 2 ethylendiiminato) Manganese (III) acetate (Salen complex) with calf thymus (ct) DNA were investigated by using different spectroscopic and electrometric techniques including UV-vis, Circular dichroism (CD) and fluorescence spectroscopy, viscommetry and cyclic voltammetry (CV). Both complexes have shown a hyperchromic and a small bathochromic shift in the visible region spectra. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by the addition of the two Schiff base complexes indicating that they displace EB from its binding site in DNA. Moreover structural changes in the CD spectra and an increase in the CV spectra with addition of DNA were observed. The results show that both complexes bind to DNA. The binding constants have been calculated using fluorescence data for two complexes also K(b) was calculated with fluorescence Scatchard plot for Salophen. Ultimately, the experimental results show that the dominant interactions are electrostatic while binding mode is surface binding then followed by hydrophobic interactions in grooves in high concentration of complexes.

  2. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra

    2014-12-01

    Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N";-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M = Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.

  3. Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand.

    PubMed

    Belal, A A M; El-Deen, I M; Farid, N Y; Zakaria, Rosan; Refat, Moamen S

    2015-01-01

    The main target of this paper is to get an interesting data for the preparation and characterizations of metal oxide (MO) nanoparticles using H2L Schiff base complexes as precursors through the thermal decomposition procedure. Five Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were synthesized from 2-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-benzoic acid new adduct (H2L). Theses complexes were characterized using infrared, electronic, mass and (1)H NMR spectroscopic techniques. The elemental analysis data was confirmed that the stoichiometry of (metal:H2L) is 1:1 molar ratio. The molar conductance indicates that all of complexes are non electrolytic. The general chemical formulas of these complexes is [M(L)(NH3)]·nH2O. All complexes are tetrahedral geometry. The thermal decomposition behavior of H2L hydrated and anhydrous complexes has been discussed using thermogravimetric analysis (TG/DTG) and differential thermal analyses (DTA) under nitrogen atmosphere. The crystalline phases of the reaction products were checked using X-ray diffractometer (XRD) and scanning electron microscopy (SEM).

  4. Octahedral Ni(II) complex with new NNO donor Schiff base ligand: Synthesis, structure and Hirshfeld surface

    NASA Astrophysics Data System (ADS)

    Jana, Kalyanmoy; Maity, Tithi; Chandra Debnath, Subhas; Samanta, Bidhan Chandra; Seth, Saikat Kumar

    2017-02-01

    A new mononuclear Schiff base octahedral Ni(II) complex of general formula [NiII(L)2] has been synthesized using a new NNO donor Schiff base ligand (HL = 2-[(piperidin-2-ylmethylimino)-methyl]-phenol). The title complex has been characterized by various physical measurements such as elemental analyses, FT-IR, 1H NMR and UV-Vis spectroscopic techniques. The molecular structure of the title complex was determined by single crystal X-ray diffraction technique. The title complex is a mononuclear bis-ligand complex showing distorted octahedral geometry around nickel (II). X-ray crystallography reveals that the complex exhibits extensive supramolecular interactions in the solid-state. Two types of non-covalent interactions namely, π-π and C-H···π interactions are found to govern final solid-state architecture in the complex. The contribution of each interaction to the formation of the self-assembly has been analyzed through Hirshfeld surface calculation which enables quantitative contributions to the crystal packing in a novel visual manner.

  5. EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor.

    PubMed

    Das, Kuheli; Patra, Chiranjit; Sen, Chandana; Datta, Amitabha; Massera, Chiara; Garribba, Eugenio; El Fallah, Mohamed Salah; Beyene, Belete B; Hung, Chen-Hsiung; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Escudero, Daniel; Frontera, Antonio

    2016-12-30

    A new Cu(II) dinuclear complex, Cu2L2 (1) was afforded employing the potentially pentatentate Schiff base precursor H2L, a refluxed product of o-vanillin and diethylenetriamine in methanol. Complex 1 was systematically characterized by FTIR, UV-Vis, emission and EPR spectrometry. The single crystal X-ray diffraction analysis of 1 reveals that the copper atom exhibits a distorted square planar geometry, comprising two pairs of phenolato-O and imine-N donors from two different H2L ligands. The temperature dependent magnetic interpretation agrees with the existence of weak antiferromagnetic interactions between the bridging dinuclear Cu(II) ions. A considerable body of experimental evidence has been accumulated to elucidate the magneto-structural relationship in this dinuclear Cu(II) complex by DFT computation. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy on M. tuberculosis H37Ra (ATCC 25177) and M. tuberculosis H37Rv (ATCC 25618) strains. The practical applicability of the ligand and complex 1 has been examined in living cells (African Monkey Vero Cells). The MTT assay proves the non-toxicity of the probe up to 100 mg mL(-1). A new homometallic dinuclear Cu(II) complex is afforded with a tetradentate Schiff base precursor. EPR interpretation and temperature dependent magnetic studies show that complex 1 has weak antiferromagnetic coupling and DFT computation is governed to explain the magneto-structural correlation.

  6. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.

    2013-05-01

    New Fe(II) Schiff base amino acid complexes derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized by elemental analysis, IR, electronic spectra, and conductance measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. The investigated Schiff bases exhibited tridentate coordination mode with the general formulae [Fe(HL)2]·nH2O for all amino acids except L-histidine. But in case of L-histidine, the ligand acts as tetradentate ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their toxicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. The interaction between CT-DNA and the investigated complexes were followed by spectrophotometry and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA cleavage activity with the sequence: nhi > nari > nali > nasi > nphali. The thermodynamic Profile of the binding of nphali complex and CT-DNA was constructed by analyzing the experimental data of absorption titration and UV melting studies with the McGhee equation, van't Hoff's equation, and the Gibbs-Helmholtz equation.

  7. Spectral characterization, electrochemical and anticancer studies on some metal(II) complexes containing tridentate quinoxaline Schiff base

    NASA Astrophysics Data System (ADS)

    Chellaian, Justin Dhanaraj; Johnson, Jijo

    2014-06-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of a tridentate ONO donor Schiff base ligand derived from 3-(2-aminoethylamino)quinoxalin-2(1H)-one were synthesized. The ligand and its metal complexes were characterized using elemental analysis, molar conductance, IR, 1H NMR, mass, magnetic susceptibility, electronic spectra and ESR spectral studies. Electrochemical behavior of the synthesized compounds was studied using cyclic voltammetry. The grain size of the synthesized compounds was determined by powder XRD. The Schiff base and its complexes have been screened for their antimicrobial activities against the bacterial species E. coli, K. pneumoniae, P. aeruginosa and S. aureus; fungal species include, A. niger, and C. albicans by disc diffusion method. The results show that the complexes have higher activity than the free ligand. The interaction of the complexes with calf thymus DNA (CT DNA) has been investigated by electronic absorption method. Furthermore, the DNA cleavage activity of the complexes was studied using agarose gel electrophoresis. In vitro anticancer studies of the ligand and its complexes using MTT assay was also done.

  8. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  9. Co(II) and Cd(II) complexes derived from heterocyclic Schiff-Bases: synthesis, structural characterisation, and biological activity.

    PubMed

    Ahmed, Riyadh M; Yousif, Enaam I; Al-Jeboori, Mohamad J

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L¹) and N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L²) are reported. Schiff-base ligands L¹ and L² were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)₂]Cl₂ (where M = Co(II) or Cd(II), L = L¹ or L²) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, ¹H, and ¹³C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G-) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands.

  10. Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations.

    PubMed

    Cazacu, Maria; Shova, Sergiu; Soroceanu, Alina; Machata, Peter; Bucinsky, Lukas; Breza, Martin; Rapta, Peter; Telser, Joshua; Krzystek, J; Arion, Vladimir B

    2015-06-15

    Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry.

  11. Theoretical study of magnetic properties of oxovanadium(IV) complex self-assemblies with tetradentate Schiff base ligands.

    PubMed

    Matsuoka, Naoki; Tsuchimoto, Masanobu; Yoshioka, Naoki

    2011-07-07

    The theoretical study of the magnetic properties of oxovanadium(IV) complex self-assemblies with tetradentate Schiff base ligands is discussed on the basis of DFT calculations. Large negative spin densities are found on the axial oxygens of the various oxovanadium(IV) complexes. The relationship between the effective exchange parameters J(ab) and the geometrical parameters for these complexes was studied by changing the position of the neighboring molecules for the purpose of clarifying the mechanism of the ferromagnetic coupling. The intermolecular ferromagnetic interaction of the oxovanadium(IV) complexes with tetradentate Schiff base ligands is significantly affected by the formation of polymeric octahedral structures in the solid state. The overlap between the 2p orbitals of the axial oxygen and the 3d orbitals of the adjacent vanadium is effective for the ferromagnetic coupling. On the other hand, the effect of overlap between the vanadium 3d(xy) orbitals is too small to lead to magnetic coupling. It was revealed that the intermolecular ferromagnetic interaction of the polynuclear oxovanadium(IV) complexes is significantly affected by the spin polarization on the axial oxygen.

  12. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  13. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Sundararajan, M. L.; Jeyakumar, T.; Anandakumaran, J.; Karpanai Selvan, B.

    2014-10-01

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, 1H NMR, 13C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  14. Modern spectroscopic technique in the characterization of biosensitive macrocyclic Schiff base ligand and its complexes: Inhibitory activity against plantpathogenic fungi

    NASA Astrophysics Data System (ADS)

    Tyagi, Monika; Chandra, Sulekh; Akhtar, Jameel; Chand, Dinesh

    2014-01-01

    Complexes of the type [M(L)Cl2], where M = Co(II), Ni(II) and Cu(II) have been synthesized with a macrocyclic Schiff base ligand (1,4,5,7,10,11,12,15-octaaza,5,11,16,18-tetraphenyl, 3,4,12,13-tetramethyl cyclo-octadecane) derived from Schiff base (obtained by the condensation of 4-aminoantipyrine and dibenzoyl methane) and ethylenediamine. The ligand was characterized on the basis of elemental analysis, IR, 1H NMR, EI Mass and molecular modeling studies while the complexes were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, IR, electronic and EPR spectral studies. All the complexes are non-electrolyte in nature. The covalency factor (β) and coefficient factor (α) suggest the covalent nature of the complexes. The ligand and its metal complexes have shown antifungal activity with their LD50 values determined by probit analysis against two economically important fungal plant pathogens i.e. Macrophomina phaseolina and Fusarium solani.

  15. Synthesis, characterization and structural determination of some nickel(II) complexes containing imido Schiff bases and substituted phosphine ligands.

    PubMed

    Kianfar, Ali Hossein; Ebrahimi, Mostafa

    2013-11-01

    Some new tridentate ONN Schiff base complexes of [NiL(PR3)] (where L=Salicylidene2-amino4-nitrobenzene (L(1)), 5-BrSalicylidene2-amino4-nitrobenzene (L(2)), 5-NO2Salicylidene2-amino4-nitrobenzene (L(3)), 5-MeOSalicylidene2-amino4-nitrobenzene (L(4)) and 3-MeOSalicylidene2-amino4-nitrobenzene (L(5)), R=Bu and Ph (with L(1))) were synthesised and characterized by IR, UV-Vis, (1)H NMR spectroscopy and elemental analysis. The geometry of [NiL(1)(PPh3)] was determined by X-ray crystallography. It indicated that the complex had a planar structure and four coordinates in the solid state. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the synthesized complexes were carried out in the range of 20-600°C, leading to the decomposition of L(1)-L(3) type in three stages and of L(4)-L(5) and [NiL(1)(PPh3)] type in four stages. Thermal decomposition of the complexes was closely the dependent upon the nature of the Schiff base ligands and proceeded via the first order kinetics.

  16. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H 2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial ( Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  17. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies.

    PubMed

    Patil, Sangamesh A; Unki, Shrishila N; Kulkarni, Ajaykumar D; Naik, Vinod H; Badami, Prema S

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial (Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities (Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  18. SOD activity and DNA binding properties of a new symmetric porphyrin Schiff base ligand and its metal complexes.

    PubMed

    Çay, Sevim; Köse, Muhammet; Tümer, Ferhan; Gölcü, Ayşegül; Tümer, Mehmet

    2015-12-05

    4-Methoxy-2,6-bis(hydroxymethyl)phenol (1) was prepared from the reaction of 4-methoxyphenol and formaldehyde. The compound (1) was then oxidized to the 4-methoxy-2,6-diformylphenol (2) compound. Molecular structure of compound (2) was determined by X-ray diffraction method. A new symmetric porphyrin Schiff base ligand 4-methoxy-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (L) was prepared from the reaction of the 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TTP-NH2) and the compound (2) in the toluene solution. The metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) of the ligand (L) were synthesized and characterized by the spectroscopic and analytical methods. The DNA (fish sperm FSdsDNA) binding studies of the ligand and its complexes were performed using UV-vis spectroscopy. Additionally, superoxide dismutase activities of the porphyrin Schiff base metal complexes were investigated. Additionally, electrochemical, photoluminescence and thermal properties of the compounds were investigated.

  19. Synthesis, characterization and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Rajour, Hemant K.; Prakash, Anant

    Schiff bases derived from 2-nitrobenzaldehyde with amino acids (glycine, methionine) and their Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by various physico-chemical techniques. From spectral studies, it has been concluded that the ligands acts as bidentate molecule, coordinates metal through azomethine nitrogen and carboxylate oxygen. Mass spectrum explains the successive degradation of the molecular species in solution and justifies ML2 complexes. X-ray powder diffraction helps to determine the cell parameters of the complexes. Molecular structure of the complexes has been optimized by MM2 calculations and suggests a square planar geometry. The ligands and their metal complexes have been tested in vitro against Streptococcus, Staph, Staphylococcus aureus and Escherchia coli bacteria in order to assess their antibacterial potential. The results indicate that the biological activity increases on complexation.

  20. Fast O2 Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands

    PubMed Central

    Company, Anna; Gómez, Laura; Mas-Ballesté, Rubén; Korendovych, Ivan V.; Ribas, Xavi; Poater, Albert; Parella, Teodor; Fontrodona, Xavier; Benet-Buchholz, Jordi; Solà, Miquel; Que, Lawrence; Rybak-Akimova, Elena; Costas, Miquel

    2008-01-01

    A new family of dicopper(I) complexes [CuI2RL](X)2, (R = H, 1X, R = tBu, 2X and R = NO2, 3X, X = CF3SO3, ClO4, SbF6 or BArF, BArF = [B{3,5-(CF3)2-C6H3}4]−), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer have been prepared, characterized, and their reaction with O2 studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid state structures of 1ClO4, 2CF3SO3, 2ClO4 and 3BArF·CH3CN have been established by single crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in solution while 2CF3SO3, 2ClO4 and 3BArF·CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes in solution. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(μ-O)2(RL)]2+ 1-3(O2) and [CuIII2(μ-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(μ-O)2 form with respect to the CuII2(μ-η2: η2-peroxo) isomer. The reaction of 1X, X = CF3SO3 and BArF with O2 in acetone has been studied by stopped-flow exhibiting an unexpected very fast reaction rate (k = 3.82(4) × 103 M−1s−1, ΔH‡ = 4.9 ± 0.5 kJ·mol−1, ΔS‡ = −148 ± 5 J·K−1·mol−1), nearly three orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X = CF3SO3 and BArF) is discussed and compared with those

  1. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    PubMed

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively.

  2. A comparative study of cytotoxicity and interaction with DNA/protein of five transition metal complexes with Schiff base ligands.

    PubMed

    Niu, Meiju; Hong, Min; Chang, Guoliang; Li, Xiao; Li, Zhen

    2015-07-01

    Five transition metal complexes NiL(1)2 (1), CuL(1)2 (2), ZnL(1)2 (3), [MnL(1)2(N3)]n·nCH2Cl2 (4), CuL(2)2 (5) {HL(1)=3-{[2-(2-hydroxy-ethoxy)-ethylimino]-methyl}-naphthalen-2-ol, HL(2)=2-{[2-(2-hydroxy-ethoxy)-ethylimino]-methyl}-phenol} have been synthesized and fully characterized. In all of the complexes, the ligands coordinated to the metal ion in a negative fashion via O and N donor atoms. The X-ray structures of nickel complex 1 and copper complexes 2 and 5 are four-coordinated monomers and show slightly distorted square-planar geometry in the vicinity of the central metal atom. Zinc complex 3 exhibits a four-coordinated tetrahedral structure. Differently, manganese complex 4 reveals a six-coordinated octahedral structure, one-dimensional chain is linked by azide in the end-to-end mode. In vitro cytotoxicity of these complexes to various tumor cell lines was assayed by the MTT method. The results showed that most of these metal-Schiff base complexes exhibited enhanced cytotoxicity than Schiff base ligands, which clearly implied a positive synergistic effect. Moreover, these complexes appeared to be selectively active against certain cell lines. The interactions of these metal complexes with CT-DNA were investigated by UV-vis, fluorescence and CD spectroscopy, the results indicated that these complexes are metallointercalators and can interact with CT-DNA. The study of interaction between complexes and BSA indicated that all of the complexes could quench the intrinsic fluorescence of BSA in a static quenching process.

  3. Experimental and Computational Study of the Thermodynamic Properties of Trivalent Cobalt Schiff Base Complexes with Cyclic Amines.

    PubMed

    Esmaielzadeh, Sheida; Azimian, Leila; Zar, Zohreh

    2016-01-01

    Some cobalt(III) complexes with a potentially tetradentate unsymmetrical NNOS Schiff base ligand have been synthesized and characterized using IR, 1HNMR, UV-Vis spectroscopy and elemental analysis. The equilibrium constants were measured spectrophotometrically for 1:1 adduct formation of the cobalt(III) complexes with some cyclic amines in acetonitrile as solvent at constant ionic strength (I = 0.1 M NaClO4), and at various temperatures. In addition, the ground state geometries of the complexes were optimized using density functional theory (DFT) at B3LYP/6-311G** level. Binding energy, thermodynamic parameters, structural parameters and electronic structures of complexes are investigated. The theoretical investigations were done for comparing with the experimental results. Our comparison between the computational and experimental results revealed that the cobalt(III) complexation process is spontaneous, exothermic and entropically unfavorable.

  4. Synthesis, characterization and biological activity of ferrocene-based Schiff base ligands and their metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Ting; Lian, Gui-Dan; Yin, Da-Wei; Su, Bao-Jun

    Metal (II) complexes derived from S-benzyl-N-(1-ferrocenyl-3-(4-methylbenzene)acrylketone) dithiocarbazate; HL1, S-benzyl-N-(1-ferrocenyl-3-(4-chlorobenzene)acrylketone)dithiocarbazate; HL2, all the compounds were characterized using various spectroscopic techniques. The molar conductance data revealed that the chelates were non-electrolytes. IR spectra showed that the Schiff bases were coordinated to the metal ions in a bidentate manner with N, S donor sites. The ligands and their metal complexes have been screened for in vitro antibacterial, antifungal properties. The result of these studies have revealed that zinc (II) complexes 6 and 13 of both the ligands and copper (II) complexes 9 of the HL2 were observed to be the most active against all bacterial strains, antifungal activity was overall enhanced after complexation of the ligands.

  5. Synthesis, characterization and biological activity of ferrocene-based Schiff base ligands and their metal (II) complexes.

    PubMed

    Liu, Yu-Ting; Lian, Gui-Dan; Yin, Da-Wei; Su, Bao-Jun

    2013-01-01

    Metal (II) complexes derived from S-benzyl-N-(1-ferrocenyl-3-(4-methylbenzene)acrylketone) dithiocarbazate; HL(1), S-benzyl-N-(1-ferrocenyl-3-(4-chlorobenzene)acrylketone)dithiocarbazate; HL(2), all the compounds were characterized using various spectroscopic techniques. The molar conductance data revealed that the chelates were non-electrolytes. IR spectra showed that the Schiff bases were coordinated to the metal ions in a bidentate manner with N, S donor sites. The ligands and their metal complexes have been screened for in vitro antibacterial, antifungal properties. The result of these studies have revealed that zinc (II) complexes 6 and 13 of both the ligands and copper (II) complexes 9 of the HL(2) were observed to be the most active against all bacterial strains, antifungal activity was overall enhanced after complexation of the ligands.

  6. Antibacterial cobalt (II), copper (II), nickel (II) and zinc (II) complexes of mercaptothiadiazole--derived furanyl, thienyl, pyrrolyl, salicylyl and pyridinyl Schiff bases.

    PubMed

    Chohan, Zahid H; Pervez, Humayun; Rauf, Abdul; Khan, Khalid M; Supuran, Claudiu T

    2006-04-01

    A series of Co (II), Cu (II), Ni (II) and Zn (II) complexes of mercaptothiadiazole-derived furanyl, thienyl, pyrrorlyl, salicylyl and pyridinyl Schiff bases were synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella fexneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureous bacterial strains. The results of these studies show the metal complexes to be more antibacterial as compared to the prepared un-complexed Schiff bases.

  7. Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies.

    PubMed

    Singh, Kiran; Kumar, Yogender; Puri, Parvesh; Kumar, Mahender; Sharma, Chetan

    2012-06-01

    Two new Schiff bases of 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde and 4-amino-5-mercapto-3-methyl/H-1,2,4-triazole [HL(1-2)] and their Cobalt, Nickel, Copper and Zinc complexes have been synthesized and characterized by elemental analyses, spectral (UV-vis, IR, (1)H NMR, Fluorescence) studies, thermal techniques and magnetic measurements. A square planar geometry for Cu(II) and octahedral geometry for Co(II), Ni(II) and Zn(II) complexes have been proposed. In order to evaluate the biological activity of Schiff bases and to assess the role of metal ion on biological activity, the pyrazole Schiff bases and their metal complexes have been studied in vitro antibacterial against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and antifungal against Aspergillus niger, and Aspergillus flavus. In most of the cases higher activity was exhibited upon coordination with metal ions.

  8. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes.

    PubMed

    Neelakantan, M A; Rusalraj, F; Dharmaraja, J; Johnsonraja, S; Jeyakumar, T; Sankaranarayana Pillai, M

    2008-12-15

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) l-alanine (ala), l-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N(2)O(2) donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, (1)H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300K and in frozen DMSO (77K) indicate the presence of the unpaired electron in the dx2-y2 orbital. The evaluated metal-ligand bonding parameters showed strong in-plane sigma- and pi-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  9. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.

    2008-12-01

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  10. Two tridentate Schiff base ligands and their mononuclear cobalt (III) complexes: Synthesis, characterization, antibacterial and antifungal activities.

    PubMed

    Gungor, Elif; Celen, Selma; Azaz, Dilek; Kara, Hulya

    2012-08-01

    Two Schiff base ligands (HL1, HL2) and their Co(III) complexes, [Co(HL1)(L1)] (1) and [Co(HL2)(L2)] (2) [where HL1=2-((E)-(2-hydroxyethylimino)methyl)-4-chlorophenol and HL2=2-((E)-(2-hydroxyethylimino)methyl)-4-bromophenol] were synthesized and characterized using spectroscopic methods. The crystal structures of 1 and 2 have been re-determined by single crystal diffraction at 100K. The ligands and their Co(III) complexes were screened for antibacterial and antifungal activities by the disc diffusion, microdilution broth and single spore culture techniques. The antimicrobial activity of the Co(III) complexes and the free ligands exhibit antimicrobial properties and the Co(III) complexes show enhanced inhibitory activity compared with their parent ligand.

  11. Pharmacological performance of novel poly-(ionic liquid)-grafted chitosan-N-salicylidene Schiff bases and their complexes.

    PubMed

    Elshaarawy, Reda F M; Refaee, Ayaat A; El-Sawi, Emtithal A

    2016-08-01

    In our endeavor to develop a new class of pharmacological candidates with antimicrobial and anticancer efficacy, a series of biopolymeric chitosan Schiff bases bearing salicylidene ionic liquid (IL-Sal) brushes (ILCSB1-3, poly-(GlcNHAc-GlcNH2-(GlcN-Sal-IL)) was successfully synthesized by adopting efficient synthetic routes. Unfortunately, metalation trials of these biopolymeric Schiff bases afford the corresponding Ag(I)/M(II) complexes (where M=Co, Pd). These designed architectures were structurally characterized and pharmacologically evaluated for their in vitro antimicrobial, against common bacterial and fungal pathogens, and anticancer activities against human colon carcinoma (HCT-116) cell line. In conclusion functionalization of chitosan with IL-Sal brushes coupled with metalation of formed ILCSBs were synergistically enhanced its antimicrobial and antitumor properties to a great extent. Noteworthy, Ag-ILCSB2 (IC50=9.13μg/mL) was ca. 5-fold more cytotoxic against HCT-116 cell line than ILCSB2 (IC50=43.30μg/mL).

  12. Synthesis, characterization and thermodynamics of complex formation of some new Schiff base ligands with some transition metal ions and the adduct formation of zinc Schiff base complexes with some organotin chlorides

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Torabi, Susan; Lotfi, Najmeh

    Four new complexes, [M(Salpyr)] where Salpyr = N,N'-bis(Salicylidene)-2,3- and 3,4-diiminopyridine and M = Co, Cu, Mn, Ni and Zn were synthesized and characterized by 1H NMR, IR spectroscopy, elemental analysis and UV-vis spectrophotometry. UV-vis spectrophotometric study of the adduct formation of the zinc(II) complexes, [Zn(2,3-Salpyr)] and [Zn(3,4-Salpyr)], as donor with R2SnCl2 (R = methyl, phenyl, n-butyl), PhSnCl3 and Bu3SnCl as acceptors has been investigated in methanol, as solvent. The formation constants and the thermodynamic free energies were measured using UV-vis spectrophotometry. Titration of the organotin chlorides with Zn(II) complexes at various temperatures (T = 283-313 K) leads to 1:1 adduct formation. The results show that the formation constants were decreased by increasing the temperature. The trend of the reaction of RnSnCl4-n as acceptors toward given zinc complexes was as follows: PhSnCl3 > Me2SnCl2 > Ph2SnCl2 > Bu2SnCl2 > Bu3SnCl By considering the formation constants and the ΔG° of the complex formation for the Schiff base as donor and the M(II) as acceptor, the following conclusion was drawn: the formation constant for a given Schiff base changes according to the following trend: Ni > Cu > Co > Zn > Mn

  13. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes.

    PubMed

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-15

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s(-1) scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, (1)H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  14. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  15. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities.

    PubMed

    Aazam, Elham S; El-Said, Waleed Ahmed

    2014-12-01

    Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV-vis, FT-IR, (1)H NMR, GC-MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles.

  16. Synthesis, spectral characterization, molecular modeling and antimicrobial activity of new potentially N2O2 Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2013-12-01

    Metal complexes of a new potentially tetradentate symmetrical Schiff base ligand (H2L) with Cu(II), Ni(II), Co(II), VO(IV), Zn(II), Cd(II), Ce(III), Fe(III) and UO2(VI) metal ions have been synthesized and characterized based on their elemental analyses, spectral (IR, UV-Vis, 1H NMR and mass spectra), magnetic and molar conductance studies as well as thermal gravimetric analysis (TGA). The synthesized complexes have the general formula [MHxL(H2O)yXn]: x = 0-1, y = 0-4 and n = 0-1; where: L = dianion of 6-hydroxy-5-[N-(2-{[(1E)-1-(6-hydroxy-2,4-dioxo-3,4-dihydro-2H-1,3-thiazin-5-yl)ethylidene]amino}ethyl) ethanimidoyl]-2H-1,3-thiazine-2,4(3H)-dione and X = nitrate or sulphate anion. The ligand behaves as diabasic tetradentate N2O2 sites, except in cases of Co(II), VO(IV) and UO2(VI) metal ions, it behaves as monobasic tetradentate Schiff base ligand. The metal complexes exhibited square planar, square-pyramidal and octahedral geometrical arrangements except for Ce(III) and UO2(VI) complexes, they are octa-coordinated. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition stages of some complexes. Structural parameters of the ligand and its metal complexes have been theoretically computed on the basis of semiemperical PM3 level, and the results were correlated with their experimental data. The antimicrobial activities of the ligand and its metal complexes were tested against some Gram-positive and Gram-negative bacteria; and fungus strain and the results were discussed.

  17. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L1-L4), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL1ṡDMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < Cl. We also studied the thermodynamics of formation of the complexes and kinetic aspects of their thermal decomposition. The formation constants with various substituents on the aldehyde ring follow the trend 5-OMe > 5-H > 5-Br > 5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL1ṡDMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L1 ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex.

  18. Synthesis and characterization of metal complexes of Schiff base ligand derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine

    NASA Astrophysics Data System (ADS)

    Selwin Joseyphus, R.; Shiju, C.; Joseph, J.; Justin Dhanaraj, C.; Arish, D.

    2014-12-01

    The Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine were synthesized. These compounds were characterized by elemental analysis, IR, mass, 1H NMR, electronic spectra, magnetic moment, molar conductance, thermal analysis, powder XRD and SEM. The analytical data show that the metal to ligand ratio is 1:1. The IR results show that the ligand acts as a bidentate donor coordinating through the azomethine nitrogen and imidazole nitrogen atoms. From the electronic spectra and magnetic moment value predicts the geometry of the complexes. The surface morphology of the compounds was studied by SEM. The compounds were screened for their antibacterial activity and antifungal activity using Kirby Bayer disc diffusion method. The DNA cleavage and superoxide dismutase activities of the compounds were investigated. The anticancer activities of the complexes have been carried out towards HeLa and HCT116 cancer cells.

  19. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B

    2010-07-01

    A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina.

  20. Synthesis, structure, and single-molecule magnetic properties of rare-earth sandwich complexes with mixed phthalocyanine and Schiff base ligands.

    PubMed

    Wang, Hailong; Cao, Wei; Liu, Tao; Duan, Chunying; Jiang, Jianzhuang

    2013-02-11

    Double- and quadruple-decker complexes of rare-earth metals with mixed phthalocyanine and Schiff base ligands have been synthesized and structurally and magnetically characterized. These complexes (see picture: Dy pink, Ca green, N blue, C black) extend the scope of sandwich-type tetrapyrrole-based rare-earth molecular materials.

  1. Comments on "Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand" by K. Shakila and S. Kalainathan, Spectrochim. Acta 135 A (2015) 1059-1065

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bikshandarkoil R.; Nadkarni, V. S.

    2016-06-01

    Shakila and Kalainathan report on the synthetic and structural aspects of a zinc iodide complex with Schiff based ligand, which exhibits room temperature ferromagnetism. In this comment, many points of criticism, concerning the characterization of this so called zinc iodide complex of Schiff based ligand are highlighted to prove that the title paper is completely erroneous.

  2. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber

  3. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde.

    PubMed

    Anitha, C; Sheela, C D; Tharmaraj, P; Sumathi, S

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber

  4. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety.

    PubMed

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2014-01-24

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and (1)H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  5. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety

    NASA Astrophysics Data System (ADS)

    Justin Dhanaraj, Chellaian; Johnson, Jijo

    2014-01-01

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and 1H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77 K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  6. Synthesis, characterization, and thermodynamics of some new unsymmetrical Schiff bases of salicylaldehyde with 3,4-diaminopyridine and their cobalt(III) complexes.

    PubMed

    Asadi, Mozaffar; Torabi, Susan; Mohammadi, Khosro

    2014-03-25

    Some new Schiff bases derived from 3,4-diaminopyridine (3,4-DAP) and their new unsymmetrical Co(III) five coordinate complexes described as [Co(Chel)(L)]ClO4⋅H2O where (Chel) is the deprotonated form of a series of unsymmetric ligands containing 3,4-diaminopyridine (3,4-DAP) and substituted salicylaldehyde moieties and a new Co(III) six coordinate Co(III) complex, were synthesized and characterized by (1)H NMR, IR, UV-Vis, and elemental analysis. For the new synthesized five coordinate complexes, the formation constants of the interaction of the Co(III) Schiff bases with various donors were measured spectrophotometrically. The trend of the formation constants of the five coordinate Co(III) Schiff base complexes toward a given phosphine is as follow: 5-H>5-Br and the formation constants trend of these donors are as follow: PBu3>PPh2Me. Furthermore the adduct formation of the five coordinate [Co(3,4-Salpyr)(PBu3)] ClO4⋅H2O, with aromatic amines shows the following binding trend: Im>2-MeIm>2-EtIm>BzIm. The trend of the formation constants of Co(III) Schiff base complexes toward a given donor according to the phosphine axial ligand is as follow: PBu3>PPh2Me.

  7. Syntheses, crystal structures, spectral study and DFT calculation of three new copper(II) complexes derived from pyridoxal hydrochloride, N,N-dimethylethylenediamine and N,N-diethylethylenediamine

    NASA Astrophysics Data System (ADS)

    Mandal, Senjuti; Naskar, Barnali; Modak, Ritwik; Sikdar, Yeasin; Chatterjee, Sudipta; Biswas, Sujan; Mondal, Tapan Kumar; Modak, Debadrita; Goswami, Sanchita

    2015-05-01

    Two pyridoxal containing Schiff bases obtained by condensation of pyridoxal hydrochloride with N,N-dimethylethylenediamine (HL1) and N,N-diethylethylenediamine (HL2) are used for the syntheses of three new copper (II) complexes [Cu(HL1)(H2O)Cl]Cl (1), [Cu(L1)Cl] (2) and [Cu(L2)Cl] (3). The single crystal X-ray structures of all the three copper(II) complexes are determined. Redox potentials for the mononuclear complexes are measured by cyclic voltammetry experiments. The DFT and TDDFT results have been used to interpret the experimental properties.

  8. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  9. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes.

    PubMed

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-15

    Two osazone based ligands, butane-2,3-dione bis(2'-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2'-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  10. Synthesis, spectroscopic, cytotoxic aspects and computational study of N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base and some of its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Abd El-Aziz, Dina M.; Etaiw, Safaa Eldin H.; Ali, Elham A.

    2013-09-01

    N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base (L) and its Cu(II), Fe(III), Co(II), Ni(II) and Zn(II) complexes were synthesized and characterized by a set of chemical and spectroscopic measurements using elemental analysis, electrical conductance, mass spectra, magnetic susceptibility and spectral techniques (IR, UV-Vis, 1H NMR). Elemental and mass spectrometric data are consistent with the proposed formula. IR spectra confirm the bidentate nature of the Schiff base ligand. The octahedral geometry around Cu(II), Fe(III), Ni(II) and Zn(II) as well as tetrahedral geometry around Co(II) were suggested by UV-Vis spectra and magnetic moment data. The thermal degradation behavior of the Schiff base and its complexes was investigated by thermogravimetric analysis. The structure of the Schiff base and its transition metal complexes was also theoretically studied using molecular mechanics (MM+). The obtained structures were minimized with a semi-empirical (PM3) method. The in vitro antitumor activity of the synthesized compounds was studied. The Zn-complex exhibits significant decrease in surviving fraction of breast carcinoma (MCF 7), liver carcinoma (HEPG2), colon carcinoma (HCT116) and larynx carcinoma (HEP2) cell lines human cancer.

  11. Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases.

    PubMed

    Singh, A K; Pandey, O P; Sengupta, S K

    2012-01-01

    New Zn(II) complexes have been synthesized by the reactions of zinc(II) acetate with Schiff bases derived from 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde, 2-hydroxyacetophenone or indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [ZnL(H(2)O)(2)], [ZnL'(OAc)(2)(H(2)O)(2)] (L=dianionic Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and 2-hydroxyacetophenone or indoline-2,3-dione; L'=neutral Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde) and they were characterized by FT-IR, (1)H NMR, (13)C NMR and FAB mass. All these Schiff bases and their complexes have also been screened for their antibacterial activities against Bacillus subtilis, Escherichia coli and antifungal activities against Colletotrichum falcatum, Aspergillus niger, Fusarium oxysporium and Carvularia pallescence by petriplates methods.

  12. Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Pandey, O. P.; Sengupta, S. K.

    New Zn(II) complexes have been synthesized by the reactions of zinc(II) acetate with Schiff bases derived from 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde, 2-hydroxyacetophenone or indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [ZnL(H 2O) 2], [ZnL'(OAc) 2(H 2O) 2] (L = dianionic Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and 2-hydroxyacetophenone or indoline-2,3-dione; L' = neutral Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde) and they were characterized by FT-IR, 1H NMR, 13C NMR and FAB mass. All these Schiff bases and their complexes have also been screened for their antibacterial activities against Bacillus subtilis, Escherichia coli and antifungal activities against Colletotrichum falcatum, Aspergillus niger, Fusarium oxysporium and Carvularia pallescence by petriplates methods.

  13. DNA binding propensity and nuclease efficacy of biosensitive Schiff base complexes containing pyrazolone moiety: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Paulpandiyan, Rajakkani; Raman, Natarajan

    2016-12-01

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes (1-8) were synthesized from pyrazolone precursor Schiff base(s), obtained by the condensation of 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrine) with cinnamaldehyde/benzaldehyde and respective metal(II) chloride. They have been characterized by elemental analysis, magnetic susceptibility, molar conductance measurements, UV-Vis., IR, NMR, ESI mass spectra and EPR studies. These complexes show lower conductance values, supporting their non-electrolytic nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry. The binding properties of these complexes with DNA have been explored by electronic absorption spectra, cyclic voltammetry and viscosity measurements which reveal that the complexes have the ability to interact with calf thymus DNA (CT DNA) by intercalative mode. The binding constant (Kb) values clearly signify that the complex 1 has more intercalating ability than other complexes. DNA cleavage efficacy of these complexes with pUC18 DNA has been investigated by gel electrophoresis technique. All the complexes have been found to promote cleavage of pUC18 DNA from the super coiled form I to the open circular form II in presence of hydrogen peroxide. The in vitro antibacterial and antifungal assay, investigated by Minimum Inhibitory Concentration (MIC) method indicates that these complexes are good antimicrobial agents against various pathogens.

  14. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases.

    PubMed

    Kavitha, P; Saritha, M; Laxma Reddy, K

    2013-02-01

    Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL(1)), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL(2)), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL(3)) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL(4)). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands.

  15. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine.

    PubMed

    Shebl, Magdy

    2009-07-15

    A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.

  16. Synthesis, spectroscopic (electronic, IR, NMR and ESR) and theoretical studies of transition metal complexes with some unsymmetrical Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Vinod P.; Singh, Shweta; Singh, Divya P.; Tiwari, K.; Mishra, Monika

    2014-01-01

    Two unsymmetrical Schiff bases, glyoxal salicylaldehyde oxalic acid dihydrazone (gsodh) and glyoxal salicylaldehyde malonic acid dihydrazone (gsmdh) and their Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The structures of metal complexes are elucidated on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, electronic, ESR, IR and NMR (1H and 13C) spectral studies. Both ligands show monobasic tetra-dentate behaviour, bonding through CO, two CN and a phenolate group. The electronic spectral studies in solid state indicate a square planar geometry for Ni(II) and Cu(II) complexes and a tetrahedral geometry for Co(II) complexes. However, Co(II) and Cu(II) complexes adopt octahedral geometry in DMSO solution. The ESR spectra of Cu(II) complexes in DMSO solution at 77 K predict an elongated tetragonal distorted octahedral geometry around metal ion and presence of unpaired electron in d orbital. Further, the structures of ligands and their Ni(II) complexes have been satisfactorily modelled by calculations based on density functional theory (DFT). The electronic spectra of Ni(II) complexes are also analyzed in depth with the help of time dependent-DFT (TD-DFT). The theoretical analyses of electronic structure and molecular orbitals have demonstrated that the high-energy absorption bands are M → L charge transfer and low energy transitions are d-d transitions.

  17. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    PubMed Central

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-01-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm−1, 28.20 emu g−1, 16.66 emu g−1 and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed. PMID:26218269

  18. Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives

    NASA Astrophysics Data System (ADS)

    Amer, Said; El-Wakiel, Nadia; El-Ghamry, Hoda

    2013-10-01

    A series of copper (II) complexes of Schiff bases derived from 7H-2,6-diaminopurine and 4H-3,5-diamino-1,2,4-triazole with 2-pyridinecarbaldehyde, salicylaldehyde, 2,4-dihydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde have been prepared. The donor atoms and the possible geometry of the complexes were investigated by means of elemental and thermal analyses, molar conductance, magnetic moment, UV-Vis, IR, ESR and mass spectra. The ligands behaved as tetradentate, coordinating through the nitrogen atom of the azomethine group and the nearest nitrogen atom to it or oxygen atom of α-hydroxyl group. The results of simultaneous DTA & TGA analyses of the complexes showed the final degradation product for these complexes is CuO. The spectral studies confirmed a four coordinate environment around the metal ion. The obtained results were supported by 3D molecular modeling of complexes using molecular mechanics (MM+) and semiempirical molecular orbital calculations (PM3). These complexes were also tested for their in vitro antimicrobial activities against some bacterial and fungal strains. Complex 2 was investigated for its cyctotoxic effect against human breast cancer (MCF7), liver carcinoma (HEPG2) and colon carcinoma cell lines (HCT116). This compound exhibited a moderate activity against the tested cell lines with IC50 of 10.3, 9.8 and 8.7 μg/ml against MCF7, HCT116 and HEPG2, respectively.

  19. Emissive bis-salicylaldiminato Schiff base ligands and their zinc(II) complexes: Synthesis, photophysical properties, mesomorphism and DFT studies

    NASA Astrophysics Data System (ADS)

    Paul, Manoj Kr.; Dilipkumar Singh, Y.; Bedamani Singh, N.; Sarkar, Utpal

    2015-02-01

    Bis-salicylaldiminato Schiff base ligands and their Zn(II) complexes derived from 2,3-Diaminomaleonitrile (DAMN) were synthesized. Their molecular structures, photophysical properties and mesogenic behaviors were investigated. The ligands and their Zn(II) complexes were characterized by using elemental analysis, FT-IR, 1H NMR and molar conductivity measurements. Photophysical properties of ligands and their Zn(II) complexes were investigated in different polar solvents by using UV-visible and fluorescence spectroscopic studies. Ligands emit green light whereas complexes emit orange light upon irradiation with UV-visible light. The liquid crystalline phases of ligands and their Zn(II) complexes were characterized by polarizing optical microscopy and differential scanning calorimetry. The ligand having longer 4-n-octadecyloxy chain (n = 18) displays columnar phase whereas the lower homologues (n = 16, 12) did not show mesophase. The Zn(II) complexes having 4-n-octadecyloxy end chain display smectic B like phase whereas other lower homologues are non mesogenic in nature. The thermal stability of the compounds were studied by using thermo gravimetric analysis. The density functional theory was carried out to obtain the stable molecular conformation, dipole moment, molecular orbitals and polarizability of the ligands and their Zn(II) complexes.

  20. Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine

    PubMed Central

    Wang, Qin; Huang, Yu; Zhang, Jin-Sheng; Yang, Xin-Bin

    2014-01-01

    A novel La (III) complex, [LaL(H2O)3]NO3·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, 1H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (Kb) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 105 L mol−1 and 1.71 to 17.3 × 105 L mol−1 for the ligand L and La (III) complex, respectively, in the temperature range of 298–310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex. PMID:25371657

  1. Metal carbonyl complexes with Schiff bases derived from 2-pyridinecarboxaldehyde: Syntheses, spectral, catalytic activity and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Ahmed, Doaa A.; Nassar, Doaa A.

    2014-09-01

    Thermal reactions of [M(CO)6], M = Cr, Mo and W with the two Schiff bases: 2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L1) and 2-[(pyridin-2-ylmethylidene)amino]phenol (HL2) were investigated. Three complexes with molecular formulas [Cr(L1)3], 1, [MoO2(L1)2], 2 and [WO2(L1)2], 3 were isolated from the reactions with L1. The corresponding reactions with HL2 produced the complexes [Cr(HL2)2], 4, [Mo2(CO)4O2(HL2)2], 5 and [W(CO)4(HL2)], 6. All complexes were characterized by elemental analysis, infrared, mass and 1H NMR spectroscopy. The molar conductivities of the complexes in DMF indicated nonelectrolytic behavior. The prepared ligands and their complexes exhibited intraligand (π-π*) fluorescence and can potentially serve as photoactive materials. The catalytic activity of the complexes towards to hydrogen peroxide decomposition reaction was investigated. Both the ligands and their complexes have been screened for antibacterial activities.

  2. Synthesis, spectral characterization and DNA bindings of tridentate N2O donor Schiff base metal(II) complexes.

    PubMed

    Kathiresan, Sellamuthu; Anand, Thangavel; Mugesh, Subramanian; Annaraj, Jamespandi

    2015-07-01

    To evaluate the biological preference of synthetic small drugs towards DNA target, new metal based chemotherapeutic agents of Cu(II), Co(II), Ni(II) and Zn(II), 2,4-diiodo-6-((pyridin-2-ylmethylimino)methyl)phenol (L) Schiff base complexes (1, 2, 3 &4) having N,N,O donor system respectively were synthesized and thoroughly characterized. The IR results confirmed the tridentate binding of the ligand with metal centre during complexation and reflects the proposed structure. The density function theory calculations were also used to further investigate the electronic structure and properties of ligand and complexes. The preliminary investigation of herring Sperm (HS-DNA) interaction propensity of complexes 1-4 were carried out in Tris-HCl buffer at pH 7.1 to demonstrate their mode of interactions. The obtained results reveal that these complexes significantly interact with DNA on the grooves, further, this observed mode of interactions was also confirmed by molecular docking evaluations. The complexes 1-4 were also screened for antimicrobial evaluations which demonstrated that their significant activity against various human pathogens. The cleavage studies with pBR322 plasmid DNA revealed higher nuclease activity of 1 as compared to other complexes.

  3. Synthesis, spectroscopic characterization and biological evaluation studies of Schiff's base derived from naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin and its metal complexes

    NASA Astrophysics Data System (ADS)

    Halli, M. B.; Sumathi, R. B.; Kinni, Mallikarjun

    2012-12-01

    Metal complexes of the type ML2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and L = Schiff's base derived from the condensation of naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin have been synthesized. The chelation of the complexes have been elucidated in the light of analytical, IR, UV-vis, 1H NMR, mass, ESR spectral data, thermal and magnetic studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of one of the synthesized metal complexes was investigated by cyclic voltammetry. The Schiff's base and its metal complexes have been screened for their in vitro antibacterial and antifungal activities by MIC method. The DNA cleavage activities of all the complexes were studied by agarose gel electrophoresis method. In addition, the free ligand along with its complexes has been studied for their antioxidant activity.

  4. Chiral manganese (IV) complexes derived from Schiff base ligands: Synthesis, characterization, in vitro cytotoxicity and DNA/BSA interaction.

    PubMed

    Li, Zhen; Niu, Meiju; Chang, Guoliang; Zhao, Changqiu

    2015-12-01

    Two new couples of chiral manganese (IV) complexes with Schiff-base ligands, Λ-[Mn(R-L(1))2]·2(CH3OH) (Λ-1) and Δ-[Mn(S-L(1))2]·2(CH3OH) (Δ-1), Λ-[Mn(R-L(2))2]·(H2O)2 (Λ-2) and Δ-[Mn(S-L(2))2]·(H2O)2 (Δ-2), {H2L(1)=(R/S)-(±)-1-[(1-hydroxymethyl-propylimino)-methyl]-naphthalen-2-ol, H2L(2)=(R/S)-(±)-1-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-naphthalen-2-ol} have been synthesized, and fully characterized by elemental analyses, UV-Vis spectrum, circular dichroism spectrum, FT-IR spectrum, mass spectrum, and single crystal X-ray diffraction (SXRD). The interaction of the four chiral Mn (IV) complexes with CT-DNA and BSA were also investigated by various spectroscopic techniques (UV-visible, fluorescence spectroscopic). The results show that the Δ-complexes exhibit more efficient CT-DNA interaction with respect to the Λ-complexes. All the complexes could quench the intrinsic fluorescence of BSA by a static quenching process. In addition, the vitro cytotoxicity of these complexes toward four kinds of cancerous cell lines (A549, HeLa, HL-60, and Caco-2) was assayed by the MTT method, which exhibited to be selectively active against certain cell lines.

  5. Synthesis and aggregation behaviour of luminescent mesomorphic zinc(II) complexes with 'salen' type asymmetric Schiff base ligands.

    PubMed

    Chakraborty, Sutapa; Bhattacharjee, Chira R; Mondal, Paritosh; Prasad, S Krishna; Rao, D S Shankar

    2015-04-28

    A new series of photoluminescent Zn(II)-salen type asymmetric Schiff base complexes, [ZnL], H2L = [N,N'-bis-(4-n-alkoxysalicylidene)-1,2-diaminopropane] (n = 12, 14 and 16) have been accessed and their mesomorphic and photophysical properties investigated. Though the ligands are non-mesomorphic, coordination to Zn(2+) ion induces liquid crystalline behaviour. The complexes exhibited a lamello-columnar phase (Coll) as characterized by a variable temperature powder X-ray diffraction (XRD) study. Intense blue emissions were observed for the complexes at room temperature in solution, in the solid state and in the mesophase. Aggregation properties of the complexes were explored in different solvents through absorption and photoluminescence studies. While de-aggregation to monomers occurred in coordinating solvents due to axial coordination to Zn(II), aggregates were formed in the solution of non-coordinating solvents. Density functional theory (DFT) computation carried out on a representative complex using a GAUSSIAN 09 program at the B3LYP level suggested a distorted square planar geometry. The results of a time-dependent DFT (TD-DFT) spectral correlative study showed the electronic properties of the complex molecule to be in compliance with the spectral data.

  6. Enrichment of trace amounts of copper(II) ions in water samples using octadecyl silica disks modified by a Schiff base ionophore prior to flame atomic absorption spectrometric determination.

    PubMed

    Fathi, S A M; Yaftian, M R

    2009-05-15

    Bis(5-bromo-2-hydroxybenzaldehyde)-1,2-propanediimine is synthesized by the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-diaminopropane in ethanol. This ligand is used as a modifier of octadecyl silica disks for preconcentration of trace amounts of copper(II) ions, followed by nitric acid elution and flame atomic absorption spectrometric (FAAS) determination. The effect of parameters influencing the extraction efficiency, i.e. pH of the sample solutions, amount of the Schiff base, type and volume of stripping reagent, sample and eluent flow rates were evaluated. Under optimum experimental conditions, the capacity of the membrane disks modified by 4mg of the ligand was found to be 247.7 (+/-2.1)mug of copper. The detection limit and the concentration factor of the presented method are 2.4ng/l and greater than 400, respectively. The method was applied to the extraction, recovery and detection of copper in different synthetic and water samples.

  7. Synthesis and novel fluorescence phenomenon of terbium complex with a new Schiff base ligand derived from condensation of triaminotriethylamine and 3-indolemethanal.

    PubMed

    Yang, Tian-Lin; Qin, Wen-Wu

    2007-06-01

    A new Schiff base ligand with tripodal structure, N,N',N''-tri-(3-indolemethanal)-triaminotriethylamine (L), and its complex with terbium was synthesized. The complex was characterized by element analysis, IR spectra, mass spectra, thermal analysis and molar conductivity. The terbium ion was found to coordinate to the Schiff base nitrogen atoms and the bridgehead nitrogen atom. The fluorescence properties of the complex in aqueous solutions were studied. Under the excitation of UV light, the complex exhibits characteristic fluorescence of terbium ion. H(+) concentration could strongly enhance the luminescence of terbium complex with L in aqueous solutions. This phenomenon will make the new complex favorable to be used in the fluorescence switches and sensors. The mechanism of the fluorescence enhancement by protonation of the indole nitrogen atoms is due to the suppressed photoinduced electron transfer (PIET) fluorescence quenching when adding acid.

  8. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria

    NASA Astrophysics Data System (ADS)

    Sobha, S.; Mahalakshmi, R.; Raman, N.

    A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H2O2. The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands.

  9. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: inhibitory activity against bacteria.

    PubMed

    Sobha, S; Mahalakshmi, R; Raman, N

    2012-06-15

    A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N(2)O(2) donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H(2)O(2.) The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands.

  10. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations.

    PubMed

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-14

    Schiff base disulfide ligands (H2L(1-6)) were synthesized from the condensation of cystamine with salicylaldehyde(H2L(1)), 5-chlorosalicylaldehyde(H2L(2)), o-vanillin(H2L(3)), 2-hydroxyacetophenone(H2L(4)), 3-methyl-2-hydroxyacetophenone(H2L(5)), and 2-hydroxy-1-naphthaldehyde(H2L(6)). H2L(1-6) reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L(1-6)]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR ((1)H and (13)C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  11. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sobha, S.; Thamaraichelvan, A.

    2011-02-01

    A novel tyramine derived Schiff base, 3-4-dimethoxybenzylidene-4-aminoantipyrinyl-4-aminoethylphenol(L) and a series of its transition metal complexes of the type, ML 2Cl 2 where, M = Cu(II), Ni(II), Co(II) and Zn(II) have been designed and synthesized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, 1H NMR and EPR spectral studies. The binding properties of these complexes with calf thymus DNA (CT-DNA) were investigated using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and molecular docking analysis. The results reveal that the metal(II) complexes interact with DNA through minor groove binding. The interaction has also been investigated by gel electrophoresis. Interestingly, it was found that all the complexes could cleave the circular plasmid pUC19 super coiled (SC) DNA efficiently in the presence of AH 2 (ascorbic acid). The complexes showed enhanced antifungal and antibacterial activities compared to the free ligand.

  12. Trace analysis of cefotaxime at carbon paste electrode modified with novel Schiff base Zn(II) complex.

    PubMed

    Nigam, Preeti; Mohan, Swati; Kundu, Subir; Prakash, Rajiv

    2009-02-15

    Cefotaxime a third generation cephalosporin drug estimation in nanomolar concentration range is demonstrated for the first time in aqueous and human blood samples using novel Schiff base octahedral Zn(II) complex. The cefotaxime electrochemistry is studied over graphite paste and Zn(II) complex modified graphite paste capillary electrodes in H(2)SO(4) (pH 2.3) using cyclic voltammetry and differential pulse voltammetry. Cefotaxime enrichment is observed over Zn(II) complex modified graphite paste electrode probably due to interaction of functional groups of cefotaxime with Zn(II) complex. Possible interactions between metal complex and cefotaxime drug is examined by UV-vis and electrochemical quartz crystal microbalance (EQCM) techniques and further supported by voltammetric analysis. Differential pulse voltammetry (DPV) with modified electrode is applied for the determination of cefotaxime in acidified aqueous and blood samples. Cefotaxime estimation is successfully demonstrated in the range of 1-500 nM for aqueous samples and 0.1-100 microM in human blood samples. Reproducibility, accuracy and repeatability of the method are checked by triplicate reading for large number of samples. The variation in the measurements is obtained less than 10% without any interference of electrolyte or blood constituents.

  13. Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases

    PubMed Central

    Sumrra, Sajjad Hussain; Ambreen, Sabahat; Imran, Muhammad; Danish, Muhammad; Rehmani, Fouzia Sultana

    2014-01-01

    New series of three bidentate N, O donor type Schiff bases (L1)–(L3) were prepared by using ethylene-1,2-diamine with 5-methyl furfural, 2-anisaldehyde, and 2-hydroxybenzaldehyde in an equimolar ratio. These ligands were further complexed with Co(II), Cu(II), Ni(II), and Zn(II) metals to produce their new metal complexes having an octahedral geometry. These compounds were characterized on the basis of their physical, spectral, and analytical data. Elemental analysis and spectral data of the uncomplexed ligands and their metal(II) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. All ligands and their metal complexes were screened for antimicrobial activity. The results of antimicrobial activity indicated that metal complexes have significantly higher activity than corresponding ligands. This higher activity might be due to chelation process which reduces the polarity of metal ion by coordinating with ligands. PMID:25147493

  14. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations

    NASA Astrophysics Data System (ADS)

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-01

    Schiff base disulfide ligands (H2L1-6) were synthesized from the condensation of cystamine with salicylaldehyde(H2L1), 5-chlorosalicylaldehyde(H2L2), o-vanillin(H2L3), 2-hydroxyacetophenone(H2L4), 3-methyl-2-hydroxyacetophenone(H2L5), and 2-hydroxy-1-naphthaldehyde(H2L6). H2L1-6 reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L1-6]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR (1H and 13C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  15. Rod shaped oxovanadium(IV) Schiff base complexes: Synthesis, mesomorphism and influence of flexible alkoxy chain lengths

    NASA Astrophysics Data System (ADS)

    Gupta, Bishop Dev; Datta, Chitraniva; Das, Gobinda; Bhattacharjee, Chira R.

    2014-06-01

    A series of oxovanadium(IV) complexes of bidentate [N,O] donor Schiff-base ligands of the type [VO(L)2], [L = N-(4-n-alkoxysalicylaldimine)-4‧-octadecyloxyaniline, n = 8, 10, 12, 14, 16 and 18] have been synthesized. The compounds were characterized by elemental analyses, Fourier transform infrared spectroscopy (FTIR), 1H, 13C nuclear magnetic resonance (NMR), ultraviolet-visible spectroscopy (UV-Vis), and fast atom bombardment (FAB) mass spectrometry. The mesomorphic behavior of the compounds was studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The ligands and complexes are all thermally stable exhibiting smectic mesomorphism. The ligands 8-OR to16-OR show SmC phase at ∼113-118 °C and an unidentified SmX phase reminiscent of soft crystal at ∼77-91 °C whereas the complexes all showed SmA phases. Interestingly the complexes with C10 and C12 alkoxy chain length exhibited additionally SmC phases also. The melting points of the ligands linearly increases whereas mesophase to isotropic transition temperature decreases as a function of increasing carbon chain length of alkoxy arm while no trend was apparently noticeable for the complexes.

  16. Synthesis, Structural Diversity and Mimic Superoxide Dismutase of Mn(II) Complexes Derived from N, O-donor Schiff bases.

    PubMed

    Qin, Jie; Yin, Qiang; Zhao, Shan-Shan; Wang, Jun-Zheng; Qian, Shao-Song

    2016-01-01

    Two new potentially tetradentate Schiff base ligands N'-(pyridin-2-ylmethylene)nicotinohydrazide (L1), and N'-(pyridin-2-ylmethylene)isonicotinohydrazide (L(2)) were synthesized. Reactions of hydrazone ligands L(1) and L(2) with Mn(NO(3))(2) afford two mononuclear Mn(II) complexes, [Mn(L(1))(NO(3))(H(2)O)(2)]•(NO(3)) (1) and [Mn(L(2))(2)(NO(3))(H(2)O)]•(NO(3)) (2). For complexes 1 and 2, L(1) and L(2) act as pincer-like tridentate or bidentate ligands, respectively. The Mn(II) ions in the two compounds are both in heptacoordinated environment, while the two molecules display diverse solid-state supramolecular structures because of the different orientation of Npyridine and hydrogen bonding patterns of nitrate anions. Complex 1 features 2D supramolecular sheet, while complex 2 is double-chain supramolecular structure. Both of the two complexes exhibit moderate superoxide dismutase (SOD) mimetic activity.

  17. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents.

    PubMed

    Raman, N; Sobha, S; Thamaraichelvan, A

    2011-02-01

    A novel tyramine derived Schiff base, 3-4-dimethoxybenzylidene-4-aminoantipyrinyl-4-aminoethylphenol(L) and a series of its transition metal complexes of the type, ML2Cl2 where, M=Cu(II), Ni(II), Co(II) and Zn(II) have been designed and synthesized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, 1H NMR and EPR spectral studies. The binding properties of these complexes with calf thymus DNA (CT-DNA) were investigated using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and molecular docking analysis. The results reveal that the metal(II) complexes interact with DNA through minor groove binding. The interaction has also been investigated by gel electrophoresis. Interestingly, it was found that all the complexes could cleave the circular plasmid pUC19 super coiled (SC) DNA efficiently in the presence of AH2 (ascorbic acid). The complexes showed enhanced antifungal and antibacterial activities compared to the free ligand.

  18. Synthesis characterization and cytotoxicity studies of platinum(II) complexes with reduced amino pyridine schiff base and its derivatives as ligands.

    PubMed

    Li, Li-Jun; Yan, Qin-Qin; Liu, Guo-Jun; Yuan, Zhen; Lv, Zhen-Hua; Fu, Bin; Han, Yan-Jun; Du, Jian-Long

    2017-03-14

    A series of reduced amino pyridine Schiff base platinum(II) complexes were prepared as potential anticancer drugs, and characterized by NMR, IR spectroscopy, elemental analysis, and molar conductivity. UV and CD results showed the binding mode between these compounds and salmon sperm DNA may be intercalation. The cytotoxicity of these complexes was validated against A549, Hela, and MCF-7 cell lines by MTT assay. Some complexes exhibited better cytotoxic activity than cisplatin against Hela and MCF-7 cell lines.

  19. New tetradentate Schiff bases of 2-amino-3,5-dibromobenzaldehyde with aliphatic diamines and their metal complexes: synthesis, characterization and thermal stability.

    PubMed

    Mohammadi, Khosro; Azad, Seyyedeh Sedigheh; Amoozegar, Ameneh

    2015-07-05

    The tetradentate Schiff base ligands (L(1)-L(4)), were synthesized by reaction between 2-amino-3,5-dibromobenzaldehyde and aliphatic diamines. Then, nickel and oxovanadium(IV) complexes of these ligands were synthesized and characterized by (1)H NMR, Mass, IR, UV-Vis spectroscopy and thermogravimetry. The kinetic parameters of oxovanadium(IV) complexes were calculated from thermal studies. According to the results of thermogravimetric data, the thermal stability of oxovanadium(IV) complexes is as follow: [Formula: see text].

  20. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole

    NASA Astrophysics Data System (ADS)

    Kalanithi, M.; Kodimunthiri, D.; Rajarajan, M.; Tharmaraj, P.

    2011-11-01

    Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by 1H, 13C NMR, UV-Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 μm.

  1. Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 2-hydroxy-1-naphthaldehyde and 2-oxo-2H-chromene-3-carbohydrazide/6-bromo-2-oxo-2H-chromene-3-carbohydrazide. The chelation of the complexes has been proposed in the light of analytical, spectral (IR, UV-Vis, 1H NMR, ESR, FAB-mass and fluorescence), magnetic and thermal studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of the complexes was investigated with electrochemical method by using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial ( Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The DNA cleavage is studied by agarose gel electrophoresis method.

  2. Cu(II) and Pd(II) complexes of water soluble O-carboxymethyl chitosan Schiff bases: Synthesis, characterization.

    PubMed

    Baran, Talat; Menteş, Ayfer

    2015-08-01

    This study reports the synthesis of two new water soluble O-carboxymethyl chitosan Schiff bases (OCMCS-5 and OCMCS-6a) and their Cu(II) and Pd(II) complexes. Characterizations of these complexes were carried out with FTIR, elemental analysis, (13)C CPMAS, UV-vis, magnetic moment and molar conductivity techniques. The degrees of substitution (DS) for OCMCS-5a and OCMCS-6a were determined to be 0.48 and 0.44 in elemental analysis. The solubility test revealed that OCMCS-5a and OCMCS-6a dissolved thoroughly in water. The surface morphologies of chitosan (CS), OCMCS-5a, OCMCS-6a and their complexes were studied with SEM-EDAX. Thermal stability of the synthesized compounds was evaluated by TG/DTG and their crystallinity values were investigated with powder X-ray diffraction. Cu(II) and Pd(II) contents of the complexes were estimated with ICP-OES. The characterization studies demonstrated that the thermal stability and crystallinity values of the OCMCS-5a and OCMCS-6a were lower than those of CS.

  3. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al-Hassan, Khader A.; Hijazi, Ahmed K.; Faiq, Ari B.

    2011-10-01

    Eight new lanthanide metal complexes [Ln L(NO 3) 2]NO 3 {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand} were prepared. These complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), molar conductivity measurements and spectral studies ( 1H NMR, FT-IR, UV-vis, and luminescence). The Schiff base ligand coordinates to Ln(III) ion in a tetra-dentate manner through the phenolic oxygen and azomethine nitrogen atoms. The coordination number of eight is achieved by involving two bi-dentate nitrate groups in the coordination sphere. Sm, Tb and Dy complexes exhibit the characteristic luminescence emissions of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of the complexes exhibit antibacterial activity against a number of pathogenic bacteria.

  4. Synthesis, characterization and catecholase-like activity of new Schiff base metal complexes derived from visnagin: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Beyazit, Neslihan; Çatıkkaş, Berna; Bayraktar, Şahin; Demetgül, Cahit

    2016-09-01

    A new tetradentate, unsymmetrical Schiff base ligand (H2L) containing a donor set of N2O2 and its mononuclear Cu(II) and Fe(II) complexes ([CuL] and [FeL]), were synthesized and characterized on the basis of their elemental analysis, FT-IR, Raman, 1H and 13C NMR spectra, electronic and mass spectra, molar conductivity and magnetic susceptibility measurements. Density functional theory (DFT) calculations were performed in order to clarify molecular structures, 1H NMR and 13C NMR chemical shift values, frontier molecular orbitals (FMOs), nonlinear optical properties and map of molecular electrostatic potential (MEP) of the title molecules. In agreement with trials, the results provide a full explanation of the highest efficiency observed for the compounds in relation to the electronic and the structural characteristics. The catecholase-like activity of the complexes toward the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to the corresponding quinone showed that both complexes have moderate catalytic activity. [FeL] shows higher activity (kcat = 26.4 h-1) than that of [CuL] (kcat = 23.4 h-1).

  5. Environmental Dependence of Artifact CD Peaks of Chiral Schiff Base 3d-4f Complexes in Soft Mater PMMA Matrix

    PubMed Central

    Okamoto, Yu; Nidaira, Keisuke; Akitsu, Takashiro

    2011-01-01

    Four chiral Schiff base binuclear 3d-4f complexes (NdNi, NdCu, GdNi, and GdCu) have been prepared and characterized by means of electronic and CD spectra, IR spectra, magnetic measurements, and X-ray crystallography (NdNi). A so-called artifact peak of solid state CD spectra, which was characteristic of oriented molecules without free molecular rotation, appeared at about 470 nm. Magnetic data of the complexes in the solid state (powder) and in PMMA cast films or solutions indicated that only GdCu preserved molecular structures in various matrixes of soft maters. For the first time, we have used the changes of intensity of artifact CD peaks to detect properties of environmental (media solid state (KBr pellets), PMMA cast films, concentration dependence of PMMA in acetone solutions, and pure acetone solution) for chiral 3d-4f complexes (GdCu). Rigid matrix keeping anisotropic orientation exhibited a decrease in the intensity of the artifact CD peak toward negative values. The present results suggest that solid state artifact CD peaks can be affected by environmental viscosity of a soft mater matrix. PMID:22072930

  6. Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S; Sharma, Deepansh

    2015-05-15

    A series of two biologically active Schiff base ligands L(1), L(2) have been synthesized in equimolar reaction of 2-aminobenzamide with pyrrol-2-carboxaldehyde and furan-2-carboxaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 2:1. The characterization of newly formed complexes was done by (1)H NMR, UV-Vis, TGA, IR, mass spectrophotometry, EPR and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and distorted octahedral geometry for Cu(II) complexes. All the synthesized compounds, were studied for their in vitro antimicrobial activities, against four bacterial strains and two fungal strains by using serial dilution method. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  7. Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.; Sharma, Deepansh

    2015-05-01

    A series of two biologically active Schiff base ligands L1, L2 have been synthesized in equimolar reaction of 2-aminobenzamide with pyrrol-2-carboxaldehyde and furan-2-carboxaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 2:1. The characterization of newly formed complexes was done by 1H NMR, UV-Vis, TGA, IR, mass spectrophotometry, EPR and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and distorted octahedral geometry for Cu(II) complexes. All the synthesized compounds, were studied for their in vitro antimicrobial activities, against four bacterial strains and two fungal strains by using serial dilution method. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  8. Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Asker, Mohsen S.; Barakat, Atiat S.; Teleb, Said M.

    2007-05-01

    Four platinum(II) complexes of Schiff bases derived from salicylaldehyde and 2-furaldehyde with o- and p-phenylenediamine were reported and characterized based on their elemental analyses, IR and UV-vis spectroscopy and thermal analyses (TGA). The complexes were found to have the general formula [Pt(L)(H 2O) 2]Cl 2· nH 2O (where n = 0 for complexes 1, 3, 4; n = 1 for complex 2. The data obtained show that Schiff bases were interacted with Pt(II) ions in the neutral form as a bidentate ligand and the oxygens rather than the nitrogens are the most probable coordination sites. Square planar geometrical structure with two coordinated water molecules were proposed for all complexes The free ligands, and their metal complexes were screened for their antimicrobial activities against the following bacterial species: E. coli, B. subtilis, P. aereuguinosa, S. aureus; fungus A. niger, A. fluves; and the yeasts C. albican, S. cervisiea. The activity data show that the platinum(II) complexes are more potent antimicrobials than the parent Schiff base ligands against one or more microorganisms.

  9. Phase transition and vapochromism in molecular assemblies of a polymorphic zinc(II) Schiff-base complex.

    PubMed

    Oliveri, Ivan Pietro; Malandrino, Graziella; Di Bella, Santo

    2014-09-15

    This paper reports for the first time the irreversible thermally induced phase transition, accompanied by color change, and the vapochromic behavior of an amphiphilic, Lewis acidic Zn(II) Schiff-base complex, through detailed X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and optical absorption studies. The unprecedented irreversible phase transition for such kind of complexes is associated with a thermal, lamellar-to-hexagonal columnar structural transition, which involves a different arrangement of each molecular unit within the assembled structure, H- and J-type aggregates, respectively, responsible for the thermochromic behavior. The vapochromism, investigated either in powder samples or in thermally annealed cast films, is related to the formation of 1:1 adducts upon exposure to vapors of strong Lewis bases and implies dramatic optical absorption variations and naked-eye observation of the change in color from red-brown to red. The chemisorption process is fast, completely reversible, reproducible, and selective for amines. The reversible switching of the chemisorption-desorption process in cast films is demonstrated by successive cycles, amine exposure and subsequent heating, by monitoring the substantial optical absorption changes in the visible region. Vapochromism of this material can potentially be used to detect vapors of volatile amines.

  10. Synthesis and characterization of water soluble O-carboxymethyl chitosan Schiff bases and Cu(II) complexes.

    PubMed

    Baran, Talat; Menteş, Ayfer; Arslan, Hülya

    2015-01-01

    In this study, mono-imine was synthesized (3a and 4a) via a condensation reaction between 2,4-pentadion and aminobenzoic acid (meta or para) in alcohol (1:1). The second-imine (CS-3a and CS-4a) was obtained as a result of the reaction of the free oxo groups of mono-imine (3a and 4a) with the amino groups on the chitosan (CS). Their structures were characterized with FTIR and (13)C CP-MAS. Then, the water soluble forms of CS-3a and CS-4a were obtained through oxidation of the hydroxide groups on the chitosan to carboxymethyl groups using monochloracetic acid ([O-CMCS-3a] · 2H2O and [O-CMCS-4a] · 2H2O). Thus, the solubility problem of chitosan in an aqueous media was overcome and Cu(II) complexes could be synthesized more easily. Characterization of the synthesized O-carboxymethyl chitosan Schiff base derivatives and their metal complexes, [O-CMCS-3a-Cu(OAc)2] · 2H2O and [O-CMCS-4a-Cu(OAc)2] · 2H2O, was conducted using FTIR, UV-Vis, TG/DTA, XRD, SEM, elemental analysis, conductivities and magnetic susceptibility measurements.

  11. Temperature-induced solid-state valence tautomeric interconversion in two cobalt-Schiff base diquinone complexes.

    PubMed

    Cador, Olivier; Chabre, Françoise; Dei, Andrea; Sangregorio, Claudio; van Slageren, Joris; Vaz, Maria G F

    2003-10-06

    The mixed-ligand complexes [Co(III)(tpy)(Cat-N-SQ)]Y and [Ni(II)(tpy)(Cat-N-BQ)]PF(6) (tpy = 2,2':6',2' '-terpyridine; Cat-N-BQ, Cat-N-SQ = mononegative and radical dinegative Schiff base diquinone ligand; Y = PF(6), BPh(4)) were prepared. Structural and spectroscopic data support the different charge distribution of the two compounds. The temperature-dependent electronic and spectral properties of solutions containing the [Co(III)(tpy)(Cat-N-SQ)](+) suggest that this compound undergoes a thermally driven valence tautomeric interconversion to [Co(II)(tpy)(Cat-N-BQ)](+) complex, the metal ion being in high-spin configuration. The comparison of the electrochemical properties of the cobalt and nickel derivatives supports the observed behavior. The same interconversion process was found to occur also in the solid state with a significant higher T(c) value than in solution. It was found that the previously reported [Co(III)(Cat-N-BQ)(Cat-N-SQ)] shows a similar behavior. The large difference between the interconversion T(c) in the solid state and in solution is suggested to come from the entropy changes associated with the modifications of vibronic interactions.

  12. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety

    PubMed Central

    Yernale, Nagesh Gunvanthrao; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2014-01-01

    A novel Schiff base ligand N-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR, 1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand (L) behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand (L) and its metal complexes have been screened in vitro for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties for the ligand and its metal complexes against Artemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation. PMID:24729778

  13. Aluminum complexes derived from a hexadentate salen-type Schiff base: synthesis, structure, and catalysis for cyclic carbonate synthesis.

    PubMed

    Xu, Ya; Yuan, Dan; Wang, Yaorong; Yao, Yingming

    2017-04-12

    Different aluminum complexes were synthesized by the reaction of aluminum alkyls with a hexadentate salen-type Schiff base. The reaction of N,N'-bis(3,5-di-tert-butylsalicylidene)-2,2'-(ethylenedioxy)dianiline (LH2) with one equiv. of AlMe3 in toluene at 100 °C proceeded by methane elimination to produce the intermediate methyl complex [AlMeL] (1), and then subsequent intramolecular methyl migration to give the aluminum complex [AlL'] (2) [L' = (2-O-3,5-(t)Bu2C6H2)CH[double bond, length as m-dash]NC6H4OCH2CH2OC6H4NCH(Me)(2'-O-3',5'-(t)Bu2C6H2)]. The reaction of the same ligand with AlEt3 under the same experimental conditions involved ethane elimination, ethylene elimination and intramolecular hydrogen migration, and led to the complex [AlL''] (3) [L'' = (2-O-3,5-(t)Bu2C6H2)CH[double bond, length as m-dash]NC6H4OCH2CH2OC6H4NCH2(2'-O-3',5'-(t)Bu2C6H2)]. However, the interaction of two equivalents of AlMe3 and AlEt3 afforded the corresponding binuclear complexes [(AlMe2)2L] (4) and [(AlEt2)2L] (5), respectively, and no methyl or hydrogen migration was found. The solid-state structures of aluminum complexes 1-3 were determined by single-crystal X-ray diffraction. It was found that complexes 2-5 show a very effective catalytic activity for the cycloaddition of epoxides and CO2 in the presence of NBu4Br as a cocatalyst at atmospheric pressure.

  14. Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications.

    PubMed

    Kareem, Abdul; Laxmi; Arshad, Mohammad; Nami, Shahab A A; Nishat, Nahid

    2016-07-01

    Schiff base ligand, (L), derived from condensation reaction of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, (curcumin), with pyridine-3-carboxamide, (nicotinamide), and its complexes of Co(II), Ni(II) and Cu(II) ions, containing 1,10-phenanthroline as auxiliary ligand were synthesized and characterized by various physico-chemical techniques. From the micro analytical data, the stoichiometry of the complexes 1:1 (metal: ligand) was ascertained. The Co(II) and Cu(II) forms octahedral complexes, while the geometric structure around Ni(II) atom can be described as square planar. The catalytic potential of the metal complexes have been evaluated by recording the rate of decomposition of hydrogen peroxide. The results reveal that the percent decomposition of H2O2increases with time and the highest value (50.50%) was recorded for Co(II) complex. The ligand and its complexes were also screened for their in vitro antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pyogenes and Pseudomonas aeruginosa. The relative order of antibacterial activity against S. Pyogenes, S. aureus and E. coli is Cu(II)>Ni(II)>Co(II)>(L); while with P. aeruginosa, K. pneumoniae the order of activity is Cu(II)>Co(II)>Ni(II)>(L). The anthelmintic screening was performed using Pheretima posthuma. The order of anthelmintic activity of ligand and its complexes is [(Phen)CuLCl2]>[(Phen)CoLCl2]>[(Phen)NiL]Cl2>(L).

  15. Synthesis, spectral characterization, catalytic and antibacterial studies of new Ru(III) Schiff base complexes containing chloride/bromide and triphenylphosphine/arsine as co-ligands

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Padma Priya, N.; Jayabalakrishnan, C.; Chinnusamy, V.

    2009-10-01

    A new Ru(III) Schiff base complexes of the type [RuX(EPh 3)L] (X = Cl/Br; E = P/As; L = dianion of the Schiff bases were derived by the condensation of 1,4-diformylbenzene with o-aminobenzoic acid/ o-aminophenol/ o-aminothiophenol in the 1:2 stoichiometric ratio) have been synthesized from the reactions of [RuX 3(EPh 3) 3] with appropriate Schiff base ligands in benzene in the 2:1 stoichiometric ratio. The new complexes have been characterized by analytical, spectral (IR, electronic, 1H, 13C NMR and ESR), magnetic moment and electrochemical studies. An octahedral structure has been tentatively proposed for all these new complexes. All the new complexes have been found to be better catalyst for the oxidation of alcohols using molecular oxygen as co-oxidant at ambient temperature and aryl-aryl coupling reactions. These complexes were also subjected to antibacterial activity studies against Escherichia coli, Aeromonas hydrophilla and Salmonella typhi.

  16. Two novel macroacyclic schiff bases containing bis-N 2O 2 donor set and their binuclear complexes: synthesis, spectroscopic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Karaoglu, Kaan; Baran, Talat; Serbest, Kerim; Er, Mustafa; Degirmencioglu, Ismail

    2009-03-01

    Herein, we report two novel macroacyclic Schiff bases derived from tetranaphthaldehyde derivative compound and their binuclear Mn(II), Ni(II), Cu(II) and Zn(II) complexes. The structures of the compounds have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-Vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The stoichiometries of the complexes derived from mass and elemental analysis correspond to the general formula [M 2L(ClO 4) n](ClO 4) 4-n, (where M is Mn(II), Ni(II), Cu(II), Zn(II) and L represents the Schiff base ligands).

  17. Conformational change of a chiral Schiff base Ni(II) complex with a binaphthyl moiety: application of vibrational circular dichroism spectroscopy.

    PubMed

    Sato, Hisako; Mori, Yukie; Yamagishi, Akihiko

    2013-05-21

    Vibrational circular dichroism (VCD) spectroscopy was applied to study the structural change of a Ni(II) complex (denoted by [Ni(II)L]) with a chiral Schiff base ligand, (R)- or (S)-2,2'-bis(salicylideneamino)-1,1'-binaphthyl (denoted by H2L), in solution. The major signals in the mid-IR region were assigned on the basis of comparison with the DFT-calculated spectra. The complex transformed reversibly between the square-planar, tetrahedral and octahedral configurations, depending on solvents and temperature. The observed changes in the VCD peaks accompanying the transformation were analyzed in terms of the conformational change of the chiral ligand with a focus on the twisting angle in the Schiff base backbone and the dihedral angle of the binaphthyl group.

  18. Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Şahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, Uğur

    2013-02-01

    New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL2A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.

  19. Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: synthesis, characterization, properties and biological activity.

    PubMed

    Şahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, Uğur

    2013-02-15

    New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, (1)H NMR, (13)C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL(2)A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.

  20. Nickel(II)-Schiff base complex recognizing domain II of bovine and human serum albumin: Spectroscopic and docking studies

    NASA Astrophysics Data System (ADS)

    Ray, Aurkie; Koley Seth, Banabithi; Pal, Uttam; Basu, Samita

    It has been spectroscopically monitored that a mononuclear nickel(II)-Schiff base complex {[NiL]·CH3OH = NSC} exhibits greater binding affinity for bovine serum albumin (BSA) than that of its human counterpart (HSA). Moreover the modes of binding of NSC with the two serum albumins also differ significantly. Docking studies predict a relatively rare type of 'superficial binding' of NSC at domain IIB of HSA with certain mobility whereas for BSA such phenomena has not been detected. The mobile nature of NSC at domain IIB of HSA has been well correlated with the spectroscopic results. It is to be noted that thermodynamic parameters for the NSC interaction also differ for the two serum albumins. Occurrence of energy transfer between the donor (Trp of BSA and HSA) and acceptor (NSC) has been obtained by means of Förster resonance energy transfer (FRET). The protein stability on NSC binding has also been experimented by the GuHCl-induced protein unfolding studies. Interestingly it has been found that NSC-HSA interaction enhances the protein stability whereas NSC-BSA binding has no such impact. Such observations are indicative of the fact that the conformation of NSC is responsible in recognizing the two serum albumins and selectively enhancing protein stability.

  1. Potentiometric membrane electrode for salicylate based on an organotin complex with a salicylal Schiff base of amino acid.

    PubMed

    Xu, Lan; Yuan, Ruo; Fu, Ying-Zi; Chai, Ya-Qin

    2005-03-01

    A novel salicylate-selective electrode based on an organotin complex with a salicylal Schiff base of amino acid salicylaldehydeaminoacid-di-n-butyl-Sn(IV) [Sn(IV)-SAADB] as ionophore is described, which exhibits high selectivity for salicylate over many other common anions with an anti-Hofmeister selectivity sequence: Sal- > PhCOO- > SCN- > Cl04- > I- > NO3- > NO2- > Br- > Cl- > CH3COO-. The electrode, based on Sn(IV)-SAADB, with a 30.44 wt% PVC, a 65.45 wt% plasticizer (dioctyl phthalate, DOP), a 3.81 wt% ionophore and a 0.3 wt% anionic additive is linear in 6.0 x 10(-6) - 1.0 x 10(-1) mol l(-1) with a detection limit of 2.0 x 10(-6) mol l(-1) and a slope of 62.0 +/- 1.2 mV/decade of salicylate concentration in a phosphate buffer solution of pH 5.5 at 25 degrees C. The influence on the electrode performances by lipophilic charged additives was studied, and the possible response mechanism was investigated by UV spectra. The electrode was applied to medicine analysis and the result obtained has been satisfactory.

  2. Nickel(II)-Schiff base complex recognizing domain II of bovine and human serum albumin: spectroscopic and docking studies.

    PubMed

    Ray, Aurkie; Seth, Banabithi Koley; Pal, Uttam; Basu, Samita

    2012-06-15

    It has been spectroscopically monitored that a mononuclear nickel(II)-Schiff base complex {[NiL]·CH(3)OH=NSC} exhibits greater binding affinity for bovine serum albumin (BSA) than that of its human counterpart (HSA). Moreover the modes of binding of NSC with the two serum albumins also differ significantly. Docking studies predict a relatively rare type of 'superficial binding' of NSC at domain IIB of HSA with certain mobility whereas for BSA such phenomena has not been detected. The mobile nature of NSC at domain IIB of HSA has been well correlated with the spectroscopic results. It is to be noted that thermodynamic parameters for the NSC interaction also differ for the two serum albumins. Occurrence of energy transfer between the donor (Trp of BSA and HSA) and acceptor (NSC) has been obtained by means of Förster resonance energy transfer (FRET). The protein stability on NSC binding has also been experimented by the GuHCl-induced protein unfolding studies. Interestingly it has been found that NSC-HSA interaction enhances the protein stability whereas NSC-BSA binding has no such impact. Such observations are indicative of the fact that the conformation of NSC is responsible in recognizing the two serum albumins and selectively enhancing protein stability.

  3. A systematic investigation on biological activities of a novel double zwitterionic Schiff base Cu(II) complex

    NASA Astrophysics Data System (ADS)

    Thalamuthu, S.; Annaraj, B.; Neelakantan, M. A.

    2014-01-01

    Double zwitterionic amino acid Schiff base, o-vanillylidene-L-histidine (OVHIS) and its copper complex (CuOVHIS) have been synthesized and characterized. CuOVHIS has distorted octahedral geometry, and OVHIS coordinates the copper ion in a tetradentate manner (N2O2). The pKa of OVHIS in aqueous solution was studied by potentiometric and spectrophotometric methods. DNA binding behavior of the compounds was investigated using spectrophotometric, cyclic voltammetric, and viscosity methods. The efficacy of DNA cleaving nature was tested on pUC19 DNA. The in vitro biological activity was tested against various micro organisms. The effect of CuOVHIS on the surface feature of Escherichia coli was analyzed by SEM. DPPH assay studies revealed that CuOVHIS has higher antioxidant activity. OVHIS inhibits proliferation of HCT117 cells with half maximal inhibition (IC50) of 71.15 ± 0.67. Chelation of OVHIS with Cu(II) ion enhances the inhibition of proliferation action (IC50 = 53.14 ± 0.67).

  4. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2014-11-01

    Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.

  5. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Keskioğlu, Eren; Gündüzalp, Ayla Balaban; Çete, Servet; Hamurcu, Fatma; Erk, Birgül

    2008-08-01

    A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)- p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, 1H- 13C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl· nH 2O, where M = Cr(III), Co(III) and n = 2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H 2O) 2]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.

  6. Relativistic DFT and experimental studies of mono- and bis-actinyl complexes of an expanded Schiff-base polypyrrole macrocycle.

    PubMed

    Zheng, Xiu-Jun; Bell, Nicola L; Stevens, Charlotte J; Zhong, Yu-Xi; Schreckenbach, Georg; Arnold, Polly L; Love, Jason B; Pan, Qing-Jiang

    2016-10-12

    The computationally- and experimentally-determined molecular structures of a bis-uranyl(vi) complex of an expanded Schiff-base polypyrrolic macrocycle [(UO2)2(L)] are in close agreement only if the pyridine in the fifth equatorial donor site on the uranium is included in the calculations. The relativistic density functional theory (DFT) calculations presented here are augmented from those on previously reported simpler frameworks, and demonstrate that other augmentations, such as the incorporation of condensed-phase media and the changes in the peripheral groups of the ligand, have only a slight effect. Synthetic routes to pure samples of the bis- and mono-uranyl(vi) complexes have been developed using pyridine and arene solvents, respectively, allowing the experimental determination of the molecular structures by X-ray single crystal diffraction; these agree well with the calculated structures. A comprehensive set of calculations has been performed on a series of actinyl AnO2(n+) complexes of this macrocyclic ligand. These include both bis- and mono-actinyl adducts for the metals U, Np and Pu, and formal oxidation states VI and V. The reduction potentials of the complexes for U, Np, and Pu, incorporating both solvation and spin-orbit coupling considerations, show the order Np > Pu > U. The agreement between experimental and computed data for U is excellent, suggesting that at this level of computation predictions made about the significantly more radiotoxic Np and Pu molecules should be accurate. A particularly unusual structure of the mononuclear plutonyl(v) complex was predicted by quantum chemical calculations, in which a twist in the macrocycle allows one of the two endo-oxo groups to form a hydrogen bond to one pyrrole group of the opposite side of the macrocycle, in accordance with this member of the set containing the most Lewis basic oxo groups.

  7. Photo- and electroluminescent properties of zinc(II) complexes with tetradentate Schiff bases, derivatives of salicylic aldehyde

    NASA Astrophysics Data System (ADS)

    Vashchenko, A. A.; Lepnev, L. S.; Vitukhnovskii, A. G.; Kotova, O. V.; Eliseeva, S. V.; Kuz'mina, N. P.

    2010-03-01

    It is studied how the introduction of various substituents into the composition of organic ligands affects the photoluminescence spectra of new zinc(II) complexes with tetradentate Schiff bases H2L (derivatives of salicylic aldehyde (H2SAL1, H2SAL2) and o-vanillin (H2MO1, H2MO2) with ethylenediamine and o-phenylenediamine) in the form of bulk solids and thin films. It is demonstrated that the emission spectra of bulk solid complexes without o-phenylenediamine bridges (ZnSAL1 and ZnMO1) contain additional long-wavelength bands compared to the spectra of corresponding thin films. In the case of films obtained from [ZnSAL1]2 dimer complexes, the long-wavelength band is dominant. At the same time, the photoluminescence spectra of ZnSAL2 and ZnMO2 complexes with o-phenylenediamine bridges are similar in the case of solid samples and thin films. The electroluminescent properties of organic light-emitting diodes (OLEDs) with the ITO/α-NPD/ZnL/Ca:Al structure are studied. The bathochromic shift of the electroluminescence peaks of OLEDs with respect to the photoluminescence spectra of bulk solid samples and thin films is probably related to the formation of exciplexes at the α-NPD/ZnL interface. The electroluminescence spectra of OLEDs based on [ZnSAL1]2 show a hypsochromic shift of the emission maximum, which can be caused by a shift of the recombination region into the α-NPD layer.

  8. Synthesis, spectroscopic characterization, DNA interaction and antibacterial study of metal complexes of tetraazamacrocyclic Schiff base

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Khanam, Sadiqa; Firdaus, Farha; Latif, Abdul; Aatif, Mohammad; Al-Resayes, Saud I.

    The template condensation reaction between benzil and 3,4-diaminotoulene resulted mononuclear 12-membered tetraimine macrocyclic complexes of the type, [MLCl2] [M = Co(II), Ni(II), Cu(II) and Zn(II)]. The synthesized complexes have been characterized on the basis of the results of elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz. FT-IR, 1H and 13C NMR, FAB mass, UV-vis and EPR. An octahedral geometry has been envisaged for all these complexes, while a distorted octahedral geometry has been noticed for Cu(II) complex. Low conductivity data of all these complexes suggest their non-ionic nature. The interactive studies of these complexes with calf thymus DNA showed that the complexes are avid binders of calf thymus DNA. The in vitro antibacterial studies of these complexes screened against pathogenic bacteria proved them as growth inhibiting agents.

  9. Diorganotin(IV) complexes of biologically potent 4(3H)-quinazolinone derived Schiff bases: synthesis, spectroscopic characterization, DNA interaction studies and antimicrobial activity.

    PubMed

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Jayalakshmi, Basvegowda; Revanasiddappa, Hosakere D

    2011-10-15

    Four Schiff base ligands and their corresponding organotin(IV) complexes have been synthesized and characterized by elemental analyses, IR, (1)H NMR, MS and thermal studies. The Schiff bases are obtained by the condensation of 3-amino-2-methyl-4(3H)-quinazolinone with different substituted aldehydes. The elemental analysis data suggest the stoichiometry to be 1:1 ratio formation. Infrared spectral data agreed with the coordination to the central metal ion through imine nitrogen, lactam oxygen and deprotonated phenolic oxygen atoms. All the synthesized compounds have been evaluated for antimicrobial activity against selected species of microorganisms. In addition, DNA binding/cleavage capacity of the compounds was analyzed by absorption spectroscopy, viscosity measurements and gel electrophoresis methods.

  10. Sensitized luminescence of Eu(III) complexes with Schiff-base and 1,10-phenanthroline: role of Schiff-base as a sensitizer.

    PubMed

    Lee, Jong Cheol; Jeong, Yong-Kwang; Kim, Jong-Moon; Kang, Jun-Gill

    2014-04-24

    The synthesis and characterization of two europium(III) complexes, [Eu(L)(H2O)]Cl and [Eu(L)(phen)(H2O)]Cl (L=N,N'-bis(salicylidene)-3,6-dioxa-1,8-diaminooctanato and phen=1,10-phenanthroline) are reported. Exciting the Eu(III) complexes with near-UV light resulted in sensitized red luminescence by a transfer of energy from the triplet excited states of L to the Eu(III) ion. Introducing phen to the complex increased the quantum yield of the L-sensitized luminescence of [Eu(L)(phen)(H2O)](+) by more than 18 times relative to [Eu(L)(H2O)](+). The optimized structures and the configurational interaction singles (CIS) of the [Eu(L)(phen)(H2O)](+) and [Eu(L)(H2O)](+) molecules were theoretically studied using ab initio Hartree-Fock (HF). The theoretical calculations showed that the first nearly degenerate 1A and 2A excited states, more specifically the π→π(*) transitions of the two phenolate terminals, contributed significantly to the energy transfer process. Although the phen excitation route was forbidden in [Eu(L)(phen)(H2O)](+), the coordination of phen enhanced the absorbing ability of L markedly and caused the energy transfer from the 1A and 2A states to the (5)D1 and (5)D0 states of Eu(III) to predominate over any radiative and nonradiative processes occurring between the excited states and the ground states of the L moiety. Consequently, the quantum yield of the sensitized luminescence was enhanced significantly in [Eu(L)(phen)(H2O)](+).

  11. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes.

    PubMed

    Reddy, P Muralidhar; Shanker, K; Srinivas, V; Krishna, E Ravi; Rohini, R; Srikanth, G; Hu, Anren; Ravinder, V

    2015-03-15

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies.

  12. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  13. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.

    PubMed

    Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu

    2016-01-15

    A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]·NO3 (1), [CoL(2)(bipy)(N3)]·CH3OH (2), [CoL(3)(HL(3))(N3)]·NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed.

  14. Synthesis of novel p-tert-butylcalix[4]arene Schiff bases and their complexes with C60, potential HIV-Protease inhibitors

    NASA Astrophysics Data System (ADS)

    Khadra, Khalid Abu; Mizyed, Shehadeh; Marji, Deeb; Haddad, Salim F.; Ashram, Muhammad; Foudeh, Ayat

    2015-02-01

    Some p-tert-butylcalix[4]arene Schiff base crown ethers were synthesized, characterized using 1H, 13C-NMR, DEPT 135 and Mass spectrometry. Their complexes with C60 were isolated and characterized. The inhibition effect of these complexes on HIVP was studied and found that complexes of 9 and 10 have comparable Ki values to Pepstatine which is known as HIVP inhibitor and used as a control. The synthesis of the ligands, complexes and the inhibition behavior are discussed in this article.

  15. Synthesis, structure characterization and biological activity of selected metal complexes of sulfonamide Schiff base as a primary ligand and some mixed ligand complexes with glycine as a secondary ligand

    NASA Astrophysics Data System (ADS)

    Sharaby, Carmen M.; Amine, Mona F.; Hamed, Asmaa A.

    2017-04-01

    The current work reports synthesis of metal complexes and mixed ligand complexes of a novel sulfonamide Schiff base ligand (HL) resulted from the condensation of sulfametrole [N‧-(4-methoxy-1,2,5-thiadiazol-3-yl]sulfanilamide and acetyl-acetone as a primary ligand and glycine as a secondary ligand. The metal complexes and mixed ligand complexes of HL Schiff base ligand were synthesized and characterized using different physicochemical studies as elemental analyses, mass spectra, conductivity measurement, IR spectra, 1H NMR spectra, UV-vis Spectra, solid reflectance, magnetic susceptibility, thermal analyses (TGA and DTA) and their microbial and anticancer activities. The spectroscopic data of the complexes suggest their 1:2(L1:M) complex structures and 1:2:2(L1:L2:M) mixed ligand complex structures, where L1 = HL and L2 = glycine. Also, the spectroscopic studies suggested the octahedral structure for all complexes. The synthesized Schiff base, its metal and mixed ligand complexes were screened for their bacterial, antifungal and anticancer activity. The activity data show that the metal complexes and mixed ligand complexes exhibited promising microbial and anticancer activities than their parent HL Schiff base ligand, also the data show that the mixed ligand complexes more effective than the metal complexes.

  16. Synthesis and characterization of tin(II) complexes of fluorinated Schiff bases derived from amino acids.

    PubMed

    Singh, Har Lal

    2010-07-01

    New tin(II) complexes of general formula Sn(L)(2) (L=monoanion of 3-methyl-4-fluoro-acetophenone phenylalanine L(1)H, 3-methyl-4-fluoro-acetophenone alanine L(2)H, 3-methyl-4-fluoro acetophenone tryptophan L(3)H, 3-methyl-4-fluoro-acetophenone valine L(4)H, 3-methyl-4-fluoro-acetophenone isoleucine L(5)H and 3-methyl-4-fluoro-acetophenone glycine L(6)H) have been prepared. It is characterized by elemental analyses, molar conductance measurements and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance ((1)H, (13)C, (19)F and (119)Sn NMR) spectral studies. The ligands act as bidentate towards metal ions, via the azomethine nitrogen and deprotonated oxygen of the respective amino acid. Elemental analyses and NMR spectral data of the ligands with their tin(II) complexes agree with their proposed square pyramidal structures. A few representative ligands and their tin complexes have been screened for their antibacterial activities and found to be quite active in this respect.

  17. Metal complexes of Schiff base derived from sulphametrole and o-vanilin. Synthesis, spectral, thermal characterization and biological activity.

    PubMed

    Mohamed, Gehad G; Sharaby, Carmen M

    2007-04-01

    Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [N(1)-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M2X3(HL)(H2O)5].yH2O (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, y=0-3); [Fe2Cl5(HL)(H2O)3].2H2O; [(FeSO4)2(H2L)(H2O)4] and [(UO2)2(NO3)3(HL)(H2O)].2H2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi (Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.

  18. Metal complexes of Schiff base derived from sulphametrole and o-vanilin . Synthesis, spectral, thermal characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Sharaby, Carmen M.

    2007-04-01

    Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [ N1-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H 2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M 2X 3(HL)(H 2O) 5]· yH 2O (where M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X = Cl, y = 0-3); [Fe 2Cl 5(HL)(H 2O) 3]·2H 2O; [(FeSO 4) 2(H 2L)(H 2O) 4] and [(UO 2) 2(NO 3) 3(HL)(H 2O)]·2H 2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H 2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi ( Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.

  19. A series of transition and non-transition metal complexes from a N 4O 2 hexadentate Schiff base ligand: Synthesis, spectroscopic characterization and efficient antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Dey, Kamalendu

    2010-11-01

    Some transition and non-transition metal complexes of the hexadentate N 4O 2 donor Schiff base ligand 1,8- N-bis(3-carboxy)disalicylidene-3,6-diazaoctane-1,8-diamine, abbreviated to H 4fsatrien, have been synthesized. All the 14 metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic (UV-Vis, IR, NMR, ESR) data. The analytical data helped to elucidate the structures of the metal complexes. The Schiff base, H 4fsatrien, is found to act as a dibasic hexadentate ligand using N 2N 2O 2 donor set of atoms (leaving the COOH group uncoordinated) leading to an octahedral geometry for the complexes around all the metal ions except VO 2+ and UO 22+. However, surprisingly the same ligand functions as a neutral hexadentate and neutral tetradentate one towards UO 22+ and VO 2+, respectively. In case of divalent metal complexes they have the general formula [M(H 2fsatrien)] (where M stands for Cu, Co, Hg and Zn); for trivalent metal complexes it is [M(H 2fsatrien)]X· nH 2O (where M stands for Cr, Mn, Fe, Co and X stands for CH 3COO, Cl, NO 3, ClO 4) and for the complexes of VO 2+ and UO 22+, [M(H 4fsatrien)]Y (where M = VO and Y = SO 4; M = UO 2 and Y = 2 NO 3). The Schiff base ligand and most of the complexes have been screened in vitro to judge their antibacterial ( Escherichia coli and Staphylococcus aureus) and antifungal ( Aspergillus niger and Pencillium chrysogenum) activities.

  20. Ni(II) and Pd(II) complexes with new N,O donor thiophene appended Schiff base ligand: Synthesis, electrochemistry, X-ray structure and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Pramanik, Ajoy Kumar; Mondal, Apurba Sau; Mondal, Tapan Kumar

    2016-07-01

    The thiophene appended Schiff's base ligand, 1-(2-(thiophen-2-yl)ethylimino)methyl)naphthalene-2-ol (HL) with N,O donor sites has been synthesized by the condensation between 2-hydroxy-1-naphthaldehyde and thiophene-2-ethylamine. The square planar 1:2 complexes of HL having general formula [M(L)2] (M = Ni(1) and Pd(2)) with nickel(II) and palladium(II) have been synthesized and characterized by several spectroscopic techniques. The geometry has been confirmed by single crystal X-ray study for complex 1. The electronic structure and spectral properties of the complexes are interpreted by DFT and TDDFT studies.

  1. Hydroxy- and alkoxy-bridged dinuclear uranyl-Schiff base complexes: hydrolysis, transamination and extraction studies.

    PubMed

    Bharara, Mohan S; Heflin, Kathryn; Tonks, Stephen; Strawbridge, Kara L; Gorden, Anne E V

    2008-06-14

    The reaction of uranyl nitrate with 1,3-bis(salicylideneamino)-2-propanol (H(3)L1) and 1,3-bis(3,5-di-tert-butylsalicylideneamino)-2-propanol (H(3)L2) in the presence of triethylamine (Et(3)N) yielded hydroxy- and alkoxy-bridged dinuclear complexes; [(UO(2))(2)(L1)(OH)(MeOH)(2)].(MeOH)(2) (.(MeOH)(2)) and [(UO(2))(2)(L2)(OH)(MeOH)(2)].(MeOH)(2) (.(MeOH)(2)). The crystal structures of .(DMF)(2) and .(DMF)(2) exhibit an unsymmetrical central U(2)O(2) core involving bridging alkoxy- and hydroxy-oxygen atoms. The geometry around the uranium center in .(DMF)(2) and .(DMF)(2) is that of a distorted pentagonal bipyramid with the solvent molecule occupying the fifth coordination site. The flexible nature of the ligand backbone is more pronounced in .(DMF)(2) compared to .(DMF)(2), yielding two molecules per unit cell in different conformations. Under similar reaction conditions, using ethylenediamine as a base, the respective Salen-based uranyl compounds, [UO(2)(Salen)(MeOH)] () and [UO(2)(Bu(t)(2)-Salen)(MeOH)] () are obtained due to transamination of the ligand backbone. Complexes .(MeOH)(2) and .(MeOH)(2) when reacted with an excess of ethylenediamine failed to yield the respective Salen-based complexes, and , respectively. The new compounds have been characterized using solution (NMR and UV-Vis) and solid-state (IR, X-ray crystallography) techniques. Hydrolysis of .(MeOH)(2) and .(MeOH)(2) in the pH range 1-14 was studied using UV-Vis spectroscopy and compared with the hydrolysis of and [UO(2)(Salophen)(MeOH)] (). A two-phase extraction study suggests quantitative removal of uranyl ions from the aqueous phase at higher pH conditions.

  2. The trivalent copper complex of a conjugated bis-dithiocarbazate Schiff base: stabilization of Cu in three different oxidation states.

    PubMed

    Akbar Ali, Mohammad; Bernhardt, Paul V; Brax, Mathilde A H; England, Jason; Farlow, Anthony J; Hanson, Graeme R; Yeng, Lee Len; Mirza, Aminul Huq; Wieghardt, Karl

    2013-02-04

    The new tribasic N(2)S(2) ligand H(3)ttfasbz has been synthesized by condensation of 4-thenoyl 2,2,2-trifluoroacetone and S-benzyl dithiocarbazate. On complexation with copper(II) acetate, spontaneous oxidation to the Cu(III) oxidation state is observed, and the complex [Cu(ttfasbz)] has been isolated and characterized structurally. Reduction to the EPR active Cu(II) analogue has been achieved chemically and also electrochemically, and in both cases, the process is totally reversible. The Cu(III/II) redox potential of the complex is remarkably low and similar to that of the ferrocenium/ferrocene couple. Further reduction to the formally monovalent (d(10)) dianion [Cu(I)(ttfasbz)](2-) may be achieved electrochemically. Computational chemistry demonstrates that the three redox states [Cu(ttfasbz)], [Cu(ttfasbz)](-), and [Cu(ttfasbz)](2-) are truly Cu(III), Cu(II), and Cu(I) complexes, respectively, and the potentially noninnocent ligand does not undergo any redox reactions.

  3. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes.

    PubMed

    Abdel-Rahman, Laila H; El-Khatib, Rafat M; Nassr, Lobna A E; Abu-Dief, Ahmed M; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL=mono anion and L=dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi>nari>nali>nasi>nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.

  4. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi > nari > nali > nasi > nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.

  5. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands.

    PubMed

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S Ahmad

    2015-04-05

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s(-1) scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  6. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  7. Spectral characterization, thermal and biological activity studies of Schiff base complexes derived from 4,4‧-Methylenedianiline, ethanol amine and benzil

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa Moustafa

    2017-04-01

    Some new metal(II) complexes of asymmetric Schiff base ligand were prepared by template technique. The shaped complexes are in binuclear structures and were explained through elemental analysis, molar conductivity, various spectroscopic methods (IR, U.V-Vis, XRD, ESR), thermal (TG) and magnetic moment measurements. The IR spectra were done demonstrating that the Schiff base ligand acts as neutral tetradentate moiety in all metal complexes. The electronic absorption spectra represented octahedral geometry for all complexes, while, the ESR spectra for Cu(II) complex showed axially symmetric g-tensor parameter with g׀׀ > g⊥ > 2.0023 indicating to 2B1g ground state with (dx2-y2)1 configuration. The nature of the solid residue created from TG estimations was affirmed utilizing IR and XRD spectra. The biological activity of the prepared complexes was studied against Land Snails. Additionally, the in vitro antitumor activity of the synthesized complexes with Hepatocellular Carcinoma cell (Hep-G2) was examined. It was observed that Zn(II) complex (5), exhibits a high inhibition of growth of the cell line with IC50 of 7.09 μg/mL.

  8. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties

    PubMed Central

    Karekal, Mahendra Raj; Biradar, Vivekanand; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2013-01-01

    A new Schiff base of 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and 3-formyl-2-hydroxy-1H-quinoline (HL), and its Cu(II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes have been synthesized and characterized in the light of microanalytical, IR, H1 NMR, UV-Vis, FAB-mass, ESR, XRD, and TGA spectral studies. The magnetic susceptibility measurements and low conductivity data provide evidence for monomeric and neutral nature of the complexes. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as tridentate ligand. The Cu(II), Co(II), and Ni(II) complexes were octahedral, whereas Zn(II), Cd(II), and Hg(II) complexes were tetrahedral in nature. The redox behavior of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage experiment performed using agarose gel electrophoresis method showed the cleavage of DNA by all the metal complexes. The free radical scavenging activity of newly synthesized compounds has been determined at a different concentration range by means of their interaction with the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:24194692

  9. Ru(II) complexes of N 4 and N 2O 2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng

    2009-07-01

    Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.

  10. DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Naik, Vinod H.; Kulkarni, Ajaykumar D.; Badami, Prema S.

    2010-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes of the type ML 2 have been synthesized with Schiff bases derived from methylthiosemicarbazone and 5-formyl-6-hydroxy coumarin/8-formyl-7-Hydroxy-4-methylcoumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that, the complexes are non-electrolytes in nature. In view of analytical, spectral (IR, UV-vis, ESR, FAB-mass and fluorescence), magnetic and thermal studies, it has been concluded that, all the metal complexes possess octahedral geometry in which ligand is coordinated to metal ion through azomethine nitrogen, thione sulphur and phenolic oxygen atom via deprotonation. The redox behavior of the metal complexes was investigated by using cyclic voltammetry. The Schiff bases and their complexes have been screened for their antibacterial ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities ( Aspergillus niger, Aspergillus flavus and Cladosporium) by Minimum Inhibitory Concentration method. The DNA cleavage is studied by agarose gel electrophoresis method.

  11. Synthesis, crystal structure and interaction of L-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA

    NASA Astrophysics Data System (ADS)

    Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong

    2013-04-01

    A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val = Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1dbnd V1⋯V1Adbnd O1A torsion angle 115.22 (28)° and the V1⋯V1A distance 3.455 Å. The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05 × 106 M-1 and the binding site number n was 1.18.

  12. DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 2‧-methylacetoacetanilide

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Pothiraj, Krishnan; Baskaran, Thanasekaran

    2011-08-01

    A new Schiff base ligand (HL) was synthesized by the condensation reaction between 2'-methyleacetoacetanilide and 2-amino-3-hydroxypyridine. Its Co(II), Ni(II), Cu(II) and Zn(II) complexes were prepared by the interaction of the ligand with metal(II) chloride. They were characterized by elemental analysis, IR, 1H NMR, EPR, UV-Vis, magnetic susceptibility measurements, conductivity measurements and FAB-mass spectra. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption, viscosity and cyclic voltammetry methods, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. It was found to be oxidative hydroxyl radical cleavage in the presence of 3-mercaptopropionic acid (MPA). The Schiff base and its complexes have been screened for their antibacterial ( Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal ( Aspergillus niger, Rhizopus stolonifer, Rhizoctonia bataicola and Candida albicans) activities and the data reveal that the complexes have higher activity than the free ligand.

  13. Synthesis, characterization and biological activity of Cu(II), Ni(II) and Zn(II) complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan.

    PubMed

    de Araújo, Eliene Leandro; Barbosa, Hellen Franciane Gonçalves; Dockal, Edward Ralph; Cavalheiro, Éder Tadeu Gomes

    2017-02-01

    Schiff bases have been prepared from biopolymer chitosan and salicylaldehyde, 5-methoxysalicylaldehyde, and 5-nitrosalicylaldehyde. Ligands were synthesized in a 1:1.5mol ratio, and their Cu(II), Ni(II) and Zn(II) complexes in a 1:1mol ratio (ligand:metal). Ligands were characterized by (1)H NMR and FTIR, resulting in degrees of substitution from 43.7 to 78.7%. Complexes were characterized using FTIR, electronic spectra, XPRD. The compounds were confirmed by the presence of an imine bond stretching in the 1630-1640cm(-1) and νMetal-N and νMetal-O at <600cm(-1). Electronic spectra revealed that both Cu(II) and Ni(II) complexes present a square plane geometry. The crystallinity values were investigated by X-ray powder diffraction. Thermal behavior of all compounds was evaluated by TGA/DTG and DTA curves with mass losses related to dehydration and decomposition, with characteristic events for ligand and complexes. Schiff base complexes presented lower thermal stability and crystallinity than the starting chitosan. Residues were the metallic oxides as confirmed by XPRD, whose amounts were used in the calculation of the percentage of complexed metal ions. Surface morphologies were analyzed with SEM-EDAX. Preliminary cytotoxicity tests were performed using MTT assay with HeLa cells. Despite the differences in solubility, the free bases presented relatively low toxicity.

  14. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  15. Experimental and Theoretical Investigations of Magnetic Exchange Pathways in Structurally Diverse Iron(III) Schiff-Base Complexes.

    PubMed

    Herchel, Radovan; Nemec, Ivan; Machata, Marek; Trávníček, Zdeněk

    2015-09-08

    The synthesis, and the structural and magnetic properties, of the following new iron(III) Schiff base complexes with the {O',N,O″}-chelating ligand H2L (2-hydroxyphenylsalicylaldimine) are reported: K[FeL2]·H2O (1), (Pr3NH)[FeL2]·2CH3OH (2), [FeL(bpyO2) (CH3OH)][FeL2]·CH3OH (3), [Fe2L3(CH3OH)]·2CH3OH·H2O (4), and [{Fe2L2}(μ-OH)2{FeL(bpyO2)}2][BPh4]2·2H2O (5), where Pr3NH(+) represents the tripropylammonium cation and bpyO2 stands for 2,2'-bipyridine-N-dioxide. A thorough density functional theory (DFT) study of magnetic interactions (the isotropic exchange) at the B3LYP/def-TZVP level of theory was employed, and calculations have revealed superexchange pathways through intramolecular/intermolecular noncovalent contacts (π-π stacking, C-H···O and O-H···O hydrogen bonds, diamagnetic metal cations) and/or covalent bonds ((μ-O(Ph), μ-OH) or bis(μ-O(Ph)) bridging modes), which helped us to postulate trustworthy spin Hamiltonians for magnetic analysis of experimental data. Within the reported family of compounds 1-5, the mediators of the antiferromagnetic exchange can be sorted by their increasing strength as follows: π-π stacking (J(DFT) = -0.022 cm(-1)/J(mag) = -0.025(4) cm(-1) in 2) < C-H···O contacts and π-π stacking (J(DFT) = -0.19 cm(-1)/J(mag) = -0.347(9)cm(-1) in 1) < O-H···O hydrogen bonds (J(DFT) = -0.53 cm(-1)/J(mag) = -0.41(1) cm(-1) in 3) < bis(μ-O(Ph)) bridge (J(DFT) = -13.8 cm(-1)/J(mag) = -12.3(9) cm(-1) in 4) < (μ-O(Ph), μ-OH) bridge (J(DFT) = -18.0 cm(-1)/J(mag) = -17.1(2) cm(-1) in 5), where J(DFT) and J(mag) are the isotropic exchange parameters derived from DFT calculations, and analysis of the experimental magnetic data, respectively. The good agreement between theoretically calculated and experimentally derived isotropic exchange parameters suggests that this procedure is applicable also for other chemical and structural systems to interpret magnetic data properly.

  16. Oxidovanadium(IV) Schiff base complex derived from vitamin B6: synthesis, characterization, and insulin enhancing properties.

    PubMed

    Mukherjee, Tirtha; Costa Pessoa, Joāo; Kumar, Amit; Sarkar, Asit R

    2011-05-16

    A new Schiff base, [H(4)pydmedpt](2+)·2Cl(-), derived from one of the forms of vitamin B(6) has been synthesized by condensation of pyridoxal hydrochloride with N,N-bis[3-aminopropyl]-methylamine (medpt) and characterized by analytical and spectroscopic methods. The molecular structure is calculated by density functional theory (DFT) procedures, and the donor properties of each individual donor atom are evaluated by calculation of the Fukui function. One pot reaction of pyridoxal and medpt with vanadyl acetylacetonate yields the brown complex [V(IV)O(H(2)pydmedpt)](2+)·2Cl(-)1, which upon recrystallization from water crystallizes as [V(IV)O(pydmedpt)]·5H(2)O 2. The compounds are characterized by analytical and spectroscopic methods, 2 being also characterized by single crystal X-ray diffraction. It displays a slightly distorted octahedral geometry around the vanadium atom involving the coordination of N(amine), two N(imine), and O(phenolato) donors of the ligand. One of the phenolato oxygen donors is positioned trans to the terminal O-oxido atom with relatively short V-O(phenolate) {2.041(3) Å} and long V-O(oxido) {1.625(4) Å} bond distances when compared to other known compounds. The two different pK(a) values (6.0 and 7.9) obtained for 1 are due to protonation of the pyridine ring nitrogen atoms having different basic characters, this being also substantiated by theoretical calculation of the proton affinity of the O- and N- atoms of the molecule. The spin Hamiltonian parameters are obtained from the electron paramagnetic resonance (EPR) spectra, but the A(z) value (ca. 155 × 10(-4) cm(-1)) is lower than expected by applying the additivity rule for the present set of equatorial donor atoms (ca. 162-163 × 10(-4) cm(-1)), this being attributed to the strong trans V-O(phenolate) bond. The UV-vis transitions and EPR spectral parameters are calculated by DFT procedures, and both the calculated electronic transitions and the hyperfine coupling constants agree

  17. Low-cost chemiresistive sensor for volatile amines based on a 2D network of a zinc(II) Schiff-base complex

    NASA Astrophysics Data System (ADS)

    Mirabella, S.; Oliveri, I. P.; Ruffino, F.; Maccarrone, G.; Di Bella, S.

    2016-10-01

    A marked chemiresistive behavior is revealed in a nanostructured material obtained by spin-coating a solution of a bis(salycilaldiminato)Zn(II) Schiff-base (ZnSB) complex. The resulting submicron 2D network exhibits reversible changes in absorbance and resistance under the cycles of absorption and desorption of a volatile amine. These results are explained in terms of a Lewis donor-acceptor interaction between the ZnSB (acceptor) and the chemisorbed amine (donor). The 2D network of ZnSB was employed as a sensing element to fabricate a low-cost device for the volatile amines detection, showing promising results for food spoilage detection.

  18. Spectral characterization, optical band gap calculations and DNA binding of some binuclear Schiff-base metal complexes derived from 2-amino-ethanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hussien, Mostafa A.; Nawar, Nagwa; Radwan, Fatima M.; Hosny, Nasser Mohammed

    2015-01-01

    Bi-nuclear metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-ethanoic acid (glycine) and acetylacetone have been synthesized and characterized by elemental analyses, Raman spectra, FT-IR, ES-MS, UV-Vis., 1H NMR, ESR, thermal analyses (TG, DTG and DTA) and magnetic measurements. The results showed that, the Schiff base ligand can bind two metal ions in the same time. It coordinates to the first metal ion as mono-negative bi-dentate through azomethine nitrogen and enolic carbonyl after deprotonation. At the same time, it binds to the second metal ion via carboxylate oxygen after deprotonation. The thermodynamic parameters E∗, ΔH∗, ΔG∗ and ΔS∗ have been calculated by Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The optical band gaps of the isolated complexes have been calculated from absorption spectra and the results indicated semi-conducting nature of the investigated complexes. The interactions between the copper (II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA.

  19. Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.

  20. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N 3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.

    2010-09-01

    The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  1. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  2. Synthesis, spectral, photolysis and electrochemical studies of mononuclear copper(II) complex with a new asymmetric tetradentate ligand: Application as copper nanoparticle precursor

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Mikhak, Maryam

    2012-10-01

    A copper(II) complex with asymmetric tetradentate Schiff base ligand, obtained by the single condensation of 1,2-diaminopropane with 2-hydroxy-5-methoxy benzaldehyde was prepared. The ligand and complex were characterized by their IR, UV-Vis, FT-IR, NMR spectra and CV. Crystal structures of the mononuclear copper complex have been obtained by X-ray diffraction studies which revealed to be distorted square planner coordination geometry. The spectral data confirm coordination of ligand to copper ion center. The redox properties of complex at different scan rates exhibit grossly similar features consisting of an electrochemically pseudo-reversible Cu(II)/Cu(I) reduction at ca. -0.97 V and pseudo-reversible Cu(I)/Cu(II) oxidation at ca. -0.81 V. The copper nanoparticles with average size of 73 nm were formed by thermal reduction of copper complex in the presence of triphenylphosphine.

  3. Synthesis, spectral, photolysis and electrochemical studies of mononuclear copper(II) complex with a new asymmetric tetradentate ligand: application as copper nanoparticle precursor.

    PubMed

    Habibi, Mohammad Hossein; Mikhak, Maryam

    2012-10-01

    A copper(II) complex with asymmetric tetradentate Schiff base ligand, obtained by the single condensation of 1,2-diaminopropane with 2-hydroxy-5-methoxy benzaldehyde was prepared. The ligand and complex were characterized by their IR, UV-Vis, FT-IR, NMR spectra and CV. Crystal structures of the mononuclear copper complex have been obtained by X-ray diffraction studies which revealed to be distorted square planner coordination geometry. The spectral data confirm coordination of ligand to copper ion center. The redox properties of complex at different scan rates exhibit grossly similar features consisting of an electrochemically pseudo-reversible Cu(II)/Cu(I) reduction at ca. -0.97 V and pseudo-reversible Cu(I)/Cu(II) oxidation at ca. -0.81 V. The copper nanoparticles with average size of 73 nm were formed by thermal reduction of copper complex in the presence of triphenylphosphine.

  4. Synthesis, experimental and theoretical characterization of N,N'-dipyridoxyl (1,4-butanediamine) Schiff-base ligand and its Cu(II) complex.

    PubMed

    Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad R; Beyramabadi, S Ali; Tabatabaei, S Hamid Mir; Esmaeili, Abbas Ali; Khoshkholgh, Malihe Javan

    2011-03-01

    A new N,N'-dipyridoxyl(1,4-butanediamine) [=H(2)BS] Schiff-base ligand and its Cu(II) salen complex, [Cu(BS)(H(2)O)(CH(3)OH)], were synthesized and characterized by IR, UV-vis, (1)H NMR, mass spectrometry and elemental analysis. Also, full optimization of the geometries, (1)H NMR chemical shifts (for the H(2)BS) and vibrational frequencies were calculated by using density functional theory (DFT) method. Structure of the H(2)BS ligand is not planar, i.e. two pyridine rings are not in the same plane. In the structure of the Cu complex, the Schiff-base ligand acts as a dianionic tetradentate ligand in N, N, O(-), O(-) manner. The coordinating atoms of BS(2-) occupy equatorial positions of the octahedral complex, where the H(2)O and CH(3)OH ligands locate at axial positions. The calculated results are in good agreement with the experimental data, confirming the suitability of the proposed and optimized structures for the H(2)BS ligand and its Cu complex.

  5. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  6. Spectroscopic and biological activities studies of bivalent transition metal complexes of Schiff bases derived from condensation of 1,4-phenylenediamine and benzopyrone derivatives.

    PubMed

    Sherif, Omaima E; Abdel-Kader, Nora S

    2014-01-03

    Many tools of analysis such as elemental analyses, infrared, ultraviolet-visible, electron spin resonance (ESR) and thermal analysis, as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared Co(II), Ni(II) and Cu(II) complexes with Schiff bases derived from the condensation of 1,4-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one (H2L) or 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one (H4L). The data showed that all formed complexes are 1:1 or 2:2 (M:L) and non-electrolyte chelates. The Co(II) and Cu(II) complexes of the two Schiff bases were screened for antibacterial activities by the disk diffusion method. The antibacterial activity was screened using Escherichia coli and Staphylococcus capitis but the antifungal activity was examined by using Aspergillus flavus and Candida albicans. The Results showed that the tested complexes have antibacterial, except CuH4L, but not antifungal activities.

  7. An unexpected Schiff base-type Ni(II) complex: synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities.

    PubMed

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-25

    An unexpected Schiff base-type Ni(II) complex, [Ni(L(2))2]⋅CH3OH (HL(2) = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL(1) (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL(1) and its corresponding Ni(II) complex were characterized by IR, (1)H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL(1) and Ni(II) complex were also investigated.

  8. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A. A.; Linert, Wolfgang

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild

  9. Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic β-diketone with various primary amine and 2,2'-bipyridyl.

    PubMed

    Surati, Kiran R

    2011-06-01

    The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO(4) was synthesized by reaction of Mn(OAc)(3)·2H(2)O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO(4) with ethylenediamine, ethanolamine and glycine (where HPMFP=1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy=2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and (1)H and (13)C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change ΔS*, enthalpy change ΔH* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.

  10. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: synthesis, characterization, fluorescence and corrosion inhibitors of ligands.

    PubMed

    Ali, Omyma A M

    2014-11-11

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans.

  11. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: Synthesis, characterization, fluorescence and corrosion inhibitors of ligands

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.

    2014-11-01

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans.

  12. Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic β-diketone with various primary amine and 2,2'-bipyridyl

    NASA Astrophysics Data System (ADS)

    Surati, Kiran R.

    2011-06-01

    The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO 4 was synthesized by reaction of Mn(OAc) 3·2H 2O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO 4 with ethylenediamine, ethanolamine and glycine (where HPMFP = 1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy = 2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and 1H and 13C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change Δ S*, enthalpy change Δ H* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.

  13. Cobalt (II) complex with novel unsymmetrical tetradentate Schiff base (ON) ligand: in vitro cytotoxicity studies of complex, interaction with DNA/protein, molecular docking studies, and antibacterial activity.

    PubMed

    Shokohi-Pour, Zahra; Chiniforoshan, Hossein; Sabzalian, Mohammad R; Esmaeili, Seyed-Alireza; Momtazi-Borojeni, Amir Abbas

    2017-03-08

    [C20H17N3O2] and cobalt (II) complex [Co(L(2))(MeOH)2].ClO4, (L(2) = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV-vis, (1)H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.

  14. Synthesis and characterization of some new Schiff base complexes of group 13 elements, ab initio studies, cytotoxicity and reaction with hydrogen peroxide.

    PubMed

    Asadi, Mozaffar; Savaripoor, Nooshin; Asadi, Zahra; Ghatee, Mohammad Hadi; Moosavi, Fatemeh; Yousefi, Reza; Jamshidi, Mehrnaz

    2013-01-15

    A novel tetradentate Schiff base, naphthabza-H2=N,N'-bis(naphthylidene)-2-aminobenzylamine, and a series of aluminum(III), gallium(III), and indium(III) complexes with general formula, MLNO3, were synthesized and characterized by elemental analysis, 1H NMR, FT-IR, UV-Vis spectroscopy and thermogravimetric method. The product of the reaction of complexes with hydrogen peroxide was characterized by similar techniques. According to the ab initio calculations aluminum and gallium complexes have five-coordinated structures and indium complex is a six-coordinated one. Also, the growth inhibitory effects of the complexes toward K562 cancer cell line were measured and the results for these complexes are as follows: Al>Ga>In.

  15. Construction and NIR luminescent property of hetero-bimetallic Zn Nd complexes from two chiral salen-type Schiff-base ligands

    NASA Astrophysics Data System (ADS)

    Bi, Wei-Yu; Lü, Xing-Qiang; Chai, Wen-Li; Song, Ji-Rong; Wong, Wai-Yeung; Wong, Wai-Kwok; Jones, Richard A.

    2008-11-01

    Two new near-infrared (NIR) luminescent Zn-Nd complexes [ZnL 1Nd(OAc)(NO 3) 2] ( 3) and [ZnL 2Nd(DMF) 2(NO 3) 3] ( 4) have been obtained with two salen-type Schiff-base ligands H 2L 1 and H 2L 2, ( H 2L 1 = N, N'-bis(3-methoxysalicylidene)-(1s, 2s)-(-)1,2-dipheneylethylenediamine and H 2L 2 = N, N'-bis(3-methoxysalicylidene)-(s)-2,2-diamine-1,1'-binaphthyl) from the reaction of different chiral diamines with o-vanillin. The X-ray crystal structure analysis reveals that both of them crystallize in the chiral space groups with P2(1), a = 10.1669(6), b = 19.3775(11), c = 17.4639(10) Å, β = 94.8710(10)°, V = 3428.1(3) Å 3, Z = 4 for 3, and C2, a = 22.1914(13), b = 9.7886(6), c = 22.0138(13) Å, β = 118.9590(10)°, V = 4372.5(4) Å 3, Z = 4 for 4. Complexes 3- 4 are both dinuclear Zn-Nd structures, while suitable choice of chiral Schiff-base ligands could induce the different complexions of ligands and metal ions, and the functional control of ligand character shows a potentially effective way to the fine-tuning properties of NIR luminescence from Nd ions.

  16. Copper(II) complexes of rat amylin fragments.

    PubMed

    Kállay, Csilla; Dávid, Agnes; Timári, Sarolta; Nagy, Eszter Márta; Sanna, Daniele; Garribba, Eugenio; Micera, Giovanni; De Bona, Paolo; Pappalardo, Giuseppe; Rizzarelli, Enrico; Sóvágó, Imre

    2011-10-14

    The fragments of rat amylin rIAPP(17-29) (Ac-VRSSNNLGPVLPP-NH(2)), rIAPP(17-22) (Ac-VRSSNN-NH(2)), rIAPP(19-22) (Ac-SSNN-NH(2)) and rIAPP(17-20) (Ac-VRSS-NH(2)) together with the related mutant peptides (Ac-VASS-NH(2) and Ac-VRAA-NH(2)) have been synthesized and their copper(II) complexes studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. Despite the lack of any common strongly coordinating donor functions some of these fragments are able to bind copper(II) ions in the physiological pH range. The longest fragment rat amylin(17-29) keeps one equivalent copper(II) ion in solution in the whole pH range, while two other peptides Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) are also able to interact with copper(II) ions in the slightly alkaline pH range. According to the spectral parameters of the complexes, the peptides can be classified into two different categories: (i) the tetrapeptides Ac-VRSS-NH(2), Ac-VASS-NH(2) and Ac-VRAA-NH(2) can interact with copper(II) only under strongly alkaline conditions (pH > 10.0) and the formation of only one species with four amide nitrogen coordination can be detected; (ii) the peptides Ac-VRSSNNLGPVLPP-NH(2), Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) can form complexes above pH 6.0 with the major stoichiometries [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-). These data support that rIAPP(17-29) can interact with copper(II) ions under physiological conditions and the SSNN tetrapeptide fragment can be considered as the shortest sequence responsible for metal binding. Density functional theory (DFT) calculations provide some information on the possible coordination modes of Ac-SSNN-NH(2) towards the copper(II) ion and suggest that for [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-), the binding of two, three and four deprotonated amide nitrogens, with NH(-) of the side chain of asparagine as anchoring group, is probable. Moreover, these data reveal that peptides can be effective metal binding ligands even in the absence of anchoring

  17. Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation

    NASA Astrophysics Data System (ADS)

    Alsalme, Ali; Laeeq, Sameen; Dwivedi, Sourabh; Khan, Mohd. Shahnawaz; Al Farhan, Khalid; Musarrat, Javed; Khan, Rais Ahmad

    2016-06-01

    We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, L-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, 1H, 13C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.

  18. Synthesis, crystal structure, spectral characterization and photoluminescence property of three Cd(II) complexes with a pyrazole based Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    Mandal, Susmita; Saha, Rajat; Saha, Manan; Pradhan, Rajesh; Butcher, Ray J.; Saha, Nitis Chandra

    2016-04-01

    Substituted pyrazole containing Schiff-base ligand, 5-methyl-3-formylpyrazole-N-(2‧-methylphenoxy)methyleneimine, (MPzOA), afforded three new Cd(II) complexes, [Cd(MPzOA)Cl2]2.CH3OH (I), [Cd(MPzOA)2(H2O)2](ClO4)2 (II) and [Cd(MPzOA)(H2O)(NO3)2] (III). In the reported complex species the coordination number and geometry of Cd(II) vary. In complex I and II, Cd(II) adopts six and in (III) it adopts eight coordination modes, with prismatic, octahedral and distorted dodecahedral geometry, respectively. All the complexes are characterized by IR, 1H NMR, UV-Vis spectral parameters and X-ray analyses. The complexes have 1D, 2D and 3D supramolecular frameworks formed by non-covalent interactions, like hydrogen bonding, π … π stacking, C-H … π interactions.

  19. Synthesis, spectral, thermal and thermodynamic studies of oxovanadium(IV) complexes of Schiff bases derived from 3,4-diaminobenzoic acid with salicylaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Irandoost, Amene

    2013-04-01

    Synthesis and evaluation of three new oxovanadium(IV) complexes, formed by the interaction of vanadyl acetylacetonate and the Schiff bases: 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (L1), 3,4-bis-((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (L2) and 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (L3) in methanol. The complexes have been characterized and studied by IR spectra, UV-Vis spectroscopy and thermogravimetry in order to evaluate their thermal stability and thermal decomposition. According to the results discussed from TG curves, the order of thermal stability for the complexes is VOL3 > VOL1 > VOL2. Their formation constants (Kf) were obtained by UV-Vis spectroscopic titration at 15, 25, 35 and 45 °C in methanol by SQUAD software. The trend of formation constants of the complexes as follows: VOL3 > VOL2 > VOL1.

  20. Synthesis, spectral, thermal and thermodynamic studies of oxovanadium(IV) complexes of Schiff bases derived from 3,4-diaminobenzoic acid with salicylaldehyde derivatives.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Irandoost, Amene

    2013-04-15

    Synthesis and evaluation of three new oxovanadium(IV) complexes, formed by the interaction of vanadyl acetylacetonate and the Schiff bases: 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (L(1)), 3,4-bis-((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (L(2)) and 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (L(3)) in methanol. The complexes have been characterized and studied by IR spectra, UV-Vis spectroscopy and thermogravimetry in order to evaluate their thermal stability and thermal decomposition. According to the results discussed from TG curves, the order of thermal stability for the complexes is VOL(3)>VOL(1)>VOL(2). Their formation constants (Kf) were obtained by UV-Vis spectroscopic titration at 15, 25, 35 and 45 °C in methanol by SQUAD software. The trend of formation constants of the complexes as follows: VOL(3)>VOL(2)>VOL(1).

  1. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction.

    PubMed

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2010-04-07

    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  2. New cobalt(II) and nickel(II) complexes of benzyl carbazate Schiff bases: Syntheses, crystal structures, in vitro DNA and HSA binding studies.

    PubMed

    Nithya, Palanivelu; Helena, Sannasi; Simpson, Jim; Ilanchelian, Malaichamy; Muthusankar, Aathi; Govindarajan, Subbiah

    2016-12-01

    In the present study, new Schiff base complexes with the composition [M(NCS)2(L1)2]·nH2O, where M=Co (n=0) (1) and Ni (n=2) (2); [M(NCS)2(L2)2], M=Co (3) and Ni (4) as well as [M(NCS)2(L3)2], M=Co (5) and Ni (6); (L1=benzyl 2-(propan-2-ylidene)hydrazinecarboxylate, L2=benzyl 2-(butan-2-ylidene)hydrazinecarboxylate and L3=benzyl 2-(pentan-3-ylidene)hydrazinecarboxylate) have been synthesized by a template method. The complexes were characterised by analytical methods, spectroscopic studies, thermal and X-ray diffraction techniques. The structures of all the complexes explore that the metal(II) cation has a trans-planar coordination environment, the monomeric units containing a six-coordinated metal center in octahedral geometry with N-bound isothiocyanate anions coordinated as terminal ligands. Furthermore, the binding of the two Schiff base ligands to the metal centers involves the azomethine nitrogen and the carbonyl oxygen in mutually trans configuration. The binding interactions of all the complexes with Calf thymus-deoxyribonucleic acid (CT-DNA) and human serum albumin (HSA) have been investigated using absorption and emission spectral techniques. The CT-DNA binding properties of these complexes reveal that they bind to CT-DNA through a partial intercalation mode and the binding constant values were calculated using the absorption and emission spectral data. The binding constant values (~10×10(6)moldm(-3)) indicate strong binding of metal complexes with CT-DNA. HSA binding interaction studies showed that the cobalt and nickel complexes can quench the intrinsic fluorescence of HSA through static quenching process. Also, molecular docking studies were supported out to apprehend the binding interactions of these complexes with DNA and HSA which offer new understandings into the experimental model observations.

  3. A novel Schiff base derived from the gabapentin drug and copper (II) complex: Synthesis, characterization, interaction with DNA/protein and cytotoxic activity.

    PubMed

    Shokohi-Pour, Zahra; Chiniforoshan, Hossein; Momtazi-Borojeni, Amir Abbas; Notash, Behrouz

    2016-09-01

    A novel Schiff base [C20H23NO3], has been prepared and characterized using FT-IR, UV-vis, (1)H NMR spectroscopy, elemental analysis and X-ray crystallography. A copper (II) complex [Cu(C20H22NO3)2]·H2O has also been synthesized and characterized. The new ligand and complex thus obtained were investigated by their interaction with calf thymus DNA and BSA using electronic absorption spectroscopy, fluorescence spectroscopy, and thermal denaturation. The intrinsic binding constants Kb of the ligand and Cu (II) complex, with CT-DNA obtained from UV-vis absorption studies were 1.53×10(4)M(-1) and 3.71×10(5)M(-1), respectively. Moreover the addition of the two compounds to CT-DNA (1:2) led to an increase of the melting temperature of DNA up to around 2.61°C for the ligand and 3.99°C for the Cu (II) complex. The ligand and Cu (II) complex bind to CT-DNA via a partial intercalative, as shown by the experimental data. In addition, the albumin interactions of the two compounds were studied by fluorescence quenching spectra, the results indicating that the binding mechanism is a static quenching process. The in vitro cytotoxicity of the two compounds on three different cancer cell lines was evaluated by MTT assay. The results showed that the copper complex exerted enhanced cytotoxicity compared with the Schiff base ligand; thereby, this complex clearly implies a positive synergistic effect. Furthermore, the copper complex showed a high, selective, and dose-dependent cytotoxicity against cancer cell lines.

  4. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol

    2013-09-01

    In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.

  5. Synthesis and spectroscopic characterization of some transition metal complexes of a new hexadentate N 2S 2O 2 Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Dey, Kamalendu

    2005-11-01

    A novel interesting hexadentate dibasic N 2S 2O 2 donor Schiff base ligand, H4dcsalpte, was synthesized by the condensation of 3-formylsalicylic acid and 1,2-di( o-aminophenylthio)ethane and characterized. The reactions of the ligand with different metal(II/III)salts under varied reaction conditions afforded a series of metal complexes. The ligand, H4dcsalpte, behaves either as a dibasic or neutral hexadentate one, depending on the reaction conditions. Structural investigations on the ligand and their complexes have been made based on elemental analyses, molar conductance values, magnetic moment values, cryomagnetic and spectral (UV-vis, IR, 1H NMR, and Mössbauer) data. Based on magnetic susceptibility, Mössbauer and electronic spectral data the iron(III) complex [Fe III( H2dcsalpte)]ClO 4 ( 8), isolated in the present investigation, it is inferred that the spin states 5/2 and 1/2 are in equilibrium. Similarly a tri-iron(III) complex [Fe III3( H2dcsalpte)( H3dcsalpte)Cl 3]Cl 3 ( 7), isolated in this study, has been inferred to contain two iron(III) sites in tetrahedral environment and one in the octahedral environment. The aerial oxidation of an equimolar mixture of H4dcsalpte and Co(CH 3COO) 2·4H 2O in ethanol under reflux gave two products, [Co( H2dcsalpte)]CH 3COO ( 10) and [( Hbtcsaldm)Co( Hbvcsaldm)] ( 11), a cobalt(III) complex bound to two dissimilar tridentate NSO donor ligands formed as a result of the oxidative cleavage of the C sbnd S bond. In the complex 11, Hbtcsaldm stands for the dianion of the tridentate Schiff base ligand N-(2'-benzenethiol)-3-carboxysalicylaldimine and Hbvcsaldm stands for the mono anion of the tridentate Schiff base ligand N-(benzene-2'-S-vinyl)-3-carboxysalicylaldimine, both being formed as a result of the oxidative cleavage of H4dcsalpte.

  6. Synthesis and spectroscopic characterization of some transition metal complexes of a new hexadentate N(2)S(2)O(2) Schiff base ligand.

    PubMed

    Sarkar, Saikat; Dey, Kamalendu

    2005-11-01

    A novel interesting hexadentate dibasic N(2)S(2)O(2) donor Schiff base ligand, H(4)dcsalpte, was synthesized by the condensation of 3-formylsalicylic acid and 1,2-di(o-aminophenylthio)ethane and characterized. The reactions of the ligand with different metal(II/III)salts under varied reaction conditions afforded a series of metal complexes. The ligand, H(4)dcsalpte, behaves either as a dibasic or neutral hexadentate one, depending on the reaction conditions. Structural investigations on the ligand and their complexes have been made based on elemental analyses, molar conductance values, magnetic moment values, cryomagnetic and spectral (UV-vis, IR, (1)H NMR, and Mössbauer) data. Based on magnetic susceptibility, Mössbauer and electronic spectral data the iron(III) complex [Fe(III)(H(2)dcsalpte)]ClO(4) (8), isolated in the present investigation, it is inferred that the spin states 5/2 and 1/2 are in equilibrium. Similarly a tri-iron(III) complex [Fe(III)(3)(H(2)dcsalpte)(H(3)dcsalpte)Cl(3)]Cl(3) (7), isolated in this study, has been inferred to contain two iron(III) sites in tetrahedral environment and one in the octahedral environment. The aerial oxidation of an equimolar mixture of H(4)dcsalpte and Co(CH(3)COO)(2).4H(2)O in ethanol under reflux gave two products, [Co(H(2)dcsalpte)]CH(3)COO (10) and [(Hbtcsaldm)Co(Hbvcsaldm)] (11), a cobalt(III) complex bound to two dissimilar tridentate NSO donor ligands formed as a result of the oxidative cleavage of the CS bond. In the complex 11, Hbtcsaldm stands for the dianion of the tridentate Schiff base ligand N-(2'-benzenethiol)-3-carboxysalicylaldimine and Hbvcsaldm stands for the mono anion of the tridentate Schiff base ligand N-(benzene-2'-S-vinyl)-3-carboxysalicylaldimine, both being formed as a result of the oxidative cleavage of H(4)dcsalpte.

  7. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes.

    PubMed

    Ramadan, Ramadan M; Abu Al-Nasr, Ahmad K; Noureldeen, Amani F H

    2014-11-11

    Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.

  8. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Noureldeen, Amani F. H.

    2014-11-01

    Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.

  9. Bio-important antipyrine derived Schiff bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation

    NASA Astrophysics Data System (ADS)

    Manjunath, M.; Kulkarni, Ajaykumar D.; Bagihalli, Gangadhar B.; Malladi, Shridhar; Patil, Sangamesh A.

    2017-01-01

    Spectroscopic (IR, NMR, UV-vis, ESR, ESI-mass), magnetic and TGA studies suggests octahedral geometry for all the CoII, NiII and CuII complexes of the Schiff bases, derived from 4-aminoantipyrine and 8-formyl-7-Hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin, coordinated through ONO donor sites. Antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi), antifungal (Aspergillus niger, Aspergillus flavus and Cladosporium) and DNA cleavage properties of the metal complexes are investigated. The results suggested that some of the synthesized compounds are potential antimicrobials. The synthesized compounds tested for their anthelmintic activities and it was found that CoII and NiII complexes exhibited good anthelmintic properties.

  10. Synthesis, characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand.

    PubMed

    El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H

    2012-10-01

    Schiff base ligand, 1,4-bis[(2-hydroxybenzaldehyde)propyl]piperazine (BHPP), and its Cu(II), Ni(II) and Co(II) metal complexes were synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance and spectral (IR and UV-vis) studies. The ground state of BHPP ligand was investigated using the BUILDER module of MOE. Metal complexes are formed in the 1:1 (M:L) ratio as found from the elemental analysis and found to have the general formula [ML]·nH(2)O, where M=Co(II), Ni(II) and Cu(II), L=BHPP. In all the studied complexes, the (BHPP) ligand behaves as a hexadentate divalent anion with coordination involving the two azomethine nitrogen's, the two nitrogen atoms of piperazine ring and the two deprotonated phenolic OH-groups. The magnetic and spectral data indicates octahedral geometry of metal(II) complexes. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. They were found to be more active against Gram-positive than Gram-negative bacteria. Protonation constants of (BHPP) ligand and stability constants of its Cu(2+), Co(2+) and Ni(2+) complexes were determined by potentiometric titration method in 50% DMSO-water solution at ionic strength of 0.1 M sodium nitrate. It has been observed that the protonated Schiff base ligand (BHPP) have four protonation constants. The divalent metal ions Cu(2+), Ni(2+) and Co(2+) form 1:1 complexes.

  11. 119Sn Mössbauer characterization of self assembled organotin(IV) complexes with Schiff bases containing amino acetate skeletons

    NASA Astrophysics Data System (ADS)

    Basu, Smita; Mizar, Archana; Baul, Tushar S. Basu; Rivarola, Eleonora

    2008-07-01

    Several organotin(IV) compounds, viz., diorganotin(IV) compounds of the types Ph2SnLH (monomer), nBu2SnLH·OH2 (monomer), [Me2SnLH·OH2]2 (centrosymmetric dimer), [nBu2SnLH]3 (cyclic trinuclear), [Ph2SnLH] n (polymer), {[nBu2Sn(LH)]2O}2 (centrosymmetric tetranuclear), dinuclear di-/tri-mixed organotin(IV) compounds Ph2SnLH·Ph3SnCl (monomer) and triorganotin(IV) compounds of the types [Bz3SnLH]2 (centrosymmetric dimer) and [Me3SnL1H] n (Polymer) (LH = Schiff base carboxylate) have been studied in the solid state at liquid nitrogen temperature using 119Sn Mössbauer spectroscopy. The tin coordination geometry of the compounds determined from crystallography was correlated with the 119Sn Mössbauer results.

  12. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic beta-diketone with aromatic and aliphatic diamine.

    PubMed

    Surati, Kiran R; Thaker, B T

    2010-01-01

    The Schiff base tetradentate ligands N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H(2)L(1)), N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H(2)L(2)), N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H(2)L(3)) and N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H(2)L(4)) were prepared from the reaction between 5-oxo-3-methyl-1-p-tolyl-1H-pyrazole-4-carbaldehyde or 4-(4-formyl-5-oxo-3-methyl-pyrazol-1-yl)-benzenesulfonic acid and o-phenylenediamine or ethylenediamine. And these are characterized by elemental analysis, FT-IR, (1)H NMR and GC-MS. The corresponding Schiff base complexes of Mn(III) were prepared by condensation of [Mn(3)(mu(3)-O)(OAc)(6)(H(2)O)(3)].3H(2)O with ligands H(2)L(1), H(2)L(2), H(2)L(3) and H(2)L(4). All these complexes have been characterized by elemental analysis, magnetic susceptibility, X-ray crystallography, conductometry measurement, FT-IR, electronic spectra and mass (FAB) spectrometry. Thermal behaviour of the complexes has been studied by TGA, DTA and DSC. Electronic spectra and magnetic susceptibility measurements indicate octahedral stereochemistry of manganese (III) complexes, while non-electrolytic behaviour complexes indicate the absence of counter ion.

  13. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic β-diketone with aromatic and aliphatic diamine

    NASA Astrophysics Data System (ADS)

    Surati, Kiran R.; Thaker, B. T.

    2010-01-01

    The Schiff base tetradentate ligands N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H 2L 1), N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H 2L 2), N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H 2L 3) and N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H 2L 4) were prepared from the reaction between 5-oxo-3-methyl-1-p-tolyl-1H-pyrazole-4-carbaldehyde or 4-(4-formyl-5-oxo-3-methyl-pyrazol-1-yl)-benzenesulfonic acid and o-phenylenediamine or ethylenediamine. And these are characterized by elemental analysis, FT-IR, 1H NMR and GC-MS. The corresponding Schiff base complexes of Mn(III) were prepared by condensation of [Mn 3(μ 3-O)(OAc) 6(H 2O) 3]·3H 2O with ligands H 2L 1, H 2L 2, H 2L 3 and H 2L 4. All these complexes have been characterized by elemental analysis, magnetic susceptibility, X-ray crystallography, conductometry measurement, FT-IR, electronic spectra and mass (FAB) spectrometry. Thermal behaviour of the complexes has been studied by TGA, DTA and DSC. Electronic spectra and magnetic susceptibility measurements indicate octahedral stereochemistry of manganese (III) complexes, while non-electrolytic behaviour complexes indicate the absence of counter ion.

  14. Cationic half-sandwich Ru(II) complexes containing (N,N)-bound Schiff-base ligands: Synthesis, crystal structure analysis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Tao, Li; Miao, Qian; Tehrani, Alireza Azhdari; Hajiashrafi, Taraneh; Hu, Mao-Lin; Morsali, Ali

    2016-08-01

    Three Ru(II) half-sandwich complexes containing (N,N)-bound Schiff-base ligands, [(η6-C6H6) RuCl(L1)]PF6 (1) L1 = (E)-1-(6-methylpyridin-2-yl)-N-(p-tolyl)methanimine, [(η6-p-cymene)RuCl(L1)]PF6 (2) and [(η6-p-cymene)RuCl(L2)]PF6(3) L2 = (E)-1-(6-bromopyridin-2-yl)-N-(p-tolyl)methanimine, were synthesized, characterized and their supramolecular structures were analyzed. The crystal packing of these compounds was studied using geometrical analysis and Hirshfeld surface analysis. The fluorescence behavior of these compounds was also studied. TD-DFT calculations were carried out to better understand the fluorescence properties of complexes 1-3. These compounds could be promising for the design of organometallic dye systems.

  15. Metal-pyrazolyl diazine interaction: synthesis, structure and electrochemistry of binuclear transition metal(II) complexes derived from an 'end-off' compartmental Schiff base ligand.

    PubMed

    Budagumpi, Srinivasa; Revankar, Vidyanand K

    2010-09-15

    Pyrazolyl diazine (mu-NN) bridged late first row transition metal(II) complexes have been prepared by the interaction of metal(II) chlorides with an 'end-off' compartmental Schiff base ligand. The ligand system has a strong diazine bridging component and obtained as a condensation product between 1H-pyrazole-3,5-dicarbohydrazide and 3-acetylcoumarin in absolute ethanol. All synthesized compounds are characterized on the basis of various spectral and analytical techniques. Complexes are found to be non-electrolytes and monomeric in nature. The magnetic exchange interactions are very weak because of the more electronegative exogenous chloride, though diazine bridging group bring metal centers in a close proximity.

  16. Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex.

    PubMed

    Akbar Ali, Mohammad; Mirza, Aminul Huq; Butcher, Raymond J; Tarafder, M T H; Keat, Tan Boon; Ali, A Manaf

    2002-11-25

    Palladium(II) and platinum(II) complexes of general empirical formula, [M(NS)(2)] (NS=uninegatively charged acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate; M=Pt(II) and Pd(II)) have been prepared and characterized by a variety of physicochemical techniques. Based on conductance, IR and electronic spectral evidence, a square-planar structure is assigned to these complexes. The crystal and molecular structure of the [Pd(asme)(2)] complex (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted cis-square planar structure with the ligands coordinated to the palladium(II) ions as uninegatively charged bidentate NS chelating agents via the azomethine nitrogen and the mercaptide sulfur atoms. The distortion from a regular square-planar geometry is attributed to the restricted bite angles of the ligands. Antimicrobial tests indicate that the Schiff bases exhibit strong activities against the pathogenic bacteria, Bacillus subtilis (mutant defective DNA repair), methicillin-resistant Staphylococcus aureus, B. subtilis (wild type) and Pseudomonas aeruginosa and the fungi, Candida albicans (CA), Candida lypotica (2075), Saccharomyces cerevisiae (20341) and Aspergillus ochraceous (398)-the activities exhibited by these compounds being greater than that of the standard antibacterial and antifungal drugs, streptomycin and nystatin, respectively. The palladium(II) and platinum(II) complexes are inactive against most of these organisms but, the microbe, Pseudomonas aeruginosa shows strong sensitivity to the platinum(II) complexes. Screening of the compounds for their cytotoxicities against T-lymphoblastic leukemia cancer cells has shown that the acetone Schiff base of S-methyldithiocarbazate (Hasme) exhibits a very weak activity, whereas the S-benzyl derivative (Hasbz) is inactive. However, the palladium(II) complexes exhibit strong cytotoxicities against this cancer; their

  17. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-01

    Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  18. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study.

    PubMed

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-15

    Two novel Schiff base ligands H2L(1) and H2L(2) have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by (1)H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  19. Synthesis and Characterisation of Copper(II) Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application

    PubMed Central

    Hazra, Madhumita; Dolai, Tanushree; Pandey, Akhil; Dey, Subrata Kumar; Patra, Animesh

    2014-01-01

    The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2) HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand. PMID:25386109

  20. Dinuclear and 1D iron(III) Schiff base complexes bridged by 4-salicylideneamino-1,2,4-triazolate: X-ray structures and magnetic properties.

    PubMed

    Herchel, Radovan; Pavelek, Lubomír; Trávníček, Zdeněk

    2011-11-28

    Four new iron(III) complexes were obtained by the reaction of 4-salicylideneamino-1,2,4-triazole (Hsaltrz) and selected dinuclear μ-oxo-bridged iron(III) Schiff base complexes [{FeL(4)}(2)(μ-O)], where L(4) represents a terminal tetradentate dianionic Schiff-base ligand. X-ray structural analysis revealed a novel bridging mode of κN,κO of the saltrz ligand to form dinuclear complexes [{Fe(salen)(μ-saltrz)}(2)]·CH(3)OH (1) (H(2)salen = N,N'-ethylenebis(salicylimine)) and [{Fe(salpn)(μ-saltrz)}(2)] (2) (H(2)salpn = N,N'-1,2-propylenbis(salicylimine)), whereas one-dimensional (1D) zig-zag chains were formed in the case of [{Fe(salch)(μ-saltrz)}·0.5CH(3)OH](n) (3) (H(2)salch = N,N'-cyclohexanebis(salicylimine)) and [Fe(salophen)(μ-saltrz)](n) (4) (H(2)salophen = N,N'-o-phenylenebis(salicylimine)). It was also shown that the rigidity of the terminal ligand L(4) can be considered as the key factor for the molecular dimensionality of the products. The thorough magnetic analysis based on SQUID experiments, including the isotropic exchange and the zero-field splitting of both temperature and field dependent data, was performed for dimeric (1 and 2) and also for polymeric compounds (3 and 4) and revealed weak antiferromagnetic exchange mediated by the saltrz anions with much larger D-parameter (|D|≫|J|).

  1. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  2. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: antimicrobial evaluation and anticancer studies.

    PubMed

    Dhahagani, K; Mathan Kumar, S; Chakkaravarthi, G; Anitha, K; Rajesh, J; Ramu, A; Rajagopal, G

    2014-01-03

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by (1)H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M=Cu(II), Co(II)), Zn(II), or VO(IV); MPMP=2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X=Cl, (L1H), X=Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  3. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione.

    PubMed

    Singh, Ajay K; Pandey, O P; Sengupta, S K

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L=monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2(')(OOCCH3)2(H2O)2](L'=neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, (1)H NMR, and (13)C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.

  4. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Pandey, O. P.; Sengupta, S. K.

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L = monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2‧(OOCCH3)2(H2O)2](L‧ = neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, 1H NMR, and 13C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200 nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.

  5. Immobilized molybdenum-thiosemicarbazide Schiff base complex on the surface of magnetite nanoparticles as a new nanocatalyst for the epoxidation of olefins

    NASA Astrophysics Data System (ADS)

    Mohammadikish, M.; Masteri-Farahani, M.; Mahdavi, S.

    2014-03-01

    In this work, a new magnetically recoverable nanocatalyst was developed by immobilization of thiosemicarbazide ligand on the surface of silica coated magnetite nanoparticles (SCMNPs) through Schiff base condensation and followed complexation with MoO2(acac)2. Characterization of the prepared nanocatalyst was performed with different physicochemical methods such as Fourier transform infrared (FT-IR) and atomic absorption spectroscopies, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The prepared catalyst catalyzed the epoxidation of olefins and allyl alcohols with tert-butyl hydroperoxide (TBHP) and cumene hydroperoxide (CHP) quantitatively with excellent selectivity toward the corresponding epoxides under mild reaction conditions.

  6. Synthesis, structural characterization and DFT calculation on a square-planar Ni(II) complex of a compartmental Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Biswas, Surajit; Dolai, Malay; Dutta, Arpan; Ali, Mahammad

    2016-12-01

    Reaction of a symmetric compartmental Schiff-base ligand, (H2L) with nickel(II) perchlorate hexahydrate in 1:1 M ratio in methanol gives rise to a mononuclear nickel(II) compound, NiL (1). The compound has been characterized by C, H, N microanalyses and UV-Vis spectra. The single crystal X-ray diffraction studies reveal a square planar geometry around the Ni(II) center. The compound crystallizes in monoclinic system with space group C2/c with a = 21.6425(6), b = 9.9481(3), c = 13.1958(4) Å, β = 107.728(2)°, V = 2706.16(14) Å3 and Z = 4. Ground state DFT optimization and TDDFT calculations on the ligand and complex were performed to get their UV-Vis spectral pattern.

  7. Studies on Mixed Monolayers and Langmuir-Blodgett Films of Schiff-Base Complex Cu(SBC(18))(2) and Calix

    PubMed

    Pang, Shufeng; Ye, Zhifeng; Li, Chun; Liang, Yingqiu

    2001-08-15

    Mixed monolayers of Schiff-base complex Cu(SBC(18))(2) with an octadecyl hydrocarbon chain and Calix[4]arene without a long alkyl chain at an air/water interface were studied in ultrapure water at different temperatures. Interface behavior and thermodynamic estimation of the mixed monolayer indicate that a strong intermolecular interaction exists between the mixed components (Cu(SBC(18))(2) and calix[4]arene) and the two-dimensional miscibility decreases with the molar fraction of Cu(SBC(18))(2). It is noticeable that the calix[4]arene monolayer can be transferred successfully onto solid substrates due to the introduction of Cu(SBC(18))(2). FTIR transmission and UV-Vis absorption spectra of mixed LB films provide further evidence of molecular interaction between the headgroups. Copyright 2001 Academic Press.

  8. Coordination modes of a schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies.

    PubMed

    Chandra, Sulekh; Jain, Deepali; Sharma, Amit Kumar; Sharma, Pratibha

    2009-01-01

    Transition metal complexes of Co(II), Ni(II) and Cu(II) metal ions with general stoichiometry [M(L)X]X and [M(L)SO(4)], where M = Co(II), Ni(II) and Cu(II), L = 3,3'-thiodipropionic acid bis(4-amino-5-ethylimino-2,3-dimethyl-1-phenyl-3-pyrazoline) and X = NO(3)(-), Cl(-) and OAc(-), have been synthesized and structurally characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements and spectral techniques like IR, UV and EPR. The nickel(II) complexes were found to have octahedral geometry, whereas cobalt(II) and copper(II) complexes were of tetragonal geometry. The covalency factor (beta) and orbital reduction factor (k) suggest the covalent nature of the complexes. The ligand and its complexes have been screened for their antifungal and antibacterial activities against three fungi, i.e. Alternaria brassicae, Aspergillus niger and Fusarium oxysporum and two bacteria, i.e. Xanthomonas compestris and Pseudomonas aeruginosa.

  9. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  10. Synthesis, characterization and cytotoxicity of rare earth metal ion complexes of N,N‧-bis-(2-thiophenecarboxaldimine)-3,3‧-diaminobenzidene, Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Abbasi, Ambreen; Faraz, Mohammad; Sherwani, Asif

    2015-12-01

    Lanthanide complexes of La3+, Pr3+, Nd3+, Gd3+, Er3+ of general formula [Ln2 L(H2O)4(NO3)4](NO3)2·2H2O have been synthesized from Schiff base, N,N‧-bis-(2-thiophenecarboxaldimine)-3,3‧-diaminobenzidene. The complexes were characterized by elemental analysis, molar conductance, UV-Vis, fluorescence, FT-IR,1H NMR, mass spectroscopy, EDX, SEM and thermal analysis. FT-IR spectral data suggested that ligand coordinate with metal ions through azomethine nitrogen and uncondensed amino group. Molar conductance data revealed 1:2 electrolytic nature of complexes. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (ligand:metal). Thephysico-chemical data suggested eight coordination number for Ln(III)Schiffbase complexes. SEM analysis shows morphological changes in the surfaces of complexes as compared to free ligand. Thermal decomposition profiles were consistent with proposed formulations. The anticancer activity of the complexes and theSchiffbase ligand has been studied towards human cervical cancer celllines (HeLa) and human breast cancer cell lines (MCF-7) and it was found that complexes exhibited greater activity than theSchiffbase.

  11. Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases.

    PubMed

    Abdel Aziz, Ayman A; Badr, Ibrahim H A; El-Sayed, Ibrahim S A

    2012-11-01

    Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)(2).2H(2)O and anhydrous AlCl(3) with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H(2)L(1)) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H(2)L(2)). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, (1)H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi.

  12. Induced chirality-at-metal and diastereoselectivity at Δ/Λ-configured distorted square-planar copper complexes by enantiopure Schiff base ligands: combined circular dichroism, DFT and X-ray structural studies.

    PubMed

    Enamullah, Mohammed; Uddin, A K M Royhan; Pescitelli, Gennaro; Berardozzi, Roberto; Makhloufi, Gamall; Vasylyeva, Vera; Chamayou, Anne-Christine; Janiak, Christoph

    2014-02-28

    Bidentate enantiopure Schiff base ligands, (R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldiminato-κ(2)N,O, diastereoselectively yield Δ/Λ-chiral four-coordinated, non-planar Cu(N^O)2 complexes [Ar = C6H5 R/S-L1, m-C6H4OMe R-L2, p-C6H4OMe R/S-L3, and p-C6H4Br R/S-L4]. Two N,O-chelate ligands coordinate to the copper(II) atom in distorted square-planar mode, and induce metal-centered Δ/Λ-chirality at the copper atom in the C2-symmetric complexes. In the solid state, the R-L1 (or R-L4) ligand chirality diastereoselectively induces a Λ-Cu configuration in Λ-Cu-R-L1 (or Λ-Cu-R-L4), the S-L1 ligand a Δ-Cu configuration in Δ-Cu-S-L1, forming enantiopure crystals upon crystallization. Conversely, the R-L2 ligand combines both Λ/Δ-Cu-R-L2 as a diastereomeric pair in the crystals. In solution, electronic circular dichroism (CD) spectra show full or partial diastereoselectivity towards Λ-Cu for R ligands and towards Δ-Cu for S ligands. The electronic CD spectra measured on all complexes obtained from R ligands (or S ligands), e.g. Cu-R-L1, Cu-R-L2, Cu-R-L3, and Cu-R-L4 (or Cu-S-L1, Cu-S-L3, and Cu-S-L4), show consistent spectral features. TDDFT calculations of the electronic CD spectra for the diastereomers Λ-Cu-R-L1 and Δ-Cu-R-L1 suggest that the CD spectra are largely dominated by the configuration at the metal center (Λ vs. Δ). The experimental CD spectrum of Cu-R-L1 agrees well with the one calculated for the Λ-Cu-R-L1 configuration. Cyclic voltammetry of Cu-R-L1 reveals a quasi-reversible redox wave corresponding to one-electron transfer for the [Cu(II)L2](0)/[Cu(I)L2](-1) couple in acetonitrile. DSC analyses for the complexes show an exothermic peak between 377 and 478 K (ΔH = -12 to -43 kJ mol(-1)), corresponding to a phase transformation from distorted square-planar/tetrahedral to regular tetrahedral geometry on heating.

  13. Synthesis, Spectral Characterization, SEM, Antimicrobial, Antioxidative Activity Evaluation, DNA Binding and DNA Cleavage Investigation of Transition Metal(II) Complexes Derived from a tetradentate Schiff base bearing thiophene moiety.

    PubMed

    Abdel Aziz, Ayman A; Seda, Sabry H

    2017-03-01

    A novel series of Co(II), Ni(II), Cu(II) and Zn(II) mononuclear complexes have been synthesized involving a potentially tetradentate Schiff base ligand, which was obtained by condensation of 2-aminophenol with 2,5-thiophene-dicarboxaldehyde. The complexes were synthesized via reflux reaction of methanolic solution of the appropriate Schiff base ligand with one equivalent of corresponding metal acetate salt. Based on different techniques including micro analysis, FT-IR, NMR, UV-Vis, ESR, ESI-mass and conductivity measurements, four-coordinated geometry was assigned for all complexes. Spectroscopic data have shown that, the reported Schiff base coordinated to metal ions as a dibasic tetradentate ligand through the phenolic oxygen and the azomethine nitrogen. The antimicrobial activities of the parent ligand and its complexes were investigated by using the agar disk diffusion method. Antioxidation properties of the novel complexes were investigated and it was found that all the complexes have good radical scavenging properties. The binding of complexes to calf thymus DNA (CT-DNA) was investigated by absorption, emission and viscosity measurements. Binding studies have shown that all the complexes interacted with CT-DNA via intercalation mode and the binding affinity varies with relative order as Cu(II) complex > Co(II) complex > Zn(II) complex > Ni(II) complex. Furthermore, DNA cleavage properties of the metal complexes were also investigated. The results suggested the possible utilization of novel complexes for pharmaceutical applications.

  14. A novel copper (II) complex containing a tetradentate Schiff base: Synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide

    NASA Astrophysics Data System (ADS)

    Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.

    2017-04-01

    A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.

  15. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  16. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  17. Synthesis, characterization, crystal structure and predicting the second-order optical nonlinearity of a new dicobalt(III) complex with Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Zarei, Seyed Amir; Piltan, Mohammad; Hassanzadeh, Keyumars; Akhtari, Keivan; Cinčić, Dominik

    2015-03-01

    The synthesis and characterization of dicobalt(III) complex [Co2L2(OMe)2] of the tetradentate Schiff base ligand N,N‧-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine (H2L) is reported. The crystal structure of the complex has been determined that exhibited the pseudo-octahedral geometry around both cobalt(III) ions. In the complexation process, H2L acts as two negatively charged tetradentate ligand, L2-, and methoxy group plays as bridging ligand. The geometry structure of the complex is optimized by density functional theory (DFT) using B3LYP/6-311G(d,p). The calculated geometric parameters are in good agreement with the corresponding experimental data. Second-Order Nonlinear Optical (NLO) property of the complex is evaluated by DFT/B3LYP/6-311G(d,p) on the base of the optimized structure that shows the enhancement relative to the calculated value of H2L. The calculated NLO value of the complex is much greater than the corresponding value of urea.

  18. Antioxidation and DNA-binding properties of binuclear Er(III) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxaldehyde and four aroylhydrazines.

    PubMed

    Liu, Yong-Chun; Yang, Zheng-Yin

    2010-03-01

    The Er(III) complexes are prepared from Er(NO(3))(3).6H(2)O and Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxaldehyde with four aroylhydrazines, including benzoylhydrazine, 2-hydroxybenzoylhydrazine, 4-hydroxybenzoylhydrazine and isonicotinylhydrazine, respectively. X-ray crystal and other structural analyses indicate that Er(III) and every ligand can form a binuclear Er(III) complex with nine-coordination and 1: 1 metal-to-ligand stoichiometry at the Er(III) centre. All the Er(III) complexes can bind to calf thymus DNA through intercalation with the binding constants at the order of magnitude 10(6) M(-1), and they may be used as potential anticancer drugs. All the Er(III) complexes have strong scavenging effects for hydroxyl radicals and superoxide radicals; however, complex containing active phenolic hydroxyl group shows stronger scavenging effects for hydroxyl radicals and complex containing N-heteroaromatic substituent shows stronger scavenging effects for superoxide radicals.

  19. Crystal structures, DNA-binding and cytotoxic activities studies of Cu(II) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases.

    PubMed

    Liu, Zeng-Chen; Wang, Bao-Dui; Li, Bo; Wang, Qin; Yang, Zheng-Yin; Li, Tian-Rong; Li, Yong

    2010-11-01

    Three novel 2-oxo-quinoline-3-carbaldehyde Schiff-bases and their Cu(II) complexes were synthesized. The molecular structures of Cu(II) complexes were determined by X-ray crystal diffraction. The DNA-binding modes of the complexes were also investigated by UV-vis absorption spectrum, fluorescence spectrum, viscosity measurement and EB-DNA displacement experiment. The experimental evidences indicated that the ligands and Cu(II) complexes could interact with CT-DNA (calf-thymus DNA) through intercalation, respectively. Comparative cytotoxic activities of ligands and Cu(II) complexes were also determined by MTT [3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide] and SRB (sulforhodamine B) methods. The results showed that the three Cu(II) complexes exhibited more effective cytotoxic activity against HL60 cells and HeLa cells than corresponding ligands. Also, CuL(3) showed higher cytotoxic activity than CuL(1) and CuL(2).

  20. Synthesis, characterization, fluorescence and catalytic activity of some new complexes of unsymmetrical Schiff base of 2-pyridinecarboxaldehyde with 2,6-diaminopyridine

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Ahmed, Doaa A.; Nassar, Doaa A.

    2015-06-01

    The Schiff base, 2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L) was synthesized by 1:1 condensation of 2-pyridinecarboxaldehyde and 2,6-diaminopyridine. The ligand and its complexes were characterized by different physicochemical studies. The analytical and spectroscopic tools indicated that the synthesized complexes have the general formulae: [M(L)Cl2]·2H2O (M = Cu(II), Ni(II) and Co(II)), [La(L)3](NO3)3·3H2O and [Sm(L)(ClO4)3]·3H2O. Vibrational spectra indicated the coordination of L to metal ions through its pyridyl and azomethine nitrogen atoms. The presence of water molecules in all reported complexes has been supported by TG/DTA studies. Kinetic and thermodynamic parameters were computed using Coats and Redfern method. The prepared ligand and its complexes exhibited intraligand (π-π∗) fluorescence and can potentially serve as photoactive materials. The catalytic activity of the complexes toward the decomposition of hydrogen peroxide was investigated. Both the ligand and its complexes have been screened for antibacterial activities.

  1. Synthesis, characterization, fluorescence and catalytic activity of some new complexes of unsymmetrical Schiff base of 2-pyridinecarboxaldehyde with 2,6-diaminopyridine.

    PubMed

    Ali, Omyma A M; El-Medani, Samir M; Ahmed, Doaa A; Nassar, Doaa A

    2015-06-05

    The Schiff base, 2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L) was synthesized by 1:1 condensation of 2-pyridinecarboxaldehyde and 2,6-diaminopyridine. The ligand and its complexes were characterized by different physicochemical studies. The analytical and spectroscopic tools indicated that the synthesized complexes have the general formulae: [M(L)Cl2]·2H2O (M=Cu(II), Ni(II) and Co(II)), [La(L)3](NO3)3·3H2O and [Sm(L)(ClO4)3]·3H2O. Vibrational spectra indicated the coordination of L to metal ions through its pyridyl and azomethine nitrogen atoms. The presence of water molecules in all reported complexes has been supported by TG/DTA studies. Kinetic and thermodynamic parameters were computed using Coats and Redfern method. The prepared ligand and its complexes exhibited intraligand (π-π∗) fluorescence and can potentially serve as photoactive materials. The catalytic activity of the complexes toward the decomposition of hydrogen peroxide was investigated. Both the ligand and its complexes have been screened for antibacterial activities.

  2. Crystal structures, DFT calculations and Hirshfeld surface analyses of three new cobalt(III) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Masoudi, Mohaddeseh; Behzad, Mahdi; Arab, Ali; Tarahhomi, Atekeh; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2016-10-01

    Three new Cobalt(III) Schiff base complexes were synthesized and characterized by spectroscopic methods and x-ray crystallography. The DFT optimized structures of the complexes agreed well with the corresponding x-ray structures. According to the calculated vibrational normal modes, the observed signals in the IR spectra of the complexes were assigned. The experimental UV-Vis spectra of the complexes were also discussed considering the calculated excited states and molecular orbitals. Hirshfeld surface analysis was carried out to study the inter-contact interactions in these complexes. These studies provided comprehensive description of such inter-contact interactions by means of an appealing graphical approach using 3D Hirshfeld surfaces and 2D fingerprint plots derived from the surfaces. It indicated the dominant role of various hydrogen intermolecular interactions such as H⋯H (above 60%), C⋯H/H⋯C (near 15%-20%), O⋯H/H⋯O (about 16% or 17% for structures with counter ion ClO4-) and H⋯F (17% for structure with counter ion PF6-) contacts into the crystal packing which are discussed in details.

  3. Template synthesis of square-planar Ni(II) complexes with new thiophene appended Schiff base ligands: Characterization, X-ray structure and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Biswas, Sujan; Mondal, Apurba Sau; Roy, Puspendu; Mondal, Tapan Kumar

    2015-11-01

    The square planar nickel(II) complexes have been synthesized by the reaction of nickel(II) chloride hexahydrate and the in situ condensed thiophene appended Schiff base ligands of thiophene-2-ethylamine with 3,5-dimethyl-2-hydroxybenzaldehyde or 3,5-dichloro-2-hydroxybenzaldehyde for [Ni(L1)2] (1) and [Ni(L2)2] (2) respectively. The complexes have been characterized by several spectroscopic techniques, viz. FT-IR, 1H NMR, absorption and emission spectroscopy. The complexes crystallize in monoclinic crystal system with C2/c space group for 1 and triclinic crystal system with P-1 space group for 2. In complex 1 the nickel sits on an inversion centre with symmetry -x, 2-y, -z. Cyclic voltammgrams of the complexes show quasi-reversible NiII/NiIII oxidation couple along with irreversible NiII/NiI reduction. Electronic structure and spectral properties are well interpreted by DFT and TDDFT calculations.

  4. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  5. Synthesis of enantiopure oxorhenium(V) and arylimidorhenium(V) "3 + 2" Schiff base complexes. X-ray diffraction, cyclic voltammetry, UV-vis, and circular dichroism characterizations.

    PubMed

    Béreau, V M; Khan, S I; Abu-Omar, M M

    2001-12-17

    Two new oxorhenium(V) and two new arylimidorhenium(V) complexes of the Schiff base ligands 2-hydroxybenzaldehyde-((1R,2S)-1-amino-2-indanol)imine (1) (H(2)L(1)) and 3-(1-adamantyl)-2-hydroxy-5-methylbenzaldehyde-((1R,2S)-1-amino- 2-indanol)imine (2) (H(2)L(2)) have been prepared from the reaction of the precursor Re(O)(PPh(3))(2)Cl(3), Re(NC(6)H(5))(PPh(3))(2)Cl(3), or Re(NC(6)H(4)OCH(3))(PPh(3))(2)Cl(3) and the free ligands H(2)L(1,2). The complexes Re(O)(HL(1))(L(1)) (3), Re(O)(HL(2))(L(2)) (4), Re(NC(6)H(5))(HL(1))(L(1)) (5), and Re(NC(6)H(4)OCH(3))(HL(1))(L(1)) (6) have been isolated and fully characterized by IR, (1)H NMR, circular dichroism, LRMS-FAB, and elemental analysis. All the complexes have a chiral center at rhenium. A single enantiomer is obtained in all cases. Suitable crystals of 3 and 5 were used in X-ray structural determinations. Crystal data: (3) C(32)H(27)N(2)O(5)Re.CH(2)Cl(2), orthorhombic, P2(1)2(1)2(1), a = 9.5599(16) A, b = 9.9579(16) A, c = 31.712(5) A, V = 3018.9(9) A(3), T = 100(2) K, Z = 4. (5) C(40)H(38)N(3)O(5)Re, monoclinic, P2(1), a = 9.286(3) A, b = 18.759(6) A, c = 9.957(3) A, beta = 102.817(6) degrees, V = 1691.3(10) A(3), T = 100(2) K, Z = 2. The major characteristic of these complexes is the presence of two coordination modes for the Schiff base ligands on rhenium, a tridentate ligand (noted L(1,2)) and another bidentate ligand (noted HL(1,2)). In the latter, the -OH group of the indanol is free and tilts away from the coordination sphere. X-ray structural analyses in conjunction with circular dichroism were used to assign the absolute configuration at rhenium (C). Cyclic voltammetry, UV-vis, and circular dichroism data are presented and discussed. The complexes were found to be highly stable and to resist reduction even when treated with organic phosphanes.

  6. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and DL-α-aminobutyric acid

    NASA Astrophysics Data System (ADS)

    Nair, M. Sivasankaran; Joseyphus, R. Selwin

    2008-09-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and DL-α-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H 2O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.

  7. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis.

    PubMed

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-05

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb=(7.6±0.21)×10(5)) between complex and protein have been obtained at 298K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2±0.11)×10(6)M(-1). Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  8. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    NASA Astrophysics Data System (ADS)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  9. Synthesis, crystal structure, DFT study and photocatalytic property of a new Ni(II) complex of a symmetric N2O4-donor bis-Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Meng, Xiangmin; Fan, Chuanbin; Fan, Yuhua; Bi, Caifeng

    2016-03-01

    A new complex, Ni(C22H26N2O10S2)·2CH3OH, with a sexidentate (N2O4) symmetric bis-Schiff base ligand (C22H26N2O10S2 = 1,2-bis(2-methoxy-6-formylphenoxy)ethane-2-aminoethane-sulfonic acid) has been synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray crystal structure shows that the Ni(II) atom of the complex is six-coordinated by two nitrogens from Cdbnd N groups, two oxygens from ether groups and two hydroxyl oxygens from sulfonic acid groups in the mono-ligand, forming a distorted octahedral geometry. Theoretical study of the complex is carried out by density functional theory (DFT) method and the B3LYP method employing the 6-3l+G* basis set. Moreover, the complex proved to be good candidate for the photocatalytic degradation of methylene blue.

  10. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  11. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach.

    PubMed

    Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S

    2015-02-25

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  12. Solution and solid-state characterization of europium and gadolinium Schiff base complexes and assessment of their potential as contrast agents in magnetic resonance imaging

    SciTech Connect

    Smith, P.H.; Brainard, J.R.; Morris, D.E.; Jarvinen, G.D.; Ryan, R.R. )

    1989-09-13

    Two lanthanide Schiff base macrocyclic complexes, LnAM(OAc){sub 2}Cl{center dot}4H{sub 2}O (Ln = Eu, Gd; HAM - HexaAzaMacrocycle = C{sub 22}H{sub 26}N{sub 6}), have been characterized in view of the potential of the Gd complex as a magnetic resonance imaging (MRI) contrast agent. The relaxivity of GdHAM(OAc){sub 2}Cl was measured at 300 and 20 MHz and is as high as that for the gadolinium aquo ion. The number of coordinated waters, q, was measured by comparison of the luminescent lifetimes of EuHAM(OAc){sub 2}Cl in H{sub 2}O and D{sub 2}O and found to be between three and four. The complex GdHAM(OAc){sub 2}Cl{center dot}4H{sub 2}O was characterized by single-crystal X-ray diffraction. The complex crystallizes in space group P{bar 1} with Z = 2, a = 10.032 (2) {angstrom}, b = 12.765 (2) {angstrom}, c = 13.668 (3) {angstrom}, {alpha} = 69.190{degree} (9){degree}, {beta} = 72.405{degree} (9){degree}, and {gamma} = 74.07{degree} (1){degree}.

  13. Effect of structure and composition of nickel(II) complexes with salicylidene Schiff base ligands on their DNA/protein interaction and cytotoxicity.

    PubMed

    Li, Peng; Niu, MeiJu; Hong, Min; Cheng, Shuang; Dou, JianMin

    2014-08-01

    Three new salicylidene Schiff base nickel(II) complexes [Ni(L(1))(CH3COOH)2]2 (1), [Ni2(L(1))2(CH3OH)] (2), [Ni(L(2))2]·3H2O (3) {H2L(1)=N,N'-bis(salicylidene)-3,6-dioxa-1,8-diaminooctane, HL(2)=2-ethyl-2-(2-hydroxybenzylideneamino)propane-1,3-diol} were synthesized and characterized fully by structural, analytical, and spectral methods. The single-crystal X-ray structures of complexes 1 and 2 exhibit the symmetrical ligands coordinated to the nickel(II) ion in a tetradentate fashion via ONNO donor atoms, while the unsymmetrical ligand L(2) presented a ONO tridentate coordination mode in complex 3. The nickel(II) ions lie in the six-coordinated octahedral environment for the mononuclear complexes 1 and 3, along with dinuclear complex 2. The interaction of the complexes with calf thymus DNA (CT-DNA) has been explored by absorption and emission titration methods, which revealed that complexes 1-3 could interact with CT-DNA through intercalation. The interactions of the complexes with bovine serum albumin (BSA) were also investigated using UV-Vis, fluorescence and synchronous fluorescence spectroscopic methods. The results indicated that all of the complexes could quench the intrinsic fluorescence of BSA in a static quenching process. Further, the in vitro cytotoxic effect of the complexes examined on cancerous cell lines such as human lung carcinoma cell line (A549), human colon carcinoma cell lines (HCT-116), human promyelocytic leukemia cells (HL-60) and colonic cancer cell line Caco-2 showed that all three complexes exhibited substantial cytotoxic activity.

  14. Cu(II)-azide polynuclear complexes of Cu4 building clusters with Schiff-base co-ligands: synthesis, structures, magnetic behavior and DFT studies.

    PubMed

    Mukherjee, Sandip; Mukherjee, Partha Sarathi

    2013-03-21

    Three new copper-azido complexes [Cu(4)(N(3))(8)(L(1))(2)](n) (1), [Cu(4)(N(3))(6)(L(2))(2)(H(2)O)(2)] (2), and [Cu(4)(N(3))(6)(L(3))(2)](n) (3) [L(1) is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL(2) and HL(3) are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO(3))(2)·3H(2)O and an excess of NaN(3). Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu(II)(4) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

  15. Seven phenoxido-bridged complexes encapsulated by 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands: single-molecule magnet, magnetic refrigeration and luminescence properties.

    PubMed

    Wang, Shi-Yu; Wang, Wen-Min; Zhang, Hong-Xia; Shen, Hai-Yun; Jiang, Li; Cui, Jian-Zhong; Gao, Hong-Ling

    2016-02-28

    Seven dinuclear complexes based on 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands, [RE2(hfac)4L2] (RE = Y (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6) and Lu (7); hfac(-) = hexafluoroacetylacetonate; HL = 2-[(4-chloro-phenylimino)-methyl]-8-hydroxyquinoline), have been synthesized, and structurally and magnetically characterized. Complexes 1-7 have similar dinuclear structures, in which each RE(III) ion is eight coordinated by two L(-) and two hfac(-) ligands in a distorted dodecahedron geometry. The luminescence spectra indicate that complex 3 exhibits characteristic Tb(III) ion luminescence, while 1 and 7 show HL ligand luminescence. The magnetic studies reveal that 2 features a magnetocaloric effect with the magnetic entropy change of -ΔSm = 16.83 J kg(-1) K(-1) at 2 K for ΔH = 8 T, and 4 displays slow magnetic relaxation behavior with the anisotropic barrier of 6.7 K and pre-exponential factor τ0 = 5.3 × 10(-6) s.

  16. A new tridentate Schiff base Cu(II) complex: synthesis, experimental and theoretical studies on its crystal structure, FT-IR and UV-Visible spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran; Setoodeh, Nasim; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2013-06-01

    A new Cu(II) complex [Cu(L)(NCS)] has been synthesized, using 1-(N-salicylideneimino)-2-(N,N-methyl)-aminoethane as tridentate ONN donor Schiff base ligand (HL). The dark green crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FT-IR) and UV-Visible spectra. Electronic structure calculations at the B3LYP and MP2 levels of theory are performed to optimize the molecular geometry and to calculate the UV-Visible and FT-IR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TD-DFT) method is used to calculate the electronic transitions of the complex. A scaling factor of 1.015 is obtained for vibrational frequencies computed at the B3LYP level using basis sets 6-311G(d,p). It is found that solvent has a profound effect on the electronic absorption spectrum. The UV-Visible spectrum of the complex recorded in DMSO and DMF solution can be correctly predicted by a model in which DMSO and DMF molecules are coordinated to the central Cu atom via their oxygen atoms.

  17. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities.

    PubMed

    Abdel-Rahman, Laila H; Abu-Dief, Ahmed M; El-Khatib, Rafat M; Abdel-Fatah, Shimaa Mahdy

    2016-12-01

    The complexes of Fe(II), Cd(II) and Zn(II) with Schiff base derived from 2-amino-3-hydroxypyridine and 3-methoxysalicylaldehyde have been prepared. Melting points, decomposition temperatures, Elemental analyses, TGA, conductance measurements, infrared (IR) and UV-Visible spectrophotometric studies were utilized in characterizing the compounds. The UV-Visible spectrophotometric analysis revealed 1:1 (metal-ligand) stoichiometry for the three complexes. In addition to, the prepared complexes have been used as precursors for preparing their corresponding metal oxides nanoparticles via thermal decomposition. The structures of the nano-sized complexes and their metal oxides were characterized by X-ray powder diffraction and transmittance electron microscopy. Moreover, the prepared Schiff base ligand, its complexes and their corresponding nano-sized metal oxides have been screened in vitro for their antibacterial activity against three bacteria, gram-positive (Microccus luteus) and gram-negative (Escherichia coli, Serratia marcescence) and three strains of fungus. The metal chelates were shown to possess more antimicrobial activity than the free Schiff-base chelate and their nano-sized metal oxides have the highest activity. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity mensuration and gel electrophoresis. The DNA binding constants reveal that all these complexes interact with DNA through intercalative binding mode. Furthermore, the cytotoxic activity of the prepared Schiff base complexes on human colon carcinoma cells, (HCT-116 cell line) and hepatic cellular carcinoma cells, (HepG-2) showed potent cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard.

  18. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  19. A new bioactive Schiff base ligands derived from propylazo-N-pyrimidin-2-yl-benzenesulfonamides Mn(II) and Cu(II) complexes: synthesis, thermal and spectroscopic characterization biological studies and 3D modeling structures.

    PubMed

    Tawfik, Abdelrazak M; El-Ghamry, Mosad A; Abu-El-Wafa, Samy M; Ahmed, Naglaa M

    2012-11-01

    New series of Schiff base ligand H(2)L and their Cu(II) and Mn(II) complexes derived from azosulfapyrimidine were synthesized and characterized by elemental and thermal studies conductance measurements IR, electronic and EPR spectra. 3D modeling of the ligand indicate that azo group does not participate in complex formation and surface potential on one of the ligand under study indicate that electron density around azomethine groups are much higher than the azo group therefore coordination takes place around azomethine groups. The variety in the geometrical structures depends on the nature of both the metal ions and the Schiff base ligands. The thermo kinetic parameters are calculated and discussed. The biological activities of the ligands and complexes have been screened in vitro against some bacteria and fungi to study their capacity to inhibit their growth and to study the toxicity of the compounds.

  20. A new bioactive Schiff base ligands derived from propylazo-N-pyrimidin-2-yl-benzenesulfonamides Mn(II) and Cu(II) complexes: Synthesis, thermal and spectroscopic characterization biological studies and 3D modeling structures

    NASA Astrophysics Data System (ADS)

    Tawfik, Abdelrazak M.; El-ghamry, Mosad A.; Abu-El-Wafa, Samy M.; Ahmed, Naglaa M.

    2012-11-01

    New series of Schiff base ligand H2L and their Cu(II) and Mn(II) complexes derived from azosulfapyrimidine were synthesized and characterized by elemental and thermal studies conductance measurements IR, electronic and EPR spectra. 3D modeling of the ligand indicate that azo group does not participate in complex formation and surface potential on one of the ligand under study indicate that electron density around azomethine groups are much higher than the azo group therefore coordination takes place around azomethine groups. The variety in the geometrical structures depends on the nature of both the metal ions and the Schiff base ligands. The thermo kinetic parameters are calculated and discussed. The biological activities of the ligands and complexes have been screened in vitro against some bacteria and fungi to study their capacity to inhibit their growth and to study the toxicity of the compounds.

  1. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent

    PubMed Central

    Ejidike, Ikechukwu P.; Ajibade, Peter A.

    2016-01-01

    The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(L)Cl2(H2O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl2] > [(BZEBOD)RuCl2] > [(MOABOD)RuCl2] > [Vit. C] > [rutin] > [(METBOD)RuCl2], and ABTS radical in the order: [(PAEBOD)RuCl2] < [(MOABOD)RuCl2] < [(BZEBOD)RuCl2] < [(METBOD)RuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay. PMID:26742030

  2. In vitro DNA binding profile of enantiomeric dinuclear Cu(II)/Ni(II) complexes derived from l-/d-histidine-terepthaldehyde reduced Schiff base as potential chemotherapeutic agents.

    PubMed

    Yousuf, Imtiyaz; Arjmand, Farukh

    2016-11-01

    New chiral reduced Schiff base ligands, L1 and L2 derived from l-/d-histidine and terepthaldehyde, and their Cu(II) and Ni(II) dinuclear complexes 1 &2 (a and b) were synthesized and thoroughly characterized by various spectroscopic techniques. Comparative binding profile of both l-/d-enantiomeric Cu(II) and Ni(II) complexes with ct-DNA was studied by employing optical and spectroscopic techniques to evaluate their enantiopreferential selectivity towards molecular target DNA and thereby explore their relative chemotherapeutic potential. Quantitative assessment of DNA binding propensity was ascertained by calculating Kb, K and Ksv values of 1 &2 (a and b) which demonstrated higher binding affinity of l-enantiomeric Cu(II) complex, 1a and followed the order as 1a>1b>2a>2b. Scanning electron microscopy (SEM) was used to analyze the morphological changes of the DNA condensate in presence of complexes 1 (a and b). The SEM micrographs condensates revealed morphological transitions and formation of different structural features implicating the condensation process between the complexes and biomolecule occurred to form compact massive structures. The gel electrophoretic assay of complex 1a was carried out with pBR322 plasmid DNA which revealed an efficient cleaving ability of the complex via oxidative pathway with the involvement of singlet oxygen ((1)O2) and the superoxide anion (O2(•-)) radicals as the ROS responsible the cleavage reactions. Molecular docking studies of 1 (a and b) with DNA revealed selective recognition of G-C residues of the narrow minor groove of the DNA duplex and complex 1a demonstrated binding affinity towards DNA ascertained from its higher binding energy values. Furthermore, the cytotoxic assessment of 1a was examined on a panel of cancer cell lines of different histological origin employing SRB assay which revealed remarkably good cytotoxic activity towards HL60, HeLa and MCF7 cancer cell lines.

  3. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    NASA Astrophysics Data System (ADS)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  4. Synthesis of four binuclear copper(II) complexes: Structure, anticancer properties and anticancer mechanism.

    PubMed

    Qi, Jinxu; Liang, Shichu; Gou, Yi; Zhang, Zhenlei; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-01-01

    Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs and have been extensively studied. Therefore, four binuclear copper(II) compounds derived from Schiff base thiosemicarbazones (L1-L4), namely [CuCl(L1)]2 (C1), [CuNO3(L2)]2 (C2), [Cu(NCS) (L3)]2 (C3) and [Cu(CH3COO) (L4)]2 (C4) were synthesized and characterized. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells. The formation of reactive oxygen species (ROS), change in mitochondrial membrane potential and western blot analysis revealed that Cu compounds could induce cancer cell apoptosis through the intrinsic ROS-mediated mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins.

  5. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; Ismail, Nabawia M.; Ismael, Mohamed; Abu-Dief, Ahmed M.; Ahmed, Ebtehal Abdel-Hameed

    2017-04-01

    This study highlights synthesis and characterization of a tetradentate ONNO Schiff base ligand namely (1, 1‧- (pyridine-2, 3-dimethyliminomethyl) naphthalene-2, 2‧-diol) and hereafter denotes as "HNDAP″ and selected metal complexes including Mn(II), Fe(II), Co(II) and Cd(II) as a central metal. HNDAP was synthesized from 1:2 M ratio condensation of 2, 3-diaminopyridine and 2- hydroxy-1-naphthaldhyde, respectively. The stoichiometric ratios of the prepared complexes were estimated using complementary techniques such as; elemental analyses (-C, H, N), FT-IR, magnetic measurements and molar conductivity. Furthermore, their physicochemical studies were carried out using thermal TGA, DTA and kinetic-thermodynamic studies along with DFT calculations. The results of elemental analyses showed that these complexes are present in a 1:1 metal-to- ligand molar ratio. Moreover, the magnetic susceptibilities values at room temperature revealed that Mn(II), Fe(II) and Co(II) complexes are paramagnetic in nature and have an octahedral (Oh) geometry. In contrast, Cd(II) is diamagnetic and stabilizes in square planar sites. The molar conductivity measurements indicated that all complexes are nonelectrolytes in dimethyl formamide. Spectral data suggested that the ligand is as tetradentate and coordinated with Co(II) ion through two phenolic OH and two azomethine nitrogen. However, for Mn(II), Fe(II) and Cd(II) complexes, the coordination occurred through two phenolic oxygen and two azomethine nitrogen with deprotonation of OH groups. The proposed chemical structures have been validated by quantum mechanics calculations. Antimicrobial activities of both the HNDAP Schiff base ligand and its metal complexes were tested against strains of Gram (-ve) E. coli and Gram (+ve) B. subtilis and S. aureus bacteria and C. albicans, A. flavus and T. rubrum fungi. All the prepared compounds showed good results of inhibition against the selected pathogenic microorganisms. The investigated

  6. Spectroscopic, thermal characterization and cytotoxic activity of bi-, tri- and tetra-nuclear Pd(II) and Pt(II) complexes with diSchiff base ligands

    NASA Astrophysics Data System (ADS)

    Hegazy, Wael Hussein

    2014-10-01

    In this paper; new di-, tri-, and tetra-nuclear Pd(II) and Pt(II) complexes of N,N‧-bis(3,4-dihydroxybenzylidene)ethan-1,2-diamine (EDH4), N,N‧-bis(3,4-dihydroxy-benzylidene)-benzene-1,2-diamine (PDH4) and N,N‧-bis-(3,4-dihydroxybenzylidene)-4,5-dimethyl-1,2-diamine (MPDH4) ligands were synthesized by two different methods. The first method involve the synthesis of the three ligands from condensation reaction of 3,4-dihydroxybenzaldehyde (L‧H2) with ethylenediamine (en), o-phenylenediamine (o-PD), or 4,5-dimethyl-1,2-phenylendiamine (DMPD) in a mole ratio of 2:1 followed by the reaction of the resulting Schiff bases ligands with Pd(II) or Pt(II) ions in the presence of 2,2‧-dipyridyl (L) to form the di- and tri-nuclear metal complexes. The second method involve the condensation of the Pd complex LPd(II)L‧, (L = 2,2‧-dipyridyl, L‧ = 4-formylbenzene-1,2-bis(olate)) with en, o-PD, or DMPD in a mole ratio of 2:1, respectively, followed by reaction with PdCl2 to form di-, tri-, and tetra-nuclear palladium(II) complexes, respectively. Structures of ligands and metal complexes are characterized by physical properties, FT-IR spectra and nuclear magnetic resonance. The geometries of metal complexes are suggested according to elemental analysis, electronic absorption spectra, thermal analysis, atomic absorption, magnetic susceptibility and molar conductance. Cytotoxic activity against lung large cell carcinoma (H460), prostate carcinoma (DU145), breast adenocarcinoma (MCF-7), amelanotic melanoma (M-14), colon adenocarcinoma (HT-29), and chronic myelogenous leukemia (K562) is also reported.

  7. Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies

    SciTech Connect

    Saeednia, S.; Iranmanesh, P.; Ardakani, M. Hatefi; Mohammadi, M.; Norouzi, Gh.

    2016-06-15

    Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.

  8. Dimerization, redox properties and antioxidant activity of two manganese(III) complexes of difluoro- and dichloro-substituted Schiff-base ligands.

    PubMed

    Palopoli, Claudia; Gómez, Guillermo; Foi, Ana; Doctorovich, Fabio; Mallet-Ladeira, Sonia; Hureau, Christelle; Signorella, Sandra

    2017-02-01

    Two mononuclear Mn(III) complexes [Mn(3,5-F2salpn)(H2O)2][B(C6H5)4]·2H2O (1·2H2O) and [Mn(3,5-Cl2salpn)(OAc)(H2O)]·H2O (2·H2O), where H2salpn=1,3-bis(salicylidenamino)propane, have been prepared and characterized. The crystal structure of 1·H2O shows that this complex forms μ-aqua dimers with a short Mn⋯Mn distance of 4.93Å. Under anaerobic conditions, the two complexes are stable in solution and possess trans-diaxial symmetry with the tetradentate Schiff base ligand symmetrically arranged in the equatorial plane. When left in air, these complexes slowly dimerize to yield high-valent [Mn(IV)2(3,5-X2-salpn)2(μ-O)2] in which each X2-salpn ligand wraps the two Mn ions. This process is favored in basic medium where the deprotonation of the bound water molecule is concomitant with air oxidation. The two complexes catalyze the dismutation of superoxide (superoxide dismutase (SOD) activity) and peroxide (catalase (CAT) activity) in basic medium. The phenyl-ring substituents play an important role on the CAT reaction but have little effect on SOD activity. Kinetics and spectroscopic results indicate that 1 and 2 catalyze H2O2 disproportionation through a cycle involving Mn(III)2 and Mn(IV)2 dimers, unlike related complexes with a more rigid and smaller chelate ring, which employ Mn(III)/Mn(V)O monomers.

  9. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  10. Synthesis and characterization of novel Cu (II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: A new route to CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Aly, Hisham M.; Moustafa, Moustafa E.; Nassar, Moustafa Y.; Abdelrahman, Ehab A.

    2015-04-01

    Cu (II) complexes, were synthesized with newly derived biologically active 1,2,4-triazole Schiff bases. The Schiff bases were synthesized by condensation of 3-substituted-4-amino-5-mercapto-1,2,4-triazole with dibenzoylmethane. The synthesized compounds were characterized using elemental analysis, magnetic moment, thermal analysis and spectral tools (FT-IR, 1HNMR, ESR, and UV-Vis spectroscopy). All the synthesized complexes are nonelectrolytes in N,N-dimethylformamide. The synthesized Schiff bases and their Cu (II) complexes have been screened for antibacterial (Escherichia coli &Staphylococcus aureus) and antifungal (Aspergillus flavus &Candida albicans) activity using a modified Bauer-Kirby method. Interestingly, the synthesized Cu (II) complexes were used as precursors for CuO nanoparticles which were characterized using XRD, HR-TEM, FT-IR and UV-Vis spectroscopy. The photocatalytic activity of the prepared CuO nanoparticles was studied by performing the degradation of methylene blue dye under UV illumination in the presence of H2O2 and the results showed that the maximum percent of the degradation of methylene blue dye (MB) was found 96.18% after 360 min.

  11. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  12. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  13. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties.

    PubMed

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-15

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  14. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry.

    PubMed

    Franks, Mark; Gadzhieva, Anastasia; Ghandhi, Laura; Murrell, David; Blake, Alexander J; Davies, E Stephen; Lewis, William; Moro, Fabrizio; McMaster, Jonathan; Schröder, Martin

    2013-01-18

    Five-coordinate Zn(II), Ni(II), and Cu(II) complexes containing pentadentate N(3)O(2) Schiff base ligands [1A](2-) and [1B](2-) have been synthesized and characterized. X-ray crystallographic studies reveal five coordinate structures in which each metal ion is bound by two imine N-donors, two phenolate O-donors, and a single amine N-donor. Electron paramagnetic resonance (EPR) spectroscopic studies suggest that the N(3)O(2) coordination spheres of [Cu(1A)] and [Cu(1B)] are retained in CH(2)Cl(2) solution and solid-state superconducting quantum interference device (SQUID) magnetometric studies confirm that [Ni(1A)] and [Ni(1B)] adopt high spin (S = 1) configurations. Each complex exhibits two reversible oxidation processes between +0.05 and +0.64 V vs [Fc](+)/[Fc]. The products of one- and two-electron oxidations have been studied by UV/vis spectroelectrochemistry and by EPR spectroscopy which confirm that each oxidation process for the Zn(II) and Cu(II) complexes is ligand-based with sequential formation of mono- and bis-phenoxyl radical species. In contrast, the one-electron oxidation of the Ni(II) complexes generates Ni(III) products. This assignment is supported by spectroelectrochemical and EPR spectroscopic studies, density functional theory (DFT) calculations, and the single crystal X-ray structure of [Ni(1A)][BF(4)] which contains Ni in a five-coordinate distorted trigonal bipyramidal geometry.

  15. Influence of the geometry around the manganese ion on the peroxidase and catalase activities of Mn(III)-Schiff base complexes.

    PubMed

    Vázquez-Fernández, M Ángeles; Bermejo, Manuel R; Fernández-García, M Isabel; González-Riopedre, Gustavo; Rodríguez-Doutón, M Jesús; Maneiro, Marcelino

    2011-12-01

    The peroxidase and catalase activities of eighteen manganese-Schiff base complexes have been studied. A correlation between the structure of the complexes and their catalytic activity is discussed on the basis of the variety of systems studied. Complexes 1-18 have the general formulae [MnL(n)(D)(2)](X)(H(2)O/CH(3)OH)(m), where L(n)=L(1)-L(13); D=H(2)O, CH(3)OH or Cl; m=0-2.5 and X=NO(3)(-), Cl(-), ClO(4)(-), CH(3)COO(-), C(2)H(5)COO(-) or C(5)H(11)COO(-). The dianionic tetradentate Schiff base ligands H(2)L(n) are the result of the condensation of different substituted (OMe-, OEt-, Br-, Cl-) hydroxybenzaldehyde with diverse diamines (1,2-diaminoethane for H(2)L(1)-H(2)L(2); 1,2-diamino-2-methylethane for H(2)L(3)-H(2)L(4); 1,2-diamino-2,2-dimethylethane for H(2)L(5); 1,2-diphenylenediamine for H(2)L(6)-H(2)L(7); 1,3-diaminopropane for H(2)L(8)-H(2)L(11); 1,3-diamino-2,2-dimethylpropane for H(2)L(12)-H(2)L(13)). The new Mn(III) complexes [MnL(1)(H(2)O)Cl](H(2)O)(2.5) (2), [MnL(2)(H(2)O)(2)](NO(3))(H(2)O) (4), [MnL(6)(H(2)O)(2)][MnL(6)(CH(3)OH)(H(2)O)](NO(3))(2)(CH(3)OH) (8), [MnL(6)(H(2)O)(OAc)](H(2)O) (9) and [MnL(7)(H(2)O)(2)](NO(3))(CH(3)OH)(2) (12) were isolated and characterised by elemental analysis, magnetic susceptibility and conductivity measurements, redox studies, ESI spectrometry and UV, IR, paramagnetic (1)H NMR, and EPR spectroscopies. X-ray crystallographic studies of these complexes and of the ligand H(2)L(6) are also reported. The crystal structures of the rest of the complexes have been previously published and herein we have only revised their study by those techniques still not reported (EPR and (1)H NMR for some of these compounds) and which help to establish their structures in solution. Complexes 1-12 behave as more efficient mimics of peroxidase or catalase in contrast with 13-18. The analysis between the catalytic activity and the structure of the compounds emphasises the significance of the existence of a vacant or a labile position in the

  16. Spectral studies of copper(II) complexes of 6-(3-thienyl) pyridine-2-thiosemicarbazone

    SciTech Connect

    Mahjoub, Omima Abdalla; Farina, Yang

    2014-09-03

    Two novel copper(II) complexes [Cu(HL)Cl]Cl.H{sub 2}O (1) and [Cu(L)NO{sub 3}]Ðœ‡H{sub 2}O (2) of the three NNS donor thiosemicarbazone ligand 6-(3-thienyl) pyridine-2-thiosemicarbazone have been synthesized. The ligand and its copper(II) complexes were characterized by elemental analysis (C, H, N, and S), FT-IR, UV-visible, magnetic susceptibility and molar conductance. The thiosemicarbazone is present either as the thione form in complex 1 or as thiol form in complex 2 and is coordinated to copper(II) atom via the pyridine nitrogen atom, the azomethine nitrogen atom and the sulfur atom. The physicochemical and spectral data suggest square planar geometry for copper(II) atoms.

  17. Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling and analysis of some oxovanadium(IV) complexes involving the O, N-donor environment of pyrazolone-based sulfa drug Schiff bases

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Rajput, S.

    2006-08-01

    Four new oxovanadium(IV) complexes, formed by the interaction of vanadyl sulfate pentahydrate and the Schiff bases derived from 3-methyl-1-phenyl-4-valeryl-2-pyrazolin-5-one and the sulfa drugs, N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulfadiazine (L 1H), N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-)sulfaguanidine (L 2H), N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulphanilamide (L 3H) and N'(-3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulphamethoxazole (L 4H) in aqueous ethanol are described. The resulting complexes were characterized by elemental analyses, molar conductances, magnetic and decomposition temperature measurements, cyclic voltammetry, electron spin resonance, infrared and electronic spectral studies. They have the composition [VO(L) 2]·H 2O, where LH=Schiff base L 1H, L 2H, L 3H or L 4H mentioned above. A square-pyramidal structure having a slight ⋯V dbnd6 O⋯V dbnd6 O⋯ type interaction has been proposed for these complexes.

  18. Synthesis, characterization and spectroscopy studying of some metal complexes of a new Schiff base ligand; X-ray crystal structure, NMR and IR investigation of a new dodecahedron Cd(II) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Rezaeivala, Majid; Khalili, Maryam; Notash, Behrouz; Karimi, Javad

    2016-12-01

    Some new [Cd(H2L1)(NO3)]ClO4 (1), [Mn(H2L1)](ClO4)2 (2), [Ni(H2L1)](ClO4)2 (3) and [Cu(H2L1)](ClO4)2 (4) complexes were prepared by the reaction of a Schiff base ligand and M (II) metal ions in equimolar ratios (M = Cd, Mn, Ni and Cu). The ligand H2L1 was synthesized by reaction of 2-[2-(3-formyl phenoxy)propoxy]benzaldehyde and ethanol amine and characterized by IR, 1H,13C NMR spectroscopy and elemental analysis. The synthesized complexes were characterized with IR and elemental analysis in all cases and 1H, 13C NMR, and X-ray in the case of Cd(II) complex. The X-ray crystal structure of compound 1 showed that all nitrogen and oxygen atoms of Schiff base ligand (N2O4) and a molecule of nitrate with two donor oxygen atom have been coordinated to the metal ion and the Cd(II) ion is in an eight-coordinate environment that is best described as a distorted dodecahedron geometry.

  19. Rhodium(III)-triphenylphosphine complex with NNS donor thioether containing Schiff base ligand: Synthesis, spectra, electrochemistry and catalytic activity

    NASA Astrophysics Data System (ADS)

    Biswas, Sujan; Sarkar, Deblina; Kundu, Subhankar; Roy, Puspendu; Mondal, Tapan Kumar

    2015-11-01

    New rhodium(III)-triphenylphosphine complex, [Rh(PPh3)(L)Cl2](PF6) (1) with thioether containing NNS donor ligand (L) (L = 2-(methylthio)-N-((pyridine-2-yl)methylene)benzenamine) has been synthesized and characterized. The pseudo octahedral geometry of the complex has been confirmed by single crystal X-ray analysis. The electronic structure, redox properties, absorption and emission properties of the complexes have been interpreted by DFT and TDDFT calculations. The complex effectively catalyzed the transfer hydrogenation reaction of ketones in 2-propanol and oxidation of alcohols in presence of NMO.

  20. Copper(II) complexes with heterocyclic hydroxyimino-containing ligands

    SciTech Connect

    Kogan, V.A.; Burlov, A.S.; Popov, L.D.; Lukov, V.V.; Koshchienko, Yu.V.; Tsupak, E.B.; Barchan, G.P.; Chigarenko, G.G.; Bolotnikov, V.S.

    1988-05-01

    The reaction of oximes (R = Ph (L'), C=N (L'')) with the copper(II) salts CuA/sub 2/ in methanol has given the complexes CuL/sub 2/ ' x H/sub 2/O and CuL/sub 2//sup ''/ x 2H/sub 2/O (I) (A = Acet/sup -/), CuHLCl/sub 2/ x H/sub 2/O (II) (A = Cl/sup -/), CuLOH(ClO/sub 4/)/sub 2/ x 2H/sub 2/O (III) (A = ClO/sub 4//sup -/) and the complexes Cu/sub 3/L/sub 3//sup '/OH(NO/sub 3/)/sub 2/ and Cu/sub 3/L/sub 3//sup ''/(OH)/sub 2/NO/sub 3/ (IV) (A = NO/sub 3//sup -/). Their physicochemical properties have been studied by the methods of IR spectroscopy and magnetochemistry. It has been shown that complexes I have a chelate structure and that their magnetic moments are not dependent on the temperature. An anti-ferromagnetic exchange interaction takes place in complexes II-IV. On the basis of magnetochemical measurements over a broad temperature range and data calculated in the framework of the Heisenberg-Dirac-Van Vleck model of isotropic exchange interactions, a dimeric structure has been proposed for the complexes of type II, and a trinuclear cluster structure has been proposed for complexes III and IV.

  1. Binding Studies of a New Water-Soluble Iron(III) Schiff Base Complex to DNA Using Multispectroscopic Methods

    PubMed Central

    Shahabadi, Nahid; Ghasemian, Zeinab; Hadidi, Saba

    2012-01-01

    A novel iron(III) complex [Fe(SF)](ClO4)3.2H2O; in which SF = N,N0-bis{5-[(triphenylphosphonium chloride)-methyl] salicylidene}-o-phenylenediamine) has been synthesized and characterized using different physicochemical methods. The binding of this complex with calf thymus (CT) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, voltammetric studies, and viscosity measurements. The results showed that this complex can bind to DNA via external and groove binding modes. PMID:22899896

  2. Synthetic and spectroscopic characterization of organotin(IV) complexes of biologically active Schiff bases derived from sulpha drugs.

    PubMed

    Gupta, M K; Singh, Har Lal; Varshney, S; Varshney, A K

    2003-01-01

    A number of diorganotin(IV) complexes with Schiffbase have been synthesized and characterized by elemental analysis, conductance measurements, molecular weight determinations, infrared, electronic and multinuclear magnetic resonance ((1)H, (13)C and (119)Sn NMR) spectral data. The molar conductivity data shows non-electrolytic nature of complexes. The bidentate nature of the ligands is inferred from IR and NMR spectral studies. The antimicrobial activities of the ligands and their tin complexes have been screened in vitro against the organism Escherichia coli; Staphylococus aureus, Prouteus mirabilis, Bacillus thurengiensis, Penicillium co.,sogenum, Aspergillus niger and Fusarium oxysporum.

  3. Spectral studies of complexes of nickel(II) with tetradentate schiff bases having N2O2 donor groups.

    PubMed

    Garg, B S; Nandan Kumar, Deo

    2003-01-15

    Complexes of nickel(II) of N,N'-disalicylidene-1,2-phenylenediamine (H2dsp), N,N'-disalicylidene-3,4-diaminotoluene (H2dst), 4-nitro-N,N'-disalicylidene-1,2-phenylenediamine (H2ndsp) and N,N'-disalicylidene ethylenediamine (H2salen) have been prepared and characterised by elemental analysis, electronic, IR, magnetic susceptibility measurement, 1H NMR and thermal studies. TG studies show that the Ni(dsp) and Ni(salen) complex decomposed in one step and Ni(dst) and Ni(ndsp) complex in two steps. Kinetic and thermodynamic parameters were computed from the thermal decomposition data. The activation energy of either one step decomposition or two step decomposition of complexes lies 72-95 kJ mol(-1) range.

  4. Microwave-assisted synthesis, characterization and biological activities of organotin (IV) complexes with some thio Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Ran Vir; Chaudhary, Pratibha; Chauhan, Shikha; Swami, Monika

    2009-03-01

    Microwave-assisted synthesis and characterization of the organotin (IV) complexes are reported. Trigonal bipyramidal and octahedral complexes of tin (IV) have been synthesized by the reaction of dimethyltin (IV) dichloride with 4-nitrobenzanilide- S-benzyldithiocarbazate (L 1H), 4-chlorobenzanilide- S-benzyldithiocarbazate (L 2H), 4-nitrobenzanilidebenzothiazoline (L 3H) and 4-chlorobenzanilidebenzothiazoline (L 4H). The complexes so formed were characterized by elemental analysis, conductance measurements, molecular weight determinations and spectral data viz. IR, UV-Visible, 1H and 13C NMR. The anti-microbial activities of the ligands and their corresponding organotin (IV) complexes have been screened against various strains of bacteria and fungi. Antifertility activity against male albino rats has also been reported.

  5. Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane

    NASA Astrophysics Data System (ADS)

    El-Tabl, Abdou Saad; El-Saied, Fathey A.; Plass, Winfried; Al-Hakimi, Ahmed Noman

    2008-11-01

    A new series of mono and binuclear Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), La(III), Ru(III), Hf(IV), ZrO(II) and UO 2(II) complexes of phenylaminodibenzoylhydrazone have been synthesized and characterized by elementals analyses, IR UV-vis spectra, magnetic moments, conductances, thermal analyses (DTA and TGA) and electron spin resonance (ESR) measurements. The IR spectral data show that, the ligand behaves as a neutral bidentate type ( 15 and 16), monobasic bidentate type ( 6), or monobasic tridentate type ( 5, 7, 8, 10, 11, 13, 14, 17- 21) or dibasic tridentate type 2- 4, 9 and 12 towards the metal ion. Molar conductances in DMF solution indicate that, the complexes are non-electrolytes. The ESR spectra of solid complexes ( 9 and 10) show axial and non-axial types indicating a d ground state with significant covalent bond character. However, complexes ( 11 and 12), show isotropic type, indicating manganese(II) octahedral geometry. Antibacterial and antifungal tests of the ligand and its metal complexes are also carried out and it has been observed that the complexes are more potent bactericides and fungicides than the ligand.

  6. Synthesis, spectral characterization, computational calculations and biological activity of complexes designed from NNO donor Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, Ola A.; El-Reash, G. M. Abu; Yousef, T. A.; Mefreh, M.

    2015-07-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of (Z)-2-oxo-2-(phenylamino)-N‧-(1-(pyridin-2-yl)ethylidene)acetohydrazide (H2OPPAH) have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand acts as neutral or mononegative NNO tridentate. On the basis of magnetic and electronic spectral data an octahedral geometry for Ni(II) and Cu(II) complexes and a tetrahedral geometry for Co(II) complex have been proposed. The molecular modeling using DFT method are drawn showing the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all title compounds. The Kinetic parameters were determined for each thermal degradation stages of the ligand and its complexes using Coats-Redfern and Horowitz-Metzger methods. Also, the compounds were screened for antioxidant activity using ABTS free radical, anti-hemolytic, and in vitro cytotoxic assay. H2OPPAH showed the potent antioxidant activity followed by Co(II) and Cu(II) complexes. On the other hand Ni(II) complex exhibited weak antioxidant activity using ABTS free radical and Erlich and strong erythrocyte hemolysis activity.

  7. Synthesis, spectral characterization, computational calculations and biological activity of complexes designed from NNO donor Schiff-base ligand.

    PubMed

    El-Gammal, Ola A; Abu El-Reash, G M; Yousef, T A; Mefreh, M

    2015-07-05

    A new series of Co(II), Ni(II) and Cu(II) complexes of (Z)-2-oxo-2-(phenylamino)-N'-(1-(pyridin-2-yl)ethylidene)acetohydrazide (H2OPPAH) have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand acts as neutral or mononegative NNO tridentate. On the basis of magnetic and electronic spectral data an octahedral geometry for Ni(II) and Cu(II) complexes and a tetrahedral geometry for Co(II) complex have been proposed. The molecular modeling using DFT method are drawn showing the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all title compounds. The Kinetic parameters were determined for each thermal degradation stages of the ligand and its complexes using Coats-Redfern and Horowitz-Metzger methods. Also, the compounds were screened for antioxidant activity using ABTS free radical, anti-hemolytic, and in vitro cytotoxic assay. H2OPPAH showed the potent antioxidant activity followed by Co(II) and Cu(II) complexes. On the other hand Ni(II) complex exhibited weak antioxidant activity using ABTS free radical and Erlich and strong erythrocyte hemolysis activity.

  8. Manganese(II) Complexes with Schiff Bases Immobilized on Nanosilica as Catalysts of the Reaction of Ozone Decomposition

    NASA Astrophysics Data System (ADS)

    Rakytska, Tetyana; Truba, Alla; Radchenko, Evgen; Golub, Alexander

    2015-12-01

    In this article, we submit the description of synthesis and identification of manganese(II) complexes with pyrogenic nanosilica-immobilized ( d av = 10 nm; S sp = 290 m2/g) hydroxyaldimine ligands (Mn{(L)}_2/overline{Si}) : salicilaldiminopropyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydroxynaphtaldiminopropyl (L3); 2-hydroxy-3-methoxybenzaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetophenoniminopropyl (L5); and 4-hydroxy-3-methoxybenzaldiminopropyl (L6). The ligands and complexes were characterized by UV-VIS and IR spectrometry. Nanocomposites consisting of complexes Mn{(L)}_2/overline{Si} showed a high catalytic activity in low-temperature ozone decomposition in the range of concentrations between 2.1 × 10-6 and 8.4 × 10-6 mol/l. The number of catalytic cycles increased for isostructural pseudotetrahedral complexes Mn{(L)}_2/overline{Si} (L1-L5) in the following order: Mn(L3)2 >> Mn(L4)2 > Mn(L1)2 > Mn(L2)2 > Mn(L5)2. In the case of pseudooctahedral complexes with L6, the change of coordination polyhedral does not influence the kinetics and stoichiometric parameters of the reaction.

  9. Enantiopure tetranuclear iron(III) complexes using chiral reduced Schiff base ligands: synthesis, structure, spectroscopy, magnetic properties, and DFT studies.

    PubMed

    Singh, Reena; Banerjee, Atanu; Colacio, Enrique; Rajak, Kajal Krishna

    2009-06-01

    Four new tetranuclear iron(III) complexes of formula [{Fe(L)(2)}(3)Fe], 1-4, have been prepared by reacting [Fe(ClO(4))(3)].6H(2)O with H(2)L in methanol. Here, L(2-) is the deprotonated form of N-(2-hyrdoxybenzyl)-l-valinol (H(2)L(1)), N-(2-hyrdoxybenzyl)-l-leucinol (H(2)L(2)), N-(5-chloro-2-hyrdoxybenzyl)-l-leucinol (H(2)L(3)), and N-(2-hyrdoxybenzyl)-l-phenylalaninol (H(2)L(4)). The complexes are prepared in an enantiomeric pure form. The complexes have been characterized with the help of IR, UV-vis, circular dichroism (CD), (1)H, and elemental analyses. The complex [{Fe(L(2))(2)}(3)Fe].CH(3)OH.2H(2)O, 2.CH(3)OH.2H(2)O, crystallizes in enantiomeric pure form containing a propeller-like Fe(4)O(6) core. (1)H and CD spectral studies of the four species are consistent with the structural similarities of the complexes in solution. Variable-temperature magnetic susceptibility of one case shows an intramolecular antiferromagnetic coupling between the Fe(III) ions. Magnetic measurements are in accord with the S = 5 ground state and suggest single molecular magnet behavior. The magnetic exchange coupling constant between the iron centers within the molecule is interpreted using broken-symmetry density functional theory calculation.

  10. Manganese(II) Complexes with Schiff Bases Immobilized on Nanosilica as Catalysts of the Reaction of Ozone Decomposition.

    PubMed

    Rakytska, Tetyana; Truba, Alla; Radchenko, Evgen; Golub, Alexander

    2015-12-01

    In this article, we submit the description of synthesis and identification of manganese(II) complexes with pyrogenic nanosilica-immobilized (d av = 10 nm; S sp = 290 m(2)/g) hydroxyaldimine ligands [Formula: see text]: salicilaldiminopropyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydroxynaphtaldiminopropyl (L3); 2-hydroxy-3-methoxybenzaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetophenoniminopropyl (L5); and 4-hydroxy-3-methoxybenzaldiminopropyl (L6). The ligands and complexes were characterized by UV-VIS and IR spectrometry. Nanocomposites consisting of complexes [Formula: see text] showed a high catalytic activity in low-temperature ozone decomposition in the range of concentrations between 2.1 × 10(-6) and 8.4 × 10(-6) mol/l. The number of catalytic cycles increased for isostructural pseudotetrahedral complexes [Formula: see text] (L1-L5) in the following order: Mn(L3)2 > Mn(L4)2 > Mn(L1)2 > Mn(L2)2 > Mn(L5)2. In the case of pseudooctahedral complexes with L6, the change of coordination polyhedral does not influence the kinetics and stoichiometric parameters of the reaction.

  11. Heterodinuclear Ni(ii) and Cu(ii) Schiff base complexes and their activity in oxygen reduction.

    PubMed

    Realista, Sara; Ramgi, Priscila; Cardoso, Bernardo de P; Melato, Ana I; Viana, Ana S; Calhorda, Maria José; Martinho, Paulo N

    2016-10-07

    New Cu(ii)/Ni(ii) heterodinuclear complexes with salphen-type ligands were synthesised via a stepwise template method. DFT studies were performed to understand their electronic properties, showing localisation of the HOMO on the Ni(ii) fragment, while in the oxidised species the spin density was high at some carbon phenolate atoms. These new complexes were potentiodynamically electropolymerised on glassy carbon and platinum. Atomic force microscopy was used to evaluate the influence of the metal centres on the morphology of the polymers, revealing how the presence of Cu(ii) increased the surface roughness. The oxygen reduction reaction was observed on both glassy carbon and platinum modified electrodes in neutral medium.

  12. Studies of EXAFSSpectra using Copper (II) Schiff Base complexes and Determination of Bond lengths Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Vibhute, V.; Ninama, S.; Parsai, N.; Jha, S. N.; Sharma, P.

    2016-10-01

    X-ray absorption fine structure (XAFS) at the K-edge of copper has been studied in some copper (II) complexes with substituted anilines like (2Cl, 4Br, 2NO2, 4NO2 and pure aniline) with o-PDA (orthophenylenediamine) as ligand. The X-ray absorption measurements have been performed at the recently developed BL-8 dispersive EXAFS beam line at 2.5 GeV Indus-2 Synchrotron Source at RRCAT, Indore, India. The data obtained has been processed using EXAFS data analysis program Athena.The graphical method gives the useful information about bond length and also the environment of the absorbing atom. The theoretical bond lengths of the complexes were calculated by using interactive fitting of EXAFS using fast Fourier inverse transformation (IFEFFIT) method. This method is also called as Fourier transform method. The Lytle, Sayers and Stern method and Levy's method have been used for determination of bond lengths experimentally of the studied complexes. The results of both methods have been compared with theoretical IFEFFIT method.

  13. Transition metal complexes of neocryptolepine analogues. Part I: synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes.

    PubMed

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-05

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, (1)H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with (2)B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50=0.58μM), compared to the other complexes and the free ligands.

  14. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 μM), compared to the other complexes and the free ligands.

  15. Synthesis, characterization, and antioxidant/cytotoxic activity of new chromone Schiff base nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II)

    NASA Astrophysics Data System (ADS)

    Saif, M.; El-Shafiy, Hoda F.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Nabeel, A. I.; Fouad, R.

    2016-08-01

    A chromone Schiff base complexes of Zn(II) (1), Cu(II) (2), Ni(II) (3) and Co(II) (4) were successfully prepared in nano domain with crystalline or amorphous structures. The spectroscopic data revealed that the Schiff base ligand behaves as a monoanionic tridentate ligand. The metal complexes exhibited octahedral geometry. Transmission electron microscope (TEM) analysis showed that Cu(II) complex have aggregated nanospheres morphology. The obtained nano-complexes were tested as antioxidant and antitumor agents. The H2L and its Cu(II) complex (2) were found to be more potent antioxidant (IC50(H2L) = 0.93 μM; IC50(Cu(II) complex) = 1.1 μM than standard ascorbic acid (IC50 = 2.1 μM) as evaluated by DPPH• method. The H2L and its complexes (1-4) were tested for their in vitro cytotoxicity against Ehrlich Ascites Carcinoma cell line (EAC). The Cu(II) nano-complex (2) effectively inhibited EAC growth with IC50 value of 47 μM in comparison with its parent compound and other prepared complexes. The high antioxidant activity and antitumor activity of Cu(II) nano-complex (2) were attributed to their chemical structure, Cu(II) reducing capacity, and nanosize property. The toxicity test on mice showed that Zn(II) (1) and Cu(II) (2) nano-complex have lower toxicity than the standard cis-platin.

  16. Multifunctional Composites of Chiral Valine Derivative Schiff Base Cu(II) Complexes and TiO2

    PubMed Central

    Takeshita, Yuki; Takakura, Kazuya; Akitsu, Takashiro

    2015-01-01

    We have prepared four new Cu(II) complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions) of these systems, which resulted in the reduction of Cu(II) species to Cu(I) ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV) on an rotating ring-disk electrode (RRDE) suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were also performed to simulate the UV–Vis and circular dichroism (CD) spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO) gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II) complexes for their corresponding UV light-induced reactions. PMID:25686033

  17. Multifunctional composites of chiral valine derivative Schiff base Cu(II) complexes and TiO2.

    PubMed

    Takeshita, Yuki; Takakura, Kazuya; Akitsu, Takashiro

    2015-02-12

    We have prepared four new Cu(II) complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions) of these systems, which resulted in the reduction of Cu(II) species to Cu(I) ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV) on an rotating ring-disk electrode (RRDE) suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were also performed to simulate the UV-Vis and circular dichroism (CD) spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO) gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II) complexes for their corresponding UV light-induced reactions.

  18. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  19. Complete σ* intramolecular aromatic hydroxylation mechanism through O2 activation by a Schiff base macrocyclic dicopper(I) complex.

    PubMed

    Poater, Albert; Solà, Miquel

    2013-01-01

    In this work we analyze the whole molecular mechanism for intramolecular aromatic hydroxylation through O2 activation by a Schiff hexaazamacrocyclic dicopper(I) complex, [Cu(I) 2(bsH2m)](2+). Assisted by DFT calculations, we unravel the reaction pathway for the overall intramolecular aromatic hydroxylation, i.e., from the initial O2 reaction with the dicopper(I) species to first form a Cu(I)Cu(II)-superoxo species, the subsequent reaction with the second Cu(I) center to form a μ-η(2):η(2)-peroxo-Cu(II) 2 intermediate, the concerted peroxide O-O bond cleavage and C-O bond formation, followed finally by a proton transfer to an alpha aromatic carbon that immediately yields the product [Cu(II) 2(bsH2m-O)(μ-OH)](2+).

  20. Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand

    NASA Astrophysics Data System (ADS)

    Shakila, K.; Kalainathan, S.

    2015-01-01

    In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA).

  1. In vivo Assessment of Antioxidant and Wound Healing Improvement of a New Schiff Base Derived Co (II) Complex in Rats

    PubMed Central

    El-Ferjani, Rashd. M.; Ahmad, Musa; Dhiyaaldeen, Summaya M.; Harun, Farah Wahida; Ibrahim, Mohamed Yousif; Adam, Hoyam; Mohd. Yamin, Bohari; Al-Obaidi, Mazen M. Jamil; Batran, Rami Al

    2016-01-01

    Co (II) complex (CMLA) was investigated to evaluate the rate of wound healing in rats. Animals were placed into four groups: gum acacia, Intrasite gel, 10 and 20 mg/ml of CMLA. Wounds were made on the dorsal neck area, then treated with Intrasite gel or CMLA; both of these treatments led to faster healing than with gum acacia. Histology of the wounds dressed with CMLA or Intrasite gel displayed a smaller scar width, required less time to heal and showed more collagen staining and fewer inflammatory cells in comparison to wounds dressed with the vehicle. Immunohistochemistry for Hsp70 and TGF-β showed greater staining intensity in the treated groups compared to the vehicle group. Bax staining was less intense in treated groups compared to the vehicle group, suggesting that CMLA and Intrasite gel provoked apoptosis, responsible for the development of granulation tissue into a scar. CD31 protein analysis showed that the treated groups enhanced angiogenesis and increased vascularization compared to the control group. Furthermore, a significant increase in the levels of GPx and SOD and a decrease in MDA were also observed in the treated groups. This results suggest that CMLA is a potentially promising agent for the wounds treatment. PMID:27958299

  2. Observation of an organic acid mediated spin state transition in a Co(II)-Schiff base complex: an EPR, HYSCORE, and DFT study.

    PubMed

    Vinck, Evi; Carter, Emma; Murphy, Damien M; Van Doorslaer, Sabine

    2012-08-06

    The interactions of a weak organic acid (acetic acid, HOAc) with a toluene solution of the Co(II)-Schiff base type complex, (R,R')-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino Co(II) (labeled [Co(1)]), was investigated using EPR, HYSCORE, and DFT computations. This activated [Co(II)(1)] system is extremely important within the context of asymmetric catalysts (notably the hydrolytic kinetic resolution of epoxides) despite the lack of detailed structural information about the nature of the paramagnetic species present. Under anaerobic conditions, the LS [Co(II)(1)] complex with a |yz, (2)A(2)〉 ground state is converted into a low-spin (LS) and a high-spin (HS) complex in the presence of the acid. The newly formed LS state is assigned to the coordinated [Co(II)(1)]-(HOAc) complex, possessing a |z(2), (2)A(1)〉 ground state (species A; g(x) = 2.42, g(y) = 2.28, g(z) = 2.02, A(x) = 100, A(y) = 120, A(z) = 310 MHz). The newly formed HS state is assigned to an acetate coordinated [Co(II)(1)]-(OAc(-)) complex, possessing an S = 3/2 spin ground state (species B, responsible for a broad EPR signal with g ≈ 4.6). These spin ground states were confirmed with DFT calculations using the hybrid BP86 and B3LYP functionals. Under aerobic conditions, the LS and HS complexes (species A and B) are not observed; instead, a new HS complex (species C) is formed. This complex is tentatively assigned to a paramagnetic superoxo bridged dimer (AcO(-))[Co(II)(1)···O(2)(-)Co(III)(1)](HOAc), as distinct from the more common diamagnetic peroxo bridged dimers. Species C is characterized by a very broad HS EPR signal (g(x) = 5.1, g(y) = 3.9, g(z) = 2.1) and is reversibly formed by oxygenation of the LS [Co(II)(1)]-(HOAc) complex to the superoxo complex [Co(III)(1)O(2)(-)](HOAc), which subsequently forms the association complex C by interaction with the HS [Co(II)(1)](OAc(-)) species. The LS and HS complexes were also identified using other organic acids (benzoic and

  3. Synthesis and Characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) Complexes of Schiff Base Derived from Isonicotinoyl Hydrazone

    PubMed Central

    Gawande, Pranita U.; Mandlik, P. R.; Aswar, A. S.

    2015-01-01

    2-hydroxy-5-chloro-3-nitroacetophenone isonicotinoyl hydrazone as a Schiff base ligand and its complexes with Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) metal ions have been synthesized. The ligands as well as their metal complexes were well characterized using various physicochemical techniques such as elemental analyses, molar conductance measurements, magnetic measurements, thermal analysis, electronic and IR spectral studies. On the basis of these studies, square pyramidal stereochemistry for Mn(III) and VO(IV) complexes while octahedral stereochemistry for all the other complexes have been suggested. The complexes were found to be stable up to 60-70° and thermal decomposition of the complexes ended with respective metal oxide as a final product. The thermal data have been analyzed for kinetic parameters using Broido and Horowitz-Metzger methods. The synthesized Schiff base ligand and its complexes were also tested for their antimicrobial activity using various microorganisms. PMID:26664052

  4. Antimicrobial, spectral, magnetic and thermal studies of Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes of the Schiff base derived from oxalylhydrazide.

    PubMed

    Melha, Khlood Abou

    2008-04-01

    The Schiff base ligand, oxalyl [( 2 - hydroxybenzylidene) hydrazone] [corrected].H(2)L, and its Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.

  5. Estimation of conventional C-Hπ (arene), unconventional C-Hπ (chelate) and C-Hπ (thiocyanate) interactions in hetero-nuclear nickel(ii)-cadmium(ii) complexes with a compartmental Schiff base.

    PubMed

    Roy, Sourav; Drew, Michael G B; Bauzá, Antonio; Frontera, Antonio; Chattopadhyay, Shouvik

    2017-04-07

    Three new heteronuclear nickel(ii)/cadmium(ii) complexes, [(SCN)(Cl)Cd(L)Ni(DMF)2] (1), [(SCN)(CH3CO2)Cd(L)Ni(CH3OH)2] (2) and [(SCN)(Cl)Cd(L)Ni(NH2CH2CH2CH2NH2)]n (3) {where H2L = N,N'-bis(3-ethoxy-salicylidene)propane-1,3-diamine is a N2O4 compartmental Schiff base}, have been synthesized and characterized. The structures of the complexes have been confirmed by single crystal X-ray diffraction studies. In each complex, nickel(ii) is placed in the inner N2O2 environment and cadmium(ii) is placed in the outer O4 compartment of the compartmental Schiff base. Furthermore, the importance of unconventional C-Hπ (chelate) interactions in the solid state of both complexes and C-Hπ (thiocyanate) interaction in complex 2 has been described by means of DFT and MEP calculations and characterized using NCI plots. All complexes show photoluminescence at room temperature upon irradiation by ultraviolet light. The lifetimes of excited states are in the range of 2-6 ns.

  6. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  7. Schiff bases: a short survey on an evergreen chemistry tool.

    PubMed

    Qin, Wenling; Long, Sha; Panunzio, Mauro; Biondi, Stefano

    2013-10-08

    The review reports a short biography of the Italian naturalized chemist Hugo Schiff and an outline on the synthesis and use of his most popular discovery: the imines, very well known and popular as Schiff Bases. Recent developments on their "metallo-imines" variants have been described. The applications of Schiff bases in organic synthesis as partner in Staudinger and hetero Diels-Alder reactions, as "privileged" ligands in the organometallic complexes and as biological active Schiff intermediates/targets have been reported as well.

  8. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic voltammetry and biological activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Rania G.; Elantabli, Fatma M.; Helal, Nadia H.; El-Medani, Samir M.

    2015-04-01

    Thermal reaction of M(CO)6 (M = Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2‧-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, 1H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated.

  9. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: synthesis, spectral, cyclic voltammetry and biological activity studies.

    PubMed

    Mohamed, Rania G; Elantabli, Fatma M; Helal, Nadia H; El-Medani, Samir M

    2015-04-15

    Thermal reaction of M(CO)6 (M=Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2'-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, (1)H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated.

  10. Chiral vanadium(V) complexes with 2-aminoglucose Schiff-base ligands and their solution configurations: synthesis, structures, and DFT calculations.

    PubMed

    Mohammadnezhad, Gholamhossein; Böhme, Michael; Geibig, Daniel; Burkhardt, Anja; Görls, Helmar; Plass, Winfried

    2013-09-07

    The sugar-modified Schiff-base ligands derived from benzyl 2-deoxy-2-salicylideneamino-α-D-glucopyranoside (H2L(5-Br) and H2L(3-OMe)) were used to prepare the chiral oxidovanadium(V) complexes [VO(L(5-Br))(OMe)] (1) and [VO(L(3-OMe))(OMe)] (2) which can be isolated from a methanol solution as the six-coordinate complexes with an additional methanol ligand [VO(L(5-Br))(OMe)(MeOH)] (1-MeOH) and [VO(L(3-OMe))(OMe) (MeOH)] (2-MeOH). Both complexes crystallize in the orthorhombic space group P2(1)2(1)2(1) together with two solvent molecules of methanol as 1-MeOH·2MeOH and 1-MeOH·2MeOH. In both crystal structures, only diastereomers with A configuration at the chiral vanadium centre (OC-6-24-A) are observed which corresponds to an cis configuration of the oxido group at the vanadium centre and the benzyl group at the anomeric carbon of the sugar backbone. Upon recrystallization of 2-MeOH from chloroform, the five-coordinate complex 2 was obtained which crystallizes in the monoclinic space group P2(1) with one co-crystallized chloroform molecule (2·CHCl3). For the chiral vanadium centre in 2·CHCl3, a C configuration (SPY-5-43-C) is observed which corresponds to an trans structure as far as the orientations of the oxido and benzyl groups are concerned. (1)H and (51)V NMR spectra of 1 and 2 indicate the presence of two diastereomers in solution. Their absolute configurations can be assigned based on the magnetic anisotropy effect of the oxidovanadium group. This effect leads to significant differences for the (1)H NMR chemical shifts of the H-2 (1.1 ppm) and H-3 protons (0.3 ppm) of the glucose backbone of the two diastereomers, with the downfield shift observed for the H-2 proton of the C-configured and the H-3 proton of the A-configured diastereomer at the vanadium centre. For 1 and 2 the difference between the (51)V NMR chemical shifts of the two diastereomers is 30 and 28 ppm, respectively. Also in the (13)C NMR significant chemical shift differences between the

  11. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Eldebss, Taha M. A.

    2011-09-01

    Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML 2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu 2+, Co 2+, Mn 2+, Zn 2+ and Ni 2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO 3.

  12. Facile luminescent tuning of Zn(II)/Hg(II) complexes based on flexible, semi-rigid and rigid polydentate Schiff bases from blue to green to red: structural, photophysics, electrochemistry and theoretical calculations studies.

    PubMed

    Wang, Xin-Ming; Chen, Shuo; Fan, Rui-Qing; Zhang, Fu-Qiang; Yang, Yu-Lin

    2015-05-07

    The photophysical properties of Zn(II)/Hg(II) Schiff base complexes could be fine and predictably tuned over a wide range of wavelengths by changing the ligand structures. A new series of polydentate Schiff base-type ligands, N,N'-bis(2-pyridinylethylidene)R(3)-1,2-diamine (), which contain a flexible, semi-rigid or rigid group (R(3) = butyl, cyclohexane, tolyl and phenylene), has been designed and employed for synthetizing new mononuclear or binuclear trans Zn(II)/Hg(II) complexes with a general formula of [M()Cl2] ( = N,N'-bis(2-pyridinylethylidene)phenylene-1,2-diamine, M = Zn, ; M = Hg, ), [M()Cl2] ( = N,N'-bis(2-pyridinylethylidene)toluene-3,4-diamine, M = Zn, ; M = Hg, ), [M2()Cl4]·nCH2Cl2 ( = N,N'-bis(2-pyridinylmethylene)cyclohexane-1,2-diamine, M = Zn, n = 0, ; M = Hg, n = 1, ), [M2()Cl4]·nCH3OH ( = N,N'-bis(2-pyridinylethylidene)cyclohexane-1,2-diamine, M = Zn, n = 1, ; M = Hg, n = 0, ), [M2()Cl4] ( = N,N'-bis(3-methoxy-2-pyridinylmethylene)-cyclohexane-1,2-diamine, M = Zn, ; M = Hg, ), [M2()Cl4]·nCH3CN ( = N,N'-bis(3-methoxy-2-pyridinylmethylene)butane-1,4-diamine, M = Zn, n = 4, ; M = Hg, n = 0, ). All the ligands and complexes have been characterized by elemental analyses, IR spectra, and (1)H NMR spectra. Twelve structures of , , , , , and crystallized in three different conditions are further determined by single-crystal X-ray diffraction analyses. Their properties are fully characterized by UV-vis and fluorescence spectra both in solution and the solid state at room temperature. The luminescence color of these Zn(II)/Hg(II) Schiff base complexes could be tuned from blue to green to red (429-639 nm for , 434-627 nm for ) in solution by changing the ligand conjugated systems from flexibile () to semi-rigid () to rigid (). The spectra of the free Schiff bases are centered around 402-571 nm, which are perturbed upon the coordination to the Zn(II)/Hg(II) ion. Both the electrochemical data and TD-DFT calculations show that the HOMO-LUMO band gap from

  13. A new trinuclear zinc(II) complex and a heptacoordinated mononuclear cadmium(II) complex with a pyrimidine derived Schiff base ligand: Syntheses, crystal structures, photoluminescence and DFT calculations

    NASA Astrophysics Data System (ADS)

    Das, Kinsuk; Jana, Atanu; Konar, Saugata; Chatterjee, Sudipta; Mondal, Tapan Kumar; Barik, Anil Kumar; Kar, Susanta Kumar

    2013-09-01

    The new N6 donor hexadentate Schiff base 2,4-bis [2-(pyridine-2-ylmethylidene) hydrazinyl] pyrimidine (L), its trinuclear Zn(II) complex, [Zn3(L)2Cl6] (1) and mononuclear heptacoordinate Cd(II) complex [Cd(L)(H2O)2](ClO4)2 (2) have been synthesised and characterised by crystallographically and spectroscopically. Complex 1 is featured by the triangular arrangement of three zinc atoms where the neighbouring Zn atoms are linked via half portion (N3 chromophore) of the same ligand molecule. In 1, the ligand molecules behave as hexadentate ones (employing both pyrimidine nitrogen atoms as active donor centres) to create the octahedral environment around Zn(II). The central and terminal Zn(II) atom has N6 and N3Cl3 chromophores respectively. In 2 the same ligand (L) behaves as pentadentate one (ignoring one pyrimidine nitrogen in the coordination process) to produce a pentagonal bipyramidal geometry with two apical water molecules. The geometries of both complexes were optimised in the singlet state by DFT method. The TDDFT calculations have been done on the optimised geometries to understand the electronic structure and spectral transition in the complexes. Complex 1 exhibits intraligand 1(π → π*) fluorescence in aqueous methanol solvent at room temperature.

  14. DNA cleavage on photoexposure at the d-d band in ternary copper(II) complexes using red-light laser.

    PubMed

    Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2006-12-25

    Ternary copper(II) complexes [Cu(L1)B](ClO4) (1, 2) and [Cu(L2)B](ClO4) (3, 4), where HL1 and HL2 are tridentate NSO- and ONO-donor Schiff bases and B is a heterocyclic base, viz. dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 1 and 3) or dipyrido[3,2-a:2',3'-c]phenazine (dppz, 2 and 4), were prepared and their DNA binding and photoinduced DNA cleavage activity studied. Complex 1, structurally characterized by single-crystal X-ray crystallography, shows an axially elongated square-pyramidal (4 + 1) coordination geometry in which the monoanionic L1 binds at the equatorial plane. The NN-donor dpq ligand exhibits an axial-equatorial binding mode. The complexes display good binding propensity to calf thymus DNA, giving a relative order 2 (NSO-dppz) > 4 (ONO-dppz) > 1 (NSO-dpq) > 3 (ONO-dpq). They cleave supercoiled pUC19 DNA to its nicked circular form when treated with 3-mercaptopropionic acid (MPA) by formation of hydroxyl radicals as the cleavage active species under dark reaction conditions. The photoinduced DNA cleavage activity of the complexes was investigated using UV radiation of 365 nm and red light of 633, 647.1, and 676.4 nm (CW He-Ne and Ar-Kr mixed gas ion laser sources) in the absence of MPA. Complexes 1 and 2, having photoactive NSO-donor Schiff base and dpq/dppz ligands, show dual photosensitizing effects involving both the photoactive ligands in the ternary structure with significantly better cleavage properties when compared to those of 3 and 4, having only photoactive dpq/dppz ligands. Involvement of singlet oxygen in the light-induced DNA cleavage reactions is proposed. A significant enhancement of the red-light-induced DNA cleavage activity is observed for the dpq and dppz complexes containing the sulfur ligand when compared to their earlier reported phen (1,10-phenanthroline) analogue. Enhancement of the cleavage activity on photoexposure at the d-d band indicates the occurrence of metal-assisted photosensitization processes involving the LMCT and d

  15. On the Lewis acidic character of bis(salicylaldiminato)zinc(ii) Schiff-base complexes: a computational and experimental investigation on a series of compounds varying the bridging diimine.

    PubMed

    Forte, Giuseppe; Oliveri, Ivan Pietro; Consiglio, Giuseppe; Failla, Salvatore; Di Bella, Santo

    2017-03-20

    This contribution explores the effect of the 1,2-diimine bridge upon the Lewis acidic character of a series of bis(salicylaldiminato)zinc(ii), ZnL, Schiff-base complexes. The structure of the monomeric and dimeric ZnL complexes, and of the 1 : 1 adducts with pyridine, ZnL·py, is fully optimized by means of DFT calculations. The Gibbs free energy for the dimerization of ZnL complexes and for the formation of ZnL·py adducts is evaluated by accurate composite calculations. It accounts for their spontaneous dimerization and for the greater stability of the ZnL·py adducts with respect to the dimers. Calculated binding constants for the formation ZnL·py adducts are in excellent agreement with experimentally derived values, thus allowing establishing a relative Lewis acidity scale within this series. While the complex derived from the non-conjugated ethylenediamine reveals the lowest Lewis acidity, the complex derived from the diaminomaleonitrile represents the stronger Lewis acidic species. These findings are in good agreement with the greater catalytic activity observed for ZnL Schiff-base complexes derived from conjugated 1,2-diamines in comparison to the non-conjugated analogues. Both in ZnL dimers as well as in ZnL·py adducts the geometry of the coordination sphere seems to be a relevant feature to assess their relative stability. Thus, while the quasi-planarity of ZnL monomers of the conjugated diimines is an unfavourable feature in the dimerization process, it represents an important aspect in stabilizing ZnL·py adducts in a nearly perfect square-pyramidal coordination. These features are relevant for the sensing and catalytic properties of these complexes.

  16. Synthesis, structure, fluorescent property, and antibacterial activity of new Cd(II) metal complex based on multidentate Schiff base ligand N,N‧-Bis(3-methoxysalicylidenimino)-1,3-diaminopropane

    NASA Astrophysics Data System (ADS)

    Majumdar, Dhrubajyoti; Das, Sourav; Biswas, Jayanta Kumar; Mondal, Monojit

    2017-04-01

    The sequential reaction of a multisite coordinating compartmental ligand N,N‧-Bis(3-methoxysalicylidenimino)-1,3-diaminopropane (H2L1) with Cd(OAc)2 followed by the addition of NaCl in a 2:3:2 stoichiometric ratio affords homometallic trinuclear Cd(II) coordination compound [Cd3(L1)2(Cl)2] (1). The complex 1 has been thoroughly characterized by common elemental analysis (CHN), FT-IR and UV-Vis spectroscopy. Single crystal X-ray diffraction was also performed to determine the complete structure of complex 1. X-ray diffraction studies reveal that the molecular complex comprises a linear tri-nuclear ensemble of cadmium metal ions, which is further supported by the concerted coordination action of two dianionic [L1]2- ligands along with two monodentate Cl- ligands. The central Cd(II) ion is attached to the terminal Cd(II) ions through two phenoxide bridging groups of the fully deprotonated ligands [L1]2-. This arrangement leads to two neighbouring four membered Cd2O2 rings. The terminal Cd(II) ions are penta-coordinated (2 N, 2O, Cl) in a distorted square pyramidal geometry and central Cd(II) ion attained distorted trigonal prismatic geometry through six oxygen atoms coordination from ligands. Tri-nuclear Cd(II) complex 1 display intraligand (π-π∗) fluorescence in DMSO solution at room temperature. The fluorescence properties of complex 1 as well as the respective di-compartmental Schiff base ligand (H2L1) have been investigated in DMSO solvent at room temperature with a comparative approach. Result confirmed that complex 1 is highly fluorescence active mediated due to "chelation enhanced fluorescence" [CHEF] but Schiff base ligand (H2L1) is fluorescence silent. The antibacterial efficacy of complex 1 was further investigated against some important Gram-positive and Gram-negative bacteria.

  17. A new hydrogen-bonded pseudo-dimer Mn(III) Schiff base complex. The synthesis, X-ray structure and spectroscopic studies.

    PubMed

    Gungor, Elif; Kara, Hulya

    2011-11-01

    A new hydrogen-bonded pseudo-dimer, [Mn(III)L1(CH(3)CH(2)OH)](2)(ClO(4)) (1) (L1 = N,N'-bis(2-hydroxy-1-naphthalidenato)-1,2-diaminopropane) has been synthesized and characterized by UV-vis, IR, elemental analysis and crystal structure analysis. The single crystal X-ray diffraction reveals that the structure affords an elongated octahedral MnN(2)O(4) coordination environment, geometry with the four donor atoms of the tetradentate Schiff base in the equatorial plane and with two ethanol molecule in axial positions with Mn-O = 2.265(2) and 2.266(2) Å.

  18. A new hydrogen-bonded pseudo-dimer Mn(III) Schiff base complex. The synthesis, X-ray structure and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gungor, Elif; Kara, Hulya

    2011-11-01

    A new hydrogen-bonded pseudo-dimer, [Mn(III)L1(CH 3CH 2OH)] 2(ClO 4) ( 1) (L1 = N, N'-bis(2-hydroxy-1-naphthalidenato)-1,2-diaminopropane) has been synthesized and characterized by UV-vis, IR, elemental analysis and crystal structure analysis. The single crystal X-ray diffraction reveals that the structure affords an elongated octahedral MnN 2O 4 coordination environment, geometry with the four donor atoms of the tetradentate Schiff base in the equatorial plane and with two ethanol molecule in axial positions with Mn-O = 2.265(2) and 2.266(2) Å.

  19. Reactivity of mononuclear alkylperoxo copper(II) complex. O-O bond cleavage and C-H bond activation.

    PubMed

    Kunishita, Atsushi; Ishimaru, Hirohito; Nakashima, Satoru; Ogura, Takashi; Itoh, Shinobu

    2008-04-02

    A detailed reactivity study has been carried out for the first time on a new mononuclear alkylperoxo copper(II) complex, which is generated by the reaction of copper(II) complex supported by the bis(pyridylmethyl)amine tridentate ligand containing a phenyl group at the 6-position of the pyridine donor groups and cumene hydroperoxide (CmOOH) in CH3CN. The cumylperoxo copper(II) complex thus obtained has been found to undergo homolytic cleavage of the O-O bond and induce C-H bond activation of exogenous substrates, providing important insights into the catalytic mechanism of copper monooxygenases.

  20. Electronic structure and spectroscopic properties of mononuclear manganese(III) Schiff base complexes: a systematic study on [Mn(acen)X] complexes by EPR, UV/vis, and MCD spectroscopy (X = Hal, NCS).

    PubMed

    Westphal, Anne; Klinkebiel, Arne; Berends, Hans-Martin; Broda, Henning; Kurz, Philipp; Tuczek, Felix

    2013-03-04

    The manganese(III) Schiff base complexes [Mn(acen)X] (H2acen: N,N'-ethylenebis(acetylacetone)imine, X: I(-), Br(-), Cl(-), NCS(-)) are considered as model systems for a combined study of the electronic structure using vibrational, UV/vis absorption, parallel-mode electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy. By variation of the co-ligand X, the influence of the axial ligand field within a given square-pyramidal coordination geometry on the UV/vis, EPR, and MCD spectra of the title compounds is investigated. B