Sample records for copy number analysis

  1. Interpreting aCGH-defined karyotypic changes in gliomas using copy number status, loss of heterozygosity and allelic ratios

    PubMed Central

    Cowell, John K; Lo, Ken C; Luce, Jesse; Hawthorn, Lesleyann

    2009-01-01

    We have used SNP mapping arrays to simultaneously record copy number changes, loss of heterozygosity and allele ratios (ploidy) in a series of 13 gliomas. This combined analysis has defined novel amplification events in this tumor type involving chr1:241544532-243005121 and chr18:54716681-54917277 which contain the AKT3 and ZNF532 genes respectively. The high resolution of this analysis has also identified homozygous deletions involving chr17:25600031-26490848 and Chr19:53883612-55061878. Throughout the karyotypes of these tumors, the combined analysis revealed counter intuitive relationships between copy number and LOH that requires reinterpretation of the significance of copy number gains and losses. It was not uncommon to observe copy number gains that were associated with loss of heterozygosity as well as copy number losses that were not. These events appeared to be related to ploidy status in the tumors as determined using allelic ratio calculations. Overall, this analysis of gliomas provides evidence for the need to perform more comprehensive interpretation of the CGH data beyond copy number analysis alone to evaluate the significance of individual events in the karyotypes. PMID:19818351

  2. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Cancer.gov

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  3. CCL3L1 copy number and susceptibility to malaria

    PubMed Central

    Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A.L.; Shaw, Marie-Anne

    2012-01-01

    Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n = 922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. PMID:22484763

  4. CCL3L1 copy number and susceptibility to malaria.

    PubMed

    Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A L; Shaw, Marie-Anne

    2012-07-01

    Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n=922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.

  6. The relationship between mitochondrial DNA copy number and stallion sperm function.

    PubMed

    Darr, Christa R; Moraes, Luis E; Connon, Richard E; Love, Charles C; Teague, Sheila; Varner, Dickson D; Meyers, Stuart A

    2017-05-01

    Mitochondrial DNA (mtDNA) copy number has been utilized as a measure of sperm quality in several species including mice, dogs, and humans, and has been suggested as a potential biomarker of fertility in stallion sperm. The results of the present study extend this recent discovery using sperm samples from American Quarter Horse stallions of varying age. By determining copy number of three mitochondrial genes, cytochrome b (CYTB), NADH dehydrogenase 1 (ND1) and NADH dehydrogenase 4 (ND4), instead of a single gene, we demonstrate an improved understanding of mtDNA fate in stallion sperm mitochondria following spermatogenesis. Sperm samples from 37 stallions ranging from 3 to 24 years old were collected at four breeding ranches in north and central Texas during the 2015 breeding season. Samples were analyzed for sperm motion characteristics, nuclear DNA denaturability and mtDNA copy number. Mitochondrial DNA content in individual sperm was determined by real-time qPCR and normalized with a single copy nuclear gene, Beta actin. Exploratory correlation analysis revealed that total motility was negatively correlated with CYTB copy number and sperm chromatin structure. Stallion age did not have a significant effect on copy number for any of the genes. Copy number differences existed between the three genes with CYTB having the greatest number of copies (20.6 ± 1.2 copies, range: 6.0 to 41.1) followed by ND4 (15.5 ± 0.8 copies, range: 6.7 to 27.8) and finally ND1 (12.0 ± 1.0 copies, range: 0.4 to 26.6) (P < 0.05). Varying copy number across mitochondrial genes is likely to be a result of mtDNA fragmentation and degradation since downregulation of sperm mtDNA occurs during spermatogenesis and may be important for normal sperm function. Beta regression analysis suggested that for every unit increase in mtDNA copy number of CYTB, there was a 4% decrease in the odds of sperm movement (P = 0.001). Influential analysis suggested that results are robust and not highly influenced by data from individual stallions despite the low number of stallions sampled with low sperm motility. Further genome sequencing is necessary to investigate if mutations or deletions are the underlying causes of inconsistent copy numbers across mitochondrial genes. In conclusion, we show, for the first time, that increased mtDNA copy number is associated with decreased total sperm motility in stallions. We therefore suggest that mtDNA copy number may be an indicator of defective spermatogenesis in stallions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Use of autocorrelation scanning in DNA copy number analysis.

    PubMed

    Zhang, Liangcai; Zhang, Li

    2013-11-01

    Data quality is a critical issue in the analyses of DNA copy number alterations obtained from microarrays. It is commonly assumed that copy number alteration data can be modeled as piecewise constant and the measurement errors of different probes are independent. However, these assumptions do not always hold in practice. In some published datasets, we find that measurement errors are highly correlated between probes that interrogate nearby genomic loci, and the piecewise-constant model does not fit the data well. The correlated errors cause problems in downstream analysis, leading to a large number of DNA segments falsely identified as having copy number gains and losses. We developed a simple tool, called autocorrelation scanning profile, to assess the dependence of measurement error between neighboring probes. Autocorrelation scanning profile can be used to check data quality and refine the analysis of DNA copy number data, which we demonstrate in some typical datasets. lzhangli@mdanderson.org. Supplementary data are available at Bioinformatics online.

  8. Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.

    PubMed

    Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin

    2018-06-01

    The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.

  9. An evaluation of new and established methods to determine T‐DNA copy number and homozygosity in transgenic plants.

    PubMed Central

    Głowacka, Katarzyna; Kromdijk, Johannes; Leonelli, Lauriebeth; Niyogi, Krishna K.; Clemente, Tom E.

    2016-01-01

    Abstract Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL‐)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T‐DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL‐PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T‐DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T‐DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided. PMID:26670088

  10. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas.

    PubMed

    Etemadmoghadam, Dariush; deFazio, Anna; Beroukhim, Rameen; Mermel, Craig; George, Joshy; Getz, Gad; Tothill, Richard; Okamoto, Aikou; Raeder, Maria B; Harnett, Paul; Lade, Stephen; Akslen, Lars A; Tinker, Anna V; Locandro, Bianca; Alsop, Kathryn; Chiew, Yoke-Eng; Traficante, Nadia; Fereday, Sian; Johnson, Daryl; Fox, Stephen; Sellers, William; Urashima, Mitsuyoshi; Salvesen, Helga B; Meyerson, Matthew; Bowtell, David

    2009-02-15

    A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.

  11. Copy number analysis reveals a novel multiexon deletion of the COLQ gene in congenital myasthenia.

    PubMed

    Wang, Wei; Wu, Yanhong; Wang, Chen; Jiao, Jinsong; Klein, Christopher J

    2016-12-01

    Congenital myasthenic syndrome (CMS) is genetically and clinically heterogeneous. 1 Despite a considerable number of causal genes discovered, many patients are left without a specific diagnosis after genetic testing. The presumption is that novel genes yet to be discovered will account for the majority of such patients. However, it is also possible that we are neglecting a type of genetic variation: copy number changes (>50 bp) as causal for some of these patients. Next-generation sequencing (NGS) can simultaneously screen all known causal genes 2 and is increasingly being validated to have a potential to identify copy number changes. 3 We present a CMS case who did not receive a genetic diagnosis from previous Sanger sequencing, but through a novel copy number analysis algorithm integrated into our targeted NGS panel, we discovered a novel copy number mutation in the COLQ gene and made a genetic diagnosis. This discovery expands the genotype-phenotype correlation of CMS, leads to improved genetic counsel, and allows for specific pharmacologic treatment. 1 .

  12. Copy Number Variation across European Populations

    PubMed Central

    Chen, Wanting; Hayward, Caroline; Wright, Alan F.; Hicks, Andrew A.; Vitart, Veronique; Knott, Sara; Wild, Sarah H.; Pramstaller, Peter P.; Wilson, James F.; Rudan, Igor; Porteous, David J.

    2011-01-01

    Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations. PMID:21829696

  13. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    PubMed

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (<2.8 × 10(-5)), including the PTEN pathway (7.8 × 10(-7)), the gene set up-regulated under heat shock (3.6 × 10(-6)), the gene sets involved in the immune profile for rejection of kidney transplantation (9.2 × 10(-6)) and for transcriptional control of leukocytes (2.2 × 10(-5)), and the ganglioside biosynthesis pathway (2.7 × 10(-5)). In conclusion, we present a new method for pathway analyses of copy number data, and causal mechanisms of the five pathways require further study.

  14. Analysis of copy number variations among cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  15. Application of Nexus copy number software for CNV detection and analysis.

    PubMed

    Darvishi, Katayoon

    2010-04-01

    Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.

  16. Analysis of copy number variations reveals differences among cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  17. Application of droplet digital PCR to determine copy number of endogenous genes and transgenes in sugarcane.

    PubMed

    Sun, Yue; Joyce, Priya Aiyar

    2017-11-01

    Droplet digital PCR combined with the low copy ACT allele as endogenous reference gene, makes accurate and rapid estimation of gene copy number in Q208 A and Q240 A attainable. Sugarcane is an important cultivated crop with both high polyploidy and aneuploidy in its 10 Gb genome. Without a known copy number reference gene, it is difficult to accurately estimate the copy number of any gene of interest by PCR-based methods in sugarcane. Recently, a new technology, known as droplet digital PCR (ddPCR) has been developed which can measure the absolute amount of the target DNA in a given sample. In this study, we deduced the true copy number of three endogenous genes, actin depolymerizing factor (ADF), adenine phosphoribosyltransferase (APRT) and actin (ACT) in three Australian sugarcane varieties, using ddPCR by comparing the absolute amounts of the above genes with a transgene of known copy number. A single copy of the ACT allele was detected in Q208 A , two copies in Q240 A , but was absent in Q117. Copy number variation was also observed for both APRT and ADF, and ranged from 9 to 11 in the three tested varieties. Using this newly developed ddPCR method, transgene copy number was successfully determined in 19 transgenic Q208 A and Q240 A events using ACT as the reference endogenous gene. Our study demonstrates that ddPCR can be used for high-throughput genetic analysis and is a quick, accurate and reliable alternative method for gene copy number determination in sugarcane. This discovered ACT allele would be a suitable endogenous reference gene for future gene copy number variation and dosage studies of functional genes in Q208 A and Q240 A .

  18. MET amplification as a potential therapeutic target in gastric cancer

    PubMed Central

    Kawakami, Hisato; Okamoto, Isamu; Arao, Tokuzo; Okamoto, Wataru; Matsumoto, Kazuko; Taniguchi, Hirokazu; Kuwata, Kiyoko; Yamaguchi, Haruka; Nishio, Kazuto; Nakagawa, Kazuhiko; Yamada, Yasuhide

    2013-01-01

    Our aim was to investigate both the prevalence of MET amplification in gastric cancer as well as the potential of this genetic alteration to serve as a therapeutic target in gastric cancer. MET amplification was assessed by initial screening with a PCR-based copy number assay followed by confirmatory FISH analysis in formalin-fixed, paraffin-embedded specimens of gastric cancer obtained at surgery. The effects of MET tyrosine kinase inhibitors (MET-TKIs) in gastric cancer cells with or without MET amplification were also examined. The median MET copy number in 266 cases of gastric cancer was 1.7, with a range of 0.41 to 21.3. We performed FISH analysis for the 15 cases with the highest MET copy numbers. MET amplification was confirmed in the four assessable cases with a MET copy number of at least 4, whereas MET amplification was not detected in those with a gene copy number of <4. The prevalence of MET amplification was thus 1.5% (4 out of 266 cases). Inhibition of MET by MET-TKIs resulted in the induction of apoptosis accompanied by attenuation of downstream MET signaling in gastric cancer cell lines with MET amplification but not in those without this genetic change. MET amplification identifies a small but clinically important subgroup of gastric cancer patients who are likely to respond to MET-TKIs. Furthermore, screening with a PCR-based copy number assay is an efficient way to reduce the number of patients requiring confirmation of MET amplification by FISH analysis. PMID:23327903

  19. Selective sweep on human amylase genes postdates the split with Neanderthals

    PubMed Central

    Inchley, Charlotte E.; Larbey, Cynthia D. A.; Shwan, Nzar A. A.; Pagani, Luca; Saag, Lauri; Antão, Tiago; Jacobs, Guy; Hudjashov, Georgi; Metspalu, Ene; Mitt, Mario; Eichstaedt, Christina A.; Malyarchuk, Boris; Derenko, Miroslava; Wee, Joseph; Abdullah, Syafiq; Ricaut, François-Xavier; Mormina, Maru; Mägi, Reedik; Villems, Richard; Metspalu, Mait; Jones, Martin K.; Armour, John A. L.; Kivisild, Toomas

    2016-01-01

    Humans have more copies of amylase genes than other primates. It is still poorly understood, however, when the copy number expansion occurred and whether its spread was enhanced by selection. Here we assess amylase copy numbers in a global sample of 480 high coverage genomes and find that regions flanking the amylase locus show notable depression of genetic diversity both in African and non-African populations. Analysis of genetic variation in these regions supports the model of an early selective sweep in the human lineage after the split of humans from Neanderthals which led to the fixation of multiple copies of AMY1 in place of a single copy. We find evidence of multiple secondary losses of copy number with the highest frequency (52%) of a deletion of AMY2A and associated low copy number of AMY1 in Northeast Siberian populations whose diet has been low in starch content. PMID:27853181

  20. Selective sweep on human amylase genes postdates the split with Neanderthals.

    PubMed

    Inchley, Charlotte E; Larbey, Cynthia D A; Shwan, Nzar A A; Pagani, Luca; Saag, Lauri; Antão, Tiago; Jacobs, Guy; Hudjashov, Georgi; Metspalu, Ene; Mitt, Mario; Eichstaedt, Christina A; Malyarchuk, Boris; Derenko, Miroslava; Wee, Joseph; Abdullah, Syafiq; Ricaut, François-Xavier; Mormina, Maru; Mägi, Reedik; Villems, Richard; Metspalu, Mait; Jones, Martin K; Armour, John A L; Kivisild, Toomas

    2016-11-17

    Humans have more copies of amylase genes than other primates. It is still poorly understood, however, when the copy number expansion occurred and whether its spread was enhanced by selection. Here we assess amylase copy numbers in a global sample of 480 high coverage genomes and find that regions flanking the amylase locus show notable depression of genetic diversity both in African and non-African populations. Analysis of genetic variation in these regions supports the model of an early selective sweep in the human lineage after the split of humans from Neanderthals which led to the fixation of multiple copies of AMY1 in place of a single copy. We find evidence of multiple secondary losses of copy number with the highest frequency (52%) of a deletion of AMY2A and associated low copy number of AMY1 in Northeast Siberian populations whose diet has been low in starch content.

  1. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies.

    PubMed

    Willemsen, Marjolein H; de Leeuw, Nicole; de Brouwer, Arjan P M; Pfundt, Rolph; Hehir-Kwa, Jayne Y; Yntema, Helger G; Nillesen, Willy M; de Vries, Bert B A; van Bokhoven, Hans; Kleefstra, Tjitske

    2012-11-01

    Genome-wide array studies are now routinely being used in the evaluation of patients with cognitive disorders (CD) and/or congenital anomalies (CA). Therefore, inevitably each clinician is confronted with the challenging task of the interpretation of copy number variations detected by genome-wide array platforms in a diagnostic setting. Clinical interpretation of autosomal copy number variations is already challenging, but assessment of the clinical relevance of copy number variations of the X-chromosome is even more complex. This study provides an overview of the X-Chromosome copy number variations that we have identified by genome-wide array analysis in a large cohort of 4407 male and female patients. We have made an interpretation of the clinical relevance of each of these copy number variations based on well-defined criteria and previous reports in literature and databases. The prevalence of X-chromosome copy number variations in this cohort was 57/4407 (∼1.3%), of which 15 (0.3%) were interpreted as (likely) pathogenic. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  3. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes.

    PubMed

    Ziemons, Sandra; Koutsantas, Katerina; Becker, Kordula; Dahlmann, Tim; Kück, Ulrich

    2017-02-16

    Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.

  4. A comprehensive profile of DNA copy number variations in a Korean population: identification of copy number invariant regions among Koreans.

    PubMed

    Jeon, Jae Pil; Shim, Sung Mi; Jung, Jong Sun; Nam, Hye Young; Lee, Hye Jin; Oh, Berm Seok; Kim, Kuchan; Kim, Hyung Lae; Han, Bok Ghee

    2009-09-30

    To examine copy number variations among the Korean population, we compared individual genomes with the Korean reference genome assembly using the publicly available Korean HapMap SNP 50 k chip data from 90 individuals. Korean individuals exhibited 123 copy number variation regions (CNVRs) covering 27.2 mb, equivalent to 1.0% of the genome in the copy number variation (CNV) analysis using the combined criteria of P value (P<0.01) and standard deviation of copy numbers (SD>or= 0.25) among study subjects. In contrast, when compared to the Affymetrix reference genome assembly from multiple ethnic groups, considerably more CNVRs (n=643) were detected in larger proportions (5.0%) of the genome covering 135.1 mb even by more stringent criteria (P<0.001 and SD>or=0.25), reflecting ethnic diversity of structural variations between Korean and other populations. Some CNVRs were validated by the quantitative multiplex PCR of short fluorescent fragment (QMPSF) method, and then copy number invariant regions were detected among the study subjects. These copy number invariant regions would be used as good internal controls for further CNV studies. Lastly, we demonstrated that the CNV information could stratify even a single ethnic population with a proper reference genome assembly from multiple heterogeneous populations.

  5. Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat.

    PubMed

    Giancaspro, Angelica; Gadaleta, Agata; Blanco, Antonio

    2017-01-01

    Despite the unceasing advances in genetic transformation techniques, the success of common delivery methods still lies on the behavior of the integrated transgenes in the host genome. Stability and expression of the introduced genes are influenced by several factors such as chromosomal location, transgene copy number and interaction with the host genotype. Such factors are traditionally characterized by Southern blot analysis, which can be time-consuming, laborious, and often unable to detect the exact copy number of rearranged transgenes. Recent research in crop field suggests real-time PCR as an effective and reliable tool for the precise quantification and characterization of transgene loci. This technique overcomes most problems linked to phenotypic segregation analysis and can analyze hundreds of samples in a day, making it an efficient method for estimating a gene copy number integrated in a transgenic line. This protocol describes the use of real-time PCR for the detection of transgene copy number in durum wheat transgenic lines by means of two different chemistries (SYBR ® Green I dye and TaqMan ® probes).

  6. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle

    USDA-ARS?s Scientific Manuscript database

    Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...

  7. Differences in AMY1 Gene Copy Numbers Derived from Blood, Buccal Cells and Saliva Using Quantitative and Droplet Digital PCR Methods: Flagging the Pitfall.

    PubMed

    Ooi, Delicia Shu Qin; Tan, Verena Ming Hui; Ong, Siong Gim; Chan, Yiong Huak; Heng, Chew Kiat; Lee, Yung Seng

    2017-01-01

    The human salivary (AMY1) gene, encoding salivary α-amylase, has variable copy number variants (CNVs) in the human genome. We aimed to determine if real-time quantitative polymerase chain reaction (qPCR) and the more recently available Droplet Digital PCR (ddPCR) can provide a precise quantification of the AMY1 gene copy number in blood, buccal cells and saliva samples derived from the same individual. Seven participants were recruited and DNA was extracted from the blood, buccal cells and saliva samples provided by each participant. Taqman assay real-time qPCR and ddPCR were conducted to quantify AMY1 gene copy numbers. Statistical analysis was carried out to determine the difference in AMY1 gene copy number between the different biological specimens and different assay methods. We found significant within-individual difference (p<0.01) in AMY1 gene copy number between different biological samples as determined by qPCR. However, there was no significant within-individual difference in AMY1 gene copy number between different biological samples as determined by ddPCR. We also found that AMY1 gene copy number of blood samples were comparable between qPCR and ddPCR, while there is a significant difference (p<0.01) between AMY1 gene copy numbers measured by qPCR and ddPCR for both buccal swab and saliva samples. Despite buccal cells and saliva samples being possible sources of DNA, it is pertinent that ddPCR or a single biological sample, preferably blood sample, be used for determining highly polymorphic gene copy numbers like AMY1, due to the large within-individual variability between different biological samples if real time qPCR is employed.

  8. Human-Compatible Animal Models for Preclinical Research on Hormones in Breast Cancer

    DTIC Science & Technology

    2012-09-01

    Hormone/Prolactin Family in Biology and Disease” in July, 2012. Several participants inquired as to whether we had determined the number of copies of...in situ hybridization) analysis of both lines to determine the copy number of the transgene. We found that the BAC-h8 line has a single copy of the...transgene and the BAC-h30 line has two copies (Figure 5). Breeding of the hPRL+ mice onto an immunodeficient background: As discussed in last

  9. Allele quantification using molecular inversion probes (MIP)

    PubMed Central

    Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Falkowski, Matthew; Chen, Chunnuan; Siddiqui, Farooq; Davis, Ronald W.; Willis, Thomas D.; Faham, Malek

    2005-01-01

    Detection of genomic copy number changes has been an important research area, especially in cancer. Several high-throughput technologies have been developed to detect these changes. Features that are important for the utility of technologies assessing copy number changes include the ability to interrogate regions of interest at the desired density as well as the ability to differentiate the two homologs. In addition, assessing formaldehyde fixed and paraffin embedded (FFPE) samples allows the utilization of the vast majority of cancer samples. To address these points we demonstrate the use of molecular inversion probe (MIP) technology to the study of copy number. MIP is a high-throughput genotyping technology capable of interrogating >20 000 single nucleotide polymorphisms in the same tube. We have shown the ability of MIP at this multiplex level to provide copy number measurements while obtaining the allele information. In addition we have demonstrated a proof of principle for copy number analysis in FFPE samples. PMID:16314297

  10. High Resolution Analysis of Copy Number Mutation in Breast Cancer

    DTIC Science & Technology

    2005-05-01

    tissues and Epstein - Barr sentations and arrays of Hind III probes additional CNPs, as would an increase in the virus -immortalized lymphoblastoid cell...software and laboratory procedures for the design of inter-phase FISH primers. We have also made progress in developing database and data processing...Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultane- ous measurement of copy

  11. Glyoxalase 1 copy number variation in patients with well differentiated gastro-entero-pancreatic neuroendocrine tumours (GEP-NET)

    PubMed Central

    Xue, Mingzhan; Shafie, Alaa; Qaiser, Talha; Rajpoot, Nasir M.; Kaltsas, Gregory; James, Sean; Gopalakrishnan, Kishore; Fisk, Adrian; Dimitriadis, Georgios K.; Grammatopoulos, Dimitris K.; Rabbani, Naila; Thornalley, Paul J.; Weickert, Martin O.

    2017-01-01

    Background The glyoxalase-1 gene (GLO1) is a hotspot for copy-number variation (CNV) in human genomes. Increased GLO1 copy-number is associated with multidrug resistance in tumour chemotherapy, but prevalence of GLO1 CNV in gastro-entero-pancreatic neuroendocrine tumours (GEP-NET) is unknown. Methods GLO1 copy-number variation was measured in 39 patients with GEP-NET (midgut NET, n = 25; pancreatic NET, n = 14) after curative or debulking surgical treatment. Primary tumour tissue, surrounding healthy tissue and, where applicable, additional metastatic tumour tissue were analysed, using real time qPCR. Progression and survival following surgical treatment were monitored over 4.2 ± 0.5 years. Results In the pooled GEP-NET cohort, GLO1 copy-number in healthy tissue was 2.0 in all samples but significantly increased in primary tumour tissue in 43% of patients with pancreatic NET and in 72% of patients with midgut NET, mainly driven by significantly higher GLO1 copy-number in midgut NET. In tissue from additional metastases resection (18 midgut NET and one pancreatic NET), GLO1 copy number was also increased, compared with healthy tissue; but was not significantly different compared with primary tumour tissue. During mean 3 - 5 years follow-up, 8 patients died and 16 patients showed radiological progression. In midgut NET, a high GLO1 copy-number was associated with earlier progression. In NETs with increased GLO1 copy number, there was increased Glo1 protein expression compared to non-malignant tissue. Conclusions GLO1 copy-number was increased in a large percentage of patients with GEP-NET and correlated positively with increased Glo1 protein in tumour tissue. Analysis of GLO1 copy-number variation particularly in patients with midgut NET could be a novel prognostic marker for tumour progression. PMID:29100361

  12. DR-Integrator: a new analytic tool for integrating DNA copy number and gene expression data.

    PubMed

    Salari, Keyan; Tibshirani, Robert; Pollack, Jonathan R

    2010-02-01

    DNA copy number alterations (CNA) frequently underlie gene expression changes by increasing or decreasing gene dosage. However, only a subset of genes with altered dosage exhibit concordant changes in gene expression. This subset is likely to be enriched for oncogenes and tumor suppressor genes, and can be identified by integrating these two layers of genome-scale data. We introduce DNA/RNA-Integrator (DR-Integrator), a statistical software tool to perform integrative analyses on paired DNA copy number and gene expression data. DR-Integrator identifies genes with significant correlations between DNA copy number and gene expression, and implements a supervised analysis that captures genes with significant alterations in both DNA copy number and gene expression between two sample classes. DR-Integrator is freely available for non-commercial use from the Pollack Lab at http://pollacklab.stanford.edu/ and can be downloaded as a plug-in application to Microsoft Excel and as a package for the R statistical computing environment. The R package is available under the name 'DRI' at http://cran.r-project.org/. An example analysis using DR-Integrator is included as supplemental material. Supplementary data are available at Bioinformatics online.

  13. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats

    PubMed Central

    Armour, John A. L.; Palla, Raquel; Zeeuwen, Patrick L. J. M.; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J.

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies. PMID:17175532

  14. Genome-wide copy number variant analysis in Holstein cattle reveals variants associated with 10 production traits including residual feed intake and dry matter intake

    USDA-ARS?s Scientific Manuscript database

    Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...

  15. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens.

    PubMed

    Wood, Henry M; Belvedere, Ornella; Conway, Caroline; Daly, Catherine; Chalkley, Rebecca; Bickerdike, Melissa; McKinley, Claire; Egan, Phil; Ross, Lisa; Hayward, Bruce; Morgan, Joanne; Davidson, Leslie; MacLennan, Ken; Ong, Thian K; Papagiannopoulos, Kostas; Cook, Ian; Adams, David J; Taylor, Graham R; Rabbitts, Pamela

    2010-08-01

    The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material.

  16. Molecular inversion probe assay for allelic quantitation

    PubMed Central

    Ji, Hanlee; Welch, Katrina

    2010-01-01

    Molecular inversion probe (MIP) technology has been demonstrated to be a robust platform for large-scale dual genotyping and copy number analysis. Applications in human genomic and genetic studies include the possibility of running dual germline genotyping and combined copy number variation ascertainment. MIPs analyze large numbers of specific genetic target sequences in parallel, relying on interrogation of a barcode tag, rather than direct hybridization of genomic DNA to an array. The MIP approach does not replace, but is complementary to many of the copy number technologies being performed today. Some specific advantages of MIP technology include: Less DNA required (37 ng vs. 250 ng), DNA quality less important, more dynamic range (amplifications detected up to copy number 60), allele specific information “cleaner” (less SNP crosstalk/contamination), and quality of markers better (fewer individual MIPs versus SNPs needed to identify copy number changes). MIPs can be considered a candidate gene (targeted whole genome) approach and can find specific areas of interest that otherwise may be missed with other methods. PMID:19488872

  17. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies.

    PubMed

    Bakker, Bjorn; Taudt, Aaron; Belderbos, Mirjam E; Porubsky, David; Spierings, Diana C J; de Jong, Tristan V; Halsema, Nancy; Kazemier, Hinke G; Hoekstra-Wakker, Karina; Bradley, Allan; de Bont, Eveline S J M; van den Berg, Anke; Guryev, Victor; Lansdorp, Peter M; Colomé-Tatché, Maria; Foijer, Floris

    2016-05-31

    Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.

  18. aCGH Local Copy Number Aberrations Associated with Overall Copy Number Genomic Instability in Colorectal Cancer: Coordinate Involvement of the Regions Including BCR and ABL

    PubMed Central

    Bartos, Jeremy D.; Gaile, Daniel P.; McQuaid, Devin E.; Conroy, Jeffrey M.; Darbary, Huferesh; Nowak, Norma J.; Block, Annemarie; Petrelli, Nicholas J.; Mittelman, Arnold; Stoler, Daniel L.; Anderson, Garth R.

    2007-01-01

    In order to identify small regions of the genome whose specific copy number alteration is associated with high genomic instability in the form of overall genome-wide copy number aberrations, we have analyzed array-based comparative genomic hybridization (aCGH) data from 33 sporadic colorectal carcinomas. Copy number changes of a small number of specific regions were significantly correlated with elevated overall amplifications and deletions scattered throughout the entire genome. One significant region at 9q34 includes the c-ABL gene Another region spanning 22q11–13 includes the breakpoint cluster region (BCR) of the Philadelphia chromosome Coordinate 22q11–13 alterations were observed in nine of eleven tumors with the 9q34 alteration Additional regions on 1q and 14q were associated with overall genome-wide copy number changes, while copy number aberrations on chromosome 7p, 7q, and 13q21.1–31.3 were found associated with this instability only in tumors from patients with a smoking history Our analysis demonstrates there are a small number of regions of the genome where gain or loss is commonly associated with a tumor’s overall level of copy number aberrations Our finding BCR and ABL located within two of the instability-associated regions, and the involvement of these two regions occurring coordinately, suggests a system akin to the BCR-ABL translocation of CML may be involved in genomic instability in about one-third of human colorectal carcinomas. PMID:17196995

  19. Genomic characteristics of cattle copy number variations

    USDA-ARS?s Scientific Manuscript database

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  20. Association of mitochondrial DNA in peripheral blood with depression, anxiety and stress- and adjustment disorders in primary health care patients.

    PubMed

    Wang, Xiao; Sundquist, Kristina; Rastkhani, Hamideh; Palmér, Karolina; Memon, Ashfaque A; Sundquist, Jan

    2017-08-01

    Mitochondrial dysfunction may result in a variety of diseases. The objectives here were to examine possible differences in mtDNA copy number between healthy controls and patients with depression, anxiety or stress- and adjustment disorders; the association between mtDNA copy number and disease severity at baseline; and the association between mtDNA copy number and response after an 8-week treatment (mindfulness, cognitive based therapy). A total of 179 patients in primary health care (age 20-64 years) with depression, anxiety and stress- and adjustment disorders, and 320 healthy controls (aged 19-70 years) were included in the study. Relative mtDNA copy number was measured using quantitative real-time PCR on peripheral blood samples. We found that the mean mtDNA copy number was significantly higher in patients compared to controls (84.9 vs 75.9, p<0.0001) at baseline. The difference in mtDNA copy number between patients and controls remained significant after controlling for age and sex (ß=8.13, p<0.0001; linear regression analysis). The mtDNA copy number was significantly associated with Patient Health Questionnaire (PHQ-9) scores (β=0.57, p=0.02) at baseline. After treatment, the change in mtDNA copy number was significantly associated with the treatment response, i.e., change in Hospital Anxiety and Depression Scale (HADS-D) and PHQ-9 scores (ß=1.00, p=0.03 and ß=0.65, p=0.04, respectively), after controlling for baseline scores, age, sex, BMI, smoking status, alcohol drinking and medication. Our findings show that mtDNA copy number is associated with symptoms of depression, anxiety and stress- and adjustment disorders and treatment response in these disorders. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  1. Genomic and evolutionary characteristics of cattle copy number variations

    USDA-ARS?s Scientific Manuscript database

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  2. A method for generating new datasets based on copy number for cancer analysis.

    PubMed

    Kim, Shinuk; Kon, Mark; Kang, Hyunsik

    2015-01-01

    New data sources for the analysis of cancer data are rapidly supplementing the large number of gene-expression markers used for current methods of analysis. Significant among these new sources are copy number variation (CNV) datasets, which typically enumerate several hundred thousand CNVs distributed throughout the genome. Several useful algorithms allow systems-level analyses of such datasets. However, these rich data sources have not yet been analyzed as deeply as gene-expression data. To address this issue, the extensive toolsets used for analyzing expression data in cancerous and noncancerous tissue (e.g., gene set enrichment analysis and phenotype prediction) could be redirected to extract a great deal of predictive information from CNV data, in particular those derived from cancers. Here we present a software package capable of preprocessing standard Agilent copy number datasets into a form to which essentially all expression analysis tools can be applied. We illustrate the use of this toolset in predicting the survival time of patients with ovarian cancer or glioblastoma multiforme and also provide an analysis of gene- and pathway-level deletions in these two types of cancer.

  3. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study.

    PubMed

    Iddawela, Mahesh; Rueda, Oscar; Eremin, Jenny; Eremin, Oleg; Cowley, Jed; Earl, Helena M; Caldas, Carlos

    2017-07-11

    An absence of reliable molecular markers has hampered individualised breast cancer treatments, and a major limitation for translational research is the lack of fresh tissue. There are, however, abundant banks of formalin-fixed paraffin-embedded (FFPE) tissue. This study evaluated two platforms available for the analysis of DNA copy number and gene expression using FFPE samples. The cDNA-mediated annealing, selection, extension, and ligation assay (DASL™) has been developed for gene expression analysis and the Molecular Inversion Probes assay (Oncoscan™), were used for copy number analysis using FFPE tissues. Gene expression and copy number were evaluated in core-biopsy samples from patients with breast cancer undergoing neoadjuvant chemotherapy (NAC). Forty-three core-biopsies were evaluated and characteristic copy number changes in breast cancers, gains in 1q, 8q, 11q, 17q and 20q and losses in 6q, 8p, 13q and 16q, were confirmed. Regions that frequently exhibited gains in tumours showing a pathological complete response (pCR) to NAC were 1q (55%), 8q (40%) and 17q (40%), whereas 11q11 (37%) gain was the most frequent change in non-pCR tumours. Gains associated with poor survival were 11q13 (62%), 8q24 (54%) and 20q (47%). Gene expression assessed by DASL correlated with immunohistochemistry (IHC) analysis for oestrogen receptor (ER) [area under the curve (AUC) = 0.95], progesterone receptor (PR)(AUC = 0.90) and human epidermal growth factor type-2 receptor (HER-2) (AUC = 0.96). Differential expression analysis between ER+ and ER- cancers identified over-expression of TTF1, LAF-4 and C-MYB (p ≤ 0.05), and between pCR vs non-pCRs, over-expression of CXCL9, AREG, B-MYB and under-expression of ABCG2. This study was an integrative analysis of copy number and gene expression using FFPE core biopsies and showed that molecular marker data from FFPE tissues were consistent with those in previous studies using fresh-frozen samples. FFPE tissue can provide reliable information and will be a useful tool in molecular marker studies. Trial registration number ISRCTN09184069 and registered retrospectively on 02/06/2010.

  4. Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers

    PubMed Central

    2013-01-01

    Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816

  5. Chemiluminescent Detection for Estimating Relative Copy Numbers of Porcine Endogenous Retrovirus Proviruses from Chinese Minipigs Based on Magnetic Nanoparticles.

    PubMed

    Yang, Haowen; Liu, Ming; Zhou, Bingcong; Deng, Yan; He, Nongyue; Jiang, Hesheng; Guo, Yafen; Lan, Ganqiu; Jiang, Qinyang; Yang, Xiurong; Li, Zhiyang

    2016-06-01

    Chinese Bama minipigs could be potential donors for the supply of xenografts because they are genetically stable, highly inbred, and inexpensive. However, porcine endogenous retrovirus (PERV) is commonly integrated in pig genomes and could cause a cross-species infection by xenotransplantation. For screening out the pigs with low copy numbers of PERV proviruses, we have developed a novel semiquantitative analysis approach based on magnetic nanoparticles (MNPs) and chemiluminescence (CL) for estimating relative copy numbers (RCNs) of PERV proviruses in Chinese Bama minipigs. The CL intensities of PERV proviruses and the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were respectively determined with this method, and the RCNs of PERV proviruses were calculated by the equation: RCN of PERV provirus = CL intensity of PERV provirus/CL intensity of GAPDH. The results showed that PERVs were integrated in the genomes of Bama minipigs at different copy numbers, and the copy numbers of PERV-C subtype were greatly low. Two Bama minipigs with low copy numbers of PERV proviruses were detected out and could be considered as xenograft donor candidates. Although only semiquantitation can be achieved, this approach has potential for screening out safe and suitable pig donors for xenotransplantation.

  6. Copy number increase of ACTN4 is a prognostic indicator in salivary gland carcinoma

    PubMed Central

    Watabe, Yukio; Mori, Taisuke; Yoshimoto, Seiichi; Nomura, Takeshi; Shibahara, Takahiko; Yamada, Tesshi; Honda, Kazufumi

    2014-01-01

    Copy number increase (CNI) of ACTN4 has been associated with poor prognosis and metastatic phenotypes in various human carcinomas. To identify a novel prognostic factor for salivary gland carcinoma, we investigated the copy number of ACTN4. We evaluated DNA copy number of ACTN4 in 58 patients with salivary gland carcinoma by using fluorescent in situ hybridization (FISH). CNI of ACTN4 was recognized in 14 of 58 patients (24.1%) with salivary gland carcinoma. The cases with CNI of ACTN4 were closely associated with histological grade (P = 0.047) and vascular invasion (P = 0.033). The patients with CNI of ACTN4 had a significantly worse prognosis than the patients with normal copy number of ACTN4 (P = 0.0005 log-rank test). Univariate analysis by the Cox proportional hazards model showed that histological grade, vascular invasion, and CNI of ACTN4 were independent risk factors for cancer death. Vascular invasion (hazard ratio [HR]: 7.46; 95% confidence interval [CI]: 1.98–28.06) and CNI of ACTN4 (HR: 3.23; 95% CI: 1.08–9.68) remained as risk factors for cancer death in multivariate analysis. Thus, CNI of ACTN4 is a novel indicator for an unfavorable outcome in patients with salivary gland carcinoma. PMID:24574362

  7. A novel approach for copy number variation analysis by combining multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Gao, Yonghui; Chen, Xiaoli; Wang, Jianhua; Shangguan, Shaofang; Dai, Yaohua; Zhang, Ting; Liu, Junling

    2013-06-20

    With the increasing interest in copy number variation as it pertains to human genomic variation, common phenotypes, and disease susceptibility, there is a pressing need for methods to accurately identify copy number. In this study, we developed a simple approach that combines multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry for submicroscopic copy number variation detection. Two pairs of primers were used to simultaneously amplify query and endogenous control regions in the same reaction. Using a base extension reaction, the two amplicons were then distinguished and quantified in a mass spectrometry map. The peak ratio between the test region and the endogenous control region was manually calculated. The relative copy number could be determined by comparing the peak ratio between the test and control samples. This method generated a copy number measurement comparable to those produced by two other commonly used methods - multiplex ligation-dependent probe amplification and quantitative real-time PCR. Furthermore, it can discriminate a wide range of copy numbers. With a typical 384-format SpectroCHIP, at least six loci on 384 samples can be analyzed simultaneously in a hexaplex assay, making this assay adaptable for high throughput, and potentially applicable for large-scale association studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. GEAR: genomic enrichment analysis of regional DNA copy number changes.

    PubMed

    Kim, Tae-Min; Jung, Yu-Chae; Rhyu, Mun-Gan; Jung, Myeong Ho; Chung, Yeun-Jun

    2008-02-01

    We developed an algorithm named GEAR (genomic enrichment analysis of regional DNA copy number changes) for functional interpretation of genome-wide DNA copy number changes identified by array-based comparative genomic hybridization. GEAR selects two types of chromosomal alterations with potential biological relevance, i.e. recurrent and phenotype-specific alterations. Then it performs functional enrichment analysis using a priori selected functional gene sets to identify primary and clinical genomic signatures. The genomic signatures identified by GEAR represent functionally coordinated genomic changes, which can provide clues on the underlying molecular mechanisms related to the phenotypes of interest. GEAR can help the identification of key molecular functions that are activated or repressed in the tumor genomes leading to the improved understanding on the tumor biology. GEAR software is available with online manual in the website, http://www.systemsbiology.co.kr/GEAR/.

  9. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes

    PubMed Central

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M.; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A.A.; Yang, Fengtang; Thomas, Mark G.; Armour, John A.L.

    2015-01-01

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. PMID:25788522

  10. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes.

    PubMed

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A A; Yang, Fengtang; Thomas, Mark G; Armour, John A L

    2015-06-15

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. © The Author 2015. Published by Oxford University Press.

  11. Copy number analysis of NIPBL in a cohort of 510 patients reveals rare copy number variants and a mosaic deletion.

    PubMed

    Cheng, Yu-Wei; Tan, Christopher A; Minor, Agata; Arndt, Kelly; Wysinger, Latrice; Grange, Dorothy K; Kozel, Beth A; Robin, Nathaniel H; Waggoner, Darrel; Fitzpatrick, Carrie; Das, Soma; Del Gaudio, Daniela

    2014-03-01

    Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by growth retardation, intellectual disability, upper limb abnormalities, hirsutism, and characteristic facial features. In this study we explored the occurrence of intragenic NIPBL copy number variations (CNVs) in a cohort of 510 NIPBL sequence-negative patients with suspected CdLS. Copy number analysis was performed by custom exon-targeted oligonucleotide array-comparative genomic hybridization and/or MLPA. Whole-genome SNP array was used to further characterize rearrangements extending beyond the NIPBL gene. We identified NIPBL CNVs in 13 patients (2.5%) including one intragenic duplication and a deletion in mosaic state. Breakpoint sequences in two patients provided further evidence of a microhomology-mediated replicative mechanism as a potential predominant contributor to CNVs in NIPBL. Patients for whom clinical information was available share classical CdLS features including craniofacial and limb defects. Our experience in studying the frequency of NIBPL CNVs in the largest series of patients to date widens the mutational spectrum of NIPBL and emphasizes the clinical utility of performing NIPBL deletion/duplication analysis in patients with CdLS.

  12. A Likelihood-Based Framework for Association Analysis of Allele-Specific Copy Numbers.

    PubMed

    Hu, Y J; Lin, D Y; Sun, W; Zeng, D

    2014-10-01

    Copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) co-exist throughout the human genome and jointly contribute to phenotypic variations. Thus, it is desirable to consider both types of variants, as characterized by allele-specific copy numbers (ASCNs), in association studies of complex human diseases. Current SNP genotyping technologies capture the CNV and SNP information simultaneously via fluorescent intensity measurements. The common practice of calling ASCNs from the intensity measurements and then using the ASCN calls in downstream association analysis has important limitations. First, the association tests are prone to false-positive findings when differential measurement errors between cases and controls arise from differences in DNA quality or handling. Second, the uncertainties in the ASCN calls are ignored. We present a general framework for the integrated analysis of CNVs and SNPs, including the analysis of total copy numbers as a special case. Our approach combines the ASCN calling and the association analysis into a single step while allowing for differential measurement errors. We construct likelihood functions that properly account for case-control sampling and measurement errors. We establish the asymptotic properties of the maximum likelihood estimators and develop EM algorithms to implement the corresponding inference procedures. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to a genome-wide association study of schizophrenia. Extensions to next-generation sequencing data are discussed.

  13. A Meta-Analysis of Multiple Matched Copy Number and Transcriptomics Data Sets for Inferring Gene Regulatory Relationships

    PubMed Central

    Newton, Richard; Wernisch, Lorenz

    2014-01-01

    Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments. PMID:25148247

  14. Orthogonality and Burdens of Heterologous AND Gate Gene Circuits in E. coli

    PubMed Central

    2017-01-01

    Synthetic biology approaches commonly introduce heterologous gene networks into a host to predictably program cells, with the expectation of the synthetic network being orthogonal to the host background. However, introduced circuits may interfere with the host’s physiology, either indirectly by posing a metabolic burden and/or through unintended direct interactions between parts of the circuit with those of the host, affecting functionality. Here we used RNA-Seq transcriptome analysis to quantify the interactions between a representative heterologous AND gate circuit and the host Escherichia coli under various conditions including circuit designs and plasmid copy numbers. We show that the circuit plasmid copy number outweighs circuit composition for their effect on host gene expression with medium-copy number plasmid showing more prominent interference than its low-copy number counterpart. In contrast, the circuits have a stronger influence on the host growth with a metabolic load increasing with the copy number of the circuits. Notably, we show that variation of copy number, an increase from low to medium copy, caused different types of change observed in the behavior of components in the AND gate circuit leading to the unbalance of the two gate-inputs and thus counterintuitive output attenuation. The study demonstrates the circuit plasmid copy number is a key factor that can dramatically affect the orthogonality, burden and functionality of the heterologous circuits in the host chassis. The results provide important guidance for future efforts to design orthogonal and robust gene circuits with minimal unwanted interaction and burden to their host. PMID:29240998

  15. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    PubMed

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by Darwinian positive selection acting on the male reproductive system and possibly also on the central nervous system, which sheds light on understanding the role of homeobox genes in adaptive evolution.

  16. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

    PubMed

    Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C

    2015-01-01

    Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  17. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes. In this study, we performed a lar...

  18. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus Cattle

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to intestinal nematodes. In this study, we performed a large sca...

  19. Determination of absolute expression profiles using multiplexed miRNA analysis

    PubMed Central

    Song, Jee Hoon; Cheng, Yulan; Saeui, Christopher T.; Cheung, Douglas G.; Croce, Carlo M.; Yarema, Kevin J.; Meltzer, Stephen J.; Liu, Kelvin J.; Wang, Tza-Huei

    2017-01-01

    Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes. PMID:28704432

  20. Mitochondrial DNA copy number is associated with risk of head and neck squamous cell carcinoma in Chinese population.

    PubMed

    Wang, Lihua; Lv, Hong; Ji, Pei; Zhu, Xun; Yuan, Hua; Jin, Guangfu; Dai, Juncheng; Hu, Zhibin; Su, Yuxiong; Ma, Hongxia

    2018-04-19

    Mitochondria show the special role in cellular bioenergy and many essential physiological activities. Previous researches have suggested that variations of mitochondrial DNA copy number contribute to development of different types of carcinomas. However, the relationship of mtDNA copy number in peripheral blood leukocytes (PBLs) with the risk of head and neck squamous cell carcinoma (HNSCC) is still inconclusive. We investigated the association of mtDNA with HNSCC risk through a case-control study including 570 HNSCC cases and 597 cancer-free controls. mtDNA copy number in PBLs was measured by real-time qPCR. Logistic regression was performed to estimate the association between the mtDNA copy number in PBLs and HNSCC risk. A U-shaped relation between the mtDNA copy number and HNSCC risk was found. Compared with those in the second quartile group, the adjusted odds ratios (ORs) and 95% confidence interval (CI) for those in the first and the forth quartile groups were 1.95 (1.37-2.76) and 2.16 (1.53-3.04), respectively. Using restricted cubic spline analysis, we confirmed such a significant U-shaped relation. Furthermore, the U-shaped association remained significant in different subgroups stratified by age, gender, tobacco smoking, and alcohol consumption. Both extremely low and high mtDNA copy numbers had significant associations with the increased HNSCC risk. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  1. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    PubMed

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  2. Clinical omics analysis of colorectal cancer incorporating copy number aberrations and gene expression data.

    PubMed

    Yoshida, Tsuyoshi; Kobayashi, Takumi; Itoda, Masaya; Muto, Taika; Miyaguchi, Ken; Mogushi, Kaoru; Shoji, Satoshi; Shimokawa, Kazuro; Iida, Satoru; Uetake, Hiroyuki; Ishikawa, Toshiaki; Sugihara, Kenichi; Mizushima, Hiroshi; Tanaka, Hiroshi

    2010-07-29

    Colorectal cancer (CRC) is one of the most frequently occurring cancers in Japan, and thus a wide range of methods have been deployed to study the molecular mechanisms of CRC. In this study, we performed a comprehensive analysis of CRC, incorporating copy number aberration (CRC) and gene expression data. For the last four years, we have been collecting data from CRC cases and organizing the information as an "omics" study by integrating many kinds of analysis into a single comprehensive investigation. In our previous studies, we had experienced difficulty in finding genes related to CRC, as we observed higher noise levels in the expression data than in the data for other cancers. Because chromosomal aberrations are often observed in CRC, here, we have performed a combination of CNA analysis and expression analysis in order to identify some new genes responsible for CRC. This study was performed as part of the Clinical Omics Database Project at Tokyo Medical and Dental University. The purpose of this study was to investigate the mechanism of genetic instability in CRC by this combination of expression analysis and CNA, and to establish a new method for the diagnosis and treatment of CRC. Comprehensive gene expression analysis was performed on 79 CRC cases using an Affymetrix Gene Chip, and comprehensive CNA analysis was performed using an Affymetrix DNA Sty array. To avoid the contamination of cancer tissue with normal cells, laser micro-dissection was performed before DNA/RNA extraction. Data analysis was performed using original software written in the R language. We observed a high percentage of CNA in colorectal cancer, including copy number gains at 7, 8q, 13 and 20q, and copy number losses at 8p, 17p and 18. Gene expression analysis provided many candidates for CRC-related genes, but their association with CRC did not reach the level of statistical significance. The combination of CNA and gene expression analysis, together with the clinical information, suggested UGT2B28, LOC440995, CXCL6, SULT1B1, RALBP1, TYMS, RAB12, RNMT, ARHGDIB, S1000A2, ABHD2, OIT3 and ABHD12 as genes that are possibly associated with CRC. Some of these genes have already been reported as being related to CRC. TYMS has been reported as being associated with resistance to the anti-cancer drug 5-fluorouracil, and we observed a copy number increase for this gene. RALBP1, ARHGDIB and S100A2 have been reported as oncogenes, and we observed copy number increases in each. ARHGDIB has been reported as a metastasis-related gene, and our data also showed copy number increases of this gene in cases with metastasis. The combination of CNA analysis and gene expression analysis was a more effective method for finding genes associated with the clinicopathological classification of CRC than either analysis alone. Using this combination of methods, we were able to detect genes that have already been associated with CRC. We also identified additional candidate genes that may be new markers or targets for this form of cancer.

  3. Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative).

    PubMed

    Marcinkowska-Swojak, Malgorzata; Szczerbal, Izabela; Pausch, Hubert; Nowacka-Woszuk, Joanna; Flisikowski, Krzysztof; Dzimira, Stanislaw; Nizanski, Wojciech; Payan-Carreira, Rita; Fries, Ruedi; Kozlowski, Piotr; Switonski, Marek

    2015-10-01

    Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1.

  4. Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative)

    PubMed Central

    Marcinkowska-Swojak, Malgorzata; Szczerbal, Izabela; Pausch, Hubert; Nowacka-Woszuk, Joanna; Flisikowski, Krzysztof; Dzimira, Stanislaw; Nizanski, Wojciech; Payan-Carreira, Rita; Fries, Ruedi; Kozlowski, Piotr; Switonski, Marek

    2015-01-01

    Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1. PMID:26423656

  5. High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used Candida albicans Strains

    PubMed Central

    Abbey, Darren; Hickman, Meleah; Gresham, David; Berman, Judith

    2011-01-01

    Phenotypic diversity can arise rapidly through loss of heterozygosity (LOH) or by the acquisition of copy number variations (CNV) spanning whole chromosomes or shorter contiguous chromosome segments. In Candida albicans, a heterozygous diploid yeast pathogen with no known meiotic cycle, homozygosis and aneuploidy alter clinical characteristics, including drug resistance. Here, we developed a high-resolution microarray that simultaneously detects ∼39,000 single nucleotide polymorphism (SNP) alleles and ∼20,000 copy number variation loci across the C. albicans genome. An important feature of the array analysis is a computational pipeline that determines SNP allele ratios based upon chromosome copy number. Using the array and analysis tools, we constructed a haplotype map (hapmap) of strain SC5314 to assign SNP alleles to specific homologs, and we used it to follow the acquisition of loss of heterozygosity (LOH) and copy number changes in a series of derived laboratory strains. This high-resolution SNP/CGH microarray and the associated hapmap facilitated the phasing of alleles in lab strains and revealed detrimental genome changes that arose frequently during molecular manipulations of laboratory strains. Furthermore, it provided a useful tool for rapid, high-resolution, and cost-effective characterization of changes in allele diversity as well as changes in chromosome copy number in new C. albicans isolates. PMID:22384363

  6. Integrative analysis of copy number alteration and gene expression profiling in ovarian clear cell adenocarcinoma.

    PubMed

    Sung, Chang Ohk; Choi, Chel Hun; Ko, Young-Hyeh; Ju, Hyunjeong; Choi, Yoon-La; Kim, Nyunsu; Kang, So Young; Ha, Sang Yun; Choi, Kyusam; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Song, Sang Yong; Kim, Byoung-Gie

    2013-05-01

    Ovarian clear cell adenocarcinoma (Ov-CCA) is a distinctive subtype of ovarian epithelial carcinoma. In this study, we performed array comparative genomic hybridization (aCGH) and paired gene expression microarray of 19 fresh-frozen samples and conducted integrative analysis. For the copy number alterations, significantly amplified regions (false discovery rate [FDR] q <0.05) were 1q21.3 and 8q24.3, and significantly deleted regions were 3p21.31, 4q12, 5q13.2, 5q23.2, 5q31.1, 7p22.1, 7q11.23, 8p12, 9p22.1, 11p15.1, 12p13.31, 15q11.2, 15q21.2, 18p11.31, and 22q11.21 using the Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. Integrative analysis revealed 94 genes demonstrating frequent copy number alterations (>25% of samples) that correlated with gene expression (FDR <0.05). These genes were mainly located on 8p11.21, 8p21.2-p21.3, 8q22.1, 8q24.3, 17q23.2-q23.3, 19p13.3, and 19p13.11. Among the regions, 8q24.3 was found to contain the most genes (30 of 94 genes) including PTK2. The 8q24.3 region was indicated as the most significant region, as supported by copy number, GISTIC, and integrative analysis. Pathway analysis using differentially expressed genes on 8q24.3 revealed several major nodes, including PTK2. In conclusion, we identified a set of 94 candidate genes with frequent copy number alterations that correlated with gene expression. Specific chromosomal alterations, such as the 8q24.3 gain containing PTK2, could be a therapeutic target in a subset of Ov-CCAs. Copyright © 2013. Published by Elsevier Inc.

  7. An Integrated Approach for RNA-seq Data Normalization.

    PubMed

    Yang, Shengping; Mercante, Donald E; Zhang, Kun; Fang, Zhide

    2016-01-01

    DNA copy number alteration is common in many cancers. Studies have shown that insertion or deletion of DNA sequences can directly alter gene expression, and significant correlation exists between DNA copy number and gene expression. Data normalization is a critical step in the analysis of gene expression generated by RNA-seq technology. Successful normalization reduces/removes unwanted nonbiological variations in the data, while keeping meaningful information intact. However, as far as we know, no attempt has been made to adjust for the variation due to DNA copy number changes in RNA-seq data normalization. In this article, we propose an integrated approach for RNA-seq data normalization. Comparisons show that the proposed normalization can improve power for downstream differentially expressed gene detection and generate more biologically meaningful results in gene profiling. In addition, our findings show that due to the effects of copy number changes, some housekeeping genes are not always suitable internal controls for studying gene expression. Using information from DNA copy number, integrated approach is successful in reducing noises due to both biological and nonbiological causes in RNA-seq data, thus increasing the accuracy of gene profiling.

  8. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum.

    PubMed

    Son, Yeon Jeong; Ryu, Ae Jin; Li, Ling; Han, Nam Soo; Jeong, Ki Jun

    2016-01-15

    Leuconostoc is a hetero-fermentative lactic acid bacteria, and its importance is widely recognized in the dairy industry. However, due to limited genetic tools including plasmids for Leuconostoc, there has not been much extensive research on the genetics and engineering of Leuconostoc yet. Thus, there is a big demand for high-copy-number plasmids for useful gene manipulation and overproduction of recombinant proteins in Leuconostoc. Using an existing low-copy plasmid, the copy number of plasmid was increased by random mutagenesis followed by FACS-based high-throughput screening. First, a random library of plasmids was constructed by randomizing the region responsible for replication in Leuconostoc citreum; additionally, a superfolder green fluorescent protein (sfGFP) was used as a reporter protein. With a high-speed FACS sorter, highly fluorescent cells were enriched, and after two rounds of sorting, single clone exhibiting the highest level of sfGFP was isolated. The copy number of the isolated plasmid (pCB4270) was determined by quantitative PCR (qPCR). It was found that the isolated plasmid has approximately a 30-fold higher copy number (approx. 70 copies per cell) than that of the original plasmid. From the sequence analysis, a single mutation (C→T) at position 4690 was found, and we confirmed that this single mutation was responsible for the increased plasmid copy number. The effectiveness of the isolated high-copy-number plasmid for the overproduction of recombinant proteins was successfully demonstrated with two protein models Glutathione-S-transferase (GST) and α-amylase. The high-copy number plasmid was successfully isolated by FACS-based high-throughput screening of a plasmid library in L. citreum. The isolated plasmid could be a useful genetic tool for high-level gene expression in Leuconostoc, and for extending the applications of this useful bacteria to various areas in the dairy and pharmaceutical industries.

  9. Gene copy number evolution during tetraploid cotton radiation.

    PubMed

    Rong, J; Feltus, F A; Liu, L; Lin, L; Paterson, A H

    2010-11-01

    After polyploid formation, retention or loss of duplicated genes is not random. Genes with some functional domains are convergently restored to 'singleton' state after many independent genome duplications, and have been referred to as 'duplication-resistant' (DR) genes. To further explore the timeframe for their restoration to the singleton state, 27 cotton homologs of genes found to be 'DR' in Arabidopsis were selected based on diagnostic Pfam domains. Their copy numbers were studied using southern hybridization and sequence analysis in five tetraploid species and their ancestral A and D genome diploids. DR genes had significantly lower copy number than gene families hybridizing to randomly selected cotton ESTs. Three DR genes showed complete loss of D genome-derived homoeologs in some or all tetraploid species. Prior analysis has shown gene loss in polyploid cotton to be rare, and herein only one randomly selected gene showed loss of a homoeolog in only one of the five tetraploid species (Gossypium mustelinum). BAC sequencing confirmed two cases of gene loss in tetraploid cotton. Divergence among 5' sequences of DR genes amplified from G. arboreum, G. raimondii, and Gossypioides kirkii was correlated with gene copy number. These results show that genes containing Pfam domains associated with duplication resistance in Arabidopsis have also been preferentially restored to low copy number after a more recent polyploidization event in cotton. In tetraploid cotton, genes from the progenitor D genome seem to experience more gene copy number divergence than genes from the A genome. Together with D subgenome-biased alterations in gene expression, perhaps gene loss may contribute to the relatively larger portion of quantitative trait variation attributable to D than A subgenome chromosomes of tetraploid cotton.

  10. Low copy numbers of complement C4 and homozygous deficiency of C4A may predispose to severe disease and earlier disease onset in patients with systemic lupus erythematosus.

    PubMed

    Jüptner, M; Flachsbart, F; Caliebe, A; Lieb, W; Schreiber, S; Zeuner, R; Franke, A; Schröder, J O

    2018-04-01

    Objectives Low copy numbers and deletion of complement C4 genes are potent risk factors for systemic lupus erythematosus (SLE). However, it is not known whether this genetic association affects the clinical outcome. We investigated C4 copy number variation and its relationship to clinical and serological features in a Northern European lupus cohort. Methods We genotyped the C4 gene locus using polymerase chain reaction (PCR)-based TaqMan assays in 169 patients with SLE classified according to the 1997 revised American College of Rheumatology (ACR) criteria and in 520 matched controls. In the patient group the mean C4 serum protein concentrations nephelometrically measured during a 12-month period prior to genetic analysis were compared to C4 gene copy numbers. Severity of disease was classified according to the intensity of the immunosuppressive regimens applied and compared to C4 gene copy numbers, too. In addition, we performed a TaqMan based analysis of three lupus-associated single-nucleotide polymorphisms (SNPs) located inside the major histocompatibility complex (MHC) to investigate the independence of complement C4 in association with SLE. Results Homozygous deficiency of the C4A isotype was identified as the strongest risk factor for SLE (odds ratio (OR) = 5.329; p = 7.7 × 10 -3 ) in the case-control comparison. Moreover, two copies of total C4 were associated with SLE (OR = 3.699; p = 6.8 × 10 -3 ). C4 serum levels were strongly related to C4 gene copy numbers in patients, the mean concentration ranging from 0.110 g/l (two copies) to 0.256 g/l (five to six copies; p = 4.9 × 10 -6 ). Two copies of total C4 and homozygous deletion of C4A were associated with a disease course requiring cyclophosphamide therapy (OR = 4.044; p = 0.040 and OR = 5.798; p = 0.034, respectively). Homozygous deletion of C4A was associated with earlier onset of SLE (median 24 vs. 34 years; p = 0.019) but not significant after correction for multiple testing. SNP analysis revealed a significant association of HLA-DRB1*0301 with SLE (OR = 2.231; p = 1.33 × 10 -5 ). Conclusions Our findings confirm the important role of complement C4 genes in the development of SLE. Beyond the impact on the susceptibility for lupus, C4 copy numbers may be related to earlier onset and a more severe course of the disease. The association of homozygous deletion of C4A and SLE is accompanied by the presence of HLA-DRB1*0301 without a proven pathophysiological mechanism.

  11. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    PubMed

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  12. Measurement of locus copy number by hybridisation with amplifiable probes

    PubMed Central

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  13. Measurement of locus copy number by hybridisation with amplifiable probes.

    PubMed

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  14. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives.

    PubMed

    Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development.

  15. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives

    PubMed Central

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development. PMID:24564169

  16. Cover-Copy-Compare and Spelling: One versus Three Repetitions

    ERIC Educational Resources Information Center

    Erion, Joel; Davenport, Cindy; Rodax, Nicole; Scholl, Bethany; Hardy, Jennifer

    2009-01-01

    Cover, copy, compare (CCC) has been used with success to improve spelling skills. This study adds to existing research by completing an analysis of the rewriting component of the intervention. The impact of varying the number of times a subject copied a word following an error was examined with four elementary age students. An adaptive alternating…

  17. Serial analysis of gene expression in the silkworm, Bombyx mori.

    PubMed

    Huang, Jianhua; Miao, Xuexia; Jin, Weirong; Couble, Pierre; Mita, Kasuei; Zhang, Yong; Liu, Wenbin; Zhuang, Leijun; Shen, Yan; Keime, Celine; Gandrillon, Olivier; Brouilly, Patrick; Briolay, Jerome; Zhao, Guoping; Huang, Yongping

    2005-08-01

    The silkworm Bombyx mori is one of the most economically important insects and serves as a model for Lepidoptera insects. We used serial analysis of gene expression (SAGE) to derive profiles of expressed genes during the developmental life cycle of the silkworm and to create a reference for understanding silkworm metamorphosis. We generated four SAGE libraries, one from each of the four developmental stages of the silkworm. In total we obtained 257,964 SAGE tags, of which 39,485 were unique tags. Sorted by copy number, 14.1% of the unique tags were detected at a median to high level (five or more copies), 24.2% at lower levels (two to four copies), and 61.7% as single copies. Using a basic local alignment search tool on the EST database, 35% of the tags matched known silkworm expressed sequence tags. SAGE demonstrated that a number of the genes were up- or down-regulated during the four developmental phases of the egg, larva, pupa, and adult. Furthermore, we found that the generation of longer cDNA fragments from SAGE tags constituted the most efficient method of gene identification, which facilitated the analysis of a large number of unknown genes.

  18. Constitutional trisomy 8 and Behçet syndrome.

    PubMed

    Becker, Kristin; Fitzgerald, Oliver; Green, Andrew J; Keogan, Mary; Newbury-Ecob, Ruth; Greenhalgh, Lynn; Withers, Stephen; Hollox, Edward J; Aldred, Patricia M R; Armour, John A L

    2009-05-01

    The characteristic clinical features of constitutional trisomy 8 include varying degrees of developmental delay, joint contractures and deep palmar and plantar creases. There is an established literature, which describes features of Behçet syndrome occurring in phenotypically normal individuals with myelodysplastic syndromes and trisomy 8 in their bone marrow. In this article, we describe four patients with constitutional trisomy 8, all with varying clinical phenotypes, who developed features of Behçet, in particular but not exclusively mucocutaneous ulceration. In addition, we examined gene copy numbers of the variable-number neutrophil defensin genes DEFA1A3 in one of the cases (case 1) and her parents, together with 14 cases of Behçet syndrome in comparison with 121 normal controls. The gene copy number was highest in case 1 (copy number 14) and was also increased in her parents (both copy number 9). However the mean copy number for DEFA1A3 among the 14 Behçet syndrome patients was actually lower (5.1) than among the controls (mean of 6.8 copies). Thus, we conclude that patients with constitutional trisomy 8 and those with trisomy 8 confined to the bone marrow are both at increased risk of developing features of Behçet syndrome. The mechanism may relate to increased chromosome 8 gene dosage with further analysis of candidate genes on chromosome 8 required.

  19. Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae

    PubMed Central

    2013-01-01

    Background The sequenced genomes of cucumber, melon and watermelon have relatively few R-genes, with 70, 75 and 55 copies only, respectively. The mechanism for low copy number of R-genes in Cucurbitaceae genomes remains unknown. Results Manual annotation of R-genes in the sequenced genomes of Cucurbitaceae species showed that approximately half of them are pseudogenes. Comparative analysis of R-genes showed frequent loss of R-gene loci in different Cucurbitaceae species. Phylogenetic analysis, data mining and PCR cloning using degenerate primers indicated that Cucurbitaceae has limited number of R-gene lineages (subfamilies). Comparison between R-genes from Cucurbitaceae and those from poplar and soybean suggested frequent loss of R-gene lineages in Cucurbitaceae. Furthermore, the average number of R-genes per lineage in Cucurbitaceae species is approximately 1/3 that in soybean or poplar. Therefore, both loss of lineages and deficient duplications in extant lineages accounted for the low copy number of R-genes in Cucurbitaceae. No extensive chimeras of R-genes were found in any of the sequenced Cucurbitaceae genomes. Nevertheless, one lineage of R-genes from Trichosanthes kirilowii, a wild Cucurbitaceae species, exhibits chimeric structures caused by gene conversions, and may contain a large number of distinct R-genes in natural populations. Conclusions Cucurbitaceae species have limited number of R-gene lineages and each genome harbors relatively few R-genes. The scarcity of R-genes in Cucurbitaceae species was due to frequent loss of R-gene lineages and infrequent duplications in extant lineages. The evolutionary mechanisms for large variation of copy number of R-genes in different plant species were discussed. PMID:23682795

  20. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    PubMed

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.

  1. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains

    PubMed Central

    van den Broek, M.; Bolat, I.; Nijkamp, J. F.; Ramos, E.; Luttik, M. A. H.; Koopman, F.; Geertman, J. M.; de Ridder, D.; Pronk, J. T.

    2015-01-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. PMID:26150454

  2. Exploratory factor analysis of pathway copy number data with an application towards the integration with gene expression data.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2011-05-01

    Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.

  3. Herpesviruses viral loads and levels of proinflammatory cytokines in apical periodontitis.

    PubMed

    Jakovljevic, A; Knezevic, A; Nikolic, N; Soldatovic, I; Jovanovic, T; Milasin, J; Andric, M

    2018-07-01

    This study aimed to analyse Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) viral loads in symptomatic and asymptomatic apical periodontitis lesions, to determine levels of TNF-α, IL-1β and IL-6 in these lesions and to investigate a possible correlation between herpesviral copy numbers and levels of proinflammatory cytokines. A total of 100 samples of apical periodontitis were subjected to HCMV and EBV copy numbers analysis by nested polymerase chain reaction (PCR) and TaqMan real-time PCR. The concentrations of TNF-α, IL-1β and IL-6 were determined by ELISA method. SPSS software was used for statistical analysis. There were no significant differences in the occurrence of EBV and HCMV between symptomatic and asymptomatic periapical lesions (p = .686, p = .879, respectively). Only 12 of 74 EBV (16.2%) and four of 54 HCMV (13.5%) nested PCR-positive samples showed increased viral copy numbers above the limit of 125 copies/ml. There was no significant correlation between the levels of analysed proinflammatory cytokines and herpesviral copy numbers in our sample. The observed low viral loads point to a relatively rare occurrence of active EBV and HCMV infection in our sample. Latent herpesviral infection does not enhance the production of investigated proinflammatory cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-09-12

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .

  5. Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae.

    PubMed

    Jie Jin, Feng; Hara, Seiichi; Sato, Atsushi; Koyama, Yasuji

    2014-01-01

    Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly. Sequence analysis indicated that AO090005001597 is part of a putative 6,000-bp retrotransposable element, flanked by two long terminal repeats (LTRs) of 669 bp, with characteristics of retroviruses and retrotransposons, and thus designated AoLTR (A. oryzae LTR-retrotransposable element). AoLTR comprised putative reverse transcriptase, RNase H, and integrase domains. The deduced amino acid sequence alignment of AoLTR showed 94% overall identity with AFLAV, an A. flavus Tf1/sushi retrotransposon. Quantitative real-time RT-PCR showed that AoLTR gene expression was significantly increased in the RKuAF8B, in accordance with the increased copy number. Inverse PCR indicated that the full-length retrotransposable element was randomly integrated into multiple genomic locations. However, no obvious phenotypic changes were associated with the increased AoLTR gene copy number.

  6. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human.

    PubMed

    MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

    2015-04-01

    Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. A Quantitative Microscopy Technique for Determining the Number of Specific Proteins in Cellular Compartments

    PubMed Central

    Mutch, Sarah A.; Gadd, Jennifer C.; Fujimoto, Bryant S.; Kensel-Hammes, Patricia; Schiro, Perry G.; Bajjalieh, Sandra M.; Chiu, Daniel T.

    2013-01-01

    This protocol describes a method to determine both the average number and variance of proteins in the few to tens of copies in isolated cellular compartments, such as organelles and protein complexes. Other currently available protein quantification techniques either provide an average number but lack information on the variance or are not suitable for reliably counting proteins present in the few to tens of copies. This protocol entails labeling the cellular compartment with fluorescent primary-secondary antibody complexes, TIRF (total internal reflection fluorescence) microscopy imaging of the cellular compartment, digital image analysis, and deconvolution of the fluorescence intensity data. A minimum of 2.5 days is required to complete the labeling, imaging, and analysis of a set of samples. As an illustrative example, we describe in detail the procedure used to determine the copy number of proteins in synaptic vesicles. The same procedure can be applied to other organelles or signaling complexes. PMID:22094731

  8. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array

    USDA-ARS?s Scientific Manuscript database

    Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases...

  9. CGHnormaliter: an iterative strategy to enhance normalization of array CGH data with imbalanced aberrations

    PubMed Central

    van Houte, Bart PP; Binsl, Thomas W; Hettling, Hannes; Pirovano, Walter; Heringa, Jaap

    2009-01-01

    Background Array comparative genomic hybridization (aCGH) is a popular technique for detection of genomic copy number imbalances. These play a critical role in the onset of various types of cancer. In the analysis of aCGH data, normalization is deemed a critical pre-processing step. In general, aCGH normalization approaches are similar to those used for gene expression data, albeit both data-types differ inherently. A particular problem with aCGH data is that imbalanced copy numbers lead to improper normalization using conventional methods. Results In this study we present a novel method, called CGHnormaliter, which addresses this issue by means of an iterative normalization procedure. First, provisory balanced copy numbers are identified and subsequently used for normalization. These two steps are then iterated to refine the normalization. We tested our method on three well-studied tumor-related aCGH datasets with experimentally confirmed copy numbers. Results were compared to a conventional normalization approach and two more recent state-of-the-art aCGH normalization strategies. Our findings show that, compared to these three methods, CGHnormaliter yields a higher specificity and precision in terms of identifying the 'true' copy numbers. Conclusion We demonstrate that the normalization of aCGH data can be significantly enhanced using an iterative procedure that effectively eliminates the effect of imbalanced copy numbers. This also leads to a more reliable assessment of aberrations. An R-package containing the implementation of CGHnormaliter is available at . PMID:19709427

  10. Punctuated Copy Number Evolution and Clonal Stasis in Triple-Negative Breast Cancer

    PubMed Central

    Gao, Ruli; Davis, Alexander; McDonald, Thomas O.; Sei, Emi; Shi, Xiuqing; Wang, Yong; Tsai, Pei-Ching; Casasent, Anna; Waters, Jill; Zhang, Hong; Meric-Bernstam, Funda; Michor, Franziska; Navin, Nicholas E.

    2016-01-01

    Aneuploidy is a hallmark of breast cancer; however, our knowledge of how these complex genomic rearrangements evolve during tumorigenesis is limited. In this study we developed a highly multiplexed single-nucleus-sequencing method to investigate copy number evolution in triple-negative breast cancer patients. We sequenced 1000 single cells from 12 patients and identified 1–3 major clonal subpopulations in each tumor that shared a common evolutionary lineage. We also identified a minor subpopulation of non-clonal cells that were classified as: 1) metastable, 2) pseudo-diploid, or 3) chromazemic. Phylogenetic analysis and mathematical modeling suggest that these data are unlikely to be explained by the gradual accumulation of copy number events over time. In contrast, our data challenge the paradigm of gradual evolution, showing that the majority of copy number aberrations are acquired at the earliest stages of tumor evolution, in short punctuated bursts, followed by stable clonal expansions that form the tumor mass. PMID:27526321

  11. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane.

    PubMed

    Xue, Bantong; Guo, Jinlong; Que, Youxiong; Fu, Zhiwei; Wu, Luguang; Xu, Liping

    2014-05-19

    Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential "single copy" genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3--high copy number group, TST-1 and PRR-1--medium copy number group, P4H-1, APRT-2 and CYC-2--low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  12. Atypical fibroxanthoma and pleomorphic dermal sarcoma harbor frequent NOTCH1/2 and FAT1 mutations and similar DNA copy number alteration profiles.

    PubMed

    Griewank, Klaus G; Wiesner, Thomas; Murali, Rajmohan; Pischler, Carina; Müller, Hansgeorg; Koelsche, Christian; Möller, Inga; Franklin, Cindy; Cosgarea, Ioana; Sucker, Antje; Schadendorf, Dirk; Schaller, Jörg; Horn, Susanne; Brenn, Thomas; Mentzel, Thomas

    2018-03-01

    Atypical fibroxanthomas and pleomorphic dermal sarcomas are tumors arising in sun-damaged skin of elderly patients. They have differing prognoses and are currently distinguished using histological criteria, such as invasion of deeper tissue structures, necrosis and lymphovascular or perineural invasion. To investigate the as-yet poorly understood genetics of these tumors, 41 atypical fibroxanthomas and 40 pleomorphic dermal sarcomas were subjected to targeted next-generation sequencing approaches as well as DNA copy number analysis by comparative genomic hybridization. In an analysis of the entire coding region of 341 oncogenes and tumor suppressor genes in 13 atypical fibroxanthomas using an established hybridization-based next-generation sequencing approach, we found that these tumors harbor a large number of mutations. Gene alterations were identified in more than half of the analyzed samples in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter. The presence of these alterations was verified in 26 atypical fibroxanthoma and 35 pleomorphic dermal sarcoma samples by targeted amplicon-based next-generation sequencing. Similar mutation profiles in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter were identified in both atypical fibroxanthoma and pleomorphic dermal sarcoma. Activating RAS mutations (G12 and G13) identified in 3 pleomorphic dermal sarcoma were not found in atypical fibroxanthoma. Comprehensive DNA copy number analysis demonstrated a wide array of different copy number gains and losses, with similar profiles in atypical fibroxanthoma and pleomorphic dermal sarcoma. In summary, atypical fibroxanthoma and pleomorphic dermal sarcoma are highly mutated tumors with recurrent mutations in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter, and a range of DNA copy number alterations. These findings suggest that atypical fibroxanthomas and pleomorphic dermal sarcomas are genetically related, potentially representing two ends of a common tumor spectrum and distinguishing these entities is at present still best performed using histological criteria.

  13. Low α-defensin gene copy number increases the risk for IgA nephropathy and renal dysfunction.

    PubMed

    Ai, Zhen; Li, Ming; Liu, Wenting; Foo, Jia-Nee; Mansouri, Omniah; Yin, Peiran; Zhou, Qian; Tang, Xueqing; Dong, Xiuqing; Feng, Shaozhen; Xu, Ricong; Zhong, Zhong; Chen, Jian; Wan, Jianxin; Lou, Tanqi; Yu, Jianwen; Zhou, Qin; Fan, Jinjin; Mao, Haiping; Gale, Daniel; Barratt, Jonathan; Armour, John A L; Liu, Jianjun; Yu, Xueqing

    2016-06-29

    Although a major source of genetic variation, copy number variations (CNVs) and their involvement in disease development have not been well studied. Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. We performed association analysis of the DEFA1A3 CNV locus in two independent IgAN cohorts of southern Chinese Han (total of 1189 cases and 1187 controls). We discovered three independent copy number associations within the locus: DEFA1A3 [P = 3.99 × 10(-9); odds ratio (OR), 0.88], DEFA3 (P = 6.55 × 10(-5); OR, 0.82), and a noncoding deletion variant (211bp) (P = 3.50 × 10(-16); OR, 0.75) (OR per copy, fixed-effects meta-analysis). While showing strong association with an increased risk for IgAN (P = 9.56 × 10(-20)), low total copy numbers of the three variants also showed significant association with renal dysfunction in patients with IgAN (P = 0.03; hazards ratio, 3.69; after controlling for the effects of known prognostic factors) and also with increased serum IgA1 (P = 0.02) and galactose-deficient IgA1 (P = 0.03). For replication, we confirmed the associations of DEFA1A3 (P = 4.42 × 10(-4); OR, 0.82) and DEFA3 copy numbers (P = 4.30 × 10(-3); OR, 0.74) with IgAN in a Caucasian cohort (531 cases and 198 controls) and found the 211bp variant to be much rarer in Caucasians. We also observed an association of the 211bp copy number with membranous nephropathy (P = 1.11 × 10(-7); OR, 0.74; in 493 Chinese cases and 500 matched controls), but not with diabetic kidney disease (in 806 Chinese cases and 786 matched controls). By explaining 4.96% of disease risk and influencing renal dysfunction in patients with IgAN, the DEFA1A3 CNV locus may be a potential therapeutic target for developing treatments for this disease. Copyright © 2016, American Association for the Advancement of Science.

  14. High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: A cytogenomic microarray analysis of 47 cases.

    PubMed

    Ricciotti, Robert W; Baraff, Aaron J; Jour, George; Kyriss, McKenna; Wu, Yu; Liu, Yuhua; Li, Shao-Chun; Hoch, Benjamin; Liu, Yajuan J

    2017-12-01

    Dedifferentiated liposarcoma (DDLS) is characterized at the molecular level by amplification of genes within 12q13-15 including MDM2 and CDK4. However, other than FNCLCC grade, prognostic markers are limited. We aim to identify molecular prognostic markers for DDLS to help risk stratify patients. To this end, we studied 49 cases of DDLS in our institutional archives and performed cytogenomic microarray analysis on 47 cases. Gene copy numbers for 12 loci were evaluated and correlated with outcome data retrieved from our institutional electronic medical records. Using cut point analysis and comparison of Kaplan-Meier survival curves by log rank tests, high amplification levels of MDM2 (>38 copies) and CDK4 (>30 copies) correlated with decreased disease free survival (DFS) (P = .0168 and 0.0169 respectively) and disease specific survival (DSS) (P = .0082 and 0.0140 respectively). Additionally, MDM2 and CDK4 showed evidence of a synergistic effect so that each additional copy of one enhances the effect on prognosis of each additional copy of the other for decreased DFS (P = .0227, 0.1% hazard). High amplification of JUN (>16 copies) also correlated with decreased DFS (P = .0217), but not DSS. The presence of copy number alteration at 3q29 correlated with decreased DSS (P = .0192). The presence of >10 mitoses per 10 high power fields and FNCLCC grade 3 also correlated with decreased DFS (P = .0310 and 0.0254 respectively). MDM2 and CDK4 gene amplification levels, along with JUN amplification and copy alterations at 3q29, can be utilized for predicting outcome in patients with DDLS. Published by Elsevier Inc.

  15. Haplotype Phasing and Inheritance of Copy Number Variants in Nuclear Families

    PubMed Central

    Palta, Priit; Kaplinski, Lauris; Nagirnaja, Liina; Veidenberg, Andres; Möls, Märt; Nelis, Mari; Esko, Tõnu; Metspalu, Andres; Laan, Maris; Remm, Maido

    2015-01-01

    DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring. PMID:25853576

  16. Haplotype phasing and inheritance of copy number variants in nuclear families.

    PubMed

    Palta, Priit; Kaplinski, Lauris; Nagirnaja, Liina; Veidenberg, Andres; Möls, Märt; Nelis, Mari; Esko, Tõnu; Metspalu, Andres; Laan, Maris; Remm, Maido

    2015-01-01

    DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring.

  17. Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR.

    PubMed

    Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana

    2018-01-01

    Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.

  18. Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging.

    PubMed

    Ridge, Perry G; Maxwell, Taylor J; Foutz, Spencer J; Bailey, Matthew H; Corcoran, Christopher D; Tschanz, JoAnn T; Norton, Maria C; Munger, Ronald G; O'Brien, Elizabeth; Kerber, Richard A; Cawthon, Richard M; Kauwe, John S K

    2014-01-01

    The mitochondria are essential organelles and are the location of cellular respiration, which is responsible for the majority of ATP production. Each cell contains multiple mitochondria, and each mitochondrion contains multiple copies of its own circular genome. The ratio of mitochondrial genomes to nuclear genomes is referred to as mitochondrial copy number. Decreases in mitochondrial copy number are known to occur in many tissues as people age, and in certain diseases. The regulation of mitochondrial copy number by nuclear genes has been studied extensively. While mitochondrial variation has been associated with longevity and some of the diseases known to have reduced mitochondrial copy number, the role that the mitochondrial genome itself has in regulating mitochondrial copy number remains poorly understood. We analyzed the complete mitochondrial genomes from 1007 individuals randomly selected from the Cache County Study on Memory Health and Aging utilizing the inferred evolutionary history of the mitochondrial haplotypes present in our dataset to identify sequence variation and mitochondrial haplotypes associated with changes in mitochondrial copy number. Three variants belonging to mitochondrial haplogroups U5A1 and T2 were significantly associated with higher mitochondrial copy number in our dataset. We identified three variants associated with higher mitochondrial copy number and suggest several hypotheses for how these variants influence mitochondrial copy number by interacting with known regulators of mitochondrial copy number. Our results are the first to report sequence variation in the mitochondrial genome that causes changes in mitochondrial copy number. The identification of these variants that increase mtDNA copy number has important implications in understanding the pathological processes that underlie these phenotypes.

  19. Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 Genome Project samples.

    PubMed

    Mandage, Rajendra; Telford, Marco; Rodríguez, Juan Antonio; Farré, Xavier; Layouni, Hafid; Marigorta, Urko M; Cundiff, Caitlin; Heredia-Genestar, Jose Maria; Navarro, Arcadi; Santpere, Gabriel

    2017-01-01

    Epstein-Barr virus (EBV), human herpes virus 4, has been classically associated with infectious mononucleosis, multiple sclerosis and several types of cancers. Many of these diseases show marked geographical differences in prevalence, which points to underlying genetic and/or environmental factors. Those factors may include a different susceptibility to EBV infection and viral copy number among human populations. Since EBV is commonly used to transform B-cells into lymphoblastoid cell lines (LCLs) we hypothesize that differences in EBV copy number among individual LCLs may reflect differential susceptibility to EBV infection. To test this hypothesis, we retrieved whole-genome sequenced EBV-mapping reads from 1,753 LCL samples derived from 19 populations worldwide that were sequenced within the context of the 1000 Genomes Project. An in silico methodology was developed to estimate the number of EBV copy number in LCLs and validated these estimations by real-time PCR. After experimentally confirming that EBV relative copy number remains stable over cell passages, we performed a genome wide association analysis (GWAS) to try detecting genetic variants of the host that may be associated with EBV copy number. Our GWAS has yielded several genomic regions suggestively associated with the number of EBV genomes per cell in LCLs, unraveling promising candidate genes such as CAND1, a known inhibitor of EBV replication. While this GWAS does not unequivocally establish the degree to which genetic makeup of individuals determine viral levels within their derived LCLs, for which a larger sample size will be needed, it potentially highlighted human genes affecting EBV-related processes, which constitute interesting candidates to follow up in the context of EBV related pathologies.

  20. Two-color fluorescence analysis of individual virions determines the distribution of the copy number of proteins in herpes simplex virus particles.

    PubMed

    Clarke, Richard W; Monnier, Nilah; Li, Haitao; Zhou, Dejian; Browne, Helena; Klenerman, David

    2007-08-15

    We present a single virion method to determine absolute distributions of copy number in the protein composition of viruses and apply it to herpes simplex virus type 1. Using two-color coincidence fluorescence spectroscopy, we determine the virion-to-virion variability in copy numbers of fluorescently labeled tegument and envelope proteins relative to a capsid protein by analyzing fluorescence intensity ratios for ensembles of individual dual-labeled virions and fitting the resulting histogram of ratios. Using EYFP-tagged capsid protein VP26 as a reference for fluorescence intensity, we are able to calculate the mean and also, for the first time to our knowledge, the variation in numbers of gD, VP16, and VP22 tegument. The measurement of the number of glycoprotein D molecules was in good agreement with independent measurements of average numbers of these glycoproteins in bulk virus preparations, validating the method. The accuracy, straightforward data processing, and high throughput of this technique make it widely applicable to the analysis of the molecular composition of large complexes in general, and it is particularly suited to providing insights into virus structure, assembly, and infectivity.

  1. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants

    PubMed Central

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A.

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  2. Analysis of Major Genome Loci Underlying Artemisinin Resistance and pfmdr1 Copy Number in pre- and post-ACTs in Western Kenya

    PubMed Central

    Ngalah, Bidii S.; Ingasia, Luiser A.; Cheruiyot, Agnes C.; Chebon, Lorna J.; Juma, Dennis W.; Muiruri, Peninah; Onyango, Irene; Ogony, Jack; Yeda, Redemptah A.; Cheruiyot, Jelagat; Mbuba, Emmanuel; Mwangoka, Grace; Achieng, Angela O.; Ng'ang'a, Zipporah; Andagalu, Ben; Akala, Hoseah M.; Kamau, Edwin

    2015-01-01

    Genetic analysis of molecular markers is critical in tracking the emergence and/or spread of artemisinin resistant parasites. Clinical isolates collected in western Kenya pre- and post- introduction of artemisinin combination therapies (ACTs) were genotyped at SNP positions in regions of strong selection signatures on chromosome 13 and 14, as described in Southeast Asia (SEA). Twenty five SNPs were genotyped using Sequenom MassArray and pfmdr1 gene copy number by real-time PCR. Parasite clearance half-life and in vitro drug sensitivity testing were performed using standard methods. One hundred twenty nine isolates were successfully analyzed. Fifteen SNPs were present in pre-ACTs isolates and six in post-ACTs. None of the SNPs showed association with parasite clearance half-life. Post-ACTs parasites had significantly higher pfmdr1 copy number compared to pre-ACTs. Seven of eight parasites with multiple pfmdr1 were post-ACTs. When in vitro IC50s were compared for parasites with single vs. multiple gene copies, only amodiaquine and piperaquine reached statistical significance. Data showed SNPs on chromosome 13 and 14 had different frequency and trend in western Kenya parasites compared SEA. Increase in pfmdr1 gene copy is consistent with recent studies in African parasites. Data suggests genetic signature of artemisinin resistance in Africa might be different from SEA. PMID:25655315

  3. Gene amplification of the Hps locus in Glycine max

    PubMed Central

    Gijzen, Mark; Kuflu, Kuflom; Moy, Pat

    2006-01-01

    Background Hydrophobic protein from soybean (HPS) is an 8 kD cysteine-rich polypeptide that causes asthma in persons allergic to soybean dust. HPS is synthesized in the pod endocarp and deposited on the seed surface during development. Past evidence suggests that the protein may mediate the adherence or dehiscence of endocarp tissues during maturation and affect the lustre, or glossiness of the seed surface. Results A comparison of soybean germplasm by genomic DNA blot hybridization shows that the copy number and structure of the Hps locus is polymorphic among soybean cultivars and related species. Changes in Hps gene copy number were also detected by comparative genomic DNA hybridization using cDNA microarrays. The Hps copy number polymorphisms co-segregated with seed lustre phenotype and HPS surface protein in a cross between dull- and shiny-seeded soybeans. In soybean cultivar Harosoy 63, a minimum of 27 ± 5 copies of the Hps gene were estimated to be present in each haploid genome. The isolation and analysis of genomic clones indicates that the core Hps locus is comprised of a tandem array of reiterated units, with each 8.6 kb unit containing a single HPS open reading frame. Conclusion This study shows that polymorphisms at the Hps locus arise from changes in the gene copy number via gene amplification. We present a model whereby Hps copy number modulates protein expression levels and seed lustre, and we suggest that gene amplification may result from selection pressures imposed on crop plants. PMID:16536872

  4. Quantitative analysis of pork and chicken products by droplet digital PCR.

    PubMed

    Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen

    2014-01-01

    In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises.

  5. Familial cases of Norrie disease detected by copy number analysis.

    PubMed

    Arai, Eisuke; Fujimaki, Takuro; Yanagawa, Ai; Fujiki, Keiko; Yokoyama, Toshiyuki; Okumura, Akihisa; Shimizu, Toshiaki; Murakami, Akira

    2014-09-01

    Norrie disease (ND, MIM#310600) is an X-linked disorder characterized by severe vitreoretinal dysplasia at birth. We report the results of causative NDP gene analysis in three male siblings with Norrie disease and describe the associated phenotypes. Three brothers with suspected Norrie disease and their mother presented for clinical examination. After obtaining informed consent, DNA was extracted from the peripheral blood of the proband, one of his brothers and his unaffected mother. Exons 1-3 of the NDP gene were amplified by polymerase chain reaction (PCR), and direct sequencing was performed. Multiplex ligation-dependent probe amplification (MLPA) was also performed to search for copy number variants in the NDP gene. The clinical findings of the three brothers included no light perception, corneal opacity, shallow anterior chamber, leukocoria, total retinal detachment and mental retardation. Exon 2 of the NDP gene was not amplified in the proband and one brother, even when the PCR primers for exon 2 were changed, whereas the other two exons showed no mutations by direct sequencing. MLPA analysis showed deletion of exon 2 of the NDP gene in the proband and one brother, while there was only one copy of exon 2 in the mother. Norrie disease was diagnosed in three patients from a Japanese family by clinical examination and was confirmed by genetic analysis. To localize the defect, confirmation of copy number variation by the MLPA method was useful in the present study.

  6. The roles of AMY1 copies and protein expression in human salivary α-amylase activity.

    PubMed

    Yang, Ze-Min; Lin, Jing; Chen, Long-Hui; Zhang, Min; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    Salivary α-amylase (sAA) activity has been extensively investigated in nutrition and psychology. But few studies were performed to assess the role played by sAA gene (AMY1) copies and protein expression in basal and stimulus-induced sAA activity. The sAA activity, amount and AMY1 copy number were determined from 184 saliva samples pre- and post-citric acid stimulation. Our findings showed that citric acid could induce significant increase in sAA activity, total sAA amount, and glycosylated sAA amount, among which the glycosylated sAA amount had the largest response. The correlation analysis showed that AMY1 copy number, total sAA amount and AMY1 copy number×total sAA amount had significantly positive and successively increasing correlations with sAA activity in unstimulated and stimulated saliva, respectively, and furthermore, we observed higher correlations in unstimulated saliva when compared with the corresponding correlations in stimulated saliva. We also observed significant correlations between glycosylated sAA amount and sAA activity in unstimulated and stimulated saliva, respectively. Interestingly, the correlations were higher in stimulated saliva than in unstimulated saliva, and the correlations between glycosylated sAA amount and sAA activity were higher than that of between total sAA amount and sAA activity in stimulated saliva. Moreover, total sAA amount ratio and glycosylated sAA amount ratio showed significantly positive correlation with sAA activity ratio. AMY1 copy number had no correlation with sAA activity ratio. These findings suggested that AMY1 copy number and sAA amount played crucial roles in sAA activity; however, the roles were attenuated after stimulation due to fortified release of glycosylated sAA. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Quantification of HER2/neu gene amplification by competitive pcr using fluorescent melting curve analysis.

    PubMed

    Lyon, E; Millson, A; Lowery, M C; Woods, R; Wittwer, C T

    2001-05-01

    Molecular detection methods for HER2/neu gene amplification include fluorescence in situ hybridization (FISH) and competitive PCR. We designed a quantitative PCR system utilizing fluorescent hybridization probes and a competitor that differed from the HER2/neu sequence by a single base change. Increasing twofold concentrations of competitor were coamplified with DNA from cell lines with various HER2/neu copy numbers at the HER2/neu locus. Competitor DNA was distinguished from the HER2/neu sequence by a fluorescent hybridization probe and melting curve analysis on a fluorescence-monitoring thermal cycler. The percentages of competitor to target peak areas on derivative fluorescence vs temperature curves were used to calculate copy number. Real-time monitoring of the PCR reaction showed comparable relative areas throughout the log phase and during the PCR plateau, indicating that only end-point detection is necessary. The dynamic range was over two logs (2000-250 000 competitor copies) with CVs < 20%. Three cell lines (MRC-5, T-47D, and SK-BR-3) were determined to have gene doses of 1, 3, and 11, respectively. Gene amplification was detected in 3 of 13 tumor samples and was correlated with conventional real-time PCR and FISH analysis. Use of relative peak areas allows gene copy numbers to be quantified against an internal competitive control in < 1 h.

  8. Molecular surveillance of artemisinin resistance falciparum malaria among migrant goldmine workers in Myanmar.

    PubMed

    Nyunt, Myat Htut; Wang, Bo; Aye, Khin Myo; Aye, Kyin Hla; Han, Jin-Hee; Lee, Seong-Kyun; Han, Kay Thwe; Htut, Ye; Han, Eun-Taek

    2017-03-01

    Artemisinin resistance has been reported in Greater Mekong Sub-region countries, including Myanmar. After discovery of artemisinin resistance marker (K13), molecular surveillance on artemisinin resistance in endemic regions have been conducted. As the migrant population represents a high percentage of malaria cases, molecular surveillance of artemisinin resistance among migrant workers is of great concern. A cross-sectional survey was conducted in Shwegyin Township, where migrants work in the goldmines. Blood samples were collected from uncomplicated Plasmodium falciparum-infected migrant workers by active and passive cases screening with rapid diagnostic testing (RDT) and microscopy. Amplification and sequence analysis of artemisinin resistance molecular markers, such as k13, pfarps10, pffd, pfmdr2, pfmrp1, pfrad5, and pfcnbp, were carried out and pfmdr1 copy number analysis was conducted by real-time PCR. Among the 100 falciparum-infected patients, most were male (90%), of working age (20-40 years) with median parasite density of 11,166 parasites/µL (range 270-110,472 parasites/µL). Artemisinin resistance molecular marker, k13 mutations were detected in (21/100, 21.0%) in which composed of a validated marker, C580Y (9/21, 42.9%) and candidate markers such as P574L (5/21, 23.8%), P667T (5/21, 23.8%) and M476I (2/21, 9.5%). Underlying genetic markers predisposing to become k13 mutants were found as V127M of pfarps10 (41/100, 41.0%), D153Y of pffd (64/100, 64.0%), T484I of pfmdr2 (58/100, 58.0%) and F1390I of pfmrp1 (24/100, 24.0%). The pfmdr1 copy number analysis revealed six copy numbers (1/100, 1.0%), three (2/100, 2.0%), two (8/100, 8.0%) and only one copy number (89/100, 89.0%). Only one sample showed both k13 mutation (P667T) and multiple copy number of pfmdr1. High mutant rate of artemisinin resistance markers and relatively high pfmdr1 copy number among isolates collected from migrant goldmine workers alert the importance of containment measures among this target population. Clinical and molecular surveillance of artemisinin resistance among migrants should be scaled up.

  9. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti.

    PubMed

    Richardson, Jason; Molina-Cruz, Alvaro; Salazar, Ma Isabel; Black, William

    2006-01-01

    Dengue virus-2 (DENV-2) RNA was quantified from the midgut and legs of individual Aedes aegypti at each of 14 days postinfectious blood meal (dpi) in a DENV-2 susceptible strain from Chetumal, Mexico. A SYBR Green I based strand-specific, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed. The lower detection and quantitation limits were 20 and 200 copies per reaction, respectively. Amounts of positive and negative strand viral RNA strands were correlated. Numbers of plaque-forming units (PFU) were correlated with DENV-2 RNA copy number in both C6/36 cell cultures and mosquitoes. PFU were consistently lower than RNA copy number by 2-3 log(10). Midgut levels of DENV-2 RNA peaked 8 dpi and fluctuated erratically between 6 and 9 dpi. Copies of DENV-2 RNA varied significantly among infected mosquitoes at each time point. Quantitative real-time RT-PCR is a convenient and reliable method that provides new insights into virus-vector interactions.

  10. Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis

    PubMed Central

    Torresan, Clarissa; Oliveira, Márcia M.C.; Pereira, Silma R.F.; Ribeiro, Enilze M.S.F.; Marian, Catalin; Gusev, Yuriy; Lima, Rubens S.; Urban, Cicero A.; Berg, Patricia E.; Haddad, Bassem R.; Cavalli, Iglenir J.; Cavalli, Luciane R.

    2017-01-01

    DLX4 is a homeobox gene strongly implicated in breast tumor progression and invasion. Our main objective was to determine the DLX4 copy number status in sentinel lymph node (SLN) metastasis to assess its involvement in the initial stages of the axillary metastatic process. A total of 37 paired samples of SLN metastasis and primary breast tumors (PBT) were evaluated by fluorescence in situ hybridization, quantitative polymerase chain reaction and array comparative genomic hybridization assays. DLX4 increased copy number was observed in 21.6% of the PBT and 24.3% of the SLN metastasis; regression analysis demonstrated that the DLX4 alterations observed in the SLN metastasis were dependent on the ones in the PBT, indicating that they occur in the primary tumor cell populations and are maintained in the early axillary metastatic site. In addition, regression analysis demonstrated that DLX4 alterations (and other DLX and HOXB family members) occurred independently of the ones in the HER2/NEU gene, the main amplification driver on the 17q region. Additional studies evaluating DLX4 copy number in non-SLN axillary lymph nodes and/or distant breast cancer metastasis are necessary to determine if these alterations are carried on and maintained during more advanced stages of tumor progression and if could be used as a predictive marker for axillary involvement. PMID:24947980

  11. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance.

    PubMed

    Nowak, Daniel; Liem, Natalia L M; Mossner, Maximilian; Klaumünzer, Marion; Papa, Rachael A; Nowak, Verena; Jann, Johann C; Akagi, Tadayuki; Kawamata, Norihiko; Okamoto, Ryoko; Thoennissen, Nils H; Kato, Motohiro; Sanada, Masashi; Hofmann, Wolf-Karsten; Ogawa, Seishi; Marshall, Glenn M; Lock, Richard B; Koeffler, H Phillip

    2015-01-01

    The use of genome-wide copy-number analysis and massive parallel sequencing has revolutionized the understanding of the clonal architecture of pediatric acute lymphoblastic leukemia (ALL) by demonstrating that this disease is composed of highly variable clonal ancestries following the rules of Darwinian selection. The current study aimed to analyze the molecular composition of childhood ALL biopsies and patient-derived xenografts with particular emphasis on mechanisms associated with acquired chemoresistance. Genomic DNA from seven primary pediatric ALL patient samples, 29 serially passaged xenografts, and six in vivo selected chemoresistant xenografts were analyzed with 250K single-nucleotide polymorphism arrays. Copy-number analysis of non-drug-selected xenografts confirmed a highly variable molecular pattern of variegated subclones. Whereas primary patient samples from initial diagnosis displayed a mean of 5.7 copy-number alterations per sample, serially passaged xenografts contained a mean of 8.2 and chemoresistant xenografts a mean of 10.5 copy-number alterations per sample, respectively. Resistance to cytarabine was explained by a new homozygous deletion of the DCK gene, whereas methotrexate resistance was associated with monoallelic deletion of FPGS and mutation of the remaining allele. This study demonstrates that selecting for chemoresistance in xenografted human ALL cells can reveal novel mechanisms associated with drug resistance. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. Functional effects of CCL3L1 copy number

    PubMed Central

    Carpenter, Danielle; McIntosh, Richard S; Pleass, Richard J; Armour, John AL

    2012-01-01

    Copy number variation (CNV) is becoming increasingly important as a feature of human variation in disease susceptibility studies. However, the consequences of copy number variation are not so well understood. Here we present data exploring the functional consequences of copy number variation of CCL3L1 in 55 independent UK samples with no known clinical phenotypes. Copy number of CCL3L1 was determined by the paralogue ratio test (PRT), and expression levels of MIP-1α and mRNA from stimulated monocytes were measured and analysed. The data show no statistically significant association of MIP-1α protein levels with copy number. However, there was a significant correlation between copy number and CCL3L1:CCL3 mRNA ratio. The data also provide evidence that expression of CCL3 predominates in both protein and mRNA, and therefore the observed variation of CCL3 is potentially more important biologically than that of copy number variation of CCL3L1. PMID:22476153

  13. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children.

    PubMed

    Mejía-Benítez, María A; Bonnefond, Amélie; Yengo, Loïc; Huyvaert, Marlène; Dechaume, Aurélie; Peralta-Romero, Jesús; Klünder-Klünder, Miguel; García Mena, Jaime; El-Sayed Moustafa, Julia S; Falchi, Mario; Cruz, Miguel; Froguel, Philippe

    2015-02-01

    Childhood obesity is a major public health problem in Mexico, affecting one in every three children. Genome-wide association studies identified genetic variants associated with childhood obesity, but a large missing heritability remains to be elucidated. We have recently shown a strong association between a highly polymorphic copy number variant encompassing the salivary amylase gene (AMY1 also known as AMY1A) and obesity in European and Asian adults. In the present study, we aimed to evaluate the association between AMY1 copy number and obesity in Mexican children. We evaluated the number of AMY1 copies in 597 Mexican children (293 obese children and 304 normal weight controls) through highly sensitive digital PCR. The effect of AMY1 copy number on obesity status was assessed using a logistic regression model adjusted for age and sex. We identified a marked effect of AMY1 copy number on reduced risk of obesity (OR per estimated copy 0.84, with the number of copies ranging from one to 16 in this population; p = 4.25 × 10(-6)). The global association between AMY1 copy number and reduced risk of obesity seemed to be mostly driven by the contribution of the highest AMY1 copy number. Strikingly, all children with >10 AMY1 copies were normal weight controls. Salivary amylase initiates the digestion of dietary starch, which is highly consumed in Mexico. Our current study suggests putative benefits of high number of AMY1 copies (and related production of salivary amylase) on energy metabolism in Mexican children.

  14. Practical guidelines for interpreting copy number gains detected by high-resolution array in routine diagnostics

    PubMed Central

    Hanemaaijer, Nicolien M; Sikkema-Raddatz, Birgit; van der Vries, Gerben; Dijkhuizen, Trijnie; Hordijk, Roel; van Essen, Anthonie J; Veenstra-Knol, Hermine E; Kerstjens-Frederikse, Wilhelmina S; Herkert, Johanna C; Gerkes, Erica H; Leegte, Lamberta K; Kok, Klaas; Sinke, Richard J; van Ravenswaaij-Arts, Conny M A

    2012-01-01

    The correct interpretation of copy number gains in patients with developmental delay and multiple congenital anomalies is hampered by the large number of copy number variations (CNVs) encountered in healthy individuals. The variable phenotype associated with copy number gains makes interpretation even more difficult. Literature shows that inheritence, size and presence in healthy individuals are commonly used to decide whether a certain copy number gain is pathogenic, but no general consensus has been established. We aimed to develop guidelines for interpreting gains detected by array analysis using array CGH data of 300 patients analysed with the 105K Agilent oligo array in a diagnostic setting. We evaluated the guidelines in a second, independent, cohort of 300 patients. In the first 300 patients 797 gains of four or more adjacent oligonucleotides were observed. Of these, 45.4% were de novo and 54.6% were familial. In total, 94.8% of all de novo gains and 87.1% of all familial gains were concluded to be benign CNVs. Clinically relevant gains ranged from 288 to 7912 kb in size, and were significantly larger than benign gains and gains of unknown clinical relevance (P<0.001). Our study showed that a threshold of 200 kb is acceptable in a clinical setting, whereas heritability does not exclude a pathogenic nature of a gain. Evaluation of the guidelines in the second cohort of 300 patients revealed that the interpretation guidelines were clear, easy to follow and efficient. PMID:21934709

  15. [Analysis of genomic copy number variations in two unrelated neonates with 8p deletion and duplication associated with congenital heart disease].

    PubMed

    Mei, Mei; Yang, Lin; Zhan, Guodong; Wang, Huijun; Ma, Duan; Zhou, Wenhao; Huang, Guoying

    2014-06-01

    To screen for genomic copy number variations (CNVs) in two unrelated neonates with multiple congenital abnormalities using Affymetrix SNP chip and try to find the critical region associated with congenital heart disease. Two neonates were tested for genomic copy number variations by using Cytogenetic SNP chip.Rare CNVs with potential clinical significance were selected of which deletion segments' size was larger than 50 kb and duplication segments' size was larger than 150 kb based on the analysis of ChAs software, without false positive CNVs and segments of normal population. The identified CNVs were compared with those of the cases in DECIPHER and ISCA databases. Eleven rare CNVs with size from 546.6-27 892 kb were identified in the 2 neonates. The deletion region and size of case 1 were 8p23.3-p23.1 (387 912-11 506 771 bp) and 11.1 Mb respectively, the duplication region and size of case 1 were 8p23.1-p11.1 (11 508 387-43 321 279 bp) and 31.8 Mb respectively. The deletion region and size of case 2 were 8p23.3-p23.1 (46 385-7 809 878 bp) and 7.8 Mb respectively, the duplication region and size of case 2 were 8p23.1-p11.21 (12 260 914-40 917 092 bp) and 28.7 Mb respectively. The comparison with Decipher and ISCA databases supported previous viewpoint that 8p23.1 had been associated with congenital heart disease and the region between 7 809 878-11 506 771 bp may play a role in the severe cardiac defects associated with 8p23.1 deletions. Case 1 had serious cardiac abnormalities whose GATA4 was located in the duplication segment and the copy number increased while SOX7 was located in the deletion segment and the copy number decreased. The region between 7 809 878-11 506 771 bp in 8p23.1 is associated with heart defects and copy number variants of SOX7 and GATA4 may result in congenital heart disease.

  16. Single-cell analysis of transcription kinetics across the cell cycle

    PubMed Central

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  17. The cost of copy number in a selfish genetic element: the 2-μm plasmid of Saccharomyces cerevisiae.

    PubMed

    Harrison, Ellie; Koufopanou, V; Burt, A; MacLean, R C

    2012-11-01

    Many autonomously replicating genetic elements exist as multiple copies within the cell. The copy number of these elements is often assumed to have important fitness consequences for both element and host, yet the forces shaping its evolution are not well understood. The 2 μm is a multicopy plasmid of Saccharomyces yeasts, encoding just four genes that are solely involved in plasmid replication. One simple model for the fitness relationship between yeasts and 2 μm is that plasmid copy number evolves as a trade-off between selection for increased vertical transmission, favouring high copy number, and selection for decreased virulence, favouring low copy number. To test this model, we experimentally manipulated the copy number of the plasmid and directly measured the fitness cost, in terms of growth rate reduction, associated with high plasmid copy number. We find that the fitness burden imposed by the 2 μm increases with plasmid copy number, such that each copy imposes a fitness burden of 0.17% (± 0.008%), greatly exceeding the cost expected for it to be stably maintained in yeast populations. Our results demonstrate the crucial importance of copy number in the evolution of yeast per 2 μm associations and pave the way for future studies examining how selection can shape the cost of multicopy elements. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  18. Fluorescent in situ hybridization (FISH) assessment of chromosome copy number in sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheu, M.; Sigman, M.; Mark, H.F.L.

    Approximately 15% of all recognized pregnancies end in spontaneous abortions. The overall frequency of chromosome abnormalities in spontaneous abortions is approximately 50%. Thus aneuploidy is a significant cause of fetal wastage. In addition, structural and numerical abnormalities of chromosomes can also lead to birth defects, developmental delay, mental retardation and infertility. Conventional cytogenetic analysis via GTG- and other banding techniques is a powerful tool in the elucidation of the nature of chromosomal abnormalities. Fluorescent in situ hybridization (FISH) enables detection of numerical chromosomal abnormalities, especially trisomies, in intact cells. Using FISH and commercially available biotin-labeled probes, we have initiated amore » prospective study to assess specific chromosome copy number of preparations of unstained smears from men referred for a male infertility evaluation as well as smears from normal control males chosen randomly from the sample of sperm donors. A total of approximately 19,000 sperm nuclei have been examined thus far. Of those suitable for analysis, 7382 (38.75%) were normal possessing one copy of chromosome 8, 155 (0.81%) were disomic, and 15 (0.079%) had more than two copies of chromosome 8. Comparisons with data available in the literature will be discussed. Work is ongoing to increase the efficiency of hybridization using both reported and previously untried pretreatment and fixation protocols. We have also initiated studies using multicolor FISH with various chromosome enumeration probes. The assay described here is a potentially powerful tool for detecting rare events such as spontaneous germ cell aneuploidy, aneuploidy detected in semen from men with carcinoma in situ of the testis and aneuploidy induced by potential environmental genotoxicants. It can also be utilized for segregation analysis and for correlating chromosome copy number with germ cell morphology.« less

  19. CNV-seq, a new method to detect copy number variation using high-throughput sequencing.

    PubMed

    Xie, Chao; Tammi, Martti T

    2009-03-06

    DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations. Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads. Simulation of various sequencing methods with coverage between 0.1x to 8x show overall specificity between 91.7 - 99.9%, and sensitivity between 72.2 - 96.5%. We also show the results for assessment of CNV between two individual human genomes.

  20. NanoStringNormCNV: pre-processing of NanoString CNV data.

    PubMed

    Sendorek, Dorota H; Lalonde, Emilie; Yao, Cindy Q; Sabelnykova, Veronica Y; Bristow, Robert G; Boutros, Paul C

    2018-03-15

    The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. paul.boutros@oicr.on.ca. Supplementary data are available at Bioinformatics online.

  1. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Number of copies. 262.22 Section 262...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner...

  2. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Number of copies. 262.22 Section 262...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner...

  3. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Number of copies. 262.22 Section 262...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner...

  4. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing.

    PubMed

    Castle, John C; Biery, Matthew; Bouzek, Heather; Xie, Tao; Chen, Ronghua; Misura, Kira; Jackson, Stuart; Armour, Christopher D; Johnson, Jason M; Rohl, Carol A; Raymond, Christopher K

    2010-04-16

    DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  5. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    PubMed Central

    2010-01-01

    Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads. PMID:20398377

  6. Copy-Number Gains of HUWE1 Due to Replication- and Recombination-Based Rearrangements

    PubMed Central

    Froyen, Guy; Belet, Stefanie; Martinez, Francisco; Santos-Rebouças, Cíntia Barros; Declercq, Matthias; Verbeeck, Jelle; Donckers, Lene; Berland, Siren; Mayo, Sonia; Rosello, Monica; Pimentel, Márcia Mattos Gonçalves; Fintelman-Rodrigues, Natalia; Hovland, Randi; Rodrigues dos Santos, Suely; Raymond, F. Lucy; Bose, Tulika; Corbett, Mark A.; Sheffield, Leslie; van Ravenswaaij-Arts, Conny M.A.; Dijkhuizen, Trijnie; Coutton, Charles; Satre, Veronique; Siu, Victoria; Marynen, Peter

    2012-01-01

    We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3′ untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements. PMID:22840365

  7. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI.

    PubMed

    Rukh, Gull; Ericson, Ulrika; Andersson-Assarsson, Johanna; Orho-Melander, Marju; Sonestedt, Emily

    2017-07-01

    Background: Studies have shown conflicting associations between the salivary amylase gene ( AMY1 ) copy number and obesity. Salivary amylase initiates starch digestion in the oral cavity; starch is a major source of energy in the diet. Objective: We investigated the association between AMY1 copy number and obesity traits, and the effect of the interaction between AMY1 copy number and starch intake on these obesity traits. Design: We first assessed the association between AMY1 copy number (genotyped by digital droplet polymerase chain reaction) and obesity traits in 4800 individuals without diabetes (mean age: 57 y; 60% female) from the Malmö Diet and Cancer Cohort. Then we analyzed interactions between AMY1 copy number and energy-adjusted starch intake (obtained by a modified diet history method) on body mass index (BMI) and body fat percentage. Results: AMY1 copy number was not associated with BMI ( P = 0.80) or body fat percentage ( P = 0.38). We observed a significant effect of the interaction between AMY1 copy number and starch intake on BMI ( P -interaction = 0.007) and body fat percentage ( P -interaction = 0.03). Upon stratification by dietary starch intake, BMI tended to decrease with increasing AMY1 copy numbers in the low-starch intake group ( P = 0.07) and tended to increase with increasing AMY1 copy numbers in the high-starch intake group ( P = 0.08). The lowest mean BMI was observed in the group of participants with a low AMY1 copy number and a high dietary intake of starch. Conclusions: Our findings suggest an effect of the interaction between starch intake and AMY1 copy number on obesity. Individuals with high starch intake but low genetic capacity to digest starch had the lowest BMI, potentially because larger amounts of undigested starch are transported through the gastrointestinal tract, contributing to fewer calories extracted from ingested starch. © 2017 American Society for Nutrition.

  8. Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer.

    PubMed

    Li, Jiao; Su, Wei; Zhang, Sheng; Hu, Yunhui; Liu, Jingjing; Zhang, Xiaobei; Bai, Jingchao; Yuan, Weiping; Hu, Linping; Cheng, Tao; Zetterberg, Anders; Lei, Zhenmin; Zhang, Jin

    2015-05-01

    The epidermal growth factor receptor (EGFR)/PI3K/AKT signaling pathway aberrations play significant roles in breast cancer occurrence and development. However, the status of EGFR and AKT1 gene copy numbers remains unclear. In this study, we showed that the rates of EGFR and AKT1 gene copy number alterations were associated with the prognosis of breast cancer. Among 205 patients, high EGFR and AKT1 gene copy numbers were observed in 34.6% and 27.8% of cases by multi-gene fluorescence in situ hybridization, respectively. Co-heightened EGFR/AKT1 gene copy numbers were identified in 11.7% cases. No changes were found in 49.3% of patients. Although changes in EGFR and AKT1 gene copy numbers had no correlation with patients' age, tumor stage, histological grade and the expression status of other molecular makers, high EGFR (P = 0.0002) but not AKT1 (P = 0.1177) gene copy numbers correlated with poor 5-year overall survival. The patients with co-heightened EGFR/AKT1 gene copy numbers displayed a poorer prognosis than those with tumors with only high EGFR gene copy numbers (P = 0.0383). Both Univariate (U) and COX multivariate (C) analyses revealed that high EGFR and AKT1 gene copy numbers (P = 0.000 [U], P = 0.0001 [C]), similar to histological grade (P = 0.001 [U], P = 0.012 [C]) and lymph node metastasis (P = 0.046 [U], P = 0.158 [C]), were independent prognostic indicators of 5-year overall survival. These results indicate that high EGFR and AKT1 gene copy numbers were relatively frequent in breast cancer. Co-heightened EGFR/AKT1 gene copy numbers had a worse outcome than those with only high EGFR gene copy numbers, suggesting that evaluation of these two genes together may be useful for selecting patients for anti-EGFR-targeted therapy or anti-EGFR/AKT1-targeted therapy and for predicting outcomes. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  9. Dynamics in copy numbers of five plasmids of a dairy Lactococcus lactis in dairy-related conditions including near-zero growth rates.

    PubMed

    van Mastrigt, Oscar; Lommers, Marcel M A N; de Vries, Yorick C; Abee, Tjakko; Smid, Eddy J

    2018-03-23

    Lactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-encoded genes and the activity of the corresponding proteins is severely affected by changes in the number of plasmid copies. We studied the impact of growth rate on dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strain Lactococcus lactis FM03-V1 were selected which varied in size (3 to 39 kb), in replication mechanism (theta or rolling-circle) and in putative (dairy-associated) functions. Copy numbers ranged from 1.5 to 40.5 and the copy number of theta-type replicating plasmids were negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h -1 to 0.6 h -1 ), copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates showing that the plasmid replication rate was strictly controlled. One low-copy number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations reflected in complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation or presence of citrate (maximum 2.2-fold) signifying the stability in copy number of the plasmids. Importance Lactococcus lactis is extensively used in starter cultures for dairy fermentations. Important traits for growth and survival of L. lactis in dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation and oligopeptide uptake and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-encoded genes, it is important to know the factors that influence the plasmid copy numbers. We monitored plasmid copy numbers of L. lactis at near-zero growth rates, characteristic for cheese ripening. Moreover, we analysed the effect of pH, nutrient limitation and presence of citrate. This showed that plasmid copy numbers were stable giving insight into plasmid copy number dynamics in dairy fermentations. Copyright © 2018 American Society for Microbiology.

  10. Comparing CNV detection methods for SNP arrays.

    PubMed

    Winchester, Laura; Yau, Christopher; Ragoussis, Jiannis

    2009-09-01

    Data from whole genome association studies can now be used for dual purposes, genotyping and copy number detection. In this review we discuss some of the methods for using SNP data to detect copy number events. We examine a number of algorithms designed to detect copy number changes through the use of signal-intensity data and consider methods to evaluate the changes found. We describe the use of several statistical models in copy number detection in germline samples. We also present a comparison of data using these methods to assess accuracy of prediction and detection of changes in copy number.

  11. Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes

    PubMed Central

    Tokar, Tomas; Pastrello, Chiara; Ramnarine, Varune R.; Zhu, Chang-Qi; Craddock, Kenneth J.; Pikor, Larrisa A.; Vucic, Emily A.; Vary, Simon; Shepherd, Frances A.; Tsao, Ming-Sound; Lam, Wan L.; Jurisica, Igor

    2018-01-01

    In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations between microRNAs and paradoxes in non-small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) data, comprising gene expressions, copy number aberrations (CNAs) and microRNA expressions. We integrated data from 1,062 tumor samples and 241 normal lung samples, including newly-generated array comparative genomic hybridization (aCGH) data from 63 LUAD samples. We identified 85 “paradoxical” genes whose differential expression consistently contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, which we validated on three independent datasets. By meta-analysis of results from 9 LUAD microRNA expression studies we identified 24 consistently-deregulated microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these microRNAs explains differential expression of the paradoxical genes. Our results show that deregulation of paradoxical genes is crucial in LUAD and their expression pattern is maintained epigenetically, defying gene copy number status. PMID:29507679

  12. Genomic copy number gains of ErbB family members predict poor clinical outcomes in glioma patients

    PubMed Central

    Liu, Rui; Qu, Yiping; Chen, Lihong; Pu, Jun; Ma, Sharui; Zhang, Xiaozhi; Yang, Qi; Shi, Bingyin; Hou, Peng; Ji, Meiju

    2017-01-01

    The aim of this study was to investigate copy number of ErbB family members (including EGFR, HER2, HER3 and HER4) in a cohort of gliomas and benign meningiomas (control subjects), and explore the associations of their copy number with clinicopathological characteristics and clinical outcomes of glioma patients. Using real-time quantitative PCR assay, we demonstrated that copy number of EGFR, HER2, HER3 and HER4 in glioma patients was significantly increased compared to control subjects. Moreover, our data also showed that the risk of cancer-related death was positively associated with copy number gain (CNG) of EGFR, HER3 and HER4, but not HER2. CNG of EGFR and HER2 was positively related to radiotherapy, while CNG of HER3 and HER4 was negatively related to chemotherapy. Importantly, EGFR CNG significantly shortened median survival times of glioma patients regardless of gender, tumor grade and therapeutic regimens. Stratified analysis showed that CNG of HER2-4 almost did not influence the survival of male patients, patients with high-grade tumors and patients receiving chemotherapy, but dramatically shortened median survival times of female patients, those with low-grade tumors and those receiving radiotherapy. Collectively, our data not only demonstrate that the members of ErbB family are frequently amplified in gliomas, but also suggest that these common genetic events may be prognostic factors for poor clinical outcomes in glioma patients. PMID:29190914

  13. Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells.

    PubMed

    Matsushima, Yuichi; Adán, Cristina; Garesse, Rafael; Kaguni, Laurie S

    2005-04-29

    We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor (d-mtTF) B1. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB1 to 5% of its normal level in Schneider cells. In striking contrast with our previous study on d-mtTFB2, we found that RNAi knock-down of d-mtTFB1 does not change the abundance of specific mitochondrial RNA transcripts, nor does it affect the copy number of mitochondrial DNA. In a corollary manner, overexpression of d-mtTFB1 did not increase either the abundance of mitochondrial RNA transcripts or mitochondrial DNA copy number. Our data suggest that, unlike d-mtTFB2, d-mtTFB1 does not have a critical role in either transcription or regulation of the copy number of mitochondrial DNA. Instead, because we found that RNAi knockdown of d-mtTFB1 reduces mitochondrial protein synthesis, we propose that it serves its primary role in modulating translation. Our work represents the first study to document the role of mtTFB1 in vivo and establishes clearly functional differences between mtTFB1 and mtTFB2.

  14. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions

    PubMed Central

    Pezer, Željka; Chung, Amanda G.; Karn, Robert C.

    2017-01-01

    Abstract The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. PMID:28575204

  15. The transcription factor titration effect dictates level of gene expression.

    PubMed

    Brewster, Robert C; Weinert, Franz M; Garcia, Hernan G; Song, Dan; Rydenfelt, Mattias; Phillips, Rob

    2014-03-13

    Models of transcription are often built around a picture of RNA polymerase and transcription factors (TFs) acting on a single copy of a promoter. However, most TFs are shared between multiple genes with varying binding affinities. Beyond that, genes often exist at high copy number-in multiple identical copies on the chromosome or on plasmids or viral vectors with copy numbers in the hundreds. Using a thermodynamic model, we characterize the interplay between TF copy number and the demand for that TF. We demonstrate the parameter-free predictive power of this model as a function of the copy number of the TF and the number and affinities of the available specific binding sites; such predictive control is important for the understanding of transcription and the desire to quantitatively design the output of genetic circuits. Finally, we use these experiments to dynamically measure plasmid copy number through the cell cycle. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. MixHMM: Inferring Copy Number Variation and Allelic Imbalance Using SNP Arrays and Tumor Samples Mixed with Stromal Cells

    PubMed Central

    Schulz, Vincent; Chen, Min; Tuck, David

    2010-01-01

    Background Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several algorithms based on hidden Markov models (HMMs) have been designed to detect copy number changes and copy-neutral LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal contamination and somatic alterations, complicates analysis and interpretation of these data. Methods We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor samples, where cancer cells are mixed with a proportion of stromal cells. Conclusions We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to 80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM. Availability The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.yale.edu:8080/MixHMM. PMID:20532221

  17. DNA Copy Number Signature to Predict Recurrence in Early Stage Ovarian Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0194 TITLE: DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer 5b. GRANT NUMBER W81XWH-14-1-0194 5c. PROGRAM...determine the copy number gain and loss for early stage high grade ovarian cancers through IlluminaHumanOmniExpress-FFPE BeadChip system • Subtask 1 DNA

  18. Age-related decline in mitochondrial DNA copy number in isolated human pancreatic islets.

    PubMed

    Cree, L M; Patel, S K; Pyle, A; Lynn, S; Turnbull, D M; Chinnery, P F; Walker, M

    2008-08-01

    Pancreatic beta cell function has been shown to decline with age in man. Depletion of mitochondrial DNA (mtDNA) copy number is associated with impaired insulin secretion in pancreatic beta cell lines, and decreased mtDNA copy number has been observed with age in skeletal muscle in man. We investigated whether mtDNA copy number decreases with age in human pancreatic beta cells, which might in turn contribute to the age-related decline in insulin secretory capacity. We quantified mtDNA copy number in isolated human islet preparations from 15 pancreas donors aged between 17 and 75 years. Islets (n = 20) were individually hand-picked and pooled from each donor isolate for the quantification of mtDNA copy number and deleted mtDNA (%), which were determined using real-time PCR methods. There was a significant negative correlation between mtDNA copy number and islet donor age (r = -0.53, p = 0.044). mtDNA copy number was significantly decreased in islet preparations from donors aged > or =50 years (n = 8) compared with those aged <50 years (n = 7) (median [interquartile range]: 418 [236-503] vs 596 [554-729] mtDNA copy number/diploid genome; p = 0.032). None of the islet preparations harboured high levels of deleted mtDNA affecting the major arc. Given the correlation between mtDNA content and respiratory chain activity, the age-related decrease in mtDNA copy number that we observed in human pancreatic islet preparations may contribute to the age-dependent decline in pancreatic beta cell insulin secretory capacity.

  19. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    PubMed Central

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  20. Copy-Number Mutations on Chromosome 17q24.2-q24.3 in Congenital Generalized Hypertrichosis Terminalis with or without Gingival Hyperplasia

    PubMed Central

    Sun, Miao; Li, Ning; Dong, Wu; Chen, Zugen; Liu, Qing; Xu, Yiming; He, Guang; Shi, Yongyong; Li, Xin; Hao, Jiajie; Luo, Yang; Shang, Dandan; Lv, Dan; Ma, Fen; Zhang, Dai; Hua, Rui; Lu, Chaoxia; Wen, Yaran; Cao, Lihua; Irvine, Alan D.; McLean, W.H. Irwin; Dong, Qi; Wang, Ming-Rong; Yu, Jun; He, Lin; Lo, Wilson H.Y.; Zhang, Xue

    2009-01-01

    Congenital generalized hypertrichosis terminalis (CGHT) is a rare condition characterized by universal excessive growth of pigmented terminal hairs and often accompanied with gingival hyperplasia. In the present study, we describe three Han Chinese families with autosomal-dominant CGHT and a sporadic case with extreme CGHT and gingival hyperplasia. We first did a genome-wide linkage scan in a large four-generation family. Our parametric multipoint linkage analysis revealed a genetic locus for CGHT on chromosome 17q24.2-q24.3. Further two-point linkage and haplotyping with microsatellite markers from the same chromosome region confirmed the genetic mapping and showed in all the families a microdeletion within the critical region that was present in all affected individuals but not in unaffected family members. We then carried out copy-number analysis with the Affymetrix Genome-Wide Human SNP Array 6.0 and detected genomic microdeletions of different sizes and with different breakpoints in the three families. We validated these microdeletions by real-time quantitative PCR and confirmed their perfect cosegregation with the disease phenotype in the three families. In the sporadic case, however, we found a de novo microduplication. Two-color interphase FISH analysis demonstrated that the duplication was inverted. These copy-number variations (CNVs) shared a common genomic region in which CNV is not reported in the public database and was not detected in our 434 unrelated Han Chinese normal controls. Thus, pathogenic copy-number mutations on 17q24.2-q24.3 are responsible for CGHT with or without gingival hyperplasia. Our work identifies CGHT as a genomic disorder. PMID:19463983

  1. Clinical Usefulness of Real-Time Polymerase Chain Reaction for the Diagnosis of Vibrio vulnificus Infection Using Skin and Soft Tissues.

    PubMed

    Lee, Jun-Young; Kim, Seok Won; Kim, Dong-Min; Yun, Na Ra; Kim, Choon-Mee; Lee, Sang-Hong

    2017-08-01

    Vibrio vulnificus is a halophilic gram-negative bacillus isolated in seawater, fish, and shellfish. Infection by V. vulnificus is the most severe food-borne infection reported in the United States of America. Here, we aimed to examine the clinical usefulness of polymerase chain reaction (PCR) using tissue specimens other than blood samples as a diagnostic tool for V. vulnificus infection. A retrospective study was conducted with patients who underwent real-time PCR of toxR in both blood and skin tissues, including serum, bullae, swab, and operation room specimens, between 2006 and 2009. The median V. vulnificus DNA load of 14 patients in real-time PCR analysis of serum at the time of admission was 638.5 copies/mL blood, which was within the interquartile range (IQR: 37-3,225). In contrast, the median value by real-time PCR using the first tissue specimen at the time of admission was 16,650 copies/mL tissue fluid (IQR: 4,419-832,500). This difference was statistically significant ( P = 0.022). DNA copy numbers in tissues were less affected by short-term antibiotic administration than that in blood samples, and antibiotic administration increased the DNA copy number in some patients. We found, for the first time, that DNA copy numbers in tissues of patients infected by V. vulnificus were higher than those in blood samples. Additionally, skin lesions were more useful than blood samples as specimens for PCR analysis in patients administered antibiotics for V. vulnificus infection before admission.

  2. Low copy number of the salivary amylase gene predisposes to obesity.

    PubMed

    Falchi, Mario; El-Sayed Moustafa, Julia Sarah; Takousis, Petros; Pesce, Francesco; Bonnefond, Amélie; Andersson-Assarsson, Johanna C; Sudmant, Peter H; Dorajoo, Rajkumar; Al-Shafai, Mashael Nedham; Bottolo, Leonardo; Ozdemir, Erdal; So, Hon-Cheong; Davies, Robert W; Patrice, Alexandre; Dent, Robert; Mangino, Massimo; Hysi, Pirro G; Dechaume, Aurélie; Huyvaert, Marlène; Skinner, Jane; Pigeyre, Marie; Caiazzo, Robert; Raverdy, Violeta; Vaillant, Emmanuel; Field, Sarah; Balkau, Beverley; Marre, Michel; Visvikis-Siest, Sophie; Weill, Jacques; Poulain-Godefroy, Odile; Jacobson, Peter; Sjostrom, Lars; Hammond, Christopher J; Deloukas, Panos; Sham, Pak Chung; McPherson, Ruth; Lee, Jeannette; Tai, E Shyong; Sladek, Robert; Carlsson, Lena M S; Walley, Andrew; Eichler, Evan E; Pattou, Francois; Spector, Timothy D; Froguel, Philippe

    2014-05-01

    Common multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10(-14)) and serum enzyme levels (P < 2.20 × 10(-16)), whereas reduced AMY1 copy number was associated with increased BMI (change in BMI per estimated copy = -0.15 (0.02) kg/m(2); P = 6.93 × 10(-10)) and obesity risk (odds ratio (OR) per estimated copy = 1.19, 95% confidence interval (CI) = 1.13-1.26; P = 1.46 × 10(-10)). The OR value of 1.19 per copy of AMY1 translates into about an eightfold difference in risk of obesity between subjects in the top (copy number > 9) and bottom (copy number < 4) 10% of the copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies.

  3. Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression

    PubMed Central

    Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander

    2016-01-01

    By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143

  4. Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma

    PubMed Central

    Skårn, Magne; Namløs, Heidi M.; Barragan-Polania, Ana H.; Cleton-Jansen, Anne-Marie; Serra, Massimo; Liestøl, Knut; Hogendoorn, Pancras C. W.; Hovig, Eivind; Myklebost, Ola; Meza-Zepeda, Leonardo A.

    2012-01-01

    Background Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. Principal Findings The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. Conclusions Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology. PMID:23144859

  5. Undifferentiated Sarcomas in Children Harbor Clinically Relevant Oncogenic Fusions and Gene Copy-Number Alterations: A Report from the Children's Oncology Group.

    PubMed

    Laetsch, Theodore W; Roy, Angshumoy; Xu, Lin; Black, Jennifer O; Coffin, Cheryl M; Chi, Yueh-Yun; Tian, Jing; Spunt, Sheri L; Hawkins, Douglas S; Bridge, Julia A; Parsons, D Williams; Skapek, Stephen X

    2018-04-24

    Purpose: A comprehensive analysis of the genomics of undifferentiated sarcomas (UDS) is lacking. We analyzed copy-number alterations and fusion status in patients with UDS prospectively treated on Children's Oncology Group protocol ARST0332. Experimental Design: Copy-number alterations were assessed by OncoScan FFPE Express on 32 UDS. Whole-exome and transcriptome libraries from eight tumors with sufficient archived material were sequenced on HiSeq (2 × 100 bp). Targeted RNA-sequencing using Archer chemistry was performed on two additional cases. Results: Five-year overall survival for patients with UDS was 83% (95% CI, 69%-97%) with risk-adapted therapy (surgery, chemotherapy, and radiotherapy). Both focal and arm-level copy-number alterations were common including gain of 1q (8/32, 25%) and loss of 1p (7/32, 22%), both of which occurred more often in clinically defined high-risk tumors. Tumors with both loss of 1p and gain of 1q carried an especially poor prognosis with a 5-year event-free survival of 20%. GISTIC analysis identified recurrent amplification of FGF1 on 5q31.3 ( q = 0.03) and loss of CDKN2A and CDKN2B on 9p21.3 ( q = 0.07). Known oncogenic fusions were identified in eight of 10 cases analyzed by next-generation sequencing. Conclusions: Pediatric UDS generally has a good outcome with risk-adapted therapy. A high-risk subset of patients whose tumors have copy-number loss of 1p and gain of 1q was identified with only 20% survival. Oncogenic fusions are common in UDS, and next-generation sequencing should be considered for children with UDS to refine the diagnosis and identify potentially targetable drivers. Clin Cancer Res; 1-10. ©2018 AACR. ©2018 American Association for Cancer Research.

  6. Active ribosomal genes, translational homeostasis and oxidative stress in the pathogenesis of schizophrenia and autism.

    PubMed

    Porokhovnik, Lev N; Passekov, Vladimir P; Gorbachevskaya, Nataliya L; Sorokin, Alexander B; Veiko, Nataliya N; Lyapunova, Nataliya A

    2015-04-01

    Infantile autism and schizophrenia are severe multifactorial disorders with a pronounced genetic predisposition. Their pathogeneses are often associated with oxidative stress in the brain. Previously, we established that a cell's resistance to oxidative stress depended on the copy number of transcriptionally active genes for rRNA (ribosomal genes) in the cell's genome. The feature is measured cytogenetically in cultured lymphocytes derived from patients. It varies from 120 up to 190 copies per diploid genome, with an arithmetic mean of 150±4 (SE) copies in a healthy population (n=239), being considerably lower, according to our previous results, in a sample of patients with rheumatoid arthritis (n=49), another multifactorial disease with a proven significant role of oxidative stress in its pathogenesis: from 115 to 165 copies, with a mean of 140±4 (SE). Conversely, a sample of schizophrenic patients (n=42) previously showed a higher value of copy number of active rRNA genes compared with a healthy population: from 145 to 190 copies, with a mean of 170±4. This fact is of special interest in the context of the well-known, but still unexplained phenomenon of the reduced comorbidity rate of schizophrenia and rheumatoid arthritis. The copy number of active ribosomal genes was estimated in a sample of autistic children (n=51). In contrast with the schizophrenic patients studied previously, we found that the values were significantly lower than those in the healthy population: from 125 to 160 copies, with a mean of 142±5. In this work, we suggest a mathematical model of the oxidative stress dynamics on the basis of Lotka-Volterra's approach to predator-prey interactions. In our model, the 'prey' represents reactive oxygen species, whereas the 'predator' simulates molecules of the antioxidant enzymes. The rate of biosynthesis of the latter is limited by the number of ribosomes available, which, in turn, is determined by the copy number of active rRNA genes. Analysis of the model showed the existence of a unique equilibrium point that makes biological sense. The reactive oxygen species level oscillatory approaches this equilibrium value, which inversely depends on the copy number of active rRNA genes. Our findings confirm the hypothesis of disturbance of the 'translational homeostasis' in the pathogeneses of autism and schizophrenia, and would help explain why oxidative stress markers are discovered in most autism studies, whereas similar reports related to schizophrenia are far less consistent.

  7. Aluminum tolerance in maize is associated with higher MATE1 gene copy number

    PubMed Central

    Maron, Lyza G.; Guimarães, Claudia T.; Kirst, Matias; Albert, Patrice S.; Birchler, James A.; Bradbury, Peter J.; Buckler, Edward S.; Coluccio, Alison E.; Danilova, Tatiana V.; Kudrna, David; Magalhaes, Jurandir V.; Piñeros, Miguel A.; Schatz, Michael C.; Wing, Rod A.; Kochian, Leon V.

    2013-01-01

    Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments. PMID:23479633

  8. Isolation and characterization of novel mutations in the pSC101 origin that increase copy number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.

    pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cellmore » in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. Thus, these pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.« less

  9. Isolation and characterization of novel mutations in the pSC101 origin that increase copy number

    DOE PAGES

    Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.; ...

    2018-01-25

    pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cellmore » in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. Thus, these pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.« less

  10. A Meta-Analytic Review of the Cover-Copy-Compare and Variations of This Self-Management Procedure

    ERIC Educational Resources Information Center

    Joseph, Laurice M.; Konrad, Moira; Cates, Gary; Vajcner, Terra; Eveleigh, Elisha; Fishley, Katelyn M.

    2012-01-01

    Studies that examined copy-cover-compare (CCC) and variations of this procedure were reviewed and analyzed. This review revealed a substantial number of studies that validated the use of CCC across spelling and math skills and across students with and without disabilities. A meta-analysis of findings indicated that CCC and variations of this…

  11. Different Facets of Copy Number Changes: Permanent, Transient, and Adaptive

    PubMed Central

    Mishra, Sweta

    2016-01-01

    Chromosomal copy number changes are frequently associated with harmful consequences and are thought of as an underlying mechanism for the development of diseases. However, changes in copy number are observed during development and occur during normal biological processes. In this review, we highlight the causes and consequences of copy number changes in normal physiologic processes as well as cover their associations with cancer and acquired drug resistance. We discuss the permanent and transient nature of copy number gains and relate these observations to a new mechanism driving transient site-specific copy gains (TSSGs). Finally, we discuss implications of TSSGs in generating intratumoral heterogeneity and tumor evolution and how TSSGs can influence the therapeutic response in cancer. PMID:26755558

  12. Peripheral artery disease, calf skeletal muscle mitochondrial DNA copy number, and functional performance.

    PubMed

    McDermott, Mary M; Peterson, Charlotte A; Sufit, Robert; Ferrucci, Luigi; Guralnik, Jack M; Kibbe, Melina R; Polonsky, Tamar S; Tian, Lu; Criqui, Michael H; Zhao, Lihui; Stein, James H; Li, Lingyu; Leeuwenburgh, Christiaan

    2018-05-01

    In people without lower extremity peripheral artery disease (PAD), mitochondrial DNA copy number declines with aging, and this decline is associated with declines in mitochondrial activity and functional performance. However, whether lower extremity ischemia is associated with lower mitochondrial DNA copy number and whether mitochondrial DNA copy number is associated with the degree of functional impairment in people with PAD is unknown. In people with and without PAD, age 65 years and older, we studied associations of the ankle-brachial index (ABI) with mitochondrial DNA copy number and associations of mitochondrial DNA copy number with functional impairment. Calf muscle biopsies were obtained from 34 participants with PAD (mean age: 73.5 years (SD 6.4), mean ABI: 0.67 (SD 0.15), mean 6-minute walk distance: 1191 feet (SD 223)) and 10 controls without PAD (mean age: 73.1 years (SD 4.7), mean ABI: 1.14 (SD 0.07), mean 6-minute walk distance: 1387 feet (SD 488)). Adjusting for age and sex, lower ABI values were associated with higher mitochondrial DNA copy number, measured in relative copy number (ABI<0.60: 914, ABI 0.60-0.90: 731, ABI 0.90-1.50: 593; p trend=0.016). The association of mitochondrial DNA copy number with the 6-minute walk distance and 4-meter walking velocity differed significantly between participants with versus without PAD ( p-value for interaction=0.001 and p=0.015, respectively). The correlation coefficient between mitochondrial DNA copy number and the 6-minute walk distance was 0.653 ( p=0.056) among people without PAD and -0.254 ( p=0.154) among people with PAD and ABI < 0.90. In conclusion, lower ABI values are associated with increased mitochondrial DNA copy number. Associations of mitochondrial DNA copy number with the 6-minute walk distance and 4-meter walking velocity significantly differed between people with versus without PAD, with stronger positive associations observed in people without PAD than in people with PAD. The cross-sectional and exploratory nature of the analyses precludes conclusions regarding causal inferences. ClinicalTrials.gov Identifier: NCT02246660.

  13. SULT1A1 copy number variation: ethnic distribution analysis in an Indian population.

    PubMed

    Almal, Suhani; Padh, Harish

    2017-11-01

    Cytosolic sulfotransferases (SULTs) are phase II detoxification enzymes involved in metabolism of numerous xenobiotics, drugs and endogenous compounds. Interindividual variation in sulfonation capacity is important for determining an individual's response to xenobiotics. SNPs in SULTs, mainly SULT1A1 have been associated with cancer risk and also with response to therapeutic agents. Copy number variation (CNVs) in SULT1A1 is found to be correlated with altered enzyme activity. This short report primarily focuses on CNV in SULT1A1 and its distribution among different ethnic populations around the globe. Frequency distribution of SULT1A1 copy number (CN) in 157 healthy Indian individuals was assessed using florescent-based quantitative PCR assay. A range of 1 to >4 copies, with a frequency of SULT1A1 CN =2 (64.9%) the highest, was observed in our (Indian) population. Upon comparative analysis of frequency distribution of SULT1A1 CN among diverse population groups, a statistically significant difference was observed between Indians (our data) and African-American (AA) (p = 0.0001) and South African (Tswana) (p < 0.0001) populations. Distribution of CNV in the Indian population was found to be similar to that in European-derived populations of American and Japanese. CNV of SULT1A1 varies significantly among world populations and may be one of the determinants of health and diseases.

  14. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; signatures... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... manner prescribed by the appropriate form. Unsigned copies shall be conformed. If the signature of any...

  15. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR.

    PubMed

    Stabley, Deborah L; Harris, Ashlee W; Holbrook, Jennifer; Chubbs, Nicholas J; Lozo, Kevin W; Crawford, Thomas O; Swoboda, Kathryn J; Funanage, Vicky L; Wang, Wenlan; Mackenzie, William; Scavina, Mena; Sol-Church, Katia; Butchbach, Matthew E R

    2015-07-01

    Proximal spinal muscular atrophy (SMA) is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutation of survival motor neuron 1 (SMN1). In the human genome, a large duplication of the SMN-containing region gives rise to a second copy of this gene (SMN2) that is distinguishable by a single nucleotide change in exon 7. Within the SMA population, there is substantial variation in SMN2 copy number; in general, those individuals with SMA who have a high SMN2 copy number have a milder disease. Because SMN2 functions as a disease modifier, its accurate copy number determination may have clinical relevance. In this study, we describe the development of an assay to assess SMN1 and SMN2 copy numbers in DNA samples using an array-based digital PCR (dPCR) system. This dPCR assay can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 copy number and disease severity. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 copy numbers from SMA samples.

  16. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Cancer.gov

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies. Applying the approach to the analysis of over 200 skin cancer samples, we demonstrate its utility for discovering distinct CNA events and for deriving ancillary information such as tumor purity. Availability and implementation: https://github.com/xfwang/CLOSE CONTACT: xuefeng.wang@stonybrook.edu or michael.krauthammer@yale.edu. (Publication Abstract)

  17. Prediction of Response to Therapy and Clinical Outcome through a Pilot Study of Complete Genetic Assessment of Ovarian Cancer

    DTIC Science & Technology

    2015-12-01

    Oncology program supported by this grant consented patients to 11-104. OncoPanel is a cancer genomic assay that detects somatic mutations, copy number...KMT2D, EP300, FANCD2 Sertoli Leydig cell DICER1 Copy number variants: In addition, 219 patients were analyzed for copy-number variations ( CNV ) in...OncoPanel genes. >12,000 total CNV were reported in the cohort (Figure 2). Single- copy deletions (n=5558) and copy-number gains (low amplification) (n

  18. Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D.

    PubMed

    Okamoto, Yuji; Goksungur, Meryem Tuba; Pehlivan, Davut; Beck, Christine R; Gonzaga-Jauregui, Claudia; Muzny, Donna M; Atik, Mehmed M; Carvalho, Claudia M B; Matur, Zeliha; Bayraktar, Serife; Boone, Philip M; Akyuz, Kaya; Gibbs, Richard A; Battaloglu, Esra; Parman, Yesim; Lupski, James R

    2014-05-01

    Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot-Marie-Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive disease has not been associated with copy-number variation as a mutational mechanism. We performed Agilent 8 × 60 K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6-8 that caused decreased mRNA expression of NDRG1. Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered.

  19. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants

    PubMed Central

    Kwan, Elizabeth X.; Wang, Xiaobin S.; Amemiya, Haley M.; Brewer, Bonita J.; Raghuraman, M. K.

    2016-01-01

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. PMID:27449518

  20. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants.

    PubMed

    Kwan, Elizabeth X; Wang, Xiaobin S; Amemiya, Haley M; Brewer, Bonita J; Raghuraman, M K

    2016-09-08

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. Copyright © 2016 Kwan et al.

  1. Gene copy number variation and its significance in cyanobacterial phylogeny

    PubMed Central

    2012-01-01

    Background In eukaryotes, variation in gene copy numbers is often associated with deleterious effects, but may also have positive effects. For prokaryotes, studies on gene copy number variation are rare. Previous studies have suggested that high numbers of rRNA gene copies can be advantageous in environments with changing resource availability, but further association of gene copies and phenotypic traits are not documented. We used one of the morphologically most diverse prokaryotic phyla to test whether numbers of gene copies are associated with levels of cell differentiation. Results We implemented a search algorithm that identified 44 genes with highly conserved copies across 22 fully sequenced cyanobacterial taxa. For two very basal cyanobacterial species, Gloeobacter violaceus and a thermophilic Synechococcus species, distinct phylogenetic positions previously found were supported by identical protein coding gene copy numbers. Furthermore, we found that increased ribosomal gene copy numbers showed a strong correlation to cyanobacteria capable of terminal cell differentiation. Additionally, we detected extremely low variation of 16S rRNA sequence copies within the cyanobacteria. We compared our results for 16S rRNA to three other eubacterial phyla (Chroroflexi, Spirochaetes and Bacteroidetes). Based on Bayesian phylogenetic inference and the comparisons of genetic distances, we could confirm that cyanobacterial 16S rRNA paralogs and orthologs show significantly stronger conservation than found in other eubacterial phyla. Conclusions A higher number of ribosomal operons could potentially provide an advantage to terminally differentiated cyanobacteria. Furthermore, we suggest that 16S rRNA gene copies in cyanobacteria are homogenized by both concerted evolution and purifying selection. In addition, the small ribosomal subunit in cyanobacteria appears to evolve at extraordinary slow evolutionary rates, an observation that has been made previously for morphological characteristics of cyanobacteria. PMID:22894826

  2. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease.

    PubMed

    Aldhous, Marian C; Abu Bakar, Suhaili; Prescott, Natalie J; Palla, Raquel; Soo, Kimberley; Mansfield, John C; Mathew, Christopher G; Satsangi, Jack; Armour, John A L

    2010-12-15

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case-control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case-control studies.

  3. Real-time PCR assays for monitoring anaerobic fungal biomass and population size in the rumen.

    PubMed

    Lwin, Khin Ohnmar; Hayakawa, Mika; Ban-Tokuda, Tomomi; Matsui, Hiroki

    2011-04-01

    The relationship between copy numbers of internal transcribed spacer 1 (ITS1) and biomass or zoospore count of anaerobic fungi was studied to develop a quantitative real-time PCR-based monitoring method for fungal biomass or population in the rumen. Nine fungal strains were used to determine the relationship between ITS1 copy number and fungal biomass. Rumen fluid from three sheep and a cow were used to determine the relationship between ITS1 copy number and fungal population. ITS1 copy number was determined by real-time PCR with a specific primer set for anaerobic fungi. Freeze-dried fungal cells were weighed for fungal biomass. Zoospore counts were determined by the roll-tube method. A positive correlation was observed between both ITS1 copy number and dry weight and ITS1 copy number and zoospore counts, suggesting that the use of ITS1 copy numbers is effective for estimating fungal biomass and population density. On the basis of ITS1 copy numbers, fluctuations in the fungal population in sheep rumen showed that although the values varied among individual animals, the fungal population tended to decrease after feeding. In the present study, a culture-independent method was established that will provide a powerful tool for understanding the ecology of anaerobic fungi in the rumen.

  4. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease

    PubMed Central

    Aldhous, Marian C.; Abu Bakar, Suhaili; Prescott, Natalie J.; Palla, Raquel; Soo, Kimberley; Mansfield, John C.; Mathew, Christopher G.; Satsangi, Jack; Armour, John A.L.

    2010-01-01

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case–control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case–control studies. PMID:20858604

  5. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines

    PubMed Central

    Calcagno, Danielle Queiroz; Takeno, Sylvia Santomi; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Chen, Elizabeth Suchi; Araújo, Taíssa Maíra Thomaz; Lima, Eleonidas Moura; Melaragno, Maria Isabel; Demachki, Samia; Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez; Smith, Marília Cardoso

    2016-01-01

    AIM To identify common copy number alterations on gastric cancer cell lines. METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis. RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively. CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer. PMID:27920471

  6. iGC-an integrated analysis package of gene expression and copy number alteration.

    PubMed

    Lai, Yi-Pin; Wang, Liang-Bo; Wang, Wei-An; Lai, Liang-Chuan; Tsai, Mong-Hsun; Lu, Tzu-Pin; Chuang, Eric Y

    2017-01-14

    With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .

  7. Association of β-defensin copy number and psoriasis in three cohorts of European origin

    PubMed Central

    Stuart, Philip E; Hüffmeier, Ulrike; Nair, Rajan P; Palla, Raquel; Tejasvi, Trilokraj; Schalkwijk, Joost; Elder, James T; Reis, Andre; Armour, John AL

    2012-01-01

    A single previous study has demonstrated significant association of psoriasis with copy number of beta-defensin genes, using DNA from psoriasis cases and controls from Nijmegen and Erlangen. In this study we attempted to replicate that finding in larger new cohorts from Erlangen (N = 2017) and Michigan (N = 5412), using improved methods for beta-defensin copy number determination based on the paralog ratio test (PRT), and enhanced methods of analysis and association testing implemented in the CNVtools resource. We demonstrate that the association with psoriasis found in the discovery sample is maintained after applying improved typing and analysis methods (p = 5.5 × 10−4, OR = 1.25). We also find that the association is replicated in 2616 cases and 2526 controls from Michigan, although at reduced significance (p = 0.014), but not in new samples from Erlangen (1396 cases and 621 controls, p = 0.38). Meta-analysis across all cohorts suggests a nominally significant association (p = 6.6 × 10−3/2 × 10−4) with an effect size (OR = 1.081) much lower than found in the discovery study (OR = 1.32). This reduced effect size and significance on replication is consistent with a genuine but weak association. PMID:22739795

  8. Copy number variation of functional RBMY1 is associated with sperm motility: an azoospermia factor-linked candidate for asthenozoospermia.

    PubMed

    Yan, Yuanlong; Yang, Xiling; Liu, Yunqiang; Shen, Ying; Tu, Wenling; Dong, Qiang; Yang, Dong; Ma, Yongyi; Yang, Yuan

    2017-07-01

    What is the influence of copy number variation (CNV) in functional RNA binding motif protein Y-linked family 1 (RBMY1) on spermatogenic phenotypes? The RBMY1 functional copy dosage is positively correlated with sperm motility, and dosage insufficiency is an independent risk factor for asthenozoospermia. RBMY1, a multi-copy gene expressed exclusively in the adult testis, is one of the most important candidates for male infertility in the azoospermia factor (AZF) region of the Y-chromosome. RBMY1 encodes an RNA-binding protein that serves as a pre-mRNA splicing regulator during spermatogenesis, and male mice deficient in Rbmy are sterile. A total of 3127 adult males were recruited from 2009 to 2016; of this group, the dosage of RBMY1 functional copy were investigated in 486 fertile males. In the remaining 2641 males with known spermatogenesis status, 1070 Y-chromosome haplogroup (Y-hg) O3* or O3e carriers without chromosomal aberration or known AZF structure mutations responsible for spermatogenic impairment, including 506 men with normozoospermia and 564 men with oligozoospermia or/and asthenozoospermia, were screened, and the RBMY1 functional copy dosage and copy conversion were determined to explore their associations with sperm phenotypes. The correlation between RBMY1 dosage and its mRNA level or RBMY1 protein level and the correlation between sperm RBMY1 level and motility were analysed in 15 testis tissue samples and eight semen samples. Ten additional semen samples were used to confirm the subcellular localization of RBMY1 in individual sperm. All the Han volunteers donating whole blood, semen and testis tissue were from southwest China. RBMY1 copy number, copy conversion, mRNA/protein amount and protein location in sperm were detected using the AccuCopy® assay method, paralog ratio test, quantitative PCR, western blotting and immunofluorescence staining methods, respectively. This study identified Y-hg-independent CNV of functional RBMY1 in the enrolled population. A difference in the distribution of RBMY1 copy number was observed between the group with normal sperm motility and the group with asthenozoospermia. A positive correlation between the RBMY1 copy dosage and sperm motility was identified, and the males with fewer than six copies of RBMY1 showed an elevated risk for asthenozoospermia relative to those with six RBMY1 copies, the most common dosage in the population. The RBMY1 copy dosage was positively correlated with its mRNA and protein level in the testis. Sperm with high motility were found to carry more RBMY1 protein than those with relatively low motility. The RBMY1 protein was confirmed to predominantly localize in the neck and mid-piece region of sperm as well as the principal piece of the sperm tail. Our population study completes a chain of evidence suggesting that RBMY1 influences the susceptibility of males to asthenozoospermia by modulating sperm motility. High sequence similarity between the RBMY1 functional copies and a large number of pseudogenes potentially reduces the accuracy of the copy number detection. The mechanism underlying the CNV in RBMY1 is still unclear, and the effect of the structural variations in the RBMY1 copy cluster on the copy dosage of other protein-coding genes located in the region cannot be excluded, which may potentially bias our observations. Asthenozoospermia is a multi-factor complex disease with a limited number of proven susceptibility genes. This study identified a novel genomic candidate independently contributing to the condition, enriching our understanding of the role of AZF-linked genes in male reproduction. Our finding provides insight into the physiological and pathological characteristics of RBMY1 in terms of sperm motility, supplies persuasive evidence of the significance of RBMY1 copy number analysis in the clinical counselling of male infertility resulting from asthenozoospermia. This work was funded by the National Natural Science Foundation of China (Nos. 81370748 and 30971598). The authors have no conflicts of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Effective normalization for copy number variation detection from whole genome sequencing.

    PubMed

    Janevski, Angel; Varadan, Vinay; Kamalakaran, Sitharthan; Banerjee, Nilanjana; Dimitrova, Nevenka

    2012-01-01

    Whole genome sequencing enables a high resolution view of the human genome and provides unique insights into genome structure at an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools, while validated, also include a number of parameters that are configurable to genome data being analyzed. These algorithms allow for normalization to account for individual and population-specific effects on individual genome CNV estimates but the impact of these changes on the estimated CNVs is not well characterized. We evaluate in detail the effect of normalization methodologies in two CNV algorithms FREEC and CNV-seq using whole genome sequencing data from 8 individuals spanning four populations. We apply FREEC and CNV-seq to a sequencing data set consisting of 8 genomes. We use multiple configurations corresponding to different read-count normalization methodologies in FREEC, and statistically characterize the concordance of the CNV calls between FREEC configurations and the analogous output from CNV-seq. The normalization methodologies evaluated in FREEC are: GC content, mappability and control genome. We further stratify the concordance analysis within genic, non-genic, and a collection of validated variant regions. The GC content normalization methodology generates the highest number of altered copy number regions. Both mappability and control genome normalization reduce the total number and length of copy number regions. Mappability normalization yields Jaccard indices in the 0.07 - 0.3 range, whereas using a control genome normalization yields Jaccard index values around 0.4 with normalization based on GC content. The most critical impact of using mappability as a normalization factor is substantial reduction of deletion CNV calls. The output of another method based on control genome normalization, CNV-seq, resulted in comparable CNV call profiles, and substantial agreement in variable gene and CNV region calls. Choice of read-count normalization methodology has a substantial effect on CNV calls and the use of genomic mappability or an appropriately chosen control genome can optimize the output of CNV analysis.

  10. 17 CFR 260.7a-3 - Number of copies; filing; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; filing; signatures; binding. 260.7a-3 Section 260.7a-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... § 260.7a-3 Number of copies; filing; signatures; binding. (a) Three copies of the complete application...

  11. 17 CFR 260.4c-3 - Number of copies; filing; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; filing; signatures; binding. 260.4c-3 Section 260.4c-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... § 260.4c-3 Number of copies; filing; signatures; binding. (a) Three copies of every application and of...

  12. 17 CFR 260.5a-3 - Number of copies; filing; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; filing; signatures; binding. 260.5a-3 Section 260.5a-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... § 260.5a-3 Number of copies; filing; signatures; binding. (a) Three copies of each statement of...

  13. Clinical and molecular evaluation of SHOX/PAR1 duplications in Leri-Weill dyschondrosteosis (LWD) and idiopathic short stature (ISS).

    PubMed

    Benito-Sanz, S; Barroso, E; Heine-Suñer, D; Hisado-Oliva, A; Romanelli, V; Rosell, J; Aragones, A; Caimari, M; Argente, J; Ross, J L; Zinn, A R; Gracia, R; Lapunzina, P; Campos-Barros, A; Heath, K E

    2011-02-01

    Léri-Weill dyschondrosteosis (LWD) is a skeletal dysplasia characterized by disproportionate short stature and the Madelung deformity of the forearm. SHOX mutations and pseudoautosomal region 1 deletions encompassing SHOX or its enhancers have been identified in approximately 60% of LWD and approximately 15% of idiopathic short stature (ISS) individuals. Recently SHOX duplications have been described in LWD/ISS but also in individuals with other clinical manifestations, thus questioning their pathogenicity. The objective of the study was to investigate the pathogenicity of SHOX duplications in LWD and ISS. Multiplex ligation-dependent probe amplification is routinely used in our unit to analyze for SHOX/pseudoautosomal region 1 copy number changes in LWD/ISS referrals. Quantitative PCR, microsatellite marker, and fluorescence in situ hybridization analysis were undertaken to confirm all identified duplications. During the routine analysis of 122 LWD and 613 ISS referrals, a total of four complete and 10 partial SHOX duplications or multiple copy number (n > 3) as well as one duplication of the SHOX 5' flanking region were identified in nine LWD and six ISS cases. Partial SHOX duplications appeared to have a more deleterious effect on skeletal dysplasia and height gain than complete SHOX duplications. Importantly, no increase in SHOX copy number was identified in 340 individuals with normal stature or 104 overgrowth referrals. MLPA analysis of SHOX/PAR1 led to the identification of partial and complete SHOX duplications or multiple copies associated with LWD or ISS, suggesting that they may represent an additional class of mutations implicated in the molecular etiology of these clinical entities.

  14. A remark on copy number variation detection methods.

    PubMed

    Li, Shuo; Dou, Xialiang; Gao, Ruiqi; Ge, Xinzhou; Qian, Minping; Wan, Lin

    2018-01-01

    Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.

  15. 48 CFR 1852.246-72 - Material inspection and receiving report.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Receiving Report (DD Form 250 series) prepared in __ [Insert number of copies, including original] copies, an original and __ copies [Insert number of copies]. (b) The Contractor shall prepare the DD Form 250 in accordance with NASA FAR Supplement 1846.6. The Contractor shall enclose the copies of the DD Form...

  16. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers.

    PubMed

    Sønderstrup, Ida Marie Heeholm; Nygård, Sune Boris; Poulsen, Tim Svenstrup; Linnemann, Dorte; Stenvang, Jan; Nielsen, Hans Jørgen; Bartek, Jiri; Brünner, Nils; Nørgaard, Peter; Riis, Lene

    2015-06-01

    Topoisomerase 1 (TOP1) and 2A (TOP2A) are potential predictive biomarkers for irinotecan and anthracycline treatment, respectively, in colorectal cancer (CRC), and we have recently reported a high frequency of gene gain of the TOP1 and TOP2A genes in CRC. Furthermore, Mismatch Repair (MMR) subtypes of CRC have been associated with benefit from adjuvant chemotherapy of primary CRC. Given the involvement of the topoisomerase enzymes in DNA replication and repair, we raised the hypothesis that an association may exist between TOP gene copy numbers and MMR proficiency/deficiency in CRC. Test cohort: FISH analysis with an in-house TOP1/CEN20 probe mix and a commercially available TOP2A/CEN17 (Dako, Glostrup, Denmark) probe mix was performed on archival formalin fixed paraffin embedded (FFPE) tissue samples from 18 patients with proficient MMR (pMMR) CRC and 18 patients with deficient MMR (dMMR) CRC. TOP1 and TOP2A gene copy numbers and their ratios per nucleus were correlated with MMR status using the Mann-Whitney test. Validation cohort: FFPE samples from 154 patients with primary stage III CRC (originally included in the RANX05 study) were classified according to MMR status by immunohistochemical analysis using validated antibodies for MLH1, MLH2, MSH6 and PMS2, and information on TOP1, CEN20, TOP2A and CEN17 status was previously published for this cohort. The observed TOP1 gene copy numbers in the 36 CRC test cohort were significantly greater (p < 0.01) in the pMMR subgroup (mean: 3.84, SD: 2.03) than in the dMMR subgroup (mean: 1.50, SD: 0.12). Similarly, the TOP2A copy numbers were significantly greater (p < 0.01) in the pMMR subgroup (mean: 1.99, SD: 0.52) than in the dMMR subgroup (mean: 1.52, SD: 0.10). These findings were confirmed in the validation cohort, where in the pMMR subgroup 51% had ≥2 extra TOP1 copies per cell, while all tumors classified as dMMR had diploid TOP1 status and mean TOP2A copy numbers were 2.30 (SD: 1.36) and 1.80 (SD: 0.31) (p = 0.01) in the pMMR subgroup vs. dMMR subgroup, respectively. Our results show that TOP1 and TOP2A gene copy numbers are increased in the pMMR subgroup. We propose that this preference may reflect a selective pressure to gain and/or maintain the gained extra copies of topoisomerase genes whose products are required to cope with high replication stress present in the pMMR tumors, thereby providing a survival advantage selectively in pMMR tumors. Future studies should test this concept and explore potential differences between pMMR and dMMR tumors in response to Top1 and Top2 inhibitors. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Clinical significance of ESR1 gene copy number changes in breast cancer as measured by fluorescence in situ hybridisation.

    PubMed

    Lin, Ching-Hung; Liu, Jacqueline M; Lu, Yen-Shen; Lan, Chieh; Lee, Wei-Chung; Kuo, Kuan-Ting; Wang, Chung-Chieh; Chang, Dwan-Ying; Huang, Chiun-Sheng; Cheng, Ann-Lii

    2013-02-01

    The ESR1 gene encodes for oestrogen receptor (ER) α, which plays a crucial role in mammary carcinogenesis and clinical outcome in patients with breast cancer. However, the clinical significance of the ESR1 gene copy number change for breast cancer has not been clarified. ESR1 gene copy number was determined by fluorescence in situ hybridisation (FISH) on tissue sections. A minimum of 20 tumour cells were counted per section, and a FISH ratio of ESR1 gene to CEP6 ≥ 2.0 was considered ESR1 amplification. A ratio >1.2 but <2.0 was considered ESR1 gain. The ESR1 copy number was further measured by quantitative real-time PCR (Q-PCR) with ASXL2 as a reference. FISH revealed ESR1 amplification in six cases (4.0%) and ESR1 gain in 13 cases (8.7%) from a total of 150 cases. ESR1 gain and amplification were more common in older patients (p<0.001), and correlated well with ER protein expression (p=0.03) measured by immunohistochemistry, and ESR1 copy number (p<0.001) measured by Q-PCR. Furthermore, the multivariate analysis revealed that ESR1 amplification was associated with a shorter disease-free survival (HR=5.56, p=0.03) and a shorter overall survival (HR=5.11, p=0.04). In general, the frequency of ESR1 amplification in breast cancer is low when measured by FISH in large sections. ESR1 gain and amplification in breast cancer may be associated with older age and poorer outcomes.

  18. ALK amplification and protein expression predict inferior prognosis in neuroblastomas.

    PubMed

    Wang, Miao; Zhou, Chunju; Sun, Qinnuan; Cai, Rongqin; Li, Yong; Wang, Daye; Gong, Liping

    2013-10-01

    ALK gene has been identified as a major neuroblastoma (NBL) predisposition gene. But ALK gene copy number and protein expression in ganglioneuroblastoma (GNBL) and ganglioneuroma (GN) are poorly described in the literature. Furthermore, there are controversies on the correlation between ALK protein expression and clinical outcome in NBL. We evaluated MYCN/ALK gene copy number by fluorescence in situ hybridization (FISH) and detected ALK protein expression by immunohistochemistry (IHC) in 188 NBL, 52 GNBL and 6 GN samples and analyzed their association with clinical outcome of the patients. Although ALK gene copy number increase is a recurrent genetic aberration of neuroblastic tumors (NTs) (39.1%, 96/246), ALK amplification was only present in three NBLs (1.2%, 3/246). The frequency of ALK positivity in NBL (50.5%, 51/101) was significantly higher than in GNBL (22.6%, 7/31) and in GN (0.0%, 0/4) (P<0.05). In addition, ALK positivity also significantly correlates with MYCN/ALK gene copy number increases (P<0.05). Kaplan-Meier survival analysis indicated that MYCN/ALK amplification is correlated with decreased overall survival in NBL. A better prognosis trend was observed in patients with MYCN/ALK gain tumors compared with those with MYCN/ALK normal tumors. Furthermore, ALK positivity significantly correlated with inferior survival in NBL (P=0.044). ALK positivity in NTs correlated with advanced tumor types and MYCN/ALK gene copy number increases. ALK positivity predicts inferior prognosis in NBL and IHC is a simplified strategy to screen ALK positivity in clinical practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Evaluation of targeted exome sequencing for 28 protein-based blood group systems, including the homologous gene systems, for blood group genotyping.

    PubMed

    Schoeman, Elizna M; Lopez, Genghis H; McGowan, Eunike C; Millard, Glenda M; O'Brien, Helen; Roulis, Eileen V; Liew, Yew-Wah; Martin, Jacqueline R; McGrath, Kelli A; Powley, Tanya; Flower, Robert L; Hyland, Catherine A

    2017-04-01

    Blood group single nucleotide polymorphism genotyping probes for a limited range of polymorphisms. This study investigated whether massively parallel sequencing (also known as next-generation sequencing), with a targeted exome strategy, provides an extended blood group genotype and the extent to which massively parallel sequencing correctly genotypes in homologous gene systems, such as RH and MNS. Donor samples (n = 28) that were extensively phenotyped and genotyped using single nucleotide polymorphism typing, were analyzed using the TruSight One Sequencing Panel and MiSeq platform. Genes for 28 protein-based blood group systems, GATA1, and KLF1 were analyzed. Copy number variation analysis was used to characterize complex structural variants in the GYPC and RH systems. The average sequencing depth per target region was 66.2 ± 39.8. Each sample harbored on average 43 ± 9 variants, of which 10 ± 3 were used for genotyping. For the 28 samples, massively parallel sequencing variant sequences correctly matched expected sequences based on single nucleotide polymorphism genotyping data. Copy number variation analysis defined the Rh C/c alleles and complex RHD hybrids. Hybrid RHD*D-CE-D variants were correctly identified, but copy number variation analysis did not confidently distinguish between D and CE exon deletion versus rearrangement. The targeted exome sequencing strategy employed extended the range of blood group genotypes detected compared with single nucleotide polymorphism typing. This single-test format included detection of complex MNS hybrid cases and, with copy number variation analysis, defined RH hybrid genes along with the RHCE*C allele hitherto difficult to resolve by variant detection. The approach is economical compared with whole-genome sequencing and is suitable for a red blood cell reference laboratory setting. © 2017 AABB.

  20. Variable-Number Tandem Repeats That Are Useful in Genotyping Isolates of Salmonella enterica subsp. enterica Serovars Typhimurium and Newport▿

    PubMed Central

    Witonski, D. ; Stefanova, R.; Ranganathan, A.; Schutze, G. E.; Eisenach, K. D.; Cave, M. D.

    2006-01-01

    The genome of Salmonella enterica subsp. enterica serovar Typhimurium strain LT2 was analyzed for direct repeats, and 54 sequences containing variable-number tandem repeat loci were identified. Ten primer pairs that anneal upstream and downstream of each selected locus were designed and used to amplify PCR targets in isolates of S. enterica serovars Typhimurium and Newport. Four of the 10 loci did not show polymorphism in the length of products. Six loci were selected for analysis. Isolates of S. enterica serovars Typhimurium and Newport that were related to specific outbreaks and showed identical pulsed-field gel electrophoresis patterns were indistinguishable by the length of the six variable-number tandem repeats. Isolates that differed in their pulsed-field gel electrophoresis patterns showed polymorphism in variable-number tandem repeat profiles. Length of the products was confirmed by DNA sequence analysis. Only 2 of the 10 loci contained exact integers of the direct repeat. Eight loci contained partial copies. The partial copies were maintained at the ends of the variable-number tandem repeat loci in all isolates. In spite of having partial copies that were maintained in all isolates, the number of direct repeats at a locus was polymorphic. Six variable-number tandem repeat loci were useful in distinguishing isolates of S. enterica serovars Typhimurium and Newport that had different pulsed-field gel electrophoresis patterns and in identifying outbreak-associated cases that shared a common pulsed-field gel pattern. PMID:16943354

  1. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions.

    PubMed

    Pezer, Željka; Chung, Amanda G; Karn, Robert C; Laukaitis, Christina M

    2017-06-01

    The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH).

    PubMed

    Hollox, E J; Atia, T; Cross, G; Parkin, T; Armour, J A L

    2002-11-01

    Subtelomeric regions of the human genome are gene rich, with a high level of sequence polymorphism. A number of clinical conditions, including learning disability, have been attributed to subtelomeric deletions or duplications, but screening for deletion in these regions using conventional cytogenetic methods and fluorescence in situ hybridisation (FISH) is laborious. Here we report that a new method, multiplex amplifiable probe hybridisation (MAPH), can be used to screen for copy number at subtelomeric regions. We have constructed a set of MAPH probes with each subtelomeric region represented at least once, so that one gel lane can assay copy number at all chromosome ends in one person. Each probe has been sequenced and, where possible, its position relative to the telomere determined by comparison with mapped clones. The sensitivity of the probes has been characterised on a series of cytogenetically verified positive controls and 83 normal controls were used to assess the frequency of polymorphic copy number with no apparent phenotypic effect. We have also used MAPH to test a cohort of 37 people selected from males referred for fragile X syndrome testing and found six changes that were confirmed by dosage PCR. MAPH can be used to screen subtelomeric regions of chromosomes for deletions and duplications before confirmation by FISH or dosage PCR. The high throughput nature of this technique allows it to be used for large scale screening of subtelomeric copy number, before confirmation by FISH. In practice, the availability of a rapid and efficient screen may allow subtelomeric analysis to be applied to a wider selection of patients than is currently possible using FISH alone.

  3. High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH)

    PubMed Central

    Hollox, E; Atia, T; Cross, G; Parkin, T; Armour, J

    2002-01-01

    Background: Subtelomeric regions of the human genome are gene rich, with a high level of sequence polymorphism. A number of clinical conditions, including learning disability, have been attributed to subtelomeric deletions or duplications, but screening for deletion in these regions using conventional cytogenetic methods and fluorescence in situ hybridisation (FISH) is laborious. Here we report that a new method, multiplex amplifiable probe hybridisation (MAPH), can be used to screen for copy number at subtelomeric regions. Methods: We have constructed a set of MAPH probes with each subtelomeric region represented at least once, so that one gel lane can assay copy number at all chromosome ends in one person. Each probe has been sequenced and, where possible, its position relative to the telomere determined by comparison with mapped clones. Results: The sensitivity of the probes has been characterised on a series of cytogenetically verified positive controls and 83 normal controls were used to assess the frequency of polymorphic copy number with no apparent phenotypic effect. We have also used MAPH to test a cohort of 37 people selected from males referred for fragile X syndrome testing and found six changes that were confirmed by dosage PCR. Conclusions: MAPH can be used to screen subtelomeric regions of chromosomes for deletions and duplications before confirmation by FISH or dosage PCR. The high throughput nature of this technique allows it to be used for large scale screening of subtelomeric copy number, before confirmation by FISH. In practice, the availability of a rapid and efficient screen may allow subtelomeric analysis to be applied to a wider selection of patients than is currently possible using FISH alone. PMID:12414816

  4. Low D4Z4 copy number and gender difference in Korean patients with facioscapulohumeral muscular dystrophy type 1.

    PubMed

    Park, Hyung Jun; Hong, Ji-Man; Lee, Jung Hwan; Lee, Hyung Seok; Shin, Ha Young; Kim, Seung Min; Ki, Chang-Seok; Lee, Ji Hyun; Choi, Young-Chul

    2015-11-01

    The objective of this study was to investigate the clinical and genetic features of Korean patients with facioscapulohumeral muscular dystrophy type 1 (FSHD), and assessed the impact of molecular defects on phenotypic expression. We enrolled 104 FSHD patients from 87 unrelated Korean families with D4Z4 repeat array of less than 11 copies on 4q35. Sixty-one men and forty-three women were enrolled. Median D4Z4 copy number was 4 units and 99 (95%) Korean patients with FSHD carried 1-6 units. The median age at symptom onset was 13 [interquartile range: 8-17] years old. In 100 symptomatic patients, muscle weakness began in facial muscles in 58 patients, shoulder-girdle muscles in 37, and pelvic-girdle muscles in 5. Disease severity was significantly correlated with D4Z4 copy number. In addition, women were more severely affected than men even though there were no differences in age at examination or in D4Z4 copy number between the two genders. This gender difference among Korean patients was the opposite of analysis on individuals of European ancestry. In conclusion, the present study demonstrated the new diagnostic threshold for FSHD in Koreans based on the D4Z4 repeat array size distribution from 1 to 6 units and expanded the clinical spectrum. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [Molecular diagnosis of spinal muscular atrophy by multiplex ligation-dependent probe amplification].

    PubMed

    Zeng, Jian; Ke, Long-feng; Deng, Xiao-jun; Cai, Mei-ying; Tu, Xiang-dong; Lan, Feng-hua

    2008-12-16

    To investigate the effect of multiplex ligation-dependent probe amplification (MLPA) in molecular diagnosis of spinal muscular atrophy (SMA). Peripheral blood samples were collected from 13 SMA patients, 31 parents of SMA patients, 50 healthy individuals without family history of SMA, and 10 specimens of amniotic fluid from these families were collected too. Genomic DNA was analyzed by MLPA, conventional PCR-RFLP, and allele-specific PCR. In complete agreement with the results of conventional PCR-RFLP and allele-specific PCR, MLPA analysis showed that all of the 13 patients had homozygous deletion of the survival of motor neuron 1 (SMN1) gene, and there was significant difference between the SMA severity (type I to type III) and SMN2 copy number (P < 0.05). Of the 31 parents 29 (93.5%) had 1 copy of SMN1, 2 (6.5%) had 2 copies of SMN1. Of the 50 healthy individuals, 1 (2.0%) had 1 copy of SMN1, 48 (96.0%) had 2 copies of SMN1, and 1 (2.0%) had 3 copies. The SMN1 copy number of the parents was significantly higher than that of the healthy individuals (P < 0.01). Two of the 10 fetuses had homozygous deletion of SMN1. The MLPA technique has proved to be an accurate and reliable tool for the molecular diagnosis of SMA, both in patients and in healthy carriers.

  6. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.

    PubMed

    Curtis, Christina; Shah, Sohrab P; Chin, Suet-Feung; Turashvili, Gulisa; Rueda, Oscar M; Dunning, Mark J; Speed, Doug; Lynch, Andy G; Samarajiwa, Shamith; Yuan, Yinyin; Gräf, Stefan; Ha, Gavin; Haffari, Gholamreza; Bashashati, Ali; Russell, Roslin; McKinney, Steven; Langerød, Anita; Green, Andrew; Provenzano, Elena; Wishart, Gordon; Pinder, Sarah; Watson, Peter; Markowetz, Florian; Murphy, Leigh; Ellis, Ian; Purushotham, Arnie; Børresen-Dale, Anne-Lise; Brenton, James D; Tavaré, Simon; Caldas, Carlos; Aparicio, Samuel

    2012-04-18

    The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ~40% of genes, with the landscape dominated by cis- and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome.

  7. Novel Population Specific Autosomal Copy Number Variation and Its Functional Analysis amongst Negritos from Peninsular Malaysia

    PubMed Central

    Mokhtar, Siti Shuhada; Marshall, Christian R.; Phipps, Maude E.; Thiruvahindrapuram, Bhooma; Lionel, Anath C.; Scherer, Stephen W.; Peng, Hoh Boon

    2014-01-01

    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia. PMID:24956385

  8. Novel population specific autosomal copy number variation and its functional analysis amongst Negritos from Peninsular Malaysia.

    PubMed

    Mokhtar, Siti Shuhada; Marshall, Christian R; Phipps, Maude E; Thiruvahindrapuram, Bhooma; Lionel, Anath C; Scherer, Stephen W; Peng, Hoh Boon

    2014-01-01

    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.

  9. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization

    PubMed Central

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison

    2017-01-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3–17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways. PMID:25511566

  10. Molecular cytogenetic anomalies and phenotype alterations in a newly established cell line from Wilms tumor with diffuse anaplasia.

    PubMed

    Faussillon, Marine; Murakami, Ichiro; Bichat, Magalie; Telvi, Louise; Jeanpierre, Cécile; Nezelof, Christian; Jaubert, Francis; Gogusev, Jean

    2008-07-01

    The novel continuous cell line WT-Pe.1 was established in vitro from Wilms tumor with histological features of diffuse anaplasia. The cultures grew as poorly differentiated epithelial-like cells with pleomorphic polygonal shapes and formation of typical monolayers. WT-Pe.1 cells were immunoreactive for cytokeratin, vimentin, laminin, villin, CD10, and CD24 proteins. Conventional cytogenetic analysis by RHG-banding revealed a hypotriploid karyotype with numerous abnormalities including ring chromosomes, double-minutes, homogeneous staining regions, radial structures, dicentrics, and several marker chromosomes. Comparative genomic hybridization analysis revealed DNA copy numbers losses on chromosome segments 1p, 3p, 6q, 9q34.1 approximately q34.3, 11q24 approximately q25, 14q12 approximately qter, 16q, 18q, and 22q11 approximately q13; gain of genomic material was localized on chromosome arms 1q, 4p, 6q, and 7p and the entire chromosome 12. With DNA from the original tumor, copy number losses were detected on chromosomes 1p, 14q, 16q, 17q, and 22q and gains were observed on 1q, 4p, 8q, 12p, 12q, and chromosome 14p. Copy number amplifications of distinct loci were found on 1q21.1 and 4p15.3, as well as an elevated copy number of cyclin D2 (CCND2) and cyclin D associated kinase (CDK4) genes on chromosome 12 (confirmed by fluorescence in situ hybridization).

  11. Complement Factor D in Age-Related Macular Degeneration

    PubMed Central

    Stanton, Chloe M.; Yates, John R.W.; den Hollander, Anneke I.; Seddon, Johanna M.; Swaroop, Anand; Stambolian, Dwight; Fauser, Sascha; Hoyng, Carel; Yu, Yi; Atsuhiro, Kanda; Branham, Kari; Othman, Mohammad; Chen, Wei; Kortvely, Elod; Chalmers, Kevin; Hayward, Caroline; Moore, Anthony T.; Dhillon, Baljean; Ueffing, Marius

    2011-01-01

    Purpose. To examine the role of complement factor D (CFD) in age-related macular degeneration (AMD) by analysis of genetic association, copy number variation, and plasma CFD concentrations. Methods. Single nucleotide polymorphisms (SNPs) in the CFD gene were genotyped and the results analyzed by binary logistic regression. CFD gene copy number was analyzed by gene copy number assay. Plasma CFD was measured by an enzyme-linked immunosorbent assay. Results. Genetic association was found between CFD gene SNP rs3826945 and AMD (odds ratio 1.44; P = 0.028) in a small discovery case-control series (462 cases and 325 controls) and replicated in a combined cohorts meta-analysis of 4765 cases and 2693 controls, with an odds ratio of 1.11 (P = 0.032), with the association almost confined to females. Copy number variation in the CFD gene was identified in 13 out of 640 samples examined but there was no difference in frequency between AMD cases (1.3%) and controls (2.7%). Plasma CFD concentration was measured in 751 AMD cases and 474 controls and found to be elevated in AMD cases (P = 0.00025). The odds ratio for those in the highest versus lowest quartile for plasma CFD was 1.81. The difference in plasma CFD was again almost confined to females. Conclusions. CFD regulates activation of the alternative complement pathway, which is implicated in AMD pathogenesis. The authors found evidence for genetic association between a CFD gene SNP and AMD and a significant increase in plasma CFD concentration in AMD cases compared with controls, consistent with a role for CFD in AMD pathogenesis. PMID:22003108

  12. Penalized differential pathway analysis of integrative oncogenomics studies.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2014-04-01

    Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature.

  13. Ready to clone: CNV detection and breakpoint fine-mapping in breast and ovarian cancer susceptibility genes by high-resolution array CGH.

    PubMed

    Hackmann, Karl; Kuhlee, Franziska; Betcheva-Krajcir, Elitza; Kahlert, Anne-Karin; Mackenroth, Luisa; Klink, Barbara; Di Donato, Nataliya; Tzschach, Andreas; Kast, Karin; Wimberger, Pauline; Schrock, Evelin; Rump, Andreas

    2016-10-01

    Detection of predisposing copy number variants (CNV) in 330 families affected with hereditary breast and ovarian cancer (HBOC). In order to complement mutation detection with Illumina's TruSight Cancer panel, we designed a customized high-resolution 8 × 60k array for CGH (aCGH) that covers all 94 genes from the panel. Copy number variants with immediate clinical relevance were detected in 12 families (3.6%). Besides 3 known CNVs in CHEK2, RAD51C, and BRCA1, we identified 3 novel pathogenic CNVs in BRCA1 (deletion of exons 4-13, deletion of exons 12-18) and ATM (deletion exons 57-63) plus an intragenic duplication of BRCA2 (exons 3-11) and an intronic BRCA1 variant with unknown pathogenicity. The precision of high-resolution aCGH enabled straight forward breakpoint amplification of a BRCA1 deletion which subsequently allowed for fast and economic CNV verification in family members of the index patient. Furthermore, we used our aCGH data to validate an algorithm that was able to detect all identified copy number changes from next-generation sequencing (NGS) data. Copy number detection is a mandatory analysis in HBOC families at least if no predisposing mutations were found by sequencing. Currently, high-resolution array CGH is our first choice of method of analysis due to unmatched detection precision. Although it seems possible to detect CNV from sequencing data, there currently is no satisfying tool to do so in a routine diagnostic setting.

  14. Anaplastic Lymphoma Kinase Gene Copy Number Gain in Inflammatory Breast Cancer (IBC): Prevalence, Clinicopathologic Features and Prognostic Implication

    PubMed Central

    Kim, Min Hwan; Lee, Soohyeon; Koo, Ja Seung; Jung, Kyung Hae; Park, In Hae; Jeong, Joon; Kim, Seung Il; Park, Seho; Park, Hyung Seok; Park, Byeong-Woo; Kim, Joo-Hang; Sohn, Joohyuk

    2015-01-01

    Background Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer, and its molecular pathogenesis still remains to be elucidated. This study aimed to evaluate the prevalence and implication of anaplastic lymphoma kinase (ALK) copy number change in IBC patients. Methods We retrospectively collected formalin-fixed, paraffin-embedded tumor tissues and medical records of IBC patients from several institutes in Korea. ALK gene copy number change and rearrangement were assessed by fluorescence in situ hybridization (FISH) assay, and ALK expression status was evaluated by immunohistochemical (IHC) staining. Results Thirty-six IBC patients including those with HER2 (+) breast cancer (16/36, 44.4%) and triple-negative breast cancer (13/36, 36.1%) were enrolled in this study. ALK copy number gain (CNG) was observed in 47.2% (17/36) of patients, including one patient who harbored ALK gene amplification. ALK CNG (+) patients showed significantly worse overall survival compared to ALK CNG (-) patients in univariate analysis (24.9 months vs. 38.1 months, p = 0.033). Recurrence free survival (RFS) after curative mastectomy was also significantly shorter in ALK CNG (+) patients than in ALK CNG (-) patients (n = 22, 12.7 months vs. 43.3 months, p = 0.016). Multivariate Cox regression analysis with adjustment for HER2 and ER statuses showed significantly poorer RFS for ALK CNG (+) patients (HR 5.63, 95% CI 1.11–28.44, p = 0.037). Conclusion This study shows a significant presence of ALK CNG in IBC patients, and ALK CNG was associated with significantly poorer RFS. PMID:25803816

  15. Anaplastic lymphoma kinase gene copy number gain in inflammatory breast cancer (IBC): prevalence, clinicopathologic features and prognostic implication.

    PubMed

    Kim, Min Hwan; Lee, Soohyeon; Koo, Ja Seung; Jung, Kyung Hae; Park, In Hae; Jeong, Joon; Kim, Seung Il; Park, Seho; Park, Hyung Seok; Park, Byeong-Woo; Kim, Joo-Hang; Sohn, Joohyuk

    2015-01-01

    Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer, and its molecular pathogenesis still remains to be elucidated. This study aimed to evaluate the prevalence and implication of anaplastic lymphoma kinase (ALK) copy number change in IBC patients. We retrospectively collected formalin-fixed, paraffin-embedded tumor tissues and medical records of IBC patients from several institutes in Korea. ALK gene copy number change and rearrangement were assessed by fluorescence in situ hybridization (FISH) assay, and ALK expression status was evaluated by immunohistochemical (IHC) staining. Thirty-six IBC patients including those with HER2 (+) breast cancer (16/36, 44.4%) and triple-negative breast cancer (13/36, 36.1%) were enrolled in this study. ALK copy number gain (CNG) was observed in 47.2% (17/36) of patients, including one patient who harbored ALK gene amplification. ALK CNG (+) patients showed significantly worse overall survival compared to ALK CNG (-) patients in univariate analysis (24.9 months vs. 38.1 months, p = 0.033). Recurrence free survival (RFS) after curative mastectomy was also significantly shorter in ALK CNG (+) patients than in ALK CNG (-) patients (n = 22, 12.7 months vs. 43.3 months, p = 0.016). Multivariate Cox regression analysis with adjustment for HER2 and ER statuses showed significantly poorer RFS for ALK CNG (+) patients (HR 5.63, 95% CI 1.11-28.44, p = 0.037). This study shows a significant presence of ALK CNG in IBC patients, and ALK CNG was associated with significantly poorer RFS.

  16. Measuring mRNA copy-number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization (smFISH)

    PubMed Central

    Skinner, Samuel O.; Sepúlveda, Leonardo A.; Xu, Heng; Golding, Ido

    2014-01-01

    We present a method for measuring the absolute number of mRNA molecules from a gene of interest in individual, chemically fixed Escherichia coli cells. A set of fluorescently-labeled oligonucleotide probes are hybridized to the target mRNA, so that each mRNA molecule is decorated by a known number of fluorescent dyes. Cells are then imaged using fluorescence microscopy. The number of target mRNA is estimated from the total intensity of fluorescent foci in the cell, rather than from counting discrete “spots” as in other currently available protocols. Image analysis is performed using an automated algorithm. The measured mRNA copy-number distribution obtained from many individual cells can be used to extract the parameters of stochastic gene activity, namely the frequency and size of transcription bursts from the gene of interest. The experimental procedure takes 2 days, with another 2-3 days typically required for image and data analysis. PMID:23680982

  17. BACOM2.0 facilitates absolute normalization and quantification of somatic copy number alterations in heterogeneous tumor

    NASA Astrophysics Data System (ADS)

    Fu, Yi; Yu, Guoqiang; Levine, Douglas A.; Wang, Niya; Shih, Ie-Ming; Zhang, Zhen; Clarke, Robert; Wang, Yue

    2015-09-01

    Most published copy number datasets on solid tumors were obtained from specimens comprised of mixed cell populations, for which the varying tumor-stroma proportions are unknown or unreported. The inability to correct for signal mixing represents a major limitation on the use of these datasets for subsequent analyses, such as discerning deletion types or detecting driver aberrations. We describe the BACOM2.0 method with enhanced accuracy and functionality to normalize copy number signals, detect deletion types, estimate tumor purity, quantify true copy numbers, and calculate average-ploidy value. While BACOM has been validated and used with promising results, subsequent BACOM analysis of the TCGA ovarian cancer dataset found that the estimated average tumor purity was lower than expected. In this report, we first show that this lowered estimate of tumor purity is the combined result of imprecise signal normalization and parameter estimation. Then, we describe effective allele-specific absolute normalization and quantification methods that can enhance BACOM applications in many biological contexts while in the presence of various confounders. Finally, we discuss the advantages of BACOM in relation to alternative approaches. Here we detail this revised computational approach, BACOM2.0, and validate its performance in real and simulated datasets.

  18. New insights into mitogenomic phylogeny and copy number in eight indigenous sheep populations based on the ATP synthase and cytochrome c oxidase genes.

    PubMed

    Xiao, P; Niu, L L; Zhao, Q J; Chen, X Y; Wang, L J; Li, L; Zhang, H P; Guo, J Z; Xu, H Y; Zhong, T

    2017-11-16

    The origins and phylogeny of different sheep breeds has been widely studied using polymorphisms within the mitochondrial hypervariable region. However, little is known about the mitochondrial DNA (mtDNA) content and phylogeny based on mtDNA protein-coding genes. In this study, we assessed the phylogeny and copy number of the mtDNA in eight indigenous (population size, n=184) and three introduced (n=66) sheep breeds in China based on five mitochondrial coding genes (COX1, COX2, ATP8, ATP6 and COX3). The mean haplotype and nucleotide diversities were 0.944 and 0.00322, respectively. We identified a correlation between the lineages distribution and the genetic distance, whereby Valley-type Tibetan sheep had a closer genetic relationship with introduced breeds (Dorper, Poll Dorset and Suffolk) than with other indigenous breeds. Similarly, the Median-joining profile of haplotypes revealed the distribution of clusters according to genetic differences. Moreover, copy number analysis based on the five mitochondrial coding genes was affected by the genetic distance combining with genetic phylogeny; we also identified obvious non-synonymous mutations in ATP6 between the different levels of copy number expressions. These results imply that differences in mitogenomic compositions resulting from geographical separation lead to differences in mitochondrial function.

  19. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders.

    PubMed

    Carpenter, Danielle; Walker, Susan; Prescott, Natalie; Schalkwijk, Joost; Armour, John Al

    2011-08-18

    Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion.

  20. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders

    PubMed Central

    2011-01-01

    Background Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. Results We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Conclusions Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion. PMID:21851606

  1. Mitochondrial DNA copy number in peripheral blood cell and hypertension risk among mining workers: a case-control study in Chinese coal miners.

    PubMed

    Lei, L; Guo, J; Shi, X; Zhang, G; Kang, H; Sun, C; Huang, J; Wang, T

    2017-09-01

    Alteration of mitochondrial DNA (mtDNA) copy number, which reflects oxidant-induced cell damage, has been observed in a wide range of human diseases. However, whether it correlates with hypertension has not been elucidated. We aimed to explore the association between mtDNA copy number and the risk of hypertension in Chinese coal miners. A case-control study was performed with 378 hypertension patients and 325 healthy controls in a large coal mining group located in North China. Face-to-face interviews were conducted by trained staffs with necessary medical knowledge. The mtDNA copy number was measured by a quantitative real-time PCR assay using DNA extracted from peripheral blood. No significant differences in mtDNA copy number were observed between hypertension patients and healthy controls. However, in both case and control groups, the mtDNA copy number was statistically significantly lower in the elder population (≥45 years old) compared with the younger subjects (<45 years old; 7.17 vs 6.64, P=0.005 and 7.21 vs 6.84, P=0.036). A significantly higher mtDNA copy number could be found in hypertension patients consuming alcohol regularly compared with no alcohol consumption patients (7.09 vs 6.69); mtDNA copy number was also positively correlated with age and alcohol consumption. Hypertension was found significantly correlated with factors such as age, work duration, monthly family income and drinking status. Our results suggest that the mtDNA copy number is not associated with hypertension in coal miners.

  2. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes

    PubMed Central

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-01-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus. PMID:24975239

  3. Short interspersed CAN SINE elements as prognostic markers in canine mammary neoplasia.

    PubMed

    Gelaleti, Gabriela B; Granzotto, Adriana; Leonel, Camila; Jardim, Bruna V; Moschetta, Marina G; Carareto, Claudia M A; Zuccari, Debora Ap P C

    2014-01-01

    The genome of mammals is characterized by a large number of non-LTR retrotransposons, and among them, the CAN SINEs are characteristics of the canine species. Small amounts of DNA freely circulate in normal blood serum and high amounts are found in human patients with cancer, characterizing it as a candidate tumor-biomarker. The aim of this study was to estimate, through its absolute expression, the number of copies of CAN SINE sequences present in free circulating DNA of female dogs with mammary cancer, in order to correlate with the clinical and pathological characteristics and the follow-up period. The copy number of CAN SINE sequences was estimated by qPCR in 28 female dogs with mammary neoplasia. The univariate analysis showed an increased number of copies in female dogs with mammary tumor in female dogs >10 years old (p=0.02) and tumor time >18 months (p<0.05). The Kaplan-Meier test demonstrated a negative correlation between an increased number of copies and survival time (p=0.03). High amounts of CAN SINE fragments can be good markers for the detection of tumor DNA in blood and may characterize it as a marker of poor prognosis, being related to female dogs with shorter survival times. This estimate can be used as a prognostic marker in non-invasive breast cancer research and is useful in predicting tumor progression and patient monitoring.

  4. Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis.

    PubMed

    Salati, Simona; Zini, Roberta; Nuzzo, Simona; Guglielmelli, Paola; Pennucci, Valentina; Prudente, Zelia; Ruberti, Samantha; Rontauroli, Sebastiano; Norfo, Ruggiero; Bianchi, Elisa; Bogani, Costanza; Rotunno, Giada; Fanelli, Tiziana; Mannarelli, Carmela; Rosti, Vittorio; Salmoiraghi, Silvia; Pietra, Daniela; Ferrari, Sergio; Barosi, Giovanni; Rambaldi, Alessandro; Cazzola, Mario; Bicciato, Silvio; Tagliafico, Enrico; Vannucchi, Alessandro M; Manfredini, Rossella

    2016-04-01

    Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients. © 2015 UICC.

  5. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma

    PubMed Central

    Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-01-01

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations. PMID:28533481

  6. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma.

    PubMed

    Wu, Ren-Chin; Chao, An-Shine; Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-07-18

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations.

  7. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance

    PubMed Central

    Roh, Whijae; Chen, Pei-Ling; Reuben, Alexandre; Spencer, Christine N.; Prieto, Peter A.; Miller, John P.; Gopalakrishnan, Vancheswaran; Wang, Feng; Cooper, Zachary A.; Reddy, Sangeetha M.; Gumbs, Curtis; Little, Latasha; Chang, Qing; Chen, Wei-Shen; Wani, Khalida; Petaccia De Macedo, Mariana; Chen, Eveline; Austin-Breneman, Jacob L.; Jiang, Hong; Roszik, Jason; Tetzlaff, Michael T.; Davies, Michael A.; Gershenwald, Jeffrey E.; Tawbi, Hussein; Lazar, Alexander J.; Hwu, Patrick; Hwu, Wen-Jen; Diab, Adi; Glitza, Isabella C.; Patel, Sapna P.; Woodman, Scott E.; Amaria, Rodabe N.; Prieto, Victor G.; Hu, Jianhua; Sharma, Padmanee; Allison, James P.; Chin, Lynda; Zhang, Jianhua; Wargo, Jennifer A.; Futreal, P. Andrew

    2018-01-01

    Immune checkpoint blockade produces clinical benefit in many patients. However better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen-4 (CTLA-4) followed by programmed death receptor-1 (PD-1), and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T-cell receptor sequencing (TCR-seq) and whole exome sequencing (WES) within the same cohort, and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of copy number alterations identified a higher burden of copy number loss in non-responders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was non-redundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy. PMID:28251903

  8. Comparison of medical students' learning approaches between electronic and hard copy team-based learning.

    PubMed

    Sharaf, Fawzy; Alnohair, Sultan

    2017-01-01

    To compare the students' perception of team-based learning (TBL): The paper (hard copy) compared with the e-copy (electronic copy) in the family medicine course of the fifth year medical students, Qassim University College of Medicine. A cross-sectional study was conducted during the family medicine course in 2015-2016 to compare the hard copy and the e-copy TBL sessions. We used Google drive to distribute, collect and analyze the questionnaire. The results of the e-copy TBL are shown and displayed directly with each session to the students, which was not the same as practiced with hard copy. We used also SPSS (version 17 for Windows) for more statistical analysis. The total number of respondents of students in each was 96; a phase of TBL phase 1 (hard copy) and phase 2 (e-copy). Male were 64 (66.7%) and females 32 (33.3%). The first three knowledge questions showed no difference between the mean score between paper and e-copy TBL, but of the perception questions showed a significant difference between the paper and e-copy TBL. The results of the survey showed that the students prefer e-copy TBL as a course format, as it was an attraction for most of the students and making them even more successful in the key exam and e-copy TBL develop the skills needed to work productively in task-groups.

  9. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio.

    PubMed

    Minamoto, Toshifumi; Uchii, Kimiko; Takahara, Teruhiko; Kitayoshi, Takumi; Tsuji, Satsuki; Yamanaka, Hiroki; Doi, Hideyuki

    2017-03-01

    The recently developed environmental DNA (eDNA) analysis has been used to estimate the distribution of aquatic vertebrates by using mitochondrial DNA (mtDNA) as a genetic marker. However, mtDNA markers have certain drawbacks such as variable copy number and maternal inheritance. In this study, we investigated the potential of using nuclear DNA (ncDNA) as a more reliable genetic marker for eDNA analysis by using common carp (Cyprinus carpio). We measured the copy numbers of cytochrome b (CytB) gene region of mtDNA and internal transcribed spacer 1 (ITS1) region of ribosomal DNA of ncDNA in various carp tissues and then compared the detectability of these markers in eDNA samples. In the DNA extracted from the brain and gill tissues and intestinal contents, CytB was detected at 95.1 ± 10.7 (mean ± 1 standard error), 29.7 ± 1.59 and 24.0 ± 4.33 copies per cell, respectively, and ITS1 was detected at 1760 ± 343, 2880 ± 503 and 1910 ± 352 copies per cell, respectively. In the eDNA samples from mesocosm, pond and lake water, the copy numbers of ITS1 were about 160, 300 and 150 times higher than those of CytB, respectively. The minimum volume of pond water required for quantification was 33 and 100 mL for ITS1 and CytB, respectively. These results suggested that ITS1 is a more sensitive genetic marker for eDNA studies of C. carpio. © 2016 John Wiley & Sons Ltd.

  10. Integrative pipeline for profiling DNA copy number and inferring tumor phylogeny.

    PubMed

    Urrutia, Eugene; Chen, Hao; Zhou, Zilu; Zhang, Nancy R; Jiang, Yuchao

    2018-06-15

    Copy number variation is an important and abundant source of variation in the human genome, which has been associated with a number of diseases, especially cancer. Massively parallel next-generation sequencing allows copy number profiling with fine resolution. Such efforts, however, have met with mixed successes, with setbacks arising partly from the lack of reliable analytical methods to meet the diverse and unique challenges arising from the myriad experimental designs and study goals in genetic studies. In cancer genomics, detection of somatic copy number changes and profiling of allele-specific copy number (ASCN) are complicated by experimental biases and artifacts as well as normal cell contamination and cancer subclone admixture. Furthermore, careful statistical modeling is warranted to reconstruct tumor phylogeny by both somatic ASCN changes and single nucleotide variants. Here we describe a flexible computational pipeline, MARATHON, which integrates multiple related statistical software for copy number profiling and downstream analyses in disease genetic studies. MARATHON is publicly available at https://github.com/yuchaojiang/MARATHON. Supplementary data are available at Bioinformatics online.

  11. Karyotype versus microarray testing for genetic abnormalities after stillbirth.

    PubMed

    Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn

    2012-12-06

    Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).

  12. Survival differences of CIMP subtypes integrated with CNA information in human breast cancer.

    PubMed

    Wang, Huihan; Yan, Weili; Zhang, Shumei; Gu, Yue; Wang, Yihan; Wei, Yanjun; Liu, Hongbo; Wang, Fang; Wu, Qiong; Zhang, Yan

    2017-07-25

    CpG island methylator phenotype of breast cancer is associated with widespread aberrant methylation at specified CpG islands and distinct patient outcomes. However, the influence of copy number contributing to the prognosis of tumors with different CpG island methylator phenotypes is still unclear. We analyzed both genetic (copy number) and epigenetic alterations in 765 breast cancers from The Cancer Genome Atlas data portal and got a panel of 15 biomarkers for copy number and methylation status evaluation. The gene panel identified two groups corresponding to distinct copy number profiles. In status of mere-loss copy number, patients were faced with a greater risk if they presented a higher CpG islands methylation pattern in biomarker panels. But for samples presenting merely-gained copy number, higher methylation level of CpG islands was associated with improved viability. In all, the integration of copy number alteration and methylation information enhanced the classification power on prognosis. Moreover, we found the molecular subtypes of breast cancer presented different distributions in two CpG island methylation phenotypes. Generated by the same set of human methylation 450K data, additional copy number information could provide insights into survival prediction of cancers with less heterogeneity and might help to determine the biomarkers for diagnosis and treatment for breast cancer patients in a more personalized approach.

  13. Survival differences of CIMP subtypes integrated with CNA information in human breast cancer

    PubMed Central

    Wang, Huihan; Yan, Weili; Zhang, Shumei; Gu, Yue; Wang, Yihan; Wei, Yanjun; Liu, Hongbo; Wang, Fang; Wu, Qiong; Zhang, Yan

    2017-01-01

    CpG island methylator phenotype of breast cancer is associated with widespread aberrant methylation at specified CpG islands and distinct patient outcomes. However, the influence of copy number contributing to the prognosis of tumors with different CpG island methylator phenotypes is still unclear. We analyzed both genetic (copy number) and epigenetic alterations in 765 breast cancers from The Cancer Genome Atlas data portal and got a panel of 15 biomarkers for copy number and methylation status evaluation. The gene panel identified two groups corresponding to distinct copy number profiles. In status of mere-loss copy number, patients were faced with a greater risk if they presented a higher CpG islands methylation pattern in biomarker panels. But for samples presenting merely-gained copy number, higher methylation level of CpG islands was associated with improved viability. In all, the integration of copy number alteration and methylation information enhanced the classification power on prognosis. Moreover, we found the molecular subtypes of breast cancer presented different distributions in two CpG island methylation phenotypes. Generated by the same set of human methylation 450K data, additional copy number information could provide insights into survival prediction of cancers with less heterogeneity and might help to determine the biomarkers for diagnosis and treatment for breast cancer patients in a more personalized approach. PMID:28415743

  14. Translational arrest due to cytoplasmic redox stress delays adaptation to growth on methanol and heterologous protein expression in a typical fed-batch culture of Pichia pastoris.

    PubMed

    Edwards-Jones, Bryn; Aw, Rochelle; Barton, Geraint R; Tredwell, Gregory D; Bundy, Jacob G; Leak, David J

    2015-01-01

    We have followed a typical fed-batch induction regime for heterologous protein production under the control of the AOX1 promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation. Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR.

  15. A Simulation Model for Purchasing Duplicate Copies in a Library

    ERIC Educational Resources Information Center

    Arms, W. Y.; Walter, T. P.

    1974-01-01

    A method of estimating the number of duplicate copies of books needed based on a computer simulation which takes into account number of copies available, number of loans, total underlying demand, satisfaction level, percentage time on shelf. (LS)

  16. Inferring mechanisms of copy number change from haplotype structures at the human DEFA1A3 locus.

    PubMed

    Black, Holly A; Khan, Fayeza F; Tyson, Jess; Al Armour, John

    2014-07-21

    The determination of structural haplotypes at copy number variable regions can indicate the mechanisms responsible for changes in copy number, as well as explain the relationship between gene copy number and expression. However, obtaining spatial information at regions displaying extensive copy number variation, such as the DEFA1A3 locus, is complex, because of the difficulty in the phasing and assembly of these regions. The DEFA1A3 locus is intriguing in that it falls within a region of high linkage disequilibrium, despite its high variability in copy number (n = 3-16); hence, the mechanisms responsible for changes in copy number at this locus are unclear. In this study, a region flanking the DEFA1A3 locus was sequenced across 120 independent haplotypes with European ancestry, identifying five common classes of DEFA1A3 haplotype. Assigning DEFA1A3 class to haplotypes within the 1000 Genomes project highlights a significant difference in DEFA1A3 class frequencies between populations with different ancestry. The features of each DEFA1A3 class, for example, the associated DEFA1A3 copy numbers, were initially assessed in a European cohort (n = 599) and replicated in the 1000 Genomes samples, showing within-class similarity, but between-class and between-population differences in the features of the DEFA1A3 locus. Emulsion haplotype fusion-PCR was used to generate 61 structural haplotypes at the DEFA1A3 locus, showing a high within-class similarity in structure. Structural haplotypes across the DEFA1A3 locus indicate that intra-allelic rearrangement is the predominant mechanism responsible for changes in DEFA1A3 copy number, explaining the conservation of linkage disequilibrium across the locus. The identification of common structural haplotypes at the DEFA1A3 locus could aid studies into how DEFA1A3 copy number influences expression, which is currently unclear.

  17. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat.

    PubMed

    Würschum, Tobias; Boeven, Philipp H G; Langer, Simon M; Longin, C Friedrich H; Leiser, Willmar L

    2015-07-29

    Copy number variation was found to be a frequent type of DNA polymorphism in the human genome often associated with diseases but its importance in crops and the effects on agronomic traits are still largely unknown. Here, we employed a large worldwide panel of 1110 winter wheat varieties to assess the frequency and the geographic distribution of copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci as well as their effects on flowering time under field conditions. We identified a novel four copy variant of Vrn-A1 and based on the phylogenetic relationships among the lines show that the higher copy variants at both loci are likely to have arisen independently multiple times. In addition, we found that the frequency of the different copy number variants at both loci reflects the environmental conditions in the varieties' region of origin and based on multi-location field trials show that Ppd-B1 copy number has a substantial effect on the fine-tuning of flowering time. In conclusion, our results show the importance of copy number variation at Ppd-B1 and Vrn-A1 for the global adaptation of wheat making it a key factor for wheat success in a broad range of environments and in a wider context substantiate the significant role of copy number variation in crops.

  18. Copy number variation in ALOX5 and PTGER1 is associated with NSAIDs-induced urticaria and/or angioedema.

    PubMed

    Plaza-Serón, María Del Carmen; Ayuso, Pedro; Pérez-Sánchez, Natalia; Doña, Inmaculada; Blanca-Lopez, Natalia; Flores, Carlos; Galindo, Luisa; Molina, Ana; Perkins, James R; Cornejo-García, Jose A; Agúndez, Jose A; García-Martín, Elena; Campo, Paloma; Canto, Gabriela; Blanca, Miguel

    2016-06-01

    Cross-intolerance to NSAIDs is a class of drug hypersensitivity reaction, of which NSAIDs-induced urticaria and/or angioedema (NIUA) are the most frequent clinical entities. They are considered to involve dysregulation of the arachidonic acid pathway; however, this mechanism has not been confirmed for NIUA. In this work, we assessed copy number variations (CNVs) in eight of the main genes involved in the arachidonic acid pathway and their possible genetic association with NIUA. CNVs in ALOX5, LTC4S, PTGS1, PTGS2, PTGER1, PTGER2, PTGER3, and PTGER4 were analyzed using TaqMan copy number assays. Genotyping was carried out by real-time quantitative PCR. Individual genotypes were assigned using the CopyCaller Software. Statistical analysis was carried out using GraphPad prism 5, PLINK, EPIDAT, and R version 3.1.2. A total of 151 cases and 139 controls were analyzed during the discovery phase and 148 cases and 140 controls were used for replication. CNVs in open reading frames were found for ALOX5, PTGER1, PTGER3, and PTGER4. Statistically significant differences in the CNV frequency between NIUA and controls were found for ALOX5 (Pc=0.017) and PTGER1 (Pc=1.22E-04). This study represents the first analysis showing an association between CNVs in exonic regions of ALOX5 and PTGER1 and NIUA. This suggests a role of CNVs in this pathology that should be explored further.

  19. Length Variation in Mitochondrial DNA of the Minnow Cyprinella Spiloptera

    PubMed Central

    Broughton, R. E.; Dowling, T. E.

    1994-01-01

    Length differences in animal mitochondrial DNA (mtDNA) are common, frequently due to variation in copy number of direct tandem duplications. While such duplications appear to form without great difficulty in some taxonomic groups, they appear to be relatively short-lived, as typical duplication products are geographically restricted within species and infrequently shared among species. To better understand such length variation, we have studied a tandem and direct duplication of approximately 260 bp in the control region of the cyprinid fish, Cyprinella spiloptera. Restriction site analysis of 38 individuals was used to characterize population structure and the distribution of variation in repeat copy number. This revealed two length variants, including individuals with two or three copies of the repeat, and little geographic structure among populations. No standard length (single copy) genomes were found and heteroplasmy, a common feature of length variation in other taxa, was absent. Nucleotide sequence of tandem duplications and flanking regions localized duplication junctions in the phenylalanine tRNA and near the origin of replication. The locations of these junctions and the stability of folded repeat copies support the hypothesized importance of secondary structures in models of duplication formation. PMID:8001785

  20. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes.

    PubMed

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-10-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus. © 2014 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  1. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs.

    PubMed

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-04-02

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.

  2. ALK gene copy number gain and immunohistochemical expression status using three antibodies in neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2016-03-17

    Anaplastic lymphoma kinase (ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC positive rate in ALK1 and 5A4 antibodies (p= < 0.001 and 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  3. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  4. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins.

    PubMed

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra; Vitiello, Michael V; Bamshad, Michael; Noonan, Carolyn; Christiansen, Lene; Christensen, Kaare; Watson, Nathaniel F

    2015-10-01

    Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins. Academic clinical research center. 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a "normal" (7-9 h/24) and "short" (< 7 h/24) sleeping twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data structure to assess within-pair effects of sleep duration on mtDNA copy number. Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P < 0.05) and sleep efficiency (β = 0.51; 95% CI 0.06, 0.95; P < 0.05) were significantly associated with reduced mtDNA copy number within twin pairs. Thus every 1-minute decrease in actigraphy-defined sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated with a decrease in mtDNA copy number of 0.51. Reduced sleep duration and sleep efficiency were associated with reduced mitochondrial DNA copy number in sleep duration discordant monozygotic twins offering a potential mechanism whereby short sleep impairs health and longevity through mitochondrial stress. © 2015 Associated Professional Sleep Societies, LLC.

  5. DNA replication stress restricts ribosomal DNA copy number.

    PubMed

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  6. Chromosomal microarray analysis as the first-tier test for the identification of pathogenic copy number variants in chromosome 9 pericentric regions and its challenge.

    PubMed

    Wang, Jia-Chi; Boyar, Fatih Z

    2016-01-01

    Chromosomal microarray analysis (CMA) has been recommended and practiced routinely in the large reference laboratories of U.S.A. as the first-tier test for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Using CMA as a diagnostic tool and without a routine setting of fluorescence in situ hybridization with labeled bacterial artificial chromosome probes (BAC-FISH) in the large reference laboratories becomes a challenge in the characterization of chromosome 9 pericentric region. This region has a very complex genomic structure and contains a variety of heterochromatic and euchromatic polymorphic variants. These variants were usually studied by G-banding, C-banding and BAC-FISH analysis. Chromosomal microarray analysis (CMA) was not recommended since it may lead to false positive results. Here, we presented a cohort of four cases, in which high-resolution CMA was used as the first-tier test or simultaneously with G-banding analysis on the proband to identify pathogenic copy number variants (CNVs) in the whole genome. CMA revealed large pathogenic CNVs from chromosome 9 in 3 cases which also revealed different G-banding patterns between the two chromosome 9 homologues. Although we demonstrated that high-resolution CMA played an important role in the identification of pathogenic copy number variants in chromosome 9 pericentric regions, the lack of BAC-FISH analysis or other useful tools renders significant challenges in the characterization of chromosome 9 pericentric regions. None; it is not a clinical trial, and the cases were retrospectively collected and analyzed.

  7. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR.

    PubMed

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future.

  8. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR

    PubMed Central

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future. PMID:28085908

  9. Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series.

    PubMed

    Shwan, Nzar A A; Louzada, Sandra; Yang, Fengtang; Armour, John A L

    2017-05-01

    The human amylase gene cluster includes the human salivary (AMY1) and pancreatic amylase genes (AMY2A and AMY2B), and is a highly variable and dynamic region of the genome. Copy number variation (CNV) of AMY1 has been implicated in human dietary adaptation, and in population association with obesity, but neither of these findings has been independently replicated. Despite these functional implications, the structural genomic basis of CNV has only been defined in detail very recently. In this work, we use high-resolution analysis of copy number, and analysis of segregation in trios, to define new, independent allelic series of amylase CNVs in sub-Saharan Africans, including a series of higher-order expansions of a unit consisting of one copy each of AMY1, AMY2A, and AMY2B. We use fiber-FISH (fluorescence in situ hybridization) to define unexpected complexity in the accompanying rearrangements. These findings demonstrate recurrent involvement of the amylase gene region in genomic instability, involving at least five independent rearrangements of the pancreatic amylase genes (AMY2A and AMY2B). Structural features shared by fundamentally distinct lineages strongly suggest that the common ancestral state for the human amylase cluster contained more than one, and probably three, copies of AMY1. © 2017 WILEY PERIODICALS, INC.

  10. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds

    PubMed Central

    Verma, Vikash; Mallik, Leena; Hariadi, Rizal F.; Sivaramakrishnan, Sivaraj; Skiniotis, Georgios; Joglekar, Ajit P.

    2015-01-01

    DNA origami provides a versatile platform for conducting ‘architecture-function’ analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis. PMID:26348722

  11. Hacking DNA copy number for circuit engineering.

    PubMed

    Wu, Feilun; You, Lingchong

    2017-07-27

    DNA copy number represents an essential parameter in the dynamics of synthetic gene circuits but typically is not explicitly considered. A new study demonstrates how dynamic control of DNA copy number can serve as an effective strategy to program robust oscillations in gene expression circuits.

  12. 22 CFR 1429.25 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Number of copies. 1429.25 Section 1429.25 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL... AND GENERAL REQUIREMENTS General Requirements § 1429.25 Number of copies. Unless otherwise provided by...

  13. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer

    PubMed Central

    Mamlouk, Soulafa; Childs, Liam Harold; Aust, Daniela; Heim, Daniel; Melching, Friederike; Oliveira, Cristiano; Wolf, Thomas; Durek, Pawel; Schumacher, Dirk; Bläker, Hendrik; von Winterfeld, Moritz; Gastl, Bastian; Möhr, Kerstin; Menne, Andrea; Zeugner, Silke; Redmer, Torben; Lenze, Dido; Tierling, Sascha; Möbs, Markus; Weichert, Wilko; Folprecht, Gunnar; Blanc, Eric; Beule, Dieter; Schäfer, Reinhold; Morkel, Markus; Klauschen, Frederick; Leser, Ulf; Sers, Christine

    2017-01-01

    Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC. PMID:28120820

  14. Women's experiences receiving abnormal prenatal chromosomal microarray testing results.

    PubMed

    Bernhardt, Barbara A; Soucier, Danielle; Hanson, Karen; Savage, Melissa S; Jackson, Laird; Wapner, Ronald J

    2013-02-01

    Genomic microarrays can detect copy-number variants not detectable by conventional cytogenetics. This technology is diffusing rapidly into prenatal settings even though the clinical implications of many copy-number variants are currently unknown. We conducted a qualitative pilot study to explore the experiences of women receiving abnormal results from prenatal microarray testing performed in a research setting. Participants were a subset of women participating in a multicenter prospective study "Prenatal Cytogenetic Diagnosis by Array-based Copy Number Analysis." Telephone interviews were conducted with 23 women receiving abnormal prenatal microarray results. We found that five key elements dominated the experiences of women who had received abnormal prenatal microarray results: an offer too good to pass up, blindsided by the results, uncertainty and unquantifiable risks, need for support, and toxic knowledge. As prenatal microarray testing is increasingly used, uncertain findings will be common, resulting in greater need for careful pre- and posttest counseling, and more education of and resources for providers so they can adequately support the women who are undergoing testing.

  15. A retrospective analysis of RET translocation, gene copy number gain and expression in NSCLC patients treated with vandetanib in four randomized Phase III studies.

    PubMed

    Platt, Adam; Morten, John; Ji, Qunsheng; Elvin, Paul; Womack, Chris; Su, Xinying; Donald, Emma; Gray, Neil; Read, Jessica; Bigley, Graham; Blockley, Laura; Cresswell, Carl; Dale, Angela; Davies, Amanda; Zhang, Tianwei; Fan, Shuqiong; Fu, Haihua; Gladwin, Amanda; Harrod, Grace; Stevens, James; Williams, Victoria; Ye, Qingqing; Zheng, Li; de Boer, Richard; Herbst, Roy S; Lee, Jin-Soo; Vasselli, James

    2015-03-23

    To determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment. Archival tumor samples from the ZODIAC ( NCT00312377 , vandetanib ± docetaxel), ZEAL ( NCT00418886 , vandetanib ± pemetrexed), ZEPHYR ( NCT00404924 , vandetanib vs placebo) and ZEST ( NCT00364351 , vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients. The prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3-1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4-6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression. We have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with efficacy in the RET rearrangement NSCLC subpopulation. Randomized Phase III clinical trials ( NCT00312377 , ZODIAC; NCT00418886 , ZEAL; NCT00364351 , ZEST; NCT00404924 , ZEPHYR).

  16. Age Differences of Salivary Alpha-Amylase Levels of Basal and Acute Responses to Citric Acid Stimulation Between Chinese Children and Adults.

    PubMed

    Yang, Ze-Min; Chen, Long-Hui; Zhang, Min; Lin, Jing; Zhang, Jie; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    It remains unclear how salivary alpha-amylase (sAA) levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1) copy number and protein expression (glycosylated and non-glycosylated) in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount) in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number × total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount) and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number × total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount, and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults.

  17. Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer

    PubMed Central

    Gao, Shiwu; Yang, Yingying; Wang, Chunfeng; Guo, Jinlong; Zhou, Dinggang; Wu, Qibin; Su, Yachun; Xu, Liping

    2016-01-01

    We developed sugarcane plants with improved resistance to the sugarcane borer, Diatraea saccharalis (F). An expression vector pGcry1Ac0229, harboring the cry1Ac gene and the selectable marker gene, bar, was constructed. This construct was introduced into the sugarcane cultivar FN15 by particle bombardment. Transformed plantlets were identified after selection with Phosphinothricin (PPT) and Basta. Plantlets were then screened by PCR based on the presence of cry1Ac and 14 cry1Ac positive plantlets were identified. Real-time quantitative PCR (RT-qPCR) revealed that the copy number of cry1Ac gene in the transgenic lines varied from 1 to 148. ELISA analysis showed that Cry1Ac protein levels in 7 transgenic lines ranged from 0.85 μg/FWg to 70.92 μg/FWg in leaves and 0.04 μg/FWg to 7.22 μg/FWg in stems, and negatively correlated to the rate of insect damage that ranged from 36.67% to 13.33%, respectively. Agronomic traits of six transgenic sugarcane lines with medium copy numbers were similar to the non-transgenic parental line. However, phenotype was poor in lines with high or low copy numbers. Compared to the non-transgenic control plants, all transgenic lines with medium copy numbers had relatively equal or lower sucrose yield and significantly improved sugarcane borer resistance, which lowered susceptibility to damage by insects. This suggests that the transgenic sugarcane lines harboring medium copy numbers of the cry1Ac gene may have significantly higher resistance to sugarcane borer but the sugarcane yield in these lines is similar to the non-transgenic control thus making them superior to the control lines. PMID:27093437

  18. Age Differences of Salivary Alpha-Amylase Levels of Basal and Acute Responses to Citric Acid Stimulation Between Chinese Children and Adults

    PubMed Central

    Yang, Ze-Min; Chen, Long-Hui; Zhang, Min; Lin, Jing; Zhang, Jie; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    It remains unclear how salivary alpha-amylase (sAA) levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1) copy number and protein expression (glycosylated and non-glycosylated) in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount) in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number × total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount) and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number × total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount, and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults. PMID:26635626

  19. Complement component 4 copy number variation and CYP21A2 genotype associations in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.

    PubMed

    Chen, Wuyan; Xu, Zhi; Nishitani, Miki; Van Ryzin, Carol; McDonnell, Nazli B; Merke, Deborah P

    2012-12-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is an autosomal recessive disorder of cortisol biosynthesis caused by CYP21A2 mutations. An increase in gene copy number variation (CNV) exists at the CYP21A2 locus. CNV of C4, a neighboring gene that encodes complement component 4, is associated with autoimmune disease susceptibility. In this study, we performed comprehensive genetic analysis of the RP-C4-CYP21-TNX (RCCX) region in 127 unrelated 21-OHD patients (100 classic, 27 nonclassic). C4 copy number was determined by Southern blot. C4 CNV and serum C4 levels were evaluated in relation to CYP21A2 mutations and relevant phenotypes. We found that the most common CYP21A2 mutation associated with the nonclassic form of CAH, V281L, was associated with high C4 copy number (p = 7.13 × 10(-16)). Large CYP21A2 deletion, a common mutation associated with the classic form of CAH, was associated with low C4 copy number (p = 1.61 × 10(-14)). Monomodular RCCX with a short C4 gene, a risk factor for autoimmune disease, was significantly less frequent in CAH patients compared to population estimates (2.8 vs. 10.6 %; p = 1.08 × 10(-4)). In conclusion, CAH patients have increased C4 CNV, with mutation-specific associations that may be protective for autoimmune disease. The study of CYP21A2 in relation to neighboring genes provides insight into the genetics of CNV hotspots, an important determinant of human health.

  20. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    PubMed

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all P< 0.05]. The copy number of mtDNA and the mitochondrial membrane potential in classⅠ frozen embryo group were significantly higher than those in classⅡ frozen embryo group (both P< 0.05). Conclusion: The mtDNA copy number and the mitochondrial membrane potential of embryos of the better quality embryo are higher.

  1. Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice.

    PubMed

    Bruno, D L; Ganesamoorthy, D; Schoumans, J; Bankier, A; Coman, D; Delatycki, M; Gardner, R J M; Hunter, M; James, P A; Kannu, P; McGillivray, G; Pachter, N; Peters, H; Rieubland, C; Savarirayan, R; Scheffer, I E; Sheffield, L; Tan, T; White, S M; Yeung, A; Bowman, Z; Ngo, C; Choy, K W; Cacheux, V; Wong, L; Amor, D J; Slater, H R

    2009-02-01

    Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.

  2. 14 CFR 221.92 - Number of copies required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Number of copies required. 221.92 Section 221.92 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Filing Tariff Publications With Department § 221.92 Number of copies...

  3. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    PubMed Central

    2012-01-01

    Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1 protein overexpression was 68% in Asian and 70% in Caucasian. Conclusions Our study provides an invaluable database revealing common and differential imbalance regions at specific chromosomes among Asian and Caucasian lung cancer patients. Four validation methods confirmed our database, which would help in further studies on the mechanism of lung tumorigenesis. PMID:22691236

  4. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis.

    PubMed

    Soneson, Charlotte; Lilljebjörn, Henrik; Fioretos, Thoas; Fontes, Magnus

    2010-04-15

    With the rapid development of new genetic measurement methods, several types of genetic alterations can be quantified in a high-throughput manner. While the initial focus has been on investigating each data set separately, there is an increasing interest in studying the correlation structure between two or more data sets. Multivariate methods based on Canonical Correlation Analysis (CCA) have been proposed for integrating paired genetic data sets. The high dimensionality of microarray data imposes computational difficulties, which have been addressed for instance by studying the covariance structure of the data, or by reducing the number of variables prior to applying the CCA. In this work, we propose a new method for analyzing high-dimensional paired genetic data sets, which mainly emphasizes the correlation structure and still permits efficient application to very large data sets. The method is implemented by translating a regularized CCA to its dual form, where the computational complexity depends mainly on the number of samples instead of the number of variables. The optimal regularization parameters are chosen by cross-validation. We apply the regularized dual CCA, as well as a classical CCA preceded by a dimension-reducing Principal Components Analysis (PCA), to a paired data set of gene expression changes and copy number alterations in leukemia. Using the correlation-maximizing methods, regularized dual CCA and PCA+CCA, we show that without pre-selection of known disease-relevant genes, and without using information about clinical class membership, an exploratory analysis singles out two patient groups, corresponding to well-known leukemia subtypes. Furthermore, the variables showing the highest relevance to the extracted features agree with previous biological knowledge concerning copy number alterations and gene expression changes in these subtypes. Finally, the correlation-maximizing methods are shown to yield results which are more biologically interpretable than those resulting from a covariance-maximizing method, and provide different insight compared to when each variable set is studied separately using PCA. We conclude that regularized dual CCA as well as PCA+CCA are useful methods for exploratory analysis of paired genetic data sets, and can be efficiently implemented also when the number of variables is very large.

  5. Population-genetic nature of copy number variations in the human genome.

    PubMed

    Kato, Mamoru; Kawaguchi, Takahisa; Ishikawa, Shumpei; Umeda, Takayoshi; Nakamichi, Reiichiro; Shapero, Michael H; Jones, Keith W; Nakamura, Yusuke; Aburatani, Hiroyuki; Tsunoda, Tatsuhiko

    2010-03-01

    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000-4000 CNVs (4-6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV-SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV-SNP linkage disequilibrium (LD) for 500-900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP-SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs.

  6. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    PubMed Central

    Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo

    2005-01-01

    Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681

  7. Copy Number Variations of TBK1 in Australian Patients With Primary Open-Angle Glaucoma

    PubMed Central

    AWADALLA, MONA S.; FINGERT, JOHN H.; ROOS, BENJAMIN E.; CHEN, SIMON; HOLMES, RICHARD; GRAHAM, STUART L.; CHEHADE, MARK; GALANOPOLOUS, ANNA; RIDGE, BRONWYN; SOUZEAU, EMMANUELLE; ZHOU, TIGER; SIGGS, OWEN M.; HEWITT, ALEX W.; MACKEY, DAVID A.; BURDON, KATHRYN P.; CRAIG, JAMIE E.

    2015-01-01

    PURPOSE To investigate the presence of TBK1 copy number variations in a large, well-characterized Australian cohort of patients with glaucoma comprising both normal-tension glaucoma and high-tension glaucoma cases. DESIGN A retrospective cohort study. METHODS DNA samples from patients with normal-tension glaucoma and high-tension glaucoma and unaffected controls were screened for TBK1 copy number variations using real-time quantitative polymerase chain reaction. Samples with additional copies of the TBK1 gene were further tested using custom comparative genomic hybridization arrays. RESULTS Four out of 334 normal-tension glaucoma cases (1.2%) were found to carry TBK1 copy number variations using quantitative polymerase chain reaction. One extra dose of the TBK1 gene (duplication) was detected in 3 normal-tension glaucoma patients, while 2 extra doses of the gene (triplication) were detected in a fourth normal-tension glaucoma patient. The results were further confirmed by custom comparative genomic hybridization arrays. Further, the TBK1 copy number variation segregated with normal-tension glaucoma in the family members of the probands, showing an autosomal dominant pattern of inheritance. No TBK1 copy number variations were detected in 1045 Australian patients with high-tension glaucoma or in 254 unaffected controls. CONCLUSION We report the presence of TBK1 copy number variations in our Australian normal-tension glaucoma cohort, including the first example of more than 1 extra copy of this gene in glaucoma patients (gene triplication). These results confirm TBK1 to be an important cause of normal-tension glaucoma, but do not suggest common involvement in high-tension glaucoma. PMID:25284765

  8. Getting DNA copy numbers without control samples

    PubMed Central

    2012-01-01

    Background The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias. We propose NSA (Normality Search Algorithm), a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Results Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM), Ovarian, Prostate and Lung Cancer experiments) have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs). These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. Conclusions NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the data. The method is available in the open-source R package NSA, which is an add-on to the aroma.cn framework. http://www.aroma-project.org/addons. PMID:22898240

  9. Loss of function of 1-FEH IIb has more impact on post-harvest inulin degradation in Cichorium intybus than copy number variation of its close paralog 1-FEH IIa

    PubMed Central

    Dauchot, Nicolas; Raulier, Pierre; Maudoux, Olivier; Notté, Christine; Draye, Xavier; Van Cutsem, Pierre

    2015-01-01

    Key Message: The loss of mini-exon 2 in the 1-FEH IIb glycosyl-hydrolase results in a putative non-functional allele. This loss of function has a strong impact on the susceptibility to post-harvest inulin depolymerization. Significant variation of copy number was identified in its close paralog 1-FEH IIa, but no quantitative effect of copy number on carbohydrates-related phenotypes was detected. Inulin polyfructan is the second most abundant storage carbohydrate in flowering plants. After harvest, it is depolymerized by fructan exohydrolases (FEHs) as an adaptive response to end-season cold temperatures. In chicory, the intensity of this depolymerization differs between cultivars but also between individuals within a cultivar. Regarding this phenotypic variability, we recently identified statistically significant associations between inulin degradation and genetic polymorphisms located in three FEHs. We present here new results of a systematic analysis of copy number variation (CNV) in five key members of the chicory (Cichorium intybus) GH32 multigenic family, including three FEH genes and the two inulin biosynthesis genes: 1-SST and 1-FFT. qPCR analysis identified a significant variability of relative copy number only in the 1-FEH IIa gene. However, this CNV had no quantitative effect. Instead, cloning of the full length gDNA of a close paralogous sequence (1-FEH IIb) identified a 1028 bp deletion in lines less susceptible to post-harvest inulin depolymerization. This region comprises a 9 bp mini-exon containing one of the three conserved residues of the active site. This results in a putative non-functional 1-FEH IIb allele and an observed lower inulin depolymerization. Extensive genotyping confirmed that the loss of mini-exon 2 in 1-FEH IIb and the previously identified 47 bp duplication located in the 3′UTR of 1-FEH IIa belong to a single haplotype, both being statistically associated with reduced susceptibility to post-harvest inulin depolymerization. Emergence of these haplotypes is discussed. PMID:26157446

  10. Getting DNA copy numbers without control samples.

    PubMed

    Ortiz-Estevez, Maria; Aramburu, Ander; Rubio, Angel

    2012-08-16

    The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias.We propose NSA (Normality Search Algorithm), a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM), Ovarian, Prostate and Lung Cancer experiments) have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs). These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the data. The method is available in the open-source R package NSA, which is an add-on to the aroma.cn framework. http://www.aroma-project.org/addons.

  11. Association of Higher Defensin β-4 Genomic Copy Numbers with Behçet's Disease in Iraqi Patients.

    PubMed

    Hameed, Ammar F; Jaradat, Sameh; Al-Musawi, Bassam M; Sharquie, Khalifa; Ibrahim, Mazin J; Hayani, Raafa K; Norgauer, Johannes

    2015-11-01

    Behçet's disease (BD) is an immune-mediated small vessel systemic vasculitis. Human β-defensins are antimicrobial peptides associated with many inflammatory diseases and are encoded by the β-defensin family of multiple-copy genes. However, their role in BD necessitates further investigation. The aim of the present study was to investigate the possible association of BD in its various clinical forms with defensin β-4 (DEFB4) genomic copy numbers. This case-control study was conducted from January to September 2011 and included 50 control subjects and 27 unrelated Iraqi BD patients registered at Baghdad Teaching Hospital, Bagdad, Iraq. Copy numbers of the DEFB4 gene were determined using the comparative cycle threshold method by duplex real-time polymerase chain reaction technology at the Department of Dermatology of Jena University Hospital, Jena, Germany. DEFB4 genomic copy numbers were significantly higher in the BD group compared to the control group (P = 0.010). However, no statistically significant association was found between copy numbers and clinical variables within the BD group. The DEFB4 copy number polymorphism may be associated with BD; however, it is not associated with different clinical manifestations of the disease.

  12. Copy number rather than epigenetic alterations are the major dictator of imprinted methylation in tumors.

    PubMed

    Martin-Trujillo, Alex; Vidal, Enrique; Monteagudo-Sa Nchez, Ana; Sanchez-Delgado, Marta; Moran, Sebastian; Hernandez Mora, Jose Ramon; Heyn, Holger; Guitart, Miriam; Esteller, Manel; Monk, David

    2017-09-07

    It has been postulated that imprinting aberrations are common in tumors. To understand the role of imprinting in cancer, we have characterized copy-number and methylation in over 280 cancer cell lines and confirm our observations in primary tumors. Imprinted differentially methylated regions (DMRs) regulate parent-of-origin monoallelic expression of neighboring transcripts in cis. Unlike single-copy CpG islands that may be prone to hypermethylation, imprinted DMRs can either loose or gain methylation during tumorigenesis. Here, we show that methylation profiles at imprinted DMRs often not represent genuine epigenetic changes but simply the accumulation of underlying copy-number aberrations (CNAs), which is independent of the genome methylation state inferred from cancer susceptible loci. Our results reveal that CNAs also influence allelic expression as loci with copy-number neutral loss-of-heterozygosity or amplifications may be expressed from the appropriate parental chromosomes, which is indicative of maintained imprinting, although not observed as a single expression foci by RNA FISH.Altered genomic imprinting is frequently reported in cancer. Here, the authors analyze copy number and methylation in cancer cell lines and primary tumors to show that imprinted methylation profiles represent the accumulation of copy number alteration, rather than epigenetic alterations.

  13. The stable traits of melanoma genetics: an alternate approach to target discovery

    PubMed Central

    2012-01-01

    Background The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number. Results Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including MITF, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis. Conclusions This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy. PMID:22537248

  14. Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer

    PubMed Central

    Forsberg, Lars A.; Rasi, Chiara; Pekar, Gyula; Davies, Hanna; Piotrowski, Arkadiusz; Absher, Devin; Razzaghian, Hamid Reza; Ambicka, Aleksandra; Halaszka, Krzysztof; Przewoźnik, Marcin; Kruczak, Anna; Mandava, Geeta; Pasupulati, Saichand; Hacker, Julia; Prakash, K. Reddy; Dasari, Ravi Chandra; Lau, Joey; Penagos-Tafurt, Nelly; Olofsson, Helena M.; Hallberg, Gunilla; Skotnicki, Piotr; Mituś, Jerzy; Skokowski, Jaroslaw; Jankowski, Michal; Śrutek, Ewa; Zegarski, Wojciech; Tiensuu Janson, Eva; Ryś, Janusz; Tot, Tibor; Dumanski, Jan P.

    2015-01-01

    Sporadic breast cancer (SBC) is a common disease without robust means of early risk prediction in the population. We studied 282 females with SBC, focusing on copy number aberrations in cancer-free breast tissue (uninvolved margin, UM) outside the primary tumor (PT). In total, 1162 UMs (1–14 per breast) were studied. Comparative analysis between UM(s), PT(s), and blood/skin from the same patient as a control is the core of the study design. We identified 108 patients with at least one aberrant UM, representing 38.3% of cases. Gains in gene copy number were the principal type of mutations in microscopically normal breast cells, suggesting that oncogenic activation of genes via increased gene copy number is a predominant mechanism for initiation of SBC pathogenesis. The gain of ERBB2, with overexpression of HER2 protein, was the most common aberration in normal cells. Five additional growth factor receptor genes (EGFR, FGFR1, IGF1R, LIFR, and NGFR) also showed recurrent gains, and these were occasionally present in combination with the gain of ERBB2. All the aberrations found in the normal breast cells were previously described in cancer literature, suggesting their causative, driving role in pathogenesis of SBC. We demonstrate that analysis of normal cells from cancer patients leads to identification of signatures that may increase risk of SBC and our results could influence the choice of surgical intervention to remove all predisposing cells. Early detection of copy number gains suggesting a predisposition toward cancer development, long before detectable tumors are formed, is a key to the anticipated shift into a preventive paradigm of personalized medicine for breast cancer. PMID:26430163

  15. Genetic compendium of 1511 human brains available through the UK Medical Research Council Brain Banks Network Resource.

    PubMed

    Keogh, Michael J; Wei, Wei; Wilson, Ian; Coxhead, Jon; Ryan, Sarah; Rollinson, Sara; Griffin, Helen; Kurzawa-Akanbi, Marzena; Santibanez-Koref, Mauro; Talbot, Kevin; Turner, Martin R; McKenzie, Chris-Anne; Troakes, Claire; Attems, Johannes; Smith, Colin; Al Sarraj, Safa; Morris, Chris M; Ansorge, Olaf; Pickering-Brown, Stuart; Ironside, James W; Chinnery, Patrick F

    2017-01-01

    Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies. © 2017 Keogh et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Copy number variation of individual cattle genomes using next-generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  17. Individualized cattle copy number and segmental duplication maps using next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  18. Copy number variation of individual cattle genomes using next-generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often difficult to track. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angu...

  19. 40 CFR 761.209 - Number of copies of a manifest.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Number of copies of a manifest... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Number of copies of a manifest. 761.209 Section 761.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  20. 40 CFR 761.209 - Number of copies of a manifest.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Number of copies of a manifest... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Number of copies of a manifest. 761.209 Section 761.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  1. Aluminum tolerance is associated with higher MATE1 gene copy-number in maize

    USDA-ARS?s Scientific Manuscript database

    Genome structure variation, including copy-number (CNV) and presence/absence variation (PAV), comprise a large extent of maize genetic diversity but their effect on phenotypes remains largely unexplored. Here we describe how copy-number variation in a major aluminum (Al) tolerance locus contributes ...

  2. GeneCount: genome-wide calculation of absolute tumor DNA copy numbers from array comparative genomic hybridization data

    PubMed Central

    Lyng, Heidi; Lando, Malin; Brøvig, Runar S; Svendsrud, Debbie H; Johansen, Morten; Galteland, Eivind; Brustugun, Odd T; Meza-Zepeda, Leonardo A; Myklebost, Ola; Kristensen, Gunnar B; Hovig, Eivind; Stokke, Trond

    2008-01-01

    Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide calculation of absolute copy numbers from clinical array comparative genomic hybridization data. The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are achieved. We demonstrate significant improvements over existing methods for exploring gene dosages and intratumor copy number heterogeneity in cancers. PMID:18500990

  3. Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae.

    PubMed

    Wu, Yunfei; Dong, Xiaofeng; Kadowaki, Tatsuhiko

    2017-01-01

    Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV). Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor . These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication.

  4. Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae

    PubMed Central

    Wu, Yunfei; Dong, Xiaofeng; Kadowaki, Tatsuhiko

    2017-01-01

    Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV). Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor. These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication. PMID:28878743

  5. Comparative analysis of solar pasteurization versus solar disinfection for the treatment of harvested rainwater.

    PubMed

    Strauss, André; Dobrowsky, Penelope Heather; Ndlovu, Thando; Reyneke, Brandon; Khan, Wesaal

    2016-12-09

    Numerous pathogens and opportunistic pathogens have been detected in harvested rainwater. Developing countries, in particular, require time- and cost-effective treatment strategies to improve the quality of this water source. The primary aim of the current study was thus to compare solar pasteurization (SOPAS; 70 to 79 °C; 80 to 89 °C; and ≥90 °C) to solar disinfection (SODIS; 6 and 8 hrs) for their efficiency in reducing the level of microbial contamination in harvested rainwater. The chemical quality (anions and cations) of the SOPAS and SODIS treated and untreated rainwater samples were also monitored. While the anion concentrations in all the samples were within drinking water guidelines, the concentrations of lead (Pb) and nickel (Ni) exceeded the guidelines in all the SOPAS samples. Additionally, the iron (Fe) concentrations in both the SODIS 6 and 8 hr samples were above the drinking water guidelines. A >99% reduction in Escherichia coli and heterotrophic bacteria counts was then obtained in the SOPAS and SODIS samples. Ethidium monoazide bromide quantitative polymerase chain reaction (EMA-qPCR) analysis revealed a 94.70% reduction in viable Legionella copy numbers in the SOPAS samples, while SODIS after 6 and 8 hrs yielded a 50.60% and 75.22% decrease, respectively. Similarly, a 99.61% reduction in viable Pseudomonas copy numbers was observed after SOPAS treatment, while SODIS after 6 and 8 hrs yielded a 47.27% and 58.31% decrease, respectively. While both the SOPAS and SODIS systems reduced the indicator counts to below the detection limit, EMA-qPCR analysis indicated that SOPAS treatment yielded a 2- and 3-log reduction in viable Legionella and Pseudomonas copy numbers, respectively. Additionally, SODIS after 8 hrs yielded a 2-log and 1-log reduction in Legionella and Pseudomonas copy numbers, respectively and could be considered as an alternative, cost-effective treatment method for harvested rainwater.

  6. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups

    PubMed Central

    Curtis, Christina; Shah, Sohrab P.; Chin, Suet-Feung; Turashvili, Gulisa; Rueda, Oscar M.; Dunning, Mark J.; Speed, Doug; Lynch, Andy G.; Samarajiwa, Shamith; Yuan, Yinyin; Gräf, Stefan; Ha, Gavin; Haffari, Gholamreza; Bashashati, Ali; Russell, Roslin; McKinney, Steven; Langerød, Anita; Green, Andrew; Provenzano, Elena; Wishart, Gordon; Pinder, Sarah; Watson, Peter; Markowetz, Florian; Murphy, Leigh; Ellis, Ian; Purushotham, Arnie; Børresen-Dale, Anne-Lise; Brenton, James D.; Tavaré, Simon; Caldas, Carlos; Aparicio, Samuel

    2012-01-01

    The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ~40% of genes, with the landscape dominated by cis- and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome. PMID:22522925

  7. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level

    PubMed Central

    Yuen, Garmen; Khan, Fehad J.; Gao, Shaojian; Stommel, Jayne M.; Batchelor, Eric; Wu, Xiaolin

    2017-01-01

    Abstract CRISPR/Cas9 is a powerful gene editing tool for gene knockout studies and functional genomic screens. Successful implementation of CRISPR often requires Cas9 to elicit efficient target knockout in a population of cells. In this study, we investigated the role of several key factors, including variation in target copy number, inherent potency of sgRNA guides, and expression level of Cas9 and sgRNA, in determining CRISPR knockout efficiency. Using isogenic, clonal cell lines with variable copy numbers of an EGFP transgene, we discovered that CRISPR knockout is relatively insensitive to target copy number, but is highly dependent on the potency of the sgRNA guide sequence. Kinetic analysis revealed that most target mutation occurs between 5 and 10 days following Cas9/sgRNA transduction, while sgRNAs with different potencies differ by their knockout time course and by their terminal-phase knockout efficiency. We showed that prolonged, low level expression of Cas9 and sgRNA often fails to elicit target mutation, particularly if the potency of the sgRNA is also low. Our findings provide new insights into the behavior of CRISPR/Cas9 in mammalian cells that could be used for future improvement of this platform. PMID:29036671

  8. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level.

    PubMed

    Yuen, Garmen; Khan, Fehad J; Gao, Shaojian; Stommel, Jayne M; Batchelor, Eric; Wu, Xiaolin; Luo, Ji

    2017-11-16

    CRISPR/Cas9 is a powerful gene editing tool for gene knockout studies and functional genomic screens. Successful implementation of CRISPR often requires Cas9 to elicit efficient target knockout in a population of cells. In this study, we investigated the role of several key factors, including variation in target copy number, inherent potency of sgRNA guides, and expression level of Cas9 and sgRNA, in determining CRISPR knockout efficiency. Using isogenic, clonal cell lines with variable copy numbers of an EGFP transgene, we discovered that CRISPR knockout is relatively insensitive to target copy number, but is highly dependent on the potency of the sgRNA guide sequence. Kinetic analysis revealed that most target mutation occurs between 5 and 10 days following Cas9/sgRNA transduction, while sgRNAs with different potencies differ by their knockout time course and by their terminal-phase knockout efficiency. We showed that prolonged, low level expression of Cas9 and sgRNA often fails to elicit target mutation, particularly if the potency of the sgRNA is also low. Our findings provide new insights into the behavior of CRISPR/Cas9 in mammalian cells that could be used for future improvement of this platform. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  9. PPP1R12A Copy Number Is Associated with Clinical Outcomes of Stage III CRC Receiving Oxaliplatin-Based Chemotherapy

    PubMed Central

    Zhang, Chenbo; Li, Ajian; Li, Huaguang; Peng, Kangsheng; Wei, Qing; Lin, Moubin; Liu, Zhanju; Yin, Lu; Li, Jianwen

    2015-01-01

    Aim. To investigate the correlation between PPP1R12A gene copy number and clinical outcomes of oxaliplatin-based regimen in stage III colorectal cancer (CRC). Methods. A total of 139 paraffin-embedded tissue samples of stage III CRC patients who received oxaliplatin-based treatment after radical surgery were recruited. Genomic DNA was extracted and purified from paraffin-embedded sections. Quantitative PCR methods were used to detect the relative copy number (RCN) of PPP1R12A. Results. Statistical analysis demonstrated that low PPP1R12A RCN was associated with poor RFS (HR = 2.186, 95% CI: 1.293–3.696; P = 0.003) and OS (HR = 2.782, 95% CI: 1.531–5.052; P < 0.001). Additionally, when patients were stratified according to subgroups of stage III and tumor location, poor RFS and OS were also observed in the low PPP1R12A RCN group with significance (RFS: IIIB HR = 2.870, P < 0.001; colon HR = 1.910, P = 0.037; OS: IIIB HR = 3.527, P < 0.001; IIIC HR = 2.662, P = 0.049; rectum HR = 4.229, P = 0.002). Conclusion. Our findings suggest the copy number of PPP1R12A can independently predict recurrence and overall survival of stage III colorectal cancer patients receiving oxaliplatin-based chemotherapy. PMID:26113782

  10. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.

    PubMed

    Hori, Akiko; Yoshida, Minoru; Ling, Feng

    2011-05-01

    Mitochondrial fusion plays an important role in mitochondrial DNA (mtDNA) maintenance, although the underlying mechanisms are unclear. In budding yeast, certain levels of reactive oxygen species (ROS) can promote recombination-mediated mtDNA replication, and mtDNA maintenance depends on the homologous DNA pairing protein Mhr1. Here, we show that the fusion of isolated yeast mitochondria, which can be monitored by the bimolecular fluorescence complementation-derived green fluorescent protein (GFP) fluorescence, increases the mtDNA copy number in a manner dependent on Mhr1. The fusion event, accompanied by the degradation of dissociated electron transport chain complex IV and transient reductions in the complex IV subunits by the inner membrane AAA proteases such as Yme1, increases ROS levels. Analysis of the initial stage of mitochondrial fusion in early log-phase cells produced similar results. Moreover, higher ROS levels in mitochondrial fusion-deficient mutant cells increased the amount of newly synthesized mtDNA, resulting in increases in the mtDNA copy number. In contrast, reducing ROS levels in yme1 null mutant cells significantly decreased the mtDNA copy number, leading to an increase in cells lacking mtDNA. Our results indicate that mitochondrial fusion induces mtDNA synthesis by facilitating ROS-triggered, recombination-mediated replication and thereby prevents the generation of mitochondria lacking DNA. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  11. Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma

    PubMed Central

    van Kempen, Pauline M W; Noorlag, Rob; Braunius, Weibel W; Moelans, Cathy B; Rifi, Widad; Savola, Suvi; Koole, Ronald; Grolman, Wilko; van Es, Robert J J; Willems, Stefan M

    2015-01-01

    Current conventional treatment modalities in head and neck squamous cell carcinoma (HNSCC) are nonselective and have shown to cause serious side effects. Unraveling the molecular profiles of head and neck cancer may enable promising clinical applications that pave the road for personalized cancer treatment. We examined copy number status in 36 common oncogenes and tumor suppressor genes in a cohort of 191 oropharyngeal squamous cell carcinomas (OPSCC) and 164 oral cavity squamous cell carcinomas (OSCC) using multiplex ligation probe amplification. Copy number status was correlated with human papillomavirus (HPV) status in OPSCC, with occult lymph node status in OSCC and with patient survival. The 11q13 region showed gain or amplifications in 59% of HPV-negative OPSCC, whereas this amplification was almost absent in HPV-positive OPSCC. Additionally, in clinically lymph node-negative OSCC (Stage I–II), gain of the 11q13 region was significantly correlated with occult lymph node metastases with a negative predictive value of 81%. Multivariate survival analysis revealed a significantly decreased disease-free survival in both HPV-negative and HPV-positive OPSCC with a gain of Wnt-induced secreted protein-1. Gain of CCND1 showed to be an independent predictor for worse survival in OSCC. These results show that copy number aberrations, mainly of the 11q13 region, may be important predictors and prognosticators which allow for stratifying patients for personalized treatment of HNSCC. PMID:26194878

  12. Assessment of palindromes as platforms for DNA amplification in breast cancer

    PubMed Central

    Guenthoer, Jamie; Diede, Scott J.; Tanaka, Hisashi; Chai, Xiaoyu; Hsu, Li; Tapscott, Stephen J.; Porter, Peggy L.

    2012-01-01

    DNA amplification, particularly of chromosomes 8 and 11, occurs frequently in breast cancer and is a key factor in tumorigenesis, often associated with poor prognosis. The mechanisms involved in the amplification of these regions are not fully understood. Studies from model systems have demonstrated that palindrome formation can be an early step in DNA amplification, most notably seen in the breakage–fusion–bridge (BFB) cycle. Therefore, palindromes might be associated with gene amplicons in breast cancer. To address this possibility, we coupled high-resolution palindrome profiling by the Genome-wide Analysis of Palindrome Formation (GAPF) assay with genome-wide copy-number analyses on a set of breast cancer cell lines and primary tumors to spatially associate palindromes and copy-number gains. We identified GAPF-positive regions distributed nonrandomly throughout cell line and tumor genomes, often in clusters, and associated with copy-number gains. Commonly amplified regions in breast cancer, chromosomes 8q and 11q, had GAPF-positive regions flanking and throughout the copy-number gains. We also identified amplification-associated GAPF-positive regions at similar locations in subsets of breast cancers with similar characteristics (e.g., ERBB2 amplification). These shared positive regions offer the potential to evaluate the utility of palindromes as prognostic markers, particularly in premalignant breast lesions. Our results implicate palindrome formation in the amplification of regions with key roles in breast tumorigenesis, particularly in subsets of breast cancers. PMID:21752925

  13. Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    PubMed Central

    Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua

    2009-01-01

    Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415

  14. Copy Number Alterations Associated with Acute Lymphoblastic Leukemia in Mexican Children. A report from The Mexican Inter-Institutional Group for the identification of the causes of childhood leukemia.

    PubMed

    Rosales-Rodríguez, Beatriz; Fernández-Ramírez, Fernando; Núñez-Enríquez, Juan Carlos; Velázquez-Wong, Ana Claudia; Medina-Sansón, Aurora; Jiménez-Hernández, Elva; Flores-Lujano, Janet; Peñaloza-González, José Gabriel; Espinosa-Elizondo, Rosa Martha; Pérez-Saldívar, María Luisa; Torres-Nava, José Refugio; Martín-Trejo, Jorge Alfonso; Martínez-Morales, Gabriela Bibiana; Bekker-Méndez, Vilma Carolina; Mejía-Aranguré, Juan Manuel; Rosas-Vargas, Haydee

    2016-11-01

    B-cell precursor acute lymphocytic leukemia (B-ALL) represents a worldwide public health issue. Particularly, Mexico is one of the countries with the highest incidence of ALL in children. Between the multiple factors involved in ALL etiology, genetic alterations are clearly one of the most relevant features. In this work, a group of 24 B-ALL patients, all negative for the four most frequent gene fusions (ETV6-RUNX1, BCR-ABL1, TCF3-PBX1 and MLL-AF4), were included in a high-resolution microarray analysis in order to evaluate genomic copy-number alterations (CNAs). The results of this preliminary report showed a broad genomic heterogeneity among the studied samples; 58% of the patients were hyperdiploid and 33% displayed a chromosome 9p deletion of variable length affecting genes CDKN2A/B, two patients displayed genomic instability with a high number of focal CNAs, three patients presented unique duplications affecting 2q, 12p and 1q, respectively, and one patient displayed no copy number imbalances. The copy-number profile of 44 genes previously related to B-ALL was heterogeneous as well. Overall results highlight the need for a detailed description of the genetic alterations in ALL cancer cells in order to understand the molecular pathogenesis of the disease and to identify any prognostic markers with clinical significance. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  15. Translational Arrest Due to Cytoplasmic Redox Stress Delays Adaptation to Growth on Methanol and Heterologous Protein Expression in a Typical Fed-Batch Culture of Pichia pastoris

    PubMed Central

    Edwards-Jones, Bryn; Aw, Rochelle; Barton, Geraint R.; Tredwell, Gregory D.; Bundy, Jacob G.; Leak, David J.

    2015-01-01

    Results We have followed a typical fed-batch induction regime for heterologous protein production under the control of the AOX1 promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation. Conclusion Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR. PMID:25785713

  16. 14 CFR 221.92 - Number of copies required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Filing Tariff Publications With Department § 221.92 Number of copies required. Two copies of each paper tariff, tariff revision and adoption notice to be filed shall be sent to...

  17. [Copy number variation of trinucleotide repeat in dynamic mutation sites of autosomal dominant cerebellar ataxias related genes].

    PubMed

    Chen, Pu; Ma, Mingyi; Shang, Huifang; Su, Dan; Zhang, Sizhong; Yang, Yuan

    2009-12-01

    To standardize the experimental procedure of the gene test for autosomal dominant cerebellar ataxias (ADCA), and provide the basis for quantitative criteria of the dynamic mutation of spinocerebellar ataxia (SCA) genes in Chinese population. Genotyping of the dynamic mutation loci of the SCA1, SCA2, SCA3, SCA6 and SCA7 genes was performed, using florescence PCR-capillary electrophoresis followed by DNA sequencing, to investigate the variation range of copy number of CAG tandem repeat of the genes in 263 probands of ADCA pedigrees and 261 non-related normal controls. Based on the sequencing result, the bias of the CAG copy number estimation using capillary electrophoresis with different DNA controls was compared to analyze the technical detailes of the electrophresis method in testing the dynamic mutation sites. PCR products containing dynamic mutation loci of the SCA genes showed significantly higher mobility than that of molecular weigh marker with relatively balanced GC content. This was particularly obvious in the SCA2, SCA 6 and SCA7 genes whereas the deviation of copy number could be corrected to +/-1 when known CAG copy number fragments were used as controls. The mobility of PCR products was primarily related to the copy number of CAG repeat when the fragments contained normal CAG repeat. In the 263 ADCA pedigrees, 6 (2.28%) carried SCA1 gene mutation, 8 (3.04%) had SCA2 mutation and 81 (30.80%) harbored SCA3 mutation. The gene mutation of SCA6 and SCA7 was not found. The normal variation range of the CAG repeat was 17-36 copies in SCA1 gene, 13-30 copies in SCA2, 14-39 copies in SCA3, 6-16 copies in SCA6 and 6-13 copies in SCA7. The heterozygosity was 76.1%, 17.7%, 74.4%, 72.1% and 41.3%, respectively. The mutation range of the CAG repeat was 49-56 copies in SCA1 gene, 36-41 copies in SCA2, 59-81 copies in SCA3. Neither homozygous mutation of an SCA gene nor double heterozygous mutation of the SCA genes was observed in the study. The copy number of the CAG repeat in SCA genes could be calculated accurately based on the result of florescence PCR-capillary electrophoresis when limited amount of known repeat copy number controls were used. Our result supported that the notion that SCA3 gene mutation was the most common cause for ADCA, and the obtained data would be helpful for establishing quantitative criteria of the dynamic mutation of the SCA genes in Chinese.

  18. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins

    PubMed Central

    Wrede, Joanna E.; Mengel-From, Jonas; Buchwald, Dedra; Vitiello, Michael V.; Bamshad, Michael; Noonan, Carolyn; Christiansen, Lene; Christensen, Kaare; Watson, Nathaniel F.

    2015-01-01

    Study Objectives: Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins. Setting: Academic clinical research center. Participants: 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). Design: Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a “normal” (7–9 h/24) and “short” (< 7 h/24) sleeping twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data structure to assess within-pair effects of sleep duration on mtDNA copy number. Measurements and Results: Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P < 0.05) and sleep efficiency (β = 0.51; 95% CI 0.06, 0.95; P < 0.05) were significantly associated with reduced mtDNA copy number within twin pairs. Thus every 1-minute decrease in actigraphy-defined sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated with a decrease in mtDNA copy number of 0.51. Conclusions: Reduced sleep duration and sleep efficiency were associated with reduced mitochondrial DNA copy number in sleep duration discordant monozygotic twins offering a potential mechanism whereby short sleep impairs health and longevity through mitochondrial stress. Citation: Wrede JE, Mengel-From J, Buchwald D, Vitiello MV, Bamshad M, Noonan C, Christiansen L, Christensen K, Watson NF. Mitochondrial DNA copy number in sleep duration discordant monozygotic twins. SLEEP 2015;38(10):1655–1658. PMID:26039967

  19. Software Auditing: A New Task for U.K. Universities.

    ERIC Educational Resources Information Center

    Fletcher, Mark

    1997-01-01

    Based on a pilot project at Exeter University (Devon, England) a software audit, comparing number of copies of software installed with number of license agreements, is described. Discussion includes auditing budgets, workstation questionnaires, the scanner program which detects the hardware configuration and staff training, analysis and…

  20. FAS Gene Copy Numbers are Associated with Susceptibility to Behçet Disease and VKH Syndrome in Han Chinese.

    PubMed

    Yu, Hongsong; Luo, Le; Wu, Lili; Zheng, Minming; Zhang, Lijun; Liu, Yunjia; Li, Hua; Cao, Qingfeng; Kijlstra, Aize; Yang, Peizeng

    2015-11-01

    Previous studies have identified that disturbed apoptosis was involved in the pathogenesis of Behçet disease (BD) and Vogt-Koyanagi-Harada (VKH) syndrome. This study aims to investigate whether copy number variations of apoptosis-related genes, including FAS, CASPASE8, CASPASE3, and BCL2, are associated with BD and VKH syndrome in Han Chinese. A two-stage association study was performed in 1,014 BD patients, 1,051 VKH syndrome patients, and 2,076 healthy controls. TaqMan(®) Copy Number Assays and real-time PCR were performed. The first-stage study showed that increased frequency of high FAS copy number (>2) was found in BD (P = 1.05 × 10(-3) ) and VKH syndrome (P = 2.56 × 10(-3) ). Replication and combined study confirmed the association of high copy number (>2) of FAS with BD (P = 3.35 × 10(-8) ) and VKH syndrome (P = 9.77 × 10(-8) ). A significant upregulated mRNA expression of FAS was observed in anti-CD3/CD28 antibodies-stimulated CD4(+) T cells from individuals carrying a high gene copy number (>2) as compared to normal diploid 2 copy number carriers (P = 0.004). Moreover, the mRNA expression of FAS both in active patients with BD and VKH syndrome was significantly higher than that in controls (P = 0.001 and P = 0.007, respectively). Our findings suggest that a high copy number of FAS gene confers risk for BD and VKH syndrome. © 2015 WILEY PERIODICALS, INC.

  1. 10 CFR 205.324 - Form and style; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies. 205.324 Section 205.324 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy at International Boundaries § 205.324 Form and style; number of copies. All applicants...

  2. DETECTION OF STACHYBOTRYS CHARTARUM USING rRNA, tri5, AND Β-TUBULIN PRIMERS AND DETERMINING THEIR RELATIVE COPY NUMBER BY REAL TIME PCR

    EPA Science Inventory

    This research utilizes the quantitative polymerase chain reaction (qPCR) to determine ribosomal copy number of fungal organisms found in unhealthy indoor environments. Knowing specific copy numbers will allow for greater accuracy in quantification when utilizing current pQCR tec...

  3. 10 CFR 205.324 - Form and style; number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Form and style; number of copies. 205.324 Section 205.324 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy at International Boundaries § 205.324 Form and style; number of copies. All applicants...

  4. Chromosomal microarray analysis in developmental delay and intellectual disability with comorbid conditions.

    PubMed

    Fan, Yanjie; Wu, Yanming; Wang, Lili; Wang, Yu; Gong, Zhuwen; Qiu, Wenjuan; Wang, Jingmin; Zhang, Huiwen; Ji, Xing; Ye, Jun; Han, Lianshu; Jin, Xingming; Shen, Yongnian; Li, Fei; Xiao, Bing; Liang, Lili; Zhang, Xia; Liu, Xiaomin; Gu, Xuefan; Yu, Yongguo

    2018-05-24

    Developmental delay (DD) and intellectual disability (ID) are frequently associated with a broad spectrum of additional phenotypes. Chromosomal microarray analysis (CMA) has been recommended as a first-tier test for DD/ID in general, whereas the diagnostic yield differs significantly among DD/ID patients with different comorbid conditions. To investigate the genotype-phenotype correlation, we examined the characteristics of identified pathogenic copy number variations (pCNVs) and compared the diagnostic yields among patient subgroups with different co-occurring conditions. This study is a retrospective review of CMA results generated from a mixed cohort of 710 Chinese patients with DD/ID. A total of 247 pCNVs were identified in 201 patients (28%). A large portion of these pCNVs were copy number losses, and the size of copy number losses was generally smaller than gains. The diagnostic yields were significantly higher in subgroups with co-occurring congenital heart defects (55%), facial dysmorphism (39%), microcephaly (34%) or hypotonia (35%), whereas co-occurring conditions of skeletal malformation (26%), brain malformation (24%) or epilepsy (24%) did not alter the yield. In addition, the diagnostic yield nominally correlated with ID severity. Varied yields exist in DD/ID patients with different phenotypic presentation. The presence of comorbid conditions can be among factors to consider when planning CMA.

  5. DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation.

    PubMed

    Nacheva, Elizabeth; Mokretar, Katya; Soenmez, Aynur; Pittman, Alan M; Grace, Colin; Valli, Roberto; Ejaz, Ayesha; Vattathil, Selina; Maserati, Emanuela; Houlden, Henry; Taanman, Jan-Willem; Schapira, Anthony H; Proukakis, Christos

    2017-01-01

    Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.

  6. DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation

    PubMed Central

    Nacheva, Elizabeth; Mokretar, Katya; Soenmez, Aynur; Pittman, Alan M.; Grace, Colin; Valli, Roberto; Ejaz, Ayesha; Vattathil, Selina; Maserati, Emanuela; Houlden, Henry; Taanman, Jan-Willem; Schapira, Anthony H.

    2017-01-01

    Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array “waves”, and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance. PMID:28683077

  7. Impact of constitutional copy number variants on biological pathway evolution.

    PubMed

    Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca

    2013-01-23

    Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.

  8. Impact of constitutional copy number variants on biological pathway evolution

    PubMed Central

    2013-01-01

    Background Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. Results We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. Conclusions The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations. PMID:23342974

  9. Copy number of the Adenomatous Polyposis Coli gene is not always neutral in sporadic colorectal cancers with loss of heterozygosity for the gene.

    PubMed

    Zauber, Peter; Marotta, Stephen; Sabbath-Solitare, Marlene

    2016-03-12

    Changes in the number of alleles of a chromosome may have an impact upon gene expression. Loss of heterozygosity (LOH) indicates that one allele of a gene has been lost, and knowing the exact copy number of the gene would indicate whether duplication of the remaining allele has occurred. We were interested to determine the copy number of the Adenomatous Polyposis Coli (APC) gene in sporadic colorectal cancers with LOH. We selected 38 carcinomas with LOH for the APC gene region of chromosome 5, as determined by amplification of the CA repeat region within the D5S346 loci. The copy number status of APC was ascertained using the SALSA® MLPA® P043-B1 APC Kit. LOH for the DCC gene, KRAS gene mutation, and microsatellite instability were also evaluated for each tumor, utilizing standard polymerase chain reaction methods. No tumor demonstrated microsatellite instability. LOH of the DCC gene was also present in 33 of 36 (91.7%) informative tumors. A KRAS gene mutation was present in 16 of the 38 (42.1%) tumors. Twenty-four (63.2%) of the tumors were copy number neutral, 10 (26.3%) tumors demonstrated major loss, while two (5.3%) showed partial loss. Two tumors (5.3%) had copy number gain. Results of APC and DCC LOH, KRAS and microsatellite instability indicate our colorectal cancer cases were typical of sporadic cancers following the 'chromosomal instability' pathway. The majority of our colorectal carcinomas with LOH for APC gene are copy number neutral. However, one-third of our cases showed copy number loss, suggesting that duplication of the remaining allele is not required for the development of a colorectal carcinoma.

  10. DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores

    PubMed Central

    Davis, Jonathon M.; Searles, Veronica B.; Anderson, Nathan; Keeney, Jonathon; Raznahan, Armin; Horwood, L. John; Fergusson, David M.; Kennedy, Martin A.; Giedd, Jay

    2014-01-01

    DUF1220 protein domains exhibit the greatest human lineage-specific copy number expansion of any protein-coding sequence in the genome, and variation in DUF1220 copy number has been linked to both brain size in humans and brain evolution among primates. Given these findings, we examined associations between DUF1220 subtypes CON1 and CON2 and cognitive aptitude. We identified a linear association between CON2 copy number and cognitive function in two independent populations of European descent. In North American males, an increase in CON2 copy number corresponded with an increase in WISC IQ (R2 = 0.13, p = 0.02), which may be driven by males aged 6–11 (R2 = 0.42, p = 0.003). We utilized ddPCR in a subset as a confirmatory measurement. This group had 26–33 copies of CON2 with a mean of 29, and each copy increase of CON2 was associated with a 3.3-point increase in WISC IQ (R2 = 0.22, p = 0.045). In individuals from New Zealand, an increase in CON2 copy number was associated with an increase in math aptitude ability (R2 = 0.10 p = 0.018). These were not confounded by brain size. To our knowledge, this is the first study to report a replicated association between copy number of a gene coding sequence and cognitive aptitude. Remarkably, dosage variations involving DUF1220 sequences have now been linked to human brain expansion, autism severity and cognitive aptitude, suggesting that such processes may be genetically and mechanistically inter-related. The findings presented here warrant expanded investigations in larger, well-characterized cohorts. PMID:25287832

  11. Quantification of Plasma miRNAs by Digital PCR for Cancer Diagnosis

    PubMed Central

    Ma, Jie; Li, Ning; Guarnera, Maria; Jiang, Feng

    2013-01-01

    Analysis of plasma microRNAs (miRNAs) by quantitative polymerase chain reaction (qPCR) provides a potential approach for cancer diagnosis. However, absolutely quantifying low abundant plasma miRNAs is challenging with qPCR. Digital PCR offers a unique means for assessment of nucleic acids presenting at low levels in plasma. This study aimed to evaluate the efficacy of digital PCR for quantification of plasma miRNAs and the potential utility of this technique for cancer diagnosis. We used digital PCR to quantify the copy number of plasma microRNA-21-5p (miR-21–5p) and microRNA-335–3p (miR-335–3p) in 36 lung cancer patients and 38 controls. Digital PCR showed a high degree of linearity and quantitative correlation with miRNAs in a dynamic range from 1 to 10,000 copies/μL of input, with high reproducibility. qPCR exhibited a dynamic range from 100 to 1×107 copies/μL of input. Digital PCR had a higher sensitivity to detect copy number of the miRNAs compared with qPCR. In plasma, digital PCR could detect copy number of both miR-21–5p and miR-335–3p, whereas qPCR was only able to assess miR-21–5p. Quantification of the plasma miRNAs by digital PCR provided 71.8% sensitivity and 80.6% specificity in distinguishing lung cancer patients from cancer-free subjects. PMID:24277982

  12. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis

    PubMed Central

    2018-01-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles. PMID:29518071

  13. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    PubMed

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles.

  14. DNA replication stress restricts ribosomal DNA copy number

    PubMed Central

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  15. The qualitative scoring MMSE pentagon test (QSPT): a new method for differentiating dementia with Lewy Body from Alzheimer's disease.

    PubMed

    Caffarra, Paolo; Gardini, Simona; Dieci, Francesca; Copelli, Sandra; Maset, Laura; Concari, Letizia; Farina, Elisabetta; Grossi, Enzo

    2013-01-01

    The differential diagnosis across different variants of degenerative diseases is sometimes controversial. This study aimed to validate a qualitative scoring method for the pentagons copy test (QSPT) of Mini-Mental State Examination (MMSE) based on the assessment of different parameters of the pentagons drawing, such as number of angles, distance/intersection, closure/opening, rotation, closing-in, and to verify its efficacy to differentiate dementia with Lewy Body (DLB) from Alzheimer's disease (AD). We established the reliability of the qualitative scoring method through the inter-raters and intra-subjects analysis. QSPT was then applied to forty-six AD and forty-six DLB patients, using two phases statistical approach, standard and artificial neural network respectively. DLB patients had significant lower total score in the copy of pentagons and number of angles, distance/intersection, closure/opening, rotation compared to AD. However the logistic regression did not allow to establish any suitable modeling, whereas using Auto-Contractive Map (Auto-CM) the DLB was more strongly associated with low scores in some qualitative parameters of pentagon copying, i.e. number of angles and opening/closure and, for the remaining subitems of the MMSE, in naming, repetition and written comprehension, and for demographic variables of gender (male) and education (6-13 years). Twist system modeling showed that the QSPT had a good sensitivity (70.29%) and specificity (78.67%) (ROC-AUC 0.74). The proposed qualitative method of assessment of pentagons copying used in combination with non-linear analysis, showed to be consistent and effective in the differential diagnosis between Lewy Body and Alzheimer's dementia.

  16. Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    PubMed Central

    Hollox, Edward J; Davies, Jane; Griesenbach, Uta; Burgess, Juliana; Alton, Eric WFW; Armour, John AL

    2005-01-01

    Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2) is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF), and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found. PMID:16336654

  17. A modified multiplex ligation-dependent probe amplification method for the detection of 22q11.2 copy number variations in patients with congenital heart disease.

    PubMed

    Zhang, Xiaoqing; Xu, Yuejuan; Liu, Deyuan; Geng, Juan; Chen, Sun; Jiang, Zhengwen; Fu, Qihua; Sun, Kun

    2015-05-08

    Copy number variations (CNVs) of chromosomal region 22q11.2 are associated with a subset of patients with congenital heart disease (CHD). Accurate and efficient detection of CNV is important for genetic analysis of CHD. The aim of the study was to introduce a novel approach named CNVplex®, a high-throughput analysis technique designed for efficient detection of chromosomal CNVs, and to explore the prevalence of sub-chromosomal imbalances in 22q11.2 loci in patients with CHD from a single institute. We developed a novel technique, CNVplex®, for high-throughput detection of sub-chromosomal copy number aberrations. Modified from the multiplex ligation-dependent probe amplification (MLPA) method, it introduced a lengthening ligation system and four universal primer sets, which simplified the synthesis of probes and significantly improved the flexibility of the experiment. We used 110 samples, which were extensively characterized with chromosomal microarray analysis and MLPA, to validate the performance of the newly developed method. Furthermore, CNVplex® was used to screen for sub-chromosomal imbalances in 22q11.2 loci in 818 CHD patients consecutively enrolled from Shanghai Children's Medical Center. In the methodology development phase, CNVplex® detected all copy number aberrations that were previously identified with both chromosomal microarray analysis and MLPA, demonstrating 100% sensitivity and specificity. In the validation phase, 22q11.2 deletion and 22q11.2 duplication were detected in 39 and 1 of 818 patients with CHD by CNVplex®, respectively. Our data demonstrated that the frequency of 22q11.2 deletion varied among sub-groups of CHD patients. Notably, 22q11.2 deletion was more commonly observed in cases with conotruncal defect (CTD) than in cases with non-CTD (P<0.001). With higher resolution and more probes against selected chromosomal loci, CNVplex® also identified several individuals with small CNVs and alterations in other chromosomes. CNVplex® is sensitive and specific in its detection of CNVs, and it is an alternative to MLPA for batch screening of pathogenetic CNVs in known genomic loci.

  18. Genome-wide copy number analysis reveals candidate gene loci that confer susceptibility to high-grade prostate cancer.

    PubMed

    Poniah, Prevathe; Mohd Zain, Shamsul; Abdul Razack, Azad Hassan; Kuppusamy, Shanggar; Karuppayah, Shankar; Sian Eng, Hooi; Mohamed, Zahurin

    2017-09-01

    Two key issues in prostate cancer (PCa) that demand attention currently are the need for a more precise and minimally invasive screening test owing to the inaccuracy of prostate-specific antigen and differential diagnosis to distinguish advanced vs. indolent cancers. This continues to pose a tremendous challenge in diagnosis and prognosis of PCa and could potentially lead to overdiagnosis and overtreatment complications. Copy number variations (CNVs) in the human genome have been linked to various carcinomas including PCa. Detection of these variants may improve clinical treatment as well as an understanding of the pathobiology underlying this complex disease. To this end, we undertook a pilot genome-wide CNV analysis approach in 36 subjects (18 patients with high-grade PCa and 18 controls that were matched by age and ethnicity) in search of more accurate biomarkers that could potentially explain susceptibility toward high-grade PCa. We conducted this study using the array comparative genomic hybridization technique. Array results were validated in 92 independent samples (46 high-grade PCa, 23 benign prostatic hyperplasia, and 23 healthy controls) using polymerase chain reaction-based copy number counting method. A total of 314 CNV regions were found to be unique to PCa subjects in this cohort (P<0.05). A log 2 ratio-based copy number analysis revealed 5 putative rare or novel CNV loci or both associated with susceptibility to PCa. The CNV gain regions were 1q21.3, 15q15, 7p12.1, and a novel CNV in PCa 12q23.1, harboring ARNT, THBS1, SLC5A8, and DDC genes that are crucial in the p53 and cancer pathways. A CNV loss and deletion event was observed at 8p11.21, which contains the SFRP1 gene from the Wnt signaling pathway. Cross-comparison analysis with genes associated to PCa revealed significant CNVs involved in biological processes that elicit cancer pathogenesis via cytokine production and endothelial cell proliferation. In conclusion, we postulated that the CNVs identified in this study could provide an insight into the development of advanced PCa. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Tank-Binding Kinase 1 (TBK1) Gene and Open-Angle Glaucomas (An American Ophthalmological Society Thesis)

    PubMed Central

    Fingert, John H.; Robin, Alan L.; Scheetz, Todd E.; Kwon, Young H.; Liebmann, Jeffrey M.; Ritch, Robert; Alward, Wallace L.M.

    2016-01-01

    Purpose To investigate the role of TANK-binding kinase 1 (TBK1) gene copy-number variations (ie, gene duplications and triplications) in the pathophysiology of various open-angle glaucomas. Methods In previous studies, we discovered that copy-number variations in the TBK1 gene are associated with normal-tension glaucoma. Here, we investigated the prevalence of copy-number variations in cohorts of patients with other open-angle glaucomas—juvenile-onset open-angle glaucoma (n=30), pigmentary glaucoma (n=209), exfoliation glaucoma (n=225), and steroid-induced glaucoma (n=79)—using a quantitative polymerase chain reaction assay. Results No TBK1 gene copy-number variations were detected in patients with juvenile-onset open-angle glaucoma, pigmentary glaucoma, or steroid-induced glaucoma. A TBK1 gene duplication was detected in one (0.44%) of the 225 exfoliation glaucoma patients. Conclusions TBK1 gene copy-number variations (gene duplications and triplications) have been previously associated with normal-tension glaucoma. An exploration of other open-angle glaucomas detected a TBK1 copy-number variation in a patient with exfoliation glaucoma, which is the first example of a TBK1 mutation in a glaucoma patient with a diagnosis other than normal-tension glaucoma. A broader phenotypic range may be associated with TBK1 copy-number variations, although mutations in this gene are most often detected in patients with normal-tension glaucoma. PMID:27881886

  20. Higher DEFB4 genomic copy number in SLE and ANCA-associated small vasculitis.

    PubMed

    Zhou, Xu-Jie; Cheng, Fa-Juan; Lv, Ji-Cheng; Luo, Huan; Yu, Feng; Chen, Min; Zhao, Ming-Hui; Zhang, Hong

    2012-06-01

    Evidence shows that defensins are involved in the pathogenesis of SLE and ANCA-associated small vasculitis (AASV). The copy number variation of DEFB4 has been proposed to be susceptible to inflammatory disorders. This study aims to investigate whether the DEFB4 genomic copy number variations associate with the susceptibility to these two autoimmune diseases. A total of 1178 Chinese people were enrolled, including panel 1 comprising 240 SLE patients and 275 matched controls, panel 2 comprising 303 SLE patients and 248 matched controls and panel 3 with 112 AASV patients. The DEFB4 copy number was typed by a paralogue ratio test (PRT), and all the subjects in panel 1 were also typed using the restriction enzyme digest variant ratio (REDVR) for validation. The results from PRT and REDVR were highly concordant (R = 0.911, P = 3.85 × 10(-199)) and allowed copy numbers to be assigned into integer classes with high confidence. Comparison of mean DEFB4 copy number revealed a small increase in cases with SLE both in Panel 1 (P = 0.063) and Panel 2 (P = 0.017). When pooling panels 1 and 2 together, the association was reinforced (P = 0.002) in SLE. Such association was also observed in AASV (P = 0.009). We found that a higher DEFB4 gene copy number was associated with both SLE and AASV.

  1. Tank-Binding Kinase 1 (TBK1) Gene and Open-Angle Glaucomas (An American Ophthalmological Society Thesis).

    PubMed

    Fingert, John H; Robin, Alan L; Scheetz, Todd E; Kwon, Young H; Liebmann, Jeffrey M; Ritch, Robert; Alward, Wallace L M

    2016-08-01

    To investigate the role of TANK-binding kinase 1 ( TBK1 ) gene copy-number variations (ie, gene duplications and triplications) in the pathophysiology of various open-angle glaucomas. In previous studies, we discovered that copy-number variations in the TBK1 gene are associated with normal-tension glaucoma. Here, we investigated the prevalence of copy-number variations in cohorts of patients with other open-angle glaucomas-juvenile-onset open-angle glaucoma (n=30), pigmentary glaucoma (n=209), exfoliation glaucoma (n=225), and steroid-induced glaucoma (n=79)-using a quantitative polymerase chain reaction assay. No TBK1 gene copy-number variations were detected in patients with juvenile-onset open-angle glaucoma, pigmentary glaucoma, or steroid-induced glaucoma. A TBK1 gene duplication was detected in one (0.44%) of the 225 exfoliation glaucoma patients. TBK1 gene copy-number variations (gene duplications and triplications) have been previously associated with normal-tension glaucoma. An exploration of other open-angle glaucomas detected a TBK1 copy-number variation in a patient with exfoliation glaucoma, which is the first example of a TBK1 mutation in a glaucoma patient with a diagnosis other than normal-tension glaucoma. A broader phenotypic range may be associated with TBK1 copy-number variations, although mutations in this gene are most often detected in patients with normal-tension glaucoma.

  2. Copy number variation of lipocalin family genes for male-specific proteins in tilapia and its association with gender.

    PubMed

    Shirak, A; Golik, M; Lee, B-Y; Howe, A E; Kocher, T D; Hulata, G; Ron, M; Seroussi, E

    2008-11-01

    Lipocalins are involved in the binding of small molecules like sex steroids. We show here that the previously reported tilapia male-specific protein (MSP) is a lipocalin encoded by a variety of paralogous and homologous genes in different tilapia species. Exon-intron boundaries of MSP genes were typical of the six-exon genomic structure of lipocalins, and the transcripts were capable of encoding 200 amino-acid polypeptides that consisted of a putative signal peptide and a lipocalin domain. Cysteine residues are conserved in positions analogous to those forming the three disulfide bonds characteristic of the ligand pocket. The calculated molecular mass of the secreted MSP (20.4 kDa) was less than half of that observed, suggesting that it is highly glycosylated like its homologue tributyltin-binding protein. Analysis of sequence variations revealed three types of paralogs MSPA, MSPB and MSPC. Expression of both MSPA and MSPB was detected in testis. In haploid Oreochromis niloticus embryos, each of these types consisted of two closely related paralogs, and asymmetry between MSP copy numbers on the maternal (six copies) and the paternal (three copies) chromosomes was observed. Using this polymorphism we mapped MSPA and MSPC to linkage group 12 of an F(2) mapping family derived from a cross between O. niloticus and Oreochromis aureus. Females with high MSP copy number were more frequent by more than twofold than males. Gender-MSPC combinations showed significant deviation from expected Mendelian segregation (P=0.009) suggesting elimination of males with MSPC copies. We discuss different hypotheses to explain this elimination, including possibility for allelic conflict resulted by the hybridization.

  3. Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7.

    PubMed

    Vogler, Amy J; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E; Jay, Zack; Keim, Paul

    2006-06-01

    Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.

  4. 17 CFR 260.10a-3 - Number of copies-Filing-Signatures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies-Filing-Signatures. 260.10a-3 Section 260.10a-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Number of copies—Filing—Signatures. (a) Three copies of every application pursuant to rule 10a-1 (§ 260...

  5. 17 CFR 240.12b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; signatures... Under the Securities Exchange Act of 1934 Formal Requirements § 240.12b-11 Number of copies; signatures... bound on the left side in such a manner as to leave the reading matter legible. (d) Signatures. Where...

  6. 17 CFR 260.5b-3 - Number of copies-Filing-Signatures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies-Filing-Signatures. 260.5b-3 Section 260.5b-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Number of copies—Filing—Signatures. (a) Three copies of every application pursuant to rule 5b-1 (§ 260.5b...

  7. 10 CFR 205.307 - Form and style; number of copies

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies 205.307 Section 205.307 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy to A Foreign Country § 205.307 Form and style; number of copies An original and two...

  8. 47 CFR 1.742 - Place of filing, fees, and number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Place of filing, fees, and number of copies. 1..., fees, and number of copies. All applications which do not require a fee shall be filed at the... then forwarded to the Wireline Competition Bureau. All applications accompanied by a fee payment should...

  9. 12 CFR 116.40 - Where do I file my application?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... application? (a) OCC Office. (1) You must file the original application and the number of copies indicated on.... If the form does not indicate the number of copies you must file or if the OCC has not prescribed a... OCC licensing office at headquarters. You must file the number of copies indicated on the applicable...

  10. 12 CFR 516.40 - Where do I file my application?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... application? (a) Regional Office. (1) You must file the original application and the number of copies... in paragraph (a)(2) of this section. If the form does not indicate the number of copies you must file...., Washington, DC 20552. You must file the number of copies indicated on the applicable form. If the form does...

  11. 12 CFR 116.40 - Where do I file my application?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... application? (a) OCC Office. (1) You must file the original application and the number of copies indicated on.... If the form does not indicate the number of copies you must file or if the OCC has not prescribed a... OCC licensing office at headquarters. You must file the number of copies indicated on the applicable...

  12. 12 CFR 516.40 - Where do I file my application?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... application? (a) Regional Office. (1) You must file the original application and the number of copies... in paragraph (a)(2) of this section. If the form does not indicate the number of copies you must file...., Washington, DC 20552. You must file the number of copies indicated on the applicable form. If the form does...

  13. 12 CFR 516.40 - Where do I file my application?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... application? (a) Regional Office. (1) You must file the original application and the number of copies... in paragraph (a)(2) of this section. If the form does not indicate the number of copies you must file...., Washington, DC 20552. You must file the number of copies indicated on the applicable form. If the form does...

  14. 12 CFR 116.40 - Where do I file my application?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... application? (a) OCC Office. (1) You must file the original application and the number of copies indicated on.... If the form does not indicate the number of copies you must file or if the OCC has not prescribed a... OCC licensing office at headquarters. You must file the number of copies indicated on the applicable...

  15. 12 CFR 516.40 - Where do I file my application?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... application? (a) Regional Office. (1) You must file the original application and the number of copies... in paragraph (a)(2) of this section. If the form does not indicate the number of copies you must file...., Washington, DC 20552. You must file the number of copies indicated on the applicable form. If the form does...

  16. 12 CFR 516.40 - Where do I file my application?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... application? (a) Regional Office. (1) You must file the original application and the number of copies... in paragraph (a)(2) of this section. If the form does not indicate the number of copies you must file...., Washington, DC 20552. You must file the number of copies indicated on the applicable form. If the form does...

  17. 10 CFR 205.307 - Form and style; number of copies

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Form and style; number of copies 205.307 Section 205.307 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy to A Foreign Country § 205.307 Form and style; number of copies An original and two...

  18. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma

    PubMed Central

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-01-01

    Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578

  19. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.

    PubMed

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-12-12

    This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.

  20. Diversity of human copy number variation and multicopy genes.

    PubMed

    Sudmant, Peter H; Kitzman, Jacob O; Antonacci, Francesca; Alkan, Can; Malig, Maika; Tsalenko, Anya; Sampas, Nick; Bruhn, Laurakay; Shendure, Jay; Eichler, Evan E

    2010-10-29

    Copy number variants affect both disease and normal phenotypic variation, but those lying within heavily duplicated, highly identical sequence have been difficult to assay. By analyzing short-read mapping depth for 159 human genomes, we demonstrated accurate estimation of absolute copy number for duplications as small as 1.9 kilobase pairs, ranging from 0 to 48 copies. We identified 4.1 million "singly unique nucleotide" positions informative in distinguishing specific copies and used them to genotype the copy and content of specific paralogs within highly duplicated gene families. These data identify human-specific expansions in genes associated with brain development, reveal extensive population genetic diversity, and detect signatures consistent with gene conversion in the human species. Our approach makes ~1000 genes accessible to genetic studies of disease association.

  1. High BAALC copy numbers in peripheral blood prior to allogeneic transplantation predict early relapse in acute myeloid leukemia patients.

    PubMed

    Jentzsch, Madlen; Bill, Marius; Grimm, Juliane; Schulz, Julia; Goldmann, Karoline; Beinicke, Stefanie; Häntschel, Janine; Pönisch, Wolfram; Franke, Georg-Nikolaus; Vucinic, Vladan; Behre, Gerhard; Lange, Thoralf; Niederwieser, Dietger; Schwind, Sebastian

    2017-10-20

    High BAALC expression levels at acute myeloid leukemia diagnosis have been linked to adverse outcomes. Recent data indicate that high BAALC expression levels may also be used as marker for residual disease following acute myeloid leukemia treatment. Allogeneic hematopoietic stem cell transplantation (HSCT) offers a curative treatment for acute myeloid leukemia patients. However, disease recurrence remains a major clinical challenge and identification of high-risk patients prior to HSCT is crucial to improve outcomes. We performed absolute quantification of BAALC copy numbers in peripheral blood prior (median 7 days) to HSCT in complete remission (CR) or CR with incomplete peripheral recovery in 82 acute myeloid leukemia patients using digital droplet PCR (ddPCR) technology. An optimal cut-off of 0.14 BAALC / ABL1 copy numbers was determined and applied to define patients with high or low BAALC / ABL1 copy numbers. High pre-HSCT BAALC / ABL1 copy numbers significantly associated with higher cumulative incidence of relapse and shorter overall survival in univariable and multivariable models. Patients with high pre-HSCT BAALC / ABL1 copy numbers were more likely to experience relapse within 100 days after HSCT. Evaluation of pre-HSCT BAALC / ABL1 copy numbers in peripheral blood by ddPCR represents a feasible and rapid way to identify acute myeloid leukemia patients at high risk of early relapse after HSCT. The prognostic impact was also observed independently of other known clinical, genetic, and molecular prognosticators. In the future, prospective studies should evaluate whether acute myeloid leukemia patients with high pre-HSCT BAALC / ABL1 copy numbers benefit from additional treatment before or early intervention after HSCT.

  2. High BAALC copy numbers in peripheral blood prior to allogeneic transplantation predict early relapse in acute myeloid leukemia patients

    PubMed Central

    Jentzsch, Madlen; Bill, Marius; Grimm, Juliane; Schulz, Julia; Goldmann, Karoline; Beinicke, Stefanie; Häntschel, Janine; Pönisch, Wolfram; Franke, Georg-Nikolaus; Vucinic, Vladan; Behre, Gerhard; Lange, Thoralf; Niederwieser, Dietger; Schwind, Sebastian

    2017-01-01

    High BAALC expression levels at acute myeloid leukemia diagnosis have been linked to adverse outcomes. Recent data indicate that high BAALC expression levels may also be used as marker for residual disease following acute myeloid leukemia treatment. Allogeneic hematopoietic stem cell transplantation (HSCT) offers a curative treatment for acute myeloid leukemia patients. However, disease recurrence remains a major clinical challenge and identification of high-risk patients prior to HSCT is crucial to improve outcomes. We performed absolute quantification of BAALC copy numbers in peripheral blood prior (median 7 days) to HSCT in complete remission (CR) or CR with incomplete peripheral recovery in 82 acute myeloid leukemia patients using digital droplet PCR (ddPCR) technology. An optimal cut-off of 0.14 BAALC/ABL1 copy numbers was determined and applied to define patients with high or low BAALC/ABL1 copy numbers. High pre-HSCT BAALC/ABL1 copy numbers significantly associated with higher cumulative incidence of relapse and shorter overall survival in univariable and multivariable models. Patients with high pre-HSCT BAALC/ABL1 copy numbers were more likely to experience relapse within 100 days after HSCT. Evaluation of pre-HSCT BAALC/ABL1 copy numbers in peripheral blood by ddPCR represents a feasible and rapid way to identify acute myeloid leukemia patients at high risk of early relapse after HSCT. The prognostic impact was also observed independently of other known clinical, genetic, and molecular prognosticators. In the future, prospective studies should evaluate whether acute myeloid leukemia patients with high pre-HSCT BAALC/ABL1 copy numbers benefit from additional treatment before or early intervention after HSCT. PMID:29152132

  3. DNA Methylation Patterns in Normal Tissue Correlate more Strongly with Breast Cancer Status than Copy-Number Variants.

    PubMed

    Gao, Yang; Widschwendter, Martin; Teschendorff, Andrew E

    2018-05-04

    Normal tissue at risk of neoplastic transformation is characterized by somatic mutations, copy-number variation and DNA methylation changes. It is unclear however, which type of alteration may be more informative of cancer risk. We analyzed genome-wide DNA methylation and copy-number calls from the same DNA assay in a cohort of healthy breast samples and age-matched normal samples collected adjacent to breast cancer. Using statistical methods to adjust for cell type heterogeneity, we show that DNA methylation changes can discriminate normal-adjacent from normal samples better than somatic copy-number variants. We validate this important finding in an independent dataset. These results suggest that DNA methylation alterations in the normal cell of origin may offer better cancer risk prediction and early detection markers than copy-number changes. Copyright © 2018. Published by Elsevier B.V.

  4. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas.

    PubMed

    Rosa-Rosa, Juan M; Leskelä, Susanna; Cristóbal-Lana, Eva; Santón, Almudena; López-García, Ma Ángeles; Muñoz, Gloria; Pérez-Mies, Belen; Biscuola, Michele; Prat, Jaime; Esther, Oliva E; Soslow, Robert A; Matias-Guiu, Xavier; Palacios, Jose

    2016-11-01

    Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumors, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well-differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole-exome sequencing of the endometrioid and undifferentiated components, as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: (a) hypermutated tumors with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); (b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); (c) high copy number alterations (copy-number high) tumors group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%); and (d) low copy number alterations (copy-number low) tumors with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group, whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumors. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumors, which may have prognostic value.

  5. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas

    PubMed Central

    Rosa-Rosa, J.M.; Leskelä, S.; Cristóbal-Lana, E.; Santón, A.; López-García, M.A.; Muñoz, G.; Pérez-Mies, B.; Biscuola, M; Prat, J.; Oliva, E.; Soslow, R.A.; Matias-Guiu, X.; Palacios, J.

    2017-01-01

    Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumours, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole exome sequencing of the endometrioid and undifferentiated components as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: a) hypermutated tumours with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); c) high copy number alterations (copy-number high) tumours group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%) ; and d) low copy number alterations (copy-number low) tumours with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumours. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumours, which may have prognostic value. PMID:27491810

  6. Effects of Transgenic Bt+CpTI cotton on the abundance and diversity of rhizosphere ammonia oxidizing bacteria and archaea.

    PubMed

    Dong, Lianhua; Meng, Ying; Wang, Jing; Sun, Guoqing

    2016-09-01

    Genetically modified crops (GMCs) hold great promise for improving agricultural output, but at the same time present challenges in terms of environmental safety assessment. Ammonia oxidizers, including ammonia oxidizing bacteria (AOB) and archaea (AOA), are very important functional microbial groups in nitrogen cycle. The abundance and diversity of AOA and AOB in the rhizosphere of genetically modified cotton (SGK321) and non-GM cotton (SY321) across growth stages were investigated using real time quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP). Results showed that cotton genotype had a significant effect on the change in abundance of AOA and AOB, as indicated by amoA copy number. Variations in AOB abundance in rhizosphere of SY321 differed from those in SGK321. The number of AOB in the rhizosphere of SY321 fluctuated considerably: It dramatically decreased from 1.2?106 copies g-1 dry soil to 3?105 copies g-1 dry soil during the flowering stage and then increased to 1.1?106 copies g-1 and 1.5?106 copies g-1 at the belling and boll opening stages, respectively. However, abundance of AOB in the rhizosphere of SGK321 was relatively stable during all the stages of growth. The effect of SGK321 and SY321 on AOA number was quite similar to that of AOB: AOA abundance in SGK321 increased smoothly from 1.0 ?105 copies g-1 dry soil to 1.4?106 copies g-1 dry soil during growth, but that in SY321 fluctuated. Correspondence analysis (CA), canonical CA (CCA), and partial CCA (pCCA) of T-RFLP profiles of AOA and AOB showed that AOB community changed across growth stages in both cotton genotypes, and cotton genotype was the most important factor affecting the AOA community. In conclusion, the current findings indicated no adverse effect of GM cotton on functional microorganisms.

  7. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravalli, Rajagopal N., E-mail: aravalli@umn.edu; Park, Chang W.; Steer, Clifford J., E-mail: steer001@umn.edu

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed amore » series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.« less

  8. Mitochondrial DNA in Residual Leukemia Cells in Cerebrospinal Fluid in Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Egan, Kathryn; Kusao, Ian; Troelstrup, David; Agsalda, Melissa; Shiramizu, Bruce

    2010-01-01

    This feasibility study was designed to assess the ability to measure mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) cells that contributed to minimal disease/persistent or residual disease (MD/PRD) from children with acute lymphoblastic leukemia (ALL). Increase in mtDNA copies in cancer cells has been suggested to play a role in MD/PRD. CSF as well as blood specimens from 6 children were assayed for MD/PRD and mtDNA copy numbers by quantitative real-time polymerase chain reaction. Of 7 MD/PRD-positive specimens, 6 had increased mtDNA copy numbers; while 11 MD/PRD-negative specimens had no increase in mtDNA copy numbers, p < 0.003. This is the first proof-of-concept study to measure mtDNA copy numbers in MD/PRD-positive CSF specimens from children with ALL. Increase of mtDNA copy numbers in MD/PRD childhood ALL cells and its significance as a mechanism for recurrence requires further investigation. Keywords Minimal residual disease; Acute lymphoblastic leukemia; Central nervous system; Cerebrospinal fluid; Mitochondria PMID:21331151

  9. Increased EBV Shedding in Astronaut Saliva During Spaceflight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Stowe, R. P.; Phillips, T.; Lugg, D. J.; Mehta, S. K.

    2003-01-01

    Shedding of Epstein-Barr virus (EBV) by astronauts before, during, and after space shuttle missions was quantified. Of 1398 saliva specimens from 32 astronauts, 314 (23%) were positive for EBV DNA by PCR analysis. Of the saliva specimens collected before flight, 29% were positive for EBV DNA and of those collected during or after flight, 16% were EBV-positive. The number of EBV DNA copies from samples taken during the flight was 417+/-31, significantly higher (P < 0.05) than the number of copies from the preflight (40+/-1.7) and postflight (44+/-5) phases. Eighteen control subjects shed EBV DNA with a frequency of 3.7% and a copy number of 40+/-2 per ml saliva. Ten days before flight and on landing day, antibody titers to EBV viral capsid antigen (VCA) were significantly (P < 0.05) higher than baseline levels. On landing day, urinary level of cortiso1 and catecholamines, and plasma levels of substance P and other neuropeptides, were increased over their preflight value. Results suggested that stress associated with spaceflight decreases cellular immunity and thereby leads to increased viral reactivation.

  10. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity

    PubMed Central

    Usher, Christina L; Handsaker, Robert E; Esko, Tõnu; Tuke, Marcus A; Weedon, Michael N; Hastie, Alex R; Cao, Han; Moon, Jennifer E; Kashin, Seva; Fuchsberger, Christian; Metspalu, Andres; Pato, Carlos N; Pato, Michele T; McCarthy, Mark I; Boehnke, Michael; Altshuler, David M; Frayling, Timothy M; Hirschhorn, Joel N; McCarroll, Steven A

    2016-01-01

    Hundreds of genes reside in structurally complex, poorly understood regions of the human genome1-3. One such region contains the three amylase genes (AMY2B, AMY2A, and AMY1) responsible for digesting starch into sugar. The copy number of AMY1 is reported to be the genome’s largest influence on obesity4, though genome-wide association studies for obesity have found this locus unremarkable. Using whole genome sequence analysis3,5, droplet digital PCR6, and genome mapping7, we identified eight common structural haplotypes of the amylase locus that suggest its mutational history. We found that AMY1 copy number in individuals’ genomes is generally even (rather than odd) and partially correlates to nearby SNPs, which do not associate with BMI. We measured amylase gene copy number in 1,000 obese or lean Estonians and in two other cohorts totaling ~3,500 individuals. We had 99% power to detect the lower bound of the reported effects on BMI4, yet found no association. PMID:26098870

  11. No evidence for mosaic pathogenic copy number variations in cardiac tissue from patients with congenital heart malformations.

    PubMed

    Winberg, Johanna; Berggren, Håkan; Malm, Torsten; Johansson, Sune; Johansson Ramgren, Jens; Nilsson, Boris; Liedén, Agne; Nordenskjöld, Agneta; Gustavsson, Peter; Nordgren, Ann

    2015-03-01

    The aim of this study was to investigate if pathogenic copy number variations (CNVs) are present in mosaic form in patients with congenital heart malformations. We have collected cardiac tissue and blood samples from 23 patients with congenital heart malformations that underwent cardiac surgery and screened for mosaic gene dose alterations restricted to cardiac tissue using array comparative genomic hybridization (array CGH). We did not find evidence of CNVs in mosaic form after array CGH analysis. Pathogenic CNVs that were present in both cardiac tissue and blood were detected in 2/23 patients (9%), and in addition we found several constitutional CNVs of unclear clinical significance. This is the first study investigating mosaicism for CNVs in heart tissue compared to peripheral blood and the results do not indicate that pathogenic mosaic copy number changes are common in patients with heart malformations. Importantly, in line with previous studies, our results show that constitutional pathogenic CNVs are important factors contributing to congenital heart malformations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Prognostic Impact of PHIP Copy Number in Melanoma: Linkage to Ulceration

    PubMed Central

    Nosrati, Mehdi; Tong, Schuyler; Wu, Clayton; Thummala, Suresh; Dar, Altaf A.; Leong, Stanley P.L.; Cleaver, James E.; Sagebiel, Richard W.; Miller, James R.; Kashani-Sabet, Mohammed

    2013-01-01

    Ulceration is an important prognostic factor in melanoma whose biologic basis is poorly understood. Here we assessed the prognostic impact of pleckstrin homology domain-interacting protein (PHIP) copy number and its relationship to ulceration. PHIP copy number was determined using fluorescence in situ hybridization (FISH) in a tissue microarray cohort of 238 melanomas. Elevated PHIP copy number was associated with significantly reduced DMFS (P = 0.01) and DSS (P = 0.009) by Kaplan-Meier analyses. PHIP FISH scores were independently predictive of DMFS (P = 0.03) and DSS (P = 0.03). Increased PHIP copy number was an independent predictor of ulceration status (P = 0.04). The combined impact of increased PHIP copy number and tumor vascularity on ulceration status was highly significant (P< 0.0001). Stable suppression of PHIP in human melanoma cells resulted in significantly reduced glycolytic activity in vitro, with lower expression of LDH5, HIF1A, and VEGF, and was accompanied by reduced microvessel density in vivo. These results provide further support for PHIP as a molecular prognostic marker of melanoma, and reveal a significant linkage between PHIP levels and ulceration. Moreover, they suggest that ulceration may be driven by increased glycolysis and angiogenesis. PMID:24005052

  13. Soft-copy sonography: cost reduction sensitivity analysis in a pediatric hospital.

    PubMed

    Don, S; Albertina, M J; Ammann, D

    1998-03-01

    Our objective was to determine whether interpreting sonograms of pediatric patients using soft-copy (computer workstation) instead of laser-printed film could reduce costs for a pediatric radiology department. We used theoretic models of growth to analyze costs. The costs of a sonographic picture archiving and communication system (three interface devices, two workstations, a network server, maintenance expenses, and storage media costs) were compared with the potential savings of eliminating film and increasing technologist efficiency or reducing the number of technologists. The model was based on historic trends and future capitation estimates that will reduce fee-for-service reimbursement. The effects of varying the study volume and reducing technologists' work hours were analyzed. By converting to soft-copy interpretation, we saved 6 min 32 sec per examination by eliminating film processing waiting time, thus reducing examination time from 30 min to 24 min. During an average day of 27 examinations, 176 min were saved. However, 33 min a day were spent retrieving prior studies from long-term storage; thus, 143 extra minutes a day were available for scanning. This improved efficiency could result in five more sonograms a day obtained by converting to soft-copy interpretation, using existing staff and equipment. Alternatively, five examinations a day would equate to one half of a full-time equivalent technologists position. Our analysis of costs considered that the hospital's anticipated growth of sonography and the depreciation of equipment during 5 years resulted in a savings of more than $606,000. Increasing the examinations by just 200 sonograms in the first year and no further growth resulted in a savings of more than $96,000. If the number of sonograms stayed constant, elimination of film printing alone resulted in a loss of approximately $157,000; reduction of one half of a full-time equivalent technologist's position would recuperate approximately $134,000 of that loss. Soft-copy sonography can save money through improved technologist efficiency, thereby increasing the number of sonograms obtained and revenue generated. If the number of sonograms does not increase, elimination of printing costs and reduction of staff technologists will not result in a savings.

  14. HvFT1 polymorphism and effect—survey of barley germplasm and expression analysis

    PubMed Central

    Loscos, Jorge; Igartua, Ernesto; Contreras-Moreira, Bruno; Gracia, M. Pilar; Casas, Ana M.

    2014-01-01

    Flowering time in plants is a tightly regulated process. In barley (Hordeum vulgare L.), HvFT1, ortholog of FLOWERING LOCUS T, is the main integrator of the photoperiod and vernalization signals leading to the transition from vegetative to reproductive state of the plant. This gene presents sequence polymorphisms affecting flowering time in the first intron and in the promoter. Recently, copy number variation (CNV) has been described for this gene. An allele with more than one copy was linked to higher gene expression, earlier flowering, and an overriding effect of the vernalization mechanism. This study aims at (1) surveying the distribution of HvFT1 polymorphisms across barley germplasm and (2) assessing gene expression and phenotypic effects of HvFT1 alleles. We analyzed HvFT1 CNV in 109 winter, spring, and facultative barley lines. There was more than one copy of the gene (2–5) only in spring or facultative barleys without a functional vernalization VrnH2 allele. CNV was investigated in several regions inside and around HvFT1. Two models of the gene were found: one with the same number of promoters and transcribed regions, and another with one promoter and variable number of transcribed regions. This last model was found in Nordic barleys only. Analysis of HvFT1 expression showed that association between known polymorphisms at the HvFT1 locus and the expression of the gene was highly dependent on the genetic background. Under long day conditions the earliest flowering lines carried a sensitive PpdH1 allele. Among spring cultivars with different number of copies, no clear relation was found between CNV, gene expression and flowering time. This was confirmed in a set of doubled haploid lines of a population segregating for HvFT1 CNV. Earlier flowering in the presence of several copies of HvFT1 was only seen in cultivar Tammi, which carries one promoter, suggesting a relation of gene structure with its regulation. HvCEN also affected to a large extent flowering time. PMID:24936204

  15. Associations of GBP2 gene copy number variations with growth traits and transcriptional expression in Chinese cattle.

    PubMed

    Zhang, Gui-Min; Zheng, Li; He, Hua; Song, Cheng-Chuang; Zhang, Zi-Jing; Cao, Xiu-Kai; Lei, Chu-Zhao; Lan, Xian-Yong; Qi, Xing-Lei; Chen, Hong; Huang, Yong-Zhen

    2018-03-20

    Copy number variations (CNVs) recently have been recognized as another important genetic variability followed single nucleotide polymorphisms (SNPs). The guanylate binding protein 2 (GBP2) gene plays an important role in cell proliferation. This study was performed to determine the presence of GBP2 CNV (relative to Angus cattle) in 466 individuals representing six main cattle breeds from China, identify its relationship with growth, and explore the biological effects of gene expression. There were two CNV regions in the GBP2 gene, for three types, CNV1 loss type (relative to Angus cattle) was more frequent in XN than other breeds, and CNV2 loss type (relative to Angus cattle) was more frequent in XN and CDM than other breeds. Though the GBP2 gene copy number presented no correlation with the transcriptional expression of JX (P > .05), but the transcriptional expression in heart is higher than other tissues, and the copy number in muscles and fat of JX is higher than others breeds. Statistical analysis revealed that the GBP2 gene CNV1 and CNV2 were significantly associated with growth traits (P < .05). In conclusion, this research established the correlations between CNVs of GBP2 gene and growth traits in different cattle breeds, and our results suggested that the CNVs in GBP2 gene may be considered markers for the molecular breeding of Chinese beef cattle. Copyright © 2018. Published by Elsevier B.V.

  16. Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi.

    PubMed

    Rice, Ann C; Keeney, Paula M; Algarzae, Norah K; Ladd, Amy C; Thomas, Ravindar R; Bennett, James P

    2014-01-01

    Alzheimer's disease (AD) is the major cause of adult-onset dementia and is characterized in its pre-diagnostic stage by reduced cerebral cortical glucose metabolism and in later stages by reduced cortical oxygen uptake, implying reduced mitochondrial respiration. Using quantitative PCR we determined the mitochondrial DNA (mtDNA) gene copy numbers from multiple groups of 15 or 20 pyramidal neurons, GFAP(+) astrocytes and dentate granule neurons isolated using laser capture microdissection, and the relative expression of mitochondrial biogenesis (mitobiogenesis) genes in hippocampi from 10 AD and 9 control (CTL) cases. AD pyramidal but not dentate granule neurons had significantly reduced mtDNA copy numbers compared to CTL neurons. Pyramidal neuron mtDNA copy numbers in CTL, but not AD, positively correlated with cDNA levels of multiple mitobiogenesis genes. In CTL, but not in AD, hippocampal cDNA levels of PGC1α were positively correlated with multiple downstream mitobiogenesis factors. Mitochondrial DNA copy numbers in pyramidal neurons did not correlate with hippocampal Aβ1-42 levels. After 48 h exposure of H9 human neural stem cells to the neurotoxic fragment Aβ25-35, mtDNA copy numbers were not significantly altered. In summary, AD postmortem hippocampal pyramidal neurons have reduced mtDNA copy numbers. Mitochondrial biogenesis pathway signaling relationships are disrupted in AD, but are mostly preserved in CTL. Our findings implicate complex alterations of mitochondria-host cell relationships in AD.

  17. Copy number variation of human AMY1 is a minor contributor to variation in salivary amylase expression and activity.

    PubMed

    Carpenter, Danielle; Mitchell, Laura M; Armour, John A L

    2017-02-20

    Salivary amylase in humans is encoded by the copy variable gene AMY1 in the amylase gene cluster on chromosome 1. Although the role of salivary amylase is well established, the consequences of the copy number variation (CNV) at AMY1 on salivary amylase protein production are less well understood. The amylase gene cluster is highly structured with a fundamental difference between odd and even AMY1 copy number haplotypes. In this study, we aimed to explore, in samples from 119 unrelated individuals, not only the effects of AMY1 CNV on salivary amylase protein expression and amylase enzyme activity but also whether there is any evidence for underlying difference between the common haplotypes containing odd numbers of AMY1 and even copy number haplotypes. AMY1 copy number was significantly correlated with the variation observed in salivary amylase production (11.7% of variance, P < 0.0005) and enzyme activity (13.6% of variance, P < 0.0005) but did not explain the majority of observed variation between individuals. AMY1-odd and AMY1-even haplotypes showed a different relationship between copy number and expression levels, but the difference was not statistically significant (P = 0.052). Production of salivary amylase is correlated with AMY1 CNV, but the majority of interindividual variation comes from other sources. Long-range haplotype structure may affect expression, but this was not significant in our data.

  18. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy.

    PubMed

    Casa, Valentina; Runfola, Valeria; Micheloni, Stefano; Aziz, Arif; Dilworth, F Jeffrey; Gabellini, Davide

    2017-02-15

    Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation. © The Author 2016. Published by Oxford University Press.

  19. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  20. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  1. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  2. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  3. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  4. Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping.

    PubMed

    Wood-Bouwens, Christina M; Ji, Hanlee P

    2018-01-01

    Droplet digital PCR (ddPCR) allows for accurate quantification of genetic events such as copy number variation and single nucleotide variants. Probe-based assays represent the current "gold-standard" for detection and quantification of these genetic events. Here, we introduce a cost-effective single color ddPCR assay that allows for single genome resolution quantification of copy number and single nucleotide variation.

  5. Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode1[W][OPEN

    PubMed Central

    Cook, David E.; Bayless, Adam M.; Wang, Kai; Guo, Xiaoli; Song, Qijian; Jiang, Jiming; Bent, Andrew F.

    2014-01-01

    Copy number variation of kilobase-scale genomic DNA segments, beyond presence/absence polymorphisms, can be an important driver of adaptive traits. Resistance to Heterodera glycines (Rhg1) is a widely utilized quantitative trait locus that makes the strongest known contribution to resistance against soybean cyst nematode (SCN), Heterodera glycines, the most damaging pathogen of soybean (Glycine max). Rhg1 was recently discovered to be a complex locus at which resistance-conferring haplotypes carry up to 10 tandem repeat copies of a 31-kb DNA segment, and three disparate genes present on each repeat contribute to SCN resistance. Here, we use whole-genome sequencing, fiber-FISH (fluorescence in situ hybridization), and other methods to discover the genetic variation at Rhg1 across 41 diverse soybean accessions. Based on copy number variation, transcript abundance, nucleic acid polymorphisms, and differentially methylated DNA regions, we find that SCN resistance is associated with multicopy Rhg1 haplotypes that form two distinct groups. The tested high-copy-number Rhg1 accessions, including plant introduction (PI) 88788, contain a flexible number of copies (seven to 10) of the 31-kb Rhg1 repeat. The identified low-copy-number Rhg1 group, including PI 548402 (Peking) and PI 437654, contains three copies of the Rhg1 repeat and a newly identified allele of Glyma18g02590 (a predicted α-SNAP [α-soluble N-ethylmaleimide–sensitive factor attachment protein]). There is strong evidence for a shared origin of the two resistance-conferring multicopy Rhg1 groups and subsequent independent evolution. Differentially methylated DNA regions also were identified within Rhg1 that correlate with SCN resistance. These data provide insights into copy number variation of multigene segments, using as the example a disease resistance trait of high economic importance. PMID:24733883

  6. Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach.

    PubMed

    Bonnefond, Amélie; Yengo, Loïc; Dechaume, Aurélie; Canouil, Mickaël; Castelain, Maxime; Roger, Estelle; Allegaert, Frédéric; Caiazzo, Robert; Raverdy, Violeta; Pigeyre, Marie; Arredouani, Abdelilah; Borys, Jean-Michel; Lévy-Marchal, Claire; Weill, Jacques; Roussel, Ronan; Balkau, Beverley; Marre, Michel; Pattou, François; Brousseau, Thierry; Froguel, Philippe

    2017-02-23

    Salivary (AMY1) and pancreatic (AMY2) amylases hydrolyze starch. Copy number of AMY1A (encoding AMY1) was reported to be higher in populations with a high-starch diet and reduced in obese people. These results based on quantitative PCR have been challenged recently. We aimed to re-assess the relationship between amylase and adiposity using a systems biology approach. We assessed the association between plasma enzymatic activity of AMY1 or AMY2, and several metabolic traits in almost 4000 French individuals from D.E.S.I.R. longitudinal study. The effect of the number of copies of AMY1A (encoding AMY1) or AMY2A (encoding AMY2) measured through droplet digital PCR was then analyzed on the same parameters in the same study. A Mendelian randomization analysis was also performed. We subsequently assessed the association between AMY1A copy number and obesity risk in two case-control studies (5000 samples in total). Finally, we assessed the association between body mass index (BMI)-related plasma metabolites and AMY1 or AMY2 activity. We evidenced strong associations between AMY1 or AMY2 activity and lower BMI. However, we found a modest contribution of AMY1A copy number to lower BMI. Mendelian randomization identified a causal negative effect of BMI on AMY1 and AMY2 activities. Yet, we also found a significant negative contribution of AMY1 activity at baseline to the change in BMI during the 9-year follow-up, and a significant contribution of AMY1A copy number to lower obesity risk in children, suggesting a bidirectional relationship between AMY1 activity and adiposity. Metabonomics identified a BMI-independent association between AMY1 activity and lactate, a product of complex carbohydrate fermentation. These findings provide new insights into the involvement of amylase in adiposity and starch metabolism.

  7. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    PubMed

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  8. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.

    PubMed

    Baucom, Regina S; Estill, James C; Chaparro, Cristian; Upshaw, Naadira; Jogi, Ansuya; Deragon, Jean-Marc; Westerman, Richard P; Sanmiguel, Phillip J; Bennetzen, Jeffrey L

    2009-11-01

    Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and approximately 35,000 copies, respectively, or a combined approximately 1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity.

  9. 75 FR 81942 - Importation of Clementines From Spain; Amendment to Inspection Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... copy of your comment to Docket No. APHIS-2010-0036, Regulatory Analysis and Development, PPD, APHIS..., Assistant Director of Preclearance Programs, Quarantine Policy, Analysis, and Support, PPQ, APHIS, 4700... have increased, and lower the number if environmental, climatic, or other factors indicate a lower risk...

  10. A Complex 6p25 Rearrangement in a Child With Multiple Epiphyseal Dysplasia

    PubMed Central

    Bedoyan, Jirair K.; Lesperance, Marci M.; Ackley, Todd; Iyer, Ramaswamy K.; Innis, Jeffrey W.; Misra, Vinod K.

    2015-01-01

    Genomic rearrangements are increasingly recognized as important contributors to human disease. Here we report on an 11½-year-old child with myopia, Duane retraction syndrome, bilateral mixed hearing loss, skeletal anomalies including multiple epiphyseal dysplasia, and global developmental delay, and a complex 6p25 genomic rearrangement. We have employed oligonucleotide-based comparative genomic hybridization arrays (aCGH) of different resolutions (44 and 244K) as well as a 1 M single nucleotide polymorphism (SNP) array to analyze this complex rearrangement. Our analyses reveal a complex rearrangement involving a ~2.21 Mb interstitial deletion, a ~240 kb terminal deletion, and a 70–80 kb region in between these two deletions that shows maintenance of genomic copy number. The interstitial deletion contains eight known genes, including three Forkhead box containing (FOX) transcription factors (FOXQ1, FOXF2, and FOXC1). The region maintaining genomic copy number partly overlaps the dual specificity protein phosphatase 22 (DUSP22) gene. Array analyses suggest a homozygous loss of genomic material at the 5′ end of DUSP22, which was corroborated using TaqMan® copy number analysis. It is possible that this homozygous genomic loss may render both copies of DUSP22 or its products non-functional. Our analysis suggests a rearrangement mechanism distinct from a previously reported replication-based error-prone mechanism without template switching for a specific 6p25 rearrangement with a 1.22 Mb interstitial deletion. Our study demonstrates the utility and limitations of using oligonucleotide-based aCGH and SNP array technologies of increasing resolutions in order to identify complex DNA rearrangements and gene disruptions. PMID:21204225

  11. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS UNDER FEDERAL POWER ACT SECTION 203 § 33.8 Number of copies. An original and eight copies of the application under this part must be submitted. If..., the applicant must submit all such information in electronic format (e.g., on computer diskette or on...

  12. Great Genotypic and Phenotypic Diversities Associated with Copy-Number Variations of Complement C4 and RP-C4-CYP21-TNX (RCCX) Modules: a Comparison of Asian Indian and European American Populations

    PubMed Central

    Saxena, Kapil; Kitzmiller, Kathryn J.; Wu, Yee Ling; Zhou, Bi; Esack, Nazreen; Hiremath, Leena; Chung, Erwin K.; Yang, Yan; Yu, C. Yung

    2009-01-01

    Inter-individual gene copy-number variations (CNVs) probably afford human populations the flexibility to respond to a variety of environmental challenges, but also lead to differential disease predispositions. We investigated gene CNVs for complement component C4 and steroid 21-hydroxylase from the RP-C4-CYP21-TNX (RCCX) modules located in the major histocompatibility complex among healthy Asian-Indian Americans (AIA) and compared them to European Americans. A combination of definitive techniques that yielded cross-confirmatory results was used. The medium gene copy-numbers for C4 and its isotypes, acidic C4A and basic C4B, were 4, 2 and 2, respectively, but their frequencies were only 53–56%. The distribution patterns for total C4 and C4A are skewed towards the high copy-number side. For example, the frequency of AIA-subjects with three copies of C4A (30.7%) was 3.92-fold of those with a single copy (7.83%). The monomodular-short haplotype with a single C4B gene and the absence of C4A, which is in linkage- disequilibrium with HLA DRB1*0301 in Europeans and a strong risk factor for autoimmune diseases, has a frequency of 0.012 in AIA but 0.106 among healthy European Americans (p=6.6×10−8). The copy-number and the size of C4 genes strongly determine the plasma C4 protein concentrations. Parallel variations in copy-numbers of CYP21A (CYP21A1P) and TNXA with total C4 were also observed. Notably, 13.1% of AIA-subjects had three copies of the functional CYP21B, which were likely generated by recombinations between monomodular and bimodular RCCX haplotypes. The high copy-numbers of C4 and the high frequency of RCCX recombinants offer important insights to the prevalence of autoimmune and genetic diseases. PMID:19135723

  13. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem

    PubMed Central

    Valdivia-Anistro, Jorge A.; Eguiarte-Fruns, Luis E.; Delgado-Sapién, Gabriela; Márquez-Zacarías, Pedro; Gasca-Pineda, Jaime; Learned, Jennifer; Elser, James J.; Olmedo-Alvarez, Gabriela; Souza, Valeria

    2016-01-01

    The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the physiology of this bacterial group under extreme oligotrophic conditions. PMID:26779143

  14. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome

    PubMed Central

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948

  15. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    PubMed

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  16. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing.

    PubMed

    Zhu, Xiangyu; Li, Jie; Ru, Tong; Wang, Yaping; Xu, Yan; Yang, Ying; Wu, Xing; Cram, David S; Hu, Yali

    2016-04-01

    To determine the type and frequency of pathogenic chromosomal abnormalities in fetuses diagnosed with congenital heart disease (CHD) using chromosomal microarray analysis (CMA) and validate next-generation sequencing as an alternative diagnostic method. Chromosomal aneuploidies and submicroscopic copy number variations (CNVs) were identified in amniocytes DNA samples from CHD fetuses using high-resolution CMA and copy number variation sequencing (CNV-Seq). Overall, 21 of 115 CHD fetuses (18.3%) referred for CMA had a pathogenic chromosomal anomaly. In six of 73 fetuses (8.2%) with an isolated CHD, CMA identified two cases of DiGeorge syndrome, and one case each of 1q21.1 microdeletion, 16p11.2 microdeletion and Angelman/Prader Willi syndromes, and 22q11.21 microduplication syndrome. In 12 of 42 fetuses (28.6%) with CHD and additional structural abnormalities, CMA identified eight whole or partial trisomies (19.0%), five CNVs (11.9%) associated with DiGeorge, Wolf-Hirschhorn, Miller-Dieker, Cri du Chat and Blepharophimosis, Ptosis, and Epicanthus Inversus syndromes and four other rare pathogenic CNVs (9.5%). Overall, there was a 100% diagnostic concordance between CMA and CNV-Seq for detecting all 21 pathogenic chromosomal abnormalities associated with CHD. CMA and CNV-Seq are reliable and accurate prenatal techniques for identifying pathogenic fetal chromosomal abnormalities associated with cardiac defects. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  17. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    PubMed Central

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  18. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers

    PubMed Central

    Nath, Aritro; Chan, Christina

    2016-01-01

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers. PMID:26725848

  19. Molecular Characterization of Transgene Integration by Next-Generation Sequencing in Transgenic Cattle

    PubMed Central

    Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning

    2012-01-01

    As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species. PMID:23185606

  20. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers.

    PubMed

    Nath, Aritro; Chan, Christina

    2016-01-04

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers.

  1. Comparison of the copy numbers of bovine leukemia virus in the lymph nodes of cattle with enzootic bovine leukosis and cattle with latent infection.

    PubMed

    Somura, Yoshiko; Sugiyama, Emi; Fujikawa, Hiroshi; Murakami, Kenji

    2014-10-01

    To establish a diagnostic index for predicting enzootic bovine leukosis (EBL), proviral bovine leukemia virus (BLV) copies in whole blood, lymph nodes and spleen were examined by quantitative real-time PCR (qPCR). Cattle were divided into two groups, EBL and BLV-infected, based on meat inspection data. The number of BLV copies in all specimens of EBL cattle was significantly higher than those of BLV-infected cattle (p < 0.0001), and the number of BLV copies in the lymph nodes was particularly large. Over 70 % of the superficial cervical, medial iliac and jejunal lymph nodes from EBL cattle had more than 1,000 copies/10 ng DNA, whereas lymph nodes from BLV-infected cattle did not. These findings suggest that the cattle harboring more than 1,000 BLV copies may be diagnosed with EBL.

  2. Genetic Control of L-a and L-(Bc) Dsrna Copy Number in Killer Systems of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Ball, Steven G.; Tirtiaux, Catherine; Wickner, Reed B.

    1984-01-01

    M dsRNA in yeast encodes a toxin precursor and immunity protein, whereas L-A dsRNA encodes the 81,000-dalton major protein of the intracellular particles in which both L-A and M are found. L-(BC) dsRNA(s) are found in particles with different coat proteins. We find that M dsRNA lowers the copy number of L-A, but not L-(BC). The SKI gene products lower the copy number of L-(BC), L-A, M1 and M2. This is the first known interaction of L-(BC) with any element of the killer systems. The MAK3, MAK10 and PET18 gene products are necessary for L-A maintenance and replication, but mutations in these genes do not affect L-(BC) copy number. Mutations in MAK1, MAK4, MAK7, MAK17 and MAK24 do not detectably affect copy number of L-(BC) or L-A. PMID:17246214

  3. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks

    PubMed Central

    van Dyk, Ewald; Hoogstraat, Marlous; ten Hoeve, Jelle; Reinders, Marcel J. T.; Wessels, Lodewyk F. A.

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects recurrent copy number breaks, rather than recurrently amplified or deleted regions. This change of perspective allows for a simplified approach as recursive peak splitting procedures and repeated re-estimation of the background model are avoided. Furthermore, we control the false discovery rate on the level of called regions, rather than at the probe level, as in competing algorithms. We benchmark RUBIC against GISTIC2 (a state-of-the-art approach) and RAIG (a recently proposed approach) on simulated copy number data and on three SNP6 and NGS copy number data sets from TCGA. We show that RUBIC calls more focal recurrent regions and identifies a much larger fraction of known cancer genes. PMID:27396759

  4. Cancer vulnerabilities unveiled by genomic loss

    PubMed Central

    Nijhawan, Deepak; Zack, Travis I.; Ren, Yin; Strickland, Matthew R.; Lamothe, Rebecca; Schumacher, Steven E.; Tsherniak, Aviad; Besche, Henrike C.; Rosenbluh, Joseph; Shehata, Shyemaa; Cowley, Glenn S.; Weir, Barbara A.; Goldberg, Alfred L.; Mesirov, Jill P.; Root, David E.; Bhatia, Sangeeta N.; Beroukhim, Rameen; Hahn, William C.

    2012-01-01

    Summary Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy-number losses, we performed integrated analyses of genome-wide copy-number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy-number loss of that gene. These CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes are enriched for spliceosome, proteasome and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy-number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability. PMID:22901813

  5. Hidden Markov Model-Based CNV Detection Algorithms for Illumina Genotyping Microarrays.

    PubMed

    Seiser, Eric L; Innocenti, Federico

    2014-01-01

    Somatic alterations in DNA copy number have been well studied in numerous malignancies, yet the role of germline DNA copy number variation in cancer is still emerging. Genotyping microarrays generate allele-specific signal intensities to determine genotype, but may also be used to infer DNA copy number using additional computational approaches. Numerous tools have been developed to analyze Illumina genotype microarray data for copy number variant (CNV) discovery, although commonly utilized algorithms freely available to the public employ approaches based upon the use of hidden Markov models (HMMs). QuantiSNP, PennCNV, and GenoCN utilize HMMs with six copy number states but vary in how transition and emission probabilities are calculated. Performance of these CNV detection algorithms has been shown to be variable between both genotyping platforms and data sets, although HMM approaches generally outperform other current methods. Low sensitivity is prevalent with HMM-based algorithms, suggesting the need for continued improvement in CNV detection methodologies.

  6. Functional effects of CCL3L1 copy number.

    PubMed

    Carpenter, D; McIntosh, R S; Pleass, R J; Armour, J A L

    2012-07-01

    Copy number variation (CNV) is becoming increasingly important as a feature of human variation in disease susceptibility studies. However, the consequences of CNV are not so well understood. Here, we present data exploring the functional consequences of CNV of CCL3L1 in 55 independent UK samples with no known clinical phenotypes. The copy number of CCL3L1 was determined by the paralogue ratio test, and expression levels of macrophage inflammatory protein-1α (MIP-1α) and mRNA from stimulated monocytes were measured and analysed. The data show no statistically significant association of MIP-1α protein levels with copy number. However, there was a significant correlation between copy number and CCL3L1:CCL3 mRNA ratio. The data also provide evidence that expression of CCL3 predominates in both protein and mRNA, and therefore the observed variation of CCL3 is potentially more important biologically than that of CNV of CCL3L1.

  7. [Detection of the exogenous gene copy number of the transgenic tomato anti-caries vaccine].

    PubMed

    Bai, Guo-hui; Liu, Jian-guo; Tian, Yuan; Chen, Zhu; Bai, Peng-yuan; Han, Qi; Gu, Yu; Guan, Xiao-yan; Wang, Hai-hui

    2013-12-01

    To detect the exogenous gene copy number of the transgenic tomato anti-caries vaccine by using the SYBR Green real-time PCR. Recombinant plasmid pEAC10 and pEPC10 were used as standard to detect genome samples of exogenous gene pacA-ctxB and pacP-ctxB by SYBR green fluorescent quantitation, then the average value was calculated as gene copy number. The copy number of the transgenic tomato carrying pacA-ctxB was 1.3 and the pacP-ctxB was 3.2. The transgenic tomato plants which have high stability are low-copy transgenic plants. Supported by National Natural Science Foundation of China (30160086, 81260164), Science and Technical Fund of Guizhou Province (LKZ[2011]41), Project of Technology Innovation Team in Guizhou Province, Leading Academic Discipline Construction Project in Guizhou Province and Excellent Scientific Research Team Cultivation Project in Zunyi Medical College ([2012]12).

  8. Copy number variations in the amylase gene (AMY2B) in Japanese native dog breeds.

    PubMed

    Tonoike, A; Hori, Y; Inoue-Murayama, M; Konno, A; Fujita, K; Miyado, M; Fukami, M; Nagasawa, M; Mogi, K; Kikusui, T

    2015-10-01

    A recent study suggested that increased copy numbers of the AMY2B gene might be a crucial genetic change that occurred during the domestication of dogs. To investigate AMY2B expansion in ancient breeds, which are highly divergent from modern breeds of presumed European origins, we analysed copy numbers in native Japanese dog breeds. Copy numbers in the Akita and Shiba, two ancient breeds in Japan, were higher than those in wolves. However, compared to a group of various modern breeds, Akitas had fewer copy numbers, whereas Shibas exhibited the same level of expansion as modern breeds. Interestingly, average AMY2B copy numbers in the Jomon-Shiba, a unique line of the Shiba that has been bred to maintain their appearance resembling ancestors of native Japanese dogs and that originated in the same region as the Akita, were lower than those in the Shiba. These differences may have arisen from the earlier introduction of rice farming to the region in which the Shiba originated compared to the region in which the Akita and the Jomon-Shiba originated. Thus, our data provide insights into the relationship between the introduction of agriculture and AMY2B expansion in dogs. © 2015 Stichting International Foundation for Animal Genetics.

  9. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    NASA Technical Reports Server (NTRS)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  10. Biotic and abiotic dynamics of a high solid-state anaerobic digestion box-type container system.

    PubMed

    Walter, Andreas; Probst, Maraike; Hinterberger, Stephan; Müller, Horst; Insam, Heribert

    2016-03-01

    A solid-state anaerobic digestion box-type container system for biomethane production was observed in 12 three-week batch fermentations. Reactor performance was monitored using physico-chemical analysis and the methanogenic community was identified using ANAEROCHIP-microarrays and quantitative PCR. A resilient community was found in all batches, despite variations in inoculum to substrate ratio, feedstock quality, and fluctuating reactor conditions. The consortia were dominated by mixotrophic Methanosarcina that were accompanied by hydrogenotrophic Methanobacterium, Methanoculleus, and Methanocorpusculum. The relationship between biotic and abiotic variables was investigated using bivariate correlation analysis and univariate analysis of variance. High amounts of biogas were produced in batches with high copy numbers of Methanosarcina. High copy numbers of Methanocorpusculum and extensive percolation, however, were found to negatively correlate with biogas production. Supporting these findings, a negative correlation was detected between Methanocorpusculum and Methanosarcina. Based on these results, this study suggests Methanosarcina as an indicator for well-functioning reactor performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Single-pair fluorescence resonance energy transfer analysis of mRNA transcripts for highly sensitive gene expression profiling in near real time.

    PubMed

    Peng, Zhiyong; Young, Brandon; Baird, Alison E; Soper, Steven A

    2013-08-20

    Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with online single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10-10,000 copies) with an R(2) = 0.9995 for RT-LDR/spFRET and R(2) = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a two thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time-sensitive therapeutics.

  12. Single-Pair Fret Analysis of mRNA Transcripts for Highly Sensitive Gene Expression Profiling in Near Real Time

    PubMed Central

    Peng, Zhiyong; Young, Brandon; Baird, Alison E.; Soper, Steven A.

    2013-01-01

    Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with on-line single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10 − 10,000 copies) with an R2 = 0.9995 for RT-LDR/spFRET and R2 = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a 2 thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time-sensitive therapeutics. PMID:23869556

  13. Whole Genome Analysis of a Wine Yeast Strain

    PubMed Central

    Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.

    2001-01-01

    Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902

  14. The genomic landscape of chronic lymphocytic leukaemia: biological and clinical implications.

    PubMed

    Strefford, Jonathan C

    2015-04-01

    Chronic lymphocytic leukaemia (CLL) remains at the forefront of the genetic analysis of human tumours, principally due its prevalence, protracted natural history and accessibility to suitable material for analysis. With the application of high-throughput genetic technologies, we have an unbridled view of the architecture of the CLL genome, including a comprehensive description of the copy number and mutational landscape of the disease, a detailed picture of clonal evolution during pathogenesis, and the molecular mechanisms that drive genomic instability and therapeutic resistance. This work has nuanced the prognostic importance of established copy number alterations, and identified novel prognostically relevant gene mutations that function within biological pathways that are attractive treatment targets. Herein, an overview of recent genomic discoveries will be reviewed, with associated biological and clinical implications, and a view into how clinical implementation may be facilitated. © 2014 John Wiley & Sons Ltd.

  15. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival

    PubMed Central

    Jain, Ajay N.; Chin, Koei; Børresen-Dale, Anne-Lise; Erikstein, Bjorn K.; Lonning, Per Eystein; Kaaresen, Rolf; Gray, Joe W.

    2001-01-01

    We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data. PMID:11438741

  16. Integrative Analysis Reveals an Outcome-associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B-cell Lymphoma

    PubMed Central

    Monti, Stefano; Chapuy, Bjoern; Takeyama, Kunihiko; Rodig, Scott J; Hao, Yangsheng; Yeda, Kelly T.; Inguilizian, Haig; Mermel, Craig; Curie, Treeve; Dogan, Ahmed; Kutok, Jeffery L; Beroukim, Rameen; Neuberg, Donna; Habermann, Thomas; Getz, Gad; Kung, Andrew L; Golub, Todd R; Shipp, Margaret A

    2013-01-01

    Summary Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease with a high proliferation rate. By integrating copy number data with transcriptional profiles and performing pathway analysis in primary DLBCLs, we identified a comprehensive set of copy number alterations (CNAs) that decreased p53 activity and perturbed cell cycle regulation. Primary tumors either had multiple complementary alterations of p53 and cell cycle components or largely lacked these lesions. DLBCLs with p53 and cell cycle pathway CNAs had decreased abundance of p53 target transcripts and increased expression of E2F target genes and the Ki67 proliferation marker. CNAs of the CDKN2A-TP53-RB-E2F axis provide a structural basis for increased proliferation in DLBCL, predict outcome with current therapy and suggest targeted treatment approaches. PMID:22975378

  17. Stochastic Petri net analysis of a replicated file system

    NASA Technical Reports Server (NTRS)

    Bechta Dugan, Joanne; Ciardo, Gianfranco

    1989-01-01

    A stochastic Petri-net model of a replicated file system is presented for a distributed environment where replicated files reside on different hosts and a voting algorithm is used to maintain consistency. Witnesses, which simply record the status of the file but contain no data, can be used in addition to or in place of files to reduce overhead. A model sufficiently detailed to include file status (current or out-of-date), as well as failure and repair of hosts where copies or witnesses reside, is presented. The number of copies and witnesses is a parameter of the model. Two different majority protocols are examined, one where a majority of all copies and witnesses is necessary to form a quorum, and the other where only a majority of the copies and witnesses on operational hosts is needed. The latter, known as adaptive voting, is shown to increase file availability in most cases.

  18. Sparse representation and Bayesian detection of genome copy number alterations from microarray data.

    PubMed

    Pique-Regi, Roger; Monso-Varona, Jordi; Ortega, Antonio; Seeger, Robert C; Triche, Timothy J; Asgharzadeh, Shahab

    2008-02-01

    Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) that are associated with the development and behavior of tumors. Advances in microarray technology have allowed for greater resolution in detection of DNA copy number changes (amplifications or deletions) across the genome. However, the increase in number of measured signals and accompanying noise from the array probes present a challenge in accurate and fast identification of breakpoints that define CNA. This article proposes a novel detection technique that exploits the use of piece wise constant (PWC) vectors to represent genome copy number and sparse Bayesian learning (SBL) to detect CNA breakpoints. First, a compact linear algebra representation for the genome copy number is developed from normalized probe intensities. Second, SBL is applied and optimized to infer locations where copy number changes occur. Third, a backward elimination (BE) procedure is used to rank the inferred breakpoints; and a cut-off point can be efficiently adjusted in this procedure to control for the false discovery rate (FDR). The performance of our algorithm is evaluated using simulated and real genome datasets and compared to other existing techniques. Our approach achieves the highest accuracy and lowest FDR while improving computational speed by several orders of magnitude. The proposed algorithm has been developed into a free standing software application (GADA, Genome Alteration Detection Algorithm). http://biron.usc.edu/~piquereg/GADA

  19. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer.

    PubMed

    Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E

    1995-05-01

    Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.

  20. Genomic amplification of the caprine EDNRA locus might lead to a dose dependent loss of pigmentation

    PubMed Central

    Menzi, Fiona; Keller, Irene; Reber, Irene; Beck, Julia; Brenig, Bertram; Schütz, Ekkehard; Leeb, Tosso; Drögemüller, Cord

    2016-01-01

    The South African Boer goat displays a characteristic white spotting phenotype, in which the pigment is limited to the head. Exploiting the existing phenotype variation within the breed, we mapped the locus causing this white spotting phenotype to chromosome 17 by genome wide association. Subsequent whole genome sequencing identified a 1 Mb copy number variant (CNV) harboring 5 genes including EDNRA. The analysis of 358 Boer goats revealed 3 alleles with one, two, and three copies of this CNV. The copy number is correlated with the degree of white spotting in goats. We propose a hypothesis that ectopic overexpression of a mutant EDNRA scavenges EDN3 required for EDNRB signaling and normal melanocyte development and thus likely lead to an absence of melanocytes in the non-pigmented body areas of Boer goats. Our findings demonstrate the value of domestic animals as reservoir of unique mutants and for identifying a precisely defined functional CNV. PMID:27329507

  1. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. High-resolution array comparative genomic hybridization (aCGH) identifies copy number alterations in diffuse large B-cell lymphoma that predict response to immuno-chemotherapy

    PubMed Central

    Kreisel, F.; Kulkarni, S.; Kerns, R. T.; Hassan, A.; Deshmukh, H.; Nagarajan, R.; Frater, J. L.; Cashen, A.

    2013-01-01

    Despite recent attempts at sub-categorization, including gene expression profiling into prognostically different groups of “germinal center B-cell type” and “activated B-cell type”, diffuse large B-cell lymphoma (DLBCL) remains a biologically heterogenous tumor with no clear prognostic biomarkers to guide therapy. Whole genome, high resolution array comparative genomic hybridization (aCGH) was performed on 4 cases of chemoresistant DLBCL and 4 cases of chemo-responsive DLBCL to identify genetic differences which may correlate with response to R-CHOP therapy. Array CGH analysis identified 7 DNA copy number alteration (CNA) regions exclusive to the chemoresistant group, consisting of amplifications at 1p36.13, 1q42.3, 3p21.31, 7q11.23, and 16p13.3, and loss at 9p21.3, and 14p21.31. Copy number loss of the tumor suppressor genes CDKN2A (p16, p14) and CDKN2B (p15) at 9p21.3 was validated by fluorescence in situ hybridization and immunohistochemistry as independent techniques. In the chemo-sensitive group, 12 CNAs were detected consisting of segment gains on 1p36.11, 1p36.22, 2q11.2, 8q24.3, 12p13.33, and 22q13.2 and segment loss on 6p21.32. RUNX3, a tumor suppressor gene located on 1p36.11 and MTHFR, which encodes for the enzyme methylenetetrahydrofolate reductase, located on 1p36.22 are the only known genes in this group associated with lymphoma. Whole genome aCGH analysis has detected copy number alterations exclusive to either chemoresistant or chemo-responsive DLBCL that may represent consistent clonal changes predictive for prognosis and outcome of chemotherapy. PMID:21504712

  3. Population genetics and molecular evolution of DNA sequences in transposable elements. I. A simulation framework.

    PubMed

    Kijima, T E; Innan, Hideki

    2013-11-01

    A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.

  4. Copy number gain at 8q12.1-q22.1 is associated with a malignant tumor phenotype in salivary gland myoepitheliomas.

    PubMed

    Vékony, Hedy; Röser, Kerstin; Löning, Thomas; Ylstra, Bauke; Meijer, Gerrit A; van Wieringen, Wessel N; van de Wiel, Mark A; Carvalho, Beatriz; Kok, Klaas; Leemans, C René; van der Waal, Isaäc; Bloemena, Elisabeth

    2009-02-01

    Salivary gland myoepithelial tumors are relatively uncommon tumors with an unpredictable clinical course. More knowledge about their genetic profiles is necessary to identify novel predictors of disease. In this study, we subjected 27 primary tumors (15 myoepitheliomas and 12 myoepithelial carcinomas) to genome-wide microarray-based comparative genomic hybridization (array CGH). We set out to delineate known chromosomal aberrations in more detail and to unravel chromosomal differences between benign myoepitheliomas and myoepithelial carcinomas. Patterns of DNA copy number aberrations were analyzed by unsupervised hierarchical cluster analysis. Both benign and malignant tumors revealed a limited amount of chromosomal alterations (median of 5 and 7.5, respectively). In both tumor groups, high frequency gains (> or =20%) were found mainly at loci of growth factors and growth factor receptors (e.g., PDGF, FGF(R)s, and EGFR). In myoepitheliomas, high frequency losses (> or =20%) were detected at regions of proto-cadherins. Cluster analysis of the array CGH data identified three clusters. Differential copy numbers on chromosome arm 8q and chromosome 17 set the clusters apart. Cluster 1 contained a mixture of the two phenotypes (n = 10), cluster 2 included mostly benign tumors (n = 10), and cluster 3 only contained carcinomas (n = 7). Supervised analysis between malignant and benign tumors revealed a 36 Mbp-region at 8q being more frequently gained in malignant tumors (P = 0.007, FDR = 0.05). This is the first study investigating genomic differences between benign and malignant myoepithelial tumors of the salivary glands at a genomic level. Both unsupervised and supervised analysis of the genomic profiles revealed chromosome arm 8q to be involved in the malignant phenotype of salivary gland myoepitheliomas.

  5. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention.

    PubMed

    Srivastava, Niloo; Manvati, Siddharth; Srivastava, Archita; Pal, Ranjana; Kalaiarasan, Ponnusamy; Chattopadhyay, Shilpi; Gochhait, Sailesh; Dua, Raina; Bamezai, Rameshwar N K

    2011-04-04

    New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests that miR-24-2 is more effective in controlling H2AX gene expression, regardless of the change in gene copy number. Further, the study indicates that combination therapy with miR-24-2 along with an anticancer drug such as cisplatin could provide a new avenue in cancer therapy for patients with tumors otherwise resistant to drugs.

  6. Psoriasis is associated with increased beta-defensin genomic copy number

    PubMed Central

    Hollox, Edward J.; Huffmeier, Ulrike; Zeeuwen, Patrick L.J.M.; Palla, Raquel; Lascorz, Jesús; Rodijk-Olthuis, Diana; van de Kerkhof, Peter C.M.; Traupe, Heiko; de Jongh, Gys; den Heijer, Martin; Reis, André; Armour, John A.L.; Schalkwijk, Joost

    2008-01-01

    Psoriasis is a common inflammatory skin disease with a strong genetic component. We have analysed the genomic copy number polymorphism of the beta-defensin region on human chromosome 8 in 179 Dutch psoriasis patients and 272 controls, and in 319 German psoriasis patients and 305 controls. Comparisons in both cohorts show a significant association between higher genomic copy number for beta-defensin genes and the risk of psoriasis. PMID:18059266

  7. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake.

    PubMed

    Pu, L; Zhang, L C; Zhang, J S; Song, X; Wang, L G; Liang, J; Zhang, Y B; Liu, X; Yan, H; Zhang, T; Yue, J W; Li, N; Wu, Q Q; Wang, L X

    2016-08-12

    Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is essential for apoptosis, proliferation, differentiation, and immune responses, and is a candidate marker for residual feed intake (RFI) in pig. We cloned the full-length cDNA sequence of porcine MAP3K5 by rapid-amplification of cDNA ends. The 5451-bp gene contains a 5'-untranslated region (UTR) (718 bp), a coding region (3738 bp), and a 3'-UTR (995 bp), and encodes a peptide of 1245 amino acids, which shares 97, 99, 97, 93, 91, and 84% sequence identity with cattle, sheep, human, mouse, chicken, and zebrafish MAP3K5, respectively. The deduced MAP3K5 protein sequence contains two conserved domains: a DUF4071 domain and a protein kinase domain. Phylogenetic analysis showed that porcine MAP3K5 forms a separate branch to vicugna and camel MAP3K5. Tissue expression analysis using real-time quantitative polymerase chain reaction (qRT-PCR) revealed that MAP3K5 was expressed in the heart, liver, spleen, lung, kidney, muscle, fat, pancrea, ileum, and stomach tissues. Copy number variation was detected for porcine MAP3K5 and validated by qRT-PCR. Furthermore, a significant increase in average copy number was detected in the low RFI group when compared to the high RFI group in a Duroc pig population. These results provide useful information regarding the influence of MAP3K5 on RFI in pigs.

  8. Traditional karyotyping vs copy number variation sequencing for detection of chromosomal abnormalities associated with spontaneous miscarriage.

    PubMed

    Liu, S; Song, L; Cram, D S; Xiong, L; Wang, K; Wu, R; Liu, J; Deng, K; Jia, B; Zhong, M; Yang, F

    2015-10-01

    To compare the performance of traditional G-banding karyotyping with that of copy number variation sequencing (CNV-Seq) for detection of chromosomal abnormalities associated with miscarriage. Products of conception (POC) were collected from spontaneous miscarriages. Chromosomal abnormalities were detected using high-resolution G-banding karyotyping and CNV sequencing. Quantitative fluorescent polymerase chain reaction analysis of maternal and POC DNA for short tandem repeat (STR) markers was used to both monitor maternal cell contamination and confirm the chromosomal status and sex of the miscarriage tissue. A total of 64 samples of POC, comprising 16 with an abnormal and 48 with a normal karyotype, were selected and coded for analysis by CNV-Seq. CNV-Seq results were concordant for 14 (87.5%) of the 16 gross chromosomal abnormalities identified by karyotyping, including 11 autosomal trisomies and three sex chromosomal aneuploidies (45,X). Of the two discordant results, a 69,XXX polyploidy was missed by CNV-Seq, although supporting STR marker analysis confirmed the triploidy. In contrast, CNV-Seq identified a sample with 45,X karyotype as a 45,X/46,XY mosaic. In the remaining 48 samples of POC with a normal karyotype, CNV-Seq detected a 2.58-Mb 22q deletion associated with DiGeorge syndrome and nine different smaller CNVs of no apparent clinical significance. CNV-Seq used in parallel with STR profiling is a reliable and accurate alternative to karyotyping for identifying chromosome copy number abnormalities associated with spontaneous miscarriage. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  9. Multiple Genetic Backgrounds of the Amplified Plasmodium falciparum Multidrug Resistance (pfmdr1) Gene and Selective Sweep of 184F Mutation in Cambodia

    PubMed Central

    Vinayak, Sumiti; Alam, Md Tauqeer; Sem, Rithy; Shah, Naman K.; Susanti, Augustina I.; Lim, Pharath; Muth, Sinuon; Maguire, Jason D.; Rogers, William O.; Fandeur, Thierry; Barnwell, John W.; Escalante, Ananias A.; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R.; Udhayakumar, Venkatachalam

    2011-01-01

    Background The emergence of artesunate-mefloquine (AS+MQ)–resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia. Methods We characterized 13 microsatellite loci flanking (± 99 kb) pfmdr1 in 93 single-clone P. falciparum infections, of which 31 had multiple copies and 62 had a single copy of the pfmdr1 gene. Results Genetic analysis revealed no difference in the mean (± standard deviation) expected heterozygosity (He) at loci around single (0.75 ± 0.03) and multiple (0.76 ± 0.04) copies of pfmdr1. Evidence of genetic hitchhiking with the selective sweep of certain haplotypes was seen around mutant (184F) pfmdr1 allele, irrespective of the copy number. There was an overall reduction of 28% in mean He (± SD) around mutant allele (0.56 ± 0.05), compared with wild-type allele (0.84 ± 0.02). Significant linkage disequilibrium was also observed between the loci flanking mutant pfmdr1 allele. Conclusion The 184F mutant allele is under selection, whereas amplification of pfmdr1 gene in this population occurs on multiple genetic backgrounds. PMID:20367478

  10. Identification of copy number variants in horses.

    PubMed

    Doan, Ryan; Cohen, Noah; Harrington, Jessica; Veazey, Kylee; Veazy, Kylee; Juras, Rytis; Cothran, Gus; McCue, Molly E; Skow, Loren; Dindot, Scott V

    2012-05-01

    Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.

  11. MYC and Human Telomerase Gene (TERC) Copy Number Gain in Early-stage Non–small Cell Lung Cancer

    PubMed Central

    Flacco, Antonella; Ludovini, Vienna; Bianconi, Fortunato; Ragusa, Mark; Bellezza, Guido; Tofanetti, Francesca R.; Pistola, Lorenza; Siggillino, Annamaria; Vannucci, Jacopo; Cagini, Lucio; Sidoni, Angelo; Puma, Francesco; Varella-Garcia, Marileila; Crinò, Lucio

    2015-01-01

    Objectives We investigated the frequency of MYC and TERC increased gene copy number (GCN) in early-stage non–small cell lung cancer (NSCLC) and evaluated the correlation of these genomic imbalances with clinicopathologic parameters and outcome. Materials and Methods Tumor tissues were obtained from 113 resected NSCLCs. MYC and TERC GCNs were tested by fluorescence in situ hybridization (FISH) according to the University of Colorado Cancer Center (UCCC) criteria and based on the receiver operating characteristic (ROC) classification. Results When UCCC criteria were applied, 41 (36%) cases for MYC and 41 (36%) cases for TERC were considered FISH-positive. MYC and TERC concurrent FISH-positive was observed in 12 cases (11%): 2 (17%) cases with gene amplification and 10 (83%) with high polysomy. By using the ROC analysis, high MYC (mean ≥2.83 copies/cell) and TERC (mean ≥2.65 copies/cell) GCNs were observed in 60 (53.1%) cases and 58 (51.3%) cases, respectively. High TERC GCN was associated with squamous cell carcinoma (SCC) histology (P = 0.001). In univariate analysis, increased MYC GCN was associated with shorter overall survival (P = 0.032 [UCCC criteria] or P = 0.02 [ROC classification]), whereas high TERC GCN showed no association. In multivariate analysis including stage and age, high MYC GCN remained significantly associated with worse overall survival using both the UCCC criteria (P = 0.02) and the ROC classification (P = 0.008). Conclusions Our results confirm MYC as frequently amplified in early-stage NSCLC and increased MYC GCN as a strong predictor of worse survival. Increased TERC GCN does not have prognostic impact but has strong association with squamous histology. PMID:25806711

  12. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data.

    PubMed

    Łastowska, M; Viprey, V; Santibanez-Koref, M; Wappler, I; Peters, H; Cullinane, C; Roberts, P; Hall, A G; Tweddle, D A; Pearson, A D J; Lewis, I; Burchill, S A; Jackson, M S

    2007-11-22

    Identifying genes, whose expression is consistently altered by chromosomal gains or losses, is an important step in defining genes of biological relevance in a wide variety of tumour types. However, additional criteria are needed to discriminate further among the large number of candidate genes identified. This is particularly true for neuroblastoma, where multiple genomic copy number changes of proven prognostic value exist. We have used Affymetrix microarrays and a combination of fluorescent in situ hybridization and single nucleotide polymorphism (SNP) microarrays to establish expression profiles and delineate copy number alterations in 30 primary neuroblastomas. Correlation of microarray data with patient survival and analysis of expression within rodent neuroblastoma cell lines were then used to define further genes likely to be involved in the disease process. Using this approach, we identify >1000 genes within eight recurrent genomic alterations (loss of 1p, 3p, 4p, 10q and 11q, 2p gain, 17q gain, and the MYCN amplicon) whose expression is consistently altered by copy number change. Of these, 84 correlate with patient survival, with the minimal regions of 17q gain and 4p loss being enriched significantly for such genes. These include genes involved in RNA and DNA metabolism, and apoptosis. Orthologues of all but one of these genes on 17q are overexpressed in rodent neuroblastoma cell lines. A significant excess of SNPs whose copy number correlates with survival is also observed on proximal 4p in stage 4 tumours, and we find that deletion of 4p is associated with improved outcome in an extended cohort of tumours. These results define the major impact of genomic copy number alterations upon transcription within neuroblastoma, and highlight genes on distal 17q and proximal 4p for downstream analyses. They also suggest that integration of discriminators, such as survival and comparative gene expression, with microarray data may be useful in the identification of critical genes within regions of loss or gain in many human cancers.

  13. Cores Of Recurrent Events (CORE) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    CORE is a statistically supported computational method for finding recurrently targeted regions in massive collections of genomic intervals, such as those arising from DNA copy number analysis of single tumor cells or bulk tumor tissues.

  14. Epstein-Barr virus shedding by astronauts during space flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  15. Epidermal growth factor receptor gene amplification in surgical resected Japanese lung cancer.

    PubMed

    Sasaki, Hidefumi; Shimizu, Shigeki; Okuda, Katsuhiro; Kawano, Osamu; Yukiue, Haruhiro; Yano, Motoki; Fujii, Yoshitaka

    2009-06-01

    To evaluate the epidermal growth factor receptor (EGFR) protein expression and increased copy number as predictors of clinical outcome in patients with non-small-cell lung cancer (NSCLC), we have performed fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). We investigated the EGFR increased copy number and EGFR protein expression statuses in 109 surgically treated NSCLC cases. The presence or absence of EGFR mutations of kinase domains was analyzed by genotyping analysis and sequences, and already reported. EGFR increased copy number was defined as Cappuzzo et al. criteria. FISH positive was found from 36/109 (33.0%) lung cancer patients, including 30 high polysomy cases and 6 gene amplification cases. FISH-positive cases were significantly correlated with worse prognosis (log-rank test p=0.0097). Within EGFR-mutant patients (n=55), FISH-positive cases were also correlated with poor prognosis (p=0.0255). FISH-negative tumors were found to be more frequently well-differentiated histology. Smoking status (never smoker vs. smoker, p=0.1510), and gender (p=0.5248) did not correlated with FISH positive. EGFR IHC results were correlated with FISH results (p=0.004), but not correlated with prognosis (p=0.2815). Although EGFR FISH-positive rate did not correlated with EGFR mutation (p=0.1973), EGFR polysomy or amplification cases were correlated with EGFR mutations (p=0.0023). In conclusion, the EGFR FISH-positive rate in Japanese patients with NSCLC was similar to rates in Western populations, unlike the higher frequencies of EGFR mutation in East Asians. A high EGFR gene copy number might have shorter survival in NSCLC.

  16. Tracking vaginal, anal and oral infection in a mouse papillomavirus infection model.

    PubMed

    Hu, Jiafen; Budgeon, Lynn R; Cladel, Nancy M; Balogh, Karla; Myers, Roland; Cooper, Timothy K; Christensen, Neil D

    2015-12-01

    Noninvasive and practical techniques to longitudinally track viral infection are sought after in clinical practice. We report a proof-of-principle study to monitor the viral DNA copy number using a newly established mouse papillomavirus (MmuPV1) mucosal infection model. We hypothesized that viral presence could be identified and quantified by collecting lavage samples from cervicovaginal, anal and oral sites. Nude mice infected at these sites with infectious MmuPV1 were tracked for up to 23 weeks starting at 6 weeks post-infection. Viral DNA copy number was determined by SYBR Green Q-PCR analysis. In addition, we tracked viral DNA load through three complete oestrous cycles to pinpoint whether there was a correlation between the DNA load and the four stages of the oestrous cycle. Our results showed that high viral DNA copy number was reproducibly detected from both anal and cervicovaginal lavage samples. The infection and disease progression were further confirmed by histology, cytology, in situ hybridization, immunohistochemistry and transmission electron microscopy. Interestingly, the viral copy number fluctuated over the oestrous cycle, with the highest level at the oestrus stage, implying that multiple sampling might be necessary to provide a reliable diagnosis. Virus DNA was detected in oral lavage samples at a later time after infection. Lower viral DNA load was found in oral samples when compared with those in anal and vaginal tracts. To our knowledge, our study is the first in vivo study to sequentially monitor papillomavirus infection from mucosal anal, oral and vaginal tracts in a preclinical model.

  17. Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice.

    PubMed

    Joshi, Molishree; Keith Pittman, H; Haisch, Carl; Verbanac, Kathryn

    2008-09-01

    Quantitative real-time PCR (qPCR) is a sensitive technique for the detection and quantitation of specific DNA sequences. Here we describe a Taqman qPCR assay for quantification of tissue-localized, adoptively transferred enhanced green fluorescent protein (EGFP)-transgenic cells. A standard curve constructed from serial dilutions of a plasmid containing the EGFP transgene was (i) highly reproducible, (ii) detected as few as two copies, and (iii) was included in each qPCR assay. qPCR analysis of genomic DNA was used to determine transgene copy number in several mouse strains. Fluorescent microscopy of tissue sections showed that adoptively transferred vascular endothelial cells (VEC) from EGFP-transgenic mice specifically localized to tissue with metastatic tumors in syngeneic recipients. VEC microscopic enumeration of liver metastases strongly correlated with qPCR analysis of identical sections (Pearson correlation 0.81). EGFP was undetectable in tissue from control mice by qPCR. In another study using intra-tumor EGFP-VEC delivery to subcutaneous tumors, manual cell count and qPCR analysis of alternating sections also strongly correlated (Pearson correlation 0.82). Confocal microscopy of the subcutaneous tumor sections determined that visual fluorescent signals were frequently tissue artifacts. This qPCR methodology offers specific, objective, and rapid quantitation, uncomplicated by tissue autofluorescence, and should be readily transferable to other in vivo models to quantitate the biolocalization of transplanted cells.

  18. Assessment of copy number variations in 120 patients with Poland syndrome.

    PubMed

    Vaccari, Carlotta Maria; Tassano, Elisa; Torre, Michele; Gimelli, Stefania; Divizia, Maria Teresa; Romanini, Maria Victoria; Bossi, Simone; Musante, Ilaria; Valle, Maura; Senes, Filippo; Catena, Nunzio; Bedeschi, Maria Francesca; Baban, Anwar; Calevo, Maria Grazia; Acquaviva, Massimo; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2016-11-25

    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS in a multifactorial mode of inheritance.

  19. 18 CFR 45.7 - Form of application; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Form of application; number of copies. 45.7 Section 45.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... in accordance with § 131.60 of this chapter. Each copy shall bear the date and signature that appear...

  20. A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number

    PubMed Central

    Tadmor, Arbel D.; Tlusty, Tsvi

    2008-01-01

    We propose a biophysical model of Escherichia coli that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to test its validity. PMID:18437222

  1. Analysis and Control of Carrier Transport in Unipolar Barrier Mid-Infrared (IR) Detectors

    DTIC Science & Technology

    2017-01-03

    Laboratory AFRL /RVSW Space Vehicles Directorate 3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV...22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/David Cardimona 1 cy... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0152 TR-2016-0152 ANALYSIS AND CONTROL OF CARRIER TRANSPORT IN UNIPOLAR BARRIER MID- INFRARED (IR) DETECTORS Gary W

  2. Improving detection of copy-number variation by simultaneous bias correction and read-depth segmentation.

    PubMed

    Szatkiewicz, Jin P; Wang, WeiBo; Sullivan, Patrick F; Wang, Wei; Sun, Wei

    2013-02-01

    Structural variation is an important class of genetic variation in mammals. High-throughput sequencing (HTS) technologies promise to revolutionize copy-number variation (CNV) detection but present substantial analytic challenges. Converging evidence suggests that multiple types of CNV-informative data (e.g. read-depth, read-pair, split-read) need be considered, and that sophisticated methods are needed for more accurate CNV detection. We observed that various sources of experimental biases in HTS confound read-depth estimation, and note that bias correction has not been adequately addressed by existing methods. We present a novel read-depth-based method, GENSENG, which uses a hidden Markov model and negative binomial regression framework to identify regions of discrete copy-number changes while simultaneously accounting for the effects of multiple confounders. Based on extensive calibration using multiple HTS data sets, we conclude that our method outperforms existing read-depth-based CNV detection algorithms. The concept of simultaneous bias correction and CNV detection can serve as a basis for combining read-depth with other types of information such as read-pair or split-read in a single analysis. A user-friendly and computationally efficient implementation of our method is freely available.

  3. Comparison of the effects of formaldehyde and gaseous ozone on HBV-contaminated hospital quilts

    PubMed Central

    Guo, Dan; Li, Ziqiong; Jia, Bei; Che, Xiaoqiong; Song, Tianshuang; Huang, Wenxiang

    2015-01-01

    Background: Besides being highly infectious, Hepatitis B virus (HBV) is a major cause of liver disease worldwide. In hospital settings, it is easy for the environment and quilts to be contaminated by HBV patient blood and body fluids. Therefore, HBV can be transmitted to other patients via contaminated environmental surfaces or quilts, resulting in an HBV nosocomial infection. Formaldehyde and ozone are commonly used disinfectants that may influence this infectious situation. Objective: To investigate the clinical effectiveness of formaldehyde and gaseous ozone for the terminal cleaning of hospital quilts contaminated by HBV. Methods: Thin cloth and thick cotton soaked with the serum from high HBV copy number patients were prepared and disinfected using formaldehyde fumigation and gaseous ozone at different times. The copy numbers of HBV DNA in the HBV-contaminated cloth and cotton samples were measured quantitatively with fluorescent quantitative polymerase chain reaction (PCR). Results: When gaseous ozone was used to disinfect HBV-contaminated quilts for 23 minutes (min), 36 min, 49 min, and 90 min, the HBV DNA copy number displayed no significant decrease compared with the copy number before disinfection (P > 0.05). In comparison, the copy number of the HBV DNA in the cloth group decreased significantly (P < 0.05) after formaldehyde fumigation disinfection for 1 hour (h), and there was no difference when longer times and increased concentrations were used. In the thick cotton group, there was also a significant decrease (P < 0.05) of the HBV DNA copy numbers, but the decrease was not as dramatic. In addition, in this group, the disinfection effect observed at 4 h was the strongest. Conclusions: The application of ozone to disinfect HBV-contaminated hospital quilts possibly has no effect, whereas, formaldehyde oxide fumigation effectively reduced HBV copy numbers. PMID:26770591

  4. Correlation of Clinical Outcomes with Quantitative Polymerase Chain Reaction DNA Copy Number in Patients with Acute Retinal Necrosis.

    PubMed

    Calvo, Charles M; Khan, Mohammed Ali; Mehta, Sonia; Garg, Sunir J; Dunn, James P

    2017-04-01

    To correlate visual acuity outcomes and clinical features with quantitative PCR DNA copy number in patients with acute retinal necrosis (ARN). Retrospective, consecutive case series. In total, 14 eyes of 13 patients were diagnosed with ARN, based on the American Uveitis Society criteria, and were followed for a mean of 324.5 days (median 250.5 days, SD ± 214 days). Anterior chamber fluid analyzed by quantitative PCR identified viral DNA in 11 of 14 eyes (78.5%). Varicella zoster virus (VZV) was identified in seven eyes (50%) and herpes simplex virus (HSV) in four eyes (28.5%). Mean DNA copy number was 7.9 × 10 6 /mL (median 2.10 × 10 6 /mL, range: 0-5.60 × 10 7 /mL). Eyes with quantitative PCR DNA copy number of ≥5.0 × 10 6 /mL (n = 6 eyes) had worse baseline visual acuity (logMAR 1.48 ± 0.71 vs 0.94 ± 0.76, p = 0.196) and final visual acuity (logMAR 2.10 ± 0.60 vs 0.82 ± 0.81, p = 0.007) compared with patients with a DNA copy number <5.0 × 10 6 /mL (n = 8 eyes). Patients with a DNA copy number of ≥5.0 × 10 6 /mL were more likely to have at least 5 clock hours of retinitis on funduscopic exam (p = 0.03) and developed retinal detachment more frequently (p = 0.08). Quantitative DNA copy number of ≥5.0 × 10 6 /mL is associated with more extensive retinitis, worse visual acuity, and development of retinal detachment in patients with acute retinal necrosis.

  5. [Gene copy number, mRNA transcription and protein expression of PD-1 gene in primary hepatocarcinoma patients].

    PubMed

    Fan, Hui-Min; Wu, Ling-Jie; Hu, Feng-Yu; Yang, Zhan

    2012-08-01

    To study the gene copy number, mRNA transcription and protien expression of programmed cell death 1 (PD-1) gene in primary hepatocellular carcinoma (PHC) patients and normal control individuals (NC) who are anti-HBs positive, and to investigate the variations in PD-1 gene copy numbers and its relationship with PHC. Real-time PCR was adopted to detect the PD-1 gene copy numbers and their mRNA expressions in peripheral blood mononuclear cells (PBMCs) from 24 samples of PHC patients and 26 of NC. Protein expression level of PD-1 on CD8+ T was analyzed by flow cytometry. In terms of number of PD-1 gene copy numbers, the percentage of cases of haploid (single) was 34.62% and 4.17% in PHC group and control group respectively while the percentage of cases of diploid (double) was 61.54% and 95.83% respectively. The difference between the two was statistically significant (chi2 = 7.639, P = 0.006). The rate of cases with double PD-1 gene copy numbers was found to be higher in patients with PHC than in control group. It was also found that the average expression of PD-1 mRNA was 2.35E-03 in control group and 1.23E-03 in PHC group. The expression level was significant lower in PHC group than that in control group when compared by using Mann-whitey technic (U = 153, P = 0.009). Furthermore, the frequency of PD-1 protein expression on CD8+ T cells was 3.72 +/- 0.32 in control group and 16.13 +/- 1.68 in PHC group. The level of PD-1 mRNA expression was higher in PHC and significant differences was shown between two groups (t = -7.073, P = 0.000). Our study suggests that the variation in PD-1 gene copy number may trigger primary hepatocellular carcinoma to HBV carriers. The relationship between the variation of PD-1 gene copy numbers and its association with primary hepatocellular carcinoma is worth further focus.

  6. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation

    PubMed Central

    Mayer, Melanie G.; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J.

    2015-01-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains´ pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for dauer regulation. We discuss the consequences of the novel vs. fast-evolving nature of orphans for the evolution of developmental networks and their role in natural variation and intraspecific competition. PMID:26087034

  7. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    PubMed

    Mayer, Melanie G; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J

    2015-06-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for dauer regulation. We discuss the consequences of the novel vs. fast-evolving nature of orphans for the evolution of developmental networks and their role in natural variation and intraspecific competition.

  8. Integrated analysis of long non-coding RNAs in human gastric cancer: An in silico study.

    PubMed

    Han, Weiwei; Zhang, Zhenyu; He, Bangshun; Xu, Yijun; Zhang, Jun; Cao, Weijun

    2017-01-01

    Accumulating evidence highlights the important role of long non-coding RNAs (lncRNAs) in a large number of biological processes. However, the knowledge of genome scale expression of lncRNAs and their potential biological function in gastric cancer is still lacking. Using RNA-seq data from 420 gastric cancer patients in The Cancer Genome Atlas (TCGA), we identified 1,294 lncRNAs differentially expressed in gastric cancer compared with adjacent normal tissues. We also found 247 lncRNAs differentially expressed between intestinal subtype and diffuse subtype. Survival analysis revealed 33 lncRNAs independently associated with patient overall survival, of which 6 lncRNAs were validated in the internal validation set. There were 181 differentially expressed lncRNAs located in the recurrent somatic copy number alterations (SCNAs) regions and their correlations between copy number and RNA expression level were also analyzed. In addition, we inferred the function of lncRNAs by construction of a co-expression network for mRNAs and lncRNAs. Together, this study presented an integrative analysis of lncRNAs in gastric cancer and provided a valuable resource for further functional research of lncRNAs in gastric cancer.

  9. Copy Number Variants and Congenital Anomalies Surveillance: A Suggested Coding Strategy Using the Royal College of Paediatrics and Child Health Version of ICD-10.

    PubMed

    Bedard, Tanya; Lowry, R Brian; Sibbald, Barbara; Thomas, Mary Ann; Innes, A Micheil

    2016-01-01

    The use of array-based comparative genomic hybridization to assess DNA copy number is increasing in many jurisdictions. Such technology identifies more genetic causes of congenital anomalies; however, the clinical significance of some results may be challenging to interpret. A coding strategy to address cases with copy number variants has recently been implemented by the Alberta Congenital Anomalies Surveillance System and is described.

  10. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds

    PubMed Central

    Reiter, Taylor; Jagoda, Evelyn; Capellini, Terence D.

    2016-01-01

    Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs. PMID:26863414

  11. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    PubMed

    Reiter, Taylor; Jagoda, Evelyn; Capellini, Terence D

    2016-01-01

    Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  12. Screening for common copy-number variants in cancer genes.

    PubMed

    Tyson, Jess; Majerus, Tamsin M O; Walker, Susan; Armour, John A L

    2010-12-01

    For most cases of colorectal cancer that arise without a family history of the disease, it is proposed that an appreciable heritable component of predisposition is the result of contributions from many loci. Although progress has been made in identifying single nucleotide variants associated with colorectal cancer risk, the involvement of low-penetrance copy number variants is relatively unexplored. We have used multiplex amplifiable probe hybridization (MAPH) in a fourfold multiplex (QuadMAPH), positioned at an average resolution of one probe per 2 kb, to screen a total of 1.56 Mb of genomic DNA for copy number variants around the genes APC, AXIN1, BRCA1, BRCA2, CTNNB1, HRAS, MLH1, MSH2, and TP53. Two deletion events were detected, one upstream of MLH1 in a control individual and the other in APC in a colorectal cancer patient, but these do not seem to correspond to copy number polymorphisms with measurably high population frequencies. In summary, by means of our QuadMAPH assay, copy number measurement data were of sufficient resolution and accuracy to detect any copy number variants with high probability. However, this study has demonstrated a very low incidence of deletion and duplication variants within intronic and flanking regions of these nine genes, in both control individuals and colorectal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Effect of Repeat Copy Number on Variable-Number Tandem Repeat Mutations in Escherichia coli O157:H7

    PubMed Central

    Vogler, Amy J.; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E.; Jay, Zack; Keim, Paul

    2006-01-01

    Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 × 10−4 mutations/generation and a combined 28-locus rate of 6.4 × 10−4 mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2 = 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2 = 0.833, P < 0.0001) or excluded (r2 = 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data. PMID:16740932

  14. ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays.

    PubMed

    Rigaill, Guillem; Hupé, Philippe; Almeida, Anna; La Rosa, Philippe; Meyniel, Jean-Philippe; Decraene, Charles; Barillot, Emmanuel

    2008-03-15

    Affymetrix SNP arrays can be used to determine the DNA copy number measurement of 11 000-500 000 SNPs along the genome. Their high density facilitates the precise localization of genomic alterations and makes them a powerful tool for studies of cancers and copy number polymorphism. Like other microarray technologies it is influenced by non-relevant sources of variation, requiring correction. Moreover, the amplitude of variation induced by non-relevant effects is similar or greater than the biologically relevant effect (i.e. true copy number), making it difficult to estimate non-relevant effects accurately without including the biologically relevant effect. We addressed this problem by developing ITALICS, a normalization method that estimates both biological and non-relevant effects in an alternate, iterative manner, accurately eliminating irrelevant effects. We compared our normalization method with other existing and available methods, and found that ITALICS outperformed these methods for several in-house datasets and one public dataset. These results were validated biologically by quantitative PCR. The R package ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) has been submitted to Bioconductor.

  15. rrndb: the Ribosomal RNA Operon Copy Number Database

    PubMed Central

    Klappenbach, Joel A.; Saxman, Paul R.; Cole, James R.; Schmidt, Thomas M.

    2001-01-01

    The Ribosomal RNA Operon Copy Number Database (rrndb) is an Internet-accessible database containing annotated information on rRNA operon copy number among prokaryotes. Gene redundancy is uncommon in prokaryotic genomes, yet the rRNA genes can vary from one to as many as 15 copies. Despite the widespread use of 16S rRNA gene sequences for identification of prokaryotes, information on the number and sequence of individual rRNA genes in a genome is not readily accessible. In an attempt to understand the evolutionary implications of rRNA operon redundancy, we have created a phylogenetically arranged report on rRNA gene copy number for a diverse collection of prokaryotic microorganisms. Each entry (organism) in the rrndb contains detailed information linked directly to external websites including the Ribosomal Database Project, GenBank, PubMed and several culture collections. Data contained in the rrndb will be valuable to researchers investigating microbial ecology and evolution using 16S rRNA gene sequences. The rrndb web site is directly accessible on the WWW at http://rrndb.cme.msu.edu. PMID:11125085

  16. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by fluorescence in situ hybridization, and a region of homozygosity in a UPD case was confirmed by sequencing of genomic DNA. Conclusion SNPscan is useful to identify chromosomal abnormalities based on SNP intensity (such as chromosomal copy number changes) and heterozygosity data (including regions of LOH and some cases of UPD). The program and source code are available at the SNPscan website . PMID:16420694

  17. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies.

    PubMed

    Bianchi, Diana W; Chudova, Darya; Sehnert, Amy J; Bhatt, Sucheta; Murray, Kathryn; Prosen, Tracy L; Garber, Judy E; Wilkins-Haug, Louise; Vora, Neeta L; Warsof, Stephen; Goldberg, James; Ziainia, Tina; Halks-Miller, Meredith

    2015-07-14

    Understanding the relationship between aneuploidy detection on noninvasive prenatal testing (NIPT) and occult maternal malignancies may explain results that are discordant with the fetal karyotype and improve maternal clinical care. To evaluate massively parallel sequencing data for patterns of copy-number variations that might prospectively identify occult maternal malignancies. Case series identified from 125,426 samples submitted between February 15, 2012, and September 30, 2014, from asymptomatic pregnant women who underwent plasma cell-free DNA sequencing for clinical prenatal aneuploidy screening. Analyses were conducted in a clinical laboratory that performs DNA sequencing. Among the clinical samples, abnormal results were detected in 3757 (3%); these were reported to the ordering physician with recommendations for further evaluation. NIPT for fetal aneuploidy screening (chromosomes 13, 18, 21, X, and Y). Detailed genome-wide bioinformatics analysis was performed on available sequencing data from 8 of 10 women with known cancers. Genome-wide copy-number changes in the original NIPT samples and in subsequent serial samples from individual patients when available are reported. Copy-number changes detected in NIPT sequencing data in the known cancer cases were compared with the types of aneuploidies detected in the overall cohort. From a cohort of 125,426 NIPT results, 3757 (3%) were positive for 1 or more aneuploidies involving chromosomes 13, 18, 21, X, or Y. From this set of 3757 samples, 10 cases of maternal cancer were identified. Detailed clinical and sequencing data were obtained in 8. Maternal cancers most frequently occurred with the rare NIPT finding of more than 1 aneuploidy detected (7 known cancers among 39 cases of multiple aneuploidies by NIPT, 18% [95% CI, 7.5%-33.5%]). All 8 cases that underwent further bioinformatics analysis showed unique patterns of nonspecific copy-number gains and losses across multiple chromosomes. In 1 case, blood was sampled after completion of treatment for colorectal cancer and the abnormal pattern was no longer evident. In this preliminary study, a small number of cases of occult malignancy were subsequently diagnosed among pregnant women whose noninvasive prenatal testing results showed discordance with the fetal karyotype. The clinical importance of these findings will require further research.

  18. Presence of high-risk human papillomavirus genotype and human immunodeficiency virus DNA in anal high-grade and low-grade squamous intraepithelial lesions.

    PubMed

    Shiramizu, Bruce; Liang, Chin-Yuan; Agsalda-Garcia, Melissa; Nagata, Ian; Milne, Cris; Zhu, Xuemei; Killeen, Jeffrey; Berry, J Michael; Goodman, Marc T

    2013-01-01

    Human immunodeficiency virus type 1 (HIV)-infected individuals are at risk for anal cancer, which is caused by human papillomavirus (HPV). The relationship between HIV and HPV that leads to anal cancer remains unclear. Recent data, however, suggest that the continued persistence of HIV DNA in patients treated with combined antiretroviral therapy leads to progression of HIV disease and other HIV-associated complications. Therefore, we investigated the relationship among anal low- and high-grade squamous intraepithelial lesions (LGSIL/HGSIL), high-risk HPV genotypes, and high HIV DNA copy numbers. Anal cytology specimens were assayed for HPV genotype and HIV DNA copy number. High-risk HPV genotypes (odds ratio OR: 3.73; 95% confidence interval CI: 1.08-12.91; p=0.04) and high HIV DNA copy numbers (OR(per 100 HIV DNA copies): 1.13; 95% CI: 1.01-1.27, p=0.04) were both associated with LGSIL/HGSIL. When considering both high-risk HPV genotypes and HIV DNA copy numbers in predicting LGSIL/HGSIL, HIV DNA copy number was significant (OR(per 100 HIV DNA copies): 1.09; 95% CI: 0.96-1.23, p=0.04) but not high-risk HPV genotypes (OR: 2.30, p=0.28), which did not change when adjusted for nadir CD4 cell count and HIV RNA levels. The findings warrant further investigation of HIV DNA and its relationship with HPV in LGSIL/HGSIL pathogenesis.

  19. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia.

    PubMed

    Gaines, Todd A; Barker, Abigail L; Patterson, Eric L; Westra, Philip; Westra, Eric P; Wilson, Robert G; Jha, Prashant; Kumar, Vipan; Kniss, Andrew R

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.

  20. Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction.

    PubMed

    Bhat, Somanath; McLaughlin, Jacob L H; Emslie, Kerry R

    2011-02-21

    Digital polymerase chain reaction (dPCR) has the potential to enable accurate quantification of target DNA copy number provided that all target DNA molecules are successfully amplified. Following duplex dPCR analysis from a linear DNA target sequence that contains single copies of two independent template sequences, we have observed that amplification of both templates in a single partition does not always occur. To investigate this finding, we heated the target DNA solution to 95 °C for increasing time intervals and then immediately chilled on ice prior to preparing the dPCR mix. We observed an exponential decline in estimated copy number (R(2)≥ 0.98) of the two template sequences when amplified from either a linearized plasmid or a 388 base pair (bp) amplicon containing the same two template sequences. The distribution of amplifiable templates and the final concentration (copies per µL) were both affected by heat treatment of the samples at 95 °C from 0 s to 30 min. The proportion of target sequences from which only one of the two templates was amplified in a single partition (either 1507 or hmg only) increased over time, while the proportion of target sequences where both templates were amplified (1507 and hmg) in each individual partition declined rapidly from 94% to 52% (plasmid) and 88% to 31% (388 bp amplicon) suggesting an increase in number of targets from which both templates no longer amplify. A 10 min incubation at 95 °C reduced the initial amplifiable template concentration of the plasmid and the 388 bp amplicon by 59% and 91%, respectively. To determine if a similar decrease in amplifiable target occurs during the default pre-activation step of typical PCR amplification protocol, we used mastermixes with a 20 s or 10 min hot-start. The choice of mastermix and consequent pre-activation time did not affect the estimated plasmid concentration. Therefore, we conclude that prolonged exposure of this DNA template to elevated temperatures could lead to significant bias in dPCR measurements. However, care must be taken when designing PCR and non-PCR based experiments by reducing exposure of the DNA template to sustained elevated temperatures in order to improve accuracy in copy number estimation and concentration determination.

  1. Molecular analysis of fungal populations in patients with oral candidiasis using next-generation sequencing.

    PubMed

    Imabayashi, Yumi; Moriyama, Masafumi; Takeshita, Toru; Ieda, Shinsuke; Hayashida, Jun-Nosuke; Tanaka, Akihiko; Maehara, Takashi; Furukawa, Sachiko; Ohta, Miho; Kubota, Keigo; Yamauchi, Masaki; Ishiguro, Noriko; Yamashita, Yoshihisa; Nakamura, Seiji

    2016-06-16

    Oral candidiasis is closely associated with changes in oral fungal biodiversity and is caused primarily by Candida albicans. However, the widespread use of empiric and prophylactic antifungal drugs has caused a shift in fungal biodiversity towards other Candida or yeast species. Recently, next-generation sequencing (NGS) has provided an improvement over conventional culture techniques, allowing rapid comprehensive analysis of oral fungal biodiversity. In this study, we used NGS to examine the oral fungal biodiversity of 27 patients with pseudomembranous oral candidiasis (POC) and 66 healthy controls. The total number of fungal species in patients with POC and healthy controls was 67 and 86, respectively. The copy number of total PCR products and the proportion of non-C. albicans, especially C. dubliniensis, in patients with POC, were higher than those in healthy controls. The detection patterns in patients with POC were similar to those in controls after antifungal treatment. Interestingly, the number of fungal species and the copy number of total PCR products in healthy controls increased with aging. These results suggest that high fungal biodiversity and aging might be involved in the pathogenesis of oral candidiasis. We therefore conclude that NGS is a useful technique for investigating oral candida infections.

  2. Combinational chromosomal aneuploidies and HPV status for prediction of head and neck squamous cell carcinoma prognosis in biopsies and cytological preparations.

    PubMed

    Wemmert, Silke; Linxweiler, Maximilian; Lerner, Cornelia; Bochen, Florian; Kulas, Philipp; Linxweiler, Johannes; Smola, Sigrun; Urbschat, Steffi; Wagenpfeil, Stefan; Schick, Bernhard

    2018-06-01

    Head and neck squamous cell carcinoma (HNSCC) is one of the most common human cancer types with a very poor prognosis despite improvements in therapeutic modalities. The major known risk factors are tobacco use and alcohol consumption or infection with high-risk human papilloma viruses (HPV), especially in oropharyngeal tumors. The current management based on the assessment of a variety of clinical and pathological parameters does not sufficiently predict outcome. Chromosomal alterations detected in HNSCCs were characterized by metaphase comparative genomic hybridization (CGH) and correlated with clinical parameters as well as survival time. Candidate regions were validated by quantitative polymerase chain reaction, fluorescence-in situ-hybridization (FISH) on dapped tumor tissue and liquid-based cytological smear preparations. In addition, HPV status was determined by polymerase chain reaction and simultaneous immunocytochemical p16 INK4a -Ki67 staining. The most frequent DNA copy number gains were observed on chromosome arms 3q, 8q, 5p, 7q, 12p, and 12q. DNA copy number decreases occurred most frequently at 3p, 17p, 4q, and 5q. FISH analysis verified in part the observed alterations by CGH on dapped tissues and was especially able to detect the most frequent DNA copy changes in cytological specimens. The combination of HPV status and prognostic copy number alteration detected by FISH in biopsies or cytological specimens may be an applicable protocol for screening head and neck cancer patients prior to therapy.

  3. Whole-genome copy number variation analysis in anophthalmia and microphthalmia.

    PubMed

    Schilter, K F; Reis, L M; Schneider, A; Bardakjian, T M; Abdul-Rahman, O; Kozel, B A; Zimmerman, H H; Broeckel, U; Semina, E V

    2013-11-01

    Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Whole-genome copy number variation analysis in anophthalmia and microphthalmia

    PubMed Central

    Schilter, Kala F.; Reis, Linda M.; Schneider, Adele; Bardakjian, Tanya M.; Abdul-Rahman, Omar; Kozel, Beth A.; Zimmerman, Holly H.; Broeckel, Ulrich; Semina, Elena V.

    2014-01-01

    Anophthalmia and microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole genome copy number variation analysis in sixty patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with nonsyndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. PMID:23701296

  5. Assessment of ERBB2 and EGFR gene amplification and protein expression in gastric carcinoma by immunohistochemistry and fluorescence in situ hybridization

    PubMed Central

    2011-01-01

    Background The goal of this study was to investigate ERBB2(HER2) and EGFR gene amplification and protein expression in gastric cancer. Fluorescence in situ hybridization (FISH) and immunohistochemistry were used to analyze ERBB2 and EGFR gene amplification and protein expression in 69 cases of gastric cancer. Results FISH analysis revealed that 20.3% of the cases exhibited ERBB2 gene amplification. Increases in ERBB2 copy number and gene amplification were present in 52.2% of the samples. Expression of the ERBB2 protein was observed in 42.0% of cases. FISH analysis detected EGFR gene amplification in 29.0% of samples. Increases in EGFR copy number and gene amplification occurred in 57.9% of samples, and EGFR protein expression was present in 52.2% of samples. Both ERBB2 and EGFR gene amplification were 3 cases (4.3%), but abnormalities in both ERBB2 and EGFR gene copy number were present 36.2% of samples. ERBB2 and EGFR gene amplification were significantly associated with the depth of tumor invasion (P < 0.05) and lymph node metastasis (P < 0.05), but not with sex, age, or histological type (P > 0.05). Conclusions Our data indicated that ERBB2 and EGFR genetic abnormalities were associated with the prognosis of gastric cancer. Clinical assessment of ERBB2 and EGFR amplification may represent an important factor for the development of personalized treatment programs for gastic cancer. PMID:21689422

  6. Morphological and molecular variations induce mitochondrial dysfunction as a possible underlying mechanism of athletic amenorrhea.

    PubMed

    Xiong, Ruo-Hong; Wen, Shi-Lei; Wang, Qiang; Zhou, Hong-Ying; Feng, Shi

    2018-01-01

    Female athletes may experience difficulties in achieving pregnancy due to athletic amenorrhea (AA); however, the underlying mechanisms of AA remain unknown. The present study focuses on the mitochondrial alteration and its function in detecting the possible mechanism of AA. An AA rat model was established by excessive swimming. Hematoxylin and eosin staining, and transmission electron microscopic methods were performed to evaluate the morphological changes of the ovary, immunohistochemical examinations and radioimmunoassays were used to detect the reproductive hormones and corresponding receptors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to test the mtDNA copy number. PCR and western blot analysis were used to test the expression of ND2. The change of morphological features of the rat ovaries revealed evident abnormalities. Particularly, the features of the mitochondria were markedly altered. In addition, reproductive hormones in the serum and tissues of AA rats were also detected to evaluate the function of the ovaries, and the levels of these hormones were significantly decreased. Furthermore, the mitochondrial DNA copy number (mtDNA) and expression of NADH dehydrogenase subunit 2 (ND2) were quantitated by qPCR or western blot analysis. Accordingly, the mtDNA copy number and expression of ND2 expression were markedly reduced in the AA rats. In conclusion, mitochondrial dysfunction in AA may affect the cellular energy supply and, therefore, result in dysfunction of the ovary. Thus, mitochondrial dysfunction may be considered as a possible underlying mechanism for the occurrence of AA.

  7. Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort

    PubMed Central

    Selmansberger, Martin; Braselmann, Herbert; Hess, Julia; Bogdanova, Tetiana; Abend, Michael; Tronko, Mykola; Brenner, Alina; Zitzelsberger, Horst; Unger, Kristian

    2015-01-01

    One of the major consequences of the 1986 Chernobyl reactor accident was a dramatic increase in papillary thyroid carcinoma (PTC) incidence, predominantly in patients exposed to the radioiodine fallout at young age. The present study is the first on genomic copy number alterations (CNAs) of PTCs of the Ukrainian–American cohort (UkrAm) generated by array comparative genomic hybridization (aCGH). Unsupervised hierarchical clustering of CNA profiles revealed a significant enrichment of a subgroup of patients with female gender, long latency (>17 years) and negative lymph node status. Further, we identified single CNAs that were significantly associated with latency, gender, radiation dose and BRAF V600E mutation status. Multivariate analysis revealed no interactions but additive effects of parameters gender, latency and dose on CNAs. The previously identified radiation-associated gain of the chromosomal bands 7q11.22-11.23 was present in 29% of cases. Moreover, comparison of our radiation-associated PTC data set with the TCGA data set on sporadic PTCs revealed altered copy numbers of the tumor driver genes NF2 and CHEK2. Further, we integrated the CNA data with transcriptomic data that were available on a subset of the herein analyzed cohort and did not find statistically significant associations between the two molecular layers. However, applying hierarchical clustering on a ‘BRAF-like/RAS-like’ transcriptome signature split the cases into four groups, one of which containing all BRAF-positive cases validating the signature in an independent data set. PMID:26320103

  8. A comparative analysis of whole genome sequencing of esophageal adenocarcinoma pre- and post-chemotherapy

    PubMed Central

    Noorani, Ayesha; Lynch, Andy G.; Achilleos, Achilleas; Eldridge, Matthew; Bower, Lawrence; Weaver, Jamie M.J.; Crawte, Jason; Ong, Chin-Ann; Shannon, Nicholas; MacRae, Shona; Grehan, Nicola; Nutzinger, Barbara; O'Donovan, Maria; Hardwick, Richard; Tavaré, Simon; Fitzgerald, Rebecca C.

    2017-01-01

    The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer. PMID:28465312

  9. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    PubMed

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  10. Extensive Copy Number Variations in Admixed Indian Population of African Ancestry: Potential Involvement in Adaptation

    PubMed Central

    Dash, Debasis; Mukerji, Mitali

    2014-01-01

    Admixture mapping has been enormously resourceful in identifying genetic variations linked to phenotypes, adaptation, and diseases. In this study through analysis of copy number variable regions (CNVRs), we report extensive restructuring in the genomes of the recently admixed African-Indian population (OG-W-IP) that inhabits a highly saline environment in Western India. The study included subjects from OG-W-IP (OG), five different Indian and three HapMap populations that were genotyped using Affymetrix version 6.0 arrays. Copy number variations (CNVs) detected using Birdsuite were used to define CNVRs. Population structure with respect to CNVRs was delineated using random forest approach. OG genomes have a surprising excess of CNVs in comparison to other studied populations. Individual ancestry proportions computed using STRUCTURE also reveals a unique genetic component in OGs. Population structure analysis with CNV genotypes indicates OG to be distant from both the African and Indian ancestral populations. Interestingly, it shows genetic proximity with respect to CNVs to only one Indian population IE-W-LP4, which also happens to reside in the same geographical region. We also observe a significant enrichment of molecular processes related to ion binding and receptor activity in genes encompassing OG-specific CNVRs. Our results suggest that retention of CNVRs from ancestral natives and de novo acquisition of CNVRs could accelerate the process of adaptation especially in an extreme environment. Additionally, this population would be enormously useful for dissecting genes and delineating the involvement of CNVs in salt adaptation. PMID:25398783

  11. Genomic profiling of CHEK2*1100delC-mutated breast carcinomas.

    PubMed

    Massink, Maarten P G; Kooi, Irsan E; Martens, John W M; Waisfisz, Quinten; Meijers-Heijboer, Hanne

    2015-11-09

    CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, these samples mostly have very few copy number aberrations and no detectable regions of LOH. By unsupervised hierarchical clustering of copy number data we observed a great degree of heterogeneity amongst the CHEK2*1100delC breast cancers, comparable to the BRCAX breast cancers. Furthermore, copy number aberrations were mostly seen at low frequencies in both the CHEK2*1100delC and BRCAX group of breast cancers. However, supervised class comparison identified copy number loss of chromosomal arm 1p to be associated with CHEK2*1100delC status. In conclusion, in contrast to basal-like BRCA1 mutated breast cancers, no apparent specific somatic copy number aberration (CNA) profile for CHEK2*1100delC breast cancers was found. With the possible exception of copy number loss of chromosomal arm 1p in a subset of tumors, which might be involved in CHEK2 tumorigenesis. This difference in CNAs profiles might be explained by the need for BRCA1-deficient tumor cells to acquire survival factors, by for example specific copy number aberrations, to expand. Such factors may not be needed for breast tumors with a defect in a non-essential gene such as CHEK2.

  12. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia.

    PubMed

    Lim, Pharath; Alker, Alisa P; Khim, Nimol; Shah, Naman K; Incardona, Sandra; Doung, Socheat; Yi, Poravuth; Bouth, Denis Mey; Bouchier, Christiane; Puijalon, Odile Mercereau; Meshnick, Steven R; Wongsrichanalai, Chansuda; Fandeur, Thierry; Le Bras, Jacques; Ringwald, Pascal; Ariey, Frédéric

    2009-01-12

    The combination of artesunate and mefloquine was introduced as the national first-line treatment for Plasmodium falciparum malaria in Cambodia in 2000. However, recent clinical trials performed at the Thai-Cambodian border have pointed to the declining efficacy of both artesunate-mefloquine and artemether-lumefantrine. Since pfmdr1 modulates susceptibility to mefloquine and artemisinin derivatives, the aim of this study was to assess the link between pfmdr1 copy number, in vitro susceptibility to individual drugs and treatment failure to combination therapy. Blood samples were collected from P. falciparum-infected patients enrolled in two in vivo efficacy studies in north-western Cambodia: 135 patients were treated with artemether-lumefantrine (AL group) in Sampovloun in 2002 and 2003, and 140 patients with artesunate-mefloquine (AM group) in Sampovloun and Veal Veng in 2003 and 2004. At enrollment, the in vitro IC50 was tested and the strains were genotyped for pfmdr1 copy number by real-time PCR. The pfmdr1 copy number was analysed for 115 isolates in the AM group, and for 109 isolates in the AL group. Parasites with increased pfmdr1 copy number had significantly reduced in vitro susceptibility to mefloquine, lumefantrine and artesunate. There was no association between pfmdr1 polymorphisms and in vitro susceptibilities. In the patients treated with AM, the mean pfmdr1copy number was lower in subjects with adequate clinical and parasitological response compared to those who experienced late treatment failure (n = 112, p < 0.001). This was not observed in the patients treated with AL (n = 96, p = 0.364). The presence of three or more copies of pfmdr1 were associated with recrudescence in artesunate-mefloquine treated patients (hazard ratio (HR) = 7.80 [95%CI: 2.09-29.10], N = 115), p = 0.002) but not with recrudescence in artemether-lumefantrine treated patients (HR = 1.03 [95%CI: 0.24-4.44], N = 109, p = 0.969). This study shows that pfmdr1 copy number is a molecular marker of AM treatment failure in falciparum malaria on the Thai-Cambodian border. However, while it is associated with increased IC50 for lumefantrine, pfmdr1 copy number is not associated with AL treatment failure in the area, suggesting involvement of other molecular mechanisms in AL treatment failures in Cambodia.

  13. Sex chromosome aneuploidies and copy-number variants: a further explanation for neurodevelopmental prognosis variability?

    PubMed

    Le Gall, Jessica; Nizon, Mathilde; Pichon, Olivier; Andrieux, Joris; Audebert-Bellanger, Séverine; Baron, Sabine; Beneteau, Claire; Bilan, Frédéric; Boute, Odile; Busa, Tiffany; Cormier-Daire, Valérie; Ferec, Claude; Fradin, Mélanie; Gilbert-Dussardier, Brigitte; Jaillard, Sylvie; Jønch, Aia; Martin-Coignard, Dominique; Mercier, Sandra; Moutton, Sébastien; Rooryck, Caroline; Schaefer, Elise; Vincent, Marie; Sanlaville, Damien; Le Caignec, Cédric; Jacquemont, Sébastien; David, Albert; Isidor, Bertrand

    2017-08-01

    Sex chromosome aneuploidies (SCA) is a group of conditions in which individuals have an abnormal number of sex chromosomes. SCA, such as Klinefelter's syndrome, XYY syndrome, and Triple X syndrome are associated with a large range of neurological outcome. Another genetic event such as another cytogenetic abnormality may explain a part of this variable expressivity. In this study, we have recruited fourteen patients with intellectual disability or developmental delay carrying SCA associated with a copy-number variant (CNV). In our cohort (four patients 47,XXY, four patients 47,XXX, and six patients 47,XYY), seven patients were carrying a pathogenic CNV, two a likely pathogenic CNV and five a variant of uncertain significance. Our analysis suggests that CNV might be considered as an additional independent genetic factor for intellectual disability and developmental delay for patients with SCA and neurodevelopmental disorder.

  14. Analysis of copy number variants by three detection algorithms and their association with body size in horses.

    PubMed

    Metzger, Julia; Philipp, Ute; Lopes, Maria Susana; da Camara Machado, Artur; Felicetti, Michela; Silvestrelli, Maurizio; Distl, Ottmar

    2013-07-18

    Copy number variants (CNVs) have been shown to play an important role in genetic diversity of mammals and in the development of many complex phenotypic traits. The aim of this study was to perform a standard comparative evaluation of CNVs in horses using three different CNV detection programs and to identify genomic regions associated with body size in horses. Analysis was performed using the Illumina Equine SNP50 genotyping beadchip for 854 horses. CNVs were detected by three different algorithms, CNVPartition, PennCNV and QuantiSNP. Comparative analysis revealed 50 CNVs that affected 153 different genes mainly involved in sensory perception, signal transduction and cellular components. Genome-wide association analysis for body size showed highly significant deleted regions on ECA1, ECA8 and ECA9. Homologous regions to the detected CNVs on ECA1 and ECA9 have also been shown to be correlated with human height. Comparative analysis of CNV detection algorithms was useful to increase the specificity of CNV detection but had certain limitations dependent on the detection tool. GWAS revealed genome-wide associated CNVs for body size in horses.

  15. Analysis of copy number variations in Holstein cows identify potential mechanisms contributing to differences in residual feed intake

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. In this study, we performed an initial analysis of CNVs using BovineHD SNP genotyping data from 147 Holstein cows identified as having high or low feed efficiency as estimated by residual feed intak...

  16. Array-CGH Analysis in a Cohort of Phenotypically Well-Characterized Individuals with "Essential" Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Napoli, Eleonora; Russo, Serena; Casula, Laura; Alesi, Viola; Amendola, Filomena Alessandra; Angioni, Adriano; Novelli, Antonio; Valeri, Giovanni; Menghini, Deny; Vicari, Stefano

    2018-01-01

    Copy-number variants (CNVs) are associated with susceptibility to autism spectrum disorder (ASD). To detect the presence of CNVs, we conducted an array-comparative genomic hybridization (array-CGH) analysis in 133 children with "essential" ASD phenotype. Genetic analyses documented that 12 children had causative CNVs (C-CNVs), 29…

  17. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases

    PubMed Central

    Butchbach, Matthew E. R.

    2016-01-01

    Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1) on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7) and produce a protein that is both unstable and less than fully functional. Although only 10–20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs) in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS) and progressive muscular atrophy (PMA). This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases. PMID:27014701

  18. Evolutionary analysis of hydrophobin gene family in two wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l.

    PubMed Central

    2013-01-01

    Background Hydrophobins are small secreted cysteine-rich proteins that play diverse roles during different phases of fungal life cycle. In basidiomycetes, hydrophobin-encoding genes often form large multigene families with up to 40 members. The evolutionary forces driving hydrophobin gene expansion and diversification in basidiomycetes are poorly understood. The functional roles of individual genes within such gene families also remain unclear. The relationship between the hydrophobin gene number, the genome size and the lifestyle of respective fungal species has not yet been thoroughly investigated. Here, we present results of our survey of hydrophobin gene families in two species of wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. We have also investigated the regulatory pattern of hydrophobin-encoding genes from H. annosum s.s. during saprotrophic growth on pine wood as well as on culture filtrate from Phlebiopsis gigantea using micro-arrays. These data are supplemented by results of the protein structure modeling for a representative set of hydrophobins. Results We have identified hydrophobin genes from the genomes of two wood-degrading species of basidiomycetes, Heterobasidion irregulare, representing one of the microspecies within the aggregate H. annosum s.l., and Phlebia brevispora. Although a high number of hydrophobin-encoding genes were observed in H. irregulare (16 copies), a remarkable expansion of these genes was recorded in P. brevispora (26 copies). A significant expansion of hydrophobin-encoding genes in other analyzed basidiomycetes was also documented (1–40 copies), whereas contraction through gene loss was observed among the analyzed ascomycetes (1–11 copies). Our phylogenetic analysis confirmed the important role of gene duplication events in the evolution of hydrophobins in basidiomycetes. Increased number of hydrophobin-encoding genes appears to have been linked to the species’ ecological strategy, with the non-pathogenic fungi having increased numbers of hydrophobins compared with their pathogenic counterparts. However, there was no significant relationship between the number of hydrophobin-encoding genes and genome size. Furthermore, our results revealed significant differences in the expression levels of the 16 H. annosum s.s. hydrophobin-encoding genes which suggest possible differences in their regulatory patterns. Conclusions A considerable expansion of the hydrophobin-encoding genes in basidiomycetes has been observed. The distribution and number of hydrophobin-encoding genes in the analyzed species may be connected to their ecological preferences. Results of our analysis also have shown that H. annosum s.l. hydrophobin-encoding genes may be under positive selection. Our gene expression analysis revealed differential expression of H. annosum s.s. hydrophobin genes under different growth conditions, indicating their possible functional diversification. PMID:24188142

  19. Copy Counts

    ERIC Educational Resources Information Center

    Beaumont, Lee R.

    1970-01-01

    The level of difficulty of straight copy, which is used to measure typewriting speed, is influenced by syllable intensity (the average number of syllables per word), stroke intensity (average number of strokes per word), and high-frequency words. (CH)

  20. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia

    PubMed Central

    Gaines, Todd A.; Barker, Abigail L.; Patterson, Eric L.; Westra, Philip; Westra, Eric P.; Wilson, Robert G.; Jha, Prashant; Kumar, Vipan

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number. PMID:27992501

  1. Copy number gain of MYCN gene is a recurrent genetic aberration and favorable prognostic factor in Chinese pediatric neuroblastoma patients

    PubMed Central

    2013-01-01

    Background Amplification of MYCN oncogene is an established marker indicating aggressive tumor progression of neuroblastoma (NBL). But copy number analyses of MYCN gene in ganglioneuroblastoma (GNBL) and ganglioneuroma(GN) is poorly described in the literature. In the study, we evaluated the copy number aberrations of MYCN gene in clinical samples of NBLs, GNBLs and GNs and analyzed their association with clinical outcome of the patients. Methods In this study, we analyzed MYCN gene and chromosome 2 aneusomy by using fluorescence in situ hybridization (FISH) method in a total of 220 patients with NBL, GNBL and GN cases. Kaplan-Meier curves were generated by using SPSS 12.0 software. Results Of 220 patients, 178 (81.0%) were NBLs, 32 (14.5%) were GNBLs and 10 (4.5%) were GNs. MYCN gain is a recurrent genetic aberration of neuroblastic tumors (71.8%, 158/220), which was found in 129 NBLs (58.6%, 129/220), 25 GNBLs (11.4%, 25/220) and 4 GN cases (1.8%, 4/220). However, MYCN amplification was only present in 24 NBL tumors (13.5%, 24/178) and 1 GNBL case (3.1%, 1/32). Kaplan-Meier survival analysis indicated that MYCN amplification is significantly correlated with decreased overall survival in NBLs (P=0.017). Furthermore, a better prognosis trend was observed in patients with MYCN gain tumors compared with those with MYCN gene normal copy number tumors and MYCN amplification tumors (P=0.012). Conclusions In summary, the frequency of MYCN amplification in NBLs is high and is rarely observed in GNBLs and GNs, which suggest MYCN plays an important role in neuroblastic tumors differentiation. MYCN gain appeared to define a subgroup of NBLs with much better outcome and classification of MYCN gene copy number alteration as three groups (amplification, gain and normal) can provide a powerful prognostic indicator in NBLs. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6417541528559124 PMID:23320395

  2. A novel method for sex determination by detecting the number of X chromosomes.

    PubMed

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2015-01-01

    A novel method for sex determination, based on the detection of the number of X chromosomes, was established. Current methods, based on the detection of the Y chromosome, can directly identify an unknown sample as male, but female gender is determined indirectly, by not detecting the Y chromosome. Thus, a direct determination of female gender is important because the quality (e.g., fragmentation and amelogenin-Y null allele) of the Y chromosome DNA may lead to a false result. Thus, we developed a novel sex determination method by analyzing the number of X chromosomes using a copy number variation (CNV) detection technique (the comparative Ct method). In this study, we designed a primer set using the amelogenin-X gene without the CNV region as the target to determine the X chromosome copy number, to exclude the influence of the CNV region from the comparative Ct value. The number of X chromosomes was determined statistically using the CopyCaller software with real-time PCR. All DNA samples from participants (20 males, 20 females) were evaluated correctly using this method with 1-ng template DNA. A minimum of 0.2-ng template DNA was found to be necessary for accurate sex determination with this method. When using ultraviolet-irradiated template DNA, as mock forensic samples, the sex of the samples could not be determined by short tandem repeat (STR) analysis but was correctly determined using our method. Thus, we successfully developed a method of sex determination based on the number of X chromosomes. Our novel method will be useful in forensic practice for sex determination.

  3. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy.

    PubMed

    Duah, Nancy O; Matrevi, Sena A; de Souza, Dziedzom K; Binnah, Daniel D; Tamakloe, Mary M; Opoku, Vera S; Onwona, Christiana O; Narh, Charles A; Quashie, Neils B; Abuaku, Benjamin; Duplessis, Christopher; Kronmann, Karl C; Koram, Kwadwo A

    2013-10-30

    With the introduction of artemisinin-based combination therapy (ACT) in 2005, monitoring of anti-malarial drug efficacy, which includes the use of molecular tools to detect known genetic markers of parasite resistance, is important for first-hand information on the changes in parasite susceptibility to drugs in Ghana. This study investigated the Plasmodium falciparum multidrug resistance gene (pfmdr1) copy number, mutations and the chloroquine resistance transporter gene (pfcrt) mutations in Ghanaian isolates collected in seven years to detect the trends in prevalence of mutations. Archived filter paper blood blots collected from children aged below five years with uncomplicated malaria in 2003-2010 at sentinel sites were used. Using quantitative real-time polymerase chain reaction (qRT-PCR), 756 samples were assessed for pfmdr1 gene copy number. PCR and restriction fragment length polymorphism (RFLP) were used to detect alleles of pfmdr1 86 in 1,102 samples, pfmdr1 184, 1034, 1042 and 1246 in 832 samples and pfcrt 76 in 1,063 samples. Merozoite surface protein 2 (msp2) genotyping was done to select monoclonal infections for copy number analysis. The percentage of isolates with increased pfmdr1 copy number were 4, 27, 9, and 18% for 2003-04, 2005-06, 2007-08 and 2010, respectively. Significant increasing trends for prevalence of pfmdr1 N86 (×(2) = 96.31, p <0.001) and pfcrt K76 (×(2) = 64.50, p <0.001) and decreasing trends in pfmdr1 Y86 (x(2) = 38.52, p <0.001) and pfcrt T76 (x(2) = 43.49, p <0.001) were observed from 2003-2010. The pfmdr1 F184 and Y184 prevalence showed an increasing and decreasing trends respectively but were not significant (×(2) = 7.39,p=0.060; ×(2) = 7.49, p = 0.057 respectively). The pfmdr1 N86-F184-D1246 haplotype, which is alleged to be selected by artemether-lumefantrine showed a significant increasing trend (×(2) = 20.75, p < 0.001). Increased pfmdr1 gene copy number was observed in the isolates analysed and this finding has implications for the use of ACT in the country although no resistance has been reported. The decreasing trend in the prevalence of chloroquine resistance markers after change of treatment policy presents the possibility for future introduction of chloroquine as prophylaxis for malaria risk groups such as children and pregnant women in Ghana.

  4. Molecular typing of Leptospira interrogans serovar Hardjo isolates from leptospirosis outbreaks in Brazilian livestock.

    PubMed

    Cosate, Maria Raquel V; Sakamoto, Tetsu; de Oliveira Mendes, Tiago Antônio; Moreira, Élvio C; Regis da Silva, Carlos G; Brasil, Bruno S A F; Oliveira, Camila S F; de Azevedo, Vasco Ariston; Ortega, José Miguel; Leite, Rômulo C; Haddad, João Paulo

    2017-06-15

    Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira spp. This zoonotic disease is distributed globally and affects domestic animals, including cattle. Leptospira interrogans serogroup Sejroe serovar Hardjo and Leptospira borgpetersenii serogroup Sejroe serovar Hardjo remain important species associated with this reproductive disease in livestock production. Previous studies on Brazilian livestock have reported that L. interrogans serovar Hardjo is the most prevalent leptospiral agent in this country and is related to clinical signs of leptospirosis, which lead to economic losses in production. Here, we described the isolation of three clinical strains (Norma, Lagoa and Bolivia) obtained from leptospirosis outbreaks that occurred in Minas Gerais state in 1994 and 2008. Serological and molecular typing using housekeeping (secY and 16SrRNA) and rfb locus (ORF22 and ORF36) genes were applied for the identification and comparative analysis of Leptospira spp. Our results identified the three isolates as L. interrogans serogroup Sejroe serovar Hardjo and confirmed the occurrence of this bacterial strain in Brazilian livestock. Genetic analysis using ORF22 and ORF36 grouped the Leptospira into serogroup Sejroe and subtype Hardjoprajitno. Genetic approaches were also applied to compare distinct serovars of L. interrogans strains by verifying the copy numbers of the IS1500 and IS1533 insertion sequences (ISs). The IS1500 copy number varied among the analyzed L. interrogans strains. This study provides evidence that L. interrogans serogroup Sejroe serovar Hardjo subtype Hardjoprajitno causes bovine leptospirosis in Brazilian production. The molecular results suggested that rfb locus (ORF22 and ORF36) could improve epidemiological studies by allowing the identification of Leptospira spp. at the serogroup level. Additionally, the IS1500 and IS1533 IS copy number analysis suggested distinct genomic features among closely related leptospiral strains.

  5. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic aberration profile' is then combined with chromosomal arm status (gain/loss) to define a succinct genomic signature for each tumor. Unsupervised clustering of the samples based on these genomic signatures can reveal novel tumor subtypes. This approach was applied to datasets from three types of brain tumors: Glioblastoma, Medulloblastoma and Neuroblastoma, and identified a new subtype in Medulloblastoma, characterized by many chromosomal aberrations. Elucidating the transcriptional effect of monosomy and trisomy. Trisomy and monosomy are expected to impact the expression of genes that are located on the affected chromosome. Analysis of several cancer datasets revealed that not all the genes on the aberrant chromosome are affected by the change of copy number. Affected genes exhibit a wide range of expression changes with varying penetrance. Specifically, (1) The effect of trisomy is much more conserved among individuals than the effect of monosomy and (2) the expression level of a gene in the diploid is significantly correlated with the level of change between the diploid and the trisomy or monosomy.

  6. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat

    PubMed Central

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-01-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. PMID:23855320

  7. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat.

    PubMed

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-10-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. © 2013 Ben-Gurion University The Plant Journal © 2013 John Wiley & Sons Ltd.

  8. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    PubMed

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  9. Trefoil factors: Tumor progression markers and mitogens via EGFR/MAPK activation in cholangiocarcinoma

    PubMed Central

    Kosriwong, Kanuengnuch; Menheniott, Trevelyan R; Giraud, Andrew S; Jearanaikoon, Patcharee; Sripa, Banchob; Limpaiboon, Temduang

    2011-01-01

    AIM: To investigate trefoil factor (TFF) gene copy number, mRNA and protein expression as potential biomarkers in cholangiocarcinoma (CCA). METHODS: TFF mRNA levels, gene copy number and protein expression were determined respectively by quantitative reverse transcription polymerase chain reaction (PCR), quantitative PCR and immunohistochemistry in bile duct epithelium biopsies collected from individuals with CCA, precancerous bile duct dysplasia and from disease-free controls. The functional impact of recombinant human (rh)TFF2 peptide treatment on proliferation and epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling was assessed in the CCA cell line, KMBC, by viable cell counting and immunoblotting, respectively. RESULTS: TFF1, TFF2 and TFF3 mRNA expression was significantly increased in CCA tissue compared to disease-free controls, and was unrelated to gene copy number. TFF1 immunoreactivity was strongly increased in both dysplasia and CCA, whereas TFF2 immunoreactivity was increased only in CCA compared to disease-free controls. By contrast, TFF3 immunoreactivity was moderately decreased in dysplasia and further decreased in CCA. Kaplan-Meier analysis found no association of TFF mRNA, protein and copy number with age, gender, histological subtype, and patient survival time. Treatment of KMBC cells with rhTFF2 stimulated proliferation, triggered phosphorylation of EGFR and downstream extracellular signal related kinase (ERK), whereas co-incubation with the EGFR tyrosine kinase inhibitor, PD153035, blocked rhTFF2-dependent proliferation and EGFR/ERK responses. CONCLUSION: TFF mRNA/protein expression is indicative of CCA tumor progression, but not predictive for histological sub-type or survival time. TFF2 is mitogenic in CCA via EGFR/MAPK activation. PMID:21472131

  10. High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    PubMed Central

    Salawu, Abdulazeez; Ul-Hassan, Aliya; Hammond, David; Fernando, Malee; Reed, Malcolm; Sisley, Karen

    2012-01-01

    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment. PMID:23209738

  11. HER2 copy number of circulating tumour DNA functions as a biomarker to predict and monitor trastuzumab efficacy in advanced gastric cancer.

    PubMed

    Wang, Haixing; Li, Beifang; Liu, Zhentao; Gong, Jifang; Shao, Lin; Ren, Jun; Niu, Yunyun; Bo, Shiping; Li, Zhongwu; Lai, Yumei; Lu, Sijia; Gao, Jing; Shen, Lin

    2018-01-01

    HER2 status is significant to trastuzumab therapy; however, it is difficult to determine HER2 status accurately with few pieces of biopsies from advanced gastric cancer (AGC) due to highly heterogeneity and invasive behaviour, which will be investigated in this study. Fifty-six patients with AGC were included in this study. Primary tumour tissues and matched plasmas before medication from 36 patients were retrospectively collected, and the other 20 patients with primary tumour tissues and paired plasmas were prospectively collected. HER2 expression and amplification in 56 tumour tissues were determined by immunohistochemistry (IHC) and dual in situ hybridisation (DISH), and HER2 copy number in 135 circulating tumour DNAs (ctDNAs) was judged by next-generation sequencing. For tumour tissues, HER2 amplification by DISH was most commonly found in patients with HER2 score 3+by IHC. For plasmas, HER2 amplification defined as HER2 copy number >2.22 was identified in 26 of 56 patients. There was a high concordance of HER2 amplification between ctDNA and tumour tissues, suggesting that ctDNA could function as an alternative to screen HER2-targeted population. Moreover, the changes of HER2 copy number in ctDNA could efficiently monitor trastuzumab efficacy, the power of which was superior to commonly used markers carcinoembryonic antigen (CEA) and CA199, suggesting its potential role in clinical practice. ctDNA for HER2 analysis was strongly recommended to serve as a surrogate to screen trastuzumab-suitable population and monitor trastuzumab efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Detection of MET Gene Copy Number in Cancer Samples Using the Droplet Digital PCR Method.

    PubMed

    Zhang, Yanni; Tang, En-Tzu; Du, Zhiqiang

    2016-01-01

    The analysis of MET gene copy number (CN) has been considered to be a potential biomarker to predict the response to MET-targeted therapies in various cancers. However, the current standard methods to determine MET CN are SNP 6.0 in the genomic DNA of cancer cell lines and fluorescence in situ hybridization (FISH) in tumor models, respectively, which are costly and require advanced technical skills and result in relatively subjective judgments. Therefore, we employed a novel method, droplet digital PCR (ddPCR), to determine the MET gene copy number with high accuracy and precision. The genomic DNA of cancer cell lines or tumor models were tested and compared with the MET gene CN and MET/CEN-7 ratio determined by SNP 6.0 and FISH, respectively. In cell lines, the linear association of the MET CN detected by ddPCR and SNP 6.0 is strong (Pearson correlation = 0.867). In tumor models, the MET CN detected by ddPCR was significantly different between the MET gene amplification and non-amplification groups according to FISH (mean: 15.4 vs 2.1; P = 0.044). Given that MET gene amplification is defined as MET CN >5.5 by ddPCR, the concordance rate between ddPCR and FISH was 98.0%, and Cohen's kappa coefficient was 0.760 (95% CI, 0.498-1.000; P <0.001). The results demonstrated that the ddPCR method has the potential to quantify the MET gene copy number with high precision and accuracy as compared with the results from SNP 6.0 and FISH in cancer cell lines and tumor samples, respectively.

  13. Epstein-Barr Virus Shedding by Astronauts During Space Flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.

    2004-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5 to 14 d duration. Samples were collected on a similar schedule from control subjects. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected before flight were positive for EBV DNA, as were 16% of those collected during flight and 16% of those collected after flight. The mean number of copies of EBV DNA from samples taken during the flights was 417 plus or minus 31, significantly greater (p less than 0.05) than the number of copies from the preflight (40 plus or minus 2) and postflight (44 plus or minus 5) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and a mean number of EBV DNA copies of 40 plus or minus 2 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p less than 0.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines, and plasma levels of substance P and other neuropeptides, were increased over their preflight values. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with the occurrence of EBV reactivation before, during, and after space flight.

  14. The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross

    PubMed Central

    2011-01-01

    Background Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. Results We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. Conclusions CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations. PMID:21936954

  15. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    PubMed

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  16. [Relationships between the enrichment of ETBF, Fn, Hp in intestinal and colorectal cancer].

    PubMed

    Zhang, J; Lu, X L; Zhao, G; Shi, H T; Geng, Y; Zhong, W T; Dong, L

    2018-02-23

    Objective: To explore relationships between the enrichment of ETBF, Fn, Hp in feces, tissues and colorectal cancer. Methods: Feces, lesion tissue and adjacent tissue from 24 patients with colorectal cancer and 31 patients with adenomas were collected, and we collected Feces and tissue of 20 healthy control persons. Then the copy numbers of enterotoxigenic B. fragilis (ETBF), Fusobacterium nucleatum (Fn) and Helicobacter pylori (Hp) were determined by quantitative real-time PCR. Immunohistochemical method was used to examine the expression intensity of EGFR and p53, and the relationships between different expression intensity of EGFR, p53 and the numbers of three bacterias. Results: In the feces, copy numbers of ETBF and Fn were as follous: colorectal cancer group>adenomas group>healthy control group ( P <0.05). Copy numbers of Hp were as follous: colorectal cancer group>healthy control group ( P <0.01); adenomas group>healthy control group ( P <0.01). In the tissue, copy numbers of ETBF, Fn were as follows: colorectal cancer group>adenomas group>healthy control group ( P <0.05). Copy numbers of Hp were as follows: colorectal cancer group>healthy control group ( P <0.01); adenomas group>healthy control group ( P <0.01). Copy numbers of those three bacteria in the lesion tissue and the adjacent tissue had no significant difference. This happened both in colorectal cancer group and adenomas group. The different expression intensity of EGFR, p53 and the number of three bacteria showed no obviously statistical correlation( P >0.05). Conclusion: Adenomatous polyp and colorectal cancer patients show high enrichment of ETBF, Fn and Hp in both feces and tissues. ETBF, Fn and Hp probably contribute to the development of adenomatous polyp and colorectal cancer. Trial registration Chinese Clinical Trial Registry, ChiCTR-BOC-17012509.

  17. Novel applications of array comparative genomic hybridization in molecular diagnostics.

    PubMed

    Cheung, Sau W; Bi, Weimin

    2018-05-31

    In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.

  18. Coupling between the basic replicon and the Kis-Kid maintenance system of plasmid R1: modulation by Kis antitoxin levels and involvement in control of plasmid replication.

    PubMed

    López-Villarejo, Juan; Lobato-Márquez, Damián; Díaz-Orejas, Ramón

    2015-02-05

    kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication.

  19. Coupling between the Basic Replicon and the Kis-Kid Maintenance System of Plasmid R1: Modulation by Kis Antitoxin Levels and Involvement in Control of Plasmid Replication

    PubMed Central

    López-Villarejo, Juan; Lobato-Márquez, Damián; Díaz-Orejas, Ramón

    2015-01-01

    kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication. PMID:25664511

  20. Estimation of total bacteria by real-time PCR in patients with periodontal disease.

    PubMed

    Brajović, Gavrilo; Popović, Branka; Puletić, Miljan; Kostić, Marija; Milasin, Jelena

    2016-01-01

    Periodontal diseases are associated with the presence of elevated levels of bacteria within the gingival crevice. The aim of this study was to evaluate a total amount of bacteria in subgingival plaque samples in patients with a periodontal disease. A quantitative evaluation of total bacteria amount using quantitative real-time polymerase chain reaction (qRT-PCR) was performed on 20 samples of patients with ulceronecrotic periodontitis and on 10 samples of healthy subjects. The estimation of total bacterial amount was based on gene copy number for 16S rRNA that was determined by comparing to Ct values/gene copy number of the standard curve. A statistically significant difference between average gene copy number of total bacteria in periodontal patients (2.55 x 10⁷) and healthy control (2.37 x 10⁶) was found (p = 0.01). Also, a trend of higher numbers of the gene copy in deeper periodontal lesions (> 7 mm) was confirmed by a positive value of coefficient of correlation (r = 0.073). The quantitative estimation of total bacteria based on gene copy number could be an important additional tool in diagnosing periodontitis.

  1. Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.

    PubMed

    Zaccaria, Simone; El-Kebir, Mohammed; Klau, Gunnar W; Raphael, Benjamin J

    2018-04-16

    Cancer is an evolutionary process driven by somatic mutations. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the many types of mutations in cancer and the fact that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy-number data from multiple samples of a tumor. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that either perform deconvolution/factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous tumor samples. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher resolution view of copy-number evolution of this cancer than published analyses.

  2. Copy number polymorphism of the salivary amylase gene: implications in human nutrition research.

    PubMed

    Santos, J L; Saus, E; Smalley, S V; Cataldo, L R; Alberti, G; Parada, J; Gratacòs, M; Estivill, X

    2012-01-01

    The salivary α-amylase is a calcium-binding enzyme that initiates starch digestion in the oral cavity. The α-amylase genes are located in a cluster on the chromosome that includes salivary amylase genes (AMY1), two pancreatic α-amylase genes (AMY2A and AMY2B) and a related pseudogene. The AMY1 genes show extensive copy number variation which is directly proportional to the salivary α-amylase content in saliva. The α-amylase amount in saliva is also influenced by other factors, such as hydration status, psychosocial stress level, and short-term dietary habits. It has been shown that the average copy number of AMY1 gene is higher in populations that evolved under high-starch diets versus low-starch diets, reflecting an intense positive selection imposed by diet on amylase copy number during evolution. In this context, a number of different aspects can be considered in evaluating the possible impact of copy number variation of the AMY1 gene on nutrition research, such as issues related to human diet gene evolution, action on starch digestion, effect on glycemic response after starch consumption, modulation of the action of α-amylases inhibitors, effect on taste perception and satiety, influence on psychosocial stress and relation to oral health. Copyright © 2012 S. Karger AG, Basel.

  3. Molecular Inversion Probe Analysis of Gene Copy Alterations Reveals Distinct Categories of Colorectal Carcinoma

    PubMed Central

    Ji, Hanlee; Kumm, Jochen; Zhang, Michael; Farnam, Kyle; Salari, Keyan; Faham, Malek; Ford, James M.; Davis, Ronald W.

    2006-01-01

    Genomic instability is a major feature of neoplastic development in colorectal carcinoma and other cancers. Specific genomic instability events, such as deletions in chromosomes and other alterations in gene copy number, have potential utility as biologically relevant prognostic biomarkers. For example, genomic deletions on chromosome arm 18q are an indicator of colorectal carcinoma behavior and potentially useful as a prognostic indicator. Adapting a novel genomic technology called molecular inversion probes which can determine gene copy alterations, such as genomic deletions, we designed a set of probes to interrogate several hundred individual exons of >200 cancer genes with an overall distribution covering all chromosome arms. In addition, >100 probes were designed in close proximity of microsatellite markers on chromosome arm 18q. We analyzed a set of colorectal carcinoma cell lines and primary colorectal tumor samples for gene copy alterations and deletion mutations in exons. Based on clustering analysis, we distinguished the different categories of genomic instability among the colorectal cancer cell lines. Our analysis of primary tumors uncovered several distinct categories of colorectal carcinoma, each with specific patterns of 18q deletions and deletion mutations in specific genes. This finding has potential clinical ramifications given the application of 18q loss of heterozygosity events as a potential indicator for adjuvant treatment in stage II colorectal carcinoma. PMID:16912164

  4. Population sequencing reveals breed and sub-species specific CNVs in cattle

    USDA-ARS?s Scientific Manuscript database

    Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...

  5. Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction.

    PubMed

    Codner, Gemma F; Lindner, Loic; Caulder, Adam; Wattenhofer-Donzé, Marie; Radage, Adam; Mertz, Annelyse; Eisenmann, Benjamin; Mianné, Joffrey; Evans, Edward P; Beechey, Colin V; Fray, Martin D; Birling, Marie-Christine; Hérault, Yann; Pavlovic, Guillaume; Teboul, Lydia

    2016-08-05

    Karyotypic integrity is essential for the successful germline transmission of alleles mutated in embryonic stem (ES) cells. Classical methods for the identification of aneuploidy involve cytological analyses that are both time consuming and require rare expertise to identify mouse chromosomes. As part of the International Mouse Phenotyping Consortium, we gathered data from over 1,500 ES cell clones and found that the germline transmission (GLT) efficiency of clones is compromised when over 50 % of cells harbour chromosome number abnormalities. In JM8 cells, chromosomes 1, 8, 11 or Y displayed copy number variation most frequently, whilst the remainder generally remain unchanged. We developed protocols employing droplet digital polymerase chain reaction (ddPCR) to accurately quantify the copy number of these four chromosomes, allowing efficient triage of ES clones prior to microinjection. We verified that assessments of aneuploidy, and thus decisions regarding the suitability of clones for microinjection, were concordant between classical cytological and ddPCR-based methods. Finally, we improved the method to include assay multiplexing so that two unstable chromosomes are counted simultaneously (and independently) in one reaction, to enhance throughput and further reduce the cost. We validated a PCR-based method as an alternative to classical karyotype analysis. This technique enables laboratories that are non-specialist, or work with large numbers of clones, to precisely screen ES cells for the most common aneuploidies prior to microinjection to ensure the highest level of germline transmission potential. The application of this method allows early exclusion of aneuploid ES cell clones in the ES cell to mouse conversion process, thus improving the chances of obtaining germline transmission and reducing the number of animals used in failed microinjection attempts. This method can be applied to any other experiments that require accurate analysis of the genome for copy number variation (CNV).

  6. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.

    PubMed

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude; Newton, Yulia; Shih, Juliann; Robertson, A Gordon; Hinoue, Toshinori; Hoadley, Katherine A; Gibb, Ewan A; Roszik, Jason; Covington, Kyle R; Wu, Chia-Chin; Shinbrot, Eve; Stransky, Nicolas; Hegde, Apurva; Yang, Ju Dong; Reznik, Ed; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Ojesina, Akinyemi I; Hess, Julian M; Auman, J Todd; Rhie, Suhn K; Bowlby, Reanne; Borad, Mitesh J; Zhu, Andrew X; Stuart, Josh M; Sander, Chris; Akbani, Rehan; Cherniack, Andrew D; Deshpande, Vikram; Mounajjed, Taofic; Foo, Wai Chin; Torbenson, Michael S; Kleiner, David E; Laird, Peter W; Wheeler, David A; McRee, Autumn J; Bathe, Oliver F; Andersen, Jesper B; Bardeesy, Nabeel; Roberts, Lewis R; Kwong, Lawrence N

    2017-03-14

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Diversity in copy number and structure of a silkworm morphogenetic gene as a result of domestication.

    PubMed

    Sakudoh, Takashi; Nakashima, Takeharu; Kuroki, Yoko; Fujiyama, Asao; Kohara, Yuji; Honda, Naoko; Fujimoto, Hirofumi; Shimada, Toru; Nakagaki, Masao; Banno, Yutaka; Tsuchida, Kozo

    2011-03-01

    The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time. © 2011 by the Genetics Society of America

  8. Diversity in Copy Number and Structure of a Silkworm Morphogenetic Gene as a Result of Domestication

    PubMed Central

    Sakudoh, Takashi; Nakashima, Takeharu; Kuroki, Yoko; Fujiyama, Asao; Kohara, Yuji; Honda, Naoko; Fujimoto, Hirofumi; Shimada, Toru; Nakagaki, Masao; Banno, Yutaka; Tsuchida, Kozo

    2011-01-01

    The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time. PMID:21242537

  9. 76 FR 59679 - Notice of Intent to Hold Public Meetings and Hear Public Comment on the Proposed New Jersey-New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... Street, NE, Room 2A, Washington, DC 20426, (202) 502-8371. CD-ROM copies of the draft EIS were mailed to.... A limited number of hard copies and CD-ROMs are available from the Public Reference Room identified above. Please note that copies of the CD-ROM were mailed with a postcard that included a docket number...

  10. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15.

    PubMed

    Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V

    2007-06-15

    A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.

  11. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma.

    PubMed

    Jia, Shou-Wei; Fu, Sha; Wang, Fang; Shao, Qiong; Huang, Hong-Bing; Shao, Jian-Yong

    2014-01-07

    To examine the status and clinical significance of anaplastic lymphoma kinase (ALK) gene alterations in hepatocellular carcinoma (HCC) patients. A total of 213 cases of HCC were examined by fluorescent in situ hybridization using dual color break-apart ALK probes for the detection of chromosomal translocation and gene copy number gain. HCC tissue microarrays were constructed, and the correlation between the ALK status and clinicopathological variables was assessed by χ(2) test or Fisher's exact test. Survival analysis was estimated using the Kaplan-Meier approach with a Log-rank test. Univariate and multivariate analyses of clinical variables were performed using the Cox proportional hazards regression model. ALK gene translocation was not observed in any of the HCC cases included in the present study. ALK gene copy number gain (ALK/CNG) (≥ 4 copies/cell) was detected in 28 (13.15%) of the 213 HCC patients. The 3-year progression-free-survival (PFS) rate for ALK/CNG-positive HCC patients was significantly poorer than ALK/CNG-negative patients (27.3% vs 42.5%, P = 0.048), especially for patients with advanced stage III/IV (0% vs 33.5%, P = 0.007), and patients with grade III disease (24.8% vs 49.9%, P = 0.023). ALK/CNG-positive HCC patients had a significantly poorer prognosis than ALK/CNG-negative patients in the subgroup that was negative for serum hepatitis B virus DNA, with significantly different 3-year overall survival rates (18.2% vs 63.6%, P = 0.021) and PFS rates (18.2% vs 46.9%, P = 0.019). Multivariate Cox proportional hazards regression analysis suggested that ALK/CNG prevalence can predict death in HCC (HR = 1.596; 95%CI: 1.008-2.526, P = 0.046). ALK/CNG, but not translocation of ALK, is present in HCC and may be an unfavorable prognostic predictor.

  12. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma

    PubMed Central

    Jia, Shou-Wei; Fu, Sha; Wang, Fang; Shao, Qiong; Huang, Hong-Bing; Shao, Jian-Yong

    2014-01-01

    AIM: To examine the status and clinical significance of anaplastic lymphoma kinase (ALK) gene alterations in hepatocellular carcinoma (HCC) patients. METHODS: A total of 213 cases of HCC were examined by fluorescent in situ hybridization using dual color break-apart ALK probes for the detection of chromosomal translocation and gene copy number gain. HCC tissue microarrays were constructed, and the correlation between the ALK status and clinicopathological variables was assessed by χ2 test or Fisher’s exact test. Survival analysis was estimated using the Kaplan-Meier approach with a Log-rank test. Univariate and multivariate analyses of clinical variables were performed using the Cox proportional hazards regression model. RESULTS: ALK gene translocation was not observed in any of the HCC cases included in the present study. ALK gene copy number gain (ALK/CNG) (≥ 4 copies/cell) was detected in 28 (13.15%) of the 213 HCC patients. The 3-year progression-free-survival (PFS) rate for ALK/CNG-positive HCC patients was significantly poorer than ALK/CNG-negative patients (27.3% vs 42.5%, P = 0.048), especially for patients with advanced stage III/IV (0% vs 33.5%, P = 0.007), and patients with grade III disease (24.8% vs 49.9%, P = 0.023). ALK/CNG-positive HCC patients had a significantly poorer prognosis than ALK/CNG-negative patients in the subgroup that was negative for serum hepatitis B virus DNA, with significantly different 3-year overall survival rates (18.2% vs 63.6%, P = 0.021) and PFS rates (18.2% vs 46.9%, P = 0.019). Multivariate Cox proportional hazards regression analysis suggested that ALK/CNG prevalence can predict death in HCC (HR = 1.596; 95%CI: 1.008-2.526, P = 0.046). CONCLUSION: ALK/CNG, but not translocation of ALK, is present in HCC and may be an unfavorable prognostic predictor. PMID:24415871

  13. Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes.

    PubMed

    Chan, C C W; Liu, V W S; Lau, E Y L; Yeung, W S B; Ng, E H Y; Ho, P C

    2005-12-01

    Previous studies analysing the incidences of mitochondrial DNA (mtDNA) deletions and mtDNA content in unfertilized oocytes in relation to donors' age have been controversial. The objective of the study was to compare these two parameters in unfertilized oocytes and relate them to the donors' age. Fifty-two women donated 155 unfertilized metaphase II (MII) oocytes. The incidence of 4977 bp deletion was 34.6%, and the mtDNA copy number was 598 350 +/- 265 862. Women >or=35 years of age had a significantly higher incidence of 4977 bp deletion, lower mtDNA copy number, higher FSH level and poorer ovarian response when compared with younger women. The mtDNA copy number was negatively correlated with the donor's age. The higher incidence of mtDNA deletion and lower mtDNA copy number in older women suggested that these two parameters may reflect ovarian ageing.

  14. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers.

    PubMed

    Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-05-30

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.

  15. Bioluminescent symbionts of the Caribbean flashlight fish (Kryptophanaron alfredi) have a single rRNA operon.

    PubMed

    Wolfe, C J; Haygood, M G

    1993-08-01

    Ribosomal RNA (rRNA) operon copy number and gene order were determined for the luminous bacterial symbiont of Kryptophanaron alfredi, an anomalopid (flashlight) fish, and estimated for the luminous symbionts of 3 other fish families and of 3 luminous seawater isolates. Compared with the seawater isolates and other fish symbionts, the copy number of rRNA genes in the K. alfredi symbiont was radically reduced, although gene order appeared conserved among all the strains. The K. alfredi symbiont possesses only a single rRNA operon, whereas the other strains examined have minimum copy numbers ranging from 8 to 11. No difference in copy number was observed between light organ and seawater isolates of the same species, or between isolates of the same species from the light organs of 2 different host families. Thus, the anomalopid symbiosis appears unique among characterized light organ symbioses.

  16. Copy number variations in patients with electrical status epilepticus in sleep.

    PubMed

    Kevelam, Sietske H G; Jansen, Floor E; Binsbergen, Ellen van; Braun, Kees P J; Verbeek, Nienke E; Lindhout, Dick; Poot, Martin; Brilstra, Eva H

    2012-02-01

    Electrical status epilepticus in sleep syndrome is the association of the electroencephalographic pattern and deficits in language or global cognitive function and behavioral problems. The etiology is often unknown, but genetic risk factors have been implicated. Array-based comparative genomic hybridization was used to identify copy number variations in 13 children with electrical status epilepticus in sleep syndrome to identify possible underlying risk factors. Seven copy number variations were detected in 4 of the 13 patients, which consisted of 6 novel gains and 1 loss, the recurrent 15q13.3 microdeletion. Two patients carried a probable pathogenic copy number variation containing a gene involved in the cholinergic pathway. Genetic aberrations in patients with electrical status epilepticus in sleep syndrome can provide an entry in the investigation of the etiology of electrical status epilepticus in sleep. However, further studies are needed to confirm our findings.

  17. Engineered promoters enable constant gene expression at any copy number in bacteria.

    PubMed

    Segall-Shapiro, Thomas H; Sontag, Eduardo D; Voigt, Christopher A

    2018-04-01

    The internal environment of growing cells is variable and dynamic, making it difficult to introduce reliable parts, such as promoters, for genetic engineering. Here, we applied control-theoretic ideas to design promoters that maintained constant levels of expression at any copy number. Theory predicts that independence to copy number can be achieved by using an incoherent feedforward loop (iFFL) if the negative regulation is perfectly non-cooperative. We engineered iFFLs into Escherichia coli promoters using transcription-activator-like effectors (TALEs). These promoters had near-identical expression in different genome locations and plasmids, even when their copy number was perturbed by genomic mutations or changes in growth medium composition. We applied the stabilized promoters to show that a three-gene metabolic pathway to produce deoxychromoviridans could retain function without re-tuning when the stabilized-promoter-driven genes were moved from a plasmid into the genome.

  18. Application of Droplet Digital PCR for Estimating Vector Copy Number States in Stem Cell Gene Therapy.

    PubMed

    Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto

    2016-10-01

    Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer-probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications.

  19. Application of Droplet Digital PCR for Estimating Vector Copy Number States in Stem Cell Gene Therapy

    PubMed Central

    Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto

    2016-01-01

    Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer–probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications. PMID:27763786

  20. The role of mitofilin in left ventricular hypertrophy in hemodialysis patients.

    PubMed

    Wu, Qi-Shun; He, Qing; He, Jian-Qiang; Chao, Jun; Wang, Wen-Yan; Zhou, Yan; Lou, Ji-Zhuang; Kong, Wei; Chen, Jun-Feng

    2018-11-01

    Left ventricular hypertrophy (LVH) is a common abnormality in hemodialysis (HD) patients. Mitochondrial dysfunction contributes to the progression of LVH. As an inner mitochondrial membrane structural protein, mitofilin plays a key role in maintaining mitochondrial structure and function. The aim of this study was to investigate the relationship between mitofilin and LVH in HD patients. A total of 98 HD patients and 32 healthy controls were included in the study. Serum N-terminal proBNP (NT-proBNP), endothelin-1 (ET-1), and atrial natriuretic peptide (ANP) were examined. The protein level of mitofilin and the mitochondrial DNA (mtDNA) copy number were estimated in peripheral blood mononuclear cells (PBMCs). The left ventricle mass index (LVMI) was evaluated in all participants, and the interaction between these variables and the LVMI was assessed. The LVMI was positively correlated with the NT-proBNP, ET-1, and ANP levels, and it was negatively correlated with mtDNA copy number and mitofilin levels. Multiple regression analysis showed that the NT-proBNP, ET-1, and ANP levels as well as mitofilin levels and mtDNA copy number were associated with the LVMI. Although further research of these associations is needed, this result suggests that LVH may affect the levels of mitofilin in HD patients.

  1. CNV-CH: A Convex Hull Based Segmentation Approach to Detect Copy Number Variations (CNV) Using Next-Generation Sequencing Data

    PubMed Central

    De, Rajat K.

    2015-01-01

    Copy number variation (CNV) is a form of structural alteration in the mammalian DNA sequence, which are associated with many complex neurological diseases as well as cancer. The development of next generation sequencing (NGS) technology provides us a new dimension towards detection of genomic locations with copy number variations. Here we develop an algorithm for detecting CNVs, which is based on depth of coverage data generated by NGS technology. In this work, we have used a novel way to represent the read count data as a two dimensional geometrical point. A key aspect of detecting the regions with CNVs, is to devise a proper segmentation algorithm that will distinguish the genomic locations having a significant difference in read count data. We have designed a new segmentation approach in this context, using convex hull algorithm on the geometrical representation of read count data. To our knowledge, most algorithms have used a single distribution model of read count data, but here in our approach, we have considered the read count data to follow two different distribution models independently, which adds to the robustness of detection of CNVs. In addition, our algorithm calls CNVs based on the multiple sample analysis approach resulting in a low false discovery rate with high precision. PMID:26291322

  2. CNV-CH: A Convex Hull Based Segmentation Approach to Detect Copy Number Variations (CNV) Using Next-Generation Sequencing Data.

    PubMed

    Sinha, Rituparna; Samaddar, Sandip; De, Rajat K

    2015-01-01

    Copy number variation (CNV) is a form of structural alteration in the mammalian DNA sequence, which are associated with many complex neurological diseases as well as cancer. The development of next generation sequencing (NGS) technology provides us a new dimension towards detection of genomic locations with copy number variations. Here we develop an algorithm for detecting CNVs, which is based on depth of coverage data generated by NGS technology. In this work, we have used a novel way to represent the read count data as a two dimensional geometrical point. A key aspect of detecting the regions with CNVs, is to devise a proper segmentation algorithm that will distinguish the genomic locations having a significant difference in read count data. We have designed a new segmentation approach in this context, using convex hull algorithm on the geometrical representation of read count data. To our knowledge, most algorithms have used a single distribution model of read count data, but here in our approach, we have considered the read count data to follow two different distribution models independently, which adds to the robustness of detection of CNVs. In addition, our algorithm calls CNVs based on the multiple sample analysis approach resulting in a low false discovery rate with high precision.

  3. Common structural and epigenetic changes in the genome of castration-resistant prostate cancer.

    PubMed

    Friedlander, Terence W; Roy, Ritu; Tomlins, Scott A; Ngo, Vy T; Kobayashi, Yasuko; Azameera, Aruna; Rubin, Mark A; Pienta, Kenneth J; Chinnaiyan, Arul; Ittmann, Michael M; Ryan, Charles J; Paris, Pamela L

    2012-02-01

    Progression of primary prostate cancer to castration-resistant prostate cancer (CRPC) is associated with numerous genetic and epigenetic alterations that are thought to promote survival at metastatic sites. In this study, we investigated gene copy number and CpG methylation status in CRPC to gain insight into specific pathophysiologic pathways that are active in this advanced form of prostate cancer. Our analysis defined and validated 495 genes exhibiting significant differences in CRPC in gene copy number, including gains in androgen receptor (AR) and losses of PTEN and retinoblastoma 1 (RB1). Significant copy number differences existed between tumors with or without AR gene amplification, including a common loss of AR repressors in AR-unamplified tumors. Simultaneous gene methylation and allelic deletion occurred frequently in RB1 and HSD17B2, the latter of which is involved in testosterone metabolism. Lastly, genomic DNA from most CRPC was hypermethylated compared with benign prostate tissue. Our findings establish a comprehensive methylation signature that couples epigenomic and structural analyses, thereby offering insights into the genomic alterations in CRPC that are associated with a circumvention of hormonal therapy. Genes identified in this integrated genomic study point to new drug targets in CRPC, an incurable disease state which remains the chief therapeutic challenge. ©2012 AACR.

  4. Cell-free mitochondrial DNA copy number variation in head and neck squamous cell carcinoma: A study of non-invasive biomarker from Northeast India.

    PubMed

    Kumar, Manish; Srivastava, Shilpee; Singh, Seram Anil; Das, Anup Kumar; Das, Ganesh Chandra; Dhar, Bishal; Ghosh, Sankar Kumar; Mondal, Rosy

    2017-10-01

    Head and neck squamous cell carcinoma is the most commonly diagnosed cancer worldwide. The lifestyle, food habits, and customary practices manifest the Northeast Indian population toward higher susceptibility to develop head and neck squamous cell carcinoma. Here, we have investigated the association of smoke and smokeless tobacco, and alcohol with copy number variation of cell-free mitochondrial DNA and cell-free nuclear DNA in cases and controls. Cell-free DNA from plasma was isolated from 50 head and neck squamous cell carcinoma cases and 50 controls with informed written consent using QIAamp Circulating Nucleic Acid Kit. Real-time polymerase chain reaction was done for copy number variation in cell-free mitochondrial DNA and cell-free nuclear DNA. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic application between the two study groups using clinicopathological parameters. The levels of cell-free nuclear DNA and cell-free mitochondrial DNA of cases in association with smoke and smokeless tobacco, alcohol with smoking (p < 0.05) were significantly higher (p < 0.01 and p < 0.001, respectively) than controls. Using receiver operating characteristic curve analysis between head and neck squamous cell carcinoma cases and controls, we distinguished cell-free mitochondrial DNA (cutoff: 19.84 raw Ct; sensitivity: 84%; specificity: 100%; p < 0.001) and cell-free nuclear DNA (cutoff: 463,282 genomic equivalent/mL; sensitivity: 53%; specificity: 87%; p < 0.001). The copy number variation in cases (cell-free nuclear DNA: 5451.66 genomic equivalent/mL and cell-free mitochondrial DNA: 29,103,476.15 genomic equivalent/mL) and controls (cell-free nuclear DNA: 1650.9 genomic equivalent/mL and cell-free mitochondrial DNA: 9,189,312.54 genomic equivalent/mL), respectively. Our result indicates that the cell-free mitochondrial DNA content is highly associated with smoke and smokeless tobacco, betel quid chewing, and alcohol which shows greater promises, holding the key characteristics of diagnostic biomarkers, that is, minimal invasiveness, high specificity, and sensitivity.

  5. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS).

    PubMed

    Fukuoka, Masahiro; Wu, Yi-Long; Thongprasert, Sumitra; Sunpaweravong, Patrapim; Leong, Swan-Swan; Sriuranpong, Virote; Chao, Tsu-Yi; Nakagawa, Kazuhiko; Chu, Da-Tong; Saijo, Nagahiro; Duffield, Emma L; Rukazenkov, Yuri; Speake, Georgina; Jiang, Haiyi; Armour, Alison A; To, Ka-Fai; Yang, James Chih-Hsin; Mok, Tony S K

    2011-07-20

    The results of the Iressa Pan-Asia Study (IPASS), which compared gefitinib and carboplatin/paclitaxel in previously untreated never-smokers and light ex-smokers with advanced pulmonary adenocarcinoma were published previously. This report presents overall survival (OS) and efficacy according to epidermal growth factor receptor (EGFR) biomarker status. In all, 1,217 patients were randomly assigned. Biomarkers analyzed were EGFR mutation (amplification mutation refractory system; 437 patients evaluable), EGFR gene copy number (fluorescent in situ hybridization; 406 patients evaluable), and EGFR protein expression (immunohistochemistry; 365 patients evaluable). OS analysis was performed at 78% maturity. A Cox proportional hazards model was used to assess biomarker status by randomly assigned treatment interactions for progression-free survival (PFS) and OS. OS (954 deaths) was similar for gefitinib and carboplatin/paclitaxel with no significant difference between treatments overall (hazard ratio [HR], 0.90; 95% CI, 0.79 to 1.02; P = .109) or in EGFR mutation-positive (HR, 1.00; 95% CI, 0.76 to 1.33; P = .990) or EGFR mutation-negative (HR, 1.18; 95% CI, 0.86 to 1.63; P = .309; treatment by EGFR mutation interaction P = .480) subgroups. A high proportion (64.3%) of EGFR mutation-positive patients randomly assigned to carboplatin/paclitaxel received subsequent EGFR tyrosine kinase inhibitors. PFS was significantly longer with gefitinib for patients whose tumors had both high EGFR gene copy number and EGFR mutation (HR, 0.48; 95% CI, 0.34 to 0.67) but significantly shorter when high EGFR gene copy number was not accompanied by EGFR mutation (HR, 3.85; 95% CI, 2.09 to 7.09). EGFR mutations are the strongest predictive biomarker for PFS and tumor response to first-line gefitinib versus carboplatin/paclitaxel. The predictive value of EGFR gene copy number was driven by coexisting EGFR mutation (post hoc analysis). Treatment-related differences observed for PFS in the EGFR mutation-positive subgroup were not apparent for OS. OS results were likely confounded by the high proportion of patients crossing over to the alternative treatment.

  6. Genomic DNA Copy-Number Alterations of the let-7 Family in Human Cancers

    PubMed Central

    Greshock, Joel; Shen, Liang; Yang, Xiaojun; Shao, Zhongjun; Liang, Shun; Tanyi, Janos L.; Sood, Anil K.; Zhang, Lin

    2012-01-01

    In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e), breast cancer (let-7a-2), and ovarian cancer (let-7a-3/let-7b). For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer. PMID:22970210

  7. Population sequencing reveals breed and sub-species specific CNVs in cattle

    USDA-ARS?s Scientific Manuscript database

    Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect the rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an incre...

  8. Influenza Virus Aerosols in Human Exhaled Breath: Particle Size, Culturability, and Effect of Surgical Masks

    PubMed Central

    Milton, Donald K.; Cowling, Benjamin J.; Grantham, Michael L.

    2013-01-01

    The CDC recommends that healthcare settings provide influenza patients with facemasks as a means of reducing transmission to staff and other patients, and a recent report suggested that surgical masks can capture influenza virus in large droplet spray. However, there is minimal data on influenza virus aerosol shedding, the infectiousness of exhaled aerosols, and none on the impact of facemasks on viral aerosol shedding from patients with seasonal influenza. We collected samples of exhaled particles (one with and one without a facemask) in two size fractions (“coarse”>5 µm, “fine”≤5 µm) from 37 volunteers within 5 days of seasonal influenza onset, measured viral copy number using quantitative RT-PCR, and tested the fine-particle fraction for culturable virus. Fine particles contained 8.8 (95% CI 4.1 to 19) fold more viral copies than did coarse particles. Surgical masks reduced viral copy numbers in the fine fraction by 2.8 fold (95% CI 1.5 to 5.2) and in the coarse fraction by 25 fold (95% CI 3.5 to 180). Overall, masks produced a 3.4 fold (95% CI 1.8 to 6.3) reduction in viral aerosol shedding. Correlations between nasopharyngeal swab and the aerosol fraction copy numbers were weak (r = 0.17, coarse; r = 0.29, fine fraction). Copy numbers in exhaled breath declined rapidly with day after onset of illness. Two subjects with the highest copy numbers gave culture positive fine particle samples. Surgical masks worn by patients reduce aerosols shedding of virus. The abundance of viral copies in fine particle aerosols and evidence for their infectiousness suggests an important role in seasonal influenza transmission. Monitoring exhaled virus aerosols will be important for validation of experimental transmission studies in humans. PMID:23505369

  9. Polymorphisms in α-Defensin–Encoding DEFA1A3 Associate with Urinary Tract Infection Risk in Children with Vesicoureteral Reflux

    PubMed Central

    Schwaderer, Andrew L.; Wang, Huanyu; Kim, SungHwan; Kline, Jennifer M.; Liang, Dong; Brophy, Pat D.; McHugh, Kirk M.; Tseng, George C.; Saxena, Vijay; Barr-Beare, Evan; Pierce, Keith R.; Shaikh, Nader; Manak, J. Robert; Cohen, Daniel M.; Becknell, Brian; Spencer, John D.; Baker, Peter B.; Yu, Chack-Yung

    2016-01-01

    The contribution of genetic variation to urinary tract infection (UTI) risk in children with vesicoureteral reflux is largely unknown. The innate immune system, which includes antimicrobial peptides, such as the α-defensins, encoded by DEFA1A3, is important in preventing UTIs but has not been investigated in the vesicoureteral reflux population. We used quantitative real–time PCR to determine DEFA1A3 DNA copy numbers in 298 individuals with confirmed UTIs and vesicoureteral reflux from the Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Study and 295 controls, and we correlated copy numbers with outcomes. Outcomes studied included reflux grade, UTIs during the study on placebo or antibiotics, bowel and bladder dysfunction, and renal scarring. Overall, 29% of patients and 16% of controls had less than or equal to five copies of DEFA1A3 (odds ratio, 2.09; 95% confidence interval, 1.40 to 3.11; P<0.001). For each additional copy of DEFA1A3, the odds of recurrent UTI in patients receiving antibiotic prophylaxis decreased by 47% when adjusting for vesicoureteral reflux grade and bowel and bladder dysfunction. In patients receiving placebo, DEFA1A3 copy number did not associate with risk of recurrent UTI. Notably, we found that DEFA1A3 is expressed in renal epithelium and not restricted to myeloid-derived cells, such as neutrophils. In conclusion, low DEFA1A3 copy number associated with recurrent UTIs in subjects in the RIVUR Study randomized to prophylactic antibiotics, providing evidence that copy number polymorphisms in an antimicrobial peptide associate with UTI risk. PMID:26940096

  10. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    PubMed Central

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2015-01-01

    Summary Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183 000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioniens in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. PMID:21518240

  11. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster.

    PubMed

    Schrider, Daniel R; Hahn, Matthew W; Begun, David J

    2016-05-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Molecular characterization of mariner-like elements in emerald ash borer, Agrilus planipennis (Coleoptera, Polyphaga).

    PubMed

    Rivera-Vega, L; Mittapalli, O

    2010-08-01

    Emerald ash borer (EAB, Agrilus planipennis), an exotic invasive pest, has killed millions of ash trees (Fraxinus spp.) in North America and continues to threaten the very survival of the entire Fraxinus genus. Despite its high-impact status, to date very little knowledge exists for this devastating insect pest at the molecular level. Mariner-like elements (MLEs) are transposable elements, which are ubiquitous in occurrence in insects and other invertebrates. Because of their low specificity and broad host range, they can be used for epitope-tagging, gene mapping, and in vitro mutagenesis. The majority of the known MLEs are inactive due to in-frame shifts and stop codons within the open reading frame (ORF). We report on the cloning and characterization of two MLEs in A. planipennis genome (Apmar1 and Apmar2). Southern analysis indicated a very high copy number for Apmar1 and a moderate copy number for Apmar2. Phylogenetic analysis revealed that both elements belong to the irritans subfamily. Based on the high copy number for Apmar1, the full-length sequence was obtained using degenerate primers designed to the inverted terminal repeat (ITR) sequences of irritans MLEs. The recovered nucleotide sequence for Apmar1 consisted of 1,292 bases with perfect ITRs, and an ORF of 1,050 bases encoding a putative transposase of 349 amino acids. The deduced amino acid sequence of Apmar1 contained the conserved regions of mariner transposases including WVPHEL and YSPDLAP, and the D,D(34)D motif. Both Apmar1 and Apmar2 could represent useful genetic tools and provide insights on EAB adaptation.

  13. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events.

    PubMed

    Demeke, Tigst; Eng, Monika

    2018-05-01

    Droplet digital PCR (ddPCR) has been used for absolute quantification of genetically engineered (GE) events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences ( HMG-I/Y , FatA(A), CruA and Ccf) for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A), reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A) reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences) were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes.

  14. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics.

    PubMed

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-03-18

    Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Prospective analysis. 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype-phenotype analyses. All analyses were performed in a large German laboratory specialised in genetic diagnostics. 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype-phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position.

  15. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics

    PubMed Central

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-01-01

    Objectives Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Design Prospective analysis. Patients 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype–phenotype analyses. Setting All analyses were performed in a large German laboratory specialised in genetic diagnostics. Results 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. Conclusions On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype–phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position. PMID:23512835

  16. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack)

    PubMed Central

    2012-01-01

    Background While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Results Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. Conclusions The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants. PMID:23006412

  17. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack).

    PubMed

    Hensel, Goetz; Oleszczuk, Sylwia; Daghma, Diaa Eldin S; Zimny, Janusz; Melzer, Michael; Kumlehn, Jochen

    2012-09-25

    While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants.

  18. Does Visual Attention Span Relate to Eye Movements during Reading and Copying?

    ERIC Educational Resources Information Center

    Bosse, Marie-Line; Kandel, Sonia; Prado, Chloé; Valdois, Sylviane

    2014-01-01

    This research investigated whether text reading and copying involve visual attention-processing skills. Children in grades 3 and 5 read and copied the same text. We measured eye movements while reading and the number of gaze lifts (GL) during copying. The children were also administered letter report tasks that constitute an estimation of the…

  19. Requirements for rapid plasmid ColE1 copy number adjustments: a mathematical model of inhibition modes and RNA turnover rates.

    PubMed

    Paulsson, J; Nordström, K; Ehrenberg, M

    1998-01-01

    The random distribution of ColE1 plasmids between the daughter cells at cell division introduces large copy number variations. Statistic variation associated with limited copy number in single cells also causes fluctuations to emerge spontaneously during the cell cycle. Efficient replication control out of steady state is therefore important to tame such stochastic effects of small numbers. In the present model, the dynamic features of copy number control are divided into two parts: first, how sharply the replication frequency per plasmid responds to changes in the concentration of the plasmid-coded inhibitor, RNA I, and second, how tightly RNA I and plasmid concentrations are coupled. Single (hyperbolic)- and multiple (exponential)-step inhibition mechanisms are compared out of steady state and it is shown how the response in replication frequency depends on the mode of inhibition. For both mechanisms, sensitivity of inhibition is "bought" at the expense of a rapid turnover of a replication preprimer, RNA II. Conventional, single-step, inhibition kinetics gives a sloppy replication control even at high RNA II turnover rates, whereas multiple-step inhibition has the potential of working with unlimited precision. When plasmid concentration changes rapidly, RNA I must be degraded rapidly to be "up to date" with the change. Adjustment to steady state is drastically impaired when the turnover rate constants of RNA I decrease below certain thresholds, but is basically unaffected for a corresponding increase. Several features of copy number control that are shown to be crucial for the understanding of ColE1-type plasmids still remain to be experimentally characterized. It is shown how steady-state properties reflect dynamics at the heart of regulation and therefore can be used to discriminate between fundamentally different copy number control mechanisms. The experimental tests of the predictions made require carefully planned assays, and some suggestions for suitable experiments arise naturally from the present work. It is also discussed how the presence of the Rom protein may affect dynamic qualities of copy number control. Copyright 1998 Academic Press.

  20. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

Top