Sample records for coral patch seamount

  1. Depths and Ages of Deep-Sea Corals From the Medusa Expedition

    NASA Astrophysics Data System (ADS)

    Fernandez, D.; Adkins, J. F.; Robinson, L. F.; Scheirer, D.; Shank, T.

    2003-12-01

    From May-June 2003 we used the DSV Alvin and the RSV Atlantis to collect modern and fossil deep-sea corals from the New England and Muir Seamounts. Our goal was to collect depth transects of corals from a variety of ages to measure paleo chemical profiles in the North Atlantic. Because deep-sea corals can be dated with both U-series and radiocarbon methods, we are especially interested in measuring past D14C profiles to constrain the paleo overturning rate of the deep ocean. We collected over 3,300 fossil Desmophyllum cristagalli individuals, 10s of kgs of Solenosmillia sp. and numerous Enallopsamia rostrata and Caryophilia sp. These samples spanned a depth range from 1,150-2,500 meters and refute the notion that deep-sea corals are too sparsely distributed to be useful for paleoclimate reconstructions. Despite widespread evidence for mass wasting on the seamounts, fossil corals were almost always found in growth position. This observation alleviates some of the concern associated with dredge samples where down-slope transport of samples can not be characterized. Fossil scleractinia were often found to have recruited onto other carbonate skeletons, including large branching gorgonians. The U-series age distribution of these recruitment patterns will constrain how much paleoclimatic time a particular "patch" can represent. In addition, U-series ages, combined with the observed differences in species distribution, will begin to inform our understanding of deep-sea coral biogeography. A lack of modern D. cristagalli on Muir seamount, but an abundance of fossil samples at this site, is the most striking example of changes in oceanic conditions playing a role in where deep-sea corals grow.

  2. Comparing Molecular Variation to Morphological Species Designations in the Deep-Sea Coral Narella Reveals New Insights into Seamount Coral Ranges

    PubMed Central

    Baco, Amy R.; Cairns, Stephen D.

    2012-01-01

    Recent studies have countered the paradigm of seamount isolation, confounding conservation efforts at a critical time. Efforts to study deep-sea corals, one of the dominant taxa on seamounts, to understand seamount connectivity, are hampered by a lack of taxonomic keys. A prerequisite for connectivity is species overlap. Attempts to better understand species overlap using DNA barcoding methods suggest coral species are widely distributed on seamounts and nearby features. However, no baseline has been established for variation in these genetic markers relative to morphological species designations for deep-sea octocoral families. Here we assess levels of genetic variation in potential octocoral mitochondrial barcode markers relative to thoroughly examined morphological species in the genus Narella. The combination of six markers used here, approximately 3350 bp of the mitochondrial genome, resolved 83% of the morphological species. Our results show that two of the markers, ND2 and NCR1, are not sufficient to resolve genera within Primnoidae, let alone species. Re-evaluation of previous studies of seamount octocorals based on these results suggest that those studies were looking at distributions at a level higher than species, possibly even genus or subfamily. Results for Narella show that using more markers provides haplotypes with relatively narrow depth ranges on the seamounts studied. Given the lack of 100% resolution of species with such a large portion of the mitochondrial genome, we argue that previous genetic studies have not resolved the degree of species overlap on seamounts and that we may not have the power to even test the hypothesis of seamount isolation using mitochondrial markers, let alone refute it. Thus a precautionary approach is advocated in seamount conservation and management, and the potential for depth structuring should be considered. PMID:23029093

  3. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal.

    PubMed

    Miller, Karen J; Gunasekera, Rasanthi M

    2017-04-10

    Ecological processes in the deep sea are poorly understood due to the logistical constraints of sampling thousands of metres below the ocean's surface and remote from most land masses. Under such circumstances, genetic data provides unparalleled insight into biological and ecological relationships. We use microsatellite DNA to compare the population structure, reproductive mode and dispersal capacity in two deep sea corals from seamounts in the Southern Ocean. The solitary coral Desmophyllum dianthus has widespread dispersal consistent with its global distribution and resilience to disturbance. In contrast, for the matrix-forming colonial coral Solenosmilia variabilis asexual reproduction is important and the dispersal of sexually produced larvae is negligible, resulting in isolated populations. Interestingly, despite the recognised impacts of fishing on seamount communities, genetic diversity on fished and unfished seamounts was similar for both species, suggesting that evolutionary resilience remains despite reductions in biomass. Our results provide empirical evidence that a group of seamounts can function either as isolated islands or stepping stones for dispersal for different taxa. Furthermore different strategies will be required to protect the two sympatric corals and consequently the recently declared marine reserves in this region may function as a network for D. dianthus, but not for S. variabilis.

  4. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal

    NASA Astrophysics Data System (ADS)

    Miller, Karen J.; Gunasekera, Rasanthi M.

    2017-04-01

    Ecological processes in the deep sea are poorly understood due to the logistical constraints of sampling thousands of metres below the ocean’s surface and remote from most land masses. Under such circumstances, genetic data provides unparalleled insight into biological and ecological relationships. We use microsatellite DNA to compare the population structure, reproductive mode and dispersal capacity in two deep sea corals from seamounts in the Southern Ocean. The solitary coral Desmophyllum dianthus has widespread dispersal consistent with its global distribution and resilience to disturbance. In contrast, for the matrix-forming colonial coral Solenosmilia variabilis asexual reproduction is important and the dispersal of sexually produced larvae is negligible, resulting in isolated populations. Interestingly, despite the recognised impacts of fishing on seamount communities, genetic diversity on fished and unfished seamounts was similar for both species, suggesting that evolutionary resilience remains despite reductions in biomass. Our results provide empirical evidence that a group of seamounts can function either as isolated islands or stepping stones for dispersal for different taxa. Furthermore different strategies will be required to protect the two sympatric corals and consequently the recently declared marine reserves in this region may function as a network for D. dianthus, but not for S. variabilis.

  5. Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years

    USGS Publications Warehouse

    Robinson, L.F.; Adkins, J.F.; Scheirer, D.S.; Fernandez, D.P.; Gagnon, A.; Waller, R.G.

    2007-01-01

    Deep-sea corals have grown for over 200,000 yrs on the New England Seamounts in the northwest Atlantic, and this paper describes their distribution both with respect to depth and time. Many thousands of fossil scleractinian corals were collected on a series of cruises from 2003-2005; by contrast, live ones were scarce. On these seamounts, the depth distribution of fossil Desmophyllum dianthus (Esper, 1794) is markedly different to that of the colonial scleractinian corals, extending 750 m deeper in the water column to a distinct cut-off at 2500 m. This cut-off is likely to be controlled by the maximum depth of a notch-shaped feature in the seamount morphology. The ages of D. dianthus corals as determined by U-series measurements range from modern to older than 200,000 yrs. The age distribution is not constant over time, and most corals have ages from the last glacial period. Within the glacial period, increases in coral population density at Muir and Manning Seamounts coincided with times at which large-scale ocean circulation changes have been documented in the deep North Atlantic. Ocean circulation changes have an effect on coral distributions, but the cause of the link is not known. ?? 2007 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.

  6. Diversity of zoanthids (anthozoa: hexacorallia) on Hawaiian seamounts: description of the Hawaiian gold coral and additional zoanthids.

    PubMed

    Sinniger, Frederic; Ocaña, Oscar V; Baco, Amy R

    2013-01-01

    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals.

  7. Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    PubMed Central

    Sinniger, Frederic; Ocaña, Oscar V.; Baco, Amy R.

    2013-01-01

    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals. PMID:23326345

  8. Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean.

    PubMed

    Cavalazzi, Barbara; Westall, Frances; Cady, Sherry L; Barbieri, Roberto; Foucher, Frédéric

    2011-09-01

    The chilled rinds of pillow basalt from the Ampère-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include filamentous and spherical microfossil-like structures, were detected in K-phillipsite-filled amygdules within the chilled rinds. The filamentous structures (∼2.5 μm in diameter) occur as K-phillipsite tubules surrounded by an Fe-oxyhydroxide (lepidocrocite) rich membranous structure, whereas the spherical structures (from 4 to 2 μm in diameter) are associated with Ti oxide (anatase) and carbonaceous matter. Several lines of evidence indicate that the microfossil-like structures in the pillow basalt are the fossilized remains of microorganisms. Possible biosignatures include the carbonaceous nature of the spherical structures, their size distributions and morphology, the presence and distribution of native fluorescence, mineralogical and chemical composition, and environmental context. When taken together, the suite of possible biosignatures supports the hypothesis that the fossil-like structures are of biological origin. The vesicular microhabitat of the rock matrix is likely to have hosted a cryptoendolithic microbial community. This study documents a variety of evidence for past microbial life in a hitherto poorly investigated and underestimated microenvironment, as represented by the amygdules in the chilled pillow basalt rinds. This kind of endolithic volcanic habitat would have been common on the early rocky planets in our Solar System, such as Earth and Mars. This study provides a framework for evaluating traces of past life in vesicular pillow basalts, regardless of whether they occur on early Earth or Mars.

  9. Cold-water coral distributions in the drake passage area from towed camera observations--initial interpretations.

    PubMed

    Waller, Rhian G; Scanlon, Kathryn M; Robinson, Laura F

    2011-01-25

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.

  10. Cold-Water Coral Distributions in the Drake Passage Area from Towed Camera Observations – Initial Interpretations

    PubMed Central

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions. PMID:21283585

  11. Cold-water coral distributions in the Drake Passage area from towed camera observations - Initial interpretations

    USGS Publications Warehouse

    Waller, Rhian G.; Catanach, Kathryn Scanlon; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.

  12. Cold-water coral distributions in the drake passage area from towed camera observations - Initial interpretations

    USGS Publications Warehouse

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Coldwater corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.

  13. Exploring Mesophotic Depths Off North Philippine Sea: Coral Reefs on the Benham Bank Seamount

    NASA Astrophysics Data System (ADS)

    Nacorda, H. M. E.; Dizon, R. M.; Meñez, L. A. B.; Nañola, C. L., Jr.; Hernandez, H. B.; Quimpo, F. A. T. R.; De Jesus, D. O.; Nacorda, J. O. O.; Tingson, K. N.; Roa-Chio, P. B. L.; Pardo, K. C. E.; Licuanan, W. R. Y.; Aliño, P. M.

    2016-02-01

    We conducted observational surveys of coral reef biodiversity at <60 m on the summit of the Benham Bank Seamount off North Philippine Sea. The reefs were found with excellent cover (75 to 100%) of mostly tiered, thick, rigid and foliose plate-forming Porites rus. Over 60 species of bony and cartilaginous fish were recorded; their estimated biomass ranged from 17 to 102 mt km-2. Four species of the green algae Halimeda dominated the reef-associated macroalgae, some of which were epiphytic. The prominent coral-attached sponges had arborescent growth form but irregular forms also occurred. The coarse biogenic surface sediments harbored mostly aerobic macroinfauna. These results comprise the first account of the biodiversity of an offshore mesophotic coral reef seamount. Although its diversity appears less than the shallower fringing reefs of the Philippines' Pacific Seaboard, the dynamic environment remains important to fisheries.

  14. Numerical simulation of faulting in the Sunda Trench shows that seamounts may generate megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Chan, C. H.; Tapponnier, P.

    2017-12-01

    The role of seamounts in generating earthquakes has been debated, with some studies suggesting that seamounts could be truncated to generate megathrust events, while other studies indicate that the maximum size of megathrust earthquakes could be reduced as subducting seamounts could lead to segmentation. The debate is highly relevant for the seamounts discovered along the Mentawai patch of the Sunda Trench, where previous studies have suggested that a megathrust earthquake will likely occur within decades. In order to model the dynamic behavior of the Mentawai patch, we simulated forearc faulting caused by seamount subducting using the Discrete Element Method. Our models show that rupture behavior in the subduction system is dominated by stiffness of the overriding plate. When stiffness is low, a seamount can be a barrier to rupture propagation, resulting in several smaller (M≤8.0) events. If, however, stiffness is high, a seamount can cause a megathrust earthquake (M8 class). In addition, we show that a splay fault in the subduction environment could only develop when a seamount is present, and a larger offset along a splay fault is expected when stiffness of the overriding plate is higher. Our dynamic models are not only consistent with previous findings from seismic profiles and earthquake activities, but the models also better constrain the rupture behavior of the Mentawai patch, thus contributing to subsequent seismic hazard assessment.

  15. Benthic Assemblages of the Anton Dohrn Seamount (NE Atlantic): Defining Deep-Sea Biotopes to Support Habitat Mapping and Management Efforts with a Focus on Vulnerable Marine Ecosystems.

    PubMed

    Davies, Jaime S; Stewart, Heather A; Narayanaswamy, Bhavani E; Jacobs, Colin; Spicer, John; Golding, Neil; Howell, Kerry L

    2015-01-01

    In 2009 the NW and SE flanks of Anton Dohrn Seamount were surveyed using multibeam echosounder and video ground-truthing to characterise megabenthic biological assemblages (biotopes) and assess those which clearly adhere to the definition of Vulnerable Marine Ecosystems, for use in habitat mapping. A combination of multivariate analysis of still imagery and video ground-truthing defined 13 comprehensive descriptions of biotopes that function as mapping units in an applied context. The data reveals that the NW and SE sides of Anton Dohrn Seamount (ADS) are topographically complex and harbour diverse biological assemblages, some of which agree with current definitions of 'listed' habitats of conservation concern. Ten of these biotopes could easily be considered Vulnerable Marine Ecosystems; three coral gardens, four cold-water coral reefs, two xenophyophore communities and one sponge dominated community, with remaining biotopes requiring more detailed assessment. Coral gardens were only found on positive geomorphic features, namely parasitic cones and radial ridges, found both sides of the seamount over a depth of 1311-1740 m. Two cold-water coral reefs (equivalent to summit reef) were mapped on the NW side of the seamount; Lophelia pertusa reef associated with the cliff top mounds at a depth of 747-791 m and Solenosmilia variabilis reef on a radial ridge at a depth of 1318-1351 m. Xenophyophore communities were mapped from both sides of the seamount at a depth of 1099-1770 m and were either associated with geomorphic features or were in close proximity (< 100 m) to them. The sponge dominated community was found on the steep escarpment either side of the seamount over at a depth of 854-1345 m. Multivariate diversity revealed the xenophyophore biotopes to be the least diverse, and a hard substratum biotope characterised by serpulids and the sessile holothurian, Psolus squamatus, as the most diverse.

  16. Benthic Assemblages of the Anton Dohrn Seamount (NE Atlantic): Defining Deep-Sea Biotopes to Support Habitat Mapping and Management Efforts with a Focus on Vulnerable Marine Ecosystems

    PubMed Central

    Davies, Jaime S.; Stewart, Heather A.; Narayanaswamy, Bhavani E.; Jacobs, Colin; Spicer, John; Golding, Neil; Howell, Kerry L.

    2015-01-01

    In 2009 the NW and SE flanks of Anton Dohrn Seamount were surveyed using multibeam echosounder and video ground-truthing to characterise megabenthic biological assemblages (biotopes) and assess those which clearly adhere to the definition of Vulnerable Marine Ecosystems, for use in habitat mapping. A combination of multivariate analysis of still imagery and video ground-truthing defined 13 comprehensive descriptions of biotopes that function as mapping units in an applied context. The data reveals that the NW and SE sides of Anton Dohrn Seamount (ADS) are topographically complex and harbour diverse biological assemblages, some of which agree with current definitions of ‘listed’ habitats of conservation concern. Ten of these biotopes could easily be considered Vulnerable Marine Ecosystems; three coral gardens, four cold-water coral reefs, two xenophyophore communities and one sponge dominated community, with remaining biotopes requiring more detailed assessment. Coral gardens were only found on positive geomorphic features, namely parasitic cones and radial ridges, found both sides of the seamount over a depth of 1311–1740 m. Two cold-water coral reefs (equivalent to summit reef) were mapped on the NW side of the seamount; Lophelia pertusa reef associated with the cliff top mounds at a depth of 747–791 m and Solenosmilia variabilis reef on a radial ridge at a depth of 1318-1351 m. Xenophyophore communities were mapped from both sides of the seamount at a depth of 1099–1770 m and were either associated with geomorphic features or were in close proximity (< 100 m) to them. The sponge dominated community was found on the steep escarpment either side of the seamount over at a depth of 854-1345 m. Multivariate diversity revealed the xenophyophore biotopes to be the least diverse, and a hard substratum biotope characterised by serpulids and the sessile holothurian, Psolus squamatus, as the most diverse. PMID:25992572

  17. Population Genetic Structure of the Deep-Sea Precious Coral Corallium secundum from the Hawaiian Archipelago Based on Microsatellites.

    NASA Astrophysics Data System (ADS)

    Baco-Taylor, A.

    2006-12-01

    Deep-sea precious corals (Gerardia sp., Corallium lauuense, and Corallium secundum) on the Islands and seamounts of the Hawaiian Archipelago have supported an extremely profitable fishery, yet little is known about the life history and dispersal of the exploited species. Recent studies indicate significant genetic structure between shallow-water coral populations, including several species capable of long distance dispersal. If significant genetic structure exists in seamount and Island populations of precious corals, this could suggest that the elimination (through overharvesting) of a bed of precious corals would result in loss of overall genetic diversity in the species. Here I discuss results based on microsatellite studies of the precious coral, Corallium secundum, from 11 sites in the Hawaiian Archipelago collected between 1998 and 2004, and compare the population genetic structure and dispersal capabilities of Corallium secundum to the results for Corallium lauuense. Microsatellite studies of Corallium lauuense indicated significant heterozygote deficiency in most populations, suggesting recruitment in most populations is from local sources with only occasional long-distance dispersal events. Also, two populations appear to be significantly isolated from other populations of Corallium lauuense and may be separate stocks. In contrast, Corallium secundum populations have little heterozygote deficiency and separate into 3 distinct regions. In addition to having fisheries management implications for these corals, the results of these studies also have implications for the management and protection of seamount fauna.

  18. Distribution and habitat association of benthic fish on the Condor seamount (NE Atlantic, Azores) from in situ observations

    NASA Astrophysics Data System (ADS)

    Porteiro, Filipe M.; Gomes-Pereira, José N.; Pham, Christopher K.; Tempera, Fernando; Santos, Ricardo S.

    2013-12-01

    Distribution of fish assemblages and habitat associations of demersal fishes on the Condor seamount were investigated by analyzing in situ video imagery acquired by the Remotely-Operated Vehicles ROV SP300 and Luso 6000. A total of 51 fish taxa from 32 families were inventoried. Zooplanktivores (10 species) were the most abundant group followed by carnivores (23 species) and benthivores (18 species). Non-metric multidimensional scaling (MDS) analyses were performed on dive segments to visualize the spatial relationships between species and habitat type, substrate type or depth, with depth being the most significant parameter influencing fish distribution. Four major fish groups were identified from their vertical distribution alone: summit species (generally to <300 m depth); broad ranging species (ca. from 200 to 800 m); intermediate ranging slope species (ca. from 400 m to 800-850 m); and deeper species (800-850-1100 m). The fish fauna observed at the summit is more abundant (15.2 fish/100 m2) and habitat-specialized than the fish observed along the seamount slope. Down the seamount slope, the summit fish assemblage is gradually replaced as depth increases, with an overall reduction in abundance. On the summit, three species (Callanthias ruber, Anthias anthias and Lappanella fasciata) had higher affinity to coral habitats compared to non-coral habitats. A coherent specialized fish assemblage associated to coral habitats could not be identified, because most species were observed also in non-coral areas. On the seamount's slope (300-1100 m), no relationship between fish and coral habitats could be identified, although these might occur at larger scales. This study shows that in situ video imagery complements traditional fishing surveys, by providing information on unknown or rarely seen species, being fundamental for the development of more comprehensive ecosystem-based management towards a sustainable use of the marine environment.

  19. Rapid change with depth in megabenthic structure-forming communities of the Makapu'u deep-sea coral bed

    NASA Astrophysics Data System (ADS)

    Long, Dustin J.; Baco, Amy R.

    2014-01-01

    Seamounts are largely unexplored undersea mountains rising abruptly from the ocean floor, which can support an increased abundance and diversity of organisms. Deep-sea corals are important benthic structure-formers on current-swept hard substrates in these habitats. While depth is emerging as a factor structuring the fauna of seamounts on a large spatial scale, most work addressing deep-sea coral and seamount community structure has not considered the role of small-scale variation in species distributions. Video from six ROV dives over a depth range of ~320-530 m were analyzed to assess the diversity and density of benthic megafaunal invertebrates across the Makapu'u deep-sea coral bed, offshore of Oahu, Hawaii. At the same time, the physical environment along the dive track was surveyed to relate biotic patterns with abiotic variables including depth, aspect, rugosity, substrate, slope and relief to test the factors structuring community assemblages. Despite the narrow range examined, depth was found to be the strongest structuring gradient, and six unique macrobenthic communities were found, with a 93% faunal dissimilarity over the depth surveyed. Relief, rugosity and slope were also factors in the final model. Alcyonacean octocorals were the dominant macrofaunal invertebrates at all but the deepest depth zone. The commercially harvested precious coral C. secundum was the dominant species at depths 370-470 m, with a distribution that is on average deeper than similar areas. This may be artificial due to the past harvesting of this species on the shallower portion of its range. Primnoid octocorals were the most abundant octocoral family overall. This work yields new insight on the spatial ecology of seamounts, pointing out that community changes can occur over narrow depth ranges and that communities can be structured by small-scale physiography.

  20. 50 CFR 665.15 - Prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., 665.399, or 665.599, any bottomfish MUS, crustacean MUS, western Pacific pelagic MUS, precious coral, seamount groundfish or coral reef ecosystem MUS. (m) Fail to comply with a term or condition governing the...

  1. 50 CFR 665.15 - Prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., 665.399, or 665.599, any bottomfish MUS, crustacean MUS, western Pacific pelagic MUS, precious coral, seamount groundfish or coral reef ecosystem MUS. (m) Fail to comply with a term or condition governing the...

  2. 50 CFR 665.15 - Prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., 665.399, or 665.599, any bottomfish MUS, crustacean MUS, western Pacific pelagic MUS, precious coral, seamount groundfish or coral reef ecosystem MUS. (m) Fail to comply with a term or condition governing the...

  3. 50 CFR 665.15 - Prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., 665.399, or 665.599, any bottomfish MUS, crustacean MUS, western Pacific pelagic MUS, precious coral, seamount groundfish or coral reef ecosystem MUS. (m) Fail to comply with a term or condition governing the...

  4. 50 CFR 665.15 - Prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., 665.399, or 665.599, any bottomfish MUS, crustacean MUS, western Pacific pelagic MUS, precious coral, seamount groundfish or coral reef ecosystem MUS. (m) Fail to comply with a term or condition governing the...

  5. Observations of fauna attending wood and bone deployments from two seamounts on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Amon, Diva J.; Copley, Jonathan T.; Dahlgren, Thomas G.; Horton, Tammy; Kemp, Kirsty M.; Rogers, Alex D.; Glover, Adrian G.

    2017-02-01

    The Southwest Indian Ridge is an ultraslow-spreading mid-ocean ridge with numerous poorly-explored seamounts. The benthic fauna of seamounts are thought to be highly heterogeneous, within even small geographic areas. Here we report observations from a two-year opportunistic experiment, which was comprised of two deployments of mango wood and whale bones. One was deployed at 732 m on Coral Seamount ( 32 °S) and the other at 750 m on Atlantis Bank ( 41 °S), two areas with little background faunal knowledge and a significant distance from the continental shelf. The packages mimic natural organic falls, large parcels of food on the deep-sea floor that are important in fulfilling the nutritional needs and providing shelter and substratum for many deep-sea animals. A large number of species colonised the deployments: 69 species at Coral Seamount and 42 species at Atlantis Bank. The two colonising assemblages were different, however, with only 11 species in common. This is suggestive of both differing environmental conditions and potentially, barriers to dispersal between these seamounts. Apart from Xylophaga and Idas bivalves, few organic-fall specialists were present. Several putative new species have been observed, and three new species have been described from the experiments thus far. It is not clear, however, whether this is indicative of high degrees of endemism or simply a result of under-sampling at the regional level.

  6. Recovery of Seamount Precious Coral Beds From Heavy Trawling Disturbance with Links to Carbonate Chemistry Changes

    NASA Astrophysics Data System (ADS)

    Roark, E. B.; Baco-Taylor, A.; Morgan, N. B.; Shamberger, K.; Miller, K.; Brooks, J.

    2016-12-01

    Increasing anthropogenic impacts in the deep sea make studies of resilience and recovery time critical, with deep-sea hard-substrate habitats and large-scale disturbances having received little attention. Seamount hard-substrate habitats in particular are thought to have low resilience due to the slow growth rates and recruitment limitations of key structure-forming taxa. Seamounts of the far Northwestern Hawaiian Islands and Emperor Chain have had some of the heaviest trawl impacts in the world, from both fish and precious coral fisheries, and include sites that are still trawled and recovering ones that have been protected since establishment of the EEZ in 1977. To test the hypothesis of low resilience we compare these impacted seamounts to untrawled sites. We used the AUV Sentry in 2014 and 2015 to image nine features (three per "treatment") and analyze for substrate and visible megafauna. Sites in the "still trawled" treatment were characterized by extensive areas of bare substrate with abundant trawl scars. Sites in the "recovering" and "never trawled" locations had abundant megafauna in hard substrate areas. Initial comparisons of transects at 700m depth for three sites indicate that Yuryaku in the "still trawled" treatment had lower diversity and abundance of megafauna compared to the "recovering" and "never trawled" locations with a dominance of sea urchins. The "recovering" and "never trawled" sites were dominated by cnidarians, fishes, and echinoderms, but differed in dominant species, diversity, abundances and occurrence of dead coral skeletons. These preliminary results suggest that the recovering sites have not returned to a pre-impact community type in the 38 years since they were trawled. The megafauna distribution, in particular that of deep-sea corals, was compared to environmental water column variables at the study sites across the Northwestern Hawaiian Islands. Deep-sea corals with calcium carbonate skeletons were found living below the aragonite saturation horizon (ASH; Ωarg=1), which ranges from 500-600 m depth and deepens moving northwest along the island chain. How deep-sea corals build and maintain their skeletons in undersaturated waters is poorly understood, but it is possible that saturation horizons may play a role in their recovery rates.

  7. Characterization of Bacterial Communities Associated with Deep-Sea Corals on Gulf of Alaska Seamounts†

    PubMed Central

    Penn, Kevin; Wu, Dongying; Eisen, Jonathan A.; Ward, Naomi

    2006-01-01

    Although microbes associated with shallow-water corals have been reported, deepwater coral microbes are poorly characterized. A cultivation-independent analysis of Alaskan seamount octocoral microflora showed that Proteobacteria (classes Alphaproteobacteria and Gammaproteobacteria), Firmicutes, Bacteroidetes, and Acidobacteria dominate and vary in abundance. More sampling is needed to understand the basis and significance of this variation. PMID:16461727

  8. Density of Diadema antillarum (Echinodermata: Echinoidea) on live coral patch reefs and dead Acropora cervicornis rubble patches near Loggerhead Key, Dry Tortugas National Park, Florida, USA

    EPA Science Inventory

    Density of adult Diadema antillarum was assessed on live coral patch reefs and dead Acropora cervicornis rubble patches next to Loggerhead Key, Dry Tortugas National Park, Florida, USA in June 2009. Mean density on live coral patch reefs (0.49 individuals m-2) was not statistical...

  9. Deep-water scleractinian corals (Cnidaria: Anthozoa) from 2010-2011 INDEMARES expeditions to the Galicia Bank (Spain, northeast Atlantic).

    PubMed

    Altuna, Alvaro

    2017-11-23

    During surveys in the Galicia Bank (northeastern Atlantic) in the years 2010-2011 (INDEMARES project), 25 species of scleractinian corals corals were collected in a depth interval of 744-1764 m. Most interesting species are described and depicted. Additionally, species list and remarks are given for the 23 species dredged in the bank during the 1987 SEAMOUNT 1 expedition at 675-1125 m depth.From a literature review and new records from Galicia Bank given herein, 31 species of scleractinian corals are known from this seamount in a depth interval of 614-1764 m depth. Six are colonial and 25 solitary, with 17 occurring on hard bottoms and 14 on soft bottoms. Desmophyllum dianthus, Lophelia pertusa and Madrepora oculata are the most widely distributed species in both number of stations and depth range of specimens collected alive. Some species were recorded outside their previously known bathymetric ranges in the northeastern Atlantic. Javania pseudoalabastra is first documented for the Iberian Peninsula and Spanish faunas. Thrypticotrochus sp. is first collected from the Atlantic Ocean.

  10. Late Miocene Coral faunas of Iran (Zagros, Aghar, Firuz abad, Fars) palaeoecology and palaeobiogeography

    NASA Astrophysics Data System (ADS)

    Dehbozorgi, M.; Yazdi, M.; Torabi, H.

    2009-04-01

    Late Miocene Corals assemblage from Zagros Iran are investigated with respect to their palaeoecology and palaeobiogeography implications. This Corals are compared with fauna from Mediterranean Tethys and the Indopacific. Small foraminifers are used for biogeography and to support paleoecology interpretation. The studied section situated in the Zagros Mishan F.m is last depositions sea. A distinct horizon characterized by Porites- Antiguastrea assemblage associated Milliolid and Rotalia is interpreted a shallow bioclastic shoal. Patch reef with a porites and faviidae assemblage are a common feature of Oligocene and Miocene coral occurrence and indicate water depth of less than 20m. The diversity of corals in this area are low and all corals are hematypic. Miocene Corals from Mishan F.m Comprise 7 genera and occur in the single horizon or patch reef. This Corals and patch reefs are compared with corals and patch reefs in Qom F.m Central Iran. This corals report from this section: Antiguastrea sp., Monastrea sp., Favites sp., Porites sp., Dichocoenia sp., Asterohelia sp., Leptoria sp. Keywords: Miocene- Iran- Mishan-Zagros- Formation- Tethys seaway- Corals- Palaeoecology- palaeobiogeography.

  11. Reef Development on Artificial Patch Reefs in Shallow Water of Panjang Island, Central Java

    NASA Astrophysics Data System (ADS)

    Munasik; Sugiyanto; Sugianto, Denny N.; Sabdono, Agus

    2018-02-01

    Reef restoration methods are generally developed by propagation of coral fragments, coral recruits and provide substrate for coral attachment using artificial reefs (ARs). ARs have been widely applied as a tool for reef restoration in degraded natural reefs. Successful of coral restoration is determined by reef development such as increasing coral biomass, natural of coral recruits and fauna associated. Artificial Patch Reefs (APRs) is designed by combined of artificial reefs and coral transplantation and constructed by modular circular structures in shape, were deployed from small boats by scuba divers, and are suitable near natural reefs for shallow water with low visibility of Panjang Island, Central Java. Branching corals of Acropora aspera, Montipora digitata and Porites cylindrica fragments were transplanted on to each module of two units of artificial patch reefs in different periods. Coral fragments of Acropora evolved high survival and high growth, Porites fragments have moderate survival and low growth, while fragment of Montipora show in low survival and moderate growth. Within 19 to 22 months of APRs deployment, scleractinian corals were recruited on the surface of artificial patch reef substrates. The most recruits abundant was Montastrea, followed by Poritids, Pocilloporids, and Acroporids. We conclude that artificial patch reefs with developed by coral fragments and natural coral recruitment is one of an alternative rehabilitation method in shallow reef with low visibility.

  12. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean)

    PubMed Central

    Curtis, Janelle M. R.; Clarke, M. Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782

  13. Short-term in situ shading effectively mitigates linear progression of coral-killing sponge Terpios hoshinota.

    PubMed

    Thinesh, Thangadurai; Meenatchi, Ramu; Pasiyappazham, Ramasamy; Jose, Polpass Arul; Selvan, Muthamizh; Kiran, George Seghal; Selvin, Joseph

    2017-01-01

    The coral-killing sponge, Terpios hoshinota is a global invasive species that has conquered coral patches within a short span of time, which has led to a significant decline in living coral cover at various geographical locations. In this study, we surveyed the linear progression and impact of the Terpios invasion on live coral patches along Palk Bay, Indian Ocean, from August 2013 to August 2015. The field inventory revealed an extensive fatality rate of 76% as a result of Terpios outbreak. Experimental findings showed that symbiotic cyanobacteria act as a nutritional factory for the aggressive growth of Terpios. Shading hypothetically impairs the nutritional symbiont of the invasive species: the effect of sunlight on cyanobacterial biomass and its influence on Terpios progression over live coral patches was tested through in situ shading experiments. This study showed that artificial shading with cotton fabric could effectively mitigate sponge growth on live coral without affecting coral homeostasis.

  14. Monitoring the coral disease, plague type II, on coral reefs in St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Miller, J.; Rogers, C.; Waara, R.

    2003-01-01

    In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has >50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annular is. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2. The average percent cover by the disease within 1 m2 ranged from 0.01% (?? 0.04 SD) to 1.74% (?? 9.08 SD). Photo-monitoring of 28 diseased corals of 9 species begun in September 1997 at Haulover Reef revealed no recovery of diseased portions with all necrotic tissue being overgrown rapidly by turf algae, usually within less than one month. Most coral colonies suffered partial mortality. Very limited recruitment (e.g., of Agaricia spp., Favia spp. and sponges) has been noted on the diseased areas. This coral disease has the potential to cause more loss of live coral on St. John reefs than any other stress to date because it targets the dominant reef building species, M. annularis.

  15. Field Validation of Habitat Suitability Models for Vulnerable Marine Ecosystems in the South Pacific Ocean: Implications for the use of Broad-scale Models in Fisheries Management

    NASA Astrophysics Data System (ADS)

    Anderson, O. F.; Guinotte, J. M.; Clark, M. R.; Rowden, A. A.; Mormede, S.; Davies, A. J.; Bowden, D.

    2016-02-01

    Spatial management of vulnerable marine ecosystems requires accurate knowledge of their distribution. Predictive habitat suitability modelling, using species presence data and a suite of environmental predictor variables, has emerged as a useful tool for inferring distributions outside of known areas. However, validation of model predictions is typically performed with non-independent data. In this study, we describe the results of habitat suitability models constructed for four deep-sea reef-forming coral species across a large region of the South Pacific Ocean using MaxEnt and Boosted Regression Tree modelling approaches. In order to validate model predictions we conducted a photographic survey on a set of seamounts in an un-sampled area east of New Zealand. The likelihood of habitat suitable for reef forming corals on these seamounts was predicted to be variable, but very high in some regions, particularly where levels of aragonite saturation, dissolved oxygen, and particulate organic carbon were optimal. However, the observed frequency of coral occurrence in analyses of survey photographic data was much lower than expected, and patterns of observed versus predicted coral distribution were not highly correlated. The poor performance of these broad-scale models is attributed to lack of recorded species absences to inform the models, low precision of global bathymetry models, and lack of data on the geomorphology and substrate of the seamounts at scales appropriate to the modelled taxa. This demonstrates the need to use caution when interpreting and applying broad-scale, presence-only model results for fisheries management and conservation planning in data poor areas of the deep sea. Future improvements in the predictive performance of broad-scale models will rely on the continued advancement in modelling of environmental predictor variables, refinements in modelling approaches to deal with missing or biased inputs, and incorporation of true absence data.

  16. Baseline Assessment of Mesophotic Reefs of the Vitória-Trindade Seamount Chain Based on Water Quality, Microbial Diversity, Benthic Cover and Fish Biomass Data.

    PubMed

    Meirelles, Pedro M; Amado-Filho, Gilberto M; Pereira-Filho, Guilherme H; Pinheiro, Hudson T; de Moura, Rodrigo L; Joyeux, Jean-Christophe; Mazzei, Eric F; Bastos, Alex C; Edwards, Robert A; Dinsdale, Elizabeth; Paranhos, Rodolfo; Santos, Eidy O; Iida, Tetsuya; Gotoh, Kazuyoshi; Nakamura, Shota; Sawabe, Tomoo; Rezende, Carlos E; Gadelha, Luiz M R; Francini-Filho, Ronaldo B; Thompson, Cristiane; Thompson, Fabiano L

    2015-01-01

    Seamounts are considered important sources of biodiversity and minerals. However, their biodiversity and health status are not well understood; therefore, potential conservation problems are unknown. The mesophotic reefs of the Vitória-Trindade Seamount Chain (VTC) were investigated via benthic community and fish surveys, metagenomic and water chemistry analyses, and water microbial abundance estimations. The VTC is a mosaic of reef systems and includes fleshy algae dominated rhodolith beds, crustose coralline algae (CCA) reefs, and turf algae dominated rocky reefs of varying health levels. Macro-carnivores and larger fish presented higher biomass at the CCA reefs (4.4 kg per frame) than in the rhodolith beds and rocky reefs (0.0 to 0.1 kg per frame). A larger number of metagenomic sequences identified as primary producers (e.g., Chlorophyta and Streptophyta) were found at the CCA reefs. However, the rocky reefs contained more diseased corals (>90%) than the CCA reefs (~40%) and rhodolith beds (~10%). Metagenomic analyses indicated a heterotrophic and fast-growing microbiome in rocky reef corals that may possibly lead to unhealthy conditions possibly enhanced by environmental features (e.g. light stress and high loads of labile dissolved organic carbon). VTC mounts represent important hotspots of biodiversity that deserve further conservation actions.

  17. Residency and Spatial Use by Reef Sharks of an Isolated Seamount and Its Implications for Conservation

    PubMed Central

    Barnett, Adam; Abrantes, Kátya G.; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (∼14 km away) and one grey reef shark completed a round trip of ∼250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef. PMID:22615782

  18. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    PubMed

    Barnett, Adam; Abrantes, Kátya G; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  19. Pelagic communities of the South West Indian Ocean seamounts: R/V Dr Fridtjof Nansen Cruise 2009-410

    NASA Astrophysics Data System (ADS)

    Rogers, A. D.; Alvheim, O.; Bemanaja, E.; Benivary, D.; Boersch-Supan, P.; Bornman, T. G.; Cedras, R.; Du Plessis, N.; Gotheil, S.; Høines, A.; Kemp, K.; Kristiansen, J.; Letessier, T.; Mangar, V.; Mazungula, N.; Mørk, T.; Pinet, P.; Pollard, R.; Read, J.; Sonnekus, T.

    2017-02-01

    The seamounts of the southern Indian Ocean remain some of the most poorly studied globally and yet have been subject to deep-sea fishing for decades and may face new exploitation through mining of seabed massive sulphides in the future. As an attempt to redress the knowledge deficit on deep-sea benthic and pelagic communities associated mainly with the seamounts of the South West Indian Ridge two cruises were undertaken to explore the pelagic and benthic ecology in 2009 and 2011 respectively. In this volume are presented studies on pelagic ecosystems around six seamounts, five on the South West Indian Ridge, including Atlantis Bank, Sapmer Seamount, Middle of What Seamount, Melville Bank and Coral Seamount and one un-named seamount on the Madagascar Ridge. In this paper, existing knowledge on the seamounts of the southwestern Indian Ocean is presented to provide context for the studies presented in this volume. An account of the overall aims, approaches and methods used primarily on the 2009 cruise are presented including metadata associated with sampling and some of the limitations of the study. Sampling during this cruise included physical oceanographic measurements, multibeam bathymetry, biological acoustics, and net sampling of phytoplankton, macrozooplankton and micronekton/nekton. The studies that follow reveal new data on the physical oceanography of this dynamic region of the oceans, and the important influence of water masses on the pelagic ecology associated with the seamounts of the South West Indian Ridge. New information on the pelagic fauna of the region fills an important biogeographic gap for the mid- to high-latitudes of the oceans of the southern hemisphere.

  20. Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    PubMed Central

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K. A. Kamesh; Mudholkar, Abhay

    2011-01-01

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only. PMID:21297959

  1. Extreme Longevity in Proteinaceous Deep-Sea Corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, E B; Guilderson, T P; Dunbar, R B

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelrymore » trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.« less

  2. Detailed seamount-scale studies of ferromanganese crusts reveal new insights into their formation and resource assessment.

    NASA Astrophysics Data System (ADS)

    Murton, B. J.; Lusty, P.; Yeo, I. A.; Howarth, S.

    2017-12-01

    The seafloor hosts abundant mineral deposits critical for low-carbon economies and emerging technologies. These include ferromanganese crusts (FeMnC) that grow on seamounts. While the broad distribution of FeMnC is known, local controls on growth, composition and formation are not. Here, we describe a detailed study of a gyot in the NE Atlantic (Tropic Seamount) that explores the controls, from the surface to the seafloor, exerted on FeMnC growth from current energy, surface productivity, sediment distribution, seafloor morphology, substrate lithology, sediments mobility and thickness, and seamount subsidence. During cruise JC142 (2016), we mapped the seamount with EM120 multibeam, mapped the 400km2 summit with AUV multibeam, sidescan sonar, sub-bottom profiler and 361,644 photographs. During 28 ROV dives we drilled 58 core and collected 344 individual rock samples. We found FeMnC at all depths, with the thickest (<20cm) located at the greatest depths (3000-4000m). The thinnest are on the summit plateau, with the centre and southern edge having the thickest sediment. FeMnC pavements form many different terraces on the summit. Frequent undercuts expose a calcareous substrate. Elsewhere, cobbles and pebbles form the nucleolus for crusts up to 10cm thick, with growth into the sediment. Many substrates are found to comprise semi-consolidated sediment. The presence of thick crusts at the base of the seamount contradicts accepted understanding of FeMnC deposition just below the oxygen minimum zone (OMZ). In areas on the eastern and western spurs, between 2500m and 1000m, where current energy is greatest, sessile fauna are most abundant. Dense coral debris at these locations appears to inhibit crust formation and coral and sponge `gardens' are frequent on near vertical cliffs. The observation that crusts have grown downwards into and over soft sediment is enigmatic since present understanding requires hard substrates to be exposed to seawater for crusts to grow, and any burial would inhibit such growth. Plume tracking shows reduction to background within 1000m. Our study challenges the view that ferromanganese crusts form at the base of the OMZ and grow upwards on solid substrates. Instead, we see an interplay between crust precipitation, the morphological evolution of the seamount, its hydrography and substrates.

  3. A new species of Nidalia Gray, 1835 from Mid-Atlantic seamounts (Octocorallia, Alcyonacea, Nidaliidae)

    NASA Astrophysics Data System (ADS)

    López-González, Pablo J.; Gili, Josep-Maria

    2008-12-01

    A new soft coral species of the genus Nidalia, from seamounts to the south of the Azores Archipelago is described. The main features of Nidalia aurantia n. sp. are as following: colony torch-like, a capitulum light orange in colour, not laterally flattened, dome-shaped and not distinctly projecting beyond the stalk, an introvert with sparse sclerites transversally placed, and an anthocodial crown with 13 17 sclerite rows. The new species is compared with its closest congeners. This is the first time that a species of Nidalia has been located in the Mid-Atlantic Ocean.

  4. Measurements of turbulence and fossil turbulence near ampere seamount

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Nabatov, Valeriy; Ozmidov, Rostislav

    1993-10-01

    Measurements of temperature and velocity microstructure near and downstream of a shallow seamount are used to compare fossil turbulence versus non-fossil turbulence models for the evolution of turbulence microstructure patches in the stratified ocean. According to non-fossil oceanic turbulence models, all overturn length scales LT of the microstructure grow and collapse in constant proportion to each other and to the turbulence energy (Oboukov) scale LO and the inertial buoyancy (Ozmidov) scale L R≡(ɛ/N 3) 1/2 of the patches; that is, with LTrms ≈1.2 LR and viscous dissipation rate ɛ ≈ ɛ 0∗. According to the Gibson fossil turbulence model, all microstructure originates from completely active turbulence with ɛ ⩾ ɛ 0 ≈ 3L T2N 3(≈ 28ɛ 0∗) and L T/√6 ≈ L Trms, but this rapidly decays into a more persistent active-fossil state with ɛ0⩾ ɛ⩾ ɛF ≈ 30 vN2, where N is the buoyancy frequency and v is the kinematic viscosity and, without further energy supply, finally reaches a completely fossil turbulence hydrodynamic state of internal wave motions, with ɛ ⩽ ɛF. The last turbulence eddies, with ɛ ≈ ɛF, vanish at a buoyant-inertial-viscous (fossil Kolmogorov) scale LKF that is much smaller than the remnant overturn scales LT for large ɛ0/ ɛF ratios. These density, temperature, and salinity overturns with LT ≈ 0.6 LR0 ≫ 0.6 LR persist as turbulence fossils (by retaining the memory of ɛo) and collapse very slowly. In the near wake below the summit depth of Ampere seamount, a much larger proportion of completely active turbulence patches was found than is usually found in the ocean interior away from sources. Dissipation rates ɛ and turbulence activity coefficients A T ≡ (ɛ/ɛ 0) 1/2 of microstructure patches were found to decrease downstream, suggesting that the active turbulence indicated by the patches with AT ⩾ 1 was caused by the presence of the seamount as a turbulence source. Therefore, the turbulence and mixing processes of ocean layers far away from turbulence sources probably have been undersampled by microstructure data sets lacking any AT ⩾ 1 patches. This is because large fractions of the mixing and viscous dissipation of the patches occur in short-lived active turbulence regimes that are too brief to be detected. Consequently, large underestimates of the true space-time average turbulence fluxes and turbulence and scalar dissipation rates may result if non-fossil turbulence models are assumed in ocean microstructure data interpretation.

  5. Baseline Assessment of Mesophotic Reefs of the Vitória-Trindade Seamount Chain Based on Water Quality, Microbial Diversity, Benthic Cover and Fish Biomass Data

    PubMed Central

    Meirelles, Pedro M.; Amado-Filho, Gilberto M.; Pereira-Filho, Guilherme H.; Pinheiro, Hudson T.; de Moura, Rodrigo L.; Joyeux, Jean-Christophe; Mazzei, Eric F.; Bastos, Alex C.; Edwards, Robert A.; Dinsdale, Elizabeth; Paranhos, Rodolfo; Santos, Eidy O.; Iida, Tetsuya; Gotoh, Kazuyoshi; Nakamura, Shota; Sawabe, Tomoo; Rezende, Carlos E.; Gadelha, Luiz M. R.; Francini-Filho, Ronaldo B.; Thompson, Cristiane; Thompson, Fabiano L.

    2015-01-01

    Seamounts are considered important sources of biodiversity and minerals. However, their biodiversity and health status are not well understood; therefore, potential conservation problems are unknown. The mesophotic reefs of the Vitória-Trindade Seamount Chain (VTC) were investigated via benthic community and fish surveys, metagenomic and water chemistry analyses, and water microbial abundance estimations. The VTC is a mosaic of reef systems and includes fleshy algae dominated rhodolith beds, crustose coralline algae (CCA) reefs, and turf algae dominated rocky reefs of varying health levels. Macro-carnivores and larger fish presented higher biomass at the CCA reefs (4.4 kg per frame) than in the rhodolith beds and rocky reefs (0.0 to 0.1 kg per frame). A larger number of metagenomic sequences identified as primary producers (e.g., Chlorophyta and Streptophyta) were found at the CCA reefs. However, the rocky reefs contained more diseased corals (>90%) than the CCA reefs (~40%) and rhodolith beds (~10%). Metagenomic analyses indicated a heterotrophic and fast-growing microbiome in rocky reef corals that may possibly lead to unhealthy conditions possibly enhanced by environmental features (e.g. light stress and high loads of labile dissolved organic carbon). VTC mounts represent important hotspots of biodiversity that deserve further conservation actions. PMID:26090804

  6. The Census of Marine Life on Seamounts: results from a global science program

    NASA Astrophysics Data System (ADS)

    Stocks, K.; Clark, M.; Rowden, A.; Consalvey, M.

    2010-12-01

    CenSeam (a Global Census of Marine Life on Seamounts) is a network of more than 500 scientists, policy makers and conservationists around the world. These participants are collaborating to increase our understanding of the factors driving seamount community composition and diversity, such that we can better understand and manage the effects of human activities. The major scientific outcomes of the CenSeam community include the findings that 1) Seamount community composition is often similar to surrounding habitats; however, community structure can be different. 2) Contrary to conventional wisdom, few seamounts follow island biogeography predictions. 3) Seamounts can support a higher benthic biomass than surrounding habitats. 4) Seamounts can support species and communities new to science, and represent range extensions for known species, which are being described from CenSeam voyages. 5) For the first time, the extent of the vulnerability and risk to seamount benthic communities from fishing has been quantified. 6) Whilst long assumed, CenSeam researchers have demonstrated that seamount communities are disturbed by fishing and are slow to recover. And 7) Seamounts might act as repositories of biodiversity during future periods of extreme environmental change, as they have likely done in the past. The major products of Censeam include 1) a book synthesizing seamount knowledge: Seamounts: Ecology, Fisheries and Conservation (from Blackwell Publishing); 2) a recent review of the structure and function of seamount benthic communities, human impacts, and seamount management and conservation (Ann Rev Mar Sci); 3) hundreds of scientific publications, including Special Issues in Marine Ecology and Oceanography (in collaboration with the Seamount Biogeogsciences Network), and a Special Collection in PLoSONE; 4) guidance documents and formal advising for seamount management communities, including the United Nations Environment Program, International Seabed Authority, Convention on Biological Diversity, and Regional Fisheries Management Organizations; 5) protocols manuals and guides to facilitate standardization of methodology, including a Wiley Blackwell book, Biological Sampling in the Deep-Sea, due to be published 2011; and 6) SeamountsOnline, a central database of global seamount data (5500 taxa from 258 seamounts) to support research and management (seamounts.sdsc.edu). CenSeam has also had Societal impacts. It has fostered collaborative research to expand global seamount sampling to previously understudied regions. It has increased public awareness of seamounts and the wider deep-sea, for example through expedition web logs to share the experiences of researchers at sea. And CenSeam has provided quality science to inform the management of commercial fisheries and mining, such as a practical seamount classification scheme for protected area planning, and maps of predicted coral habitat suitability.

  7. Phytoplankton and nutrient dynamics of six South West Indian Ocean seamounts

    NASA Astrophysics Data System (ADS)

    Sonnekus, Martinus J.; Bornman, Thomas G.; Campbell, Eileen E.

    2017-02-01

    A survey of six seamounts and two transects through the subtropical convergence zone (SCZ) in the South Indian Ocean in November and December 2009 showed a strong latitudinal gradient from the subtropics to the Sub-Antarctic Front. Concentrations of oxygen, nitrate, nitrite, soluble reactive phosphorous as well as phytoplankton biomass (measured as chlorophyll a) increased while salinity and temperature decreased with an increase in latitude. These differences resulted in significant differences between seamounts. The chlorophyll a maximum became shallower at higher latitudes, changing from a depth of 85 m in the subtropics to 35 m over the seamounts and in the SCZ. The mixed layer depth also increased from 50 m in the subtropics to 100 m at higher latitude stations. The N:P and N:Si ratio indicated that NO3- was limiting at all the seamounts except one, at which SiO4 was the limiting nutrient. The phytoplankton community also showed a latitudinal gradient with decreasing diversity and a change in dominance from dinoflagellates in the tropics to diatoms towards the SCZ. The dominant diatom genus of the survey (>50% of the cell counts) was Pseudo-nitzschia. Nutrients exhibited an inverse linear relationship with temperature and salinity. The oligotrophic subtropical areas differed from the mesotrophic seamounts in temperature while waters over seamounts north and south of the Agulhas Return Current (ARC) differed in salinity. The phytoplankton (148 taxa) responded to these differences, showing three communities: subtropical seamount phytoplankton (Atlantis Seamount, Walters Seamount and off-mount samples), phytoplankton of the waters north of the ARC (Melville Bank, Sapmer Bank, Middle of What Seamount) and phytoplankton south of the ARC (Coral Seamount, SCZ1) characterised by a bloom of Phaeocystis antarctica. The environmental drivers most strongly linked to these observed differences were nitrate, temperature and oxygen. These environmental drivers displayed a clear latitudinal gradient unaffected by mesoscale variability of the ARC eddy field and allowing the three phytoplankton communities to persist. Phytoplankton biomass was enhanced in the shallow (< 200 m) seamount waters, although the speed of the currents indicates an allochthonous origin.

  8. Cold-water corals and large hydrozoans provide essential fish habitat for Lappanella fasciata and Benthocometes robustus

    NASA Astrophysics Data System (ADS)

    Gomes-Pereira, José Nuno; Carmo, Vanda; Catarino, Diana; Jakobsen, Joachim; Alvarez, Helena; Aguilar, Ricardo; Hart, Justin; Giacomello, Eva; Menezes, Gui; Stefanni, Sergio; Colaço, Ana; Morato, Telmo; Santos, Ricardo S.; Tempera, Fernando; Porteiro, Filipe

    2017-11-01

    Many fish species are well-known obligatory inhabitants of shallow-water tropical coral reefs but such associations are difficult to study in deep-water environments. We address the association between two deep-sea fish with low mobility and large sessile invertebrates using a compilation of 20 years of unpublished in situ observations. Data were collected on Northeast Atlantic (NEA) island slopes and seamounts, from the Azores to the Canary Islands, comprising 127 new records of the circalittoral Labridae Lappanella fasciata and 15 of the upper bathyal Ophiididae Benthocometes robustus. Observations by divers, remote operated vehicles (ROV SP, Luso, Victor, Falcon Seaeye), towed vehicles (Greenpeace) and manned submersibles (LULA, Nautile) validated the species association to cold water corals (CWC) and large hydrozoans. L. fasciata occurred from lower infralittoral (41 m) throughout the circalittoral, down to the upper bathyal at 398 m depth. Smaller fishes (< 10 cm) tend to form larger schools up to five individuals, with larger fishes (10-15 cm) occurring alone or in smaller groups at greater depths. The labrids favoured areas with large sessile invertebrates (> 10 cm) occurring at < 1 body-length, swimming inside or in close vicinity to the tallest and most complex three-dimensional structure in the field of observation. These included hydrozoans (Polyplumaria flabellata, Nemertesia antennina), CWC (e.g. Antipathella wollastoni, Acanthogorgia armata, Stichopathes sp.), and less frequently sponges (e.g. Pseudotrachya hystrix). B. robustus presented a coral-cryptic behavior, being recorded in the bathyal zone between 350 and 734 m depth, always inside CWC (e.g. Acanthogorgia spp., Antipathella spp., Callogorgia verticillata, Dendrophyllia alternata, Leiopathes spp.), and remaining within the coral branching. B. robustus were collected with baited traps providing biological information and dietary information reinforcing the trophic linkage between the CWC habitat and this predator. Gathered evidence renders CWC and hydroid gardens as Essential Fish Habitats for both species, being therefore sensitive to environmental and anthropogenic impacts on these Vulnerable Marine Ecosystems. The Mediterranean distribution of L. fasciata is extended to NEA seamounts and island slopes and the amphi-Atlantic distribution of B. robustus is bridged with molecular data support. Both species are expected to occur throughout the Macaronesia and Mediterranean island slopes and shallow seamounts on habitats with large sessile invertebrates.

  9. Hydrodynamic Environment and Ecosystem Diversity at two Deep-Sea Marine Protected Areas in Southern Biscay

    NASA Astrophysics Data System (ADS)

    González-Pola, C.; Ivey, G. N.; Jones, N. L.; Sanchez, F.; Kelly, S. M.; Bluteau, C.; Somavilla, R.

    2016-02-01

    Two nearby offshore deep sea areas in Southern Bay of Biscay (northern Spain), hosting valuable ecosystems, have been recently declared marine protected areas. The first one is Le Danois Bank, a seamount-like feature connected to the continental shelf by a saddle. The second one is the Aviles Canyon System (ACS) that breaks the continuity of the northern Spanish continental shelf. A number of observational multidisciplinary programs carried out within the last decade allowed a detailed identification of habitats and biological communities. As a long-term goal these programs aimed to understand the ecosystem functioning as a whole with the implicit focus in associated circulation and dynamics. The observational record includes deep sea photogrametry as well as standard hydrography and long-term mooring lines. A lander system provided high-frequency currents and thermal structure tens meters above bottom together with time lapse photographs at selected sites. Different characteristic habitats from sedimentary to rocky, associated with different fisheries, were described both in Le Danois Bank and the ACS. These include sponge aggregations and deep water corals. Noteworthy structured coral reefs only appeared in a relatively small area in one of the tributaries of the ACS (La Gaviera Canyon), where local near-bottom currents were stronger than anywhere else in the region. The development and violent breaking of an internal tidal bore was the main feature of such hotspot. Analytic estimates confirmed that La Gaviera is the only canyon were large patches of the seafloor are critical or near-critical to the semidiurnal internal tide and nearby upper flanks show also large patches of critical seafloor and large body forcing. A year-long near-bottom current record captured the development of three benthic storms, events lasting several days in which currents increases up to 3-fold the tidal max speeds and direction swings rapidly, losing the uniformity of tidal regime.

  10. Assessing the spatial distribution of coral bleaching using small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.

    2018-06-01

    Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.

  11. Airborne lidar sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract

    USGS Publications Warehouse

    Brock, J.C.; Wright, C.W.; Kuffner, I.B.; Hernandez, R.; Thompson, P.

    2006-01-01

    In this study we examined the ability of the NASA Experimental Advanced Airborne Research Lidar (EAARL) to discriminate cluster zones of massive stony coral colonies on northern Florida reef tract (NFRT) patch reefs based on their topographic complexity (rugosity). Spatially dense EAARL laser submarine topographic soundings acquired in August 2002 were used to create a 1-m resolution digital rugosity map for adjacent NFRT study areas characterized by patch reefs (Region A) and diverse substratums (Region B). In both regions, sites with lidar-sensed rugosities above 1.2 were imaged by an along-track underwater videography system that incorporated the acquisition of instantaneous GPS positions. Subsequent manual interpretation of videotape segments was performed to identify substratum types that caused elevated lidar-sensed rugosity. Our study determined that massive coral colony formation, modified by subsequent physical and biological processes that breakdown patch reef framework, was the primary source of topographic complexity sensed by the EAARL in the NFRT. Sites recognized by lidar scanning to be topographically complex preferentially occurred around the margins of patch reefs, constituted a minor fraction of the reef system, and usually reflected the presence of massive coral colonies in cluster zones, or their derivatives created by mortality, bioerosion, and physical breakdown.

  12. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni.

    PubMed

    Henry, L-A; Stehmann, M F W; De Clippele, L; Findlay, H S; Golding, N; Roberts, J M

    2016-08-01

    Highly localized concentrations of elasmobranch egg capsules of the deep-water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north-east Atlantic Ocean. Conductivity-temperature-depth profiling indicated that the eggs were bathed in a specific environmental niche of well-oxygenated waters between 4·20 and 4·55° C, and salinity 34·95-35·06, on a coarse to fine-grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef-building stony coral Solenosmilia variabilis. The depths of both egg-laying habitats (1489-1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  13. Habitat degradation is threatening reef replenishment by making fish fearless.

    PubMed

    Lönnstedt, Oona M; McCormick, Mark I; Chivers, Douglas P; Ferrari, Maud C O

    2014-09-01

    Habitat degradation is one of the 'Big Five' drivers of biodiversity loss. However, the mechanisms responsible for this progressive loss of biodiversity are poorly understood. In marine ecosystems, corals play the role of ecosystem engineers, providing essential habitat for hundreds of thousands of species and hence their health is crucial to the stability of the whole ecosystem. Climate change is causing coral bleaching and degradation, and while this has been known for a while, little do we know about the cascading consequences of these events on the complex interrelationships between predators and their prey. The goal of our study was to investigate, under completely natural conditions, the effect of coral degradation on predator-prey interactions. Settlement stage ambon damselfish (Pomacentrus amboinensis), a common tropical fish, were released on patches of healthy or dead corals, and their behaviours in situ were measured, along with their response to injured conspecific cues, a common risk indicator. This study also explored the effect of habitat degradation on natural levels of mortality at a critical life-history transition. We found that juveniles in dead corals displayed risk-prone behaviours, sitting further away and higher up on the reef patch, and failed to respond to predation cues, compared to those on live coral patches. In addition, in situ survival experiments over 48 h indicated that juveniles on dead coral habitats had a 75% increase in predation-related mortality, compared to fish released on live, healthy coral habitats. Our results provide the first of many potential mechanisms through which habitat degradation can impact the relationship between prey and predators in the coral reef ecosystem. As the proportion of dead coral increases, the recruitment and replenishment of coral reef fishes will be threatened, and so will the level of diversity in these biodiversity hot spots. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  14. Porites white patch syndrome: associated viruses and disease physiology

    NASA Astrophysics Data System (ADS)

    Lawrence, S. A.; Davy, J. E.; Wilson, W. H.; Hoegh-Guldberg, O.; Davy, S. K.

    2015-03-01

    In recent decades, coral reefs worldwide have undergone significant changes in response to various environmental and anthropogenic impacts. Among the numerous causes of reef degradation, coral disease is one factor that is to a large extent still poorly understood. Here, we characterize the physiology of white patch syndrome (WPS), a disease affecting poritid corals on the Great Barrier Reef. WPS manifests as small, generally discrete patches of tissue discolouration. Physiological analysis revealed that chlorophyll a content was significantly lower in lesions than in healthy tissues, while host protein content remained constant, suggesting that host tissue is not affected by WPS. This was confirmed by transmission electron microscope (TEM) examination, which showed intact host tissue within lesions. TEM also revealed that Symbiodinium cells are lost from the host gastrodermis with no apparent harm caused to the surrounding host tissue. Also present in the electron micrographs were numerous virus-like particles (VLPs), in both coral and Symbiodinium cells. Small (<50 nm diameter) icosahedral VLPs were significantly more abundant in coral tissue taken from diseased colonies, and there was an apparent, but not statistically significant, increase in abundance of filamentous VLPs in Symbiodinium cells from diseased colonies. There was no apparent increase in prokaryotic or eukaryotic microbial abundance in diseased colonies. Taken together, these results suggest that viruses infecting the coral and/or its resident Symbiodinium cells may be the causative agents of WPS.

  15. Oligocene and Early Miocene coral faunas from Iran: palaeoecology and palaeobiogeography

    NASA Astrophysics Data System (ADS)

    Schuster, F.; Wielandt, U.

    Oligocene and Early Miocene coral assemblages from three sections of central Iran are investigated with respect to their palaeoecological and palaeobiogeographic implications. These corals are compared with faunas from the Mediterranean Tethys and the Indopacific. Associated larger foraminifers are used for biostratigraphy and to support the palaeoecological interpretation. The studied sections are situated in the foreland basins of the Iranian Plate which is structured into a fore-arc and a back-arc basin separated by a volcanic arc. The coral assemblages from Abadeh indicate a shallowing-upward trend. Infrequently distributed solitary corals at the base of the section indicate a turbid environment. Above, a distinct horizon characterised by a Leptoseris-Stylophora assemblage associated with lepidocyclinids and planktonic foraminifers is interpreted as maximum flooding surface. Small patch reefs with a Porites-Faviidae assemblage are a common feature of Late Oligocene to Early Miocene coral occurrences and indicate water depths of less than 20m. The diversity of the coral faunas shows marked differences. Oligocene corals from the Esfahan-Sirjan fore-arc basin comprise more than 45 species of 32 genera and occur in a wide range of environments. Early Miocene corals from the Qom back-arc basin are less frequent, show a lower diversity (13 genera with 15 species) and occur in single horizons or small patch reefs.

  16. Recovery of Seamount Precious Coral Beds From Heavy Trawling Disturbance

    NASA Astrophysics Data System (ADS)

    Morgan, N.; Baco-Taylor, A.; Roark, B.

    2016-02-01

    Resilience and the related concept of recovery provide insights into ecosystem function, connectivity, and succession. Most marine resilience studies have focused on shallow-water ecosystems. However, increasing anthropogenic impacts in the deep sea make studies of resilience and recovery in the deep sea time-critical, with deep-sea hard-substrate habitats and large-scale disturbances having received the least attention. Ironically one of the key anthropogenic impacts to the seafloor, trawling, provides an ideal experimental design to understand processes of recovery from large-scale disturbance in the deep sea. Seamount hard-substrate habitats in particular are thought to have low resilience due to the slow growth rates and recruitment limitations of key structure-forming taxa. The goal of our project is to test the hypothesis of low resilience by examining a series of locations in the far Northwestern Hawaiian Islands and the Emperor Seamount Chain. These sites have had some of the heaviest trawl impacts in the world, from both fish and precious coral fisheries, and include sites that are still trawled as well as ones that have been protected since the establishment of the US Exclusive Economic Zone in 1977. We compare these to untrawled sites as part of a three "treatment" design. During two cruises in 2014 and 2015 we used the AUV Sentry to image nine features (three per treatment). CTD data were also collected. Images were analyzed for all visible megafauna as well as substrate parameters (rugosity, slope, composition, relief). Yuryaku, in the "still trawled" treatment was characterized by extensive areas of bare substrate with abundant trawl scars. This feature also had lower diversity and lower abundance of megafauna compared to the recovering and never trawled locations. Preliminary data suggest recovering and never trawled features have overlapping species, but not in comparable abundances.

  17. Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract.

    PubMed

    Lirman, Diego; Fong, Peggy

    2007-06-01

    Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.

  18. Mortality of shallow reef corals in the western Arabian Gulf following aerial exposure in winter

    NASA Astrophysics Data System (ADS)

    Fadlallah, Y. H.; Allen, K. W.; Estudillo, R. A.

    1995-05-01

    Aerial exposure of patch reef corals occurred in Tarut Bay, western Arabian Gulf, (Saudi Arabia) between December 1991 and May 1992, and coincided with extreme low spring tides (below the predicted lowest astronomical tide-LAT). Colonies of Acropora and Stylophora occurring at the highest levels on the tops of patch reef platforms were most affected by the low tides. Corals fully exposed to air suffered total mortality, whereas those not fully exposed suffered tissue damage to their upper parts. Exposure occurred during winter months when air and water temperatures are at their lowest in the gulf. Coupling of extremely low spring tides with wind-induced negative surges (below LAT) are not regular events but are not infrequent. Cold temperatures and exposure may act in concert to produce disproportionate mortalities of reef flat corals in the shallow coastal areas of eastern Saudi Arabia. It is highly unlikely that the Gulf War oil spill played any role in the observed damage to reef corals in the Gulf in 1992.

  19. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.

    PubMed

    Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G

    2013-09-01

    During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to coral communities in the study area.

  20. Elastic Bottom Propagation Mechanisms Investigated by Parabolic Equation Methods

    DTIC Science & Technology

    2014-09-30

    channel propagation of oceanic T waves from seismic sources in the presence of intervening seamounts or coral reef barriers is established using elastic PE...environments in the form of scattering at an elastic interface, oceanic T - waves , and Scholte waves . OBJECTIVES To implement explosive and earthquake...oceanic T - waves , which are acoustic waves that result from earthquake or buried explosive sources, and Rayleigh-type waves along the ocean floor, whose

  1. A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount.

    PubMed

    Pineda, Jesús; Cho, Walter; Starczak, Victoria; Govindarajan, Annette F; Guzman, Héctor M; Girdhar, Yogesh; Holleman, Rusty C; Churchill, James; Singh, Hanumant; Ralston, David K

    2016-01-01

    A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount's elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4-10 m above the bottom. The high density aggregations were constrained to 355-385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m(2), and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.

  2. Epibenthic communities of sedimentary habitats in a NE Atlantic deep seamount (Galicia Bank)

    NASA Astrophysics Data System (ADS)

    Serrano, A.; Cartes, J. E.; Papiol, V.; Punzón, A.; García-Alegre, A.; Arronte, J. C.; Ríos, P.; Lourido, A.; Frutos, I.; Blanco, M.

    2017-12-01

    Galicia Bank is a deep seamount included as Site of Community Importance (SCI) in the Spanish Natura 2000 Network proposal. In the present study, epibenthic assemblages of sedimentary habitats have been described, together with the main environmental factor explaining species and communities distribution. Five epibenthic assemblages have been identified. Depth was the main factor explaining assemblage distribution, and the role of sediment type, water masses, and coral framework presence is also discussed. Three assemblages are located in the summit: the shallowest one (730-770 m), in the boundary between Eastern North Atlantic Central Water (ENACW) and Mediterranean Overflow Water (MOW) water masses is typified by ophiuroids and characterized by medium sands. The second assemblage (770-800 m) typified by the bivalve Limopsis minuta and the solitary coral Flabellum chunii correspond with medium sands and MOW core; and the third typified by the presence of cold-water coral communities dominated by Lophelia pertusa and Madrepora oculata, also on the MOW influence. In the border of the summit, in the bank break, an assemblage located in the range 1000-1200 m is dominated by the urchin Cidaris cidaris and the sponge Thenea muricata. In the flat flanks around the bank, the deepest assemblage (1400-1800 m) is dominated by the holothurian Benthogone rosea, in a depth range dominated by the Labrador water (LSW) and in fine sands with highest contents of organic matter. Most of species appeared in a depth range smaller than 25% of total depth range sampled and in < 10% of samples. Differential preference of species is evident in the different trophic guilds, with a higher dominance of filter-feeders in the summit and of deposit-feeders in the deepest assemblage, and have clear links with nutrient dynamics in the bank.

  3. Is Echinometra viridis facilitating a phase shift on an Acropora cervicornis patch reef in Belize?

    NASA Astrophysics Data System (ADS)

    Stefanic, C. M.; Greer, L.; Norvell, D.; Benson, W.; Curran, H.

    2012-12-01

    Coral reef health is in rapid decline across the Caribbean due to a number of anthropogenic and natural disturbances. A phase shift from coral- to macroalgae-dominant reefs is pervasive and has been well documented. Acropora cervicornis (Staghorn Coral) has been particularly affected by this shift due to mass mortality of this species since the 1980s. In recent years few Caribbean A. cervicornis refugia have been documented. This study characterizes the relationship between coral and grazing urchins on a rare patch reef system dominated by A. cervicornis off the coast of Belize. To assess relative abundance of live A. cervicornis and the urchin Echinometra viridis, photographs and urchin abundance data were collected from 132 meter square quadrats along five transects across the reef. Photographs were digitized and manually segmented using Adobe Illustrator, and percent live coral cover and branch tip densities were calculated using Matlab. Mean percent live coral cover across all transects was 24.4 % with a high of 65% live coral per meter square. Average urchin density was 18.5 per quadrat, with an average density per transect ranging from 22.1 to 0.5 per quadrat. Up to over 400 live A. cervicornis branch tips per quadrat were observed. Data show a positive correlation between E. viridis abundance and live A. cervicornis, suggesting that these urchins are facilitating recovery or persistence of this endangered coral species. These results suggest the relationship between E. viridis and A. cervicornis could be a key element in a future reversal of the coral to macroalgae phase shift on some Caribbean coral reefs.

  4. A New Perspective: Assessing the Spatial Distribution of Coral Bleaching with Unmanned Low Altitude Remote Sensing Systems

    NASA Astrophysics Data System (ADS)

    Levy, J.; Franklin, E. C.; Hunter, C. L.

    2016-12-01

    Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef scientists a new perspective on meso-scale coral reef dynamics. We envision that similar low altitude aerial surveys will be incorporated as a standard component of shallow-water reef studies, especially on reefs too dangerous or remote for in situ surveys.

  5. An overview of Miocene reefs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, C.F. Jr.; Colgan, M.W.; Frost, S.H.

    1990-05-01

    Miocene reefs lived approximately within the latitudes of 27{degree}S to 48{degree}N compared with 25{degree}S and 32{degree}N for Holocene reefs. This expansion of reef-growing environments was the result of warm Miocene climates, aided by a eustatic sea level rise and tectonic styles that provided numerous foundations for reef development. The majority of Miocene reefs are found in three main areas: (1) Southeast Asia and the western Pacific, (2) the Mediterranean-Middle East, and (3) Middle America and the Caribbean. These regions, with their distinctive suites of coral and foramineral species, formed three biological provinces; respectively, they are the Indo-Pacific, Tethyan, and Westernmore » Atlantic provinces. Miocene reefs in Southeast Asia occur in several foreland basins as patch reef complexes on paleohighs and as barrier reefs in back-arc basins. Those reefs in the Mediterranean occur as fringing reefs, middle-shelf patch reefs, or as barrier reefs on the edges of tectonic blocks associated with Alpine thrust belts. Most reefs in the Caribbean grew on isolated open-ocean highs of volcanic origin. Miocene reefs display a diversity of framework types: (1) coral-encrusting, red algal boundstones with diverse coral faunas, (2) branching coral-encrusting, red algal boundstones with a limited Poritid fauna, (3) encrusting red algal boundstones. Barrier reef systems are especially rich in encrusting red algae and robust corals; grainstones are common as interbedded sediment. Patch reef complexes, however, display muddy carbonate textures, may have less diverse coral faunas, and commonly have larger foraminifera. The global distribution of Miocene reefs is important because (1) it provides insight into a paleoclimatic view of the earth during a major greenhouse stage and (2) Miocene buildups, such as the Arun (EUR of 14 tcf) and Bima fields (EUR of about 100 MMBO), are exploration targets.« less

  6. Interactive effects of live coral and structural complexity on the recruitment of reef fishes

    NASA Astrophysics Data System (ADS)

    Coker, D. J.; Graham, N. A. J.; Pratchett, M. S.

    2012-12-01

    Corals reefs are subjected to multiple disturbances that modify levels of coral cover and structural complexity of the reef matrix, and in turn influence the structure of associated fish communities. With disturbances predicted to increase, insight into how changes in substrate condition will influence the recruitment of many fishes is essential for understanding the recovery of reef fish populations following biological and physical disturbances. While studies have revealed that both live coral cover and structural complexity are important for many fishes, there is a lack of understanding regarding how a combination of these changes will impact the recruitment of fishes. This study used experimentally constructed patch reefs consisting of six different habitat treatments; three levels of live coral cover (high, medium, low) crossed with two levels of structural complexity (high, low), to test the independent and combined effects of live coral cover and structural complexity on the recruitment and recovery of fish communities. The abundance and species diversity of fishes varied significantly among the six habitat treatments, but differences were not clearly associated with either coral cover or structural complexity and varied through time. More striking, however, was a significant difference in the composition of fish assemblages among treatments, due mostly to disproportionate abundance of coral-dwelling fishes on high coral cover, high complexity reefs. Overall, it appears that coral cover had a more important influence than structural complexity, at least for the contrasting levels of structural complexity achieved on experimental patch reefs. Furthermore, we found that live coral cover is important for the recruitment of some non-coral-dependent fishes. This study confirms that live coral cover is critical for the maintenance of high biodiversity on tropical coral reefs, and that sustained and ongoing declines in coral cover will adversely affect recruitment for many different species of reef fishes.

  7. Ecological characteristics of coral patch reefs at Midway Atoll, Northwestern Hawaiian Islands

    USGS Publications Warehouse

    Schroeder, R.E.; Parrish, J.D.

    2006-01-01

    Ecological aspects of coral patch reefs were studied from 1981 to 1985 in Welles Harbor, Midway Atoll. Water temperatures varied from 17??C in February to 28??C in August. Sizes of reefs studied were described by mean area (59 m2), mean volume (52 m3), vertical relief (<1 m), and inter-reef isolation (100 m). Considerable temporal change in reef size occurred due to large winter swells shifting bottom sand. Six common species accounted for 70% of all individual fish visually censused over 4 years. Overall fish assemblage composition ranged from 11 to 46 fish/10 m2, from 3 to 14 species. Numerical abundance and species richness for all fish (pooled) strongly correlated with physical reef substrate characteristics of area, volume, and vertical relief during summer. Species diversity (H') was not correlated with the substrate variables, suggesting similarity in the structure of fish communities among different sizes of patch reefs. Daily surveillance for presence of large transient taxa suggested that visits by sharks, large jacks, monk seals, sea turtles, and dolphins were infrequent. Density estimates were made for all conspicuous invertebrate megafauna during initial and final assessments. Six common taxa provided 90% of these counts; nearly half were sea urchins. Percent cover also was recorded for coral and algal species on the patch reefs. Cover by live coral was low (about 7%) and dominated by a few species. Mean algal cover ranged from 32 to 77%. Such information on ecological characteristics of reefs may aid in understanding complex ecological processes and provides an earlier reference for current ecosystem studies.

  8. Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: A nugget of hope, aberrance, or last man standing?

    NASA Astrophysics Data System (ADS)

    Gintert, Brooke E.; Manzello, Derek P.; Enochs, Ian C.; Kolodziej, Graham; Carlton, Renée; Gleason, Arthur C. R.; Gracias, Nuno

    2018-06-01

    Annual coral bleaching events, which are predicted to occur as early as the next decade in the Florida Keys, are expected to cause catastrophic coral mortality. Despite this, there is little field data on how Caribbean coral communities respond to annual thermal stress events. At Cheeca Rocks, an inshore patch reef near Islamorada, FL, the condition of 4234 coral colonies was followed over 2 yr of subsequent bleaching in 2014 and 2015, the two hottest summers on record for the Florida Keys. In 2014, this site experienced 7.7 degree heating weeks (DHW) and as a result 38.0% of corals bleached and an additional 36.6% were pale or partially bleached. In situ temperatures in summer of 2015 were even warmer, with the site experiencing 9.5 DHW. Despite the increased thermal stress in 2015, only 12.1% of corals were bleached in 2015, which was 3.1 times less than 2014. Partial mortality dropped from 17.6% of surveyed corals to 4.3% between 2014 and 2015, and total colony mortality declined from 3.4 to 1.9% between years. Total colony mortality was low over both years of coral bleaching with 94.7% of colonies surviving from 2014 to 2016. The reduction in bleaching severity and coral mortality associated with a second stronger thermal anomaly provides evidence that the response of Caribbean coral communities to annual bleaching is not strictly temperature dose dependent and that acclimatization responses may be possible even with short recovery periods. Whether the results from Cheeca Rocks represent an aberration or a true resilience potential is the subject of ongoing research.

  9. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changesmore » occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.« less

  10. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province.

    PubMed

    Rivera, Jesus; Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25-30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount's summit. Sediment waves and cold-water coral (CWC) mounds on the bank summit plateau are the youngest features contributing to its final shaping, and may be indicative of internal wave effects. Numerous submarine canyons generally less than 10 km in length are incised on the bank's flanks. The most developed, hierarchized canyon system runs southwest of the bank, where it merges with other canyons coming from the southern bulges attached to some sections of the seamount flanks. These bulges are postulated as having an intrusive origin, as no major headwall landslide scars have been detected and their role as deposition areas for the submarine canyons seems to be minor. The results presented document how geological processes in the past and recent to subrecent oceanographic conditions and associated active processes determined the current physiography, morphology and sedimentary patterns of Concepcion Bank, including the development and decline of CWC mounds The setting of the seamount in the regional crustal structure is also discussed.

  11. The spatial distribution of particulate organic carbon and microorganisms on seamounts of the South West Indian Ridge

    NASA Astrophysics Data System (ADS)

    Djurhuus, A.; Read, J. F.; Rogers, A. D.

    2017-02-01

    We used elemental analysis, to measure particulate organic carbon (POC), and flow cytometry, to estimate abundance of microorganisms from above four seamounts (Coral, Melville, Middle of What and Atlantis) along the Southwest Indian Ridge (SWIR) from latitude 32.6°S to 41.3°S, longitude 57.1°E to 42.7°E. Samples were collected from the surface to the bottom using a CTD fitted with optical sensors. POC was predicted from models created from in-situ transmission (optical) data (cp). The high resolution predicted POC in the euphotic zone showed a heterogeneous distribution both above individual and between seamounts. The shallow penetration of two of the seamounts displayed an effect on the POC concentration in the euphotic zone depleting the layer around the summit. The transmission data showed higher concentrations of particles towards the surface, caused by primary production, and near to the seabed, probably resulting from re-suspension of sediments. The POC concentrations and microbial abundance were positively correlated to cp and fluctuated with particle abundance, with microorganisms accounting for 50% of the observed POC. Based on non-metric multidimensional scaling it is clear that the microbial clusters strongly indicate three separate biological regimes associated with northeastern, central and southwestern zones of the section of the SWIR that was sampled. This biological zonation is associated with physical oceanographic boundaries represented by the Subtropical and Subantarctic Fronts, forming three distinct "biogeographical" regions.

  12. Reflective Light Modulation by Cephalopods and Fishes in Shallow Nearshore Habitats

    DTIC Science & Technology

    2011-09-30

    cephalopods ( octopus , cuttlefish and squid) because they have the most diverse and changeable camouflage patterns known in biology. Several fishes...breakdown is as follows: (1) Puerto Rico, December 2010, to film Octopus vulgaris using camouflage in various habitats, including seagrass, soft corals...patch reefs, and fully developed coral reefs with soft and hard corals; (2) Monterey, California, Hopkins Marine Station, to film Octopus rubescens, a

  13. Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns.

    PubMed

    Williams, Gareth J; Smith, Jennifer E; Conklin, Eric J; Gove, Jamison M; Sala, Enric; Sandin, Stuart A

    2013-01-01

    Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54-86% cover), namely hard corals (20-74%) and crustose coralline algae (CCA) (10-36%). While turf algae were relatively common at both locations (8-22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7-9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra's backreef and Kingman's patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman's patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman's forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized shelter. In contrast, the cover of turf algae at Kingman was positively related to wave energy, reflecting their ability to rapidly colonize newly available space. No significant patterns with wave energy were observed on Palmyra's forereef, suggesting that a more detailed model is required to study biophysical coupling there. Kingman, Palmyra, and other remote oceanic reefs provide interesting case studies to explore biophysical influences on benthic ecology and dynamics.

  14. Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns

    PubMed Central

    Conklin, Eric J.; Gove, Jamison M.; Sala, Enric; Sandin, Stuart A.

    2013-01-01

    Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54–86% cover), namely hard corals (20–74%) and crustose coralline algae (CCA) (10–36%). While turf algae were relatively common at both locations (8–22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7–9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman’s forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized shelter. In contrast, the cover of turf algae at Kingman was positively related to wave energy, reflecting their ability to rapidly colonize newly available space. No significant patterns with wave energy were observed on Palmyra’s forereef, suggesting that a more detailed model is required to study biophysical coupling there. Kingman, Palmyra, and other remote oceanic reefs provide interesting case studies to explore biophysical influences on benthic ecology and dynamics. PMID:23734341

  15. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    PubMed

    Miller, Robert J; Hocevar, John; Stone, Robert P; Fedorov, Dmitry V

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  16. Structure-Forming Corals and Sponges and Their Use as Fish Habitat in Bering Sea Submarine Canyons

    PubMed Central

    Miller, Robert J.; Hocevar, John; Stone, Robert P.; Fedorov, Dmitry V.

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide. PMID:22470486

  17. Species-area relationships in coral communities: evaluating mechanisms for a commonly observed pattern

    NASA Astrophysics Data System (ADS)

    Huntington, B. E.; Lirman, D.

    2012-12-01

    Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.

  18. Exploring deep sea habitats for baseline characterization using NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    McKenna, L.; Cantwell, K. L.; Kennedy, B. R.; Lobecker, E.; Sowers, D.; Elliott, K.

    2015-12-01

    In 2015, NOAA Ship Okeanos Explorer, the only US federal ship dedicated to ocean exploration, systematically explored previously unknown deep sea ecosystems in the Caribbean and remote regions in the vicinity of the Hawaiian Islands. Initial characterization of these areas is essential in order to establish a baseline against which to assess potential future changes due to climate and anthropogenic change. In the Caribbean, over 37,500 sq km of previously unmapped seafloor were mapped with a high resolution multibeam revealing rugged canyons along shelf breaks, intricate incised channels, and complex tectonic features. 12 ROV dives, in the 300-6,000 m depth range, visually explored seamounts, escarpments, submarine canyons, and the water column revealing diverse ecosystems and habitats. Discoveries include large assemblages of deep sea corals, range extensions, and observations of several rare and potentially new organisms - including a seastar that had not been documented since its holotype specimen. In the Pacific, over 50,000 sq km of seafloor were mapped in high-resolution, revealing long linear ridge and tectonic fracture zone features, both peaked and flat-topped seamounts, and numerous features that appear to be volcanic in origin. To better understand ecosystem dynamics in depths greater than 2,000 m, the deepest ever ROV surveys and sampling were conducted in remote Pacific island marine sanctuaries and monuments. Novel observations include range extensions and exploration of dense deep sea coral and sponge habitat. Baseline habitat characterization was also conducted on seamounts within the Prime Crust Zone (PCZ), an area with the highest expected concentration of deep-sea minerals in the Pacific. The Hawaiian operations marked the first ever ROV sampling effort conducted onboard Okeanos, and several geological and biological samples are now available at museums and sample repositories in addition to all digital data available through the National Archives.

  19. Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats

    NASA Astrophysics Data System (ADS)

    De Clippele, L. H.; Gafeira, J.; Robert, K.; Hennige, S.; Lavaleye, M. S.; Duineveld, G. C. A.; Huvenne, V. A. I.; Roberts, J. M.

    2017-03-01

    Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of mapping approaches were used at a range of scales to map the distribution of both cold-water coral habitats and individual coral colonies at the Mingulay Reef Complex (west Scotland). The new ArcGIS-based British Geological Survey (BGS) seabed mapping toolbox semi-automatically delineated over 500 Lophelia reef `mini-mounds' from bathymetry data with 2-m resolution. The morphometric and acoustic characteristics of the mini-mounds were also automatically quantified and captured using this toolbox. Coral presence data were derived from high-definition remotely operated vehicle (ROV) records and high-resolution microbathymetry collected by a ROV-mounted multibeam echosounder. With a resolution of 0.35 × 0.35 m, the microbathymetry covers 0.6 km2 in the centre of the study area and allowed identification of individual live coral colonies in acoustic data for the first time. Maximum water depth, maximum rugosity, mean rugosity, bathymetric positioning index and maximum current speed were identified as the environmental variables that contributed most to the prediction of live coral presence. These variables were used to create a predictive map of the likelihood of presence of live cold-water coral colonies in the area of the Mingulay Reef Complex covered by the 2-m resolution data set. Predictive maps of live corals across the reef will be especially valuable for future long-term monitoring surveys, including those needed to understand the impacts of global climate change. This is the first study using the newly developed BGS seabed mapping toolbox and an ROV-based microbathymetric grid to explore the environmental variables that control coral growth on cold-water coral reefs.

  20. Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs.

    PubMed

    Séré, Mathieu G; Tortosa, Pablo; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2013-01-01

    The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.

  1. Cryptic effects of habitat declines: coral-associated fishes avoid coral-seaweed interactions due to visual and chemical cues.

    PubMed

    Brooker, Rohan M; Brandl, Simon J; Dixson, Danielle L

    2016-01-04

    Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance.

  2. Morphology and molecular phylogeny of Paragorgia rubra sp. nov. (Cnidaria: Octocorallia), a new bubblegum coral species from a seamount in the tropical Western Pacific

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhan, Zifeng; Xu, Kuidong

    2017-07-01

    A new species of bubblegum coral, Paragorgia rubra sp. nov., discovered from a seamount at a water depth of 373 m near the Yap Trench is studied using morphological and molecular approaches. Paragorgia rubra sp. nov. is the fourth species of the genus found in the tropical Western Pacific. The new gorgonian is red-colored, uniplanar, and measures approximately 530 mm high and 440 mm wide, with autozooids distributed only on one side of the colony. Paragorgia rubra sp. nov. is most similar to P. kaupeka Sánchez, 2005, but differs distinctly in the polyp ovals with large and compound protuberances (vs. small and simple conical protuberances) and the medullar spindles possessing simple conical protuberances (vs. compound protuberances). Moreover, P. rubra sp. nov. differs from P. kaupeka in the smaller length/width ratio of surface radiates (1.53 vs. 1.75). The genetic distance of the mtMutS gene between P. rubra sp. nov. and P. kaupeka is 0.66%, while the intraspecific distances within Paragorgia Milne-Edwards & Haime, 1857 except the species P. regalis complex are no more than 0.5%, further supporting the establishment of the new species. Furthermore, the ITS2 secondary structure of P. rubra sp. nov. is also different from those of congeners. Phylogenetic analyses indicate Paragorgia rubra sp. nov. and P. kaupeka form a clade, which branched early within Paragorgia and diversified approximately 15 Mya.

  3. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province

    PubMed Central

    Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25–30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount’s summit. Sediment waves and cold-water coral (CWC) mounds on the bank summit plateau are the youngest features contributing to its final shaping, and may be indicative of internal wave effects. Numerous submarine canyons generally less than 10 km in length are incised on the bank’s flanks. The most developed, hierarchized canyon system runs southwest of the bank, where it merges with other canyons coming from the southern bulges attached to some sections of the seamount flanks. These bulges are postulated as having an intrusive origin, as no major headwall landslide scars have been detected and their role as deposition areas for the submarine canyons seems to be minor. The results presented document how geological processes in the past and recent to subrecent oceanographic conditions and associated active processes determined the current physiography, morphology and sedimentary patterns of Concepcion Bank, including the development and decline of CWC mounds The setting of the seamount in the regional crustal structure is also discussed. PMID:27243626

  4. A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount

    PubMed Central

    Cho, Walter; Starczak, Victoria; Govindarajan, Annette F.; Guzman, Héctor M.; Girdhar, Yogesh; Holleman, Rusty C.; Churchill, James; Singh, Hanumant; Ralston, David K.

    2016-01-01

    A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects. PMID:27114859

  5. The effect of species and colony size on the bleaching response of reef-building corals in the Florida Keys during the 2005 mass bleaching event

    NASA Astrophysics Data System (ADS)

    Brandt, M. E.

    2009-12-01

    Understanding the variation in coral bleaching response is necessary for making accurate predictions of population changes and the future state of reefs in a climate of increasing thermal stress events. Individual coral colonies, belonging to inshore patch reef communities of the Florida Keys, were followed through the 2005 mass bleaching event. Overall, coral bleaching patterns followed an index of accumulated thermal stress more closely than in situ temperature measurements. Eight coral species ( Colpophyllia natans, Diploria strigosa, Montastraea cavernosa, M. faveolata, Porites astreoides, P. porites, Siderastrea siderea, and Stephanocoenia intersepta), representing >90% of the coral colonies studied, experienced intense levels of bleaching, but responses varied. Bleaching differed significantly among species: Colpophyllia natans and Diploria strigosa were most susceptible to thermal stress, while Stephanocoenia intersepta was the most tolerant. For colonies of C. natans, M. faveolata, and S. siderea, larger colonies experienced more extensive bleaching than smaller colonies. The inshore patch reef communities of the Florida Keys have historically been dominated by large colonies of Montastraea sp. and Colpophyllia natans. These results provide evidence that colony-level differences can affect bleaching susceptibility in this habitat and suggest that the impact of future thermal stress events may be biased toward larger colonies of dominant reef-building species. Predicted increases in the frequency of mass bleaching and subsequent mortality may therefore result in significant structural shifts of these ecologically important communities.

  6. Cryptic effects of habitat declines: coral-associated fishes avoid coral-seaweed interactions due to visual and chemical cues

    PubMed Central

    Brooker, Rohan M.; Brandl, Simon J.; Dixson, Danielle L.

    2016-01-01

    Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance. PMID:26725835

  7. A comparison between boat-based and diver-based methods for quantifying coral bleaching

    USGS Publications Warehouse

    Zawada, David G.; Ruzicka, Rob; Colella, Michael A.

    2015-01-01

    Recent increases in both the frequency and severity of coral bleaching events have spurred numerous surveys to quantify the immediate impacts and monitor the subsequent community response. Most of these efforts utilize conventional diver-based methods, which are inherently time-consuming, expensive, and limited in spatial scope unless they deploy large teams of scientifically-trained divers. In this study, we evaluated the effectiveness of the Along-Track Reef Imaging System (ATRIS), an automated image-acquisition technology, for assessing a moderate bleaching event that occurred in the summer of 2011 in the Florida Keys. More than 100,000 images were collected over 2.7 km of transects spanning four patch reefs in a 3-h period. In contrast, divers completed 18, 10-m long transects at nine patch reefs over a 5-day period. Corals were assigned to one of four categories: not bleached, pale, partially bleached, and bleached. The prevalence of bleaching estimated by ATRIS was comparable to the results obtained by divers, but only for corals > 41 cm in size. The coral size-threshold computed for ATRIS in this study was constrained by prevailing environmental conditions (turbidity and sea state) and, consequently, needs to be determined on a study-by-study basis. Both ATRIS and diver-based methods have innate strengths and weaknesses that must be weighed with respect to project goals.

  8. Mesophotic bioerosion: Variability and structural impact on U.S. Virgin Island deep reefs

    NASA Astrophysics Data System (ADS)

    Weinstein, David K.; Smith, Tyler B.; Klaus, James S.

    2014-10-01

    Mesophotic reef corals, found 30-150 m below sea level, build complex structures that provide habitats for diverse ecosystems. Whereas bioerosion is known to impact the development and persistence of shallow reef structures, little is known regarding the extent of mesophotic bioerosion or how it might affect deeper reef geomorphology and carbonate accretion. Originally pristine experimental coral substrates and collected coral rubble were both used to investigate the variation and significance of mesophotic coral reef bioerosion south of St. Thomas, U.S. Virgin Islands. Bioerosion rates were calculated from experimental coral substrates exposed as framework for 1 and 2 years at four structurally distinct mesophotic coral reef habitats (between 30 and 45 m) as well as at a mid-shelf patch reef (21 m) and a shallow fringing patch reef (9 m). The long-term effects of macroboring were assessed by examining coral rubble collected at all sites. Overall, differences in bioerosional processes were found between shallow and mesophotic reefs. Increases in bioerosion on experimental substrates (amount of weight lost) were related to both decreasing seawater depth and increasing biomass of bioeroding parrotfish. Significant differences in coral skeleton bioerosion rates were also found between the transitional mesophotic reef zone (30-35 m) and the upper mesophotic reef zone (35-50 m) after 2 years of exposure, ranging from - 19.6 to 3.7 g/year. Total coral rubble macroboring was greater at most deep sites compared to shallower sites. Bioerosional grazing was found to dominate initial substrate modification in reefs 30.7 m and shallower, but sponges are believed to act as the main time-averaged long-term substrate bioeroders in reefs between 35 and 50 m. Although initial substrate bioerosion rates of a uniform substrate were relatively homogeneous in the 35-50 m depth zone, comparison of site composition suggests that mesophotic bioerosion will vary depending on the amount, location, and type of available substrate, and the duration both coral rubble and in situ coral framework are exposed on the seafloor. These variations may exaggerate pronounced structural differences in mesophotic reef habitats that experience few other methods of erosion.

  9. Status and conservation of coral reefs in Costa Rica.

    PubMed

    Cortés, Jorge; Jiménez, Carlos E; Fonseca, Ana C; Alvarado, Juan José

    2010-05-01

    Costa Rica has coral communities and reefs on the Caribbean coast and on the Pacific along the coast and off-shore islands. The Southern section of the Caribbean coast has fringing and patch reefs, carbonate banks, and an incipient algal ridge. The Pacific coast has coral communities, reefs and isolated coral colonies. Coral reefs have been seriously impacted in the last 30 years, mainly by sediments (Caribbean coast and some Pacific reefs) and by El Niño warming events (both coasts). Monitoring is being carried out at three sites on each coast. Both coasts suffered significant reductions in live coral cover in the 1980's, but coral cover is now increasing in most sites. The government of Costa Rica is aware of the importance of coral reefs and marine environments in general, and in recent years decrees have been implemented (or are in the process of approval) to protect them, but limited resources endanger their proper management and conservation, including proper outreach to reef users and the general public.

  10. Out of Their Depth? Isolated Deep Populations of the Cosmopolitan Coral Desmophyllum dianthus May Be Highly Vulnerable to Environmental Change

    PubMed Central

    Miller, Karen J.; Rowden, Ashley A.; Williams, Alan; Häussermann, Vreni

    2011-01-01

    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations. PMID:21611159

  11. New maps, new information: Coral reefs of the Florida keys

    USGS Publications Warehouse

    Lidz, B.H.; Reich, C.D.; Peterson, R.L.; Shinn, E.A.

    2006-01-01

    A highly detailed digitized map depicts 22 benthic habitats in 3140.5 km2 of the Florida Keys National Marine Sanctuary. Dominant are a seagrass/lime-mud zone (map area 27.5%) throughout Hawk Channel and seagrass/carbonate-sand (18.7%) and bare carbonate-sand (17.3%) zones on the outer shelf and in The Quicksands. A lime-mud/seagrass-covered muddy carbonate-sand zone (9.6%) abuts the keys. Hardbottom communities (13.2%) consist of bare Pleistocene coralline and oolitic limestone, coral rubble, and senile coral reefs. Smaller terrestrial (4.0%) and marine habitats, including those of live coral (patch reefs, 0.7%), account for the rest (13.7%) of the area. Derived from aerial photomosaics, the seabed dataset fits precisely when transposed onto a newly developed National Geophysical Data Center hydrographic-bathymetry map. Combined, the maps point to new information on unstudied seabed morphologies, among them an erosional nearshore rock ledge bordering the seaward side of the Florida Keys and thousands of patch-reef clusters aligned in mid-Hawk Channel. Preliminary indications are that the ledge may represent the seaward extent of the 125-ka Key Largo and Miami Limestone that form the keys, and the patch reefs colonized landward edges of two noncoralline, non-dune-ridge topographic troughs. The troughs, their substrate, and inner-shelf location along the seaward side of the Hawk Channel bedrock depression are the first of that type of nuclei to be recognized in the Florida reef record. Together, the map datasets establish the efficacy and accuracy of using aerial photographs to define in extraordinary detail the seabed features and habitats in a shallow-reef setting.

  12. Biological Communities and Geomorphology of Patch Reefs in Biscayne National Park, Florida, U.S.A.

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Brock, John C.; Grober-Dunsmore, Rikki; Hickey, T. Don; Bonito, Victor; Bracone, Jeremy E.; Wright, C. Wayne

    2008-01-01

    Coral reef ecosystem management benefits from continual, quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigated the relationships among physical, benthic, and fish variables in effort to help explain the distribution patterns of ecologically and economically important species on twelve patch reefs within Biscayne National Park (BNP), Florida, U.S.A. We visited 196 randomly-located sampling stations across twelve shallow (< 10m) patch reefs, using SCUBA to conduct our surveys. We measured physical variables (e.g., substratum type), estimated the percent cover of benthic community members (e.g., coral, algae), and counted and estimated mean size for each fish species observed. We also used high-density bathymetric data collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar (EAARL)) to calculate rugosity (bumpiness) of the reef habitat. Here we present our findings visually by graphing our quantitative community and physical structure data simultaneously in a GIS map format. You will see that biological organisms arrange themselves on each patch reef in a non-random manner. For example, many species of fish prefer to locate themselves in areas of the reef where the rugosity index is high. Rugose parts of the reef provide them with good hiding places from predators. These maps (and the data used to create them) are permanent records of the status of reef resources found on these twelve patch reefs in BNP as of September, 2003. The survey data found in the shapefile located on this CD product includes benthic percent cover data for algae, coral, encrusting invertebrates, and substratum type, in addition to gorgonian abundance and volume, total fish abundance and species richness, and specific counts for Acanthurids (surgeonfish), Scarids (parrotfish), Lutjanids (snappers), Haemulids (grunts), Serranids (groupers), and Pomacentrids (damselfish).

  13. Global habitat suitability for framework-forming cold-water corals.

    PubMed

    Davies, Andrew J; Guinotte, John M

    2011-04-15

    Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2)) global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts), which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine ecosystems for inclusion in future marine protected areas and reduce coral bycatch by commercial fisheries.

  14. STS-61A earth observations

    NASA Image and Video Library

    1985-11-04

    61A-40-38 (30 Oct-6 Nov 1985) --- The coral reef forming the atoll of Midway sits atop a volcanic seamount that has descended more than 3,000 feet (1000 meters) below the sea surface in this ancient region of the Hawaiian volcanic chain. This view was taken by the crew members onboard the Earth-orbiting Space Shuttle Challenger. The crew consisted of astronauts Henry W. Hartsfield, Jr., commander; Steven R. Nagel, pilot; James F. Buchli, Guion S. Bluford, Jr., and Bonnie J. Dunbar, all mission specialists; Reinhard Furrer, Ernst Messerschmid, and Wubbo J. Ockels, all payload specialists. Ockels represents the European Space Agency (ESA).

  15. Does reef architectural complexity influence resource availability for a large reef-dwelling invertebrate?

    NASA Astrophysics Data System (ADS)

    Lozano-Álvarez, Enrique; Luviano-Aparicio, Nelia; Negrete-Soto, Fernando; Barradas-Ortiz, Cecilia; Aguíñiga-García, Sergio; Morillo-Velarde, Piedad S.; Álvarez-Filip, Lorenzo; Briones-Fourzán, Patricia

    2017-10-01

    In coral reefs, loss of architectural complexity and its associated habitat degradation is expected to affect reef specialists in particular due to changes in resource availability. We explored whether these features could potentially affect populations of a large invertebrate, the spotted spiny lobster Panulirus guttatus, which is an obligate Caribbean coral reef-dweller with a limited home range. We selected two separate large coral reef patches in Puerto Morelos (Mexico) that differed significantly in structural complexity and level of degradation, as assessed via the rugosity index, habitat assessment score, and percent cover of various benthic components. On each reef, we estimated density of P. guttatus and sampled lobsters to analyze their stomach contents, three different condition indices, and stable isotopes (δ15N and δ13C) in muscle. Lobster density did not vary with reef, suggesting that available crevices in the less complex patch still provided adequate refuge to these lobsters. Lobsters consumed many food types, dominated by mollusks and crustaceans, but proportionally more crustaceans (herbivore crabs) in the less complex patch, which had more calcareous macroalgae and algal turf. Lobsters from both reefs had a similar condition (all three indices) and mean δ15N, suggesting a similar quality of diet between reefs related to their opportunistic feeding, but differed in mean δ13C values, reflecting the different carbon sources between reefs and providing indirect evidence of individuals of P. guttatus foraging exclusively over their home reef. Overall, we found no apparent effects of architectural complexity, at least to the degree observed in our less complex patch, on density, condition, or trophic level of P. guttatus.

  16. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    NASA Astrophysics Data System (ADS)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  17. 36 CFR 7.27 - Dry Tortugas National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... minimum required speed to leave a flat wave disturbance close astern a moving vessel yet maintain... palmata) and staghorn (Acropora prolifera) coral patches adjacent to and including the tidal channel...

  18. 36 CFR 7.27 - Dry Tortugas National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... minimum required speed to leave a flat wave disturbance close astern a moving vessel yet maintain... palmata) and staghorn (Acropora prolifera) coral patches adjacent to and including the tidal channel...

  19. 36 CFR 7.27 - Dry Tortugas National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... minimum required speed to leave a flat wave disturbance close astern a moving vessel yet maintain... palmata) and staghorn (Acropora prolifera) coral patches adjacent to and including the tidal channel...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzullo, S.J.; Anderson-Underwood, K.E.; Burke, C.D.

    Coral patch reefs are major components of Holocene platform carbonate facies systems in tropical and subtropical areas. The biotic composition, growth and relationship to sea level history, and diagenetic attributes of a representative Holocene patch reef ([open quotes]Elmer Reef[close quotes]) in the Mexico Rocks complex in northern Belize are described and compared to those of Holocene patch reefs in southern Belize. Elmer Reef has accumulated in shallow (2.5 m) water over the last 420 yr, under static sea level conditions. Rate of vertical construction is 0.3-0.5 m/100 yr, comparable to that of patch reefs in southern Belize. A pronounced coralmore » zonation exists across Elmer Reef, with Monastrea annularis dominating on its crest and Acropora cervicornis occurring on its windward and leeward flanks. The dominance of Montastrea on Elmer Reef is unlike that of patch reefs in southern Belize, in which this coral assumes only a subordinate role in reef growth relative to that of Acropora palmata. Elmer Reef locally is extensively biodegraded and marine, fibrous aragonite and some bladed high-magnesium calcite cements occur throughout the reef section, partially occluding corallites and interparticle pores in associated sands. Patch reefs in southern Belize have developed as catch-up and keep-up reefs in a transgressive setting. In contrast, the dominant mode of growth of Elmer Reef, and perhaps other patch reefs in Mexico Rocks, appears to be one of lateral rather than vertical accretion. This style of growth occurs in a static sea level setting where there is only limited accommodation space because of the shallowness of the water, and such reefs are referred to as [open quotes]expansion reefs[close quotes]. 39 refs., 8 figs., 2 tabs.« less

  1. Initial colonization, erosion and accretion of coral substrate

    NASA Astrophysics Data System (ADS)

    Davies, Peter J.; Hutchings, Patricia A.

    1983-08-01

    Blocks cut from Porites lutea were laid on the fore reef slope, reef flat and a lagoonal patch reef at Lizard Island, in the Northern Great Barrier Reef, and replicates removed from each environment at intervals of three months over a period of one and a half years. Variations in bioeroders and bioaccretors were noted. Microfaunas are far more numerous than macrofaunas as block colonizers; the principal borers are polychaete worms, whereas encrusters are molluscs, bryozoans, serpulids and solitary corals. The reef slope is more readily colonised by microfauna pioneer communities than are the other areas. All the environments exhibit a change from cirratulids to either sabellids or spionids (polydorids) over the length of the experiment. Accretion occurred on all blocks during the experiment, with significant differences detectable between environments; both reef slope and reef flat blocks showed weight increases of 9 10% whereas blocks from the patch reef showed increases of 15%. Annual erosion rates produced by polychaete worms are 0.694 kg m-2 year-1 (reef front), 0.843 kg m-2 year-1 (reef flat) and 1.788 kg m-2 year-1 (patch reef).

  2. 50 CFR 622.2 - Definitions and acronyms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... where coral growth abounds, including patch reefs, outer bank reefs, deep water banks, and hard bottoms... muscle tissue, of a spiny lobster along the top middorsal line (middle of the back) to the rearmost...

  3. Resilience in carbonate production despite three coral bleaching events in 5 years on an inshore patch reef in the Florida Keys.

    PubMed

    Manzello, Derek P; Enochs, Ian C; Kolodziej, Graham; Carlton, Renée; Valentino, Lauren

    2018-01-01

    The persistence of coral reef frameworks requires that calcium carbonate (CaCO 3 ) production by corals and other calcifiers outpaces CaCO 3 loss via physical, chemical, and biological erosion. Coral bleaching causes declines in CaCO 3 production, but this varies with bleaching severity and the species impacted. We conducted census-based CaCO 3 budget surveys using the established ReefBudget approach at Cheeca Rocks, an inshore patch reef in the Florida Keys, annually from 2012 to 2016. This site experienced warm-water bleaching in 2011, 2014, and 2015. In 2017, we obtained cores of the dominant calcifying coral at this site, Orbicella faveolata , to understand how calcification rates were impacted by bleaching and how they affected the reef-wide CaCO 3 budget. Bleaching depressed O. faveolata growth and the decline of this one species led to an overestimation of mean (± std. error) reef-wide CaCO 3 production by + 0.68 (± 0.167) to + 1.11 (± 0.236) kg m -2  year -1 when using the static ReefBudget coral growth inputs. During non-bleaching years, the ReefBudget inputs slightly underestimated gross production by - 0.10 (± 0.022) to - 0.43 (± 0.100) kg m -2  year -1 . Carbonate production declined after the first year of back-to-back bleaching in 2014, but then increased after 2015 to values greater than the initial surveys in 2012. Cheeca Rocks is an outlier in the Caribbean and Florida Keys in terms of coral cover, carbonate production, and abundance of O. faveolata , which is threatened under the Endangered Species Act. Given the resilience of this site to repeated bleaching events, it may deserve special management attention.

  4. Holocene Core Logs and Site Statistics for Modern Patch-Reef Cores: Biscayne National Park, Florida

    USGS Publications Warehouse

    Reich, Christopher D.; Hickey, T. Don; DeLong, Kristine L.; Poore, Richard Z.; Brock, John C.

    2009-01-01

    The bedrock in Biscayne National Park (BNP), a 1,730-square kilometer (km2) region off southeast Florida, consists of Pleistocene (1.8 million years ago (Ma) to 10,000 years ago (ka)) and Holocene (10 ka to present) carbonate rocks (Enos and Perkins, 1977; Halley and others, 1997; Multer and others, 2002). Most of the surficial limestone in BNP, including the islands of the Florida Keys, was formed at ~125 ka during the highstand of marine oxygen-isotope substage 5e, when sea level was approximately 6 meters (m) higher than today (Chappell and Shackleton, 1986; Multer and others, 2002; Lidz and others, 2003; Siddall and others, 2003; Balsillie and Donoghue, 2004). During the substage-5e regression, the entire Florida Platform became exposed. Subaerial exposure lasted for approximately 115,000 years (kyr), which resulted in erosion and enhancement of karst-like features (Lidz and others, 2006). As the Holocene transgression began to flood the Florida shelf ~7 to 6 ka, the bedrock depression under Biscayne Bay began to flood, and Holocene coral and reef debris laid the foundation for the present reef system (Enos and Perkins, 1977; Lighty and others, 1982; Toscano and Macintyre, 2003; Lidz and others, 2006). More than 3,000 patch reefs exist within the BNP boundary. Most contain hermatypic corals of various species such as those belonging to Montastrea, Diploria, Siderastrea, Porites, Acropora, and Agaricia. Patch reefs within BNP have two morphologies: pinnacle and flat top. Experimental Advanced Airborne Research Lidar (EAARL) data collected along the offshore BNP coral reef tract show that these two morphologies are clearly defined both in the high-resolution bathymetry maps produced by the Lidar data and by statistical analyses of the Lidar dataset (Brock and others, 2008). Brock and others (2008) also show that the pinnacle patch reefs are deeper than the more shallow, broad, and flat patch reefs. The control for these two patch-reef morphologies is unclear; however, their shapes may be due to a slightly lowered sea level or a stillstand in the middle-Holocene around 4 ka that caused erosion of the shallower reefs and allowed the deeper reefs to remain unaffected. Lidz and others (2006) have suggested a stillstand around 4 ka that carved a 2.5-kilometer (km)-wide nearshore rock ledge into the seaward side of every island in the Florida Keys. The objectives of this study were to sample living corals to understand the more recent (<200 years) changes in climate and environmental conditions of the area and to investigate the Holocene (in this case, <8,000 years in the Florida Keys) depositional history at progressively deeper patch-reef sites. This report provides statistics for the cores and core sites and a basic lithologic description of these Holocene cores.

  5. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones

    NASA Astrophysics Data System (ADS)

    Goodbody-Gringley, Gretchen; Wong, Kevin H.; Becker, Danielle M.; Glennon, Keegan; de Putron, Samantha J.

    2018-06-01

    Early life history traits of brooding corals are often affected by the environmental conditions experienced by parental colonies. Such parental effects can impact offspring survival, which influences the overall success of a population as well as resilience to environmental challenges. This study examines the reproductive ecology and early life history traits of the brooding coral Porites astreoides across a depth gradient in Bermuda. Fecundity, larval size, larval Symbiodinium density, and settlement success, as well as post-metamorphic juvenile survival, growth, and Symbiodinium density were compared across three reef sites representing an inshore patch reef (2-5 m), an offshore rim reef (8-10 m), and an upper-mesophotic reef (30-33 m). Although fecundity did not differ across sites, larvae produced by colonies on the patch reef site were smaller, had lower Symbiodinium densities, and had lower rates of settlement and juvenile survival compared to larvae from colonies on the rim and upper-mesophotic reef sites. Larvae produced by colonies from the rim and upper-mesophotic sites did not differ in size or Symbiodinium densities; however, rates of settlement, growth, and survival were higher for larvae from the upper-mesophotic site compared to those from the rim reef site. These results indicate that offspring quality and success vary among sites with differing environmental conditions and may imply higher recruitment potential and resilience for upper-mesophotic corals.

  6. Yellow band disease compromises the reproductive output of the Caribbean reef-building coral Montastraea faveolata (Anthozoa, Scleractinia).

    PubMed

    Weil, Ernesto; Cróquer, Aldo; Urreiztieta, Isabel

    2009-11-16

    Sexual reproduction is critical to coral population dynamics and the long-term regeneration of coral reefs. Bleaching, disease, and/or anthropogenic-induced tissue/colony loss reduce reproductive output. This is the first attempt to explore the effect of a biotic disease on the reproduction of scleractinian corals. The study aimed to assess the effect of yellow band disease (YBD) on the reproduction of the important Caribbean reef-builder Montastraea faveolata. Tissue samples were collected from diseased, transition, and healthy-looking areas in each of 5 infected colonies and from 5 healthy controls in southwest Puerto Rico. The effect of disease-induced mortality was assessed by collecting samples from the edge and center of surviving small and large, healthy-looking tissue patches from large, previously infected tagged colonies. Fecundity was significantly lower in disease lesions compared to transition and healthy-looking tissues and the controls (99% fewer eggs). Fecundity in transition areas was significantly lower (50%) than in healthy-looking tissues in diseased colonies, which had 23% lower fecundity than control tissues. Although this fecundity drop was not statistically significant, it could indicate a systemic effect of YBD across the colony. Large and small patches had 64 and 84% fewer eggs than controls, respectively, and edge polyps had 97% fewer eggs than those in central control areas. Field observations of the spawning behavior of each tissue area corroborated the histological results. Our results indicate that YBD significantly compromises the reproductive output of M. faveolata, potentially reducing the fitness and consequently, the recovery of this important reef-building species on Caribbean coral reefs.

  7. Assessing the Effects of Disease and Bleaching on Florida ...

    EPA Pesticide Factsheets

    Coral diseases have increased in frequency over the past few decades and have important influences on the structure and composition of coral reef communities. However, there is limited information on the etiologies of many coral diseases, and pathways via which coral diseases are acquired and transmitted are still in question. Furthermore, it is difficult to assess the impacts of disease on coral populations because outbreaks often co-occur with temperature-induced bleaching and anthropogenic stressors. We developed spatially-explicit population models of coral disease and bleaching dynamics to quantify the impact of six common diseases on Florida Keys corals, including aspergillosis, dark spots, white band, white plague, white patch, and yellow band. Models were fit to an 8-year data set of coral abundance, disease prevalence, and bleaching prevalence. Model selection was used to assess alternative pathways for disease transmission, and the influence of environmental stressors, including sea temperature and human population density, on disease prevalence and coral mortality. Classic disease transmission from contagious to susceptible colonies provided the best model only for aspergillosis. For other diseases, direct transmission from the external environment provided the best fit to observed data. Estimates of disease reproductive ratio values (R0) were less than one for each disease, indicating coral colonies were below densities required for diseases

  8. Exploration of the canyon-incised continental margin of the northeastern United States reveals dynamic habitats and diverse communities

    USGS Publications Warehouse

    Quattrini, Andrea; Nizinski, Martha S.; Chaytor, Jason; Demopoulos, Amanda W.J.; Roark, E. Brendan; France, Scott; Moore, Jon A.; Heyl, Taylor P.; Auster, Peter J.; Ruppel, Carolyn D.; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth A.; Skarke, Adam; Shank, Timothy M.

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichosand the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.

  9. Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities.

    PubMed

    Quattrini, Andrea M; Nizinski, Martha S; Chaytor, Jason D; Demopoulos, Amanda W J; Roark, E Brendan; France, Scott C; Moore, Jon A; Heyl, Taylor; Auster, Peter J; Kinlan, Brian; Ruppel, Carolyn; Elliott, Kelley P; Kennedy, Brian R C; Lobecker, Elizabeth; Skarke, Adam; Shank, Timothy M

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.

  10. Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities

    PubMed Central

    Quattrini, Andrea M.; Nizinski, Martha S.; Chaytor, Jason D.; Demopoulos, Amanda W. J.; Roark, E. Brendan; France, Scott C.; Moore, Jon A.; Heyl, Taylor; Auster, Peter J.; Kinlan, Brian; Ruppel, Carolyn; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth; Skarke, Adam; Shank, Timothy M.

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed. PMID:26509818

  11. Recent and relict topography of Boo Bee patch reef, Belize

    USGS Publications Warehouse

    Halley, R.B.; Shinn, E.A.; Hudson, J.H.; Lidz, B.; Taylor, D.L.

    1977-01-01

    Five core borings were taken on and around Boo Bee Patch Reef to better understand the origin of such shelf lagoon reefs. The cores reveal 4 stages of development: (1) subaerial exposure of a Pleistocene "high" having about 8 meters of relief, possibly a Pleistocene patch reef; (2) deposition of peat and impermeable terrigenous clay 3 meters thick around the high; (3) initiation of carbonate sediment production by corals and algae on the remaining 5 meters of hard Pleistocene topography and carbonate mud on the surrounding terrigenous clay; and (4) accelerated organic accumulation on the patch reef. Estimates of patch reef sedimentation rates (1.6 m/1000 years) are 3 to 4 times greater than off-reef sedimentation rates (0.4-0.5 m/1000 years). During periods of Pleistocene sedimentation on the Belize shelf, lagoon patch reefs may have grown above one another, stacking up to form reef accumulation of considerable thickness.

  12. Two bathyal hydroids (Hydrozoa: Leptothecata) from the Southwest Indian Ocean.

    PubMed

    Watson, Jeanette E

    2017-03-27

    Two species of hydroids were recovered from a mooring rope and experimentally deployed whale bone attached to an underwater transponder buoy at a depth of 732 m on the Coral Seamount on the Southwest Indian Ocean Ridge (41° 22.31'S, 54° 57'E) in the Southern Indian Ocean. The material was collected approximately 1,500 km south south-east of Madagascar during Voyage JC066 of the British Royal Research Ship R.R.S. James Cook on 20/11/2011. Hydroids were collected from the mooring rope and whale bone on board the ship after underwater retrieval by ROV.

  13. Ecological adaptations and commensal evolution of the Polynoidae (Polychaeta) in the Southwest Indian Ocean Ridge: A phylogenetic approach

    NASA Astrophysics Data System (ADS)

    Serpetti, Natalia; Taylor, M. L.; Brennan, D.; Green, D. H.; Rogers, A. D.; Paterson, G. L. J.; Narayanaswamy, B. E.

    2017-03-01

    The polychaete family polynoid is very large and includes a high diversity of behaviours, including numerous examples of commensal species. The comparison between free-living and commensal behaviours and the evolution of the relationships between commensal species and their hosts are valuable case studies of ecological adaptations. Deep-sea species of Polynoidae were sampled at four seamounts in the Southwest Indian Ridge and twenty specimens from seven species were selected to be analysed. Among them, there were free-living species, living within the three-dimensional framework of cold-water coral reefs, on coral rubble and on mobile sediments, and commensal species, associated with octocorals, hydrocorals (stylasterids), antipatharians and echinoderms (holothurian and ophiuroids). We analysed two mitochondrial (COI, 16S) and two nuclear (18S, 28S) ribosomal genetic markers and their combined sequences were compared with other Genbank sequences to assess the taxonomic relationships within the species under study, and the potential role of hosts in speciation processes. Most basal species of the sub-family Polynoinae are obligate symbionts showing specific morphological adaptations. Obligate and facultative commensal species and free-living species have evolved a number of times, although, according to our results, the obligate coral commensal species appear to be monophyletic.

  14. Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates

    PubMed Central

    Edmunds, Peter J.; Adjeroud, Mehdi; Baskett, Marissa L.; Baums, Iliana B.; Budd, Ann F.; Carpenter, Robert C.; Fabina, Nicholas S.; Fan, Tung-Yung; Franklin, Erik C.; Gross, Kevin; Han, Xueying; Jacobson, Lianne; Klaus, James S.; McClanahan, Tim R.; O'Leary, Jennifer K.; van Oppen, Madeleine J. H.; Pochon, Xavier; Putnam, Hollie M.; Smith, Tyler B.; Stat, Michael; Sweatman, Hugh; van Woesik, Robert; Gates, Ruth D.

    2014-01-01

    The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past. PMID:25272143

  15. Accelerating late Quaternary uplift of the New Georgia Island Group (Solomon island arc) in response to subduction of the recently active Woodlark spreading center and Coleman seamount

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Taylor, Frederick W.; Lagoe, Martin B.; Quarles, Andrew; Burr, G.

    1998-10-01

    The New Georgia Island Group of the Solomon Islands is one of four places where an active or recently active spreading ridge has subducted beneath an island arc. We have used coral reef terraces, paleobathymetry of Neogene sedimentary rocks, and existing marine geophysical data to constrain patterns of regional Quaternary deformation related to subduction of the recently active Woodlark spreading center and its overlying Coleman seamount. These combined data indicate the following vertical tectonic history for the central part of the New Georgia Island Group: (1) subsidence of the forearc region (Tetepare and Rendova Islands) to water depths of ˜1500 m and deposition of marine turbidites until after 270 ka; (2) late Quaternary uplift of the forearc to sea level and erosion of an unconformity; (3) subsidence of the forearc to ˜500 m BSL and deposition of bathyal sediments; and (4) uplift of the forearc above sea level with Holocene uplift rates up to at least 7.5 mm/yr on Tetepare and 5 mm/yr on Rendova. In the northeastern part of the New Georgia Island Group, our combined data indicate a slightly different tectonic history characterized by lower-amplitude vertical motions and a more recent change from subsidence to uplift. Barrier reefs formed around New Georgia and Vangunu Islands as they subsided >300 m. By 50-100 ka, subsidence was replaced by uplift that accelerated to Holocene rates of ˜1 mm/yr on the volcanic arc compared with rates up to ˜7.5 mm/yr in the forearc area of Tetepare and Rendova. Uplift mechanisms, such as thermal effects due to subduction of spreading ridges, tectonic erosion, or underplating of deeply subducted bathymetric features, are not likely to function on the 270-ka period that these uplift events have occurred in the New Georgia Island Group. A more likely uplift mechanism for the post-270-ka accelerating uplift of the forearc and volcanic arc of the New Georgia Island Group is progressive impingement of the Coleman seamount or other topographically prominent features on the subducting plate. Regional effects we relate to this ongoing subduction-related process include: (1) late Quaternary (post-270 ka), accelerating uplift of the Rendova-Tetepare forearc area in response to initial impingement of the Coleman seamount followed by exponentially increasing collisional contact between the forearc and seamount; (2) later Quaternary propagation of uplift arcward to include the volcanic arc as the area of collisional contact between the forearc and seamount increased; and (3) large-wavelength folding that has produced regional variations in late Holocene uplift rates observed in both forearc (southern Rendova, Tetepare) and volcanic arc (New Georgia Island) areas. We propose that the dominant tectonic effect of Coleman seamount impingement is horizontal shortening of the forearc and arc crust that is produced by strong coupling between the subducting seamount and the unsedimented crystalline forearc of the New Georgia Island Group. The horizontal forces due to mechanical resistance to subducting rugged ridge and seamount topography may have terminated spreading of the Woodlark spreading center entering the trench (Ghizo ridge) and converted it to a presently active strike-slip fault zone.

  16. Temporal and spatial distributions of cold-water corals in the Drake Passage: insights from the last 35,000 years

    USGS Publications Warehouse

    Margolin, Andrew R.; Robinson, Laura F.; Burke, Andrea; Waller, Rhian G.; Scanlon, Kathryn M.; Roberts, Mark L.; Auro, Maureen E.; van de Flierdt, Tina

    2014-01-01

    Scleractinian corals have a global distribution ranging from shallow tropical seas to the depths of the Southern Ocean. Although this distribution is indicative of the corals having a tolerance to a wide spectrum of environmental conditions, individual species seem to be restricted to a much narrower range of ecosystem variables. One way to ascertain the tolerances of corals, with particular focus on the potential impacts of changing climate, is to reconstruct their growth history across a range of environmental regimes. This study examines the spatial and temporal distribution of the solitary scleractinian corals Desmophyllum dianthus, Gardineria antarctica, Balanophyllia malouinensis, Caryophyllia spp. and Flabellum spp. from five sites in the Drake Passage which cross the major frontal zones. A rapid reconnaissance radiocarbon method was used to date more than 850 individual corals. Coupled with U-Th dating, an age range of present day back to more than 100 thousand years was established for corals in the region. Within this age range there are distinct changes in the temporal and spatial distributions of these corals, both with depth and latitude, and on millennial timescales. Two major patterns that emerge are: (1) D. dianthus populations show clear variability in their occurrence through time depending on the latitudinal position within the Drake Passage. North of the Subantarctic Front, D. dianthus first appears in the late deglaciation (~17,000 years ago) and persists to today. South of the Polar Front, in contrast, early deglacial periods, with a few modern occurrences. A seamount site between the two fronts exhibits characteristics similar to both the northern and southern sites. This shift across the frontal zones within one species cannot yet be fully explained, but it is likely to be linked to changes in surface productivity, subsurface oxygen concentrations, and carbonate saturation state. (2) at locations where multiple genera were dated, differences in age and depth distribution of the populations provide clear evidence that each genus has unique environmental requirements to sustain its population.

  17. Biodiversity of the Deep-Sea Benthic Fauna in the Sangihe-Talaud Region, Indonesia: Observations from the INDEX-SATAL 2010 Expedition

    NASA Astrophysics Data System (ADS)

    Herrera, S.; Munro, C.; Nganro, N.; Tunnicliffe, V.; Wirasantosa, S.; Sibert, E.; Hammond, S. R.; Bors, E.; Butterfield, D.; Holden, J. F.; Baker, E. T.; Sherrin, J.; Makarim, S.; Troa, R.; Shank, T. M.

    2010-12-01

    The benthic ecosystems found in the deep-sea promontories of Sangihe Talaud region were explored, between June and August 2010, using the ROV Little Hercules aboard the NOAA ship Okeanos Explorer. The Sangihe-Talaud region is part of the Coral Triangle (CT) an area known for harboring the most biodiverse shallow-water coral reefs in the world. Notwithstanding the significant research efforts that have been undertaken to catalog and protect the biodiversity of the CT prior this expedition, virtually nothing was known about the life inhabiting the deep sea. The high-resolution imagery obtained from the 27 ROV dives revealed remarkably high abundances and diversity of animal species, many of which appear to be novel. On hard bottom substrates, cold-water corals were the dominant sessile macrofauna, in terms of biomass, followed by glass sponges (Hexactinellida) and sea lilies (Crinoidea). The coral taxa observed in this area represent six large orders of cnidarians: antipatharians (black corals), scleractinians (stony corals), zoanthideans (gold corals), alcyonaceans (octocorals), pennatulaceans (sea pens), and anthoathecates (hydrocorals). Most sessile species, independently of their size class or taxonomic affiliation, harbor a wide variety of associated fauna. Brittle stars (Ophiuroidea), squat lobsters (Galatheoidea), shrimp (Caridea), amphipods (Amphipoda), anemones (Actinaria), zanthideans, barnacles (Cirripedia), hydroids (Hydrozoa) and worms (Polychaeta) are the animal groups most commonly found forming these associations. In contrast, soft bottom habitats were dominated by stalked sponges, sea pens, sea cucumbers (Holothuroidea) and brittle stars. Other conspicuous fauna include fish, hermit crabs (Paguridae), urchins (Echinoidea) and octopuses (Cephalopoda). The abundance of habitats generated by the high number of geological and biological features and depth ranges present in the deep coral triangle (e.g., ridges, seamounts, island margins, plains, and rock types), and the complex history of tectonic dynamics of this region are among the likely causes for the high biodiversity found during this mission. Tectonic history and diverse habitats may also be factors that have played a similar role shaping the diversity of shallow water assemblages of the region. Such parallels between the biodiversity of deep and shallow waters will be presented.

  18. Temporal and spatial distributions of cold-water corals in the Drake Passage: Insights from the last 35,000 years

    NASA Astrophysics Data System (ADS)

    Margolin, Andrew R.; Robinson, Laura F.; Burke, Andrea; Waller, Rhian G.; Scanlon, Kathryn M.; Roberts, Mark L.; Auro, Maureen E.; van de Flierdt, Tina

    2014-01-01

    Scleractinian corals have a global distribution ranging from shallow tropical seas to the depths of the Southern Ocean. Although this distribution is indicative of the corals having a tolerance to a wide spectrum of environmental conditions, individual species seem to be restricted to a much narrower range of ecosystem variables. One way to ascertain the tolerances of corals, with particular focus on the potential impacts of changing climate, is to reconstruct their growth history across a range of environmental regimes. This study examines the spatial and temporal distribution of the solitary scleractinian corals Desmophyllum dianthus, Gardineria antarctica, Balanophyllia malouinensis, Caryophyllia spp. and Flabellum spp. from five sites in the Drake Passage which cross the major frontal zones. A rapid reconnaissance radiocarbon method was used to date more than 850 individual corals. Coupled with U-Th dating, an age range of present day back to more than 100 thousand years was established for corals in the region. Within this age range there are distinct changes in the temporal and spatial distributions of these corals, both with depth and latitude, and on millennial timescales. Two major patterns that emerge are: (1) D. dianthus populations show clear variability in their occurrence through time depending on the latitudinal position within the Drake Passage. North of the Subantarctic Front, D. dianthus first appears in the late deglaciation (~17,000 years ago) and persists to today. South of the Polar Front, in contrast, early deglacial periods, with a few modern occurrences. A seamount site between the two fronts exhibits characteristics similar to both the northern and southern sites. This shift across the frontal zones within one species cannot yet be fully explained, but it is likely to be linked to changes in surface productivity, subsurface oxygen concentrations, and carbonate saturation state. (2) at locations where multiple genera were dated, differences in age and depth distribution of the populations provide clear evidence that each genus has unique environmental requirements to sustain its population.

  19. Understanding the murky history of the Coral Triangle: Miocene corals and reef habitats in East Kalimantan (Indonesia)

    NASA Astrophysics Data System (ADS)

    Santodomingo, Nadiezhda; Renema, Willem; Johnson, Kenneth G.

    2016-09-01

    Studies on ancient coral communities living in marginal conditions, including low light, high turbidity, extreme temperatures, or high nutrients, are important to understand the current structure of reefs and how they could potentially respond to global changes. The main goal of this study was to document the rich and well-preserved fossil coral fauna preserved in Miocene exposures of the Kutai Basin in East Kalimantan, Indonesia. Our collections include almost forty thousand specimens collected from 47 outcrops. Seventy-nine genera and 234 species have been identified. Three different coral assemblages were found corresponding to small patch reefs that developed under the influence of high siliciclastic inputs from the Mahakam Delta. Coral assemblages vary in richness, structure, and composition. Platy coral assemblages were common until the Serravallian (Middle Miocene), while branching coral assemblages became dominant in the Tortonian (Late Miocene). By the late Tortonian massive coral assemblages dominated, similar to modern-style coral framework. Our results suggest that challenging habitats, such as the Miocene turbid habitats of East Kalimantan, might have played an important role during the early diversification of the Coral Triangle by hosting a pool of resilient species more likely to survive the environmental changes that have affected this region since the Cenozoic. Further research that integrates fossil and recent turbid habitats may provide a glimpse into the dynamics and future of coral reefs as "typical" clear-water reefs continue to decline in most regions.

  20. Variation in larval properties of the Atlantic brooding coral Porites astreoides between different reef sites in Bermuda

    NASA Astrophysics Data System (ADS)

    de Putron, Samantha J.; Lawson, Julia M.; White, Kascia Q. L.; Costa, Matthew T.; Geronimus, Miriam V. B.; MacCarthy, Anne

    2017-06-01

    Recent research has documented phenotypic differences among larvae released from corals with a brooding reproductive mode, both among species and within broods from a single species. We studied larvae released from the common Atlantic coral Porites astreoides in Bermuda to further evaluate phenotypic variability. Inter-site differences were investigated in larvae from conspecifics at a rim and patch reef site. Larvae were collected daily for one lunar cycle from several colonies per site each year over 5 yr. Larval volume varied with reef site of origin, with colonies from the rim reef site producing larger larvae than colonies from the patch reef site. This inter-site variation in larval size could not be explained by corallite size and may be a response to different environmental conditions at the sites. Larvae from both reef sites also varied in size depending on lunar day of release over 4 yr of study. Regardless of site of origin, smaller larvae were released earlier in the lunar cycle. Over 1 yr of study, lipid and zooxanthellae content and settlement success after 48 h covaried with larval size. However, there may be a trade-off between larger larvae and reduced fecundity. Overall, larvae released from colonies from the rim reef site were larger and had greater settlement success than those from colonies from the patch reef site. This study documents larval phenotypic variability and a distinct inter-site difference in larval ecology among conspecifics within the same geographic area, which may have implications for recruitment success, population dynamics, and resilience.

  1. The morphology and structure of the Hannibal Bank fisheries management zone, Pacific Panama using acoustic seabed mapping.

    PubMed

    Cunningham, Sarah; Guzman, Hector M; Bates, Richard

    2013-12-01

    The Hannibal Bank sits within the Coiba UNESCO World Heritage Site in Pacific Panama and is also a fisheries management zone. Despite the protected status of the area and the importance of the Bank for commercial fish species such as snapper and tuna, the seamount has received no detailed survey except some collection of organisms. This study mapped the major topographic features and complexity of the Hannibal Bank seamount using acoustic remote sensing. A survey area of around 125 km2 was defined using existing charts and side-scan sonar data were collected during July 2008. A bathymetric output was imported to ArcGIS where a digital bathymetric model and slope map were created. The Benthic Terrain Modeler (BTM) extension for ArcGIS was used to calculate bathymetric position index and rugosity, and used to create a map of zones representing the various seabed morphology zones. The Hannibal bank is an elongated, triangular guyot (flat topped seamount), which ranges in depth from 53m to 416m, covers an area of 76 km2 and is 14.4 km long and 7.1 km wide. Hannibal bank is composed of steep slopes, more gentle slopes, top of the seamount, crests (elevated ridges at the top of the pinnacles), rugose areas (on crests, top of seamount and slope), gullies and pinnacles. The bank is asymmetric in nature with the Northerly side having a relatively gentle slope with gullies across the surface compared to the SouthWest side which is far steeper and more rugose. There are two pinnacles to the North and South East of the bank that range in depth from 180 to 333 m. Rocky substrate makes up 22.6 km2 of the bank and sediment 37.8 km2. The bank and its steeply sided, rugose areas and pinnacles provide upright structures which can disrupt and topographically enhance currents, increasing productivity. The rugose areas of Hannibal Bank should be primary targets for further research efforts as they may contain corals and their rugosity indicates that these should be some of the highest faunal diversity areas of the bank. Hannibal Bank is likely to come increasing pressure in the future through climate change and fishing and this study has produced valuable information to assist in the future mapping and management of habitats, associated species and fisheries.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lighty, R.G.; Russell, K.L.

    Transect mapping and petrologic studies reveal a new depositional model and limited diagenesis of a well-exposed Pleistocene reef outcrop at Ambergris Cay, northern Belize. This emergent shelf-edge reef forms a rocky wave-washed headland at the northern terminus of the present-day 250 km long flourishing Belize Barrier Reef. Previously, the Belize reef outcrop was thought to extend southward in the subsurface beneath the modern barrier reef as a Pleistocene equivalent. The authors study indicate that this outcrop is a large, coral patch reef and not part of a barrier reef trend. Sixteen transects 12.5 m apart described in continuous cm incrementsmore » from fore reef to back reef identified: extensive deposits of broken Acropora cervicornis; small thickets of A. palmata with small, oriented branches; and muddy skeletal sediments with few corals or reef rubble. Thin section and SEM studies show three phases of early submarine cementation: syntaxial and rosette aragonite; Mg-calcite rim cement and peloids; and colloidal Mg-calcite geopetal fill. Subaerial exposure in semi-arid northern Belize caused only minor skeletal dissolution, some precipitation of vadose whisker calcite, and no meteoric phreatic diagenesis. Facies geometry, coral assemblages, lack of rubble deposits, coralline algal encrustations and Millepora framework, and recognition of common but discrete submarine cements, all indicate that this Pleistocene reef was an isolated, coral-fringed sediment buildup similar to may large patch reefs existing today in moderate-energy shelf environments behind the modern barrier reef in central and southern Belize.« less

  3. Reconnaissance dating: a new radiocarbon method applied to assessing the temporal distribution of Southern Ocean deep-sea corals

    USGS Publications Warehouse

    Burke, Andrea; Robinson, Laura F.; McNichol, Ann P.; Jenkins, William J.; Scanlon, Kathryn M.; Gerlach, Dana S.

    2010-01-01

    We have developed a rapid 'reconnaissance' method of preparing graphite for 14C/12C analysis. Carbonate (~15 mg) is combusted using an elemental analyzer and the resulting CO2 is converted to graphite using a sealed tube zinc reduction method. Over 85% (n=45 replicates on twenty-one individual corals) of reconnaissance ages measured on corals ranging in age from 500 to 33,000 radiocarbon years (Ryr) are within two standard deviations of ages generated using standard hydrolysis methods on the same corals, and all reconnaissance ages are within 300 Ryr of the standard hydrolysis ages. Replicate measurements on three individual aragonitic corals yielded ages of 1076±35 Ryr (standard deviation; n=5), 10,739±47 Ryr (n=8), and 40,146±3500 Ryr (n=9). No systematic biases were found using different cleaning methods or variable sample sizes. Analysis of 13C/12C was made concurrently with the 14C/12C measurement to correct for natural fractionation and for fractionation during sample processing and analysis. This technique provides a new, rapid method for making accurate, percent-level 14C/12C analyses that may be used to establish the rates and chronology of earth system processes where survey-type modes of age estimation are desirable. For example, applications may include creation of sediment core-top maps, preliminary age models for sediment cores, and growth rate studies of marine organisms such as corals or mollusks. We applied the reconnaissance method to more than 100 solitary deep-sea corals collected in the Drake Passage in the Southern Ocean to investigate their temporal and spatial distribution. The corals used in this study are part of a larger sample set, and the subset that was dated was chosen based on species as opposed to preservation state, so as to exclude obvious temporal biases. Similar to studies in other regions, the distribution of deep-sea corals is not constant through time across the Drake Passage. Most of the corals from the Burdwood Bank (continental shelf of Argentina) have ages ranging between 0 and 2500 calendar years, whereas most of the corals from the Sars Seamount in the Drake Passage have ages between 10,000 and 12,500 calendar years. Such differences may be caused in part by sampling biases, but may also be caused by changes in larval transport, nutrient supply, or other environmental pressures.

  4. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.

    PubMed

    Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2015-06-03

    Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.

  5. Hunting for seamounts using neural networks: learning algorithms for geomorphic studies

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Kalnins, L. M.; Trampert, J.

    2012-04-01

    Many geophysical studies rely on finding and analysing particular topographic features: the various landforms associated with glaciation, for example, or those that characterise regional tectonics. Typically, these can readily be identified from visual inspection of datasets, but this is a tedious and time-consuming process. However, the development of techniques to perform this assessment automatically is often difficult, since a mathematical description of the feature of interest is required. To identify characteristics of a feature, such as its spatial extent, each characteristic must also have a mathematical description. Where features exhibit significant natural variations, or where their signature in data is marred by noise, performance of conventional algorithms may be poor. One potential avenue lies in the use of neural networks, or other learning algorithms, ideal for complex pattern recognition tasks. Rather than formulating a description of the feature, the user simply provides the algorithm with a training set of hand-classified examples: the problem then becomes one of assessing whether some new example shares the characteristics of this training data. In seismology, this approach is being developed for the identification of high-quality seismic waveforms amidst noisy datasets (e.g. Valentine & Woodhouse, 2010; Valentine & Trampert, in review): can it also be applied to topographic data? To explore this, we attempt to identify the locations of seamounts from gridded bathymetric data (e.g. Smith & Sandwell, 1997). Our approach involves assessing small 'patches' of ocean floor to determine whether they might plausibly contain a seamount, and if so, its location. Since seamounts have been extensively studied, this problem provides an ideal testing ground: in particular, various catalogues exist, compiled using 'traditional' approaches (e.g. Kim & Wessel, 2011). This allows us to straightforwardly generate training datasets, and compare algorithmic performance. In future, we hope to extend the approach to identifying the seamount's 'footprint' and, by isolating it from the underlying seafloor, extracting parameters of interest such as height, radius and volume. Kim, S.-S. & Wessel, P., 2011. New global seamount census from altimetry-derived gravity data, Geophysical Journal International, 186, pp.615-631. Smith, W., and Sandwell, D., 1997. Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277, pp.1957-1962. Valentine, A. & Trampert, J., in review. Data-space reduction, quality assessment and searching of seismograms: Autoencoder networks for waveform data. Valentine, A. & Woodhouse, J., 2010. Approaches to automated data selection for global seismic tomography, Geophysical Journal International, 102, pp.1001-1012.

  6. U-series vs 14C ages of deep-sea corals from the southern Labrador Sea: Sporadic development of corals and geochemical processes hampering estimation of ambient water ventilation ages

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; Maccali, Jenny; Ménabréaz, Lucie; Ghaleb, Bassam; Blénet, Aurélien; Edinger, Evan

    2017-04-01

    Deep-sea scleractinian corals were collected with the remotely operated ROPOS vehicle off Newfounland. Fossil specimens of Desmophyllum dianthus were raised from coral graveyards at Orphan Knoll (˜1700m depth) and Flemish cap (˜2200 m depth), while live specimens were collected directly in overlying steep rock slopes. D. dianthus has an aragonitic skeleton and is thus particularly suited for U-Th dating. We obtained > 70 U-series ages along with > 20 14C measurements. Results display a discrete age distribution with two age clusters: a Bølling-Allerød and Holocene cluster with > 20 samples, and a Marine Isotope Stage (MIS) 5c cluster with ˜50 samples. Only two samples lay outside these clusters, at ˜ 64 ka and at ˜181 ka. Contrary to the New England seamounts where coral presence seems to have been continue through the last 70 ka, Orphan Knoll and Flemish Cap graveyards are marked by the absence of preserved specimens from MIS 2 to MIS 4 and throughout MIS 6. For filter-feeding deep-sea corals, access to food-rich waters is essential. Hence the Holocene and MIS 5 clusters observed in the Labrador basin might represent intervals linked to high food availability, either through production in the overlying water column, more effectively in relation to particulate and dissolved organic carbon transport via an active Western Boundary Undercurrent. Comparison of 230Th-ages vs 14C-ages in order to document changes in ventilation ages of the ambient water masses is equivocal due to the presence of some diagenetic and/or initial 230Th-excess. In addition, discrete diagenetic U-fluxes can be documented from 234U/238U vs 230Th/238U data. They point to a recent winnowing of sediment overlying the fossil corals that we link to the Holocene intensification of the Western Boundary Undercurrent, which resulted in driving Fe-Mn coatings.

  7. Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island

    NASA Astrophysics Data System (ADS)

    Taneja, Rajat; Rushmer, Tracy; Blichert-Toft, Janne; Turner, Simon; O'Neill, Craig

    2016-10-01

    The intra-plate region of the Northeast Indian Ocean, located between the Ninetyeast Ridge and the North West Shelf of Australia, contains numerous submerged seamounts and two sub-aerially exposed volcanic island groups. While the Cocos (Keeling) Archipelago is a coral atoll, Christmas Island is the only sub-aerially exposed volcanic island and contains Late Cretaceous, Eocene and Pliocene lavas. The lavas are predominantly basaltic in composition, except for one sampled flow that is trachytic. Although the evolution of the western margin of Australia, and the seismicity in the intra-plate region, has received considerable attention, the origin of the seamount province in the Northeast Indian Ocean is still a matter of debate. In order to constrain the origin of volcanism on Christmas Island and the associated Seamount Province we analysed 14 Christmas Island samples for major and trace element abundances and 12 of these for Nd, Hf and Pb isotope compositions. The trace element patterns of the lavas are similar to many ocean island basalts, while high 208Pb/204Pb and 207Pb/204Pb at a given 206Pb/204Pb suggest affiliation with the DUPAL anomaly. The reconstructed position of Christmas Island during the Eocene (44-37 Ma) places the island in close proximity to the (present-day) upper mantle low-seismic velocity anomalies. Moreover, an enriched mantle (EM-2) type component in addition to the DUPAL anomaly is observed in the Eocene volcanic phase. The younger Pliocene ( 4 Ma) sequences at Christmas Island are inferred to be the product of partial melting of existing material induced by lithospheric flexure.

  8. Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile

    USGS Publications Warehouse

    Friedlander, Alan M.; Ballesteros, Enric; Beets, Jim; Berkenpas, Eric; Gaymer, Carlos F.; Gorny, Matthias; Sala, Enric

    2013-01-01

    1. An expedition to Salas y Gómez and Easter islands was conducted to develop a comprehensive baseline of the nearshore marine ecosystem, to survey seamounts of the recently created Motu Motiro Hiva Marine Park (MMHMP) – a no-take marine reserve of 150 000 km2 – and to compare these results with Easter Island where the marine ecosystem is similar but has no marine protection. 2. Live coral cover was surprisingly high at both Easter Island (53%) and Salas y Gómez (44%), especially considering their sub-tropical location, high wave energy environments, and geographic isolation. 3. Endemic and regionally-endemic species comprised 77% of the fish abundance at Easter Island and 73% at Salas y Gómez. Fish biomass at Salas y Gómez was relatively high (1.2 t ha-1) and included a large proportion of apex predators (43%), whereas at Easter Island it was almost three times lower (0.45 t ha-1) with large predators accounting for less than 2% of the biomass, despite good habitat quality. 4. The large cohort of small sharks and the absence of larger sharks at Salas y Gómez suggest mesopredator release consistent with recent shark fishing. The fish fauna at the seamounts between Easter Island and Salas y Gómez, outside of MMHMP, harboured 46% endemic species, including a new species of damselfish (Chromis sp. nov.) and probably a new species of Chimaera (Hydrolagus). Numerous seamounts adjacent to Salas y Gómez are currently not included in the MMHMP. 5. This expedition highlights the high biodiversity value of this remote part of the Pacific owing to the uniqueness (endemicity) of the fauna, large apex predator biomass, and geographic isolation.

  9. Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Zuschin, M.; Hohenegger, J.; Steininger, F.

    2001-09-01

    Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.

  10. What doesn't kill you makes you wary? Effect of repeated culling on the behaviour of an invasive predator.

    PubMed

    Côté, Isabelle M; Darling, Emily S; Malpica-Cruz, Luis; Smith, Nicola S; Green, Stephanie J; Curtis-Quick, Jocelyn; Layman, Craig

    2014-01-01

    As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs.

  11. What Doesn't Kill You Makes You Wary? Effect of Repeated Culling on the Behaviour of an Invasive Predator

    PubMed Central

    Côté, Isabelle M.; Darling, Emily S.; Malpica-Cruz, Luis; Smith, Nicola S.; Green, Stephanie J.; Curtis-Quick, Jocelyn; Layman, Craig

    2014-01-01

    As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs. PMID:24705447

  12. Mass wasting and subaerial weathering in guyot formation: the Hawaiian and Canary Ridges as examples

    NASA Astrophysics Data System (ADS)

    Christian Smoot, N.

    1995-10-01

    By using a combination of bathymetry and topography in the computerized GRASS 3D package, guyot evolution has been determined on the fast-moving Pacific plate for the subaerial, low sloped Hawaiian Island chain. On the slow-moving African plate, the timing of guyot formation has been determined for the subaerial, steeper sloped Canary Islands chain. In the Hawaiian chain, the Niihau Island platform was already essentially formed, although there is a platform at the 180 m elevation on Kauai Island if the remaining peaks are discounted. By Fuerteventura Island in the Canary chain the seamount/island has already been flattened. Both of these platforms are far above the influence of wave cutting. The causal agent of flattening is primarily mass wasting by landsliding, caused in part by earthquake activity on the moving plates. This disproves the subsidence and wavecut theory of guyot formational processes in that the guyot is already formed before it subsides. The islands lie in the tropical coral zone, yet coral formation has little effect on the flattening process. This may be because the turbidity from slumps kills the coral. This exercise also gives a time limit for the reduction of pristine volcanic slopes to the typical guyot surface, that time being between one and four million years. It is apparent that wave cutting merely polishes the stone, applying the finishing patina.

  13. Regional hard coral distribution within geomorphic and reef flat ecological zones determined by satellite imagery of the Xisha Islands, South China Sea

    NASA Astrophysics Data System (ADS)

    Zuo, Xiuling; Su, Fenzhen; Zhao, Huanting; Zhang, Junjue; Wang, Qi; Wu, Di

    2017-05-01

    Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef flat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was <10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered 787 m2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.

  14. Non-Hawaiian lithostratigraphy of Louisville seamounts and the formation of high-latitude oceanic islands and guyots

    NASA Astrophysics Data System (ADS)

    Buchs, David M.; Williams, Rebecca; Sano, Shin-ichi; Wright, V. Paul

    2018-05-01

    Guyots are large seamounts with a flat summit that is generally believed to form due to constructional biogenic and/or erosional processes during the formation of volcanic islands. However, despite their large abundance in the oceans, there are still very few direct constraints on the nature and formation of guyots, in particular those formed at high latitude that lack a thick cap of shallow-marine carbonate rocks. It is largely accepted based on geophysical constraints and surficial observations/sampling that the summit platform of these guyots is shaped by wave abrasion during post-volcanic subsidence of volcanic islands. Here we provide novel constraints on this hypothesis and the summit geology of guyots with a lithostratigraphic analysis of cores from three Louisville seamounts (South Pacific) collected during Expedition 330 of the Integrated Ocean Drilling Program (IODP). Thirteen lithofacies of sedimentary and volcanic deposits are described, which include facies not previously recognized on the top of guyots, and offer a new insight into the formation of high-latitude oceanic islands on a fast-moving plate. Our results reveal that the lithostratigraphy of Louisville seamounts preserves a very consistent record of the formation and drowning of volcanic islands, with from bottom to top: (i) volcaniclastic sequences with abundant lava-fed delta deposits, (ii) submarine to subaerial shield lava flows, (iii) post-volcanic shallow to deeper marine sedimentary rocks lacking thick reef deposits, (iv) post-erosional rejuvenated volcanic rocks, and (v) pelagic sediments. Recognition of erosional boundaries between subaerial lava flows and shallow-marine sedimentary rocks provides novel support for post-volcanic wave planation of guyots. However, the summit geology of Louisville seamounts is dissimilar to that of high-latitude Hawaiian-Emperor guyots that have emplaced in a similar tectonic and environmental setting and that include thicker lava stacks with apparently little lava-fed delta deposits. To explain observed lithostratigraphic discrepancy we propose that Louisville seamounts represent a distinct type of intraplate ocean volcano characterized by formation of a smaller island, with a central shield volcano surrounded by extended shallow-marine shelves formed by lava-fed deltas. In this interpretation the summit platform of Louisville-type guyots results from early (syn-volcanic) subaerial to shallow-marine constructional volcanic processes and marine erosion, enhanced by later (post-volcanic) wave planation. This contrasts with larger Hawaiian edifices that are capped by thicker shield volcanoes, and that develop an extended wave planation surface during post-volcanic subsidence (in the absence of efficient coral growth). The difference between Hawaiian- and Louisville-type volcanic islands and guyots can be explained by contrasted dynamic disequilibrium between magmatic growth, erosion, and subsidence during the island-building stage. Unlike Hawaiian-type volcanoes, Louisville seamounts are characterized by alkaline magmatism that extends from the late seamount to island stages. This supports more limited magmatic growth during the formation of Louisville islands, and we hypothesize that this promotes the formation of ephemeral shallow-marine platforms and extended lava-fed deltas. Hawaiian-type volcanoes and guyots are unusually large in the population of intraplate ocean volcanoes. Louisville-type guyots as defined in this study could therefore represent a very common but yet poorly documented mode of oceanic island formation in the Pacific Ocean and other similar fast-moving plate settings.

  15. Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event

    NASA Astrophysics Data System (ADS)

    Cook, Clayton B.; Logan, Alan; Ward, Jack; Luckhurst, Brian; Berg, Carl J.

    1990-03-01

    Sea temperatures were normal in Bermuda during 1987, when Bermuda escaped the episodes of coral bleaching which were prevalent throughout the Caribbean region. Survey transecs in 1988 on 4 6 m reefs located on the rim margin and on a lagoonal patch reef revealed bleaching only of zoanthids between May and July. Transect and tow surveys in August and September revealed bleaching of several coral species; Millepora alcicornis on rim reefs was the most extensively affected. The frequency of bleaching in this species, Montastrea annularis and perhaps Diploria labyrinthiformis was significantly higher on outer reefs than on inshore reefs. This bleaching period coincided with the longest period of elevated sea temperatures in Bermuda in 38 years (28.9 30.9°C inshore, >28° offshore). By December, when temperatures had returned to normal, bleaching of seleractinians continued, but bleaching of M. alcicornis on the outer reefs was greatly reduced. Our observations suggest that corals which normally experience wide temperature ranges are less sensitive to thermal stress, and that high-latitude reef corals are sensitive to elevated temperatures which are within the normal thermal range of corals at lower latitudes.

  16. Changes in coral-reef structure through the Miocene in the Mediterranean province: Adaptive versus environmental influence

    NASA Astrophysics Data System (ADS)

    Pomar, Luis; Hallock, Pamela

    2007-10-01

    Well-documented Mediterranean examples of Miocene carbonate platforms, with complete exposures from shallow-water to basinal facies, provide evidence for temporal changes in reef-building capacity of zooxanthellate corals. In pre-late Tortonian platforms, small coralgal patches and mounds occur from platform top to the toe of slope, but they did not build to sea level. In contrast, barrier reefs with unequivocal reef-crest structures that reached sea level are documented in late Tortonian-early Messinian platforms. We suggest that a change in both calcification rates and bathymetric zonation was the result of coevolution of corals and Symbiodinium zooxanthellae, coeval to global cooling and, at least at a regional scale, a geochemical change that supported widespread aragonite precipitation through the late Miocene.

  17. Book review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zuschin, M.; Hohenegger, J.; Steininger, F.

    2001-09-01

    Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.

  18. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages

    PubMed Central

    Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park. PMID:26719987

  19. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys.

    PubMed

    Kenkel, Carly D; Almanza, Albert T; Matz, Mikhail V

    2015-12-01

    Despite decades of monitoring global reef decline, we are still largely unable to explain patterns of reef deterioration at local scales, which precludes the development of effective management strategies. Offshore reefs of the Florida Keys, USA, experience milder temperatures and lower nutrient loads in comparison to inshore reefs yet remain considerably more degraded than nearshore patch reefs. A year-long reciprocal transplant experiment of the mustard hill coral (Porites astreoides) involving four source and eight transplant locations reveals that corals adapt and/or acclimatize to their local habitat on a < 10-km scale. Surprisingly, transplantation to putatively similar environmental types (e.g., offshore corals moved to a novel offshore site, or along-shore transplantation) resulted in greater reductions in fitness proxies, such as coral growth, than cross-channel transplantation between inshore and offshore reefs. The only abiotic factor showing significantly greater differences between along-shore sites was daily temperature range extremes (rather than the absolute high or low temperatures reached), providing a possible explanation for this pattern. Offshore-origin corals exhibited significant growth reductions at sites with greater daily temperature ranges, which explained up to 39% of the variation in their mass gain. In contrast, daily temperature range explained at most 9% of growth variation in inshore-origin corals, suggesting that inshore corals are more tolerant of high-frequency temperature fluctuations. Finally, corals incur trade-offs when specializing to their native reef. Across reef locations the coefficient of selection against coral transplants was 0.07 ± 0.02 (mean ± SE). This selection against immigrants could hinder the ability of corals to recolonize devastated reefs, whether through assisted migration efforts or natural recruitment events, providing a unifying explanation for observed patterns of coral decline in this reef system.

  20. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    PubMed

    Waheed, Zarinah; van Mil, Harald G J; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  1. Mesopredator trophodynamics on thermally stressed coral reefs

    NASA Astrophysics Data System (ADS)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  2. Heterogeneous Rupture in the Great Cascadia Earthquake of 1700 Inferred from Coastal Subsidence Estimates

    NASA Astrophysics Data System (ADS)

    Wang, P.; Wang, K.; Hawkes, A.; Horton, B. P.; Engelhart, S. E.; Nelson, A. R.; Witter, R. C.

    2011-12-01

    Abrupt coastal subsidence induced by the great AD 1700 Cascadia earthquake has been estimated from paleoseismic evidence of buried soils and overlying mud and associated tsunamis deposits. These records have been modeled using a rather uniform rupture model, a mirror image of the uniform interseismic fault locking based on modern GPS observations. However, as seen in other megathrust earthquakes such as at Sumatra, Chile, and Alaska, the rupture must have had multiple patches of concentrated slip. Variable moment release is also seen in the 2011 Tohoku-Oki earthquake in Japan, although there is only one patch. The use of a uniform rupture scenario for Cascadia is due mainly to the poor resolving power of the previous paleoseismic data. In this work, we invoke recently obtained more precise data from detailed microfossil studies to better constrain the slip distribution. Our 3-D elastic dislocation model allows the fault slip to vary along strike. Along any profile in the dip direction, we assume a bell-shaped slip distribution with the peak value scaling with local rupture width, consistent with rupture mechanics. We found that the coseismic slip is large in central Cascadia, and areas of high moment release are separated by areas of low moment release. The amount of slip in northern and southern Cascadia is poorly constrained. Although data uncertainties are large, the coastal variable subsidence can be explained with multiple slip patches. For example, there is an area near Alsea Bay, Oregon (about 44.5°N) that, in accordance with the minimum coseismic subsidence estimated by the microfossil data, had very little slip in the 1700 event. This area approximately coincides with a segment boundary previously defined on the basis of gravity anomalies. There is also reported evidence for the presence of a subducting seamount in this area, and the seamount might be responsible for impeding rupture during large earthquakes. The nature of this rupture barrier and whether it is a persistent feature are important topics of future research. Our results indicate that there is not always a one-to-one correlation between areas of more complete interseismic locking and larger coseismic slip.

  3. Population structure of the hydrocoral Millepora platyphylla in habitats experiencing different flow regimes in Moorea, French Polynesia

    PubMed Central

    Mercière, Alexandre; Vermeij, Mark J. A.; Planes, Serge

    2017-01-01

    While the fire coral Millepora platyphylla is an important component of Indo-Pacific reefs, where it thrives in a wide range of environments, the ecological and biological processes driving its distribution and population structure are not well understood. Here, we quantified this species’ population structure in five habitats with contrasting hydrodynamic regimes in Moorea, French Polynesia; two in the fore reef: mid and upper slopes, and three in the lagoon: back, fringing and patch reefs. A total of 3651 colonies of fire corals were mapped and measured over 45,000 m2 of surveyed reef. Due to the species’ sensitivity to fragmentation in response to strong water movement, hydrodynamic conditions (e.g. waves, pass and lagoonal circulation) corresponded to marked differences in colony size distributions, morphology and recruitment dynamics among habitats. The size structure varied among reef habitats with higher proportions of larger colonies in calm nearshore reefs (fringing and patch reefs), while populations were dominated by smaller colonies in the exposed fore reefs. The highest densities of fire corals were recorded in fore reef habitats (0.12–0.20 n.m-2) where the proportion of recruits and juveniles was higher at mid slope populations (49.3%) than on the upper slope near where waves break (29.0%). In the latter habitat, most colonies grew as vertical sheets on encrusting bases making them more vulnerable to colony fragmentation, whereas fire corals were encrusting or massive in all other habitats. The lowest densities of M. platyphylla occurred in lagoonal habitats (0.02–0.04 n.m-2) characterized by a combination of low water movement and other physical and biological stressors. This study reports the first evidence of population structure of fire corals in two common reef environments and illustrates the importance of water flow in driving population dynamic processes of these reef-building species. PMID:28273119

  4. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean.

    PubMed

    van Woesik, Robert; Cacciapaglia, Christopher William

    2018-01-01

    Coral reefs protect islands from tropical storm waves and provide goods and services for millions of islanders worldwide. Yet it is unknown how coral reefs in general, and carbonate production in particular, will respond to sea-level rise and thermal stress associated with climate change. This study compared the reef-building capacity of different shallow-water habitats at twenty-four sites on each of two islands, Palau and Yap, in the western Pacific Ocean. We were particularly interested in estimating the inverse problem of calculating the value of live coral cover at which net carbonate production becomes negative, and whether that value varied across habitats. Net carbonate production varied among habitats, averaging 10.2 kg CaCO3 m-2 y-1 for outer reefs, 12.7 kg CaCO3 m-2 y-1 for patch reefs, and 7.2 kg CaCO3 m-2 y-1 for inner reefs. The value of live coral cover at which net carbonate production became negative varied across habitats, with highest values on inner reefs. These results suggest that some inner reefs tend to produce less carbonate, and therefore need higher coral cover to produce enough carbonate to keep up with sea-level rise than outer and patch reefs. These results also suggest that inner reefs are more vulnerable to sea-level rise than other habitats, which stresses the need for effective land-use practices as the climate continues to change. Averaging across all reef habitats, the rate of carbonate production was 9.7 kg CaCO3 m-2 y-1, or approximately 7.9 mm y-1 of potential vertical accretion. Such rates of vertical accretion are higher than projected averages of sea-level rise for the representative concentration pathway (RCP) climate-change scenarios 2.6, 4.5, and 6, but lower than for the RCP scenario 8.5.

  5. Population structure of the hydrocoral Millepora platyphylla in habitats experiencing different flow regimes in Moorea, French Polynesia.

    PubMed

    Dubé, Caroline E; Mercière, Alexandre; Vermeij, Mark J A; Planes, Serge

    2017-01-01

    While the fire coral Millepora platyphylla is an important component of Indo-Pacific reefs, where it thrives in a wide range of environments, the ecological and biological processes driving its distribution and population structure are not well understood. Here, we quantified this species' population structure in five habitats with contrasting hydrodynamic regimes in Moorea, French Polynesia; two in the fore reef: mid and upper slopes, and three in the lagoon: back, fringing and patch reefs. A total of 3651 colonies of fire corals were mapped and measured over 45,000 m2 of surveyed reef. Due to the species' sensitivity to fragmentation in response to strong water movement, hydrodynamic conditions (e.g. waves, pass and lagoonal circulation) corresponded to marked differences in colony size distributions, morphology and recruitment dynamics among habitats. The size structure varied among reef habitats with higher proportions of larger colonies in calm nearshore reefs (fringing and patch reefs), while populations were dominated by smaller colonies in the exposed fore reefs. The highest densities of fire corals were recorded in fore reef habitats (0.12-0.20 n.m-2) where the proportion of recruits and juveniles was higher at mid slope populations (49.3%) than on the upper slope near where waves break (29.0%). In the latter habitat, most colonies grew as vertical sheets on encrusting bases making them more vulnerable to colony fragmentation, whereas fire corals were encrusting or massive in all other habitats. The lowest densities of M. platyphylla occurred in lagoonal habitats (0.02-0.04 n.m-2) characterized by a combination of low water movement and other physical and biological stressors. This study reports the first evidence of population structure of fire corals in two common reef environments and illustrates the importance of water flow in driving population dynamic processes of these reef-building species.

  6. The Hawai'i Undersea Research Laboratory: Applying Innovative Deep-sea Technologies Toward Research, Service, and Stewardship in Marine Protected Areas of the Pacific Region

    NASA Astrophysics Data System (ADS)

    Smith, J. R.

    2012-12-01

    The Hawai'i Undersea Research Laboratory (HURL) is the only U.S. deep submergence facility in the Pacific Rim tasked with supporting undersea research necessary to fulfill the mission, goals, and objectives of the National Oceanic and Atmospheric Administration (NOAA), along with other national interests of importance. Over 30 years of submersible operations have resulted in nearly 1900 dives representing 9300 hours underwater, and a benthic ecology database derived from in-house video record logging of over 125,000 entries based on 1100 unique deep-sea animal identifications in the Hawaiian Archipelago. As a Regional Center within the Office of Ocean Exploration and Research (OER), HURL conducts undersea research in offshore and nearshore waters of the main and Northwestern Hawaiian Islands and waters of the central, southern, and western Pacific. HURL facilities primarily support marine research projects that require data acquisition at depths greater than wet diving methods. These consist of the research vessel Ka'imikai-o-Kanaloa (KOK), human occupied submersibles Pisces IV and Pisces V (2000 m), a new remotely operated vehicle (6000 m), and a multibeam bathymetric sonar system (11,000 m). In addition, HURL has also supported AAUS compliant wet diving since 2003, including technical mixed gas/rebreather work. While ecosystem studies of island, atoll, and seamount flanks are the largest component of the HURL science program, many other thematic research areas have been targeted including extreme and unique environments, new resources from the sea, episodic events to long term changes, and the development of innovative technologies. Several examples of HURL's contributions to marine protected areas (MPAs) include: (a) A long term presence in the pristine ecosystems of the Papahānaumokuākea Marine National Monument in the Northwestern Hawaiian Islands. Researchers from National Marine Fisheries have used HURL assets to study endangered Hawaiian Monk Seal habitat and, along with others, discover an estimated 80 new species of corals and sponges; (b) Supporting the research of scientists who found that deep-sea corals are some of the oldest living organisms on Earth. Their innovative approach has shown some gold corals to be over 2700 yrs old, while the ages of some deep water black corals were found to exceed 4200 yrs; (c) Developing the methodology for joint technical wet diver and submersible operations to carry out a major multi-year mesophotic coral research project in partnership with the Center for Sponsored Coastal Ocean Research; and (d) An international five-month investigation throughout the Central and Southwestern Pacific in 2005, including the Tonga-Kermadec Arc (Tonga and New Zealand), Vailulu`u Seamount and Rose Atoll (American Samoa), along with Jarvis Island, Palmyra Atoll, and Kingman Reef (U.S. Line Islands) involving 58 scientists from 12 research entities in partnership with OER and international collaborators. Because of their remote locations, many of these areas previously had little to no deep-sea investigations carried out in their waters and island flanks. Located amongst the largest MPAs in the world, HURL's capabilities will continue to play an essential role in scientific research and management decisions.

  7. Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    PubMed Central

    Coma, Rafel; Serrano, Eduard; Linares, Cristina; Ribes, Marta; Díaz, David; Ballesteros, Enric

    2011-01-01

    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem. PMID:21789204

  8. Distribution of Recent Volcanism and Morphology of Volcanic Features in the GLIMPSE Study Area west of the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Scheirer, D.; Forsyth, D.; Harmon, N.; Duncan, R.

    2003-12-01

    The existence of seamounts and volcanic ridges west of the East Pacific Rise (EPR), perhaps associated with cross-grain gravity lineations, was initially revealed by detailed satellite altimetry. Multibeam bathymetry and sidescan reflectivity measurements made on board the R/V Melville in 2001 and 2002 as part of the GLIMPSE Experiment, plus additional data gathered on other cruises including those of the MELT Experiment, have allowed us to map the distribution of recent, off-axis volcanic activity west of the EPR and south of the Garrett Fracture Zone and to more precisely define the form of the volcanic features. The Southern Cross Seamount, Sojourn Ridge and Brown Ridge combine to form a linear feature nearly 500 km long, oriented perpendicular to the EPR about 80 km south of the Garrett FZ. Both the Sojourn and Brown ridges comprise several en echelon segments, each about 30 km long, linked together to form continuous topographic highs standing 2000 m or more above the surrounding seafloor. Side-scan data reveal reflective patches along the Brown Ridge at the eastern end of this feature that appear to be recent lava flows. Dredging of fresh basalts dated by Ar/Ar methods at about 0.3 Ma confirm this interpretation. The Southern Cross Seamount, at the western end of the chain, is the largest individual feature, standing more than 3.5 km above the surrounding seafloor and shoaling to depths less than 200 m below sealevel. The Hotu-Matua volcanic complex also extends for several hundred km, but is much more varied in its morphology. The western end has some very small, very linear ridges, flanked on the south by an extensive region of resurfaced, hummocky seafloor. This area is more reflective and presumably younger than the surrounding seafloor, but less reflective than the areas interpreted as recent flows. Roughly midway along this complex are the Hotu and Matua seamounts. Surrounding Matua is an extensive region of highly reflective, recent lava flows, some of which seem to have been dammed against pre-existing, small seamounts. Age dates in this area are highly variable, ranging from <0.6 to about 6 Ma, also suggesting a mixture of pre-existing and resurfaced seafloor. Reflective flows are scattered over a roughly linear region extending another 150 km to the east of Matua, sometimes associated with very small seamounts and sometimes appearing just to fill topographic lows. We find no evidence in the detailed bathymetry or sidescan in this region for any pre-existing tectonic features or cracks extending along the line of volcanic activity.

  9. Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Holles, Sophie; Ferarri, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G

    2016-01-01

    After a pelagic larval phase, settlement-stage coral reef fish must locate a suitable reef habitat for juvenile life. Reef noise, produced by resident fish and invertebrates, provides an important cue for orientation and habitat selection during this process, which must often occur in environments impacted by anthropogenic noise. We adapted an established field-based protocol to test whether recorded boat noise influenced the settlement behavior of reef fish. Fewer fish settled to patch reefs broadcasting boat + reef noise compared with reef noise alone. This study suggests that boat noise, now a common feature of many reefs, can compromise critical settlement behavior of reef fishes.

  10. Benthic Macrofaunal Communities at Newly Explored Caribbean Seamounts in the Greater/Lesser Antilles Transition Zone and a Comparison to Nearby Habitats

    NASA Astrophysics Data System (ADS)

    Demopoulos, A. W.; Bourque, J. R.; Cordes, E. E.; Chaytor, J. D.; Quattrini, A.

    2016-02-01

    Seamounts are topographically and oceanographically complex features with environmental characteristics, including substrate types, carbon flux, and current patterns, that vary greatly within and among seamounts. While seamounts are reputed to be oases and biodiversity hotspots, comparisons across multiple spatial scales of a seamount chain have yet to be explored. Along the margins of the Caribbean Sea basin, numerous seamounts punctuate the seafloor. In 2013 and 2014, we investigated the deep-sea benthic community ecology at Noroît, Dog, and Conrad Seamounts and nearby ridge, bank, and rift environments at depths ranging from 630 to 2930 m. Sediment push cores were collected to quantify macrofaunal (> 300 μm) density, diversity, community composition, grain size, and organic content. In addition, environmental data collected from CTDs and extracted from high resolution multibeam mapping efforts (e.g. slope, rugosity, roughness, slope orientation), allowed us to evaluate the role of microhabitats in structuring these communities. Preliminary results indicate that macrofaunal density across all sites decreased with depth in both seamount and non-seamount sediments, with the highest densities occurring in non-seamount environments. However, macrofaunal density patterns varied on individual seamounts. Macrofaunal densities on shallow seamounts (Conrad and Dog) increased with depth, whereas densities decreased with depth on the deeper Noroît seamount. The relationship between environmental parameters and macrofaunal community structure and biodiversity varied among seamounts and non-seamount environments. This study represents the first investigation of seamount infauna in the region and places this baseline information on seamount faunal biodiversity, spatial distribution of taxa, and overall ecology into a broader biogeographic context.

  11. Leptohelia flexibilis gen. nov. et sp. nov., a remarkable deep-sea stylasterid (Cnidaria: Hydrozoa: Stylasteridae) from the southwest Pacific.

    PubMed

    Lindner, Alberto; Cairns, Stephen D; Zibrowius, Helmut

    2014-12-24

    Leptohelia flexibilis gen. nov. et sp. nov., the first stylasterid with a combined calcified and non-calcified skeleton, is described from seamounts and the slope off the islands of New Caledonia, in the southwestern Pacific. The new species is distinguished from all other species of the family Stylasteridae by having a non-calcified organic axis, internal to the basal portion of the calcified corallum. The internal axis is flexible and enclosed by a series of up to 10 calcified annuli, allowing passive lateral bending of the colony. Molecular phylogenetic analyses confirm that Leptohelia flexibilis is a stylasterid coral and reveal that the species is closely related to Leptohelia microstylus comb. nov., a southwestern Pacific stylasterid that lacks an internal axis.

  12. Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean

    USGS Publications Warehouse

    Morrison, C.L.; Ross, Steve W.; Nizinski, M.S.; Brooke, S.; Jarnegren, J.; Waller, R.G.; Johnson, Robin L.; King, T.L.

    2011-01-01

    Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U.S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average F ST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (F ST = 0.085), and smallest between southeastern U.S. and Gulf of Mexico populations (F ST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks.

  13. Deep-sea benthic habitats modeling and mapping in a NE Atlantic seamount (Galicia Bank)

    NASA Astrophysics Data System (ADS)

    Serrano, A.; González-Irusta, J. M.; Punzón, A.; García-Alegre, A.; Lourido, A.; Ríos, P.; Blanco, M.; Gómez-Ballesteros, M.; Druet, M.; Cristobo, J.; Cartes, J. E.

    2017-08-01

    This study presents the results of seafloor habitat identification and mapping of a NE Atlantic deep seamount. An ;assemble first, predict later; approach has been followed to identify and map the benthic habitats of the Galicia Bank (NW Iberian). Biotic patterns inferred from the survey data have been used to drive the definition of benthic assemblages using multivariate tools. Eight assemblages, four hard substrates and four sedimentary ones, have been described from a matrix of structural species. Distribution of these assemblages was correlated with environmental factors (multibeam and backscatter data) using binomial GAMs. Finally, the distribution model of each assemblage was applied to produce continuous maps and pooled in a final map with the distribution of the main benthic habitats. Depth and substrate type are key factors when determining soft bottom communities, whereas rocky habitat distribution is mainly explained by rock slope and orientation. Enrichment by northern water masses (LSW) arriving to GB and possible zooplankton biomass increase at vertical-steep walls by ;bottom trapping; can explain the higher diversity of habitat providing filter-feeders at slope rocky breaks. These results concerning vulnerable species and habitats, such as Lophelia and Madrepora communities and black and bamboo coral aggregations were the basis of the Spanish proposal of inclusion within the Natura 2000 network. The aim of the present study was to establish the scientific criteria needed for managing and protecting those environmental values.

  14. Seismicity near a Highly-Coupled Patch in the Central Ecuador Subduction Zone

    NASA Astrophysics Data System (ADS)

    Regnier, M. M.; Segovia, M.; Font, Y.; Charvis, P.; Galve, A.; Jarrin, P.; Hello, Y.; Ruiz, M. C.; Pazmino, A.

    2017-12-01

    The temporary onshore-offshore seismic network deployed during the 2-years period of the OSISEC project provides an unprecedented, detailed and well-focused image of the seismicity for magnitudes as low as 2.0 in the Central Ecuadorian subduction zone. Facing the southern border of the Carnegie Ridge, a shallow and discrete highly-coupled patch is correlated to the subduction of a large oceanic relief. No large earthquake is known in this area that is experiencing recurrent seismic swarms and slow slip events. The shallow and locked subduction interface shows no evidence of background seismicity that instead occurred down dip of the coupled patch where it is possibly controlled by structural features of the overriding plate. We show a clear spatial correlation between the background microseismicity, the down dip extension of the locked patch at 20 km depth and the geology of the upper plate. The dip angle of the interplate contact zone, defined by a smooth interpolation through the hypocenters of thrust events, is consistent with a progressive increase from 6° to 25° from the trench to 20 km depth. Offshore, a seismic swarm, concomitant with a slow slip event rupturing the locked area, highlights the reactivation of secondary active faults that developed within the thickened crust of the subducting Carnegie Ridge, at the leading edge of a large oceanic seamount. No seismicity was detected near the plate interface suggesting that stress still accumulates at small and isolated asperities

  15. Changes in Nematode Communities in Different Physiographic Sites of the Condor Seamount (North-East Atlantic Ocean) and Adjacent Sediments

    PubMed Central

    Zeppilli, Daniela; Bongiorni, Lucia; Serrão Santos, Ricardo; Vanreusel, Ann

    2014-01-01

    Several seamounts are known as ‘oases’ of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in view of the potential impacts due to current and future anthropogenic threats. PMID:25541988

  16. Science priorities for seamounts: research links to conservation and management.

    PubMed

    Clark, Malcolm R; Schlacher, Thomas A; Rowden, Ashley A; Stocks, Karen I; Consalvey, Mireille

    2012-01-01

    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal "proxies", and ecological risk assessment.

  17. LIDAR optical rugosity of coral reefs in Biscayne National Park, Florida

    USGS Publications Warehouse

    Brock, J.C.; Wright, C.W.; Clayton, T.D.; Nayegandhi, A.

    2004-01-01

    The NASA Experimental Advanced Airborne Research Lidar (EAARL), a temporal waveform-resolving, airborne, green wavelength LIDAR (light detection and ranging), is designed to measure the submeter-scale topography of shallow reef substrates. Topographic variability is a prime component of habitat complexity, an ecological factor that both expresses and controls the abundance and distribution of many reef organisms. Following the acquisition of EAARL coverage over both mid-platform patch reefs and shelf-margin bank reefs within Biscayne National Park in August 2002, EAARL-based optical indices of topographic variability were evaluated at 15 patch reef and bank reef sites. Several sites were selected to match reefs previously evaluated in situ along underwater video and belt transects. The analysis used large populations of submarine topographic transects derived from the examination of closely spaced laser spot reflections along LIDAR raster scans. At all 15 sites, each LIDAR transect was evaluated separately to determine optical rugosity (Rotran), and the average elevation difference between adjacent points (Av(??E ap)). Further, the whole-site mean and maximum values of Ro tran and Av(??Eap) for the entire population of transects at each analysis site, along with their standard deviations, were calculated. This study revealed that the greater habitat complexity of inshore patch reefs versus outer bank reefs results in relative differences in topographic complexity that can be discerned in the laser returns. Accordingly, LIDAR sensing of optical rugosity is proposed as a complementary new technique for the rapid assessment of shallow coral reefs. ?? Springer-Verlag 2004.

  18. Morphology and distribution of seamounts surrounding Easter Island

    USGS Publications Warehouse

    Rappaport, Y.; Naar, D.F.; Barton, C.C.; Liu, Z.-J.; Hey, R.N.

    1997-01-01

    We investigate the morphology and distribution of a seamount population on a section of seafloor influenced by both superfast seafloor spreading and hotspot volcanism. The population under investigation is part of a broad chain of seamounts extending eastward from the East Pacific Rise, near Easter Island. In order to define the morphological variability of the seamounts, basal shape, cross-sectional area, volume, flatness, and flank slope are plotted against height for 383 seamounts with heights greater than 200 m, based on bathymetry data collected by GLORI-B and SeaBeam 2000, during three cruises onboard the R/V Melville in the spring of 1993. Nearly complete swath mapping coverage of the seamounts is available for the analysis of size and shape distribution. We quantitatively describe the seamount population of this active region, in which seamounts cover ???27% of the seafloor, and account for ???4.2% of the total crustal volume. Over 50% of the total volume (61,000 km3) of seamounts used in this study is made up by the 14 largest seamounts, and the remaining volume is made up by the 369 smaller seamounts (>200 m in height). Our analysis indicates there are at least two seamount populations in the Easter Island-Salas y Gomez Island (25??-29??S, 113??-104??W) study area. One population of seamounts is composed of short seamounts (1200 m), shield-like, pointy cones (flatness ???1200 m) originate exclusively from a hotspot source, but only a portion of the smaller volcanoes (

  19. Predation and landscape characteristics independently affect reef fish community organization.

    PubMed

    Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2014-05-01

    Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.

  20. The Ecology of Seamounts: Structure, Function, and Human Impacts

    NASA Astrophysics Data System (ADS)

    Clark, Malcolm R.; Rowden, Ashley A.; Schlacher, Thomas; Williams, Alan; Consalvey, Mireille; Stocks, Karen I.; Rogers, Alex D.; O'Hara, Timothy D.; White, Martin; Shank, Timothy M.; Hall-Spencer, Jason M.

    2010-01-01

    In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research.

  1. 3D gravity modelling for Anyongbok Seamount in the East Sea

    NASA Astrophysics Data System (ADS)

    Kang, Moo Hee; Han, Hyun-Chul; Yun, Hyesu; Kong, Gee Soo; Kim, Kyong O.; Lee, Youn Soo

    2007-09-01

    A seamount chain with an approximately WNW trend is observed in the northeastern Ulleung Basin. It has been argued that these seamounts, including two islands called Ulleung and Dok islands, were formed by a hotspot process or by ridge related volcanism. Many geological and geophysical studies have been done for all the seamounts and islands in the chain except Anyongbok Seamount, which is close to the proposed spreading ridge. We first report morphological characteristics, sediment distribution patterns, and the crustal thickness of Anyongbok Seamount using multibeam bathymetry data, seismic reflection profiles, and 3D gravity modeling. The morphology of Anyongbok Seamount shows a cone shaped feature and is characterized by the development of many flank cones and flank rift zones. The estimated surface volume is about 60 km3, and implies that the seamount is smaller than the other seamounts in the chain. No sediments have been observed on the seamount except the lower slope, which is covered by more than 1,000 m of strata. The crustal structure obtained from a 3D gravity modeling (GFR = 3.11, SD 3.82 = mGal) suggests that the seamount was formed around the boundary of the Ulleung Plateau and the Ulleung Basin, and the estimated crustal thickness is about 20 km, which is a little thicker than other nearby seamounts distributed along the northeastern boundary of the Ulleung Basin. This significant crustal thickness also implies that Anyongbok Seamount might not be related to ridge volcanism.

  2. Future reef decalcification under a business-as-usual CO2 emission scenario

    PubMed Central

    Dove, Sophie G.; Kline, David I.; Pantos, Olga; Angly, Florent E.; Tyson, Gene W.; Hoegh-Guldberg, Ove

    2013-01-01

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century. PMID:24003127

  3. Future reef decalcification under a business-as-usual CO2 emission scenario.

    PubMed

    Dove, Sophie G; Kline, David I; Pantos, Olga; Angly, Florent E; Tyson, Gene W; Hoegh-Guldberg, Ove

    2013-09-17

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.

  4. Taphonomy of coral reefs from Southern Lagoon of Belize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westphall, M.J.; Ginsburg, R.N.

    1985-02-01

    The Southern Lagoon of the Belize barrier complex, an area of some 600 km/sup 2/, contains a tremendous number of lagoon reefs, which range in size from patches several meters across to rhomboidal-shaped structures several kilometers in their long dimension. These lagoon reefs are remarkable because they have Holocene sediment accumulations in excess of 13 m consisting almost entirely of coral debris and lime mud and sand, and rise up to 30 m above the surrounding lagoon floor with steeply sloping sides (50-80/sup 0/), yet are totally uncemented. The reef-building biota and their corresponding deposits were studied at a representativemore » reef, the rhomboidal complex of Channel Cay. As with many of the reefs in this area, the steeply sloping flanks of Channel Cay are covered mainly by the branched staghorn coral Acropora cervicornis and ribbonlike and platy growth of Agaricia spp. The living corals are not cemented to the substrate, but are merely intergrown. Fragmented pieces of corals accumulate with an open framework below the living community; this open framework is subsequently infilled by lime muds and sands produced mainly from bioerosion. Results from probing and coring suggest that the bafflestone fabric of coral debris and sediment extends at least 13 m into the subsurface. Radiocarbon-age estimates indicate these impressive piles of coral rubble and sediment have accumulated in the past 9000 yr (giving a minimum accumulation rate of 1.4 m/1000 yr) and illustrate the potential for significant carbonate buildups without the need for early lithification.« less

  5. 75 FR 69015 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish; Measures To Rebuild...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    .... 100618274-0543-03] RIN 0648-AY92 Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish... this final rule is necessary for the conservation and management of Hawaii seamount and groundfish..., Fishing, Hancock seamounts, Hawaii, Seamount groundfish. Dated: November 4, 2010. Samuel D. Rauch III...

  6. Science Priorities for Seamounts: Research Links to Conservation and Management

    PubMed Central

    Clark, Malcolm R.; Schlacher, Thomas A.; Rowden, Ashley A.; Stocks, Karen I.; Consalvey, Mireille

    2012-01-01

    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment. PMID:22279531

  7. Geological and petrologic evolution of seamounts near the EPR based on submersible and camera study

    NASA Astrophysics Data System (ADS)

    Batiza, Rodey; Smith, Terri L.; Niu, Yaoling

    1989-09-01

    Observations from 17 ALVIN dives and 14 ANGUS runs plus laboratory study of basalt samples collected with ALVIN help to constrain the morphologic, volcanic and petrologic evolution of four seamounts near the East Pacific Rise (EPR). Comparison among the four volcanoes provides evidence for a general pattern of near-EPR seamount evolution and shows the importance of sedimentation, mass wasting, hydrothermal activity and other geologic processes that occur on submerged oceanic volcanoes. Seamount 5, closest to the EPR (1.0 Ma) is the youngest seamount and may still be active. Its summit is covered by fresh lavas, recent faults and hydrothermal deposits. Seamount D is on crust 1.55 Ma and is inactive; like seamount 5, it has a breached caldera and is composed exclusively of N-MORB. Seamounts 5 and D represent the last stages of growth of typical N-MORB-only seamounts near the EPR axis. Seamounts 6 and 7 have bumpy, flattish summits composed of transitional and alkalic lavas. These lavas probably represent caldera fillings and caps overlying an edifice composed of N-MORB. Evolution from N-MORB-only cratered edifices to the alkalic stage does not occur on all near-EPR seamounts and may be favored by location on structures with relative-motion-parallel orientation.

  8. Sensitivity of marine protected area network connectivity to atmospheric variability

    NASA Astrophysics Data System (ADS)

    Fox, Alan D.; Henry, Lea-Anne; Corne, David W.; Roberts, J. Murray

    2016-11-01

    International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.

  9. Characteristics of Seamounts Near Hawaii as Viewed by GLORIA

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Using images and data acquired from the GLORIA sonar system, 390 seamounts within the U.S. Hawaiian Exclusive Economic Zone (HEEZ) off Hawaii have been studied. Their diameters range from 1 to 57 km. with most less than 15 km. Seamount abundance increases exponentially with decreasing size. The areal density of observed seamounts having diameters greater than 1 km is 182/10(exp 6) sq km. The theoretical abundance of seamounts of all sizes normalized to a unit area is (309 +/- 17)/10(exp 6) sq km, about an order of magnitude less than other surveyed areas of the Pacific. This may reflect a lower abundance of Cretaceous seamounts in this region, the covering of small seamounts by sediment, or discrepancies from the use of different data sets to derive the abundance statistics. The seamounts have morphologies ranging from steep-sided, flat-topped structures to cones to more amorphous structures; they are similar to volcanoes found elsewhere on the seafloor. A suite of secondary features associated with the seamounts includes summit craters, summit mounds, coalesced boundaries, landslides, and graben. Several seamount chains are aligned parallel to Cretaceous fracture zones, consistent with an origin close to the ancestral East Pacific Rise. Others are aligned parallel to the Necker Ridge, suggesting that they formed contemporaneously with Necker in the plate interior. This observation, together with high abundances of seamounts where other intraplate igneous processes have occurred, suggests some seamounts formed since leaving the spreading center.

  10. Seamount ecology and dynamics: A multidisciplinary data set from repeated surveys at different seamounts in the Northeast Atlantic and Mediterranean (2003 - 2013).

    NASA Astrophysics Data System (ADS)

    Mohn, C.; Christiansen, B.; Denda, A.; George, K. H.; Kaufmann, M.; Maranhão, M.; Martin, B.; Metzger, T.; Peine, F.; Schuster, A.; Springer, B.; Stefanowitsch, B.; Turnewitsch, R.; Wehrmann, H.

    2016-02-01

    Seamounts are amongst the most common physiographic open ocean systems, but remoteness and geographic complexity have limited the number of integrated and multidisciplinary seamount surveys in the past. As a consequence, important aspects of seamount ecology and dynamics remain poorly studied. Here we present a multi-parameter data set from individual and repeated seamount surveys conducted at different sites in the Northeast Atlantic and Eastern Mediterranean between 2003 and 2013. The main objective of these surveys was to establish a collection of ecosystem relevant descriptors and to develop a better understanding of seamount ecosystem composition and variability in different dynamical and bio-geographic environments. Measurements were conducted at four seamounts in the Northeast Atlantic (Ampère, Sedlo, Seine, Senghor) and two seamounts in the Eastern Mediterranean (Anaximenes, Eratosthenes). The data set comprises records from a total number of 11 cruises including physical oceanography (temperature, salinity, pressure, currents), biology (phytoplankton, zooplankton, fish, benthos) and biogeochemistry (sedimentary particle dynamics, carbon flux). The resulting multi-disciplinary data collection provides a unique opportunity for comparative studies of seamount ecosystem structure and dynamics between different physical, biological and biogeochemical regimes

  11. First description of a Lophelia pertusa reef complex in Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Buhl-Mortensen, Pål; Gordon, Don C.; Buhl-Mortensen, Lene; Kulka, Dave W.

    2017-08-01

    For the first time, we describe a cold-water coral reef complex in Atlantic Canada, discovered at the shelf break, in the mouth of the Laurentian Channel. The study is based on underwater video and sidescan sonar. The reef complex covered an area of approximately 490×1300 m, at 280-400 m depth. It consisted of several small mounds (< 3 m high) where the scleractinian Lophelia pertusa occurred as live colonies, dead blocks and skeletal rubble. On the mounds, a total of 67 live colonies occurred within 14 patches at 300-320 m depth. Most of these (67%) were small (< 20 cm high). Dead coral (rubble and blocks), dominated (88% of all coral observations). Extensive signs of damage by bottom-fishing gear were observed: broken and tilted coral colonies, over-turned boulders and lost fishing gear. Fisheries observer data indicated that the reef complex was subjected to heavy otter trawling annually between 1980 and 2000. In June 2004, a 15 km2 conservation area excluding all bottom-fishing was established. Current bottom fisheries outside the closure include otter trawling for redfish and anchored longlines for halibut. Vessel monitoring system data indicate that the closure is generally respected by the fishing industry.

  12. Environmental contamination associated with a marine landfill ('seafill') beside a coral reef.

    PubMed

    Jones, Ross

    2010-11-01

    In Bermuda, bulk waste such as scrap metal, cars, etc., and blocks of cement-stabilized incinerator ash (produced from burning garbage) are disposed of in a foreshore reclamation site, i.e., a seafill. Chemical analyses show that seawater leaching out of the dump regularly exceeds water quality guidelines for Zn and Cu, and that the surrounding sediments are enriched in multiple contaminant classes (metals, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, dioxins and furans, polychlorinated biphenyls and an organochlorine pesticide), i.e., there is a halo of contamination. When compared against biological effects-based sediment quality guidelines (SQGs), numerous sediment samples exceeded the low-range values (where biological effects become possible), and for Hg and Zn exceeded the mid-range value (where they become probable). A few metres away from the edge of the 25 acre dump lies a small coral patch reef, proposed here as most contaminated coral reef in the world. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Topographic control and accumulation rate of some Holocene coral reefs: south Florida and Dry Tortugas

    USGS Publications Warehouse

    Shinn, E.A.; Hudson, J.H.; Halley, R.B.; Lidz, B.H.; Taylor, D.L.

    1977-01-01

    Core drilling and examination of underwater excavation on 6 reef sites in south Florida and Dry Tortugas revealed that underlying topography is the major factor controlling reef morphology. Carbon-14 dating on coral recovered from cores enables calculation of accumulation rates. Accumulation rates were found to range from 0.38 m/1000 years in thin Holocene reefs to as much as 4.85 m/1000 years in thicker buildups. Cementation and alteration of corals were found to be more pronounced in areas of low buildup rates than in areas of rapid accumulation rates. Acropora palmata, generally considered the major reef builder in Florida, was found to be absent in most reefs drilled. At Dry Tortugas, the more than 13-meter thick Holocene reef did not contain A. palmata. The principal reef builders in this outer reef are the same as those which built the Pleistocene Key Largo formation, long considered to be fossilized patch reef complex.

  14. A new species of triadal coral snake of the genus Micrurus Wagler, 1824 (Serpentes: Elapidae) from northeastern Brazil.

    PubMed

    Pires, Matheus Godoy; Da Silva, Nelson Jorge; Feitosa, Darlan Tavares; Prudente, Ana Lúcia Da Costa; Filho, Gentil Alves Pereira; Zaher, Hussam

    2014-06-05

    The genus Micrurus comprises 123 currently recognized taxa (species and subspecies) that are traditionally arranged in four species groups diagnosable mainly by color pattern characteristics. Here, we describe a new species of triadal coral snake from northeastern Brazil. The new species is distinguished from other sympatric triadal congeners (M. lemniscatus carvalhoi, M. ibiboboca and M. brasiliensis) mainly by the entirely black parietals and by a suite of external characters and hemipenial morphology. The new species appears to be restricted to tropical ombrophilous lowland coastal forests of northeastern Brazil and all recently collected specimens are known to occur in small forest patches surrounded by periurban environment, which calls for an urgent evaluation on its conservation status.

  15. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    PubMed

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes. © 2016 by the Ecological Society of America.

  16. Seamount statistics in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Jordan, Thomas H.

    1988-04-01

    We apply the wide-beam sampling technique of Jordan et al. (1983) to approximately 157,000 km of wide-beam profiles to obtain seamount population statistics for eight regions in the eastern and southern Pacific Ocean. Population statistics derived from wide-beam echograms are compared with seamount counts from Sea Beam swaths and with counts from bathymetric maps. We find that the average number of seamounts with summit heights h ≥ H is well-approximated by the exponential frequency-size distribution: ν(H)=νoe-βH. The exponential model for seamount sizes, characterized by the single scale parameter β-1, is found to be superior to a power-law (self-similar) model, which has no intrinsic scale, in describing the average distribution of Pacific seamounts, and it appears to be valid over a size spectrum spanning 5 orders of magnitude in abundance. Large-scale regional variations in seamount populations are documented. We observe significant differences in seamount densities across the Murray fracture zone in the North Pacific and the Eltanin fracture zone system in the South Pacific. The Eltanin discontinuity is equally evident on both sides of the Pacific-Antarctic ridge. In the South Pacific, regions symmetrically disposed about the ridge axis have very similar seamount densities, despite the large difference between Pacific plate and Antarctic plate absolute velocities; evidently, any differences in the shear flows at the base of the Pacific and Antarctic plates do not affect seamount emplacement. Systematic variations in νo and β are observed as a function of lithospheric age, with the number of large seamounts increasing more rapidly than small seamounts. These observations have been used to develop a simple model for seamount production under the assumptions that (1) an exponential size-frequency distribution is maintained, (2) production is steady state, and (3) most small seamounts are formed on or near the ridge axis. The limited data available from this study appear to be consistent with the model, but they are insufficient to provide a rigorous test of the assumptions or determine accurately the model parameters. However, the data from the South Pacific indicate that the off-axis production of large seamounts probably accounts for the majority of seamounts with summit heights greater than 1000 m.

  17. Interactive effects of three pervasive marine stressors in a post-disturbance coral reef

    NASA Astrophysics Data System (ADS)

    Gil, Michael A.; Goldenberg, Silvan U.; Ly Thai Bach, Anne; Mills, Suzanne C.; Claudet, Joachim

    2016-12-01

    Ecosystems are commonly affected by natural, episodic disturbances that can abruptly and drastically alter communities. Although it has been shown that resilient ecosystems can eventually recover to pre-disturbed states, the extent to which communities in early stages of recovery could be affected by multiple anthropogenic stressors is poorly understood. Pervasive and rising anthropogenic stressors in coastal marine systems that could interactively affect the recovery of these systems following natural disturbances include high sedimentation, nutrient enrichment, and overfishing. Using a 6-month field experiment, we examined the effects of all combinations of these three stressors on key functional groups in the benthic community growing on simulated, post-disturbance reef patches within a system recovering from large-scale natural disturbances (corallivorous seastar outbreak and cyclone). Our study revealed that sedimentation, nutrient enrichment, and overfishing (simulated using exclusion cages) interactively affected coral survival and algal growth, with taxon-specific effects at multiple scales. First, our treatments affected corals and algae differently, with sedimentation being more detrimental to macroalgal growth but less detrimental to coral ( Porites rus) survival in caged plots, driving significant interactions between sedimentation and caging for both taxa. We also observed distinct responses between coral species and between algal functional groups, with the most extensive responses from algal turf biomass, for which sedimentation suppressed the synergistic (positive) combined effect of nutrient enrichment and caging. Our findings suggest that different combinations of ubiquitous anthropogenic stressors, related to either sea- or land-based activities, interactively influence community recovery from disturbance and may alter species compositions in the resulting community. Our findings further suggest that anthropogenic stressors could promote further degradation of coral reefs following natural disturbances by inhibiting recovery to coral-dominated states that provide vital ecosystem services to coastal populations worldwide.

  18. Aura-biomes are present in the water layer above coral reef benthic macro-organisms.

    PubMed

    Walsh, Kevin; Haggerty, J Matthew; Doane, Michael P; Hansen, John J; Morris, Megan M; Moreira, Ana Paula B; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D; Thompson, Fabiano; Dinsdale, Elizabeth A

    2017-01-01

    As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis , (2) fleshy macroalgae ( Stypopodium , Dictota and Canistrocarpus ), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific "aura-biome". The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria , Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

  19. Aura-biomes are present in the water layer above coral reef benthic macro-organisms

    PubMed Central

    Haggerty, J. Matthew; Doane, Michael P.; Hansen, John J.; Morris, Megan M.; Moreira, Ana Paula B.; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D.; Thompson, Fabiano; Dinsdale, Elizabeth A.

    2017-01-01

    As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis, (2) fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms. PMID:28828261

  20. Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Bongiorni, Lucia; Ravara, Ascensão; Parretti, Paola; Santos, Ricardo S.; Rodrigues, Clara F.; Amaro, Teresa; Cunha, Marina R.

    2013-12-01

    In recent years increasing knowledge has been accumulated on seamounts ecology; however their sedimentary environments and associated biological communities remain largely understudied. In this study we investigated quantity and biochemical composition of organic matter and macrofaunal diversity in sediments of the Condor Seamount (NE Atlantic, Azores). In order to test the effect of the seamount on organic matter distribution, sediment samples were collected in 6 areas: the summit, the northern and southern flanks and bases, and in an external far field site. Macrofauna abundance and diversity were investigated on the summit, the southern flank and in the far field site. The organic matter distribution reflected the complex hydrodynamic conditions occurring on the Condor. Concentrations of organic matter compounds were generally lower on the whole seamount than in the far field site and on the seamount summit compared to flanks and bases. A clear difference was also evident between the northern and southern slopes of the Condor, suggesting a role of the seamount in conditioning sedimentation processes and distribution of food resources for benthic consumers. Macrofauna assemblages changed significantly among the three sampling sites. High abundance and dominance, accompanied by low biodiversity, characterized the macrofauna community on the Condor summit, while low dominance and high biodiversity were observed at the flank. Our results, although limited to five samples on the seamount and two off the seamount, do not necessarily support the paradigm that seamounts are more biodiverse than the surrounding seafloor. However, the abundance (and biomass), functional diversity and taxonomical distinctiveness of the macrofaunal assemblages from the Condor Seamount suggest that seamounts habitats may play a relevant role in adding to the regional biodiversity.

  1. Global Distribution of Seamounts as Inferred from Ship Depth Soundings and Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Kim, S.; Sandwell, D. T.

    2006-12-01

    Traditionally, seamounts are active or extinct undersea volcanoes rising more than 1 km above the abyssal plain, but scientists now regularly apply the seamount label to features of just a few tens of meters in height. As constructional features they represent a small but significant fraction of the total volcanic extrusive budget for oceanic seafloor and their distribution provides key information on the variations in intraplate volcanic activity through space and time. Furthermore, they sustain significant ecological communities, determine habitats for fish, and act as obstacles to ocean currents, thus enhancing tidal energy dissipation and ocean mixing. Consequently, it is of some importance to locate and characterize seamounts. Two approaches are used to map the global distribution of seamounts. Depth soundings from single- and multi-beam echo sounders can provide the most detailed maps with up to 100--200 m horizontal resolution. However, soundings from the 5600 publicly available cruises sample only a small fraction of the ocean floor. Direct radar measurements of the ocean surface by satellite-borne altimeters have been used to infer the marine gravity field. By examining such gravity data one can characterize seamounts taller than ~2 km and such studies have produced seamount catalogues holding almost 15,000 seamounts. Recent retracking of the original radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a two-fold increase in resolution. By extrapolating the inferred power-law that relates seamount size to frequency we estimate that 45,000 smaller seamounts taller than 1.5 km still remain uncharted. Future altimetry missions could improve on resolution and decrease noise levels even further, allowing for an even larger number of small (1--1.5 km) seamounts to be separated from the background abyssal hill fabric. Mapping the complete global distribution of seamounts will help constrain competing models of seamount formation as well as facilitate the understanding of marine habitats and deep ocean circulation.

  2. High-Resolution Geomorphometry of Seamounts of the Young Walvis Ridge Guyot Province

    NASA Astrophysics Data System (ADS)

    Schnur, S. R.; Koppers, A. A.

    2012-12-01

    In February and March 2012, cruise MV1203 surveyed and dredged seamounts at the young end of the Walvis Ridge hotspot trail in the South Atlantic. The scientific goals were to better understand the hotspot origins of the Walvis Ridge by collecting rock samples for high-precision 40Ar/39Ar geochronology and by investigating the relationship between seamount morphology and different mechanisms of intra-plate volcanism. The area had until now been only sparsely-sampled, and most of the seamounts had never been mapped with multibeam. Here we present a geomorphometric analysis of edifice size and shape parameters from 74 seamounts of the young Walvis Ridge guyot province. The base data for each seamount consists of Simrad EM122 multibeam bathymetry combined with bathymetry from the SRTM30 PLUS compilation (V7.0: Becker et al., 2009; Sandwell and Smith, 2009), gridded at 180 m resolution. Multibeam coverage of individual seamounts ranges from 100% for small seamounts to 15% for large seamounts, with most seamounts having at least 50% coverage. Most of this data focuses on seamount flanks rather than flat guyot tops, covering the areas of greatest topographic variability even for seamounts with relatively low multibeam coverage. For each seamount we quantify edifice height, perimeter, volume, elongation, azimuth, irregularity and distance to nearest neighbor. These variables are compared to the age of the underlying crust, distance to the Mid-Atlantic Ridge and distance from the Etendeka flood basalts of Namibia, which are thought to signal the initial stages of hotspot volcanism at the old end of the chain. Additionally we assess how the addition of high resolution data affects these geomorphologic parameters. We will present an overview of the cruise outcomes as well as highlight unusual features observed in the new bathymetry and backscatter data. The cruise data suggest that the young Walvis Ridge guyot province holds great potential for further exploration and multidisciplinary research.

  3. Stable isotopic composition of deep sea gorgonian corals (Primnoa spp.): a new archive of surface processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, O A; Heikoop, J M; Scott, D B

    2005-02-03

    The deep-sea gorgonian coral Primnoa spp. lives in the Atlantic and Pacific Oceans at depths of 65-3200 m. This coral has an arborescent growth form with a skeletal axis composed of annual rings made from calcite and gorgonin. It has a lifespan of at least several hundred years. It has been suggested that isotopic profiles from the gorgonin fraction of the skeleton could be used to reconstruct long-term, annual-scale variations in surface productivity. We tested assumptions about the trophic level, intra-colony isotopic reproducibility, and preservation of isotopic signatures in a suite of modern and fossil specimens. Measurements of gorgonin {Delta}{supmore » 14}C and {delta}{sup 15}N indicate that Primnoa spp. feed mainly on zooplankton and/or sinking particulate organic matter (POM{sub SINK}), and not on suspended POM (POM{sub SUSP}) or dissolved organic carbon (DOC). Gorgonin {delta}{sup 13}C and {delta}{sup 15}N in specimens from NE Pacific shelf waters, NW Atlantic slope waters, the Sea of Japan, and a South Pacific (Southern Ocean sector) seamount were strongly correlated with Levitus 1994 surface apparent oxygen utilization (AOU; the best available measure of surface productivity), demonstrating coupling between skeletal isotopic ratios and biophysical processes in surface water. Time-series isotopic profiles from different sections along the same colony were identical for {delta}{sup 13}C, while {delta}{sup 15}N profiles became more dissimilar with increasing separation along the colony axis. Similarity in C:N, {delta}{sup 13}C and {delta}{sup 15}N between modern and fossil specimens suggest that isotopic signatures are preserved over millennial timescales. Finally, the utility of this new archive was demonstrated by reconstruction of 20th century bomb radiocarbon.« less

  4. Petrogenesis of Near-Ridge Seamounts: AN Investigation of Mantle Source Heterogeneity and Melting Processes

    NASA Astrophysics Data System (ADS)

    Baxter, N. L.; Perfit, M. R.; Lundstrom, C.; Clague, D. A.

    2010-12-01

    Near-ridge (NR) seamounts offer an important opportunity to study lavas that have similar sources to ridge basalts but have been less affected by fractionation and homogenization that takes place at adjacent spreading ridge axes. By studying lavas erupted at these off-axis sites, we have the potential to better understand source heterogeneity and melting and transport processes that can be applied to the ridge system as a whole. One purpose of our study is to investigate the role of dunite conduits in the formation of near-ridge seamount chains. We believe that near-ridge seamounts could form due to focusing of melts in dunite channels located slightly off-axis and that such conduits may be important in the formation and transport of melt both on- and off-axis (Lundstrom et al., 2000). New trace element and isotopic analyses of glasses from Rogue, Hacksaw, and T461 seamounts near the Juan de Fuca Ridge (JdFR), the Lamont Seamounts adjacent to the East Pacific Rise (EPR) ~ 10°N, and the Vance Seamounts next to the JdFR ~45°N provide a better understanding of the petrogenesis of NR seamounts. Our data indicate that lavas from these seamounts have diverse incompatible trace element compositions that range from highly depleted to slightly enriched in comparison to associated ridge basalts. Vance A lavas (the oldest in the Vance chain) have the most enriched signatures and lavas from Rogue seamount on the JdFR plate have the most depleted signatures. Sr-Nd-Pb isotopic ratios indicate that NR seamount lava compositions vary within the chains as well as within individual seamounts, and that there is some mixing between heterogeneous, small-scale mantle sources. Using the program PRIMELT2.XLS (Herzberg and Asimow, 2008), we calculated mantle potential temperatures (Tp) for some of the most primitive basalts erupted at these seamounts. Our data indicate that NR seamount lavas have Tp values that are only slightly higher than that of average ambient mantle. Variations in major and trace elements along with geochemical modeling suggest a heterogeneous mantle source that melts to different extents. Shallow level crystal fractionation and mixing cannot explain the geochemical diversity found at NR seamounts. We are using the modeling programs MELTS (Ghiorso et al., 2002) and IRIDIUM (Boudreau, 2003) to model processes hypothesized to form dunite conduits (dissolution of pyroxenes and precipitation of olivine), to evaluate if these dissolution/precipitation processes can produce some of the geochemical diversity observed at these seamounts.

  5. Hahajima Seamount: an enigmatic tectonic block at the junction between Izu-Bonin and Mariana Trench

    NASA Astrophysics Data System (ADS)

    Tokunaga, W.; Fujioka, K.; Yokose, H.

    2005-12-01

    The Hahajima Seamount located at the junction between Izu-Bonin and Mariana forearc slopes, represents a notable rectangular shape and consists of various kinds of rocks. An elaborated bathymetric swath mapping with geophysical measurements and dredge hauls showed the Hahajima Seamount is cut by two predominating lineaments, NE-SW and NW-SE. These lineaments are of faults based on the topographic cross sections and three-dimensional view (Whale's-eye view). The former lineament is parallel to the transform faults of the Parece Vela Basin in the Philippine Sea whereas the latter is to the nearby transform fault on the subducting Pacific Plate underneath the Izu-Bonin arc-trench system. The rocks obtained from the Hahajima Seamount are ultramafic rocks mostly harzburgite, boninite, basalt, andesite, gabbro breccia and sedimentary rocks, which characterize an island arc and an ocean basin affinities. The gravity measurement and seismic reflection survey offer neither definite gravity anomaly at the seamount nor definite internal structures beneath the seamount. The NW-SE trending fault and small scale serpentine flows were observed during the JAMSTEC submersible Shinkai 2000 dives at the Hahajima Seamount. The rectangular shape, size of seamount, various kinds of rocks and all the geophysical measurements strongly support that the Hahajima Seamount is not a simple serpentine seamount but a tectonic block unlike previously believed that was controlled by various tectonic movements.

  6. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Zeppilli, Daniela; Bongiorni, Lucia; Cattaneo, Antonio; Danovaro, Roberto; Santos, Ricardo Serrão

    2013-12-01

    Seamounts are currently considered hotspots of biodiversity and biomass for macro- and megabenthic taxa, but knowledge of meiofauna is still limited. Studies have revealed the existence of highly diverse meiofauna assemblages; however most data are mainly qualitative or focused only on specific groups, thus preventing comparisons among seamounts and with other deep-sea areas. This study, conducted on Condor Seamount (Azores, North-East Atlantic Ocean), describes variation in abundance, biomass, community structure and biodiversity of benthic meiofauna from five sites located on the Condor Seamount: and one site away from the seamount. While the summit of the seamount hosted the highest alpha biodiversity, the flanks and the bases showed a rich meiofauna assemblage in terms of abundance and biomass. The observed marked differences in grain size composition of sediments reflected the oceanographic conditions impacting different sectors of the Condor seamount, and could play an important role in the spatial distribution of different meiofaunal taxa. Trophic conditions (biochemical composition of organic matter) explained 78% of the variability in the meiofauna biomass pattern while sediment grain influenced the vertical distribution of meiofauna and only partially explained meiofaunal taxa composition. This study provides a further advancement in the knowledge of meiofaunal communities of seamounts. Only a deeper understanding of the whole benthic communities (including meiofauna) will allow to elaborate effective management and conservation tools for seamount ecosystems.

  7. Structural evolution of preexisting oceanic crust through intraplate igneous activities in the Marcus-Wake seamount chain

    NASA Astrophysics Data System (ADS)

    Kaneda, Kentaro; Kodaira, Shuichi; Nishizawa, Azusa; Morishita, Taisei; Takahashi, Narumi

    2010-10-01

    Multichannel seismic reflection studies and seismic refraction surveys with ocean bottom seismographs in the Marcus-Wake seamount chain in the northwestern Pacific Ocean reveal P wave velocity structures of hot spot-origin seamounts and adjacent oceanic crust. Inside the seamounts are central high-velocity (>6.5 km/s) structures extending nearly to the top that may indicate intrusive cores. Thick sediment layers (up to 4 km) with P wave velocities of 4-5 km/s have accumulated on seafloor that predates seamount formation. Downward crustal thickening of up to 2 km was documented beneath a large seamount cluster, but thickening was not confirmed below a small seamount cluster. Volume ratios of an intrusive core to a seamount body are 15-20%, indicating that most of the supplied magma was consumed in forming the thick sedimentary and volcaniclastic layer constituting the seamount flanks. Underplating and downward crustal thickening may tend to occur when second or later intrusive cores are formed in a seamount. P wave velocities in the lowest crust and in the uppermost mantle below the seamount chain are 0.1-0.2 km/s higher and 0.3-0.5 km/s lower, respectively, than velocities below oceanic crust. We explain this difference as a result of sill-like intrusion of magma into the lower crust and uppermost mantle. Reflected waves observed at offsets >200 km are from mantle reflectors at depths of 30-45 km and 55-70 km. The shallower reflectors may indicate structures formed by intraplate igneous activities, and the deeper reflectors may correspond to the lithosphere-asthenosphere boundary.

  8. Coral reef grazer-benthos dynamics complicated by invasive algae in a small marine reserve

    PubMed Central

    Stamoulis, Kostantinos A.; Friedlander, Alan M.; Meyer, Carl G.; Fernandez-Silva, Iria; Toonen, Robert J.

    2017-01-01

    Blooms of alien invasive marine algae have become common, greatly altering the health and stability of nearshore marine ecosystems. Concurrently, herbivorous fishes have been severely overfished in many locations worldwide, contributing to increases in macroalgal cover. We used a multi-pronged, interdisciplinary approach to test if higher biomass of herbivorous fishes inside a no-take marine reserve makes this area more resistant to invasive algal overgrowth. Over a two year time period, we (1) compared fish biomass and algal cover between two fished and one unfished patch reef in Hawai’i, (2) used acoustic telemetry to determine fidelity of herbivorous fishes to the unfished reef, and (3) used metabarcoding and next-generation sequencing to determine diet composition of herbivorous fishes. Herbivore fish biomass was significantly higher in the marine reserve compared to adjacent fished reefs, whereas invasive algal cover differed by species. Herbivorous fish movements were largely confined to the unfished patch reef where they were captured. Diet analysis indicated that the consumption of invasive algae varied among fish species, with a high prevalence of comparatively rare native algal species. Together these findings demonstrate that the contribution of herbivores to coral reef resilience, via resistance to invasive algae invasion, is complex and species-specific. PMID:28276458

  9. Seamounts are hotspots of pelagic biodiversity in the open ocean

    PubMed Central

    Morato, Telmo; Hoyle, Simon D.; Allain, Valerie; Nicol, Simon J.

    2010-01-01

    The identification of biodiversity hotspots and their management for conservation have been hypothesized as effective ways to protect many species. There has been a significant effort to identify and map these areas at a global scale, but the coarse resolution of most datasets masks the small-scale patterns associated with coastal habitats or seamounts. Here we used tuna longline observer data to investigate the role of seamounts in aggregating large pelagic biodiversity and to identify which pelagic species are associated with seamounts. Our analysis indicates that seamounts are hotspots of pelagic biodiversity. Higher species richness was detected in association with seamounts than with coastal or oceanic areas. Seamounts were found to have higher species diversity within 30–40 km of the summit, whereas for sets close to coastal habitat the diversity was lower and fairly constant with distance. Higher probability of capture and higher number of fish caught were detected for some shark, billfish, tuna, and other by-catch species. The study supports hypotheses that seamounts may be areas of special interest for management for marine pelagic predators. PMID:20448197

  10. Seamounts are hotspots of pelagic biodiversity in the open ocean.

    PubMed

    Morato, Telmo; Hoyle, Simon D; Allain, Valerie; Nicol, Simon J

    2010-05-25

    The identification of biodiversity hotspots and their management for conservation have been hypothesized as effective ways to protect many species. There has been a significant effort to identify and map these areas at a global scale, but the coarse resolution of most datasets masks the small-scale patterns associated with coastal habitats or seamounts. Here we used tuna longline observer data to investigate the role of seamounts in aggregating large pelagic biodiversity and to identify which pelagic species are associated with seamounts. Our analysis indicates that seamounts are hotspots of pelagic biodiversity. Higher species richness was detected in association with seamounts than with coastal or oceanic areas. Seamounts were found to have higher species diversity within 30-40 km of the summit, whereas for sets close to coastal habitat the diversity was lower and fairly constant with distance. Higher probability of capture and higher number of fish caught were detected for some shark, billfish, tuna, and other by-catch species. The study supports hypotheses that seamounts may be areas of special interest for management for marine pelagic predators.

  11. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  12. The Hawaii-Emperor Bend: Clearly a Record of Pacific Plate Motion Change

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Harada, Y.; Kroenke, L. W.; Sterling, A.

    2003-12-01

    As most introductory textbooks will point out, the conventional explanation for the ˜120° change in the trends of the Hawaiian and Emperor chains is a ˜60° change in plate motion over a fixed plume in the mantle. Recently, however, new paleomagnetic and radiometric age data from the Emperor Seamounts have led some scientists to reject the conventional view of the origin of the Hawaii-Emperor bend in favor of a mobile plume. Yet, at the brink of being explained away as the mere consequence of a drifting plume, the fixed hotspot hypothesis now gains support from newly reported radiometric dates of rock samples from seamounts at the bend which reveal an age much older than expected. Unlike the previous younger age ( ˜43 Ma), the older age ( ˜47 Ma) allows the bend to be directly correlated with a period of pronounced, global tectonic reorganizations around Chron 21. Here we present a new Pacific absolute plate motion model, derived from 15 hotspot chains, which does not require hotspot drift in order to satisfy geometric and chronological constraints. By considering this absolute plate motion model with available Pacific paleomagnetic poles we find support for the notion that the spin axis was closer to the Hawaiian hotspot during the formation of the Emperor chain, and this interpretation (polar wander, not hotspot drift) also explains the paleomagnetic latitudes from the Emperor seamounts as well as the lack of coral reefs materials in the drill holes north of Koko Guyot. However, this interpretation is not unique, and drift cannot be summarily ruled out. Yet, if Pacific plumes are drifting then they appear to be moving in unison. Careful examination of the Pacific seafloor reveals additional Pacific trails with bends that appear to be contemporaneous with the Hawaii-Emperor Bend, although conclusive radiometric age data are lacking. Our plate motion model predicts hotspot tracks that fit these bends. Considering all these lines of evidence the fixed hotspot hypothesis is granted a new lease on life.

  13. Is there a seamount effect on microbial community structure and biomass? The case study of Seine and Sedlo seamounts (northeast Atlantic).

    PubMed

    Mendonça, Ana; Arístegui, Javier; Vilas, Juan Carlos; Montero, Maria Fernanda; Ojeda, Alicia; Espino, Minerva; Martins, Ana

    2012-01-01

    Seamounts are considered to be "hotspots" of marine life but, their role in oceans primary productivity is still under discussion. We have studied the microbial community structure and biomass of the epipelagic zone (0-150 m) at two northeast Atlantic seamounts (Seine and Sedlo) and compared those with the surrounding ocean. Results from two cruises to Sedlo and three to Seine are presented. Main results show large temporal and spatial microbial community variability on both seamounts. Both Seine and Sedlo heterotrophic community (abundance and biomass) dominate during winter and summer months, representing 75% (Sedlo, July) to 86% (Seine, November) of the total plankton biomass. In Seine, during springtime the contribution to total plankton biomass is similar (47% autotrophic and 53% heterotrophic). Both seamounts present an autotrophic community structure dominated by small cells (nano and picophytoplankton). It is also during spring that a relatively important contribution (26%) of large cells to total autotrophic biomass is found. In some cases, a "seamount effect" is observed on Seine and Sedlo microbial community structure and biomass. In Seine this is only observed during spring through enhancement of large autotrophic cells at the summit and seamount stations. In Sedlo, and despite the observed low biomasses, some clear peaks of picoplankton at the summit or at stations within the seamount area are also observed during summer. Our results suggest that the dominance of heterotrophs is presumably related to the trapping effect of organic matter by seamounts. Nevertheless, the complex circulation around both seamounts with the presence of different sources of mesoscale variability (e.g. presence of meddies, intrusion of African upwelling water) may have contributed to the different patterns of distribution, abundances and also changes observed in the microbial community.

  14. The Seamount Catalog in EarthRef.org

    NASA Astrophysics Data System (ADS)

    Gotberg, N. K.; Koppers, A. A.; Staudigel, H.; Perez, J.

    2004-12-01

    Seamounts are important to research and education in many scientific fields, providing a wide range of data on physical, chemical, biological and geological processes. In order to make a diverse set of seamount data accessible we have developed the Seamount Catalog in EarthRef.org, available through the http://earthref.org/databases/SC/. The primary goal of the Seamount Catalog is to provide access to digital data files on a large assortment of interdisciplinary seamount research. The catalog can be searched at a variety of ability or expert levels allowing it to be used from basic education to advanced research. Each seamount is described in terms of its location, height, volume, elongation, azimuth, irregularity, rifts, morphological classification and relation to other features. GEBCO (General Bathymetric Chart of the Ocean) gazetteer data (2002; 2003) is included in the database in order to provide information on the history, discovery and names of the seamounts. Screen-optimized bathymetry maps, grid files and the original multibeam data files are available for online viewing with higher resolution downloadable versions (AI, PS, PDF) also offered. The data files for each seamount include a map made from the multibeam data only, a map made from Smith and Sandwell's (1996) predicted bathymetry, a merged map incorporating both data sets, and a map showing the differences between the two data sets. We are working towards expanding the Seamount Catalog by integrating bathymetry data from various sources, developing and linking disciplinary reference models, and integrating information from multiple disciplines and from the literature. We hope to create a data integrative environment that provides access to seamount data and the tools needed for working with that data.

  15. Effect of the Galapagos Hotspot on Seamount Formation along the Galapagos Spreading Center

    NASA Astrophysics Data System (ADS)

    Behn, M. D.; Sinton, J. M.; Detrick, R. S.

    2002-12-01

    Studies along the Mid-Atlantic Ridge (MAR) and East Pacific Rise (EPR) have shown seamount formation to be a strong function of spreading rate. At the MAR, seamounts are a dominant morphologic feature of the inner valley floor, while at the EPR seamounts are rarely observed within the neovolcanic zone. The Galapagos Spreading Center (GSC) provides an excellent location to test the influence of a hotspot on the process of seamount generation at a relatively constant spreading rate. In this study we use multi-beam bathymetry data acquired during the G-PRIME cruise in April-May, 2000 to examine the distribution of axial seamounts along the GSC with distance from the hotspot. We use a numerical algorithm to identify isolated volcanic edifices, by searching bathymetry for closed, concentric contours protruding above the surrounding seafloor. Seamount populations are fit with a maximum likelihood model to estimate the total number of seamounts per unit area, ν o, and the characteristic seamount height, β-1. The number of seamounts in the axial zone decreases significantly as the Galapagos hotspot is approached, suggesting a change from dominantly point-source to fissure-fed volcanism as magma supply increases. West of the 95.5°W propagator, the total number of seamounts per unit area (ν o = 279+/-16 per 103 km2) is similar to values observed at the MAR. In comparison, east of 92.7°W, where magma supply is higher, seamount density (50+/-9 per 103 km2) is similar to observations at the fast-spreading EPR. Our results show that the transition from point-source to fissure-fed eruptions occurs gradually, in contrast to the "threshold" effect observed in axial magma chamber depth and axial morphology in which small changes in magma supply result in large changes in these variables. In summary, the western GSC displays the same range in seamount density observed along the global mid-ocean ridge system suggesting that both spreading rate and magma supply are important factors controlling the style of constructional volcanism (point source vs fissure fed eruptions) at oceanic spreading centers.

  16. Formation and evolution of the near axis 8˚20'N seamount chain: Evidences from the geophysical data analysis

    NASA Astrophysics Data System (ADS)

    Romano, V.; Gregg, P. M.; Zhan, Y.; Fornari, D. J.; Perfit, M. R.; Battaglia, M.

    2017-12-01

    The OASIS (Off-Axis Seamount Investigations at Siqueiros) expedition is a multidisciplinary effort to systematically investigate the 8˚20'N Seamount Chain to better understand the melting processes in the southern portion of the 9-10˚N segment of the East Pacific Rise (EPR). The 8˚20'N Seamount Chain extends 160 km west from its initiation, 15km northwest of the EPR-Siqueiros ridge transform intersection (RTI). To investigate the emplacement of the 8˚20'N Seamounts, shipboard EM-122 multibeam, BGM-3 gravity, and towed magnetometer data were collected using the R/V Atlantis in November 2016. Multibeam data show that the seamount chain is characterized by discrete seamounts in the distal portion of the chain, while east of 105˚20' W, the chain is a nearly-continuous volcanic ridge comprised of small cones and coalesced edifices. Free Air Anomalies are used to calculate isostatic anomalies along several profiles crossing the main edifices of the seamount chain, and indicate that the seamounts formed within 100 km of the EPR ridge axis. Excess crustal thickness variations of 0.5 to 1 km, derived from the Residual Mantle Bouguer Anomaly, suggest an increase in melt flux eastward along the chain. Consistently high emplacement volumes are observed east of -105 ˚20' W, 130 km from the ridge axis corresponding with lithosphere younger than 2 Myr. Inverted three-dimensional magnetization data indicate that the seamounts have recorded a series of magnetic reversals along the chain, which correlate to reversals recorded in the surrounding seafloor upon which the seamounts were built. However, reversals along the eastern portion of the chain appear skewed to the west indicating that seamount formation is likely long-lived. While the geophysical observations indicate that the overall seamount chain is age progressive, they suggest coeval volcanism in a region 15-100km from the EPR. The seamounts do not follow absolute plate motions, but are located consistently 15-20 km north of the Siqueiros fracture zone, which further suggests that their formation is linked to the location and tectonic evolution of the Siqueiros-EPR-RTI. These findings have implications for the melt region sourcing the EPR as well as how melt is transported in the vicinity of a fracture zone.

  17. Tidal influence on particulate organic carbon export fluxes around a tall seamount

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Dumont, Matthew; Kiriakoulakis, Kostas; Legg, Sonya; Mohn, Christian; Peine, Florian; Wolff, George

    2016-12-01

    As tall seamounts may be 'stepping stones' for dispersion and migration of deep open ocean fauna, an improved understanding of the productivity at and food supply to such systems needs to be formed. Here, the 234Th/238U approach for tracing settling particulate matter was applied to Senghor Seamount - a tall sub-marine mountain near the tropical Cape Verde archipelago - in order to elucidate the effects of topographically-influenced physical flow regimes on the export flux of particulate organic carbon (POC) from the near-surface (topmost ⩽ 100 m) into deeper waters. The comparison of a suitable reference site and the seamount sites revealed that POC export at the seamount sites was ∼2-4 times higher than at the reference site. For three out of five seamount sites, the calculated POC export fluxes are likely to be underestimates. If this is taken into account, it can be concluded that POC export fluxes increase while the passing waters are advected around and over the seamount, with the highest export fluxes occurring on the downstream side of the seamount. This supports the view that biogeochemical and biological effects of tall seamounts in surface-ocean waters might be strongest at some downstream distance from, rather than centred around, the seamount summit. Based on measured (vessel-mounted ADCP) and modelled (regional flow field: AVISO; internal tides at Senghor: MITgcm) flow dynamics, it is proposed that tidally generated internal waves result in a 'screen' of increased rates of energy dissipation that runs across the seamount and leads to a combination of two factors that caused the increased POC export above the seamount: (1) sudden increased upward transport of nutrients into the euphotic zone, driving brief pulses of primary production of new particulate matter, followed by the particles' export into deeper waters; and (2) pulses of increased shear-driven aggregation of smaller, slower-settling into larger, faster-settling particles. This study shows that, under certain conditions, there can be an effect of a tall seamount on aspects of surface-ocean biogeochemistry, with tidal dynamics playing a prominent role. It is speculated that these effects can control the spatiotemporal distribution of magnitude and nutritional quality of the flux of food particles to the benthic and benthic-pelagic communities at and near tall seamounts.

  18. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

    PubMed

    Huvenne, Veerle A I; Tyler, Paul A; Masson, Doug G; Fisher, Elizabeth H; Hauton, Chris; Hühnerbach, Veit; Le Bas, Timothy P; Wolff, George A

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.

  19. A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge in Submarine Canyon

    PubMed Central

    Huvenne, Veerle A. I.; Tyler, Paul A.; Masson, Doug G.; Fisher, Elizabeth H.; Hauton, Chris; Hühnerbach, Veit; Le Bas, Timothy P.; Wolff, George A.

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked – quite literally – and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin. PMID:22194903

  20. Seamounts and ferromanganese crusts within and near the U.S. EEZ off California - Data for RV Farnella cruise F7-87-SC

    USGS Publications Warehouse

    Hein, James R.; Reid, Jane A.; Conrad, Tracey A.; Dunham, Rachel E.; Clague, David A.; Schulz, Marjorie S.; Davis, Alice S.

    2010-01-01

    The purpose of this report is to present and briefly describe ship-board and laboratory data for a U.S. Geological Survey (USGS) research cruise aboard the RV Farnella that took place December 3-21, 1987 (cruise F7-87-SC). The purpose of the cruise was to survey seamounts and ferromanganese crusts within and near the U.S. Exclusive Economic Zone (EEZ) off California. Eight seamounts were studied - Rodriguez, San Marcos, Adam, Hoss, Little Joe, Ben, Flint, and Jasper. A geophysical survey of Jasper Seamount took place, but that seamount was not sampled; whereas Adam and Hoss Seamounts were sampled, but not surveyed with geophysics lines.

  1. Metamorphosing reef fishes avoid predator scent when choosing a home.

    PubMed

    Vail, Alexander L; McCormick, Mark I

    2011-12-23

    Most organisms possess anti-predator adaptations to reduce their risk of being consumed, but little is known of the adaptations prey employ during vulnerable life-history transitions when predation pressures can be extreme. We demonstrate the use of a transition-specific anti-predator adaptation by coral reef fishes as they metamorphose from pelagic larvae to benthic juveniles, when over half are consumed within 48 h. Our field experiment shows that naturally settling damselfish use olfactory, and most likely innate, predator recognition to avoid settling to habitat patches manipulated to emit predator odour. Settlement to patches emitting predator odour was on average 24-43% less than to control patches. Evidence strongly suggests that this avoidance of sedentary and patchily distributed predators by nocturnal settlers will gain them a survival advantage, but also lead to non-lethal predator effects: the costs of exhibiting anti-predator adaptations. Transition-specific anti-predator adaptations, such as demonstrated here, may be widespread among organisms with complex life cycles and play an important role in prey population dynamics.

  2. The ploys of sex: relationships among the mode of reproduction, body size and habitats of coral-reef brittlestars

    NASA Astrophysics Data System (ADS)

    Hendler, Gordon; Littman, Barbara S.

    1986-08-01

    Observations were made of 33 species of brittlestars (3980 specimens) from specific substrata collected in four zones on the Belize Barrier Reef, Caribbean Sea. The body size of most species of brittlestars with planktonic larvae differs significantly among different substrata. Generally, individuals from the calcareous alga Halimeda opuntia are smallest, those found in corals ( Porites porites, Madracis mirabilis, and Agaricia tenuifolia) are larger, and those from coral rubble are the largest. This suggests that brittlestars with planktonic larvae move to new microhabitats as they grow. In contrast, most brooding and fissiparous species are relatively small and their size-distributions are similar among all substrata. Halimeda harbours denser concentrations of brittlestars and more small and juvenile individuals than the other substrata. Juveniles of the brooding and fissiparous species are most common in Halimeda on the Back Reef whereas juveniles developing from planktonic larvae are most common in Halimeda patches in deeper water. Fissiparity and brooding may be means for individuals (genomes) of small, apomictic species to reach large size (and correspondingly high fecundities) in patchy microhabitats that select for small body sizes. Small brittlestar species and juveniles are most numerous in the microhabitats called refuge-substrata, such as Halimeda, which may repel predators and reduce environmental stress. Whether young brittlestars are concentrated in refuge-substrata through settlement behavior, migration, or differential survival remains unknown. Experiments revealed that coral polyps kill small brittlestars, perhaps accounting for the rarity of small and juvenile brittlestars in coral substrata.

  3. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments

    USGS Publications Warehouse

    Andrefouet, S.; Kramer, Philip; Torres-Pulliza, D.; Joyce, K.E.; Hochberg, E.J.; Garza-Perez, R.; Mumby, P.J.; Riegl, Bernhard; Yamano, H.; White, W.H.; Zubia, M.; Brock, J.C.; Phinn, S.R.; Naseer, A.; Hatcher, B.G.; Muller-Karger, F. E.

    2003-01-01

    Ten IKONOS images of different coral reef sites distributed around the world were processed to assess the potential of 4-m resolution multispectral data for coral reef habitat mapping. Complexity of reef environments, established by field observation, ranged from 3 to 15 classes of benthic habitats containing various combinations of sediments, carbonate pavement, seagrass, algae, and corals in different geomorphologic zones (forereef, lagoon, patch reef, reef flats). Processing included corrections for sea surface roughness and bathymetry, unsupervised or supervised classification, and accuracy assessment based on ground-truth data. IKONOS classification results were compared with classified Landsat 7 imagery for simple to moderate complexity of reef habitats (5-11 classes). For both sensors, overall accuracies of the classifications show a general linear trend of decreasing accuracy with increasing habitat complexity. The IKONOS sensor performed better, with a 15-20% improvement in accuracy compared to Landsat. For IKONOS, overall accuracy was 77% for 4-5 classes, 71% for 7-8 classes, 65% in 9-11 classes, and 53% for more than 13 classes. The Landsat classification accuracy was systematically lower, with an average of 56% for 5-10 classes. Within this general trend, inter-site comparisons and specificities demonstrate the benefits of different approaches. Pre-segmentation of the different geomorphologic zones and depth correction provided different advantages in different environments. Our results help guide scientists and managers in applying IKONOS-class data for coral reef mapping applications. ?? 2003 Elsevier Inc. All rights reserved.

  4. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs

    NASA Astrophysics Data System (ADS)

    Henry, L.-A.; Moreno Navas, J.; Roberts, J. M.

    2013-04-01

    We investigated how interactions between hydrography, topography and species ecology influence the assembly of species and functional traits across multiple spatial scales of a cold-water coral reef seascape. In a novel approach for these ecosystems, we used a spatially resolved complex three-dimensional flow model of hydrography to help explain assembly patterns. Forward-selection of distance-based Moran's eigenvector mapping (dbMEM) variables identified two submodels of spatial scales at which communities change: broad-scale (across reef) and fine-scale (within reef). Variance partitioning identified bathymetric and hydrographic gradients important in creating broad-scale assembly of species and traits. In contrast, fine-scale assembly was related more to processes that created spatially autocorrelated patches of fauna, such as philopatric recruitment in sessile fauna, and social interactions and food supply in scavenging detritivores and mobile predators. Our study shows how habitat modification of reef connectivity and hydrography by bottom fishing and renewable energy installations could alter the structure and function of an entire cold-water coral reef seascape.

  5. Geophysical investigation of seamounts near the Ogasawara Fracture Zone, western Pacific

    NASA Astrophysics Data System (ADS)

    Lee, T.-G.; Lee, K.; Hein, J. R.; Moon, J.-W.

    2009-03-01

    This paper provides an analysis of multi-channel seismic data obtained during 2000-2001 on seamounts near the Ogasawara Fracture Zone (OFZ) northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone that includes many seamounts. Seven units are delineated on the basis of acoustic characteristics and depth: three units (I, II, and III) on the summit of seamounts and four units (IV, V, VI, and VII) in basins. Acoustic characteristics of layers on the summit of guyots and dredged samples indicate that the seamounts had been built above sea level by volcanism. This was followed by reef growth along the summit margin, which enabled deposition of shallow-water carbonates on the summit, and finally by subsidence of the edifices. The subsidence depth of the seamounts, estimated from the lower boundary of unit II, ranges between 1,550 and 2,040 m. The thick unit I of the southern seamounts is correlated with proximity to the equatorial high productivity zone, whereas local currents may have strongly affected the distribution of unit I on northern seamounts. A seismic profile in the basin around the Ita Mai Tai and OSM4 seamounts shows an unconformity between units IV and V, which is widespread from the East Mariana Basin to the Pigafetta Basin.

  6. Fish Biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An Updated Database

    PubMed Central

    Pinheiro, Hudson T.; Mazzei, Eric; Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Carvalho-Filho, Alfredo; Braga, Adriana C.; Costa, Paulo A. S.; Ferreira, Beatrice P.; Ferreira, Carlos Eduardo L.; Floeter, Sergio R.; Francini-Filho, Ronaldo B.; Gasparini, João Luiz; Macieira, Raphael M.; Martins, Agnaldo S.; Olavo, George; Pimentel, Caio R.; Rocha, Luiz A.; Sazima, Ivan; Simon, Thiony; Teixeira, João Batista; Xavier, Lucas B.; Joyeux, Jean-Christophe

    2015-01-01

    Despite a strong increase in research on seamounts and oceanic islands ecology and biogeography, many basic aspects of their biodiversity are still unknown. In the southwestern Atlantic, the Vitória-Trindade Seamount Chain (VTC) extends ca. 1,200 km offshore the Brazilian continental shelf, from the Vitória seamount to the oceanic islands of Trindade and Martin Vaz. For a long time, most of the biological information available regarded its islands. Our study presents and analyzes an extensive database on the VTC fish biodiversity, built on data compiled from literature and recent scientific expeditions that assessed both shallow to mesophotic environments. A total of 273 species were recorded, 211 of which occur on seamounts and 173 at the islands. New records for seamounts or islands include 191 reef fish species and 64 depth range extensions. The structure of fish assemblages was similar between islands and seamounts, not differing in species geographic distribution, trophic composition, or spawning strategies. Main differences were related to endemism, higher at the islands, and to the number of endangered species, higher at the seamounts. Since unregulated fishing activities are common in the region, and mining activities are expected to drastically increase in the near future (carbonates on seamount summits and metals on slopes), this unique biodiversity needs urgent attention and management. PMID:25738798

  7. Structural failure and drowning of Johnston Atoll, central Pacific Basin

    NASA Astrophysics Data System (ADS)

    Keating, Barbara H.

    Emery (1956) and Ashmore (1973) described the geology of Johnston Atoll (Northern Line Islands chain) and pointed out the anomalous structure of the atoll. These studies led Ashmore )1973) to suggest that the atoll itself is tilted. Johnston Atoll appears to be an example of a seamount that is undergoing a transition from an atoll to a drowned seamount (guyot). Submersible studies of the shallow carbonate bank demonstrate that the carbonate bank displays important karstic features. Recent side-scan sonar studies of the southern flank of this seamount provide evidence that the southern flank of the seamount has undergone substantial mass-wasting. We hypothesize that the mass-wasting of the seamount has loaded the seafloor surrounding Johnston Island unevenly. The southeast Johnston Basin lies 700 m shallower than the southwest Johnston Basin. The loading of the southeast Johnston Basin has resulted in differential subsidence of the sea floor surrounding the seamount which has resulted in the tilting of the seamount (0.016°) and is responsible for the drowning of much of the reef. It is suggested that local structural failure, preferential erosion and drainage, and differential subsidence of seamounts can cause drowning of reefs which may lead to the formation of guyots.

  8. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This detailed view of the Great Barrier Reef, Queensland, Australia (19.5S, 149.5E) shows several small patch reefs within the overall reef system. The Great Barrier Reef, largest in the world, comprises thousands of individual reefs of great variety and are closely monitored by marine ecologists. These reefs are about 6000 years old and sit on top of much older reefs. The most rapid coral growth occurs on the landward side of the reefs.

  9. Quantifying coastal connectivity of coral spawn and larvae around Ryukyu Islands in the East China Sea

    NASA Astrophysics Data System (ADS)

    Odani, S.; Uchiyama, Y.; Kashima, M.; Kamidaira, Y.; Mitarai, S.

    2016-12-01

    Ryukyu Islands in the East China Sea are in a subtropical climate, hosting desirable environment for abundant coral ecosystem. Okinawa Main Island is the most densely populated island among them with tremendous tourist attractions including enchanting coral reefs and beaches. Kamidaira et al. (2016) suggested that the Kuroshio warm water maintains warmer water temperature favorable to corals around the island due mainly to intermittent eddy heat transport. It is presumed that the Kuroshio and associated eddy mixing also promote the transport and dispersal of coral spawn and larvae across the islands, whereas the area has suffered from coral breeching in the recent decades. Therefore, for optimal preservation and protection of the coral habitats around Ryukyu Island, we conduct a double nested high-resolution synoptic ocean modeling using ROMS with grid spacing down to 1 km coupled with an offline Lagrangian particle tracking model to investigate dispersal of coral spawn and larvae released from about 20 major islands and lagoons. Based on the model outcome, we quantify connectivity using Lagrangian probability density functions (PDFs) of the Lagrangian particles (e.g., Mitarai et al., 2009) among Ryukyu Islands. We then focus on the larval dispersal released from Sekisei Lagoon in Yaeyama Islands close to Taiwan, where we have carried out a series of in-situ surface drifter measurement. To compare the observation with the model, 160 source and sink patches with a diameter of 3 km are defined around Sekisei Lagoon and Okinawa Main Island for quantification of the detailed connectivity between them. The advection time is assumed for no more than 3 weeks to represent the lifespan of coral spawn and larvae. A PDF analysis suggests that the particles mostly remain near the released areas with predominant clockwise circulation around the lagoon, while approximately less than 5 % of particles are trapped and transported northeastward in long distance by the Kuroshio. The trajectories show that some of these particles are transported to approach Okinawa Main Island while some are trapped by eddies between the Kuroshio and the island, suggesting that eddies act to promote both particle beaching on the islands as well as trapping in the offshore.

  10. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    PubMed

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  11. Magnetic anomaly study and geologic implications for Gilbert and Tokelau seamounts, Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sager, W. W.; Koppers, A. A.; Staudigel, H.

    2006-12-01

    The Gilbert and Tokelau seamounts are linear chains in the central Pacific with trends similar to the Emperor seamounts, implying the two poorly-known chains were formed by the same mechanism, widely regarded as hotspot volcanism. Multibeam bathymetry and magnetic data were collected over many Gilbert and Tokelau seamounts and have been used to make magnetic models to help understand the geologic evolution of the two chains. Magnetic models were done for 10 Gilbert and 10 Tokelau seamounts. Gilbert seamounts gave about equal number of reversed and normal polarity models and several have complex magnetizations that may indicate a mixture of opposing polarity rocks. Both observations imply formation during a time that included multiple geomagnetic reversals, consistent with radiometric dates from dredged rocks (65-72 Ma) [Koppers, A., and H. Staudigel, Science, 307, p. 905, 2005]. In the Tokelau chain, large volcanic edifices with summit islands (Howland, Baker, Fakaofu) also appear to have complex anomalies, making interpretation difficult. These volcanoes may also have formed over periods of time including magnetic reversals. The rest of the modeled central Tokelau seamounts have simpler magnetic anomalies and all but one is reversely polarized (6 reversed, 1 normal). Although this bias seems unusual if the geomagnetic field spent equal time in both polarities, it is consistent with radiometric ages of 59-66 Ma [Koppers and Staudigel, 2005], a period of dominantly reversed polarity. Paleomagnetic poles calculated from both seamount groups fall along the N-S trend of the Late Cretaceous to Cenozoic Pacific apparent polar wander path, consistent with Latest Cretaceous or early Cenozoic radiometric ages. More than half of the poles lie >30° east of the accepted polar wander path, perhaps indicating that the early Cenozoic polar wander path should be farther east. Ten (55%) of the paleomagnetic poles have lower latitudes than expected for Late Cretaceous or Cenozoic seamounts and all but one of these seamounts is reversely polarized. This situation implies a present-field overprint that steepens the calculated magnetization vectors for these seamounts and also renders the calculated seamount paleolatitudes unsuitable for interpretation.

  12. Off-Axis Seamount Lavas at 8°20' N Span the Entire Range of East Pacific Rise MORB Compositions

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Wanless, V. D.; Perfit, M. R.; Gregg, P. M.; Fornari, D. J.; McCully, E.; Ridley, W. I.

    2017-12-01

    Lavas erupted at off-axis seamounts can provide a window into mantle heterogeneity and melting systematics that are not easily observed on-axis at fast-spreading mid-ocean ridges (MORs), where melts are efficiently mixed and homogenized within shallow axial magma chambers. To investigate off-axis magmatism, we systematically mapped the 8°20' N seamount chain in November of 2016 on R/V Atlantis using shipboard EM122 multibeam system and AUV Sentry. This 160-km long chain of off-axis seamounts and ridges is located perpendicular to the ridge axis, west of the East Pacific Rise (EPR) and north of the Siqueiros Fracture Zone. The high-resolution surface and AUV-based multibeam and AUV sidescan maps are combined with geochemical analyses of 300 basalt samples, collected using HOV Alvin and dredging, to evaluate magmatic plumbing and sources off-axis. Preliminary major and trace element concentrations reveal remarkable geochemical heterogeneity (including both normal and enriched basalt compositions) across the entire seamount chain and within individual seamounts. For example, (La/Sm)N contents span the entire range of known values for basalts from northern Pacific MORs and seamounts (0.45—2.76). MgO contents vary from 10.25 to 4.56 wt. % across the seamount chain and by as much as 3.61 wt. % from volcanic features sampled at an individual seamount (Beryl). Additionally, K2O/TiO2 ratios range from 4.9 to 61.3 across the seamount chain, and by as much as 54.4 at a single seamount (Beryl), indicating heterogeneous mantle sources or variable extents of melting occur at both regional and local scales. We combine the geochemical results and bathymetric maps with petrologic models to evaluate extents and depths of fractional crystallization and mantle melting in the off-axis environment.

  13. An Ecosystem Evaluation Framework for Global Seamount Conservation and Management

    PubMed Central

    Taranto, Gerald H.; Kvile, Kristina Ø.; Pitcher, Tony J.; Morato, Telmo

    2012-01-01

    In the last twenty years, several global targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at global, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize management efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow managers to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their management objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals. PMID:22905190

  14. An ecosystem evaluation framework for global seamount conservation and management.

    PubMed

    Taranto, Gerald H; Kvile, Kristina Ø; Pitcher, Tony J; Morato, Telmo

    2012-01-01

    In the last twenty years, several global targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at global, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize management efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow managers to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their management objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals.

  15. Carbonate sedimentology of Seribu Islands patch reef complex: a literature review

    NASA Astrophysics Data System (ADS)

    Utami, D. A.; Hakim, A. R.

    2018-02-01

    Many oil and gas reservoirs in the world are reserved in fossil carbonate sediment. Knowledge of modern carbonate sedimentology is important for a better understanding of ancient carbonate sedimentation. Equatorial coral reefs comprise almost half of the world coral reef production, and yet their dynamics, distributions, and cycles are still not well understood. Contrary to their subtropical counterpart, South East Asian carbonate system is known to be strongly influenced by the combination of oceanographic and climatic conditions. Hence carbonate sediments in the tropics have a distinct depositional system, and ought to be treated differently since common distribution models were developed from the (sub-tropical) Atlantic and Pacific regions. This paper systematically summarizes carbonate sediment studies in Seribu Islands and its dominant oceanographic configuration to provide insights and a sense of research direction in the future.

  16. Paleocommunity turnover in an Early Pliocene seamount from southeastern Spain

    NASA Astrophysics Data System (ADS)

    García-Ramos, Diego Antonio; Zuschin, Martin

    2017-04-01

    Seamounts are topographic elevations under the sea, regardless of their size and relief. They support rich living communities and are important biodiversity hotspots, but many of the fundamental ecological processes that maintain seamount communities remain poorly understood. In contrast to snapshot observations conducted on extant seamounts, fossil examples may provide the opportunity to assess how temporal changes in physico-chemical parameters relate to paleocommunity turnovers in these particular biotopes. Here we deal with an Early Pliocene (Zanclean) small seamount in southeastern Spain. This classic locality is extremely rich in fossil macroinvertebrates and was subject to studies of some taxonomic groups in the late seventies. However, the detailed stratigraphy is herein outlined for the first time. The overall feature is a shallowing upward succession about 35 m thick which onlaps a Miocene volcanic ridge. The occurrence of the planktonic foraminifera Globorotalia margaritae and G. puncticulata allow attribution to the MPl3 biozone of the Mediterranean Pliocene. We measured two sections that can be divided in a lower interval of fine-grained bryozoan-rich deposits and a upper interval of biocalcarenite increasingly rich in rhodoliths upsection. The whole series is bioturbated, with Thalassinoides traces being more common upsection. Biofabrics comprise mostly densely-packed suites of disarticulated and fragmented shells of calcitic fauna (large oysters are often bioeroded by clionid sponges), suggesting relatively low sedimentation rates and reworking by storms (e.g., channelized shell-beds, tubular tempestites). The prevailing taxonomic groups are cheilostome bryozoans, oysters, brachiopods, pectinids, echinoderms, cirripedes and corals. The lower interval contains octocoral internodes (Isididae) (only recorded at the base of the section). Scleratinians like Balanophyllia? decrease in abundance upsection. Bryozoans are extremely abundant and diverse, with remarkable bryoliths of Celleporaria palmata, Turbicellepora coronopus, and reteporiform colonies of Reteporella sp. in the less densely-packed beds. The cirripede Creusia phryxa is very common. Pectinid assemblages are dominated by Hinnites crispus, H. ercolanianus, Manupecten pesfelis, Mimachlamys varia and Crassadoma multistriata. Oysters are represented by Neopycnodonte and large Hyotissa. The upper part of the lower interval records clumps of Neopycnodonte sp. This is the Pliocene locality in Spain recording the highest diversity of brachiopods: Novocrania anomala, Joania cordata, Megathiris detruncata, Megerlia truncata, Terebratulina retusa, Lacazella mediterranea, Aphelesia bipartita and Terebratula calabra. The latter two species are more abundant in the middle part of the section, Terebratula forming pavements. Most common echinoids are Stylocidaris? sp., Echinocyamus, and Arbacina, while fragments of spatangoids like Ova and Spatangus are less common. Crinoid cirrals and ophiourid vertebrae are scarce. The upper interval commences with sparse rhodolith debris while at the very top complete rhodoliths are the dominant bioclasts together with pectinids. Common taxa in the lower interval decrease in abundance or disappear. Pectinids are replaced by Pecten spp. and rare Gigantopecten latissimus; Aequipecten scabrellus is most abundant in the middle part and A. opercularis dominates at the very top. Fragments of Clypeaster start to occur and Ostrea is increasingly common. Preliminary results indicate a decrease of diversity concomitant with a shallowing upward trend.

  17. Modeling internal wave generation by seamounts in oceans

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.

    2017-12-01

    Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.

  18. Trawling on seamounts: can we balance exploitation and conservation?

    NASA Astrophysics Data System (ADS)

    Clark, M. R.; O'Driscoll, R. L.; Rowden, A. A.

    2006-12-01

    Seamounts are prominent features of the worlds underwater topography. They are widely regarded as productive, but fragile, habitat. They are the focus of commercial fishing for a number of demersal and pelagic fish and invertebrate species. Most fishing operations have some impact, either on the target species, associated bycatch species, or the benthic communities and habitat. Longlines, gillnets, traps and pots can all have some effect on the seafloor, but bottom trawling is the most well-known for causing considerable impact on the benthic habitat. There are few published studies on seamounts specifically, and recent research in New Zealand will be described. This has focused on deepwater fisheries for species such as orange roughy, which can form large aggregations over seamount features. The research includes analysis of the distribution of commercial catch and effort data from deepwater seamount fisheries, and "compare and contrast" surveys of seamounts that indicate the effects of bottom trawling can be severe on benthic invertebrate fauna. Fishing has clear consequences for structural complexity of the benthic habitat, and can alter species composition, and abundance. The results of such research are discussed with respect to management of seamount habitat in New Zealand, and the search for a balance that can allow sustainable seamount fisheries, and biodiversity conservation.

  19. Evidence of shallow mitochondrial divergence in the slender armorhead, Pentaceros wheeleri (Pisces, Pentacerotidae) from the Emperor Seamount Chain.

    PubMed

    Bae, Seung Eun; Kim, Hanna; Choi, Seok-Gwan; Kim, Jin-Koo

    2018-01-12

    Competitive overexploitation of the slender armorhead, Pentaceros wheeleri, a deep-sea fish inhabiting the Emperor Seamount Chain caused a serious population decline. Therefore, it is urgently necessary to clarify its genetic diversity and connectivity among populations of P. wheeleri for appropriate stock management. For this, we compared 677 base pairs (bp) of mitochondrial (mt) DNA control region (CR) sequences of 80 individuals from three seamounts (the Milwaukee, Kinmei, and Koko Seamounts) in the southern part of the Emperor Seamount Chain. Contrary to our expectation, the three seamount populations showed high genetic diversity, not yet reflecting effects from the recent population decline or due to mixed two clades. Analysis of molecular variance indicated no significant genetic differentiation between seamount populations, however, the neighbour-joining tree and minimum spanning network showed significant separation into two clades (K2P distance= 1.2-3.2%, ϕ st  = 0.5739, p < .05) regardless of seamount. The divergence time between the two clades was estimated to be 0.3-0.8 Mya, during the period of Pleistocene glacial cycles, suggesting that associated environmental changes and the unique life history traits of Pentaceros spp. might have resulted in the initiation of divergence between these clades.

  20. Statistical self-similarity of hotspot seamount volumes modeled as self-similar criticality

    USGS Publications Warehouse

    Tebbens, S.F.; Burroughs, S.M.; Barton, C.C.; Naar, D.F.

    2001-01-01

    The processes responsible for hotspot seamount formation are complex, yet the cumulative frequency-volume distribution of hotspot seamounts in the Easter Island/Salas y Gomez Chain (ESC) is found to be well-described by an upper-truncated power law. We develop a model for hotspot seamount formation where uniform energy input produces events initiated on a self-similar distribution of critical cells. We call this model Self-Similar Criticality (SSC). By allowing the spatial distribution of magma migration to be self-similar, the SSC model recreates the observed ESC seamount volume distribution. The SSC model may have broad applicability to other natural systems.

  1. Interaction between inorganic nutrients and organic matter in controlling coral reef communities in Glovers Reef Belize.

    PubMed

    McClanahan, T R; Steneck, R S; Pietri, D; Cokos, B; Jones, S

    2005-05-01

    We studied the responses of algae, corals, and small fish to elevated inorganic fertilizer, organic matter, and their combination over a 49-day summer period in cages that simulated the coral reef in the remote Glovers reef atoll, Belize. The addition of organic matter reduced while fertilization had no effect on the numbers of herbivorous damsel and parrotfishes. All measures of algal biomass were influenced by fertilization. The combined inorganic and organic enrichment produced the highest algal biomass, which is most likely due to the combined effect of higher nutrients and lower herbivory. The cover of turf and total algae were influenced by all treatments and their interactions and most strongly and positively influenced by fertilization followed by organic matter and the combination of organic matter and inorganic fertilizer. The inorganic and combined treatments were both dominated by two turf algae, Enteromorpha prolifera and Digenia simplex, while the nonfertilized treatments were dominated by brown frondose algae Lobophora variegata, Padina sanctae, and Dictyota cervicornis. The organic matter treatment had greater cover of P. sanctae and D. cervicornis than the untreated control, which was dominated by Lobophora variegata, also the dominant algae on the nearby patch reefs. Crustose corallines grew slowly ( approximately 2.5 mm/49 days) and were not influenced by the treatments when grown on vertical surfaces but decreased on horizontal coral plates in the combined organic matter and fertilization treatment. No mortality occurred for the two coral species that were added to the cages. Porites furcata darkened in the fertilized cages while there was a mix of paling and darkening for a small amount of the coral tissue of Diploria labyrinthiformes. Inorganic fertilization stimulates small filamentous turf algae and Symbiodinium living in coral but inhibits brown frondose algae. Organic matter inhibits small herbivorous fish, L. variegata, and encrusting coralline algae when growing on horizontal surfaces.

  2. ANALYSIS OF THYRRENIAN SEAMOUNTS ATTRACTIVENESS ON STRIPED DOLPHIN AND SEATURTLE.C. Fiori1,2, J. Alessi1, A. Mandich1, C. Paoli1, P. Vassallo1 (1) University of Genoa, DISTAV; C.so Europa 26 16132 Genoa (2) MENKAB: il respiro del mare; Lungomare Matteotti 17100 Savona *cristina.fiori@unige.it

    NASA Astrophysics Data System (ADS)

    Fiori, C.

    2016-02-01

    The offshore Mediterranean oceanographic systems are complex and partially unknown. Some features such as seamounts are ususally reported as stepping-stones for feeding of many species among which top-predators despite specific studies on the Mediterranean realm are missing. In the framework of the PROMETEOS project, 64 seamounts were identified in Tyrrhenian Sea (NW Mediterranean) and specific morphological characteristics have been calculated for each seamount aiming at the identification of those features triggering the greatest attraction effect. The distributions of striped dolphins and sea turtles have been considered in this analysis as proxies of the seamount's importance for pelagic fauna. A total of 467 sightings of striped dolphins (Stenella coeruleoalba) have been considered together with 127 sightings of sea turtles (Caretta caretta). Random Forest regression technique have been applied to assess the importance of seamounts and the relevance of different seamounts' features on this species.

  3. A Submarine Perspective on Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2011-12-01

    Postwar improvements in navigation, sonar-based mapping, and submarine photography enabled the development of bathymetric maps, which revealed submarine morphologic features that could be dredged or explored and sampled with a new generation of manned and unmanned submersibles. The maps revealed debris fields from giant landslides, the great extent of rift zones radiating from volcanic centers, and two previously unknown submarine volcanoes named Mahukona and Loihi, the youngest Hawaiian volcano. About 70 major landslides cover half the flanks of the Hawaiian Ridge out to Midway Island. Some of the landslides attain lengths of 200 km and have volumes exceeding 5,000 km3. More recent higher resolution bathymetry and sidescan data reveal that many submarine eruptions construct circular, flat-topped, monogenetic cones; that large fields of young strongly alkalic lava flows, such as the North Arch and South Arch lava fields, erupt on the seafloor within several hundred km of the islands; and that alkalic lavas erupt during the shield stage on Kilauea and Mauna Loa. The North Arch flow field covers about 24,000 km2, has an estimated volume between about 1000 and 1250 km3, has flows as long as 108 km, and erupted from over 100 vents. The source and melting mechanisms for their production is still debated. The maps also displayed stair-step terraces, mostly constructed of drowned coral reefs, which form during early rapid subsidence of the volcanoes during periods of oscillating sea level. The combination of scuba and underwater photography facilitated the first motion pictures of the mechanism of formation of pillow lava in shallow water offshore Kilauea. The age progression known from the main islands was extended westward along the Hawaiian Ridge past Midway Island, around a bend in the chain and northward along the Emperor Seamounts. Radiometric dating of dredged samples from these submarine volcanoes show that the magma source that built the chain has been active for over 80 Ma and established the remarkable linearity of the age-progression along the chain. Glass rinds on submarine lava quenched at depth contain initial magmatic volatiles and yield data on the juvenile water, sulfur, CO2, and rare gas contents of basaltic magmas, and continue to reveal nuances of the volatile contents of lava. Rock sampling at Loihi Seamount led to the discovery of the pre-shield alkalic phase of Hawaiian volcanism, which mirrors the well-known post-shield alkalic phase. Lava compositions from the Hawaiian Ridge and Emperor Seamounts have clear affinities to present-day Hawaiian lavas, but subtle source differences as well. The progression from small to large and back to small degrees of melting at individual volcanoes and the compositional changes along the chain constrain the melting processes and source compositions of Hawaiian volcanism. Coupling the age of lavas with that of submerged coral reefs has provided data on the growth and subsidence of volcanic centers. This information has meshed nicely with the age, composition, and morphology of lavas from the 3.2-km-deep Hawaiian Scientific Drill Hole. Submarine studies have taught us much about the workings of Hawaiian Volcanoes, and in the process have stimulated new work and concepts on marine volcanism worldwide.

  4. A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry

    USGS Publications Warehouse

    Zawada, D.G.; Brock, J.C.

    2009-01-01

    Coral reefs represent one of the most irregular substrates in the marine environment. This roughness or topographic complexity is an important structural characteristic of reef habitats that affects a number of ecological and environmental attributes, including species diversity and water circulation. Little is known about the range of topographic complexity exhibited within a reef or between different reef systems. The objective of this study was to quantify topographic complexity for a 5-km x 5-km reefscape along the northern Florida Keys reef tract, over spatial scales ranging from meters to hundreds of meters. The underlying dataset was a 1-m spatial resolution, digital elevation model constructed from lidar measurements. Topographic complexity was quantified using a fractal algorithm, which provided a multi-scale characterization of reef roughness. The computed fractal dimensions (D) are a measure of substrate irregularity and are bounded between values of 2 and 3. Spatial patterns in D were positively correlated with known reef zonation in the area. Landward regions of the study site contain relatively smooth (D ??? 2.35) flat-topped patch reefs, which give way to rougher (D ??? 2.5), deep, knoll-shaped patch reefs. The seaward boundary contains a mixture of substrate features, including discontinuous shelf-edge reefs, and exhibits a corresponding range of roughness values (2.28 ??? D ??? 2.61). ?? 2009 Coastal Education and Research Foundation.

  5. Magmatic Plumbing Systems in the Eastern Galápagos: Monogenetic Seamounts Surrounding San­tiago Island­

    NASA Astrophysics Data System (ADS)

    Schwartz, D. M.; Wanless, V. D.; Soule, S. A.; Kurz, M. D.

    2017-12-01

    The hotspot derived Galápagos Archipelago consists of innumerable subaerial and submarine volcanic features, ranging from monogenetic cones to complex multigenetic islands. The older, eastern islands of Santiago, Santa Cruz, and San Cristobal have remained active long since their transport off the hotspot center, and erupt variable lava compositions from distributed vent systems. Two recent cruises to the Galápagos by the E/V Nautilus (7/15) and M/V Alucia (8/15) mapped and sampled seamounts surrounding Santiago, to assess their origins and their relationship to the magmatic plumbing systems of the larger subaerial volcano. We collected 74 rock samples from 11 seamounts surrounding Santiago (18-588 m depth), by ROV and HOV and analyzed them for major and trace element concentrations, and 3He/4He. We have identified 34 seamounts with relief >100 m, resulting in a total seamount volume of 6.7 km3, which is 8% of the subaerial volume of Santiago Island (82 km3). The seamounts are comprised of relatively mafic (Mg# = 45-67), tholeiitic to mildly alkaline (K2O+Na2O = 1.4-5.4 wt%) basalts. Limited variability of trace element ratios at individual seamounts suggest that they are monogenetic in origin (e.g., RSD of [La/Sm]N at 10 seamounts < 5%). The highest density of seamounts is located off the island's eastern flank. These seamounts form multiple lineaments and are variably elongate (mean aspect ratio = 1.7) subparallel to their respective lineaments (mean elongation direction = 96°), and to the strike of the elliptical island of Santiago. Seamounts along single lineaments typically have similar trace element ratios, but variable chemistries between closely spaced lineaments suggests they were generated from different extents of melting (e.g., [Sm/Yb]N= 1.3-2.3) and mantle sources (3He/4He =8.5-11.9 RA; [La/Nb] N = 0.80-1.1). The compositions of these lavas, and those from more dispersed, circular (mean aspect ratio = 1.1) seamounts off the island's southwestern flank ([Sm/Yb]N= 2.1-2.5; 3He/4He =10.45 RA; [La/Nb] N =0.84) resemble the suite of Santiago subaerial lavas. The similarity of cone compositions to subaerial lavas, and their geographic distribution, suggests that the seamounts are derived from Santiago's complex magma plumbing system and are subsequently redistributed onto the flanks and seafloor.

  6. The Gulf of Carpentaria heated Torres Strait and the Northern Great Barrier Reef during the 2016 mass coral bleaching event

    NASA Astrophysics Data System (ADS)

    Wolanski, E.; Andutta, F.; Deleersnijder, E.; Li, Y.; Thomas, C. J.

    2017-07-01

    The 2015/16 ENSO event increased the temperature of waters surrounding northeast Australia to above 30 °C, with large patches of water reaching 32 °C, for over two months, which led to severe bleaching of corals of the Northern Great Barrier Reef (NGBR). This study provides evidence gained from remote-sensing data, oceanographic data and oceanographic modeling, that three factors caused this excessive heating, namely: 1) the shutdown of the North Queensland Coastal Current, which would otherwise have flushed and cooled the Northern Coral Sea and the NGBR through tidal mixing 2) the advection of warm (>30 °C) water from the Gulf of Carpentaria eastward through Torres Strait and then southward over the NGBR continental shelf, and 3) presumably local solar heating. The eastward flux of this warm water through Torres Strait was driven by a mean sea level difference on either side of the strait that in turn was controlled by the wind, which also generated the southward advection of this warm water onto the NGBR shelf. On the NGBR shelf, the residence time of this warm water was longer inshore than offshore, and this may explain the observed cross-shelf gradient of coral bleaching intensity. The fate of the Great Barrier Reef is thus controlled by the oceanography of surrounding seas.

  7. Geophysical investigation of seamounts near the Ogasawara fracture zone, western Pacific

    USGS Publications Warehouse

    Lee, T.-G.; Lee, Kenneth; Hein, J.R.; Moon, J.-W.

    2009-01-01

    This paper provides an analysis of multi-channel seismic data obtained during 2000-2001 on seamounts near the Ogasawara Fracture Zone (OFZ) northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone that includes many seamounts. Seven units are delineated on the basis of acoustic characteristics and depth: three units (I, II, and III) on the summit of seamounts and four units (IV, V, VI, and VII) in basins. Acoustic characteristics of layers on the summit of guyots and dredged samples indicate that the seamounts had been built above sea level by volcanism. This was followed by reef growth along the summit margin, which enabled deposition of shallow-water carbonates on the summit, and finally by subsidence of the edifices. The subsidence depth of the seamounts, estimated from the lower boundary of unit II, ranges between 1,550 and 2,040 m. The thick unit I of the southern seamounts is correlated with proximity to the equatorial high productivity zone, whereas local currents may have strongly affected the distribution of unit I on northern seamounts. A seismic profile in the basin around the Ita Mai Tai and OSM4 seamounts shows an unconformity between units IV and V, which is widespread from the East Mariana Basin to the Pigafetta Basin. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

  8. Petrology and Geochemistry of Serpentinized Peridotites from a Bonin Fore-arc Seamount

    NASA Astrophysics Data System (ADS)

    Tian, L.; Tuoyu, W.; Dong, Y. H.; Gao, J.; Wu, S.

    2016-12-01

    Serpentinites, which contain up to 13 wt.% of water, are an important reservoir for chemical recycling in subduction zones. During the last two decades, many observations documented the occurrence of fore-arc mantle serpentinites in different locations. Here, we present petrology and whole rock chemistry for serpentinized peridotites dredged from the Hahajima Seamount, which is located 20-60 km west of the junction of the Bonin Trench and the Mariana Trench. Combined with published geochemical data of serpentinites from the Torishima Seamount, Conical Seamount and South Chamorro Seamount in the Izu-Bonin-Mariana fore-arc region, it will allow us to better understand the average composition of serpentinized fore-arc mantle overlying the subducting slab and the role of serpentinized mantle playing in the subduction zone geochemical cycle. The studied ultramafic rocks from the Hahajima Seamount are extensively serpentinized and hydrated (73 to 83%), with loss of ignition values ranging between 13 and 15 wt.%. Our results show that the serpentinized peridotites have Mg number from 88 to 90, and the average MgO/SiO2 is 0.93. The average Al2O3 (0.48 wt.%) and CaO (0.23 wt.%) contents are very low, consistent with low clinopyroxene abundances, and the overall depleted character of the mantle harzburgite protoliths. The serpentinized peridotites from the Hahajima Seamount exhibit similar "U" shape rare earth element (REE) patterns ([La/Sm]N = 3.1-3.6), at higher overall abundances, to the Conical and South Chamorro Seamount suites. One exceptional sample shows the similar REE pattern as serpentinized peridotites from the Torishima Seamount, with depleted light REE concentration ([La/Sm]N =0.7). All the serpentinized peridotites from these four fore-arc seamounts show strong enrichment in fluid-mobile and lithophile elements (U, Pb, Sr and Li). The geochemical signature of the serpentinized peridotites from the seamounts in the Izu-Bonin-Mariana fore-arc region could be interpreted as the result of the combination of extensive partial melting and subsequent percolation of sediment-derived fluids through the mantle wedge [1]. References: [1] Deschamps et al. (2013), Lithos, 178, 96-127.

  9. Seamount Hydrothermal Systems as Analogies for Ocean Worlds: Reaction Paths Throughout the Lo'ihi Seamount (Hawaii Archipelago)

    NASA Astrophysics Data System (ADS)

    Milesi, V.; Shock, E.

    2018-05-01

    Thermodynamic modeling is performed to investigate the possible reaction paths of sea water throughout the Lo'ihi seamount and the associated geochemical supplies of energy that can support autotrophic microbial communities.

  10. Crustal structure across the post-spreading magmatic ridge of the East Sub-basin in the South China Sea: Tectonic significance

    NASA Astrophysics Data System (ADS)

    He, Enyuan; Zhao, Minghui; Qiu, Xuelin; Sibuet, Jean-Claude; Wang, Jian; Zhang, Jiazheng

    2016-05-01

    The 140-km wide last phase of opening of the South China Sea (SCS) corresponds to a N145° direction of spreading with rift features identified on swath bathymetric data trending N055° (Sibuet et al., 2016). These N055° seafloor spreading features of the East Sub-basin are cut across by a post-spreading volcanic ridge oriented approximately E-W in its western part (Zhenbei-Huangyan seamounts chain). The knowledge of the deep crustal structure beneath this volcanic ridge is essential to elucidate not only the formation and tectonic evolution of the SCS, but also the mechanism of emplacement of the post-spreading magmatism. We use air-gun shots recorded by ocean bottom seismometers to image the deep crustal structure along the N-S oriented G8G0 seismic profile, which is perpendicular to the Zhenbei-Huangyan seamounts chain but located in between the Zhenbei and Huangyan seamounts, where topographic changes are minimum. The velocity structure presents obvious lateral variations. The crust north and south of the Zhenbei-Huangyan seamounts chain is ca. 4-6 km in thickness and velocities are largely comparable with those of normal oceanic crust of Atlantic type. To the south, the Jixiang seamount with a 7.2-km thick crust, seems to be a tiny post-spreading volcanic seamount intruded along the former extinct spreading ridge axis. In the central part, a 1.5-km thick low velocity zone (3.3-3.7 km/s) in the uppermost crust is explained by the presence of extrusive rocks intercalated with thin sedimentary layers as those drilled at IODP Site U1431. Both the Jixiang seamount and the Zhenbei-Huangyan seamounts chain started to form by the intrusion of decompressive melt resulting from the N-S post-spreading phase of extension and intruded through the already formed oceanic crust. The Jixiang seamount probably formed before the emplacement of the E-W post-spreading seamounts chain.

  11. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales

    PubMed Central

    Garrigue, Claire; Clapham, Phillip J.; Geyer, Ygor; Kennedy, Amy S.; Zerbini, Alexandre N.

    2015-01-01

    The humpback whale population of New Caledonia appears to display a novel migratory pattern characterized by multiple directions, long migratory paths and frequent pauses over seamounts and other shallow geographical features. Using satellite-monitored radio tags, we tracked 34 whales for between 5 and 110 days, travelling between 270 and 8540 km on their southward migration from a breeding ground in southern New Caledonia. Mean migration speed was 3.53±2.22 km h−1, while movements within the breeding ground averaged 2.01±1.63 km h−1. The tag data demonstrate that seamounts play an important role as offshore habitats for this species. Whales displayed an intensive use of oceanic seamounts both in the breeding season and on migration. Seamounts probably serve multiple and important roles as breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for this species, which can be viewed as a transient component of the seamount communities. Satellite telemetry suggests that seamounts represent an overlooked cryptic habitat for the species. The frequent use by humpback whales of such remote locations has important implications for conservation and management. PMID:26716006

  12. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales.

    PubMed

    Garrigue, Claire; Clapham, Phillip J; Geyer, Ygor; Kennedy, Amy S; Zerbini, Alexandre N

    2015-11-01

    The humpback whale population of New Caledonia appears to display a novel migratory pattern characterized by multiple directions, long migratory paths and frequent pauses over seamounts and other shallow geographical features. Using satellite-monitored radio tags, we tracked 34 whales for between 5 and 110 days, travelling between 270 and 8540 km on their southward migration from a breeding ground in southern New Caledonia. Mean migration speed was 3.53±2.22 km h(-1), while movements within the breeding ground averaged 2.01±1.63 km h(-1). The tag data demonstrate that seamounts play an important role as offshore habitats for this species. Whales displayed an intensive use of oceanic seamounts both in the breeding season and on migration. Seamounts probably serve multiple and important roles as breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for this species, which can be viewed as a transient component of the seamount communities. Satellite telemetry suggests that seamounts represent an overlooked cryptic habitat for the species. The frequent use by humpback whales of such remote locations has important implications for conservation and management.

  13. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  14. From the epipelagic zone to the abyss: Trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic - Part I zooplankton and micronekton

    NASA Astrophysics Data System (ADS)

    Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd

    2017-12-01

    Specific mechanisms, driving trophic interactions within the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure of zooplankton and micronekton above and around Ampère and Senghor, two shallow seamounts in the subtropical and tropical Eastern Atlantic, and over the adjacent abyssal plains. For the identification of food sources and trophic positions stable isotope ratios (δ13C and δ15N) were used. δ13C ranged from -24.7‰ to -15.0‰ and δ15N covered a total range of 0.9-15.9‰. Based on epipelagic particulate organic matter, zooplankton and micronekton usually occupied the 1st-3rd trophic level, including herbivorous, omnivorous and carnivorous taxa. δ13C and δ15N values were generally lower in zooplankton and micronekton of the subtropical waters as compared to the tropical region, due to the differing nutrient availability and phytoplankton communities. Correlations between δ13C and δ15N values of particulate organic matter, zooplankton, micronekton and benthopelagic fishes suggest a linear food chain based on a single energy source from primary production for Ampère Seamount, but no evidence was found for an autochthonus seamount production as compared to the open ocean reference site. Between Senghor Seamount and the open ocean δ13C signatures indicate that hydrodynamic effects at seamounts may modify the energy supply at times, but evidence for a seamount effect on the trophic structure of the pelagic communities was weak, which supports the assumption that seamount communities rely to a large extent on advected food sources.

  15. Tikehau Atoll, French Polynesia

    NASA Image and Video Library

    2017-12-08

    The islands and coral atolls of French Polynesia, located in the southern Pacific Ocean, epitomize the idea of tropical paradise: white sandy beaches, turquoise lagoons, and palm trees. Even from the distance of space, the view of these atolls is beautiful. This image from the Advanced Land Imager on NASA’s Earth Observing-1 (EO-1) satellite shows the southern part of Tikehau Atoll, one of the 78 coral atolls that make up the Tuamotu Archipelago. Patches of coral make star-like spots across the turquoise expanse of the lagoon. A line of tree-covered islets encircles the lagoon. At the southernmost tip of the atoll, a large islet accommodates a small village and an air strip. NASA image created by Jesse Allen, using EO-1 ALI data provided courtesy of the NASA EO-1 Team. Caption by Rebecca Lindsey. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015.

    PubMed

    Mohn, Christian; Denda, Anneke; Christiansen, Svenja; Kaufmann, Manfred; Peine, Florian; Springer, Barbara; Turnewitsch, Robert; Christiansen, Bernd

    2018-04-01

    Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP) measurements during six cruises between 2004 and 2015 in the tropical and subtropical Northeast Atlantic to narrow this gap. Measurements were conducted at seamount locations between the island of Madeira and the Portuguese mainland (Ampère, Seine Seamount), as well as east of the Cape Verde archipelago (Senghor Seamount). The dataset includes two-minute ensemble averaged continuous velocity and backscatter profiles, supplemented by spatially gridded maps for each velocity component, error velocity and local bathymetry. The dataset is freely available from the digital data library PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.883193.

  17. Applications of fractals in ecology.

    PubMed

    Sugihara, G; M May, R

    1990-03-01

    Fractal models describe the geometry of a wide variety of natural objects such as coastlines, island chains, coral reefs, satellite ocean-color images and patches of vegetation. Cast in the form of modified diffusion models, they can mimic natural and artificial landscapes having different types of complexity of shape. This article provides a brief introduction to fractals and reports on how they can be used by ecologists to answer a variety of basic questions, about scale, measurement and hierarchy in, ecological systems. Copyright © 1990. Published by Elsevier Ltd.

  18. Unraveling the Mysteries of Océano Profundo: New organisms, ecosystems and geohazards in deep water around Puerto Rico

    NASA Astrophysics Data System (ADS)

    Cantwell, K. L.; Kennedy, B. R.; Quattrini, A.; Cheadle, M. J.; Sowers, D.; Lobecker, E.; Ford, M.; Garcia-Moliner, G.; Gray, L. M.; Chaytor, J. D.; Demopoulos, A. W.

    2016-02-01

    From February to April 2015, NOAA Ship Okeanos Explorer, America's Ship for Ocean Exploration, surveyed unknown deep-sea ecosystems and potential geohazards off the coast of Puerto Rico and the US Virgin Islands. Over 37,500 km² of high-resolution multibeam sonar data was collected, revealing rugged canyons along shelf breaks, intricate incised channels, and large slumps and slope failures. Twelve remotely operated vehicle (ROV) dives, surveyed seamounts, escarpments, and submarine canyons at depths of 300-6,000 m. Additional ROV exploration of the water column occurred at depths of 800-1200 m. Dives included three of the deepest dives ever conducted in the Puerto Rico Trench and the first exploration of Exocet and Whiting seamounts. Discoveries included assemblages of deep-sea corals (>50 species), and observations of several rare and new species. For example, the seastar Laetmaster spectabilis had not been documented since its original description in 1881 and a new species of benthopelagic cydippid ctenophore was observed at 3900 m in the Aricebo Amphitheater. Other expedition highlights included two rarely observed blind octopods (Cirrothauma murrayi); novel observation of a symbiotic association between predatory tunicates with polychaete associates; and approximately 75 species of demersal fishes, including a new species of wrasse and the first records of Shaefer's anglerfish and the ateleopodid jellynose in Puerto Rican waters. ROV dives traversed elements of the complete geological succession from 1 km deep into the Cretaceous volcanic arc basement, across the carbonate platform sequence unconformity and into the uppermost Pliocene carbonates. Highlights included spectacular slope failure headwall scarps and sub-aerial karstic weathering of the youngest carbonates. All data collected during Océano Profundo 2015 are now publicly available through the National Archives and are awaiting further analysis by the scientific community.

  19. Strong depth-related zonation of megabenthos on a rocky continental margin (∼700-4000 m) off southern Tasmania, Australia.

    PubMed

    Thresher, Ronald; Althaus, Franziska; Adkins, Jess; Gowlett-Holmes, Karen; Alderslade, Phil; Dowdney, Jo; Cho, Walter; Gagnon, Alex; Staples, David; McEnnulty, Felicity; Williams, Alan

    2014-01-01

    Assemblages of megabenthos are structured in seven depth-related zones between ∼700 and 4000 m on the rocky and topographically complex continental margin south of Tasmania, southeastern Australia. These patterns emerge from analysis of imagery and specimen collections taken from a suite of surveys using photographic and in situ sampling by epibenthic sleds, towed video cameras, an autonomous underwater vehicle and a remotely operated vehicle (ROV). Seamount peaks in shallow zones had relatively low biomass and low diversity assemblages, which may be in part natural and in part due to effects of bottom trawl fishing. Species richness was highest at intermediate depths (1000-1300 m) as a result of an extensive coral reef community based on the bioherm-forming scleractinian Solenosmilia variabilis. However, megabenthos abundance peaked in a deeper, low diversity assemblage at 2000-2500 m. The S. variabilis reef and the deep biomass zone were separated by an extensive dead, sub-fossil S. variabilis reef and a relatively low biomass stratum on volcanic rock roughly coincident with the oxygen minimum layer. Below 2400 m, megabenthos was increasingly sparse, though punctuated by occasional small pockets of relatively high diversity and biomass. Nonetheless, megabenthic organisms were observed in the vast majority of photographs on all seabed habitats and to the maximum depths observed--a sandy plain below 3950 m. Taxonomic studies in progress suggest that the observed depth zonation is based in part on changing species mixes with depth, but also an underlying commonality to much of the seamount and rocky substrate biota across all depths. Although the mechanisms supporting the extraordinarily high biomass in 2000-2500 m depths remains obscure, plausible explanations include equatorwards lateral transport of polar production and/or a response to depth-stratified oxygen availability.

  20. Palaeointensity determinations, palaeodirections and magnetic properties of basalts from the Emperor seamounts

    NASA Astrophysics Data System (ADS)

    Carvallo, Claire; Özdemir, Özden; Dunlop, David J.

    2004-01-01

    We measured palaeodirections and palaeointensities by the Thellier method on 93 samples from three of the Emperor seamounts: 20 from Detroit seamount (81 Ma), 48 from Nintoku seamount (56 Ma) and 25 from Koko seamount (48 Ma). Reliable palaeodirections obtained from three lava flows on Nintoku seamount give an average palaeolatitude of 32.7°, which is different from the present-day latitude of Hawaii and supports the hypothesis of a moving hotspot. According to the selection criteria traditionally used in palaeointensity determination, 17 samples give a reliable result. The samples show a very wide variety in unblocking temperatures, revealing an important variation in titanium content and the oxidation state of titanomagnetites. In order to assess the reliability of the palaeofield recording in the accepted samples, we carried out measurements of saturation isothermal remanent magnetization at low temperature and thermomagnetic curves. We found Curie temperatures varying from 250 to 580 °C, not only between seamounts but even within one lava flow. Thermomagnetic curves enabled us to identify titanomaghemite in several lava flows. After rejecting the results from samples showing evidence of maghemitization, only four samples, all from Nintoku seamount, can be considered as truly reliable. The palaeointensity values range between 34.2 and 36.9 μT. The low virtual axial dipole moment (VADM) values calculated from the palaeofield values are consistent with the most reliable VADM estimates in this time range and they are very close to the average VADM in the 0.3-300 Ma time interval.

  1. The Eugen Seibold coral mounds offshore western Morocco: oceanographic and bathymetric steering of a newly discovered cold-water coral province

    NASA Astrophysics Data System (ADS)

    Glogowski, Silke; Dullo, Christian; Flögel, Sascha; Feldens, Peter; Hühnerbach, Veit; von Reumont, Jonas; Krastel, Sebastian; Wynn, Russ B.; Liebetrau, Volker

    2015-04-01

    This study presents new seafloor bathymetric and sidescan sonar data identifying a previously unknown cold-water coral (CWC) province on the Atlantic margin off western Morocco (ca. 31° N). Applying the concept of seawater density as a predictive tool for living CWC reef occurrence during research cruise 32 aboard RV Maria S. Merian in October 2013 CTD casts revealed potential sites. Direct sampling retrieved living coral patches within an extensive field of carbonate mounds, covering an area of ~410 km2 on the upper slope ~40 nautical miles north of Agadir Canyon. Individual mounds are up to 12 m high and are mainly composed of dead cold-water corals Lophelia pertusa thickets at present-day water depths of 678-863 m. Living CWCs represent only a thin veneer and were sampled by box coring in the shallower parts of the mound field between 678 and 719 m. CTD measurements in these shallower areas revealed that the occurrence of these living CWC reefs coincides with the deeper part of the North Atlantic Central Water (NACW) mass exhibiting conservative temperatures Φ of 9.78-9.94° C, absolute salinity SA of 35.632 g/kg, and a sea water density σΦ of 27.31-27.33 kg/m3). This is in good agreement with observations from the Renard Ridge (35° N, Gulf of Cadiz) to the north and sites off Mauretania (17° N-18° N) to the south, 'with the exception of sparse live corals in the latter region, the CWC reefs of both regions consist of a dead fabric in the deeper layer of the NACW slightly above the Mediterranean Outflow Water. The bathymetric and oceanographic settings of this newly discovered CWC site, with its thin veneer of living corals and much larger accumulations of coral rubble, are consistent with published evidence that, over the past three glacial-interglacial cycles, active CWC reef growth south of 50° N was more favourable during glacial times (possibly up to the very early Holocene) in this sector of the northeast Atlantic Ocean. The newly discovered province is here named the Eugen Seibold coral mounds in honour of the pioneering marine geologist Eugen Seibold (1918-2013).

  2. Climate change and regional human pressures as challenges for management in oceanic islands, South Atlantic.

    PubMed

    Soares, Marcelo de Oliveira

    2018-06-01

    This study aimed to determine the main anthropogenic pressures and the effectiveness of management practices in marine protected areas (MPAs) (Rocas Atoll and Fernando de Noronha Archipelago, South Atlantic). The MPAs exhibited high management effectiveness over the last 25 years due to the control of local pressures (i.e., fishing and tourism). However, the increase in regional and global pressures, such as invasive species, marine debris, and climate change stressors (sea-level rise, extreme events, range shifts of species, warming, and ocean acidification), are environmental risks that need to be considered during conservation. Strategies for large scale marine spatial planning, as well as proposals for an integrated management of MPAs (including coral reef islands and seamounts) by the articulation of a network, which reduces regional human pressures and improves ocean governance were discussed. This study provided insights into the challenges faced in the management of MPAs in a rapidly changing ocean. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Litho- and biofacies of Early Cretaceous rudist-bearing carbonate sediments in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Sano, Shin-ichi

    1995-11-01

    Carbonate blocks of late Aptian (Lower Cretaceous) age occur in the Lower Yezo Group of central Hokkaido in northeast Japan. The shallow-water carbonates were emplaced by gravity sliding and rock fall into a deep-water flysch basin. Various lithofacies can be distinguished within the blocks including massive wackestone, bedded packstone and micro-oncoid grainstone, containing corals, rudists, an oyster, gastropods, calcareous algae and an orbitolinid foraminifer. Facies and palaeoecological analyses suggest deposition of low-energy biostromes and sand banks in open lagoonal and restricted environments with local higher-energy shoals and beaches. The presence of calcareous sandstones and abundant insoluble residues in limestones suggest deposition in an attached carbonate platform close to a supply of terrigenous material, rather than deposition upon seamounts within an oceanic setting. A narrow rimmed shelf in tropical-subtropical conditions would have been the depositional environment for these carbonates, which were subsequently deformed into blocks and transported into deep water as a result of the tectonic collapse of the platform.

  4. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Fishing moratorium at Hancock Seamounts. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of...

  5. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Fishing moratorium at Hancock Seamounts. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of...

  6. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Fishing moratorium at Hancock Seamounts. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of...

  7. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Fishing moratorium at Hancock Seamounts. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of...

  8. 50 CFR 665.209 - Fishing moratorium on Hancock Seamount.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Fishing moratorium on Hancock Seamount. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium on Hancock Seamount. Fishing for Hawaii bottomfish and...

  9. In the Footsteps of Charles Darwin: Patterns of Coastal Subsidence and Uplift Associated with Seamount Subduction, Basal Fore-arc Erosion and Seamount Accretion in Latin America

    NASA Astrophysics Data System (ADS)

    Fisher, D. M.; Kirby, S. H.; David, S. W.

    2004-12-01

    In Geological Observations on South America (1846), Charles Darwin described beds of late Cenozoic marine seashells that were uplifted to elevations as much as several hundred meters above some localities on the western coastline of South America and implied that the whole coast was uplifting at geologic time scales. We know now that such evidence is generally restricted to coastal embayments above fore-arc basins where offshore seamounts are colliding with the South American fore arc (e.g., the Juan Fernandez seamount chain, Valpariso Basin and Valpariso Bay). We suggest that the phenomena of basal fore-arc erosion and basin formation and coastal uplift are closely related to effects of seamount subduction. Marine multibeam sonar images and multichannel seismic reflection surveys by others demonstrate that seamounts, although locally cut by normal faults in the outer-rise/near-trench region, initally subduct intact and the primary interaction with the toe of the fore arc is plowing, with material eroded from the fore arc that accumulates above and on the margins of the seamount. Submarine landslides above such regions over-steepened by plowing can lead to coastal embayments far upslope of the plowing. Such plowing interaction can therefore lead to the formation of large forearc basins and coastal embayments such as those at Valpariso, Chile, or narrow corridors of subsidence in the wake of subducting seamounts in Costa Rica. It is also known that the transition between interplate thrust seismicity, representing mechanical coupling between the plates, and aseismic slip occurs at depths of typically 30-60 km and often geographically near coastlines that mark the boundary between outer fore-arc subsidence and inner fore-arc uplift. We suggest that decoupling can occur at the base of seamounts (i.e., the originally sedimented seafloor on which the seamount lavas are laid down) and that such seamounts can be accreted to the fore arc above and lead to coastal uplift. Such basal decoupling is known to occur under active volcanic islands in the open ocean in connection with rifting and gravitational spreading, such as beneath the island of Hawaii. The spatial and temporal patterns of coastal uplift and subsidence on active margins can therefore record the local history of seamount subduction. This conceptual model explains the spatial patterns of offshore subsidence and coastal uplift in Chile and Costa Rica and also has implications for patterns of seismicity along the interplate thrust boundary.

  10. NOAA Office of Ocean Exploration and Research'sOkeanos Explorer Program 2014 Discoveries - U.S. Atlantic Continental Margin and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lobecker, E.; McKenna, L.; Sowers, D.; Elliott, K.; Kennedy, B.

    2014-12-01

    NOAA ShipOkeanos Explorer, the only U.S. federal vessel dedicated to global ocean exploration, made several important discoveries in U.S. waters of the North Atlantic Ocean and Gulf of Mexico during the 2014 field season. Based on input received from a broad group ofmarine scientists and resource managers, over 100,000 square kilometers of seafloor and associated water column were systematically explored using advanced mapping sonars. 39 ROV diveswere conducted, leading to new discoveries that will further ourunderstanding of biologic, geologic, and underwater-cultural heritage secrets hidden withinthe oceans. In the Atlantic, season highlights include completion of a multi-year submarine canyons mapping effort of the continental shelf break from North Carolina to the U.S.-Canada maritime border;new information on the ephemerality of recently discovered and geographically extensive cold water seeps; and continued exploration of the New England Seamount chain; and mapping of two potential historically significant World War II wreck sites. In the Gulf of Mexico, season highlights includecompletion of a multi-year mapping effort of the West Florida Escarpment providing new insight into submarine landslides and detachment zones;the discovery of at least two asphalt volcanoes, or 'tar lilies'; range extensions of deep-sea corals; discovery of two potential new species of crinoids; identification of at least 300 potential cold water seeps; and ROV exploration of three historically significant19th century shipwrecks. In both regions, high-resolution mapping led to new insight into the geological context in which deep sea corals develop,while ROV dives provided valuable observations of deep sea coral habitats and their associated organisms, and chemosynthetic habitats. All mapping and ROV data is freely available to the public in usable data formats and maintained in national geophysical and oceanographic data archives.

  11. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area

    PubMed Central

    SHEPPARD, C. R. C.; ATEWEBERHAN, M.; BOWEN, B. W.; CARR, P.; CHEN, C. A.; CLUBBE, C.; CRAIG, M. T.; EBINGHAUS, R.; EBLE, J.; FITZSIMMONS, N.; GAITHER, M. R.; GAN, C-H.; GOLLOCK, M.; GUZMAN, N.; GRAHAM, N. A. J.; HARRIS, A.; JONES, R.; KESHAVMURTHY, S.; KOLDEWEY, H.; LUNDIN, C. G.; MORTIMER, J. A.; OBURA, D.; PFEIFFER, M.; PRICE, A. R. G.; PURKIS, S.; RAINES, P.; READMAN, J. W.; RIEGL, B.; ROGERS, A.; SCHLEYER, M.; SEAWARD, M. R. D; SHEPPARD, A. L. S.; TAMELANDER, J.; TURNER, J. R.; VISRAM, S.; VOGLER, C.; VOGT, S.; WOLSCHKE, H.; YANG, J. M-C.; YANG, S-Y.; YESSON, C.

    2014-01-01

    The Chagos Archipelago was designated a no-take marine protected area (MPA) in 2010; it covers 550 000 km2, with more than 60 000 km2 shallow limestone platform and reefs. This has doubled the global cover of such MPAs.It contains 25–50% of the Indian Ocean reef area remaining in excellent condition, as well as the world’s largest contiguous undamaged reef area. It has suffered from warming episodes, but after the most severe mortality event of 1998, coral cover was restored after 10 years.Coral reef fishes are orders of magnitude more abundant than in other Indian Ocean locations, regardless of whether the latter are fished or protected.Coral diseases are extremely low, and no invasive marine species are known.Genetically, Chagos marine species are part of the Western Indian Ocean, and Chagos serves as a ‘stepping-stone’ in the ocean.The no-take MPA extends to the 200 nm boundary, and. includes 86 unfished seamounts and 243 deep knolls as well as encompassing important pelagic species.On the larger islands, native plants, coconut crabs, bird and turtle colonies were largely destroyed in plantation times, but several smaller islands are in relatively undamaged state.There are now 10 ‘important bird areas’, coconut crab density is high and numbers of green and hawksbill turtles are recovering.Diego Garcia atoll contains a military facility; this atoll contains one Ramsar site and several ‘strict nature reserves’. Pollutant monitoring shows it to be the least polluted inhabited atoll in the world. Today, strict environmental regulations are enforced.Shoreline erosion is significant in many places. Its economic cost in the inhabited part of Diego Garcia is very high, but all islands are vulnerable.Chagos is ideally situated for several monitoring programmes, and use is increasingly being made of the archipelago for this purpose. PMID:25505830

  12. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest no-take marine protected area.

    PubMed

    Sheppard, C R C; Ateweberhan, M; Bowen, B W; Carr, P; Chen, C A; Clubbe, C; Craig, M T; Ebinghaus, R; Eble, J; Fitzsimmons, N; Gaither, M R; Gan, C-H; Gollock, M; Guzman, N; Graham, N A J; Harris, A; Jones, R; Keshavmurthy, S; Koldewey, H; Lundin, C G; Mortimer, J A; Obura, D; Pfeiffer, M; Price, A R G; Purkis, S; Raines, P; Readman, J W; Riegl, B; Rogers, A; Schleyer, M; Seaward, M R D; Sheppard, A L S; Tamelander, J; Turner, J R; Visram, S; Vogler, C; Vogt, S; Wolschke, H; Yang, J M-C; Yang, S-Y; Yesson, C

    2012-03-01

    The Chagos Archipelago was designated a no-take marine protected area (MPA) in 2010; it covers 550 000 km 2 , with more than 60 000 km 2 shallow limestone platform and reefs. This has doubled the global cover of such MPAs.It contains 25-50% of the Indian Ocean reef area remaining in excellent condition, as well as the world's largest contiguous undamaged reef area. It has suffered from warming episodes, but after the most severe mortality event of 1998, coral cover was restored after 10 years.Coral reef fishes are orders of magnitude more abundant than in other Indian Ocean locations, regardless of whether the latter are fished or protected.Coral diseases are extremely low, and no invasive marine species are known.Genetically, Chagos marine species are part of the Western Indian Ocean, and Chagos serves as a 'stepping-stone' in the ocean.The no-take MPA extends to the 200 nm boundary, and. includes 86 unfished seamounts and 243 deep knolls as well as encompassing important pelagic species.On the larger islands, native plants, coconut crabs, bird and turtle colonies were largely destroyed in plantation times, but several smaller islands are in relatively undamaged state.There are now 10 'important bird areas', coconut crab density is high and numbers of green and hawksbill turtles are recovering.Diego Garcia atoll contains a military facility; this atoll contains one Ramsar site and several 'strict nature reserves'. Pollutant monitoring shows it to be the least polluted inhabited atoll in the world. Today, strict environmental regulations are enforced.Shoreline erosion is significant in many places. Its economic cost in the inhabited part of Diego Garcia is very high, but all islands are vulnerable.Chagos is ideally situated for several monitoring programmes, and use is increasingly being made of the archipelago for this purpose.

  13. Burdigalian turbid water patch reef environment revealed by larger benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Novak, V.; Renema, W.; Throughflow-project

    2012-04-01

    Ancient isolated patch reefs outcropping from siliciclastic sediments are a trademark for the Miocene carbonate deposits occurring in East Kalimantan, Indonesia. They develop in transitional shelf sediments deposited between deltaic and deep marine deposits (Allen and Chambers, 1998). The Batu Putih Limestone (Wilson, 2005) and similar outcrops in adjacent areas have been characterized as shallow water carbonates influenced by high siliciclastic input, showing low relief patch reefs in turbid waters. Larger benthic foraminifera (LBF) are excellent markers for biochronology and paleoenvironmental reconstruction. This study aims to reveal age and paleoenvironment of a shallow water carbonate patch reef developed in mixed depositional system by using LBF and microfacies analysis. The studied section is located near Bontang, East Kalimantan, and is approximately 80 m long and 12 m high. It is placed within Miocene sediments in the central part of the Kutai Basin. Patch reef and capping sediments were logged through eight transects along section and divided into nine different lithological units from which samples were collected. Thin sections and isolated specimens of larger benthic foraminifera were analyzed and recognized to species level (where possible) providing age and environmental information. Microfacies analysis of thin sections included carbonate classification (textural scheme of Dunham, 1962) and assemblage composition of LBF, algae and corals relative abundance. Three environmentally indicative groups of LBF were separated based on test morphology, habitat or living relatives (Hallock and Glenn, 1986). Analysed foraminifera assemblage suggests Burdigalian age (Tf1). With use of microfacies analysis nine successive lithological units were grouped into five facies types. Paleoenvironmental reconstruction of LBF fossil assemblage indicate two cycles of possible deepening recorded in the section. Based on high muddy matrix ratio in analyzed thin-sections we still cannot conclude whether they were deeper water assemblage, or that they occurred in shallower water and influenced by turbid conditions as the result of terrigenous input. According to preliminary analysis and siliciclastic content in the sediments the later one should be more likely. Further work will include additional fossil groups analysis (corals, algae and bryozoans), detailed petrographical analysis and Strontium isotope stratigraphy. Allen, G.P., and Chambers, J.L.C. (1998): Sedimentation in the Modern and Miocene Mahakam Delta. Indonesian Petroleum Association, Jakarta, Indonesia, 236 p. Dunham, R.J. (1962): Classification of carbonate rocks according to their depositional texture. In: Ham, W.E., ed., Classification of Carbonate Rocks: American Association of Petroleum Geologists Memoir, v. 1, p. 108-121. Hallock, P. and Glenn, C.E. (1986): Larger Foraminifera: A tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1, 55-64. Wilson, M.E.J. (2005): Development of equatorial delta-front patch reefs during the Neogene, Borneo. - Journal of Sedimentary Research, 75(1): 114-133.

  14. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii bottomfish and seamount groundfish fisheries. [Reserved] 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... WESTERN PACIFIC Hawaii Fisheries § 665.200 Hawaii bottomfish and seamount groundfish fisheries. [Reserved] ...

  15. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... No. Name Latitude Longitude 1 Dickins Seamount 54 39.00 N 136 48.00 W 54 39.00 N 137 9.00 W 54 27.00 N 137 9.00 W 54 27.00 N 136 48.00 W 2 Denson Seamount 54 13.20 N 137 6.00 W 54 13.20 N 137 36.00 W 53 57.00 N 137 36.00 W 53 57.00 N 137 6.00 W 3 Brown Seamount 55 0.00 N 138 24.00 W 55 0.00 N 138 48...

  16. Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3

    USGS Publications Warehouse

    Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von Huene, Roland E.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.

  17. Bacterial Community Sstructure and Novel Species of Magnetotactic Bacteria in Sediments from a Seamount in the Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    PAN, H.; LIU, J.; Zhang, W.; Xiao, T.; Wu, L. F.

    2017-12-01

    Seamounts are unique ecosystems where undersea mountains rise abruptly from the sea floor and interact dynamically with underwater currents, creating peculiar biological habitats with various microbial community structures. Certain bacteria associated with seamounts form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend knowledge of seamount microorganisms we performed a systematic analysis of the population composition and occurrence of live magnetotactic bacteria (MTB) in sediments of a seamount in the Mariana volcanic arc. Proteobacteria dominated at 13 stations, and were the second in abundance to members of the Firmicutes at a deep station on a steep slope facing the Yap-Mariana trench. We found MTB that synthesize intracellular iron-oxide nanocrystals in biogenic sediments at all 14 stations, at seawater depths ranging from 238 to 2023 m. A novel flagellar apparatus, and the most complex yet reported, was observed in magnetotactic cocci; it comprises one or two bundles of 19 flagella arranged in a 3:4:5:4:3 array. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. The geographic properties at the various stations on the seamount appear to be important in shaping the microbial community structure.

  18. Geophysical and Geochemical Analysis of the 8°20' N Seamount Chain: Studies of Off-Axis Volcanism

    NASA Astrophysics Data System (ADS)

    McCully, E.; Fornari, D. J.; Gregg, P. M.; Perfit, M. R.; Wanless, V. D.; Anderson, M.; Lubetkin, M.

    2017-12-01

    The 8°20' N Seamount Chain is an off-axis lineament of volcanoes located west of the East Pacific Rise (EPR) and 15 km north of the Siqueiros Fracture Zone. The volcanoes are located 11 km west of the EPR axis and extend 160 km to the west. The OASIS (Off-Axis Seamount Investigations at Siqueiros) expedition in November 2016 collected ship-based EM122 bathymetry aboard the R/V Atlantis over the entire seamount chain at a 50 m resolution, and AUV Sentry bathymetric and sidescan sonar data were collected over 11 selected areas on some of the seamount summits and flanks at 1-2 m resolution. 90,000 high-resolution digital images were acquired using DSV Alvin and analyzed and classified according to morphology, structure, sediment and manganese presence, and biology. These data are used to create geologic facies maps to correlate seafloor morphology and type with acoustic reflectivity. Major and trace element data of samples collected by Alvin and dredging are also correlated to geological parameters of the seafloor features on each studied seamount. Initial estimates for the volumes of individual constructional features (e.g., mounds, cones) that comprise the seamounts were derived from the high-resolution EM122 multibeam and Sentry AUV bathymetric data and calculated using IVS Fledermaus and plotted as a function of distance from the EPR. These individually constructed volcanic features, dependent on geochemical diversity, may ultimately be grouped into larger eruptive volumes. Thus far, Sentry-derived volumes range from 0.0011-2.96 km3, while EM122-derived volumes range from 0.13-123 km3. The seamounts were classified into 3 shapes; circular, volcanic lineaments aligning parallel to the ridge-axis, and ridge-like constructions, trending perpendicular to the EPR axis. The central 60 km of the chain (60-120 km off-axis) is dominated by ridges and circular seamounts, which exhibit the largest volumes observed along the 8°20' N chain. The seamounts with the lowest volumes are observed in the eastern-most 50 km of the lineament, nearest to the ridge axis. Future work includes distinguishing monogenetic and polygenetic cones and better quantifying how many eruptive periods occurred to form the present seamount morphology.

  19. Three-dimensional flexure modelling of seamounts near the Ogasawara Fracture Zone in the western Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Gook; Moon, Jai-Woon; Jung, Mee-Sook

    2009-04-01

    The geophysical data were obtained in 2000-2003 during a survey of seamounts near the Ogasawara Fracture Zone (OFZ) to the northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone showing 600-km-long right-lateral movement between the Pigafetta Basin (PB) and East Mariana Basin (EMB), and contains many seamounts (e.g. the Magellan Seamounts and the seamounts on the Dutton Ridge). Most seamounts in this study are newly mapped using modern multibeam echosounder (Seabeam 2000) and denoted sequentially by Korea Ocean Research and Development Institute (KORDI). OSM2, OSM4, OSM7, OSM8-1 and OSM8-2 seamounts of the study area are located in the OFZ which formed by the spreading ridge between the Izanagi and Pacific plates, and OSM5-1, Seascan, OSM6-1 and OSM6-2 seamounts in the PB which is a part of the oldest oceanic crust in the Pacific. In this study, the densities of seamounts and the elastic thickness values of lithosphere are estimated by using 3-D flexure and gravity modelling by considering several boundary conditions and a constant sediment layer. The infinite model with two different elastic thickness values is the best-fitting model and it indicates that the OFZ was mechanically coupled with plate of different elastic thickness values, probably after the reorganization of Izanagi-Pacific spreading zone. Very low elastic thickness values (5-10 km), relatively young seamounts, and old lithosphere in the east study area suggest the possibility of the rejuvenation of the lithosphere by widespread volcanism pulses, whereas higher elastic thickness values (15-20 km), relatively younger lithosphere, and old seamounts of the west study area are comparable with a simple cooling plate model. It implies that the west study area is outside the rejuvenation range of the lithosphere. In the flexure and gravity modelling, the different residual pattern of OSM6-1 and OSM6-2, which are joined, suggests that they have different load densities or elastic thickness values. OSM2 and OSM7 may be close to a basaltic volcano with low viscosity because they have high densities and ratios of the basal diameter to the height, whereas OSM4, OSM5-1 and Seascan may be close to an andesitic volcano.

  20. The Brava seamount, Cape Verde: Beyond the spatial extent of EM1 and petrogenesis of highly evolved alkaline lavas.

    NASA Astrophysics Data System (ADS)

    Barker, Abigail; Andersson, Axel; Troll, Valentin; Hansteen, Thor; Ellam, Robert

    2010-05-01

    Alkaline lavas from the Brava seamount, Cape Verde are investigated to establish the spatial distribution of compositional heterogeneity in the southwest of the Cape Verde archipelago. Highly evolved lavas provide a record of shallow level magma-crust interaction beneath the Brava seamount. The Brava seamount, located southwest of the island of Brava, Cape Verde was sampled during research cruise 8/85 of the R.R.S. Charles Darwin in 1985. Two groups of highly evolved alkaline volcanics are distinguished from the Brava seamount: 1) pyroxene-phonolites containing clinopyroxene, amphibole, nepheline, ±biotite, and minor sanidine and 2) feldspathoid-phonolites containing nepheline, nausean, minor biotite and leucite. All of the samples have MgO between 0.8 and 2 wt%, comparable to the most evolved volcanics sampled in the Cape Verde archipelago. The feldspathoid-phonolites have NaO2 of 12-13 wt%. Alkaline lavas from the Brava seamount have higher 87Sr/87Sr (0.70337 to 0.70347) at ɛNd of +6 to +7 than previously sampled in Cape Verde. Sr isotopes will be integrated with oxygen isotopes to establish magma and crust interactions in the magmatic plumbing system beneath the Brava seamount. Clinopyroxene-melt thermobarometry will be presented to constrain the depths of equilibrium crystallisation. Sr-O isotopes and thermobarometry will be combined to build a picture of the levels of magma stalling and interaction between magmas and the crust beneath the Brava seamount. The Brava seamount phonolitic lavas have high 206Pb/204Pb of 19.5 to 19.8 with negative ?8/4 and high ɛNd of +6 to +7 in contrast to the positive ?8/4 for lavas from nearby Brava and the southern islands of the Cape Verde archipelago. Lavas from the Brava seamount have Pb-Nd isotope systematics comparable to the northern Cape Verde islands, indicating the southwestern boundary in mantle heterogeneity and thereby the spatial extent of the EM1-like source contributing to the southern islands. The extensive crystallisation and stalling of magma batches at crustal depths shown by thermobarometry will be used in conjunction with geochemistry to constrain the origin of assimilants and implies that an EM1-like source is not found in the mantle source, the shallow lithosphere or crust beneath the Brava seamount.

  1. Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne`ohe Bay, O`ahu, Hawai`i

    NASA Astrophysics Data System (ADS)

    Innis, T.; Cunning, R.; Ritson-Williams, R.; Wall, C. B.; Gates, R. D.

    2018-06-01

    Scleractinian corals form symbioses with diverse photosynthetic dinoflagellates (genus Symbiodinium) that confer varying levels of performance and stress tolerance to their hosts. Variation in thermal stress susceptibility (i.e., bleaching) among conspecific corals is linked to variability in symbiont community composition, yet factors driving heterogeneous symbiont associations within a population are poorly understood. To investigate potential drivers, we characterized Symbiodinium communities in Montipora capitata ( N = 707 colonies) across the biophysical regions, reef types, and depth range of Kāne`ohe Bay (Hawai`i, USA), where this dominant reef-builder associates with Symbiodinium spp. in clade C (C31) and/or D ( S. glynnii), and occurs as brown and orange color morphs. The distribution of these traits was primarily influenced by depth: orange, D-dominated colonies were more prevalent in shallow, high light environments (< 2 m), whereas brown, C-dominated colonies were more prevalent with increasing depth and light attenuation. Though either color morph could be dominated by either symbiont, brown colonies were almost exclusively C-dominated, while orange colonies were more likely to be D-dominated above 4.3 m, and C-dominated below, revealing a significant interaction between color morph and symbiosis ecology. The distribution of orange, D-dominated colonies extended deeper on patch reefs, where light penetrates deeper, compared to the more turbid, fringing reefs, further supporting light as the driver of these patterns. This work reveals that symbiont community variability may arise either from holobiont phenotypic plasticity or differential survival across light gradients, with implications for predicting coral bleaching responses and informing management applications such as selective breeding of robust corals.

  2. Early Silurian (Llandoverian) Leask Point and Charlton Bay bioherms, Manitoulin Island, Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielczarek, W.; Copper, P.

    1986-08-01

    About 300 bioherms are known in the Llandoverian Manitoulin Formation of eastern Manitoulin Island. In the South Bay area, the large Leask Piont bioherm and Charlton Bay patch-reef complex lack a distinct skeletal growth framework. Bioherms consist of mudstone and wackestone, with isolated lenses of bafflestone, boundstone, floatstone. Fossils are scarce, but crinozoans and bryozoans comprise about 90% of the bioclasts. Other fauna include stromatoporoids, corals, brachiopods, gastropods, trilobites, and probable algae (algae are difficult to identify and may have played a significant role). Faunal ratios remained relatively constant during mound growth. Soft substrates with sedimentation rates of a fewmore » millimeters per year are suggested by bedding type and morphologic dominance of lamellar and tabular corals and stromatoporoids. An increased sedimentation rate, resulting from shoaling, is indicated by more overturned, broadly conical corals in the upper parts of the mounds. Shoaling may be responsible for cessation of mound growth. Lithoclasts are more common in the upper parts of the mounds. They formed when semiconsolidated muds were disturbed and redeposited during storms. Megarippled interreef surface areas, largely devoid of coral growth, indicate mud instability at Charlton Bay. Lack of suitable stable substrates may have hampered coral development. Dolomitization was postdepositional. The diagenetic sequence occurred in three stages: 1)selective pyritization and silicification, formation of an early muddy dolomite replacing the mud fraction of the dolostone, lithification and formation of rare calcite cement and neomorphic syntaxial rims; 2)clear, coarse dolomite replacing pore-filling calcite cement, syntaxial rims, and unaltered macrofossils, stylolitization, grain-to-grain dissolution; and 3)a late dolomite found mainly as fine rhombs in stylolites, solution seams, and intraskeletal pore space.« less

  3. The May 2010 submarine eruption from South Sarigan seamount, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    McGimsey, R. G.; Neal, C. A.; Searcy, C. K.; Camacho, J. T.; Aydlett, W. B.; Embley, R. W.; Trusdell, F.; Paskievitch, J. F.; Schneider, D. J.

    2010-12-01

    A sudden submarine explosive eruption occurred on May 29, 2010, from a seamount south of Sarigan Island in the Northern Mariana Islands, propelling a diffuse steam and ash cloud to high altitude. Pre-eruptive seismicity was recorded in early April by stations located on Sarigan and Anatahan Island, 42 km to the south, and indicated a source ~12-16 km south of Sarigan. On May 27-28, a change in seismicity—the appearance of tremor-like waveforms—may have marked the onset of volcanic activity. Also on May 27, an elongate patch of discolored ocean water and possible light-colored floating debris about 8-11 km south of Sarigan was observed from a helicopter. This material was likely produced during low-intensity eruptive activity, and an Information Statement from the Commonwealth of the Northern Mariana Islands (CNMI) Emergency Management Office (EMO) and USGS issued at 2353 UTC May 28 described the observation. The Guam Weather Forecast Office of the National Weather Service reported that the area of discoloration, visible on satellite images at 2313 and 2330 UTC on May 28, was about 10 km2, about twice the size of Sarigan Island. Pulses of tremor merged into a nearly continuous signal by 0305 UTC on May 29, lasting for ~4.5 hours followed by nearly 4.5 hours of quiescence. The EMO issued a declaration closing the region south of Sarigan to all local boating traffic and issued an advisory to aircraft. The explosive onset of the main plume-producing event occurred at ~1148 UTC as confirmed by seismic records on Anatahan Island, with the strongest phase ending ~1200 UTC. Soon after, the Washington Volcanic Ash Advisory Center reported an eruption cloud reaching an estimated 40,000 feet (12 km) ASL that diminished rapidly on satellite imagery suggesting it was water-vapor dominated. Winds carried the cloud southwest over Guam, and although no ash fall was reported, the cloud was visible and was detected in Aura/OMI aerosol index imagery. Biologists on Sarigan Island at the time of the explosion reported hearing a loud noise from the south, and shortly thereafter receiving a dusting of ash. They also reported the sound of a water wave passing by; a tide gauge in Saipan recorded a wave on the order of 4-5 cm. The eruption was followed by a rapid return to relative quiescence with occasional earthquakes (0-3 per day) recorded throughout the summer. The eruption appears to have originated from South Sarigan seamount, about 12 km south of Sarigan Island. The summit of the seamount is poorly surveyed but appears to consist of several peaks with minimum depths ranging up to ~184 m BSL including a small (young?) cone at ~350 m BSL. Sidescan sonar data collected in 2003 show that the flank of the seamount is characterized by radiating patterns of high acoustic backscatter indicating recent mass flows of volcaniclastic material, which suggests that this is a frequently active volcano.

  4. Time-Dependent Flexural Deformation Beneath the Emperor Seamounts

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Watts, A. B.; Kim, S. S.

    2014-12-01

    The Hawaii-Emperor seamount chain stretches over 6000 km from the Big Island of Hawaii to the subduction cusp off Kamchatka and represents a near-continuous record of hotspot volcanism since the Late Cretaceous. The load of these seamounts and islands has caused the underlying lithosphere to deform, developing a flexural flanking moat that is now largely filled with volcanoclastic sediments. Because the age differences between the seafloor and the seamounts vary by an order of magnitude or more along the chain, the Hawaii-Emperor chain and surrounding area is considered a natural laboratory for lithospheric flexure and has been studied extensively in order to infer the rheology of the oceanic lithosphere. While most investigations have focused on the Hawaiian Islands and proximal seamounts (where data sets are more complete, including seismic reflection and refraction, swath bathymetry and even mapping and dating of drowned reef terraces), far fewer studies have examined the flexural deformation beneath the remote Emperor chain. Preliminary analysis of satellite altimetry data shows the flexural moats to be associated with very large negative gravity anomalies relative to the magnitudes of the positive anomalies over the loads, suggesting considerable viscous or viscoelastic relaxation since the loads were emplaced 50-80 Myr ago. In our study, we will attempt to model the Emperor seamount chain load as a superposition of individual elliptical Gaussian seamounts with separate loading histories. We use Optimal Robust Separation (ORS) techniques to extract the seamount load from the regional background bathymetry and partition the residual load into a set of individual volcanoes. The crustal age grid and available seamount dates are used to construct a temporal loading model and evaluate the flexural response of the lithosphere beneath the Emperor seamounts. We explore a variety of rheological models and loading scenarios that are compatible with the inferred load sizes and observed gravity anomalies, with emphasis on the temporal-spatial variation in vertical deformation along the hotspot chain, and examine their implications for the tilting history of the loads and the stratigraphic "architecture" of their flanking flexural moats.

  5. Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California.

    PubMed

    Jorgensen, Salvador J; Klimley, A Peter; Muhlia-Melo, Arturo; Morgan, Steven G

    2016-01-01

    Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geological and oceanographic environment among the thousands of locations that fall within the broad definition of seamount. Global seamount surveys have revealed that not all seamounts are hotspots of biodiversity, and there remains a strong need to understand the mechanisms that underlie variation in species richness observed. We examined the process of fish species assembly at El Bajo Espiritu Santo (EBES) seamount in the Gulf of California over a five-year study period. To effectively quantify the relative abundance of fast-moving and schooling fishes in a 'blue water' habitat, we developed a simplified underwater visual census (UVC) methodology and analysis framework suitable for this setting and applicable to future studies in similar environments. We found correlations between seasonally changing community structure and variability in oceanographic conditions. Individual species responses to thermal habitat at EBES revealed three distinct assemblages, a 'fall assemblage' tracking warmer overall temperature, a 'spring assemblage' correlated with cooler temperature, and a 'year-round assemblage' with no significant response to temperature. Species richness was greatest in spring, when cool and warm water masses stratified the water column and a greater number of species from all three assemblages co-occurred. We discuss our findings in the context of potential mechanisms that could account for predator biodiversity at shallow seamounts.

  6. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean - New constraints from high-resolution satellite-derived gravity data

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Chaubey, A. K.; Mishra, Akhil; Kumar, Shravan; Rajawat, A. S.

    2016-12-01

    Marine gravity data derived from satellite altimeters are effective tools in mapping fine-scale tectonic features of the ocean basins such as pseudofaults, fracture zones and seamounts, particularly when the ocean basins are carpeted with thick sediments. We use high-resolution satellite-generated gravity and seismic reflection data to map boundaries of pseudofaults and transferred crust related to the Paleocene spreading ridge propagation in the Arabian and its conjugate Eastern Somali basins. The study has provided refinement in the position of previously reported pseudofaults and their spatial extensions in the conjugate basins. It is observed that the transferred crustal block bounded by inner pseudofault and failed spreading ridge is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned along NE-SW direction forming ∼300 km long seamount chain. Admittance analysis and Flexural model studies indicated that the seamount chain is isostatically compensated locally with Effective Elastic Thickness (Te) of 3-4 km. Based on the present results and published plate tectonic models, we interpret that the seamounts in the Arabian Basin are formed by spreading ridge propagation and are associated with pseudofaults, whereas the seamount chain in the Eastern Somali Basin might have probably originated due to melting and upwelling of upper mantle heterogeneities in advance of migrating/propagating paleo Carlsberg Ridge.

  7. Spatial analyses for nonoverlapping objects with size variations and their application to coral communities.

    PubMed

    Muko, Soyoka; Shimatani, Ichiro K; Nozawa, Yoko

    2014-07-01

    Spatial distributions of individuals are conventionally analysed by representing objects as dimensionless points, in which spatial statistics are based on centre-to-centre distances. However, if organisms expand without overlapping and show size variations, such as is the case for encrusting corals, interobject spacing is crucial for spatial associations where interactions occur. We introduced new pairwise statistics using minimum distances between objects and demonstrated their utility when examining encrusting coral community data. We also calculated the conventional point process statistics and the grid-based statistics to clarify the advantages and limitations of each spatial statistical method. For simplicity, coral colonies were approximated by disks in these demonstrations. Focusing on short-distance effects, the use of minimum distances revealed that almost all coral genera were aggregated at a scale of 1-25 cm. However, when fragmented colonies (ramets) were treated as a genet, a genet-level analysis indicated weak or no aggregation, suggesting that most corals were randomly distributed and that fragmentation was the primary cause of colony aggregations. In contrast, point process statistics showed larger aggregation scales, presumably because centre-to-centre distances included both intercolony spacing and colony sizes (radius). The grid-based statistics were able to quantify the patch (aggregation) scale of colonies, but the scale was strongly affected by the colony size. Our approach quantitatively showed repulsive effects between an aggressive genus and a competitively weak genus, while the grid-based statistics (covariance function) also showed repulsion although the spatial scale indicated from the statistics was not directly interpretable in terms of ecological meaning. The use of minimum distances together with previously proposed spatial statistics helped us to extend our understanding of the spatial patterns of nonoverlapping objects that vary in size and the associated specific scales. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  8. Geophysical exploration of the Southeast Tyrrhenian Sea (Italy): Seamounts batimetries

    NASA Astrophysics Data System (ADS)

    Passaro, Salvatore; Milano, Girolamo

    2010-05-01

    The Tyrrhenian Sea is a young extensional basin in the Central Mediterranean that formed within a complex convergent boundary between Africa and Eurasian Plates. Its opening, associated to the west dipping subduction of the Ionian lithosphere, started about 11 My ago and was marked first by an EW and successively by an ESE directed extension. This last mainly affected the Southeast Tyrrhenian Sea and led to the formation of the Marsili ocean-like basin. This large-scale extension produced the onset of volcanism throughout the Tyrrhenian Sea and the formation of several seamounts. High values of heat flow (>150 mW m-2) and the thin crust (7 km on average) and lithosphere (30 km on average) testify the young age of formation of oceanic crust in the Southeast Tyrrhenian Sea. On November 2007, a multidisciplinary oceanographic survey was carried out in the Southeast Tyrrhenian Sea by a group of researchers of the IAMC-CNR (Naples), Osservatorio Vesuviano (INGV, Naples), NOAA (Seattle) and GNS (New Zealand) on board of the R/V Urania. The main aim of the survey was the identification and the exploration of potential active volcanic and/or hydrothermal vents on the seamounts located in the Southeast Tyrrhenian Sea. Twelve Tyrrhenian seamounts have been explored with a modified CTD system, in order to acquire "tow-yo" profiles in dynamic mode (real time monitoring of physical and chemical parameters of seawater along vertical/horizontal profiles). In addiction, Multibeam swath bathymetry was carried out over fifteen seamounts. The strategy for the achieving of the aim consisted in two phases: i) row multibeam acquisition of the sea floor morphology to verify, confirm or review all available data, ii) tow-yo activity and seawater sampling. Here, we show the main results of bathymetric data acquisition carried out over fifteen seamounts with the use of the Reson Seabat 8160 multibeam sonar system mounted on keel of the R/V Urania. The most interesting morphostructural characteristics are found on the summit of the Marsili and Palinuro seamounts, that are the major features of the Southeast Tyrrhenian Sea. The morphology of the Marsili Seamount shows a linear summit region, approximately bounded by the 1000 meters isobath, stretches about 20 km along the main axis of the volcanic complex. Throughout the summit framework, crater-like items are not identifiable whereas cone-like items are revealed. The morphology of the Palinuro seamount reveals a very articulated summit consisting in a group of overlapped and/or coalescent volcanic cones inside collapsed calderas. Relic domes of calderic collapses are identifiable both in the western and in the central sectors of the Palinuro Seamount. The continuation of the Palinuro seamount toward the mainland is marked by the Glabro seamount. Magnetic data constrain the interpretation of several volcanic features detected on both the Palinuro and the Marsili seamounts.

  9. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  10. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  11. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  12. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  13. On geoid heights derived from GEOS 3 altimeter data along the Hawaiian-Emperor seamount chain

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1979-01-01

    The geoid heights derived from preliminary GEOS 3 satellite radar altimeter data over the Hawaiian-Emperor seamount chain are examined. Two objectives are pursued: (1) to evaluate the contribution of the topography of the seamount chain and its compensation to the marine geoid; and (2) to determine whether geoid heights derived from GEOS 3 altimeter data can be used to provide information on isostasy at geological features such as the Hawaiian-Emperor seamount chain which formed as relatively young loads on the oceanic lithosphere. Short-wavelength geoid highs of 5-12 m over the crest of the seamount chain and geoid lows over flanking regions are observed. The geological undulations can be explained by a simple model in which the seamount-chain load is supported by a strong rigid lithospheric plate. The elastic thickness estimates agree with values based on surface ship gravity and bathymetry observations, and provide further support to the hypothesis that the elastic thickness acquired at a surface load depends on the temperature gradient of the lithosphere at the time of loading.

  14. SPATIAL HETEROGENEITY OF PHOTOSYNTHETIC ACTIVITY WITHIN DISEASED CORALS FROM THE GREAT BARRIER REEF(1).

    PubMed

    Roff, George; Ulstrup, Karin E; Fine, Maoz; Ralph, Peter J; Hoegh-Guldberg, Ove

    2008-04-01

    Morphological diagnosis and descriptions of seven disease-like syndromes affecting scleractinian corals were characterized from the southern Great Barrier Reef (GBR). Chl a fluorescence of PSII was measured using an Imaging-PAM (pulse amplitude modulated) fluorometer, enabling visualization of the two-dimensional variability in the photophysiology of endosymbiotic dinoflagellates (zooxanthellae) by measuring rapid light curves. Three of four syndromes associated with active tissue loss (type a) were spatially homogenous (white syndrome, brown band, and skeletal eroding band), with no impact on the photochemical function of zooxanthellae populations at or behind the lesion borders. However, a decline in maximum quantum yield (Fv /Fm ) and elevated levels of maximum nonphotochemical quenching (NPQmax ) occurred in visually healthy tissue of black band disease adjacent to the lesion borders, possibly due to hypoxic conditions caused by the black band cyanobacterial mat. Two out of three syndromes associated with pathological change of intact tissue with no active tissue loss (type b) showed variable photophysiological responses (neoplasia and pigmentation response). Only the bleached foci associated with white patch syndrome appeared to impact primarily on the symbiotic dinoflagellates, as evidenced by declines in minimum fluorescence (F0 ) and maximum quantum yield (Fv /Fm ), with no indication of degeneration in the host tissues. Our results suggest that for the majority of coral syndromes from the GBR, pathogenesis occurs in the host tissue, while the impact on the zooxanthellae populations residing in affected corals is minimal. © 2008 Phycological Society of America.

  15. Subducted seamounts and recent earthquakes beneath the central Cascadia forearc

    USGS Publications Warehouse

    Tréhu, Anne M.; Blakely, Richard J.; Williams, Mark C.

    2012-01-01

    Bathymetry and magnetic anomalies indicate that a seamount on the Juan de Fuca plate has been subducted beneath the central Cascadia accretionary complex and is now located ∼45 km landward of the deformation front. Passage of this seamount through the accretionary complex has resulted in a pattern of uplift followed by subsidence that has had a profound influence on slope morphology, gas hydrate stability, and sedimentation. Based on potential-field data and a new three-dimensional seismic velocity model, we infer that this is the most recent of several seamounts subducted over the past several million years beneath this segment of Cascadia. More deeply subducted seamounts may be responsible for recent earthquake activity on the plate boundary in this region and for along-strike variations in the thickness of the subduction channel, which may affect coupling across the plate boundary.

  16. Morphology of GALÁPAGOS Platform Seamounts: a History of Emergence and Submergmence

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; Wanless, V. D.; Fornari, D. J.; Jones, M.; Schwartz, D. M.; Richards, M. A.

    2016-12-01

    The morphology of submarine volcanoes is generally well-preserved due to the lack of erosion. However, when submarine volcanoes breach the sea surface, significant erosion can occur through wave action. New bathymetric mapping of seamounts around the Galápagos Islands of Santiago, Floreana, and Isabela show evidence of such subaerial erosion despite currently residing at depths >100m. We present results from a Sept. 2015 cruise to the Galapagos platform on the M/V Alucia including ship-based bathymetric mapping, AUV-based bathymetric and sidescan sonar mapping, and observations and samples from human-occupied submersible dives. The bathymetric mapping reveals dozens of previously unknown seamounts on the relatively unexplored shallow Galápagos platform (<1000m). Among these seamounts, many display evidence of having been previously above sea level including erosional benches (insular shelves) or entirely flat tops along, heavily eroded cobbles and beach deposits, and subaerially erupted lavas at depths from 120m to >200m. Seamounts, however, can develop flat tops without having been exposed above sea level. Thus, we combine a variety of data sets to determine whether seamounts were exposed above sea level and how the morphology of those seamounts can be discriminated from seamounts that have never reached the sea surface. Included in these data sets are measurements of cosmogenic Helium that provides an independent means to confirm which seamounts were emergent. The existence of broad areas of originally-subaerial lava flows on the Galápagos platform that are now at water depths >200 m requires that in addition to ice-age-related sea level excursions, there has also been at least 100m (and perhaps more) dynamic subsidence of the platform as it has passed over the active Galapagos plume. As a result, much of the platform may have been exposed subaerially during the past several million years, with significant implications for speciation among the endemic fauna.

  17. Identifying Non-Hotspot Volcanism in the Young Walvis Ridge Guyot Province using High-Resolution 40Ar/39Ar Geochronology

    NASA Astrophysics Data System (ADS)

    Schnur, S.; Koppers, A. A.

    2013-12-01

    The Walvis Ridge is a linear volcanic feature stretching almost 3000 km from the coast of Namibia to its hypothesized origin at the Tristan and Gough hotspots in the South Atlantic. It is considered a key example of a primary hotspot trail and is frequently used as a constraint on African plate motion. Despite its importance, the Walvis Ridge has remained poorly studied, and it is unknown if all the seamounts at its young end can be attributed to a hotspot source. Only about 15 of the more than 80 volcanic centers in the young Walvis Ridge Guyot Province have been dated. A group of about 14 large (2-3 km high) seamounts forms a lineament that runs roughly perpendicular to the nearby Mid-Atlantic Ridge (38°S lineament). These seamounts do not seem to match the spatial trends of the Tristan and Gough tracks and are thought to have formed either as near-ridge seamounts or by lithospheric cracking related to the nearby fracture zone. We present here the results of 26 step heating experiments by the 40Ar/39Ar method. Experiments were conducted on groundmass, plagioclase, alkali feldspar, and biotite separates from 13 samples, representing 7 seamounts in and around the 38°S lineament. Biotite and alkali feldspar are common at the 38°S seamounts, but are rarely found elsewhere on the Walvis Ridge, providing additional evidence that these seamounts may have a unique source. The high resolution 40Ar/39Ar ages will be used to plot the age progression of volcanism along this lineament and at nearby seamounts. This information may indicate if the 38°S seamounts are part of the main hotspot trend or are related to magmatic and tectonic processes at the Mid-Atlantic Ridge.

  18. Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge

    NASA Astrophysics Data System (ADS)

    Letessier, Tom B.; De Grave, Sammy; Boersch-Supan, Philipp H.; Kemp, Kirsty M.; Brierley, Andrew S.; Rogers, Alex D.

    2017-02-01

    Maintenance of often-observed elevated levels of pelagic diversity and biomass on seamounts, of relevance to conservation and fishery management, involves complex interactions between physical and biological variables that remain poorly understood. To untangle these biophysical processes we explore factors influencing the distribution of epi- and meso-pelagic (0-1000 m) micronektonic crustaceans (>15 mm; order Lophogastridea, family Gnathophausiidea; and order Decapoda) on and off seamounts along the South West Indian Ridge (SWIR, 27° to 42°S) and on a seamount off the Madagascar Ridge (31.6°S, 42.8°E). Thirty-one species of micronektic crustaceans were caught using mid-water trawls within the study area but there was no apparent latitude-related patterns in species richness or abundance. Species richness predicted by rarefraction curves and numerical abundance was highest in the vicinity (<1 km) of seamounts (species richness: 15 to 21; abundance: 10±2 to 20±1 ind.10-3 m-1) compared with over the abyssal plains and ridge slopes (species richness: 9.2-9.9; abundance: 24±2 to 79±8 ind.10-3 m-1). Multivariate analysis of assemblage composition revealed significant groupings of individual trawl samples with respect to whether the sample was on or off a seamount and hydrographic region, but not with time of sampling relative to diel cycle (day/night or dawn) or depth of sampling (0-500, 500-800, >800 m). The dominant species assemblage comprised the shrimps Systellaspis debilis (37%) and Sergia prehensilis (34%), and was restricted to seamounts on the subtropical SWIR. Our observations suggest that the 'oasis effect' of seamounts conventionally associated with higher trophic levels is also applicable to pelagic micronektic crustaceans at lower trophic levels. We suggest that the enhanced biomass and species richness attributed is due to 'habitat enrichment', whereby seamounts provide favourable habitats for both pelagic and bentho-pelagic mid-water crustaceans.

  19. Resolving the Subsidence Anomaly of the East Tasman Plateau Using New Insights from the Cascade Seamount, Southwest Tasman Sea

    NASA Astrophysics Data System (ADS)

    Vorsanger, S. L.; Scher, H.; Johnson, S.; Mundana, R.; Sauermilch, I.; Duggan, B.; Whittaker, J. M.

    2017-12-01

    The Cascade Seamount is a wave-planated feature located on the microcontinent of the East Tasman Plateau (ETP). The minimum subsidence rate of the Seamount and the ETP can be estimated by dividing the present-day depth of the wave-cut surface (640 m) by the age of Cascade Seamount basalts as determined by potassium-argon (K-Ar) dating (33.4 and 36 Ma). This approach yields a subsidence rate of 18 m/Myr. However, significantly more rapid subsidence rates of the East Tasman Plateau (ETP) — upon which the Cascade Seamount rests — since the Eocene-Oligocene transition have been proposed utilizing a nearby sediment core, Ocean Drilling Program (ODP) Site 1172. Late Eocene paleodepths determined by Stickley et al. (2004) using sedimentological and biostratigraphic techniques, indicate a subsidence rate of 85 m/Myr for the ETP. These two results present a paradox, which implies that the ETP subsided at a rate greater than the Seamount itself, over the same time interval. It also implies that the seamount formed above sea level. The subsidence ambiguity may be attributed to the presence of a turbidity current deposit in the sediment core, or uncertainty in the age and/or location of the K-Ar dated basalts of the Cascade Seamount. Statistical analysis of the published grain size measurements will be used to test for the presence of a turbidity current deposit in ODP Site 1172. We will also measure 87Sr/86Sr ratios of marine carbonate samples from conglomerates obtained from the Cascade Seamount during the August 2016 RV Investigator voyage (IN2016_E01) to confirm the age of the wave planated surfaces by Strontium Isotope Stratigraphy. This will allow for a more robust calculation for the subsidence of the ETP which was a critical barrier in the Tasmanian Gateway that allowed for the formation of the Antarctic Circumpolar Current.

  20. Genesis of Central Indian Ocean basin seamounts: morphological, petrological, and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar D.; Amonkar, Ankeeta Ashok; Das, Pranab

    2018-04-01

    We present the petrological investigation carried out of the seamounts located between water depths of 4300 and 5385 m in the Central Indian Ocean Basin (CIOB). The seamounts have variable shapes (conical and elongated) and heights (625-1200 m). The basalts have a glassy veneer that forms the outer rind, while the holocrystalline interior shows variable textures. The basalts are plagioclase phyric and compositionally have low FeO* (8.0-10.5 wt%) and TiO2 (1.3-2.0 wt%), and variable K2O (0.1-1.0 wt%) contents and are slightly enriched in the light rare-earth elements. These characteristics are similar to the basalts from the CIOB seafloor and the Central Indian and Southeast Indian Ridges. These facts attest to the simultaneous formation of the CIOB seafloor and associated seamounts that shared a common source between 56 and 51 Ma when the spreading (half) rate was 95 mm/year. Similar to the East Pacific Rise (EPR), the source melt was perhaps ferrobasalts which over a period of time fractionated to N-MORB during the emplacement of the seamounts. The production of the seamounts may have involved a periodic tapping of a regularly replenished and shallow seated source melt. These basalts from the older seamounts of the CIOB are analogous to their present-day counterparts that form at the fast-spreading EPR and other locales in the world oceans.

  1. Characterization of available light for seagrass and patch reef productivity in Sugarloaf Key, Lower Florida Keys

    USGS Publications Warehouse

    Toro-Farmer, Gerardo; Muller-Karger, Frank E.; Vega-Rodriguez, Maria; Melo, Nelson; Yates, Kimberly K.; Johns, Elizabeth; Cerdeira-Estrada, Sergio; Herwitz, Stan R.

    2016-01-01

    Light availability is an important factor driving primary productivity in benthic ecosystems, but in situ and remote sensing measurements of light quality are limited for coral reefs and seagrass beds. We evaluated the productivity responses of a patch reef and a seagrass site in the Lower Florida Keys to ambient light availability and spectral quality. In situ optical properties were characterized utilizing moored and water column bio-optical and hydrographic measurements. Net ecosystem productivity (NEP) was also estimated for these study sites using benthic productivity chambers. Our results show higher spectral light attenuation and absorption, and lower irradiance during low tide in the patch reef, tracking the influx of materials from shallower coastal areas. In contrast, the intrusion of clearer surface Atlantic Ocean water caused lower values of spectral attenuation and absorption, and higher irradiance in the patch reef during high tide. Storms during the studied period, with winds >10 m·s−1, caused higher spectral attenuation values. A spatial gradient of NEP was observed, from high productivity in the shallow seagrass area, to lower productivity in deeper patch reefs. The highest daytime NEP was observed in the seagrass, with values of almost 0.4 g·O2·m−2·h−1. Productivity at the patch reef area was lower in May than during October 2012 (mean = 0.137 and 0.177 g·O2·m−2·h−1, respectively). Higher photosynthetic active radiation (PAR) levels measured above water and lower light attenuation in the red region of the visible spectrum (~666 to ~699 nm) had a positive correlation with NEP. Our results indicate that changes in light availability and quality by suspended or resuspended particles limit benthic productivity in the Florida Keys.

  2. Mesozooplankton respiration and community structure in a seamount region of the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Frederick, Leissing; Escribano, Ruben; Morales, Carmen E.; Hormazabal, Samuel; Medellín-Mora, Johanna

    2018-05-01

    Seamounts in the Juan Fernandez Ridge, as well as in other seamount regions in the eastern South Pacific and in the world oceans, remain poorly studied ecosystems in terms of structure and functioning. Here, community respiration by epipelagic mesozooplankton in three seamounts of the Juan Fernandez Ridge, including the O`Higgins Seamount close to the coastal upwelling zone and two oceanic seamounts near the Juan Fernandez Archipelago ( 33°S-78°W), was assessed. Oxygen consumption by mixed assemblages was estimated using continuous measurements of dissolved oxygen concentration under controlled temperature during onboard, short-term incubations (2-4 h). Mesozooplankton composition was analyzed with a ZooScan device and expressed in terms of community normalized size spectra, and taxa and size diversity (Shannon-Wiener index). Carbon-specific community respiration rates in the upper 100 m layer were in the range of 0.3-1.9 mg O2 m-2 d-1, indicating that up to 3.1% of the mesozooplankton biomass can be respired on a daily basis. The mesozooplankton community was dominated by small-size copepods but the proportions of small copepods, large copepods, and gelatinous zooplankton (mostly salps) changed between the seamounts, in association with modifications in taxa composition, size diversity, and the slope of the size spectrum. Community respiration was significantly correlated to these community descriptors, suggesting the composition of the pelagic community has a direct impact on the total amount of respired-C. Connectivity between the coastal upwelling zone and the Juan Fernandez Ridge region mediated by mesoscale activity, interacting with the seamounts, is suggested as a most important process in controlling zooplankton community structure and in turn community metabolism.

  3. The fish fauna of Ampère Seamount (NE Atlantic) and the adjacent abyssal plain

    NASA Astrophysics Data System (ADS)

    Christiansen, Bernd; Vieira, Rui P.; Christiansen, Sabine; Denda, Anneke; Oliveira, Frederico; Gonçalves, Jorge M. S.

    2015-03-01

    An inventory of benthic and benthopelagic fishes is presented as a result of two exploratory surveys around Ampère Seamount, between Madeira and the Portuguese mainland, covering water depths from 60 to 4,400 m. A total of 239 fishes were collected using different types of sampling gear. Three chondrichthyan species and 31 teleosts in 21 families were identified. The collections showed a vertical zonation with little overlap, but indications for an affinity of species to certain water masses were only vague. Although most of the species present new records for Ampère Seamount, all of them have been known for the NE Atlantic; endemic species were not found. The comparison with fish communities at other NE Atlantic seamounts indicates that despite a high ichthyofaunal similarity, which supports the "stepping stone" hypothesis of species dispersal, some differences can be attributed to the local features of the seamounts.

  4. Chemically diverse, sporadic volcanism at seamounts offshore southern and Baja California

    USGS Publications Warehouse

    Davis, A.S.; Gunn, S.H.; Bohrson, W.A.; Gray, L.-B.; Hein, J.R.

    1995-01-01

    Compositions of lavas from seven small to medium-sized seamounts offshore southern and Baja California, include low-K2O tholeiitic, transitional, and mildly to moderately alkalic basalt and their differentiates. The seamounts with these MORB-like lavas are inferred to have formed at or near the spreading center. Based on 40Ar/39Ar laser fusion techniques, MORB-like lava from one of the northern edifices is as old as the underlying oceanic crust (>20 Ma), indicating that it originated at a spreading center. Other seamount lava ages are much younger than the oceanic crust on which they reside. Some of the seamounts with transitional and alkalic lavas may have formed as part of a short, age-progressive chain formed by a short-lived mantle plume. Many others, may have resulted from upwelling mantle diapirs in response to localized extension. -from Authors

  5. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... Sanctuary Pt. 922, Subpt. M, App. F Appendix F to Subpart M of Part 922—Davidson Seamount Management Zone...

  6. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    PubMed

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. A century of ocean warming on Florida Keys coral reefs: historic in situ observations

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Lidz, Barbara H.; Hudson, J. Harold; Anderson, Jeffery S.

    2015-01-01

    There is strong evidence that global climate change over the last several decades has caused shifts in species distributions, species extinctions, and alterations in the functioning of ecosystems. However, because of high variability on short (i.e., diurnal, seasonal, and annual) timescales as well as the recency of a comprehensive instrumental record, it is difficult to detect or provide evidence for long-term, site-specific trends in ocean temperature. Here we analyze five in situ datasets from Florida Keys coral reef habitats, including historic measurements taken by lighthouse keepers, to provide three independent lines of evidence supporting approximately 0.8 °C of warming in sea surface temperature (SST) over the last century. Results indicate that the warming observed in the records between 1878 and 2012 can be fully accounted for by the warming observed in recent decades (from 1975 to 2007), documented using in situ thermographs on a mid-shore patch reef. The magnitude of warming revealed here is similar to that found in other SST datasets from the region and to that observed in global mean surface temperature. The geologic context and significance of recent ocean warming to coral growth and population dynamics are discussed, as is the future prognosis for the Florida reef tract.

  8. Pacific seamount volcanism in space and time

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.

    2007-02-01

    Seamounts constitute some of the most direct evidence about intraplate volcanism. As such, when seamounts formed and into which tectonic setting they erupted (i.e. on-ridge or off-ridge) are a useful reflection of how the properties of the lithosphere interact with magma generation in the fluid mantle beneath. Proportionately few seamounts are radiometrically dated however, and these tend to be recently active. In order to more representatively sample and better understand Pacific seamount volcanism this paper estimates the eruption ages (tvolc) of 2706 volcanoes via automated estimates of lithospheric strength. Lithospheric strength (GTRrel) is deduced from the ratio of gravity to topography above the summits of volcanoes, and is shown to correlate with seafloor age at the time of volcanic loading (Δt) at 61 sites where radiometric constraints upon Δt exist. A trend of fits data for these 61, and with seafloor age (tsf) known, can date the 2706 volcanoes; tvolc = tsf - Δt. Widespread recurrences of volcanism proximal to older features (e.g. the Cook-Austral alignment in French Polynesia) suggest that the lithosphere exerts a significant element of control upon the location of volcanism, and that magmatic throughput leaves the lithosphere more susceptible to the passage of future melts. Observations also prompt speculation that: the Tavara seamounts share morphological characteristics and isostatic compensation state with the Musicians, and probably formed similarly; the Easter Island chain may be a modern analogy to the Cross-Lines; a Musicians - South Hawaiian seamounts alignment may be deflecting the Hawaiian hotspot trace.

  9. Selective predation for low body condition at the larval-juvenile transition of a coral reef fish.

    PubMed

    Hoey, Andrew S; McCormick, Mark I

    2004-03-01

    Mortality is known to be high during the transition from larval to juvenile life stages in organisms that have complex life histories. We are only just beginning to understand the processes that influence which individuals survive this period of high mortality, and which traits may be beneficial. Here we document a field experiment that examines the selectivity of predation immediately following settlement to the juvenile population in a common tropical fish, Pomacentrus amboinensis (Pomacentridae). Newly metamorphosed fish were tagged and randomly placed onto replicated patches of natural habitat cleared of resident fishes. After exposure to transient predators for 3 days, fish were recollected and the attributes of survivors from patch reefs that sustained high mortality were compared to individuals from patch reefs that experienced low mortality. Seven characteristics of individuals, which were indicative of previous and present body condition, were compared between groups. Predation was found to be selective for fish that grew slowly in the latter third of their larval phase, were low in total lipids, and had a high standardized weight (Fulton's K). Traits developed in the larval phase can strongly influence the survival of individuals over this critical transition period for organisms with complex life cycles.

  10. Sewage contamination of a densely populated coral 'atoll' (Bermuda).

    PubMed

    Jones, Ross; Parsons, Rachel; Watkinson, Elaine; Kendell, David

    2011-08-01

    Bermuda is a densely populated coral 'atoll' located on a seamount in the mid-Atlantic (Sargasso Sea). There is no national sewerage system and the ∼20 × 10(6) L of sewage generated daily is disposed of via marine outfalls, cess pits/septic tanks underneath houses and through waste disposal (injection) wells. Gastrointestinal (GI) enterococci concentrations were measured in surface seawater samples collected monthly at multiple locations across the island over a 5-year period. According to the EU Bathing Water Directive microbial classification categories, 18 of the sites were in the 'excellent' category, four sites in the 'good', five sites were in the 'sufficient' and three sites in the 'poor' categories. One of the sites in the 'poor' category is beside a popular swimming beach. Between 20-30% of 58 sub tidal sediment samples collected from creeks, coves, bays, harbours and marinas in the Great Sound complex on the western side of Bermuda tested positive for the presence of the human specific bacterial biomarker Bacteroides (using culture-independent PCR-based methods) and for the faecal biomarker coprostanol (5β-cholestan-3-β-ol, which ranged in concentration from <0.05-0.77 mg kg( - 1). There was a significant statistical correlation between these two independent techniques for faecal contamination identification. Overall the microbial water quality and sedimentary biomarker surveys suggest sewage contamination in Bermuda was quite low compared with other published studies; nevertheless, several sewage contamination hotpots exist, and these could be attributed to discharge of raw sewage from house boats, from nearby sewage outfalls and leakage from septic tanks/cess pits.

  11. A Bayesian rupture model of the 2007 Mw 8.1 Solomon Islands earthquake in Southwest Pacific with coral reef displacement measurements

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Luo, Haipeng; Furlong, Kevin P.

    2017-05-01

    On 1st April 2007 a Mw 8.1 megathrust earthquake occurred in the western Solomon Islands of the Southwest Pacific and generated a regional tsunami with run-up heights of up to 12 m. A Bayesian inversion model is constructed to derive fault dip angle and cumulative co-seismic and early post-seismic slip using coral reef displacement measurements, in which both data misfit and moment magnitude are used as constraints. Results show three shallow, high-slip patches concentrated along the trench from west of Ranongga Island to Rendova Island on a fault plane dipping 20°, and a maximum dip slip of 11.6 m beneath Ranongga Island. Considerable subsidence on Simbo Island outboard of the trench on the subducting plate is not well explained with this model, but may be related to the effects of afterslip and/or Simbo Island's location near the triple junction among the Australia, Woodlark and Pacific plates.

  12. The Tasmantid Seamounts: A window into the structural inheritance of ocean floor fabric

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Kalnins, L. M.; Watts, A. B.; Cohen, B. E.; Beaman, R. J.

    2015-12-01

    The extinct Tasman Sea spreading centre, active from 84--53 Ma, is intersected at a number of locations by the Tasmantid Seamount Chain. The chain, which extends for over 2000 km off the east coast of Australia, progressively increases in age from south to north with ages ranging between 6 Ma and ˜50 Ma. While thick sediment (˜1 km) obscures much of the northern Tasman Sea basement, detailed morphological and geophysical analyses of the seamounts reveal a strong correlation between tectonic setting, seamount orientation, and volcanic structure, despite the ≥20 Ma offset between spreading cessation and initial seamount emplacement. Morphologically, structural inheritance is evidenced by the contrast between two volcanic styles: 1) the rugged, predominantly fissure-fed, fabrics characterizing seamounts emplaced at inside corners of spreading segment-transform intersections; and 2) the conical seamounts with summit craters and isolated dyke-fed flank cones that develop off-axis. Furthermore, volcanic fabrics align closely with the principal stress directions expected for a spreading ridge system in which strong mechanical coupling occurs across transform faults. This suggests that the lithosphere is dissected by numerous deep faults, allowing magma to be channelled away from the site of melting along pre-existing structural trends. The generally low effective elastic thickness, TeT_e, (≤15 km) and lack of a plate age-TeT_e relationship along the chain indicate that structural inheritance is also the major control on lithospheric strength near the extinct spreading centre. While the importance of structural inheritance in controlling magmatic behaviour is commonly acknowledged in continental settings, these results clearly demonstrate the need to also consider it in the oceanic realm.The extinct Tasman Sea spreading centre, active from 84--53 Ma, is intersected at a number of locations by the Tasmantid Seamount Chain. The chain, which extends for over 2000 km off the east coast of Australia, progressively increases in age from south to north with ages ranging between 6 Ma and ˜50 Ma. While thick sediment ( ˜1 km) obscures much of the northern Tasman Sea basement, detailed morphological and geophysical analyses of the seamounts reveal a strong correlation between tectonic setting, seamount orientation, and volcanic structure, despite the ≥20 Ma offset between spreading cessation and initial seamount emplacement. Morphologically, structural inheritance is evidenced by the contrast between two volcanic styles: 1) the rugged, predominantly fissure-fed, fabrics characterizing seamounts emplaced at inside corners of spreading segment-transform intersections; and 2) the conical seamounts with summit craters and isolated dyke-fed flank cones that develop off-axis. Furthermore, volcanic fabrics align closely with the principal stress directions expected for a spreading ridge system in which strong mechanical coupling occurs across transform faults. This suggests that the lithosphere is dissected by numerous deep faults, allowing magma to be channelled away from the site of melting along pre-existing structural trends. The generally low effective elastic thickness, Te, (≤15 km) and lack of a plate age-Te relationship along the chain indicate that structural inheritance is also the major control on lithospheric strength near the extinct spreading centre. While the importance of structural inheritance in controlling magmatic behaviour is commonly acknowledged in continental settings, these results clearly demonstrate the need to also consider it in the oceanic realm.

  13. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts

    NASA Astrophysics Data System (ADS)

    Palomino, Desirée; Vázquez, Juan-Tomás; Somoza, Luis; León, Ricardo; López-González, Nieves; Medialdea, Teresa; Fernández-Salas, Luis-Miguel; González, Francisco-Javier; Rengel, Juan Antonio

    2016-02-01

    The margin of the continental slope of the Volcanic Province of Canary Islands is characterised by seamounts, submarine hills and large landslides. The seabed morphology including detailed morphology of the seamounts and hills was analysed using multibeam bathymetry and backscatter data, and very high resolution seismic profiles. Some of the elevation data are reported here for the first time. The shape and distribution of characteristics features such as volcanic cones, ridges, slides scars, gullies and channels indicate evolutionary differences. Special attention was paid to recent geological processes that influenced the seamounts. We defined various morpho-sedimentary units, which are mainly due to massive slope instability that disrupt the pelagic sedimentary cover. We also studied other processes such as the role of deep bottom currents in determining sediment distribution. The sediments are interpreted as the result of a complex mixture of material derived from a) slope failures on seamounts and submarine hills; and b) slides and slumps on the continental slope.

  14. A Case Study in the Effectiveness of Marine Protected Areas (MPAs): the Islands of Bonaire and Curacao, Dutch Caribbean

    NASA Astrophysics Data System (ADS)

    Relles, Noelle J.

    The islands of Bonaire and Curacao, Dutch Caribbean, were both mapped along their leeward coasts for dominant coral community and other benthic cover in the early 1980s. This mapping effort offers a unique baseline for comparing changes in the benthic community of the two islands since that time, particularly given the marked differences between the two islands. Bonaire is well-protected and completely surrounded by a marine protected area (MPA), which includes two no-diving marine reserves; additionally, Bonaire's population is only around 15,000. In contrast, the island of Curacao is home to 140,000 inhabitants and marine protection is limited, with a reef area of 600 ha established as a "paper" park (i.e., little enforcement). Video transects collected by SCUBA over the reefs were collected on Bonaire in January of 2008; when compared to data from 1985, coral cover had declined in the shallowest portion of the reef (< 5 m) and was mostly the result of declines in Acropora spp., whereas head corals increased. Transects closest to the no-diving marine reserves showed higher coral cover and diversity than transects located farther from the reserves. Satellite remote sensing techniques were used to create landscape-scale reef maps along the leeward coasts of both islands, which could differentiate areas of high hard coral cover (> 20%), predominantly sand (> 50%) and areas where hard coral and sand were mixed with soft corals, sea whips and marine plants. These modern maps (2007-09) were groundtruthed using the video data collected on Bonaire for accuracy and then compared to the early 1980s maps of the reefs on both islands. Bonaire experienced declines in coral cover overall and the remaining coral was increasingly patchy; however, changes in patch characteristics were not significant over the time period, but status as a marine reserve and the sheltering of the shoreline did appear to buffer against coral loss. Surprisingly, the island of Curacao did not experience a decline in total coral cover, but did become increasingly patchy, significantly more so than Bonaire. The Curacao Underwater Park afforded no additional protection against coral loss or fragmentation than an adjacent unprotected area of reef. The difference between the two islands in coral loss versus fragmentation has the potential for a unique natural experiment to study the effects of habitat fragmentation in the absence of overall habitat loss at the landscape scale. The Bonaire National Marine Park could benefit by restricting visitors to its most frequented dive sites by increasing the cost of entry into a tiered pay system, thus generating more income for education and management of the park, as well as deterring some divers from these overused sites. Satellite remote sensing-derived maps are useful for rapid reef mapping and can be utilized for comparison to ancillary maps created by more traditional methods. Satellite-derived maps can only distinguish benthic habitats coarsely (3-4 habitat classes) and are only as reliable as their source data, they benefit greatly from fieldwork to determine depth, geographic location, and benthic habitat cover in real time.

  15. Fisheries Aspects of Seamounts and Taylor Columns

    DTIC Science & Technology

    1986-09-01

    the armorhead population. Due to a probable combination of overfishing and poor recruitment, the large fishery of the early 1970’s began a rapid...ACCESSION NO T I TLE (include Security Classification) FISHERIES ASPECTS OF SEAMOUNTS AND TAYLOR COLUMNS 2 PERSONAL AUTHOR(S) Brainard, Russell E. 13a...retention Seamount oceanography Taylor column Fisheries Nutrient enrichment 𔄃 3ASTRACT (Continue on reverse of necessary and identify by block number

  16. Abundance of litter on Condor seamount (Azores, Portugal, Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Pham, C. K.; Gomes-Pereira, J. N.; Isidro, E. J.; Santos, R. S.; Morato, T.

    2013-12-01

    Marine litter is an emerging problem for the world's ocean health but little is known on its distribution and abundance on seamounts and how it affects deep-sea ecosystems. The scientific underwater laboratory set up on Condor seamount offered an ideal case study for the first documentation of litter distribution on a shallow seamount with historical fishing. A total of 48 video transects deployed on the summit (n=45) and the northern flank (n=3) covered an area of 0.031 and 0.025km2, respectively, revealing 55 litter items. Litter density on the summit was 1439 litter items km-2, whilst on the deeper northern flank, estimates indicate densities of 397 litter items km-2. Lost fishing line was the dominant litter item encountered on both areas (73% of total litter on the summit and 50% on northern flank), all being entirely or partly entangled in the locally abundant gorgonians Dentomuricea cf. meteor and Viminella flagellum. Other items included lost weights, anchors and glass bottles. The predominance of lost fishing gear identifies the source of litter on Condor seamount as exclusively ocean-based and related to fishing activities. Abundance of litter on the Condor seamount was much lower than that reported from other locations closer to populated areas.

  17. Sr, Nd and Pb Isotope Geochemistry of Near-ridge Seamounts in Eastern Pacific: Implications for Upper Mantle Composition and EPR Magmatic Segmentation

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; White, W. M.; Batiza, R.

    2005-12-01

    Near-ridge seamount lavas tend to reflect the true composition of the upper mantle source of MORB because these are generated by relatively smaller degrees of melting of smaller volumes of the mantle compared to nearby axial lavas; they also by-pass the axial chamber mixing and fractionation processes that are responsible for the relatively more uniform chemical and isotopic composition of normal-MORB. New Sr, Nd and Pb isotope data combined with published data for lavas from near-ridge seamounts on either side of the EPR segment between the 11o45' OSC and Orozco Transform at 15o00' show latitudinal isotopic variation very similar to that shown by the rise axial lavas (Castillo et al., G3 1, 1999). Seamount and axial lavas at both ends of the rise segment have on average slightly higher and more limited range of 143Nd/144Nd, but slightly lower 206Pb/204Pb and 87Sr/86Sr ratios than lavas at the center of the segment. Some of the seamounts are located on ~8 Ma rise flank crust although most of the seamount lavas are fairly young (e.g., lavas from Seamount 6 on ~3 Ma crust are only 3 to 900 kyr - Graham et al., Nature 326, 1987). Thus near-ridge seamount isotope data provide the first documentation for a large-scale (~350 km long x ~720 km wide), systematic compositional variation of the upper mantle source of EPR MORB. Such a scale of variation is larger and longer than the size and <1 myr life span of the majority of non-transform offsets, which are supposed to be responsible for the along-axis compositional variations of EPR MORB according to the "bottoms up" model of magmatic segmentation.

  18. Formation of post-spreading volcanic ridges in the East sub-basin of the South China Sea

    NASA Astrophysics Data System (ADS)

    He, E.; Zhao, M.; Sibuet, J. C.; Tan, P.; Wang, J.; Qiu, X.

    2016-12-01

    In the South China Sea (SCS), the post-spreading magmatism ( 3-13 Ma) largely masks the initial seafloor spreading fabric. The resulting post-spreading seamounts are more numerous in the northern part than in the southern part of the East sub-basin. In the eastern part of the East sub-basin, the post-spreading volcanic ridge (PSVR) is approximately N055° oriented and follows the extinct spreading ridge (ESR). In the western part of the East sub-basin, the PSVR, called the Zhenbei-Huangyan seamounts chain, is E-W oriented and hides the ESR (Sibuet et al., 2016). We conducted a seismic refraction survey covering both the Zhenbei-Huangyan seamount chain and the location of the adjacent ESR. Three E-W oriented profiles and one N-S oriented profile are parallel and perpendicular to the Zhenbei-Huangyan seamounts chain, respectively. Our research is focused on the understanding of the relationship between the crustal thicknesses and crustal seismic velocities. The detailed velocity structure shows that the Zhenbei-Huangyan seamount chain was emplaced through a typical oceanic crust. Crustal thicknesses and seismic velocities suggest an asymmetric generation of seamounts in the East sub-basin, where active upwelling mantle (Holbrook et al., 2001) or buoyancy-driven decompression melting happened (Castillo et al., 2010). The Zhenbei and Huangyan seamounts were probably formed 3-5 Ma and 7-9 Ma, after seafloor spreading cessation; their thickened lower crusts were probably due to magmatic intrusions associated with a high-velocity layer (7.4-7.6 km/s),and their large thickness of upper crust were mainly due to volcanic extrusions. These two seamounts presents a different structural orientation and their crustal thicknesses are different, suggesting an independent origin for their magmatic feeding. This research was granted by the Natural Science Foundation of China (91428204, 91028002, 41176053).

  19. Paleomagnetic modeling of seamounts near the Hawaiian Emperor bend

    NASA Astrophysics Data System (ADS)

    Sager, William W.; Lamarche, Amy J.; Kopp, Christian

    2005-08-01

    The Hawaiian-Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for ˜80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past ˜45 m.y.

  20. Cascadia Seismicity Related to Seamount Subduction as detected by the Cascadia Initiative Amphibious Data

    NASA Astrophysics Data System (ADS)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2016-12-01

    Unlike other subduction zones, the Cascadia subduction zone (CSZ) is notable for the absence of detected and located small and moderate magnitude interplate earthquakes, despite the presence of recurring episodic tremor and slip (ETS) downdip and evidence of pre-historic great earthquakes. Thermal and geodetic models indicate that the seismogenic zone exists primarily, if not entirely, offshore; therefore the perceived unusual seismic quiescence may be a consequence of seismic source location in relation to land based seismometers. The Cascadia Initiative (CI) amphibious community seismic experiment includes ocean bottom seismometers (OBS) deployed directly above the presumed locked seismogenic zone. We use the CI dataset to search for small magnitude interplate earthquakes previously undetected using the on-land sensors alone. We implement subspace detection to search for small earthquakes. We build our subspace with template events from existing earthquake catalogs that appear to have occurred on the plate interface, windowing waveforms on CI OBS and land seismometers. Although our efforts will target the entire CSZ margin and full 4-year CI deployment, here we focus on a previously identified cluster off the coast of Oregon, related to a subducting seamount. During the first year of CI deployment, this target area yields 293 unique detections with 86 well-located events. Thirty-two of these events occurred within the seamount cluster, and 13 events were located in another cluster to the northwest of the seamount. Events within the seamount cluster are separated into those whose depths place them on the plate interface, and a shallower set ( 5 km depth). These separate event groups track together temporally, and seem to agree with a model of seamount subduction that creates extensive fracturing around the seamount, rather than stress concentrated at the seamount-plate boundary. During CI year 2, this target area yields >1000 additional event detections.

  1. IODP Expedition 366 Reveals Widespread Seamount Subduction Effects in the Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Wheat, C. G.; Williams, T.

    2017-12-01

    Numerous studies of the subduction of seamounts at accretionary convergent plate margins show considerable vertical tectonic deformation in the forearc region. This includes embayment of the trench axis, steepening of the inner trench slope, the creation of troughs in the wake of the seamount track beneath the forearc sediment wedge, but hypotheses regarding the seismogenic consequences of these processes are frequently at odds. In the nonaccretionary Mariana convergent plate margin, it is clear that ridges crosscut the entire forearc region in commensurate dimensions with thicker areas of subducting Pacific plate. Furthermore, to-date deep-sea drilling results on ODP Legs 125 and 195 and on IODP Expedition 366 recovered seamount materials from 5 serpentinite mud volcanoes over a 640 km along-strike distance, within 90 km west of the trench axis, and from 13 to 19 km depth to slab. The location of the serpentinite mud volcanoes is always associated with fault lineaments. The faulting creates the conduits for eruption of mixtures of fluids from the subduction channel and fault gouge from both the subduction channel and the forearc lithosphere. Cores from IODP 366 confirm that seamount subduction and deformation is a temporally and spatially pervasive process on the Mariana forearc. The new findings provide windows on a continuum of the evolution of plate and seamount subduction from the trench to nearly 20 km depth within the subduction channel. Cased boreholes were deployed at the summits of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts) during Expedition 366. These, plus the existing borehole observatory at ODP Site 1200C on the active summit of Conical Seamount provide a means to monitor processes of subduction related to serpentinite mud volcanism of the Mariana forearc. Such drilling results and borehole observations impact current paradigms of lithospheric deformation, mass cycling, and physical conditions within the subduction channel.

  2. Towards ecosystem based management and monitoring of the deep Mediterranean, North-East Atlantic and Beyond

    NASA Astrophysics Data System (ADS)

    Grehan, Anthony J.; Arnaud-Haond, Sophie; D'Onghia, Gianfranco; Savini, Alessandra; Yesson, Chris

    2017-11-01

    The deep sea covers 65% of the earth's surface and 95% of the biosphere but only a very small fraction (less than 0.0001%) of this has been explored (Rogers et al., 2015; Taylor and Roterman, 2017). However, current knowledge indicates that the deep ocean is characterized by a high level of biodiversity and by the presence of important biological and non-renewable resources. As well as vast flat and muddy plains, the topography of the deep ocean contains a variety of complex and heterogeneous seafloor features, such as canyons, seamounts, cold seeps, hydrothermal vents and biogenic (deep-water coral) reefs and sponge bioherms that harbour an unquantified and diverse array of organisms. The deep sea, despite its remoteness, provides a variety of supporting, provisioning, regulating and cultural, ecosystem goods and services (Thurber et al., 2014). The recent push for 'Blue Growth', to unlock the potential of seas and oceans (European Commission, 2017) has increased the focus on the potential to exploit resources in the deep-sea and consequently the need for improved management (Thurber et al., 2014).

  3. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance.

    PubMed

    LaJeunesse, Todd C; Smith, Robin; Walther, Mariana; Pinzón, Jorge; Pettay, Daniel T; McGinley, Michael; Aschaffenburg, Matthew; Medina-Rosas, Pedro; Cupul-Magaña, Amilcar L; Pérez, Andrés López; Reyes-Bonilla, Hector; Warner, Mark E

    2010-10-07

    Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally 'sensitive' symbiont, designated Symbiodinium C1b-c, while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies recovered quickly while others suffered partial or complete mortality. In most colonies, no appreciable change was observed in the identity of the original symbiont, indicating that these partnerships are stable. During the initial phases of recovery, a third species of symbiont B1(Aiptasia), genetically identical to that harboured by the invasive anemone, Aiptasia sp., grew opportunistically and was visible as light-yellow patches on the branch tips of several colonies. However, this symbiont did not persist and was displaced in all cases by C1b-c several months later. Colonies with D1 were abundant at inshore habitats along the continental eastern Pacific, where seasonal turbidity is high relative to offshore islands. Environmental conditions of the central and southern coasts of Mexico were not sufficient to explain the exclusivity of D1 Pocillopora in these regions. It is possible that mass mortalities associated with major thermal disturbances during the 1997-1998 El Niño Southern Oscillation eliminated C1b-c holobionts from these locations. The differential loss of Pocillopora holobionts in response to thermal stress suggests that natural selection on existing variation can cause rapid and significant shifts in the frequency of particular coral-algal partnerships. However, coral populations may take decades to recover following episodes of severe selection, thereby raising considerable uncertainty about the long-term viability of these communities.

  4. Impact and implications of the Afro-Eurasian collision south of Cyprus from reflection seismic data

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Ehrhardt, Axel

    2014-06-01

    The Cyprus Arc in the Eastern Mediterranean represents the active collision front between the African and Eurasian (Anatolian) Plates. Along the Cyprus Arc, the Eratosthenes Seamount is believed to have been blocking the northward motion of the African Plate since the Late Pliocene-Early Pleistocene. Based on a dense grid of 2D reflection seismic profiles covering the Eratosthenes Seamount and western Levant Basin offshore Cyprus, new observations regarding the Cyprus Arc collision front at the triple transition zone Eratosthenes Seamount-Levant Basin-Hecataeus Rise are presented. The data show that the Levant Basin is filled with ~ 10 km of sediments of Early Mesozoic (probably Jurassic) to Plio-Quaternary age with only a localized deformation affecting the Miocene-Oligocene rock units. The sediments onlap directly against the steep eastern flank of the Eratosthenes Seamount to the west and the southern flank of the Hecataeus Rise to the north. The sediments show no deformation that could be associated with collision and are undeformed even very close to the two prominent structures. Pinching out of the Base Miocene reflector in the Levant Basin due to onlapping of the Middle Miocene reflector indicates uplift of the Eratosthenes Seamount and the Hecataeus Rise. In contrast to the Messinian Evaporites north of the Eratosthenes Seamount, the salt in the Levant Basin, even close to the Hecataeus Rise, is tectonically undeformed. It is proposed that the Eratosthenes Seamount, the western Levant Basin and the Hecataeus Rise act as one tectonic unit. This implies that the collision front is located north of this unit and that the Hecataeus Rise shields the sediments south of it from deformation associated with collision of the African and Anatolian Plates.

  5. Flexural bending-induced plumelets and their seamounts in accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Dilek, Y.

    2015-12-01

    Seamounts and seamount chains are common in both the upper and lower plates of active subduction zones. Their OIB-type volcanic products are distinctly different from suprasubduction zone (arc, forearc and backarc) generated volcanic rocks in terms of their compositions and mantle sources. Tectonic accretion of such seamounts into the Japanese archipelago in the NW Pacific and into subduction-accretion complexes and active margins of continents/microcontinents within the Tethyan realm during the Cretaceous played a significant role in continental growth. Seamount assemblages comprise alkaline volcanic rocks intercalated with radiolarian and hemipelagic chert, and limestone, and may also include hypabyssal dolerite and gabbro intrusions. In the Tethyan orogenic belts these seamount rocks commonly occur as km-scale blocks in mélange units beneath the late Jurassic - Cretaceous ophiolites nappes, whereas on the Japanese islands they form discrete, narrow tectonic belts within the late Jurassic - Cretaceous accretionary prism complexes. We interpret some of these OIB occurrences in the Japanese and Tethyan mountain belts as asperities in downgoing oceanic plates that formed in <10 million years before their accretion. Their magmas were generated by decompressional melting of upwelling asthenosphere, without any significant mantle plume component, and were brought to the seafloor along deep-seated brittle fractures that developed in the flexed, downgoing lithosphere as it started bending near a trench. The modern occurrences of these "petit-spot volcanoes" are well established in the northwestern Pacific plate, off the coast of Japan. The proposed mechanism of the formation of these small seamounts better explains the lack of hotspot trails associated with their occurrence in the geological record. Magmatic outputs of such flexural bending-induced plumelets should be ubiquitious in the accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts.

  6. Combined Acoustic Propagation in Eastpac Region (Exercise CAPER): Initial Acoustic Analysis

    DTIC Science & Technology

    1978-06-01

    the possibility of out- of -plane reflections off a second seamount when shadowed by the seamount chosen for crossing . Fieberling Tablemount then became...Hanna, then of the Acoustic Environ- mental Support Detachment (AESD), had a number of reservations and suggestions as to thle exercise plan. The...distance to Track A. The calculations of Fig. 4 were based on the pre- dicted sound-speed profile and on seamount cross sections taken at 1.8-km

  7. Geodynamics of seafloor spreading extinction: Constraints from the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, J.; Behn, M. D.

    2016-12-01

    We investigate magmatism and mantle thermal structure beneath fossil spreading centers in the South China Sea (SCS), focusing on two aspects: (1) mantle thermal structure and melting, and (2) magmatism associated with seamounts. We carried out 3D geodynamic models to study thermal structure beneath the SCS during the process from initiation to cessation of seafloor spreading. Modeling results suggested that the overall mantle temperatures of the East Subbasin were significantly greater than that of the Southwest Subbasin when the seafloor spreading of both subbasins ceased at about 15-16 Ma. However, the differences in thermal structure between the two subbasins were calculated to have decreased with time. Work is in progress to couple geochemical and geophysical constraints with geodynamic modeling to investigate melt generation, fractional crystallization, and melt extraction at the fossil spreading centers in the SCS. Among the seamounts that can be identified on multi-beam bathymetry data, about half of them are located along the fossil spreading centers while the remaining located off axis. This is in contrast to fossil spreading ridges in the West Scotia Sea and Phoenix Ridge, where most seamounts are located off axis. The off-axis seamounts in the SCS also show strong asymmetry about the fossil spreading centers with most seamounts concentrated in the northern flank. Work is in progress to investigate the melting processes associated with seamounts.

  8. Quantifying the direct use value of Condor seamount

    NASA Astrophysics Data System (ADS)

    Ressurreição, Adriana; Giacomello, Eva

    2013-12-01

    Seamounts often satisfy numerous uses and interests. Multiple uses can generate multiple benefits but also conflicts and impacts, calling, therefore, for integrated and sustainable management. To assist in developing comprehensive management strategies, policymakers recognise the need to include measures of socioeconomic analysis alongside ecological data so that practical compromises can be made. This study assessed the direct output impact (DOI) of the relevant marine activities operating at Condor seamount (Azores, central northeast Atlantic) as proxies of the direct use values provided by the resource system. Results demonstrated that Condor seamount supported a wide range of uses yielding distinct economic outputs. Demersal fisheries, scientific research and shark diving were the top-three activities generating the highest revenues, while tuna fisheries, whale watching and scuba-diving had marginal economic significance. Results also indicated that the economic importance of non-extractive uses of Condor is considerable, highlighting the importance of these uses as alternative income-generating opportunities for local communities. It is hoped that quantifying the direct use values provided by Condor seamount will contribute to the decision making process towards its long-term conservation and sustainable use.

  9. Drilling confirms hot-spot origins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-02-01

    Eleven holes were drilled at 4 sites in the Emperor Seamount chain in order to test the hot-spot hypothesis of the origin of the Hawaiian and Emperor chains and several important corollaries. Basalt was penetrated at 3 sites, and the paleontological ages of the lowest sediments above basalt are consistent with a linear geochron connecting the ages of Meiji Seamount to the north, and Koko and Yuryaku seamounts to the south. The chemical composition of the upper 4 basalt flow units cored at Ojin Seamount indicates that they are typical Hawaiites. A sample of tholeiite was recovered from the bottommore » of the hole. The lava flows from Ojin, Nintoku, and Suiko have natural remanent magnetization that is relatively stable to alternating field demagnetization, as expected of oceanic-island basalts. Many of the basalts at all 3 sites have highly vesicular and oxidized flow tops and bottoms. Observations indicate that the flows were erupted subaerially, and that Ojin, Nintoku, and Suiko volcanoes once stood well above sea level. In a general way, the hot-spot origin of the Emperor Seamount chain was confirmed. (JGB)« less

  10. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Technical Reports Server (NTRS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-01-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  11. Observations on Gulf of Alaska seamount chains by multi-beam sonar

    NASA Astrophysics Data System (ADS)

    Smoot, N. Christian

    1985-06-01

    Geomorphic and age data are presented for the Dellwood, Denson, Dickins, Giacomini, and Ely seamounts, the Tsimshian Seachannel, and the southern Juan de Fuca Ridge with Brown Bear, Bear Cub, Grizzly Bear, and Cobb seamounts. Formational speculations extrapolated to a regional scale allow the strikes and outer limits of the seamount chains to be interpreted. Six of these chains are shown in the Gulf of Alaska, none of which conform to the Pratt-Welker or Kodiak-Bowie in the literature. Different strikes show the chains/plate to have rotated 23° about 17 m.y. ago. Morphology also shows that there are four less guyots in the Gulf than previously thought, and that, at least in the Gulf of Alaska, guyot heights do not necessarily reflect sealevel during erosion.

  12. Sulfur-oxidizing bacterial populations within cyanobacterial dominated coral disease lesions.

    PubMed

    Bourne, David G; van der Zee, Marc J J; Botté, Emmanuelle S; Sato, Yui

    2013-08-01

    This study investigated the diversity and quantitative shifts of sulfur-oxidizing bacteria (SOB) during the onset of black band disease (BBD) in corals using quantitative PCR (qPCR) and cloning approaches targeting the soxB gene, involved in sulfur oxidation. Four Montipora sp. coral colonies identified with lesions previously termed cyanobacterial patches (CP) (comprising microbial communities different from those of BBD lesions), was monitored in situ as CP developed into BBD. The overall abundance of SOB in both CP and BBD lesions were very low and near the detection limit of the qPCR assay, although consistently indicated that SOB populations decreased as the lesions transitioned from CP to BBD. Phylogenetic assessment of retrieved soxB genes showed that SOB in both CP and BBD lesions were dominated by one sequence type, representing > 70% of all soxB gene sequences and affiliated with members of the Rhodobacteraceae within the α-Proteobacteria. This study represents the first assessment targeting SOB within BBD lesions and clearly shows that SOB are not highly diverse or abundant in this complex microbial mat. The lack of oxidation of reduced sulfur compounds by SOB likely aids the accumulation of high levels of sulfide at the base of the BBD mat, a compound contributing to the pathogenicity of BBD lesions. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Transitions between type A flake, type D flake, and coral graphite eutectic structures in cast irons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.S.; Verhoeven, J.D.

    1996-09-01

    Directional solidification experiments were used to measure the transition velocities between the type A and coral eutectic structures in high-purity cast irons and between the type A and type D eutectic structures in S and Te doped cast irons. Introduction of O into the gas atmosphere was found to have little effect on the A {R_arrow} D transition velocities in S doped alloys, but it produced a strong reduction in the A {R_arrow} coral transition velocities in high-purity irons. Transmission electron microscopy revealed interesting variations in the defect structures of the graphite in the flake irons vs the type ofmore » flake (A or D) and the type of doping element. Scanning Auger microscopy demonstrated that both S and Te segregate to the iron/graphite interface. In the S doped alloys, type A flakes are generally covered with a monolayer of S with patches of O in the form of iron oxide having a thickness on the order of 2 nm. A series of experiments, including examination of fracture surfaces at the quenched solid/liquid growth front, have shown that S segregates to the iron/graphite interfaces from the liquid at the growth front, but O forms at these interfaces during the cooldown. These results are discussed in relation to current models of eutectic growth in cast irons.« less

  14. Trench-parallel variations in Pacific and Indo-Australian crustal velocity structure due to Louisville Ridge seamount subduction

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Knight, T. P.; Peirce, C.; Watts, A. B.; Grevemeyer, I.; Paulatto, M.; Bassett, D.; Hunter, J.; Kalnins, L. M.

    2012-12-01

    Variations in trench and forearc morphology, and lithospheric velocity structure are observed where the Louisville Ridge seamount chain subducts at the Tonga-Kermadec Trench. Subduction of these seamounts has affected arc and back-arc processes along the trench for the last 5 Myr. High subduction rates (80 mm/yr in the north, 55 mm/yr in the south), a fast southwards migrating collision zone (~180 km/myr), and the obliquity of the subducting plate and the seamount chain to the trench, make this an ideal location to study the effects of seamount subduction on lithospheric structure. The "before and after" subduction regions have been targeted by several large-scale geophysical projects in recent years; the most recent being the R/V Sonne cruise SO215 in 2011. The crust and upper mantle velocity structure observed in profiles along strike of the seamount chain and perpendicular to the trench from this study, are compared to a similar profile from SO195, recorded ~100 km to the north. The affects of the passage of the seamounts through the subduction system are indicated by velocity anomalies in the crust and mantle of the overriding plate. Preliminary results indicate that in the present collision zone, mantle velocities (Pn) are reduced by ~5%. Around 100 km to the north, where seamounts are inferred to have subducted ~1 Myr ago, a reduction of 7% in mantle P-wave velocity is observed. The width of the trench slope and elevation of the forearc also vary along strike. At the collision zone a >100 km wide collapse region of kilometre-scale block faults comprise the trench slope, while the forearc is elevated. The elevated forearc has a 5 km think upper crust with a Vp of 2.5-5.5 km/s and the collapse zone also has upper crustal velocities as low as 2.5 km/s. To the east in the Pacific Plate, lower P-wave velocities are also observed and attributed to serpentinization due to deep fracturing in the outer trench high. Large bending faults permeate the crust and the Osbourn Seamount, currently on the verge of subduction, is fractured stepwise down into the trench. Pn velocities in the hinge zone of the Pacific Plate are as low as 7.3 km/s indicating that fracturing and serpentinization may also extend to sub-crustal depths. Finally, trench-parallel variations in subduction zone velocity structure are used to infer the degree to which seamount subduction has altered the physical state of the Pacific and Indo-Australian plates both pre- and post subduction.

  15. Deep subsurface microbiology of 64-71 million year old inactive seamounts along the Louisville Seamount Chain

    NASA Astrophysics Data System (ADS)

    Sylvan, J. B.; Morono, Y.; Grim, S.; Inagaki, F.; Edwards, K. J.

    2013-12-01

    One of the objectives of IODP Expedition 330, Louisville Seamount Trail, was to sample and learn about the subsurface biosphere in the Louisville Seamount Chain (LSC). Seamounts are volcanic constructs that are ubiquitous along the seafloor - models suggest there are >100,000 seamounts of >1 km in height globally (Wessel et al., 2010). Therefore, knowledge about microbiology in the LSC subsurface can broadly be interpreted as representative of much the seafloor. In addition, despite the fact that the vast majority of the sea floor is comprised of crust >10 Ma, the majority of work to date has focused on young sites with active hydrology. Our presentation summarizes work focusing on subsurface microbiology from two different LSC seamounts: holes U1374A (65-71 Ma) and U1376A (64 Ma). We here present data for microbial biomass in the LSC subsurface using a method we developed to quantify microbial biomass in subseafloor ocean crust. We also present results from pyrotag analysis of 15 samples from holes U1374A and holes U1376A, representing several different lithologies from 40-491 meters below seafloor (mbsf) in hole U1374A and from 29-174 mbsf in hole U1376A. Finally, we present preliminary analysis of metagenomic sequencing from three of the samples from Hole U1376A. Biomass was low in the subsurface of both seamounts, ranging from below detection to ~104 cells cm-3. Bacteria comprised >99% of the prokaryotic community in LSC subsurface samples, therefore, bacterial diversity was assessed through 454 pyrosequencing of the V4V6 region of the 16S rRNA gene. Rarefaction analysis indicates that bacterial communities from the LSC subsurface are low diversity, on the order of a few hundred operational taxonomic units per sample. The phyla Actinobacteria, Bacteroidetes, Firmicutes and the classes α-, β- and γ-Proteobacteria are most abundant in the LSC subsurface. Within these, the orders Actinomycetales, Sphingobacteriales, Bacillales and Burkholderiales are the most common. Samples from different lithologies in hole U1374A grouped together, indicating more similarity to each other than to samples from hole U1376A. However, samples from different lithologies in hole U1376A were not similar to other samples from the same site, indicating some differences in the microbial communities between the two seamounts. Preliminary analysis of the metagenomic data will provide further assessment of community structure and reveal likely metabolisms present in the LSC subsurface. Altogether, the biomass data, pyrotag analysis and metagenomic sequencing provide a well-balanced analysis of subsurface microbiology in an old oceanic crustal environment. Wessel, P., Sandwell, D. T. & Kim, S. S. (2010). The Global Seamount Census. Oceanography 23, 24-33.

  16. The formation of post-spreading volcanic ridges in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Minghui; Sibuet, Jean-Claude; He, Enyuan; Tan, Pingchuan; Wang, Jian; Qiu, Xuelin

    2016-04-01

    In the South China Sea (SCS), the post-spreading magmatism (˜8-13 Ma) largely masks the previous spreading fabric. The resulting post-spreading seamounts are more numerous in the northern part than in the southern part of the East sub-basin. In the eastern part of the East sub-basin, the post-spreading volcanic ridge (PSVR) is approximately N055° oriented and follows the extinct spreading ridge (ESR). In the western part of the East sub-basin, the PSVR, called the Zhenbei-Huangyan seamounts chain, is E-W oriented and hides the ESR. Based on swath bathymetric and magnetic data, the ESR in the eastern part of the East basin is also N055° oriented and thus is oblique the E-W Zhenbei-Huangyan seamounts chain (Sibuet et al., 2016). We conducted a seismic refraction survey covering both the Zhenbei-Huangyan seamounts chain and the adjacent ESR, providing new constraints for understanding the relationship between the PSVR and the ESR. The detailed velocity structure shows that the Zhenbei-Huangyan seamounts chain was emplaced through a typical oceanic crust. The thicknesses of Zhenbei (14 km) and Huangyan seamounts (8 km) are larger than the ones of the normal oceanic crust. The correlation between crustal thicknesses and mean lower-crustal seismic velocities suggest that an asymmetric generation of seamounts in the East sub-basin where active upwelling mantle (Holbrook et al., 2001), the presence of a fertile mantle component (Korenaga et al., 2002), or buoyancy-driven decompression melting may happened (Castillo et al., 2010). Below the seamounts, the thickened lower crust is probably due to secondary magmatic intrusions and the large thickness of upper crust is possibly due to volcanic extrusions. The crustal thicknesses as well as the mean lower-crustal velocities of the Zhenbei and Huangyan seamounts are different, suggesting an independent origin for magmatic feeding. This research was granted by the Natural Science Foundation of China (91028002, 91428204, 41176053). References Sibuet J.-C., Yeh Y.-C. and Lee C.-S., 2016 revised. Geodynamics of the South China Sea. Tectonophysics. Holbrook, W. S., H. C. Larsen, J. Korenaga, et al., 2001. Mantle thermal structure and active upwelling during continental breakup in the North Atlantic, Earth Planet. Sci. Lett., 190, 251-266. Korenaga, J., P.B.Kelemen, W.S. Holbrook., 2002. Methods for resolving the origin of large igneous provinces from crustal seismology. Journal of Geophysical research: Solid Earth (1978-2012), 107(B9), 2178,doi:10.1029/2001JB001030. Castillo, P. R., Clague, D. A., Davis, A. S., et al., 2010. Petrogenesis of Davidson Seamount lavas and its implications for fossil spreading center and intraplate magmatism in the eastern Pacific. Geochemistry, Geophysics, Geosystems, 11, Q02005, doi:10.1029/2009GC002992.

  17. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.

    2017-06-01

    Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major impact of tectonic and volcanic activity on the long-term evolution of shallow-water carbonate platforms.

  18. New records of Primnoidae (Cnidaria: Octocorallia) in Brazilian deep waters

    NASA Astrophysics Data System (ADS)

    Arantes, Renata C. M.; Loiola, Livia L.

    2014-01-01

    The knowledge of octocorals occurring in Brazilian deep waters is still lacking, with only a few studies conducted so far, most of which focused on large-scale marine habitats characterization. Primnoidae are common and characteristic of seamounts and deepwater coral banks, often providing habitat for other marine species. Although primnoids occur in all ocean basins, only Primnoella and Plumarella species were recorded along the Brazilian coast before this study. Primnoid specimens were obtained through dredging and remotely operated vehicles (ROV) sampling, collected by research projects conducted off the Brazilian coast, between 15 and 34°S. Taxonomic assessment resulted in 5 new records of Primnoidae genera in Brazil: Calyptrophora, Candidella, Dasystenella, Narella and Thouarella. The occurrences of Narella-off Salvador and Vitória, and in Campos Basin (935-1700 m), and Calyptrophora-in Campos Basin (1059-1152 m), are herein reported for the first time in the South Atlantic. Calyptrophora microdentata was previously known in Lesser Antilles, New England and Corner Rise Seamounts, between 686 and 2310 m. Candidella imbricata geographical distribution includes Western and Eastern Atlantic (514-2063 m and 815-2139 m, respectively), being registered herein in Campos Basin, between 1059 and 1605 m. Dasystenella acanthina collected off Rio Grande do Sul state (810 m) and occurs also off Argentina and Southern Ocean, between 150 and 5087 m. Plumarella diadema, which type locality is off São Sebastião, Brazil, has its geographical range extended northwards, occurring in Campos Basin (650 m). Thouarella koellikeri previously known for Patagonia and Antartic Peninsula, is registered for the off Brazil for the first time, in Campos Basin and off São Sebastião (609-659 m). There is a lot of work yet to be done in terms of taxonomic knowledge of Brazilian deep-sea octocorals. Research projects focusing on the investigations, including ROV sampling, of other geographical regions and depth ranges along Brazilian coast will certainly reveal other new octocorals occurrences and species.

  19. Strong Depth-Related Zonation of Megabenthos on a Rocky Continental Margin (∼700–4000 m) off Southern Tasmania, Australia

    PubMed Central

    Thresher, Ronald; Althaus, Franziska; Adkins, Jess; Gowlett-Holmes, Karen; Alderslade, Phil; Dowdney, Jo; Cho, Walter; Gagnon, Alex; Staples, David; McEnnulty, Felicity; Williams, Alan

    2014-01-01

    Assemblages of megabenthos are structured in seven depth-related zones between ∼700 and 4000 m on the rocky and topographically complex continental margin south of Tasmania, southeastern Australia. These patterns emerge from analysis of imagery and specimen collections taken from a suite of surveys using photographic and in situ sampling by epibenthic sleds, towed video cameras, an autonomous underwater vehicle and a remotely operated vehicle (ROV). Seamount peaks in shallow zones had relatively low biomass and low diversity assemblages, which may be in part natural and in part due to effects of bottom trawl fishing. Species richness was highest at intermediate depths (1000–1300 m) as a result of an extensive coral reef community based on the bioherm-forming scleractinian Solenosmilia variabilis. However, megabenthos abundance peaked in a deeper, low diversity assemblage at 2000–2500 m. The S. variabilis reef and the deep biomass zone were separated by an extensive dead, sub-fossil S. variabilis reef and a relatively low biomass stratum on volcanic rock roughly coincident with the oxygen minimum layer. Below 2400 m, megabenthos was increasingly sparse, though punctuated by occasional small pockets of relatively high diversity and biomass. Nonetheless, megabenthic organisms were observed in the vast majority of photographs on all seabed habitats and to the maximum depths observed - a sandy plain below 3950 m. Taxonomic studies in progress suggest that the observed depth zonation is based in part on changing species mixes with depth, but also an underlying commonality to much of the seamount and rocky substrate biota across all depths. Although the mechanisms supporting the extraordinarily high biomass in 2000–2500 m depths remains obscure, plausible explanations include equatorwards lateral transport of polar production and/or a response to depth-stratified oxygen availability. PMID:24465758

  20. Interplate coupling and seismic-aseismic slip patterns

    NASA Astrophysics Data System (ADS)

    Senatorski, Piotr

    2017-04-01

    Numerical simulations were carried out to explain the seismic and aseismic slip paradox. Recent observations of megathrust faults show that stable and unstable slip movements can occur at the same locations. This contradicts the previous view based on frictional sliding theories. In the present work, an asperity fault model with the slip-dependent friction and stress dependent healing is used to show that the character of slip can change, even if friction parameters, such as strength and slip-weakening distance, are fixed. The reason is that the slow versus fast slip interplay is more than just about the friction law problem. The character of slip depends both on the local friction and on the system stiffness. The stiffness is related to the slipping area size and distribution of slips, so it changes from one event to another. It is also shown that the high strength interplate patches, such as subducted seamounts, can both promote and restrain large earthquakes, depending on the slip-weakening distance lengths.

  1. Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Hübscher, Christian; Reiche, Sönke; Louden, Keith

    2015-02-01

    Wide-angle reflection/refraction seismic profiles were recorded across the Cyprus Arc, the plate boundary between the African Plate and the Aegean-Anatolian microplate, from the Eratosthenes Seamount to the Hecataeus Rise immediately south of Cyprus. The resultant models were able to resolve detail of significant lateral velocity variations, though the deepest crust and Moho are not well resolved from the seismic data alone. Conclusions from the modelling suggest that (i) Eratosthenes Seamount consists of continental crust but exhibits a laterally variable velocity structure with a thicker middle crust and thinner lower crust to the northeast; (ii) the Hecataeus Rise has a thick sedimentary rock cover on an indeterminate crust (likely continental) and the crust is significantly thinner than Eratosthenes Seamount based on gravity modelling; (iii) high velocity basement blocks, coincident with highs in the magnetic field, occur in the deep water between Eratosthenes and Hecataeus, and are separated and bounded by deep low-velocity troughs and (iv) one of the high velocity blocks runs parallel to the Cyprus Arc, while the other two appear linked based on the magnetic data and run NW-SE, parallel to the margin of the Hecataeus Rise. The high velocity block beneath the edge of Eratosthenes Seamount is interpreted as an older magmatic intrusion while the linked high velocity blocks along Hecataeus Rise are interpreted as deformed remnant Tethyan oceanic crust or mafic intrusives from the NNW-SSE oriented transform margin marking the northern boundary of Eratosthenes Seamount. Eratosthenes Seamount, the northwestern limit of rifted continental crust from the Levant Margin, is part of a jagged rifted margin transected by transform faults on the northern edge of the lower African Plate that is being obliquely subducted under the Aegean-Anatolian upper plate. The thicker crust of Eratosthenes Seamount may be acting as an asperity on the subducting slab, locally locking up subduction of the Cyprus Arc on its northern margin, while deformed Tethyan oceanic crust remains trapped between its northeastern margin and the Hecataeus Rise.

  2. Seamount subduction at seismogenic depths: structural and metamorphic evidence from the Zagros suture zone

    NASA Astrophysics Data System (ADS)

    Bonnet, G.; Agard, P.; Angiboust, S.; Fournier, M.; Omrani, J.

    2017-12-01

    Large-scale seafloor topographic features, such as seamounts, are for the most part subducted with the downgoing oceanic plate. They are expected to critically impact the seismogenic and mechanic behavior of subduction zones, but their exact role is strongly debated (i.e., as to whether they represent barriers to propagation or asperities promoting nucleation). Rare natural examples of metamorphosed seamounts, which got sliced off the slab along the plate interface and escaped recycling into the mantle, are therefore precious witnesses to document processes operating at depths of 0-30 km. We herein report the existence of a large-scale oceanic topographic structure sandwiched in the Zagros suture zone (Siah Kuh - SK - unit), most probably a former seamount, along with other blueschist units (Angiboust et al., EPSL 2016). The main criteria for identifying this seamount are its: (1) shape: the SK unit is a 1.5-2 km thick, rounded-shaped body with a 15-20 km diameter, (2) lithologies: it is made mainly of a regular succession of massive basaltic flows, commonly as pillow basalts, minor ophiolite-type gabbros and serpentinite, together with subordinate more differenciated volcanic and plutonic rocks. (3) sedimentary cover: basalts are overlain by shallowly deposited reef limestone and deepening-up sediments with the occurrence of cherts and pelagic limestones (which points to possible subsidence). Basalts have been analyzed for trace elements and have usually a N-MORB to OIB signature, which might be explained by its potential origin as a mid-oceanic ridge seamount. HP-LT minerals (lawsonite, aragonite, blue amphiboles) found across the whole structure, particularly in zones of localized compressive deformation, indicate that this seamount was shallowly subducted at 20 km. This deformation, interpreted to be syn-subduction, is assisted by a décollement rooting in serpentinite and/or oceanic metasediments and is associated with rare cataclase in magmatic rocks. We interpret these structures as related to the internal slicing of the seamount in subduction. The presence of these soft layers may prevent seismogenic deformation, since no pseudotachylites have been found.

  3. Erratic Continental Rocks on Volcanic Seamounts off California and Oregon

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Davis, A. S.

    2006-12-01

    The seamounts off the California continental margin, and those well offshore of California and Oregon that formed near mid-ocean ridges, are all constructed of basaltic lava flows and volcanic breccias and sandstones. However, explorations of these seamounts using dredges, and more recently, the remotely operated vehicle Tiburon, frequently recover rocks of a wide assortment of continental lithologies including gabbro, granodiorite, silicic volcanics, limestone, dolomite, and metamorphic rocks. These rocks are often rounded like river and beach cobbles, and the softer rocks are bored as by worms or bivalves. They are covered with manganese oxide crusts of thicknesses that range from a patina to several cm, approaching the thickness on the in-situ basaltic rocks. These rocks are often easier to collect than the basalts. We recognize these rocks to be erratics of continental origin. Erratics have been documented as being transported by icebergs at higher latitudes, but this mechanism is unlikely to be responsible for the erratics we have found as far south as 31.9° N. Three brief papers published by K.O. Emery from 1941 to 1954 proposed that such erratics found in many thick sections of fine-grained sedimentary sequences such as the Monterey Formation, were transported long distances by kelp holdfasts, tree roots, or in the guts of pinnipeds. We propose that these vectors also transport erratics to seamounts, where they have been accumulating since the seamounts formed millions of years ago. Those seamounts that were once islands would have intercepted even more erratics along their shorelines while they stood above sea level. We have recovered or observed such erratics on the Vance Seamounts; Gumdrop, Pioneer, Guide, Davidson, Rodriguez, San Juan, Little Joe, and San Marcos Seamounts; on the muddy bottom of Monterey Bay; and on Northeast Bank and along the Patton Escarpment at the western edge of the California Borderland. These locations are as far as 250 nautical miles from shore and extend along the entire west coast of the continental United States. Studies that fail to recognize the presence of erratics, even at temperate latitudes, may result in unrealistically complex interpretations of the regional geology

  4. Coral distribution patterns in Miocene Reefs of Anguilla, Leeward Islands, West Indies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, A.B.; Johnson, K.G.

    1988-01-01

    Anguilla, a 27 by 5 km island at 18/sup 0/13'N, 63/sup 0/05'W, parallels the northwest edge of the Anguilla bank (St. Martin plateau) in the outer lesser Angilles volcanic arc, which was active from the Eocene to Oligocene. Except for scattered exposures of tuff or basalt, the island is composed predominantly of reefal limestones and marls of the 70-m thick, middle Miocene Anguilla Formation, deposited on a shallow inner shelf platform extending from volcanoes near St. Martin. The reef framework consists of branched and platy corals interspersed with calcareous sand lenses. Although the limestones have been uplifted and subjected tomore » minor faulting, little evidence supports extensive transport across a slope. Coral distribution patterns have been quantified across the reefal units by point-counting species occurrences at 0.16-m intervals within 1-m/sup 2/ quadrants placed haphazardly across vertical exposures. Eight coral species (of possibly 18 total) were recorded. Cluster analysis delineated four facies: (1) a low-diversity facies dominated by branched Porites, (2) an intermediate diversity facies dominated by branched Porites, (3) a high-diversity facies dominated by massive Montastraea, Siderastrea, and Porites, and (4) an intermediate diversity facies dominated by platy Porites. These facies consists of lenses, no more than 100 m long and 2 m high, arranged in no apparent regular sequence. Thus, they do not represent zones across a depth gradient. Comparisons with living Caribbean reefs suggests that the Anguilla Miocene reefs were similar to small, modern, backreef fringing and patch reefs near the San Blas Islands of Panama, reefs whose variable composition and patchy distribution depend largely on sedimentation and current patterns.« less

  5. Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality

    PubMed Central

    Powell, Abigail; Smith, David J.; Hepburn, Leanne J.; Jones, Timothy; Berman, Jade; Jompa, Jamaluddin; Bell, James J.

    2014-01-01

    Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. PMID:24475041

  6. Fish communities associated with cold-water corals vary with depth and substratum type

    NASA Astrophysics Data System (ADS)

    Milligan, Rosanna J.; Spence, Gemma; Roberts, J. Murray; Bailey, David M.

    2016-08-01

    Understanding the processes that drive the distribution patterns of organisms and the scales over which these processes operate are vital when considering the effective management of species with high commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals (CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of this study were to investigate the role of CWCs in shaping fish community structure and individual species-habitat associations across four spatial scales in the NE Atlantic ranging from "regions" (separated by >500 km) to "substratum types" (contiguous). Demersal fish and substratum types were quantified from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA analyses showed significant differences in community composition between all regions which were most likely caused by differences in depths. Within regions, significant variation in community composition was recorded at scales of c. 20-3500 m. CWCs supported significantly different fish communities to non-CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific and depends on the broader spatial context in which the substratum is found. The precautionary approach would be to assume that CWCs are important for associated fish, but must acknowledge that CWCs in different depths will not provide redundancy or replication within spatially-managed conservation networks.

  7. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    NASA Astrophysics Data System (ADS)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  8. The Isotopic Record From Monogenetic Seamounts: Insights Into Recycling Time Scales In The Upper Mantle

    NASA Astrophysics Data System (ADS)

    Madrigal Quesada, P.; Gazel, E.

    2017-12-01

    Monogenetic seamounts related to non-plume intraplate magmatism provide a window into the composition of upper mantle heterogeneities, nevertheless, the origin of these heterogeneities are still not well constrained. Radiogenic isotopes (Sr-Nd-Pb) from present-day ocean island basalts (OIB) produced by this type of magmatism can help establish the source compositions of these chemically and isotopically enriched reservoirs. Here we present evidence that suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle. We explore this hypothesis using data from non-plume related OIB volcanism; focusing on isolated monogenetic seamounts with no apparent age progression and interpreted to be related to either plate flexure, shear driven convection and/or edge convection. The isotopic record compiled, added to new results obtained from accreted petit-spot seamounts from Santa Elena Peninsula in Costa Rica, suggest that a highly radiogenic mantle reservoir originated from recycled seamount materials can be formed in a shorter time scale than ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle "flavor" found in some of these small-scale seamounts. The implications of these results entail that the recycling of already enriched materials in short time scales and in restricted depths within the Upper Mantle may play an important role in the source of OIBs (plume and non-plume related), as well as, the most enriched suites of EMORBs.

  9. Seasonal occurrence of sperm whales (Physeter macrocephalus) around Kelvin Seamount in the Sargasso Sea in relation to oceanographic processes

    NASA Astrophysics Data System (ADS)

    Wong, Sarah N. P.; Whitehead, Hal

    2014-09-01

    Sperm whales (Physeter macrocephalus) are widely distributed in all oceans, but they are clumped geographically, generally in areas associated with high primary and secondary productivity. The warm, clear waters of the Sargasso Sea are traditionally thought to be low in productivity, however recent surveys have found large numbers of sperm whales there. The New England Seamount Chain bisects the north-western portion of the Sargasso Sea, and might influence the mesoscale eddies associated with the Gulf Stream; creating areas of higher productivity within the Sargasso Sea. We investigated the seasonal occurrence of sperm whales over Kelvin Seamount (part of the New England Seamount Chain) and how it is influenced by oceanographic variables. An autonomous recording device was deployed over Kelvin Seamount from May to June 2006 and November 2006 to June 2007. A total of 6505 hourly two-minute recordings were examined for the presence of sperm whale echolocation clicks. Sperm whales were more prevalent around Kelvin in the spring (April to June: mean=51% of recordings contained clicks) compared to the winter (November to March: mean=16% of recordings contained clicks). Sperm whale prevalence at Kelvin was related to chlorophyll-a concentration four weeks previous, eddy kinetic energy and month. The mesoscale activity associated with the Gulf Stream and the Gulf Stream's interaction with the New England Seamount Chain likely play an important role in sperm whale occurrence in this area, by increasing productivity and perhaps concentration of cephalopod species.

  10. Incorporating seascape connectivity in conservation prioritisation.

    PubMed

    Weeks, Rebecca

    2017-01-01

    In conservation prioritisation, it is often implicit that representation targets for individual habitat types act as surrogates for the species that inhabit them. Yet for many commercially and ecologically important coral reef fish species, connectivity among different habitats in a seascape may be more important than any single habitat alone. Approaches to conservation prioritisation that consider seascape connectivity are thus warranted. I demonstrate an approach that can be implemented within a relatively data-poor context, using widely available conservation planning software. Based on clearly stated assumptions regarding species' habitat usage and movement ability, this approach can be adapted to different focal species and contexts, or refined as further data become available. I first derive a seascape connectivity metric based on area-weighted proximity between juvenile and adult habitat patches, and then apply this during spatial prioritisation using the decision-support software Marxan. Using a case study from Micronesia, I present two applications: first, to inform prioritisation for a network of marine protected areas to achieve regional objectives for habitat representation; and second, to identify nursery habitat patches that are most likely to supply juveniles to adult populations on reefs within existing protected areas. Incorporating seascape connectivity in conservation prioritisation highlights areas where small marine protected areas placed on coral reefs might benefit from proximity to other habitats in the seascape, and thus be more effective. Within the context of community tenure over resources, identification of critical nursery habitats to improve the effectiveness of existing marine protected areas indicates where collaboration across community boundaries might be required. Outputs from these analyses are likely to be most useful in regions where management is highly decentralised, imposing spatial constraints on the size of individual protected areas.

  11. Incorporating seascape connectivity in conservation prioritisation

    PubMed Central

    2017-01-01

    In conservation prioritisation, it is often implicit that representation targets for individual habitat types act as surrogates for the species that inhabit them. Yet for many commercially and ecologically important coral reef fish species, connectivity among different habitats in a seascape may be more important than any single habitat alone. Approaches to conservation prioritisation that consider seascape connectivity are thus warranted. I demonstrate an approach that can be implemented within a relatively data-poor context, using widely available conservation planning software. Based on clearly stated assumptions regarding species’ habitat usage and movement ability, this approach can be adapted to different focal species and contexts, or refined as further data become available. I first derive a seascape connectivity metric based on area-weighted proximity between juvenile and adult habitat patches, and then apply this during spatial prioritisation using the decision-support software Marxan. Using a case study from Micronesia, I present two applications: first, to inform prioritisation for a network of marine protected areas to achieve regional objectives for habitat representation; and second, to identify nursery habitat patches that are most likely to supply juveniles to adult populations on reefs within existing protected areas. Incorporating seascape connectivity in conservation prioritisation highlights areas where small marine protected areas placed on coral reefs might benefit from proximity to other habitats in the seascape, and thus be more effective. Within the context of community tenure over resources, identification of critical nursery habitats to improve the effectiveness of existing marine protected areas indicates where collaboration across community boundaries might be required. Outputs from these analyses are likely to be most useful in regions where management is highly decentralised, imposing spatial constraints on the size of individual protected areas. PMID:28753647

  12. Anatomy of the western Java plate interface from depth-migrated seismic images

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-11-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.

  13. Anatomy of the western Java plate interface from depth-migrated seismic images

    USGS Publications Warehouse

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  14. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    USGS Publications Warehouse

    Hegner, E.; Tatsumoto, M.

    1989-01-01

    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  15. Species replacement dominates megabenthos beta diversity in a remote seamount setting.

    PubMed

    Victorero, Lissette; Robert, Katleen; Robinson, Laura F; Taylor, Michelle L; Huvenne, Veerle A I

    2018-03-07

    Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity.

  16. Annual phytoplankton blooming using satellite-derived chlorophyll-a data around the Vitória-Trindade Chain, Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Lemos, A. T.; Ghisolfi, R. D. R.; Mazzini, P. L. F.

    2018-06-01

    The present study aimed to investigate the influence that four seamounts of the Vitória-Trindade Chain (VTC): the Vitória (VB), Jaseur (JB), Davis (DB) and Dogaressa (DoB) Banks, located on the western South Atlantic Ocean, potentially exert on the annual variability of the chlorophyll-a concentration [Chla] over their summits and surrounding regions. Nine years (January 2003 to December 2011) of monthly and weekly (8-days composite) satellite derived chlorophyll-a concentration, with 4 km spatial resolution were obtained for the study area using the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua satellite. For comparison purposes, different time-series were analyzed for both the region over the seamounts and the surrounding waters. A Gaussian model was adjusted to each of the time series of monthly mean chlorophyll-a concentration, and the curve parameters were used in order to objectively characterize the blooms. The results showed that the entire study area (both above and beyond the seamounts) underwent seasonal blooms, with peak of chlorophyll-a occurring around the austral winter (June, July and August), when due to surface cooling the deepening of the surface mixed layer is observed, enriching the photic zone with nutrients. Nevertheless, the peak chlorophyll-a concentration over the shallow seamounts was twice higher than that over deep seamounts or in the adjacent deep ocean. Our results suggest that the presence of these seamounts and their morphological characteristics can significantly impact the primary productivity observed in this region. Thus, the VTC can be divided into areas of diffuse [Chla] (VB and JB), with lower zonal scattering and higher phytoplankton concentrations (DB), and areas distant from the continental shelf and the mesoscale processes that develop there, hence with lower [Chla] (DoB). The profound impact that these seamounts have on the oceanic ecosystem may turn them into becoming true oasis in the oligotrophic deep ocean, supporting higher trophic levels, as well as important fisheries in this region.

  17. Paleomagnetic and rock magnetic results from Koko Seamount (ODP Leg 197, Site 1206): Implications for hotspot motion

    NASA Astrophysics Data System (ADS)

    Olton, G.; Cottrell, R. D.; Tarduno, J. A.; Carvallo, C.; Torii, M.; Doubrovine, P. V.

    2002-12-01

    ODP Leg 197 sought to test whether the Hawaiian hotspot was fixed in the mantle during Late Cretaceous to Early Tertiary times. The principal goal was the recovery of basalt sequences from several of the Emperor seamounts and the main tool to be applied was paleomagnetism. Koko Seamount, near the bend in the Hawaiian-Emperor Seamounts, was the southernmost site drilled during Leg 197. Fifteen basalt units separated by thick volcaniclastic units were recovered in 278 m of penetration. Based on nannofossil stratigraphy of the sediments above basalt, the top of the volcanic section is 43.5-49.7 m.y.-old. Shipboard geochemical analyses (Initial Reports, Leg 197) indicate the lavas include tholeiites, suggesting that the age of the sequence recovered is similar to that of the major phase of shield building. Detailed, stepwise alternating field demagnetization experiments, and subsequent principal component analysis (all conducted aboard the JOIDES Resolution) yielded 14 inclination groups suggesting a mean paleolatitude of 21.7o N, slightly steeper than that the present-day latitude of Hawaii. Shore-based hysteresis measurements of basalt samples indicate single to pseudo-single domain behavior (mean Hc = 170 Oe, Hcr = 309 Oe, Mr/Ms = 0.274), whereas unblocking temperatures range from 200-300 oC and 550-600 oC. These data suggest the presence of high titanium titanomagnetite and magnetite. Shore-based thermal demagnetization inclinations are similar to the shipboard alternating field demagnetization data. The paleomagnetic data from Koko Seamount, together with results from Detroit, Suiko and Nintoku Seamounts form a southward decreasing series of paleolatitudes that appear to track motion of the Hawaiian ``hotspot" in the mantle. Rates of motion based on paleolatitudes of the Emperor Seamounts range from 30-50 mm/yr, similar to that observed for some continental plates.

  18. Biological community structure on patch reefs in Biscayne National Park, FL, USA

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Grober-Dunsmore, Rikki; Brock, John C.; Hickey, T. Don

    2010-01-01

    Coral reef ecosystem management benefits from continual quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigate the relationships among physical, benthic, and fish variables in an effort to help explain the distribution patterns of organisms on patch reefs within Biscayne National Park, FL, USA. We visited a total of 196 randomly selected sampling stations on 12 shallow (<10 m) patch reefs and measured physical variables (e.g., substratum rugosity, substratum type) and benthic and fish community variables. We also incorporated data on substratum rugosity collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar—EAARL). Across all stations, only weak relationships were found between physical, benthic cover, and fish assemblage variables. Much of the variance was attributable to a “reef effect,” meaning that community structure and organism abundances were more variable at stations among reefs than within reefs. However, when the reef effect was accounted for and removed statistically, patterns were detected. Within reefs, juvenile scarids were most abundant at stations with high coverage of the fleshy macroalgae Dictyota spp., and the calcified alga Halimeda tuna was most abundant at stations with low EAARL rugosity. Explanations for the overwhelming importance of “reef” in explaining variance in our dataset could include the stochastic arrangement of organisms on patch reefs related to variable larval recruitment in space and time and/or strong historical effects due to patchy disturbances (e.g., hurricanes, fishing), as well as legacy effects of prior residents (“priority” effects).

  19. The Pliocene seamount series of La Palma/Canary Islands

    NASA Astrophysics Data System (ADS)

    Staudigel, Hubert; Schmincke, Hans-Ulrich

    1984-12-01

    A Pliocene submarine series of alkali basaltic pillow lavas, hyaloclastites, and breccias (A), a sheeted dike swarm (B), and a basal suite of gabbro and ultramafic rocks (C) from La Palma (Canary Islands) is interpreted as a cross section through an uplifted seamount. This series has been tilted to its present orientation of 50°/230° (plunge and azimuth), probably by upwarping due to intrusions in the central portion of the island. The basal plutonic complex (C) also includes intrusives coeval with up to 2000 m of younger subaerial alkali basaltic lavas unconformably overlying the submarine series. The plutonic suite (C) is overlain abruptly by more than 1800 m of sills (B), 0.4-1 m thick on average, with minor screens of lavas and breccias. Extrusives (A) form a 1750 m thick sequence of pillow lavas, breccias, and hyaloclastites. The clastic rocks increase in abundance upward and are of four main types: (1) breccias, consisting of partly broken pillows, formed nearly in situ, (2) heterolithologic pillow fragment breccias, (3) hyaloclastites composed dominantly of highly vesicular lapilli and ash sized shards, the latter thought to have formed by near surface explosive eruptions and been subsequently transported downslope by mass flows, (2) and (3) being interpreted to have been resedimented, and (4) pillow scoria breccias from the upper 700 m of the extrusive section consisting of amoeboidal, highly vesicular "pillows" and lava stringers and local bombs, probably formed by cracking and "bleeding" of gas-rich expanding pillow lava and some shallow submarine/subaerial lava fountaining. The extrusive series is chemically and mineralogically crudely zoned, with the most differentiated rocks (metatrachytes and mugearites) at the base and most picritic lavas occurring near the top of the series. Subsequent to emplacement, the entire extrusive and intrusive series has been hydrothermally altered, the lower part to greenschist and the upper part to smectite—zeolite facies mineral assemblages. The La Palma succession, combined with evidence from surface studies of seamounts, suggests that seamounts are formed by intrusive and extrusive processes in approximately equal portions. The nature of eruptive clastic and depositional mechanisms changes drastically during growth of a seamount if the critical depth for major magmatic degassing is surpassed and especially if magmatic explosive processes can occur at very shallow water depth, the critical depth depending on magma and thus volatile composition. Changes in slopes of a seamount influence depositional processes. Based on these factors, at least three major depositional sites develop as a seamount grows: summit, flank, and apron facies. Nonexplosive, extrusive processes prevail in the Deep Water Stage, dominantly producing pillow lavas (75%). These consist of individual pillow volcanoes up to 200 m high, with large pillows near the base and decreasing pillow size toward the top of a volcano. Pillow breccias, and pillow fragment breccias comprise approximately 20% of this facies. The deep water flank and apron facies are characterized by debris flow deposits with possibjy rather dense matrix material. The Shallow Water (shoaling) Stage is reached when the seamount top reaches the critical depth for drastic increase in exsolution of magmatic volatiles, about 800 m for the alkali basaltic seamount of La Palma, resulting in formation of mainly clastic rocks (70%): in situ pillow rind breccias and scoriaceous amoeboidal breccias and pillows are formed in the summit regions of the seamount, by repeated expansion and leaking of frothy pillow lava possibly by lava fountaining. Resedimented, heterolithologic pillow fragment breccias, lapilli breccias, and hyaloclastites are deposited on the flanks and aprons of the seamount. Pillow lavas comprise < 30% of these deposits.

  20. The size distribution of Pacific Seamounts

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Jordan, Thomas H.

    1987-11-01

    An analysis of wide-beam, Sea Beam and map-count data in the eastern and southern Pacific confirms the hypothesis that the average number of "ordinary" seamounts with summit heights h ≥ H can be approximated by the exponential frequency-size distribution: v(H) = vo e-βH. The exponential model, characterized by the single scale parameter β-1, is found to be superior to a power-law (self-similar) model. The exponential model provides a good first-order description of the summit-height distribution over a very broad spectrum of seamount sizes, from small cones (h < 300 m) to tall composite volcanoes (h > 3500 m). The distribution parameters obtained from 157,000 km of wide-beam profiles in the eastern and southern Pacific Ocean are vo = (5.4 ± 0.65) × 10-9m-2 and β = (3.5 ± 0.21) × 10-3 m-1, yielding an average of 5400 ± 650 seamounts per million square kilometers, of which 170 ± 17 are greater than one kilometer in height. The exponential distribution provides a reference for investigating the populations of not-so-ordinary seamounts, such as those on hotspot swells and near fracture zones, and seamounts in other ocean basins. If we assume that volcano height is determined by a hydraulic head proportional to the source depth of the magma column, then our observations imply an approximately exponential distribution of source depths. For reasonable values of magma and crustal densities, a volcano with the characteristic height β-1 = 285 m has an apparent source depth on the order of the crustal thickness.

  1. Recycling Seamounts: Implications for Mantle Source Heterogeneities

    NASA Astrophysics Data System (ADS)

    Madrigal, P.; Gazel, E.

    2016-12-01

    Isolated seamounts formed away from plate boundaries and/or known hotspot tracks are widely distributed in the Earth's oceanic plates. Despite their pervasiveness, the origin and composition of the magmatic sources that create these seamounts are still unknown. Moreover, as the seamount provinces travel along with the oceanic plate towards subduction trenches these volcanic edifices become subducted materials that are later recycled into the mantle. Using radiogenic isotopes (Sr-Nd-Pb) from present-day non-plume ocean island basalts (OIB) sampled by drilling and dredging as well as by normal processes of accretion to subduction margins, we modeled the isotopic evolution of these enriched reservoirs to assess their role as discrete components contributing to upper mantle heterogeneity. Our evidence suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle in a shorter time period ( 200 Ma-500 Ma) than other highly enriched components like ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle reservoir endmember. Enriched signatures from intraplate volcanism can be described by mixing of a depleted component like DMM and an enriched reservoir like non-plume related seamounts. Our data suggests that the isotopic evolution in time of a seamount-province type of reservoir can acquire sufficiently enriched compositions to resemble some of the most enriched magmas on Earth. This "fast-forming" (between 200 and 500 Ma) enriched reservoir could also explain some of the enriched signatures commonly present in intraplate and EMORB magmas unrelated to deep mantle plume upwellings.

  2. Diffuse Volcanism at the Young End of the Walvis Ridge - Tristan - Gough Seamount Province: Geochemical Sampling and Constraints on Plume Dynamics

    NASA Astrophysics Data System (ADS)

    Class, C.; Koppers, A. A. P.; Sager, W. W.; Schnur, S.

    2014-12-01

    The Walvis Ridge-Tristan/Gough seamount province in the South Atlantic represents 130 Myr of continuous intra-plate volcanism that can be connected to the once conjunct Parana-Etendeka flood basalt province. With this it represents one of the few primary hotspots consistent with the thermal plume model. However, around 60 Ma, the morphological expression of the Walvis Ridge changed drastically from a robust 200 km wide aseismic ridge into a 400 km wide region of diffuse and diminished volcanism. As a result, this part of the plume trail has been described by two subtracks, one ending at Tristan da Cunha and another at Gough Island more than 400 km to the SSE. Where the Walvis Ridge forks into these two tracks there is a center prong. There is also the 39.5°S lineament of seamounts between, but oblique to, the two subtracks, which is parallel to the local fracture zone directions. All these features are at odds with the classical definition of a narrow hotspot track although Rohde et al. (2013) showed that the Tristan and Gough subtracks retain a distinct geochemical signature over 70 Myr and are consistent with a zoned, deep-seated plume. The first Sr-Nd-Hf-Pb isotopic and trace element analyses from the detailed dredge sampling cruise MV1203 show that samples from two prominent seamounts at the western end of the 39.5°S lineament have a Gough-type signature, which makes an upper mantle source for this lineament unlikely but rather indicates that the Gough-type source stretches some 200 km NNW from Gough. Tristan track seamount samples are comparable with published data, however, one new sample has a Gough-type composition suggesting leakage of this component into the Tristan-type plume zone. Seamounts on the middle prong of the Walvis Ridge fork have compositions intermediate to Gough and Tristan domains, suggesting mixing between sources or melts of the two domains. Thus, the Gough-component in the last 60 Myr of plume activity is volumetrically much more significant than previously apparent in only a small number of seamounts with this signature. A spread over much of the width of the seamount province is indicated including some leakage into the Tristan track.

  3. Timing and warmth of the Last Interglacial period: New U-series evidence from Hawaii and Bermuda and a new fossil compilation for North America

    USGS Publications Warehouse

    Muhs, D.R.; Simmons, K.R.; Steinke, B.

    2002-01-01

    The timing and duration of the Last Interglacial period have been controversial, with some studies suggesting a relatively short duration that is orbitally forced and others suggesting a long duration that is at most only partly related to orbital forcing. New, high-precison thermal ionization mass spectrometric (TIMS) U-series ages of Last Interglacial corals from Hawaii and Bermuda test these competing hypotheses. Waimanalo Formation corals from slowly uplifting Oahu, Hawaii range in age from ???134 to ???113 ka, with most ages between ???125 and ???115 ka. Combined with published U-series ages from nearby Lanai, the data suggest a long Last Interglacial period that may have occurred from ???136 to at least 115 ka. The results indicate that orbital forcing may not have been the only control on ice sheet growth and decay, because sea level would have been high at times of relatively low Northern Hemisphere summer insolation. On tectonically stable Bermuda, deposits from the ???200 ka (penultimate interglacial period), ???120 ka (peak Last Interglacial period) and ???80 ka (late Last Interglacial period) high sea stands have been newly dated. Fossil corals on Bermuda are derived from patch reefs that likely were "catch-up" responses to sea level rise. It is expected that U-series ages of Last-Interglacial corals on Bermuda should overlap with, but not be as old as the range of corals on Oahu. Last-Interglacial corals on Bermuda give a range of ???125-113 ka, which supports this hypothesis. A large number of emergent marine deposits on Hawaii, Bermuda and along coastal North America have now been dated to the Last Interglacial period. Both Oahu and Bermuda have marine invertebrate faunas with a number of extralimital southern species of mollusks, suggesting warmer-than-present waters during the Last Interglacial period. Warmer waters are also suggested for Last-Interglacial localities around most of North America, from Florida to Canada and Greenland and Baja California to Alaska. These observations are consistent with similar warm-water faunas of Last-Interglacial age reported from Japan, the Mediterranean basin and Western Australia. It is likely that significant changes in ocean currents took place during the Last Interglacial period, with a movement of relatively warm waters to higher latitudes than is the case today. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Mapping the Mariana Seismogenic Zone Through the Measurement of Geochemical Tracers in Serpentinite Seamounts

    NASA Astrophysics Data System (ADS)

    Hulme, S. M.; Wheat, C. G.; Mottl, M. J.; Fryer, P.

    2003-12-01

    The Mariana forearc contains tens of seamounts up to 2 km high and 20-50 km in diameter. These seamounts were formed by serpentinite mud volcanism, sometimes in combination with uplift of serpentinized forearc mantle blocks, in which fluids driven off of the subducting slab infiltrated the overlying mantle and serpentinized the harzburgite and dunite rocks creating a density imbalance within the mantle. The resulting fluid-rock matrix flows along faults and exposes mantle-sourced serpentinite muds, blueschist facies metamorphosed mafic clasts, and slab-sourced fluids at the seafloor. The protrusion of these materials allows direct observation of active subduction zone components that are elsewhere buried beneath kilometers of rock and sediment. A multi-disciplinary survey of the Mariana Forearc was conducted in the spring of 2003 to study the biogeochemical properties of this mud volcanism. Seven different seamounts were sampled using shipboard and subsea coring techniques employing RV Thomas G. Thompson and ROV Jason II, respectively. Pore waters were extracted from these sediment cores and analyzed for several chemical constituents at sea. The measured values were consistent with preliminary work from 1997. Systematic trends in chemical composition of these high pH fluids (up to 12.3) are observed with distance from the trench (proxy for the depth to slab). These trends include low alkalinity and high Ca near the trench (e.g., Blue Moon Seamount; 0.26 mmol alkalinity/kg and 55 mmol Ca/kg), and high alkalinity and low Ca further from the trench (e.g., Big Blue Seamount; 69 mmol alkalinity/kg and 0.14 mmol Ca/kg) consistent with carbonate dissolution at the top of the plate between depths of 17 km and 22 km. Here we report results from trace element analyses that similarly show trends across the forearc region. For example, fluids upwelling at Baby Blue Seamount have; 58 μ mol Sr/kg, 31 μ mol Li/kg, 1.4 μ mol Rb/kg, 10 nmol Cs/kg, 0.2 μ mol Ba/kg, 0.1 μ mol Mo/kg, 0.6 nmol U/kg, and 5 nmol Y/kg. In contrast, fluids from Big Blue Seamount, only 23 km away, have; 10 μ mol Sr/kg, 0.7 μ mol Li/kg, 6 μ mol Rb/kg, 0.2 μ mol Cs/kg, 60 nmol Ba/kg, 0.1 μ mol Mo/kg, 0.2 μ mol U/kg, and 0.1 nmol Y/kg.Trace element analyses for a host of chemical species and for each of the sampled seamounts offer insight into the conditions and interactions currently occurring within the Mariana seismogenic zone.

  5. Major and trace element and volatile constraints on magma systematics of seamounts and axial ridge glasses from the East Pacific Rise between 8°N and 12°N

    NASA Astrophysics Data System (ADS)

    Lytle, M. L.; Kelley, K. A.; Wanless, V. D.; Hauri, E. H.

    2017-12-01

    The East Pacific Rise is a fast spreading mid-ocean ridge system (6-16cm/yr) consisting of many spreading ridges and transform faults. Focusing on a well-studied segment between 8-12°N, we present new SIMS measurements of magmatic volatiles (H2O, CO2, S, Cl, F) and new LA-ICP-MS trace element data in both on-axis and off-axis glasses, coupled with previously published data and use these data to relate melt composition to crystallization and melting processes. The seamounts range in composition from evolved (MgO = 5.54 wt%) to fairly primitive (MgO = 9.70 wt%), whereas on-axis samples have a narrower range of MgO (5.85 - 8.83 wt%). Seamounts span a wide range of enrichment in trace element compositions (La/Sm 0.45 - 4.63; Th/La 0.02 - 0.14; K/Ti 0.02 - 0.66), whereas on-axis glasses reflect NMORB compositions (La/Sm 0.5 - 1; Th/La 0.035 - 0.07; K/Ti 0.05 - 0.15). Light rare earth elements in the seamounts vary from depleted to enriched and have variable Eu anomalies (0.79 - 1.10), while on-axis samples have NMORB patterns with more negative Eu anomalies (0.74 - 1.00). The H2O content of the seamounts ranges from dry (0.05 wt%) to fairly wet (0.96 wt%), whereas on-axis samples have a narrower range (0.15 - 0.31 wt%). Cl contents show variable mixing between seawater and a magmatic component, with seamounts assimilating more seawater. Magmatic liquid lines of descent (LLD), recorded in glass, reflect fractional crystallization of olivine, plagioclase, and clinopyroxene, consistent with modal phenocryst abundances of the rocks. A multi-element approach (e.g., MgO vs. Al2O3, CaO, CaO/Al2O3), constrains LLDs, providing fractionation slopes, allowing mafic basalt compositions to be accurately corrected back to primary melts in equilibrium with Fo90. Using these melts, pressures and temperatures of melt equilibration can be constrained using melt thermobarometry. On-axis samples reflect higher PT conditions (1371°C; 1.37 GPa), although within error of seamounts (1340°C; 1.25 GPa). Overall, on-axis samples are more homogeneous, likely reflecting residence and homogenization of magma batches in an axial magma chamber, whereas off-axis seamounts reflect greater heterogeneity that arises from the localized nature of seamount magmatic systems and extraction of smaller-volume, discrete magma batches from the ridge mantle.

  6. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes

    PubMed Central

    Harding, Harry R.; Wong, Kathryn E.; Merchant, Nathan D.; Meekan, Mark G.; Radford, Andrew N.; Simpson, Stephen D.

    2018-01-01

    Coral reefs are increasingly degraded by climate-induced bleaching and storm damage. Reef recovery relies on recruitment of young fishes for the replenishment of functionally important taxa. Acoustic cues guide the orientation, habitat selection, and settlement of many fishes, but these processes may be impaired if degradation alters reef soundscapes. Here, we report spatiotemporally matched evidence of soundscapes altered by degradation from recordings taken before and after recent severe damage on Australia’s Great Barrier Reef. Postdegradation soundscapes were an average of 15 dB re 1 µPa quieter and had significantly reduced acoustic complexity, richness, and rates of invertebrate snaps compared with their predegradation equivalents. We then used these matched recordings in complementary light-trap and patch-reef experiments to assess responses of wild fish larvae under natural conditions. We show that postdegradation soundscapes were 8% less attractive to presettlement larvae and resulted in 40% less settlement of juvenile fishes than predegradation soundscapes; postdegradation soundscapes were no more attractive than open-ocean sound. However, our experimental design does not allow an estimate of how much attraction and settlement to isolated postdegradation soundscapes might change compared with isolated predegradation soundscapes. Reductions in attraction and settlement were qualitatively similar across and within all trophic guilds and taxonomic groups analyzed. These patterns may lead to declines in fish populations, exacerbating degradation. Acoustic changes might therefore trigger a feedback loop that could impair reef resilience. To understand fully the recovery potential of coral reefs, we must learn to listen. PMID:29712839

  7. Simulating reef response to sea-level rise at Lizard Island: A geospatial approach

    NASA Astrophysics Data System (ADS)

    Hamylton, S. M.; Leon, J. X.; Saunders, M. I.; Woodroffe, C. D.

    2014-10-01

    Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5 m and 1.2 m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5 m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2 m scenario, a similar pattern is evident for the first 30 years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards at a rate commensurate with the rate of rise, thereby maintaining their original profile and position relative to the sea surface and the leeward and lagoonal sites with a low accretion rate maintain a similar profile but slowly gain depth relative to sea-level. The result of this variable response is that elevated features of the reef platform, such as reef patches and crests tend to become more pronounced.

  8. 76 FR 10524 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ...-XA174 Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Temporary rule; closure. SUMMARY: NMFS is closing the commercial and non-commercial fisheries in the main...

  9. 50 CFR 660.382 - Limited entry fixed gear fishery management measures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (between 42° N. lat. south to the U.S./Mexico border) using no more than 12 hooks, “Number 2” or smaller....399: Thompson Seamount, President Jackson Seamount, Cordell Bank (50 fm (91 m) isobath), Harris Point...

  10. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: Electron photomicrography and microprobe chemistry

    USGS Publications Warehouse

    Jeong, K.S.; Jung, H.-S.; Kang, J.-K.; Morgan, C.L.; Hein, J.R.

    2000-01-01

    Seven ferromanganese crusts from the northwest intertropical Pacific seamounts were analyzed for photomicroscopic growth structures, microprobe chemistry, and ages based on Co-chronometer growth rate. The crusts on the Marshall Islands seamounts are thick and ale divided into phosphatized lower older and nonphosphatized upper younger growth generations: the older crust consists of compact laminations and columns impregnated with carbonate fluoapatite (CFA), whereas the younger crust is characterized by porous botryoids and columns of ??-MnO2 and Fe oxyhydroxide. The crusts on the Federated States of Micronesia (FSM) and Palau Islands seamounts are thin and are often incorporated with inorganic opal-A in the uppermost part, comprising the younger generation. Some crusts show scours and fractures. Although the growth of crusts has been often interrupted by mass failure of slope sediments, the crusts on the Marshall Islands seamounts are estimated to have grown at rate of about 3 mm/Ma since the middle Eocene and to have been phosphatized in the late Oligocene during the host seamounts were located beneath the equatorial zone of high productivity. Prolonged infiltration of the oxygen minimum zone (OMZ) water into shallower water older crusts redistributed crust composition by precipitating CFA, enriching subsequent amounts of Mn and Ni, and removing some Co. The younger crust has formed at slower rate (about 2 mm/Ma) under the stronger influence of bottom-water circulation in the north of the equatorial zone, concentrating abundant Co. In the uppermost part of some crusts, siliceous skeletons transform with burial to inorganic opal-A and Si-rich Fe oxyhydroxide, suggesting that biosilica diagenesis can enhance crust growth. (C) 2000 Elsevier Science B.V.

  11. Reconstructing the evolution of the submarine Monterey Canyon System from Os, Nd, and Pb isotopes in hydrogenetic Fe-Mn crusts

    USGS Publications Warehouse

    Conrad, T.A.; Nielsen, S.G.; Peucker-Ehrenbrink, Bernhard; Blusztajn, J.; Winslow, D.; Hein, James; Paytan, A.

    2017-01-01

    The sources of terrestrial material delivered to the California margin over the past 7 Myr were assessed using 187Os/188Os, Nd, and Pb isotopes in hydrogenetic ferromanganese crusts from three seamounts along the central and southern California margin. From 6.8 to 4.5 (± 0.5) Ma, all three isotope systems show more radiogenic values at Davidson Seamount, located near the base of the Monterey Canyon System, than in Fe-Mn crusts from the more remote Taney and Hoss seamounts. At the Taney seamounts, approximately 225 km farther offshore from Davidson Seamount, 187Os/188Os values, but not Pb and Nd isotope ratios, also deviate from the Cenozoic seawater curve towards more radiogenic values from 6.8 to 4.5 (± 0.5) Ma. However, none of the isotope systems in Fe-Mn crusts deviate from seawater at Hoss Seamount located approximately 450 km to the south. The regional gradients in isotope ratios indicate that substantial input of dissolved and particulate terrestrial material into the Monterey Canyon System is responsible for the local deviations in the seawater Nd, Pb, and Os isotope compositions from 6.8 to 4.5 (± 0.5) Ma. The isotope ratios recorded in Fe-Mn crusts are consistent with a southern Sierra Nevada or western Basin and Range provenance of the terrestrial material which was delivered by rivers to the canyon. The exhumation of the modern Monterey Canyon must have begun between 10 and 6.8 ± 0.5 Ma, as indicated by our data, the age of incised strata, and paleo-location of the Monterey Canyon relative to the paleo-coastline.

  12. Reconstructing the Evolution of the Submarine Monterey Canyon System From Os, Nd, and Pb Isotopes in Hydrogenetic Fe-Mn Crusts

    NASA Astrophysics Data System (ADS)

    Conrad, T. A.; Nielsen, S. G.; Peucker-Ehrenbrink, B.; Blusztajn, J.; Winslow, D.; Hein, J. R.; Paytan, A.

    2017-11-01

    The sources of terrestrial material delivered to the California margin over the past 7 Myr were assessed using 187Os/188Os, Nd, and Pb isotopes in hydrogenetic ferromanganese crusts from three seamounts along the central and southern California margin. From 6.8 to 4.5 (±0.5) Ma, all three isotope systems show more radiogenic values at Davidson Seamount, located near the base of the Monterey Canyon System, than in Fe-Mn crusts from the more remote Taney and Hoss Seamounts. At the Taney Seamounts, approximately 225 km farther offshore from Davidson Seamount, 187Os/188Os values, but not Pb and Nd isotope ratios, also deviate from the Cenozoic seawater curve toward more radiogenic values from 6.8 to 4.5 (±0.5) Ma. However, none of the isotope systems in Fe-Mn crusts deviate from seawater at Hoss Seamount located approximately 450 km to the south. The regional gradients in isotope ratios indicate that substantial input of dissolved and particulate terrestrial material into the Monterey Canyon System is responsible for the local deviations in the seawater Nd, Pb, and Os isotope compositions from 6.8 to 4.5 (±0.5) Ma. The isotope ratios recorded in Fe-Mn crusts are consistent with a southern Sierra Nevada or western Basin and Range provenance of the terrestrial material which was delivered by rivers to the canyon. The exhumation of the modern Monterey Canyon must have begun between 10 and 6.8 ± 0.5 Ma, as indicated by our data, the age of incised strata, and paleo-location of the Monterey Canyon relative to the paleo-coastline.

  13. Hotspot volcanism in the southern South Atlantic: Geophysical constraints on the evolution of the southern Walvis Ridge and the Discovery Seamounts

    NASA Astrophysics Data System (ADS)

    Jokat, Wilfried; Reents, Stefanie

    2017-10-01

    The southern Atlantic hosts a variety of magmatic structures, namely the Walvis Ridge, the Discovery Seamounts and the Shona Ridge, which are believed to be related to the evolution/movement of hotspots. Although the basement of the Walvis Ridge has been sampled at different locations, geophysical data are too sparse to provide sufficient information about its deeper structure to compare it with other hotspot tracks. The Discovery Seamounts represent a completely different type feature in a way that it cannot be connected to any onshore volcanic feature. However, geological sampling of the volcanic basement indicates that the petrology of the Discovery track is very similar to Gough Island and the southern branch of Walvis Ridge. Both structures erupted into already existing seafloor and so have been seismically investigated to document how/if an associated thermal anomaly might have modified the underlying and surrounding oceanic crust. Seismic lines for both structures indicate rather normal seismic velocity distributions for oceanic crust. Both, the Walvis Ridge and the largest volcano of the Discovery Seamounts have a maximum thickness in our research area of 13 km. An interesting difference between these structures is a high velocity cone (> 6 km/s) at 2.4 km depth in the central part of Discovery Seamount. This might indicate a primarily intrusional type of seamount such as has been reported for several similar structures. In contrast the Walvis Ridge velocity structure does not show evidences for a shallow intrusional cone, but seismic velocities typical for oceanic layer 3 at a more or less constant depth level along the entire profile. This might indicate that the ridge's present-day topography is built mainly by extrusive material.

  14. Distribution of epibenthic megafauna and lebensspuren on two central North Pacific seamounts

    NASA Astrophysics Data System (ADS)

    Kaufmann, Ronald S.; Wakefield, W. Waldo; Genin, Amatzia

    1989-12-01

    The abundance, composition and spatial distribution of megafaunal communities and lebensspuren assemblages at three sites on two deep seamounts in the central North Pacific were surveyed photographically using still cameras mounted on the research submersible Alvin. Photographic transects were made on the summit cap (˜1500 m depth) and summit perimeter (˜ 1800 m depth) of Horizon Guyot and on the summit cap (˜3100 m depth) of Magellan Rise. The summit caps of both seamounts were covered with foraminiferal sand, while the summit perimeter of Horizon Guyot was characterized by numerous rock outcroppings (basalt and chert encrusted with ferromanganese oxides) on which was situated a speciose assemblage of suspension-feeding organisms. The most abundant megafauna at all three sites were large, sediment-agglutinating protists belonging to the class Xenophyophorea. Among the three sites, the Horizon Guyot summit cap supported the highest densities of fishes and lebensspuren and the fewest echinoderms, while the Magellan Rise summit cap was populated by a diverse community of deposit-feeding echinoderms. Megafaunal abundances on Horizon Guyot were lower than those at equivalent depths on the western North Atlantic continental slope, while those on Magellan Rise were higher. The faunal differences observed between the two seamounts were attributed primarily to differences in hydrodynamic conditions, substrate availability and nutrient availability. Most of the lebensspuren on these seamounts appeared to be patchily distributed on spatial scales of 10-1000 m, while xenophyophore distributions were predominantly random on the same spatial scales. Biogeographically the species identified exhibited predominantly widespread to cosmopolitan distributions with Indo-West Pacific faunal affinities, typical of other seamounts in the same depth range and biogeographic province.

  15. Multi-Channel Seismic Images of the Mariana Forearc: EW0202 Initial Results

    NASA Astrophysics Data System (ADS)

    Oakley, A. J.; Goodliffe, A. M.; Taylor, B.; Moore, G. F.; Fryer, P.

    2002-12-01

    During the Spring of 2002, the Mariana Subduction Factory was surveyed using multi-channel seismics (MCS) as the first major phase of a US-Japanese collaborative NSF-MARGINS funded project. The resulting geophysical transects extend from the Pacific Plate to the West Mariana remnant arc. For details of this survey, including the results from the back-arc, refer to Taylor et al. (this session). The incoming Pacific Plate and its accompanying seamounts are deformed by plate flexure, resulting in extension of the upper crust as it enters the subduction zone. The resultant trench parallel faults dominate the bathymetry and MCS data. Beneath the forearc, in the southern transects near Saipan, the subducting slab is imaged to a distance of 50-60 km arcward. In addition to ubiquitous trench parallel normal faulting, a N-S transect of the forearc clearly shows normal faults perpendicular to the trench resulting from N-S extension. On the east side of the Mariana Ridge, thick sediment packages extend into the forearc. Directly east of Saipan and Tinian, a large, deeply scouring slide mass is imaged. Several serpentine mud volcanoes (Big Blue, Turquoise and Celestial) were imaged on the Mariana Forearc. Deep horizontal reflectors (likely original forearc crust) are imaged under the flanks of some of these seamounts. A possible "throat" reflector is resolved on multiple profiles at the summit of Big Blue, the northern-most seamount in the study area. The flanks of Turquoise seamount terminate in toe thrusts that represent uplift and rotation of surrounding sediments as the volcano grows outward. These thrusts form a basal ridge around the seamount similar to that previously noted encircling Conical Seamount. Furthermore, MCS data has revealed that some forearc highs previously thought to be fault blocks are in actuality mud volcanoes.

  16. Sub-millimeter scale magnetostratigraphy and environmental magnetism of ferromanganese crusts using a scanning SQUID microscope

    NASA Astrophysics Data System (ADS)

    Oda, H.; Noguchi, A.; Yamamoto, Y.; Usui, A.; Ito, T.; Kawai, J.; Takahashi, H.

    2017-12-01

    Ferromanganese crusts are chemical sedimentary rock composed mainly of iron-manganese oxide. Because the ferromanganese crusts grow very slowly on the sea floor at rates of 3-10 mm/Ma, long-term deep-sea environmental changes can be reconstructed from the ferromanganese crusts. Thus, it is important to provide reliable age model for the crusts. For the past decades 10Be/9Be dating method has been used extensively to give age models for crusts younger than 15 Ma. Alternatively, sub-millimeter scale magnetostratigraphic study on a ferromanganese crust sample using a scanning SQUID (superconducting quantum interference device) microscope (Kawai et al., 2016; Oda et al., 2016) has been applied successfully (e.g. Oda et al., 2011; Noguchi et al. 2017). Also, environmental magnetic mapping was successful for the ferromanganese crust from the Takuyo Daigo Seamount (Noguchi et al., 2017). The ferromanganese crust used in this study was sampled from the Hanzawa Seamount, Ryukyu trench and the Shotoku Seamount. The vertical component of the magnetic field above thin section samples of the ferromanganese crust was measured using the scanning SQUID microscope on 100 μm grids. Magnetic mapping of the Hanzawa Seamount shows sub-millimeter scale magnetic stripes parallel to lamina. By correlating the boundaries of magnetic stripes with known geomagnetic reversals, we estimated that average growth rate of the Hanzawa Seamount is 2.67 +/- 0.04 mm/Ma , which is consistent with that deduced from the 10Be/9Be dating method (2.56 +/- 0.04 mm/Ma). The crust sample from the Shotoku Seamount used by Oda et al. (2011) shows prominent periodical lamination. Further details are going to be discussed together with the environmental magnetic mapping.

  17. Discovery of Nascent Vents and Recent Colonization Associated with(Re)activated Hydrothermal Vent Fields by the GALREX 2011 Expedition on the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.

    2011-12-01

    GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna. The active colonization was observed on relatively older basalt pillows and lobate lavas ringed by and amidst a large dead bed of Calyptogena clams (most with broken and dissolving shells greater than 25 cm in length, with a few of the same size living amongst the dissolving shells). Scattered pockets of living adult mussels were observed among these dead clams. The margins of the field were ringed with large numbers of dandelion siphonophores. This field, named Tempus Fugit Vent Field, was once a massive clam bed (> 20 years old) and now, while hosting mature mussel communities and adult clams (> 2 years old), is being actively colonized by vent-endemic fauna that can be considered to be recent arrivals and colonizers (less than a few months) at Galapagos vent fields. These findings not only provide strong evidence of recent volcanic activity between 85° W and 88° W on the Galapagos Rift, but provide evidence that the rates of hydrothermal habitat turnover via eruption, dike injection, or venting cessation may be considerably higher than previously thought along the Galápagos Rift.

  18. 50 CFR Table 8 to Part 679 - Harvest Zone Codes for Use With Vessel Activity Reports

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Alaska C State waters other than Alaska D Donut Hole F Foreign Waters Other than Russia I International Waters other than Donut Hole and Seamounts R Russian waters S Seamounts in International waters U U.S...

  19. 50 CFR Table 8 to Part 679 - Harvest Zone Codes for Use With Vessel Activity Reports

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Alaska C State waters other than Alaska D Donut Hole F Foreign Waters Other than Russia I International Waters other than Donut Hole and Seamounts R Russian waters S Seamounts in International waters U U.S...

  20. 50 CFR Table 8 to Part 679 - Harvest Zone Codes for Use With Vessel Activity Reports

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Alaska C State waters other than Alaska D Donut Hole F Foreign Waters Other than Russia I International Waters other than Donut Hole and Seamounts R Russian waters S Seamounts in International waters U U.S...

  1. 50 CFR Table 8 to Part 679 - Harvest Zone Codes for Use With Vessel Activity Reports

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Alaska C State waters other than Alaska D Donut Hole F Foreign Waters Other than Russia I International Waters other than Donut Hole and Seamounts R Russian waters S Seamounts in International waters U U.S...

  2. Aeromagnetic Detection and Definition of Seamounts.

    DTIC Science & Technology

    1982-06-01

    airborne gravimetry may be feasible, al- though further testing is necessary. A possible difficulty may result from the problem of obtaining useful data on...high calcium precipitation . Hopefully, the curves will increase the "safety factor" by an under-estimation of seamount peak depths. Another problem

  3. Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab

    NASA Astrophysics Data System (ADS)

    Arai, Ryuta; Kodaira, Shuichi; Yamada, Tomoaki; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki; Nishizawa, Azusa; Oikawa, Mitsuhiro

    2017-06-01

    The role of seamounts on interplate earthquakes has been debated. However, its impact on intraslab deformation is poorly understood. Here we present unexpected evidence for large normal-fault earthquakes intersecting the slab just ahead of a subducting seamount. In 1995, a series of earthquakes with maximum magnitude of 7.1 occurred in northern Ryukyu where oceanic plateaus are subducting. The aftershock distribution shows that conjugate faults with an unusually high dip angle of 70-80° ruptured the entire subducting crust. Seismic reflection images reveal that the plate interface is displaced over 1 km along one of the fault planes of the 1995 events. These results suggest that a lateral variation in slab buoyancy can produce sufficient differential stress leading to near-vertical normal-fault earthquakes within the slab. On the contrary, the upper surface of the seamount (plate interface) may correspond to a weakly coupled region, reflecting the dual effects of seamounts/plateaus on subduction earthquakes.

  4. Magmatic evolution of the Easter microplate-Crough Seamount region (South East Pacific)

    USGS Publications Warehouse

    Hekinian, R.; Stoffers, P.; Akermand, D.; Binard, N.; Francheteau, Jean; Devey, C.; Garbe-Schonberg, D.

    1995-01-01

    The Easter microplate-Crough Seamount region located between 25?? S-116?? W and 25?? S-122?? W consists of a chain of seamounts forming isolated volcanoes and elongated (100-200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065??), to the present day general spreading direction (N 100??) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26??30??? S-115?? W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges ( 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1-2.5}, {(La/Sm)N = 0.4-1.2} and {(Zr/Y)N = 0.7-2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation (??? 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25?? S-118?? W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (< 800 m depth) was formed by earlier (7-10 Ma) hotspot magmatic activity which also created Easter Island. ?? 1995 Kluwer Academic Publishers.

  5. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii bottomfish and seamount groundfish fisheries. [Reserved] 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  6. Collision-induced post-plateau volcanism: Evidence from a seamount on Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Hanyu, Takeshi; Tejada, Maria Luisa G.; Shimizu, Kenji; Ishizuka, Osamu; Fujii, Toshiyuki; Kimura, Jun-Ichi; Chang, Qing; Senda, Ryoko; Miyazaki, Takashi; Hirahara, Yuka; Vaglarov, Bogdan S.; Goto, Kosuke T.; Ishikawa, Akira

    2017-12-01

    Many seamounts on the Ontong Java Plateau (OJP) occur near the Stewart Arch, a topographic high that extends parallel to the North Solomon Trench along the southern margins of the plateau. Despite the thick sediment cover, several volcanic cones with strong acoustic reflection were discovered on the submarine flank of the Nuugurigia Seamount. From such volcanic cones, basalts were successfully sampled by dredging. Radiometric dating of basalts and ferromanganese encrustation indicate eruption age of 20-25 Ma, significantly younger than the 122 Ma main OJP plateau and post-plateau basalts. The age range coincides with the collision of the OJP with the Solomon Arc. The Nuugurigia basalts geochemically differ from any other rocks sampled on the OJP so far. They are alkali basalts with elevated Sr, low Zr and Hf, and Enriched Mantle-I (EMI)-like isotopic composition. Parental magmas of these alkali basalts may have formed by small-degree melting of peridotitic mantle impregnated with recycled pyroxenite material having enriched geochemical composition in the OJP's mantle root. We conclude that small-volume alkali basalts from the enriched mantle root migrated through faults or fractures caused by the collision along the Stewart Arch to form the seamount. Our results suggest that the collision of the OJP with the Solomon arc played an important role in the origin of similar post-plateau seamounts along the Stewart Arch.

  7. Paleointensity Determinations of Basalts From The Emperor Seamounts

    NASA Astrophysics Data System (ADS)

    Carvallo, C.; Dunlop, D. J.; Özdemir, Ö.; Leg 197 Shipboard Scientific Party, Odp

    Thellier-Thellier paleointensity experiments were carried out on sixty-six basaltic samples coming from three Emperor seamounts (Detroit, Nintoku and Koko) drilled during ODP Leg 197. Twelve samples yield reliable results. One samples from De- troit seamount (81 Ma) gives a VADM of 3.06+/-0.26×1022 Am2. Six samples from Nintoku (56 Ma) give VADMs between 2.90+/-0.15×1022 and 6.70+/-0.38×1022 Am2. Five samples from Koko seamount (44 Ma) give VADMs between 1.12+/-0.74×1022 and 2.94+/-0.20×1022 Am2. The low success rate was due to chemical changes during the heatings. Samples have a wide distribution of unblocking temperatures and bulk susceptibility variations during heating, revealing an important variation in oxidation state and titanium content with depth and between seamounts. In sea­floor basalts, low­temperature oxidation of ti- tanomagnetite can replace the original thermoremanent magnetization by a chemical remanent magnetization of reduced intensity, yielding too low paleointensity values. Therefore we need to do measurements such as low­temperature properties and ther- momagnetic curves in order to identify the magnetic minerals and assess the reliability of the paleointensity determinations. However, assuming that the accepted samples did not undergo any maghemitization, the generally low VADM values we measured are in agreement with other records of paleointensities in this time range.

  8. Origin of Volcanic Seamounts Offshore California Related to Interaction of Abandoned Spreading Centers with the Continental Margin

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.; Cousens, B. L.; Huard, J.

    2007-12-01

    The numerous NE-SW trending volcanic seamounts at the continental margin offshore central to Southern California owe their existence to the complex tectonics that resulted when small spreading ridge segments intersected and partly subducted beneath the continental margin during the Miocene plate reorganization. A limited number of dredged samples had indicated multiple episodes of coeval, alkalic volcanism at geographically widely separated sites (Davis et al., 2002, GSA Bull. 114, 316-333). 450 new samples were collected from 8 seamounts from 37. 5°N to 32.3°N with MBARI's ROV Tiburon. Ar-Ar ages for 50 of these samples extend the ages of volcanism from 18 Ma to 2.8 Ma. The dominant whole rock compositions are differentiated alkalic basalt, hawaiite, and mugearite, but include minor benmoreite, trachyte, and rare tholeiitic basalt. This entire range of compositions is also present in glassy margins or in volcaniclastic breccias, except for the trachyte, which had no glassy margins. Trace element abundances and ratios (e.g. REE, Zr, Nb, Ta, Th, Ba, etc.) are typical for ocean island basalt, whether the seamount is located on the Pacific plate (e.g. Pioneer, Gumdrop, Guide, Davidson, San Juan, San Marcos) or on the continental slope (Rodriguez) or within the Southern Continental Borderland (Northeast Bank). Nine samples, predominantly from Rodriguez Seamount, show a calc-alkaline trend with lower Nb, Ta, and higher Th. These samples may be erratics (Paduan et al., 2007, Marine Geology, in press). Sr, Nd, and Pb isotopic compositions plot within the Pacific N-MORB field for the northern seamounts (Pioneer, Gumdrop, Guide) but suggest progressively more radiogenic sources southward. There is considerable scatter at each site, especially with regard to 87Sr/86Sr, despite severe acid-leaching of the samples. Isotopic and trace element compositions indicate sources that are heterogeneous at a small scale. Chondrite-normalized Ce/Yb suggest smaller degree of melting and more alkalic compositions with decreasing age, although there is again considerable scatter. Chondrite-normalized La/Sm versus Zr/Nb form a continuum from the seamount lavas to depleted N-MORB and E-MORB suggesting a common origin by decompression melting of a mantle source with randomly distributed enriched heterogeneities, which are incorporated to a greater degree with decreasing degree of melting. Based on symmetric magnetic anomalies, only Davidson Seamount has been identified as straddling a fossil spreading center (Lonsdale, 1991, AAPG Mem. 47, 87-125). However, the other seamounts along the continental margin with the same NE-SW orientation and similar geochemical characteristics probably originated in a similar setting, erupting lavas along zones of weakness in the ocean floor fabric related to past seafloor spreading. Small volumes of magma can apparently rise long after spreading ceases if there is enough enriched source component to facilitate melting combined with zones of weakness in the underlying ocean crust fabric and/or extensional tectonics.

  9. 75 FR 17070 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ...-XU60 Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... commercial and non-commercial fisheries in the Main Hawaiian Islands fishery for seven deepwater bottomfish...

  10. 76 FR 15222 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    .... 101210611-1185-02] RIN 0648-BA58 Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... period for in-season closure of the main Hawaiian Islands (MHI) Deep-7 bottomfish fishery from 14 to 7...

  11. Possibility of existence of serpentinized material at the Izu-Bonin subduction plate boundary around 31N using Q structure by FDM-simulation

    NASA Astrophysics Data System (ADS)

    Kamimura, A.; Kasahara, J.

    2003-12-01

    At the Izu-Bonin subduction zone (IBSZ), there is a chain of serpentine seamounts at the forearc slope of trench axis, and few large earthquakes occurred at shallow depth (<100km) in spite of many large ones at greater depth (>400km). To elucidate these characteristics we carried out a seismic refraction-reflection study at the forearc slope of the IBSZ around 31N using 22 OBSs and chemical explosives and airguns as seismic sources in 1998. As the results of forward and travel-time inversion modeling of the study, P-wave velocity structures were obtained along E-W and N-S survey lines which is perpendicular to and parallel to the trench axis, respectively (Kamimura et al., 2002). The result of E-W line (transect a summit of serpentine seamount) suggests presence of a low velocity zone just above the subducting Pacific plate, and this zone connects to the Torishima Serpentine Forearc Seamount. The interpretation of the result was: dehydration of hydrated oceanic crust supplies water to the mantle wedge, and peridotites of the mantle wedge were serpentinized. The serpentinized peridotites have moved between the oceanic slab and the overriding island arc crust and were diapiring into the serpentine seamount. The serpentine on the plate boundary might act as a lubricant and decrease seismic activity along the subduction zone, and this can explain the characteristics of seismicity of IBSZ. In order to evaluate Q structures of the above low velocity zone on the subducting slab, we calculated synthetic waveforms using FDM (Finite Difference Method) with elastodynamic formulation (E3D code, developed by Dr. Shawn Larsen) and the P-wave velocity 2D structure of Kamimura et al. (2002). The E3D uses staggered grid, and 2nd order and 4th order approximation in time and space, respectively. Grid spacing of the calculation is 30 m in x and z, and 1.5 msec in time. Five-Hz and 0-phase Ricker wavelet_@pressure source was used. Several structure models are used for comparison. One model has no low-Q zone, another one has low-Q zone only just below the serpentine seamount. Other models have low-Q zones just below the serpentine seamount and above the subducting slab, horizontal width of the low-Q zone are different one another. Comparing synthetic waveforms and observed data, we can conclude that there must be a low-Q zone just below the serpentine seamount and on the subducting oceanic slab. The low-Q zone on the slab has ca. 80 km wide east to west and connects to the serpentine seamount. It is very important to understand where serpentinites of the seamounts came from to explain the characteristics of seismicity at the IBSZ. In this presentation we are going to explain an interpretation that serpentine moved through the plate boundary and reached just below the serpentine seamount, using an existence of the low-Q zone. Kamimura, A., Kasahara, J., Masanao S., Hino, R., Shiobara, H., Fujie, G., Kanazawa, T., 2002. Crustal structure study at the Izu-Bonin subduction zone around 31° N: implications of serpentinized materials along the subduction plate boundary, Physics of the Earth and Planetary Interiors, 132, 105-129.

  12. The 2008 Mw 7.2 North Pagai earthquake sequence: Partial rupture of a fully locked Mentawai patch

    NASA Astrophysics Data System (ADS)

    Salman, R.; Hill, E.; Feng, L.; Wei, S.; Barbot, S.; Lindsey, E.; WANG, X.; Chen, W.; Bannerjee, P.; Hermawan, I.; Natawidjaja, D. H.

    2016-12-01

    The Mentawai patch is a seismic gap along the Sumatra subduction zone that has not ruptured completely over the last decade. This is worrying because coral colonies of the Mentawai islands show that over the last 700 years the Mentawai patch ruptured in a sequence of great earthquake (Mw > 8.5) about every two centuries. In September 2007, the Mw 8.4 Bengkulu earthquake ruptured the southern section of the Mentawai patch. The event was then followed by two Mw >= 7 aftershocks. Five months later, the 2008 Mw 7.2 earthquake ruptured a small asperity a little further north. The event ruptured a small area in the middle portion of the Mentawai patch, where the megathrust had been estimated as highly coupled. The mainshock was preceded by a foreshock of Mw 6.5 one day before and two M 6 aftershocks that occurred on the same day as the mainshock event. However, the whole earthquake sequence ruptured only a confined area on the megathrust and failed to wake up the sleeping giant. We have yet to explain why the 2008 event did not break more asperities and develop into one gargantuan earthquake. In this study, we use geodetic and seismic data to investigate the 2008 earthquake, its following afterslip, and its fore- and after-shocks. First, we jointly invert static and high-rate cGPS, InSAR and teleseismic data in a joint inversion for a co-seismic slip distribution of the mainshock. Second, we invert teleseismic data alone to develop slip models for the foreshock, mainshock and aftershock events. Third, we use the Cut-And-Paste (CAP) technique to estimate a more accurate depths for the 2008 earthquake sequence. Finally, we use six years of cGPS data, from 2008 to 2013, to develop a model for afterslip. Our preliminary results show 2 meters of peak coseismic slip for the mainshock. In addition, 1 meter of peak afterslip overlap with the coseismic slip model. The total estimated slip is far smaller than expected from the accumulated strain that has been stored in the Mentawai patch since the last earthquake in 1833. Thus, the likelihood that the Mentawai patch will generate another great earthquake in the near future remains high. But the possibility of releasing the accumulated strain piecemeal in smaller earthquakes cannot be ruled out.

  13. In-Situ Effects of Simulated Overfishing and Eutrophication on Benthic Coral Reef Algae Growth, Succession, and Composition in the Central Red Sea.

    PubMed

    Jessen, Christian; Roder, Cornelia; Villa Lizcano, Javier Felipe; Voolstra, Christian R; Wild, Christian

    2013-01-01

    Overfishing and land-derived eutrophication are major local threats to coral reefs and may affect benthic communities, moving them from coral dominated reefs to algal dominated ones. The Central Red Sea is a highly under-investigated area, where healthy coral reefs are contending against intense coastal development. This in-situ study investigated both the independent and combined effects of manipulated inorganic nutrient enrichment (simulation of eutrophication) and herbivore exclosure (simulation of overfishing) on benthic algae development. Light-exposed and shaded terracotta tiles were positioned at an offshore patch reef close to Thuwal, Saudi Arabia and sampled over a period of 4 months. Findings revealed that nutrient enrichment alone affected neither algal dry mass nor algae-derived C or N production. In contrast, herbivore exclusion significantly increased algal dry mass up to 300-fold, and in conjunction with nutrient enrichment, this total increased to 500-fold. Though the increase in dry mass led to a 7 and 8-fold increase in organic C and N content, respectively, the algal C/N ratio (18±1) was significantly lowered in the combined treatment relative to controls (26±2). Furthermore, exclusion of herbivores significantly increased the relative abundance of filamentous algae on the light-exposed tiles and reduced crustose coralline algae and non-coralline red crusts on the shaded tiles. The combination of the herbivore exclusion and nutrient enrichment treatments pronounced these effects. The results of our study suggest that herbivore reduction, particularly when coupled with nutrient enrichment, favors non-calcifying, filamentous algae growth with high biomass production, which thoroughly outcompetes the encrusting (calcifying) algae that dominates in undisturbed conditions. These results suggest that the healthy reefs of the Central Red Sea may experience rapid shifts in benthic community composition with ensuing effects for biogeochemical cycles if anthropogenic impacts, particularly overfishing, are not controlled.

  14. In-Situ Effects of Simulated Overfishing and Eutrophication on Benthic Coral Reef Algae Growth, Succession, and Composition in the Central Red Sea

    PubMed Central

    Jessen, Christian; Roder, Cornelia; Villa Lizcano, Javier Felipe; Voolstra, Christian R.; Wild, Christian

    2013-01-01

    Overfishing and land-derived eutrophication are major local threats to coral reefs and may affect benthic communities, moving them from coral dominated reefs to algal dominated ones. The Central Red Sea is a highly under-investigated area, where healthy coral reefs are contending against intense coastal development. This in-situ study investigated both the independent and combined effects of manipulated inorganic nutrient enrichment (simulation of eutrophication) and herbivore exclosure (simulation of overfishing) on benthic algae development. Light-exposed and shaded terracotta tiles were positioned at an offshore patch reef close to Thuwal, Saudi Arabia and sampled over a period of 4 months. Findings revealed that nutrient enrichment alone affected neither algal dry mass nor algae-derived C or N production. In contrast, herbivore exclusion significantly increased algal dry mass up to 300-fold, and in conjunction with nutrient enrichment, this total increased to 500-fold. Though the increase in dry mass led to a 7 and 8-fold increase in organic C and N content, respectively, the algal C/N ratio (18±1) was significantly lowered in the combined treatment relative to controls (26±2). Furthermore, exclusion of herbivores significantly increased the relative abundance of filamentous algae on the light-exposed tiles and reduced crustose coralline algae and non-coralline red crusts on the shaded tiles. The combination of the herbivore exclusion and nutrient enrichment treatments pronounced these effects. The results of our study suggest that herbivore reduction, particularly when coupled with nutrient enrichment, favors non-calcifying, filamentous algae growth with high biomass production, which thoroughly outcompetes the encrusting (calcifying) algae that dominates in undisturbed conditions. These results suggest that the healthy reefs of the Central Red Sea may experience rapid shifts in benthic community composition with ensuing effects for biogeochemical cycles if anthropogenic impacts, particularly overfishing, are not controlled. PMID:23840570

  15. Micro-X-ray fluorescence-based comparison of skeletal structure and P, Mg, Sr, O and Fe in a fossil of the cold-water coral Desmophyllum sp., NW Pacific

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshihiro; Suzuki, Atsushi; Tamenori, Yusuke; Kawahata, Hodaka

    2014-02-01

    Micro-scale distributions of trace and minor elements in, for example, coral skeletons are crucial as geochemical tracers of past environmental conditions, because they have the inherent advantage of accounting for confounding diagenetic and physiological effects. To extract reproducible paleoceanographic records from coral skeletons, a selective measurement of specific ultrastructures at high spatial resolution is required. Compared to warm-water reef-building corals, such data are limited in cold-water corals and, to the best of the authors' knowledge, the latter have to date not been examined by means of micro-X-ray fluorescence. This technique was used for micrometer-scale imaging of P, Mg, Sr, O, and Fe intensities (counts per unit time) in a fossil specimen (as yet unknown age) of the cold-water coral Desmophyllum sp. from surface sediments of the NW Pacific. Cross plots confirmed that the micro-XRF signals were associated with corresponding trends in elemental concentration (ppm). Two major structural components of the septum—centers of calcification (COCs) and the surrounding fibrous aragonite portion—differed in composition. The COCs were characterized by higher intensities of P and Mg (650 and 220 counts per 5 s, respectively), and lower intensities of Sr (2,800) and O (580; corresponding values for the fibrous aragonite are 370, 180, 3,300 and 620 counts per 5 s, respectively). Oxygen intensity values were mostly homogeneous, but slightly lower in COCs and substantially higher in a well-defined patch in the fibrous aragonite. The mostly homogeneous P signals in the fibrous aragonite confirm the utility of this structural component and of coral septa in general for tracer studies of oceanic P. Nevertheless, spot occurrences of elevated P (>950 counts per 5 s) spanning tens of micrometers in specific parts of the fibrous region of the septum would cause overestimates of oceanic P, and should evidently not be overlooked in future research. The distribution of Fe showed no correlation with P, indicating no significant contamination in the form of P-bearing diagenetic ferromanganese precipitates. Such hotspots plausibly reflect the presence of other mineral phases, such as crystalline hydroxylapatite inclusions or contamination with organic material. The P signal intensity was positively correlated with Mg ( r=0.553, p<0.001), and negatively with Sr ( r=-0.489, p<0.001) and O ( r=-0.311, p<0.001). There was no discernible evidence of control by water temperature in the Sr distribution pattern. These findings establish micro-X-ray fluorescence as a highly suitable pre-screening tool in cold-water coral sclerochronology, which can serve to refine sampling strategies without sample damage, and complement other micrometer-scale spatial distribution analyses of elements (notably, Ca) based on well-known approaches involving micro-milling, electron microprobes, secondary ion mass spectrometry, and laser ablation.

  16. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes.

    PubMed

    Gordon, Timothy A C; Harding, Harry R; Wong, Kathryn E; Merchant, Nathan D; Meekan, Mark G; McCormick, Mark I; Radford, Andrew N; Simpson, Stephen D

    2018-05-15

    Coral reefs are increasingly degraded by climate-induced bleaching and storm damage. Reef recovery relies on recruitment of young fishes for the replenishment of functionally important taxa. Acoustic cues guide the orientation, habitat selection, and settlement of many fishes, but these processes may be impaired if degradation alters reef soundscapes. Here, we report spatiotemporally matched evidence of soundscapes altered by degradation from recordings taken before and after recent severe damage on Australia's Great Barrier Reef. Postdegradation soundscapes were an average of 15 dB re 1 µPa quieter and had significantly reduced acoustic complexity, richness, and rates of invertebrate snaps compared with their predegradation equivalents. We then used these matched recordings in complementary light-trap and patch-reef experiments to assess responses of wild fish larvae under natural conditions. We show that postdegradation soundscapes were 8% less attractive to presettlement larvae and resulted in 40% less settlement of juvenile fishes than predegradation soundscapes; postdegradation soundscapes were no more attractive than open-ocean sound. However, our experimental design does not allow an estimate of how much attraction and settlement to isolated postdegradation soundscapes might change compared with isolated predegradation soundscapes. Reductions in attraction and settlement were qualitatively similar across and within all trophic guilds and taxonomic groups analyzed. These patterns may lead to declines in fish populations, exacerbating degradation. Acoustic changes might therefore trigger a feedback loop that could impair reef resilience. To understand fully the recovery potential of coral reefs, we must learn to listen. Copyright © 2018 the Author(s). Published by PNAS.

  17. Forward Sound Propagation Around Seamounts: Application of Acoustic Models to the Kermit-Roosevelt and Elvis Seamounts

    DTIC Science & Technology

    2009-06-01

    large number of range steps. Brooke et al. [73] developed a Canadian Parabolic Equation model ( PECan ). In the model, the split-step Padé algorithm... PECan : A Canadian parabolic equation model for underwater sound propagation. J. Computational Acoustics, 9(1):69-100, 2001 [74] Michael D

  18. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND...

  19. Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Lo'ihi Seamount and Kilauea Volcano

    USGS Publications Warehouse

    Clague, D.A.; Davis, A.S.; Bischoff, J.L.; Dixon, J.E.; Geyer, R.

    2000-01-01

    Glassy bubble-wall fragments, morphologically similar to littoral limu o Pele, have been found in volcanic sands erupted on Lo'ihi Seamount and along the submarine east rift zone of Kilauea Volcano. The limu o Pele fragments are undegassed with respect to H2O and S and formed by mild steam explosions. Angular glass sand fragments apparently form at similar, and greater, depths by cooling-contraction granulation. The limu o Pele fragments from Lo'ihi Seamount are dominantly tholeiitic basalt containing 6.25-7.25% MgO. None of the limu o Pele samples from Lo'ihi Seamount contains less than 5.57% MgO, suggesting that higher viscosity magmas do not form lava bubbles. The dissolved CO2 and H2O contents of 7 of the limu o Pele fragments indicate eruption at 1200??300 m depth (120??30 bar). These pressures exceed that generally thought to limit steam explosions. We conclude that hydrovolcanic eruptions are possible, with appropriate pre-mixing conditions, at pressures as great as 120 bar.

  20. Hexactinellida (Porifera) from the Drake Passage (Southern Ocean) with a description of three new species.

    PubMed

    Goodwin, Claire E; Berman, Jade; Janussen, Dorte; Göcke, Christian; Hendry, Katharine R

    2016-06-17

    The Drake Passage has over 20 seamounts and ridges but it is notorious for large waves, fierce storms and strong currents that make benthic sampling difficult and therefore infrequent. Seamounts often have diverse sponge communities and may have high levels of endemism. Hexactinellida from Sars Seamount, an area in which the sponges had not previously been studied, and the Shackleton fracture zone were collected on a research cruise by the Nathaniel B Palmer in the Drake Passage, Southern Ocean. In total, from all cruise stations, 103 specimens of Hexactinellida were collected, however many appeared to be fragments of dead specimens and could not be identified due to missing microscleres. From Sars Seamount 127 sponge specimens were taken and from the Shackleton Fracture Zone 76 sponge specimens were taken; of these 36 and 16 respectively were Hexactinellida. From these two areas three new species of Hexactinellida are described: Doconesthes robinsoni sp. nov., Sympagella walleri sp. nov. and Caulophacus palmeri sp. nov and new records were made of Aulocalyx irregularis and Rossella antarctica.

  1. Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars.

    PubMed

    Ivarsson, M; Lausmaa, J; Lindblom, S; Broman, C; Holm, N G

    2008-12-01

    We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between approximately 10 wt % and approximately 50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C(2)H(4), phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (approximately 10-40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.

  2. Rock Magnetic Properties and Paleointensity Determinations of Basalts From the Emperor Seamounts

    NASA Astrophysics Data System (ADS)

    Carvallo, C.; Dunlop, D. J.; Ozdemir, O.

    2002-12-01

    Thellier-Thellier paleointensity experiments were carried out on sixty-six basaltic samples coming from three Emperor seamounts (Detroit, Nintoku and Koko) drilled during ODP Leg 197. Seventeen samples yielded reliable results. One sample from Detroit Seamount (81 Ma) gives a VADM of 3.0+/-0.2x1022Am2. Ten samples from Nintoku (56 Ma) give VADMs between 1.6+/-0.1x1022 and 4.7+/-0.2x1022Am2. Six samples from Koko seamount (44 Ma) give VADMs between 0.6+/-0.1x1022 and 1.8+/-0.1x1022Am2. Assuming that the accepted samples did not undergo any maghemitization, the generally low VADM values we measured are in agreement with other records of paleointensities in this time range. The low success rate was due to chemical changes during the heatings. Samples have a wide distribution of unblocking temperatures and bulk susceptibility variations during heating, revealing an important variation in oxidation state and titanium content with depth and between seamounts. Other rock magnetic properties such as low-temperature measurements and thermomagnetic curves also indicate that the magnetic composition of the basalt varies from almost pure magnetite to titanomagnetite (x=0.4) within the same hole. Identification of magnetic minerals is important in order to assess the reliability of paleointensity and paleomagnetic measurements. It might also provide some information on parameters such as cooling rate of the lava flows or alteration.

  3. Fossilized Microorganisms from the Emperor Seamounts: Implications for the Search for a Subsurface Fossil Record on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Lausmaa, J.; Lindblom, S.; Broman, C.; Holm, N. G.

    2008-12-01

    We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between ˜10 wt % and ˜50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C2H4, phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (˜10 40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.

  4. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    NASA Astrophysics Data System (ADS)

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-05-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8-24.4 °C) and dissolved oxygen (2.2-9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.

  5. Constraints from Seamounts on Pacific Plate or Plume Motion Prior to 80 Ma.

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Koppers, A. A. P.; Jackson, M. G.; Finlayson, V.; Konrad, K.

    2015-12-01

    The Hawaii-Emperor and Louisville hotspot tracks have long dominated the data set constraining absolute plate motion models. However, prior to ~80 Ma, multiple shorter, discontinuous hotspot trails and oceanic plateaus have been used to constrain absolute plate motion. Based on this earlier work, a clear Hawaii-Emperor style bend seems apparent around 100 Ma in the West Pacific Seamount Province (WPSP). More importantly, the ongoing debate on a plate versus plume motion origin for the Hawaii-Emperor Bend is applicable here, as the ~100 Ma bend may correspond to a global plate reorganization (Matthews et al., EPSL, 2012). Data for a comparison of bends comes from three groups with similar geographic patterns: 1) Mid-Pacific Mountains, Line Islands; 2) Shatsky Rise, Hess Rise, Musician and Wentworth Seamounts; and 3) Wake Seamounts, Marshall Islands, Magellan Seamounts. Both groups 1 and 2 feature a large igneous province (LIP) at their oldest end: Shatsky Rise and the Mid-Pacific Mountains. According to plate reconstructions these LIPs were constructed near all-ridge triple junctions, thus potential plume-ridge interactions need to be clarified before these LIPs can be used to define an absolute mantle reference frame. In contrast, the volcanoes of the third group (Wake, Marshall, Magellan) did erupt truly intra-plate and we therefore argue that this group provides a constraint on plate motion beyond 80 Ma that is independent of plume-ridge interactions. Since the volcanoes in this group are part of the WPSP, which is densely populated with seamounts, a combination of 40Ar/39Ar ages and Sr-Nd-Pb-Hf isotopes is needed to distinguish different hotspot tracks in this region. Backtracking each volcano through its age to its original eruptive location and using compositional color-coding, reveals groupings and patterns that vary by plate motion model, while the temporal patterns of backtracked locations inform us about potential plume motions.

  6. Seafloor geomorphology and geology of the Kingman Reef-Palmyra Atoll region, Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Eakins, Barry; Barth, Ginger; Scheirer, Dan; Mosher, Dave; Armstrong, Andy

    2017-04-01

    Kingman Reef and Palmyra Atoll are the exposed summits of two seamounts within the Line Islands Volcanic Chain in the Central Pacific Ocean. Both are U.S. Territories, and the Exclusive Economic Zone around the islands was partially surveyed in 1991 with GLORIA sidescan sonar and seismic reflection profiling. New multibeam swath sonar surveys were conducted in 2010, 2015, and 2016 around the islands, in support of U.S. Extended Continental Shelf investigations. Numerous transits through the region by research vessels have collected additional multibeam swath sonar data. We present new, detailed maps of bathymetry, sidescan sonar imagery, geology, and sediment isopachs of the seafloor surrounding the islands, and how these have informed our understanding of the islands' margins. The islands are the last subaerial remnants of a complex, horse-shoe-shaped volcanic platform spanning roughly 200 km in diameter. The elevated platform from which the seamounts arise comprises at least 10 individual volcanic centers that have heights exceeding 3000m above the nearby abyssal plains. Gravity modeling suggests that the elevated platform is compensated by thickened crust. Strong carbonate caps and voluminous sediment accumulations flanking the platform indicate that the volcanoes were once shallow-water or emergent systems. These systems produced vast quantities of carbonate sediment that were shed to a deep interior basin to the east of Palmyra Atoll, and to nearby abyssal plains. The identification of mass failures, sediment reworking and bedforms, and channel networks provide evidence for extensive sedimentary processes around these volcanic centers. Analysis of the seamounts atop the elevated platform and in the seamount province to the northwest shows that flat-topped seamounts ("guyots") are principally found at depths shallower than 1300 meters, while peaked seamounts are almost exclusively found at greater depths. This constrains the amount of regional subsidence that has occurred since guyot formation.

  7. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    USGS Publications Warehouse

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-01-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.

  8. Telepresence and real-time data transmission from Axial Seamount: implications for education and community engagement utilizing the OOI-RSN cabled observatory

    NASA Astrophysics Data System (ADS)

    Fundis, A. T.; Kelley, D. S.; Sautter, L. R.; Proskurowski, G.; Kawka, O.; Delaney, J. R.

    2011-12-01

    Axial Seamount, the most robust volcanic system on the Juan de Fuca Ridge, is a future site of the cabled observatory component of the National Science Foundation's Ocean Observatories Initiative (OOI) (see Delaney et al; Proskurowski et al., this meeting). In 2014, high-bandwidth data, high-definition video and digital still imagery will be streamed live from the cable observatory at Axial Seamount via the Internet to researchers, educators, and the public. The real-time data and high-speed communications stream will open new approaches for the onshore public and scientists to experience and engage in sea-going research as it is happening. For the next 7 years, the University of Washington and the OOI will collaboratively support an annual multi-week cruise aboard the research vessel Thomas G. Thompson. These "VISIONS" cruises will include scientific and maintenance operations related to the cabled network, the OOI Regional Scale Nodes (RSN). Leading up to 2014, VISIONS cruises will also be used to engage students, educators, scientists and the public in science focused at Axial Seamount through avenues that will be adaptable for the live data stream via the OOI-RSN cable. Here we describe the education and outreach efforts employed during the VISIONS'11 cruise to Axial Seamount including: 1) a live HD video stream from the seafloor and the ship to onshore scientists, educators, and the public; 2) a pilot program to teach undergraduates from the ship via live and taped broadcasts; 3) utilizing social media from the ship to communicate with scientists, educators, and the public onshore; and 4) providing undergraduate and graduate students onboard immersion into sea-going research. The 2011 eruption at Axial Seamount (see Chadwick et al., this meeting) is a prime example of the potential behind having these effective tools in place to engage the scientific community, students, and the public when the OOI cabled observatory comes online in 2014.

  9. 3D seismic structure of the Zhenbei-Huangyan seamount chain in the East sub-basin of the South China Sea and its mechanism of formation

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Wang, J.; Qiu, X.; Sibuet, J. C.; He, E.; Zhang, J.

    2015-12-01

    The post-spreading volcanic ridge (PSVR) is oriented approximately E-W in its western part called the Zhenbei-Huangyan seamount chain. Where is the extinct spreading ridge (ESR) of the East Sub-basin located? beneath the PSVR (Li et al., 2014)? Or intersecting with the PSVR by N055° orientation (Sibuet et al., submitted)? A three-dimensional Ocean Bottom Seismometer (OBS) survey covered both the central extinct spreading ridge and the Zhenbei-Huangyan seamount chain, the IODP Site U1431 (Li et al., 2014) being located just north of the chain. The results of this experiment will provide the essential information to understand the emplacement of the PSVR within the previously formed oceanic crust. The comprehensive seismic record sections of 39 OBSs are of high quality and show clear and reliable P-wave seismic phases, such as Pg, Pn and PmP. These seismic arrivals provide strong constrains for modeling the detailed three-dimensional velocity structure. We will show that the crust is oceanic on each side of the Zhenbei-Huangyan seamount chain, where is the location of the ESR and what is the genetic relationship between the magma chambers and the overlying Zhenbei-Huangyan seamount chain. We suggest that the large thickness of the upper crust is possibly due to volcanic extrusions and the thickened lower crust to magmatic underplating. Combining previous geochemical study of PSVR outcropping samples, the formation mechanism of the seamount chain might be explained by a buoyancy decompression melting mechanism (Castillo et al., 2010). This research was granted by the Natural Science Foundation of China (91028002, 91428204, 41176053). ReferencesSibuet J.-C., Yeh Y.-C. and Lee C.-S., 2015 submitted. Geodynamics of the South China Sea: A review with emphasis on solved and unsolved questions. Tectonophysics. Li, C. F., et al. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15, 4958-4983. Castillo, P. R., Clague, D. A., Davis, A. S., Lonsdale, P. F., 2010. Petrogenesis of Davidson Seamount lavas and its implications for fossil spreading center and intraplate magmatism in the eastern Pacific. Geochemistry, Geophysics, Geosystems, 11, Q02005, doi:10.1029/2009GC002992.

  10. Categorizing vitric lithofacies on seamounts: implications for recognizing deep-marine pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Portner, R. A.; Clague, D. A.

    2011-12-01

    Glassy fragmental deposits commonly found capping seamounts have been variably interpreted as the products of quench-fragmentation (hyaloclastite), suppressed steam expansion, and/or explosive fire-fountains (pyroclastite). To better understand these vitriclastic deposits we use a multidisciplinary approach that outlines six lithofacies based on textures, sedimentary structures, geochemical diversity, and associations with seamount landforms. All seamounts studied yield MORB compositions and formed on or near mid-ocean ridge axes of the northeast Pacific Ocean. Consolidated deposits were sampled from the Taney (~29 Ma), President Jackson (~3 Ma), and Vance (~2 Ma) seamounts using ROV manipulator arms and dredge hauls. Unconsolidated deposits from the currently active Axial Seamount of the Juan de Fuca Ridge were sampled using ROV push core and vacuum techniques. Lithofacies occur with talus breccias and pillow basalt on steeply dipping outer flanks and caldera walls, and with pillow and sheet flows on subhorizontal rims and nested caldera floors of the seamounts. Vitric lithofacies within or near steeply dipping regions have very angular textures, coarse grain-sizes and abundant crystalline basalt fragments. Jig-saw fit texture is common in units with monomict geochemistry and closely associated with adjacent pillow basalt, suggesting in-situ fragmentation akin to pillow breccia. Similar units bearing polymodal geochemistry are generally associated with talus breccias along caldera walls and basal slopes, and are interpreted as fault-scarp derived debrites. Laterally these lithofacies abruptly grade into bottom-current reworked lithofacies on flat caldera floors. Reworked lithofacies have >40% muddy matrix with abundant angular mineral fragments, biogenic grains and minor devitrified glass shards. They typically exhibit well-defined planar lamination and locally show sinusoidal ripple forms. Horizontal burrows including Planolites are common. Locally this lithofacies has a structureless to 'swirled' habit and interdigitating bedding contacts where it is host to matrix-supported subround vitric lapilli with low-vesicularity. These rare globules have mud-filled embayments, bubbles and quench-cracks, jig-saw fit texture, and fluidal morphologies suggesting a pepperitic origin. Laterally, bottom current reworked lithofacies grade into fine-to medium-grained ash lithofacies proximal to volcanic-constructional landforms. These landforms have broad morphologies with subdued slopes and are interpreted as source vents. Lithofacies generated from these vents invariably contain an abundance of low-vesicular limu-o-Pele'- or highly-vesicular round lapilli. Units are coarse-tail reverse to normal graded and crudely planar laminated or structureless. Locally, basal contacts are erosive. This facies is interpreted as fall-out from particle lofting or high-density gravity flows generated by explosive eruptions. By combining high-resolution bathymetric mapping and sampling with post-cruise geochemical and petrographic examination, we outline a previously unrecognized diversity to seamount-capping vitriclastic deposits. This approach will be useful for studies focused on deciphering explosive origins of deep-marine volcaniclastic deposits.

  11. An Older, Slower Hawaii-Emperor Bend

    NASA Astrophysics Data System (ADS)

    Sharp, W. D.; Clague, D. A.

    2002-12-01

    The Hawaii-Emperor Bend is widely interpreted to indicate a profound change in the direction of Pacific Plate motion at about 43 Ma. This interpretation rests on the assumption that the Hawaiian hotspot has remained fixed; however, the fixity of the Hawaiian hotspot has long been challenged on the basis of plate-circuit reconstructions and considerations of mantle dynamics. Moreover, paleomagnetists (e.g., Tarduno and Cottrell, 1997) have suggested that prior to formation of the Bend the Hawaiian hotspot moved southward relative to Earth's spin axis at cm-per-year rates--that is, the Bend may primarily record slowing of the hotspot's own motion. If so, the rate of volcanic migration along the chain--which must be the vector sum of hotspot and Pacific Plate motions--should slow at the Bend. Published interpretations of Hawaii-Emperor seamount ages portray a uniform volcanic migration rate of about 8 cm per year through the Bend; however, many of the ages underlying these interpretations are whole-rock K-Ar and Ar-Ar total fusion ages of uncertain reliability. We report 15 new Ar-Ar plateau ages of milligram quantities of selected feldspars and hornblendes from 6 seamounts that bracket the Bend, extending from 1350 km north of the Bend to 225 km east of the Bend. The dated rocks are post-shield, transitional to alkalic basalts and trachytes that--by analogy with Quaternary Hawaiian volcanoes--erupted between 1 and 2 m.y. after passage of the seamount over the leading edge of the hotspot. Accordingly, north of the Bend, from Suiko seamount (age = 61.3 +/-0.5 Ma, 2σ ) to Koko seamount (50.6 +/-0.2 Ma), volcanism apparently migrated at about 10 cm per year during formation of the southern Emperor Chain. Through the Bend, from Koko seamount via Kimmei (47.3 +/-0.4 Ma), Diakakuji (46.7 +/-0.2 Ma), Abbott (41.5 +/-0.3 Ma) and Colahan (38.8 +/-0.2 Ma) seamounts, migration of volcanism slowed to 5.2 +/-0.6 cm per year--qualitatively consistent with hotspot motion that slowed or stopped near the Bend. Slower migration of volcanism around the Bend accentuates a precipitous drop in eruption rate that accompanied the Bend's inception. Furthermore, the new, older age of Koko seamount indicates that the Bend began to form at about 50 Ma. Therefore, inception of the Bend coincided with--and may have been causally linked to--reorganization of northern Pacific spreading ridges between marine magnetic anomalies 22 and 24, corresponding to 49-53 Ma on the Cande and Kent (1995) geomagnetic polarity time scale. Thus a change in direction of Pacific Plate motion may yet prove to have played a role in forming the Bend, though earlier than previously believed.

  12. From the epipelagic zone to the abyss: Trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic - Part II Benthopelagic fishes

    NASA Astrophysics Data System (ADS)

    Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd

    2017-12-01

    Specific mechanisms, driving trophic interactions between seamount associated fishes and the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure and the main prey of benthopelagic fishes from the summit and slope regions of Ampère and Senghor, two shallow seamounts in the subtropical and tropical NE Atlantic, and the adjacent deep-sea plains. For the identification of food sources and nutritional links to the pelagic realm a combination of stomach content and stable isotope ratio (δ13C and δ15N) analyses was used. δ13C ranged from -22.2‰ to -15.4‰ and δ15N covered a total range of 8.0-15.9‰. Feeding types of fish species comprised mainly zooplanktivores and mixed feeders, but also benthivores, piscivores, and predator-scavengers. Based on epipelagic particulate organic matter, they occupied trophic positions between the 2nd and 4th trophic level. Differences in stomach contents and stable isotope signatures indicate a resource partitioning among the benthopelagic fish fauna through distinct habitat choice, vertical feeding positions and prey selection. Topographic trapping of vertically migrating zooplankton on the summit seemed to be of minor importance for food supply of the resident near-bottom fishes, rather horizontal current-driven advection of the planktonic prey was assumed as major factor. Vertically migrating micronekton and mesopelagic fishes show up as key players within the food webs at Ampère and Senghor Seamounts and the adjacent deep-sea plains.

  13. Origin of depleted components in basalt related to the Hawaiian hot spot: Evidence from isotopic and incompatible element ratios

    NASA Astrophysics Data System (ADS)

    Frey, F. A.; Huang, S.; Blichert-Toft, J.; Regelous, M.; Boyet, M.

    2005-02-01

    The radiogenic isotopic ratios of Sr, Nd, Hf, and Pb in basaltic lavas associated with major hot spots, such as Hawaii, document the geochemical heterogeneity of their mantle source. What processes created such heterogeneity? For Hawaiian lavas there has been extensive discussion of geochemically enriched source components, but relatively little attention has been given to the origin of depleted source components, that is, components with the lowest 87Sr/86Sr and highest 143Nd/144Nd and 176Hf/177Hf. The surprisingly important role of a depleted component in the source of the incompatible element-enriched, rejuvenated-stage Hawaiian lavas is well known. A depleted component also contributed significantly to the ˜76-81 Ma lavas erupted at Detroit Seamount in the Emperor Seamount Chain. In both cases, major involvement of MORB-related depleted asthenosphere or lithosphere has been proposed. Detroit Seamount and rejuvenated-stage lavas, however, have important isotopic differences from most Pacific MORB. Specifically, they define trends to relatively unradiogenic Pb isotope ratios, and most Emperor Seamount lavas define a steep trend of 176Hf/177Hf versus 143Nd/144Nd. In addition, lavas from Detroit Seamount and recent rejuvenated-stage lavas have relatively high Ba/Th, a characteristic of lavas associated with the Hawaiian hot spot. It is possible that a depleted component, intrinsic to the hot spot, has contributed to these young and old lavas related to the Hawaiian hot spot. The persistence of such a component over 80 Myr is consistent with a long-lived source, i.e., a plume.

  14. Complex submarine landsliding processes caused by subduction of large seamounts along the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, Cesar R.; Weinrebe, Wilhelm; von Huene, Roland

    2014-05-01

    Subduction of kms-tall and tens-of-km wide seamounts cause important landsliding events at subduction zones around the word. Along the Middle America Trench, previous work based on regional swath bathymetry maps (with 100 m grids) and multichannel seismic images have shown that seamount subduction produces large-scale slumping and sliding. Some of the mass wasting event may have been catastrophic and numerical modeling has indicated that they may have produced important local tsunamis. We have re-evaluated the structure of several active submarine landlide complexes caused by large seamount subduction using side scan sonar data. The comparison of the side scan sonar data to local high-resolution bathymetry grids indicates that the backscatter data has a resolution that is somewhat similar to that produced by a 10 m bathymetry grid. Although this is an arbitrary comparison, the side scan sonar data provides comparatively much higher resolution information than the previously used regional multibeam bathymetry. We have mapped the geometry and relief of the head and side walls of the complexes, the distribution of scars and the different sediment deposits to produce a new interpretation of the modes of landsliding during subduction of large seamounts. The new higher resolution information shows that landsliding processes are considerably more complex than formerly assumed. Landslides are of notably smaller dimensions that the lower resolution data had previously appear to indicate. However, significantly large events may have occur far more often than earlier interpretations had inferred representing a more common threat that previously assumed.

  15. Faunal Biogeography Community Structure and Genetic Connectivity of North Atlantic Seamounts

    DTIC Science & Technology

    2008-09-01

    found the soft sediment infauna dominated by polychaetes, peracarid crustaceans, aplacophoran, bivalve and gastropod molluscs, sipunculans, nemerteans...seamount found that there was a higher proportion of species with short or no larval duration suggesting adaptation for local retention of larvae...Munida zebra, the two chirostylid crab Eumunida species and one plaktotrophic gastropod Sassia remensa, but significant structure for the non

  16. Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc

    NASA Astrophysics Data System (ADS)

    Kong, Xiangchao; Li, Sanzhong; Wang, Yongming; Suo, Yanhui; Dai, Liming; Géli, Louis; Zhang, Yong; Guo, Lingli; Wang, Pengcheng

    2018-01-01

    Statistics about the occurrence frequency of earthquakes (1973-2015) at shallow, intermediate and great depths along the Izu-Bonin-Mariana (IBM) Arc is presented and a percent perturbation relative to P-wave mean value (LLNL-G3Dv3) is adopted to show the deep structure. The correlation coefficient between the subduction rate and the frequency of shallow seismic events along the IBM is 0.605, proving that the subduction rate is an important factor for shallow seismic events. The relationship between relief amplitudes of the seafloor and earthquake occurrences implies that some seamount chains riding on the Pacific seafloor may have an effect on intermediate-depth seismic events along the IBM. A probable hypothesis is proposed that the seamounts or surrounding seafloor with high degree of fracture may bring numerous hydrous minerals into the deep and may result in a different thermal structure compared to the seafloor where no seamounts are subducted. Fluids from the seamounts or surrounding seafloor are released to trigger earthquakes at intermediate-depth. Deep events in the northern and southern Mariana arc are likely affected by a horizontal propagating tear parallel to the trench.

  17. Identifying epibenthic habitats on the Seco de los Olivos Seamount: Species assemblages and environmental characteristics

    NASA Astrophysics Data System (ADS)

    De la Torriente, A.; Serrano, A.; Fernández-Salas, L. M.; García, M.; Aguilar, R.

    2018-05-01

    High habitat diversity was observed on the Seco de los Olivos Seamount (SW Mediterranean Sea), a Site of Community Importance belonging to the Spanish marine Natura 2000 Network. Thirteen epibenthic habitats were identified by analysing 55 Remotely Operated Vehicle (ROV) transects from 76 m to 700 m depth and derived data from multibeam bathymetry and high resolution seismic profiles. Habitat identification was based on a combination of assemblages of habitat-forming species and the environmental characteristics supporting their distribution. Depth and slope were identified as the main significant factors structuring epibenthic assemblages. The high diversity and patchiness of habitats found on the Seco de los Olivos Seamount can be explained by the high environmental variability resulting from its wide geomorphologic diversity, where flat summits, steep flanks, rocky outcrops and sedimentary moats are combined. The distribution of benthic habitats at this seamount is likely a combination of suitable ecological conditions, local recruitment, feeding strategies and attachment mechanisms. Knowledge on the occurrence of habitats in areas of natural importance is crucial to species and habitats conservation and to develop proper monitoring and management programs aimed at fulfilling European regulation requirements.

  18. BIOMETORE Project - Studying the Biodiversity in the Northeastern Atlantic Seamounts

    NASA Astrophysics Data System (ADS)

    Dos Santos, A.; Biscoito, M.; Campos, A.; Tuaty Guerra, M.; Meneses, G.; Santos, A. M. P. A.

    2016-02-01

    Understanding the deep-sea ecosystem functioning is a key issue in the study of ocean sciences. Bringing together researchers from several scientific domains, the BIOMETORE project aims to the increase knowledge on deep-sea ecosystems and biodiversity at the Atlantic seamounts of the Madeira-Tore and Great Meteor geological complexes. The project outputs will provide important information for the understanding and sustainable management of the target seamount ecosystems, thus contributing to fulfill knowledge gaps on their biodiversity, from bacteria to mammals, and food webs, as well as to promote future sustainable fisheries and sea-floor integrity. The plan includes the realization of eight multidisciplinary surveys, four done during the summer of 2015 and another four planned for the same season of 2016, in target seamounts: the Gorringe bank, the Josephine, and others in the Madeira-Tore, and selected ones in the Greta Meteor (northeastern Atlantic Ocean). The surveys cover a number of scientific areas in the domains of oceanography, ecology, integrative taxonomy, geology, fisheries and spatial mapping. We present and discuss BIOMETORE developments, the preliminary results from the four 2015 summer surveys, and the planning of the next four surveys.

  19. Intraplate Seamounts of the Northwest Sector of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Mirlin, E. G.; Mironov, Yu. V.; Rodkin, M. W.; Chesalova, E. I.

    2018-03-01

    A method is proposed for identifying seamounts in the northwest sector of the Pacific based on the following criteria: a closed, close to isometric contour of the isobaths at the base of a structure, its quasi-conical shape, and angles of slope exceeding 5° within the limits of the closed contour. A catalog of the mountains has been compiled, consisting of 1995 objects and their quantitative characteristics. The catalog data were statistically processed, and the following was calculated: the correlation between the number of seamounts from the radius of their base and volume, the distribution of the number of mountains, and the total volume within the study area. It is shown that seamounts are characterized as multiscale, and they are located very unevenly: areas with and without their accumulation are distinguished, and the composition of volcanic rocks is typically isotopically and geochemically heterogeneous. It is concluded that currently there is no single geodynamic model that can explain the revealed phenomena in their entirety. At the same time, the data suggest that the nature of some magma chambers that feed intraplate volcanoes is caused by transformation of energy in the lithosphere as a nonlinear open system.

  20. Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Carmo, Vanda; Santos, Mariana; Menezes, Gui M.; Loureiro, Clara M.; Lambardi, Paolo; Martins, Ana

    2013-12-01

    Seamounts are common topographic features around the Azores archipelago (NE Atlantic). Recently there has been increasing research effort devoted to the ecology of these ecosystems. In the Azores, the mesozooplankon is poorly studied, particularly in relation to these seafloor elevations. In this study, zooplankton communities in the Condor seamount area (Azores) were investigated during March, July and September 2010. Samples were taken during both day and night with a Bongo net of 200 µm mesh that towed obliquely within the first 100 m of the water column. Total abundance, biomass and chlorophyll a concentrations did not vary with sampling site or within the diel cycle but significant seasonal variation was observed. Moreover, zooplankton community composition showed the same strong seasonal pattern regardless of spatial or daily variability. Despite seasonal differences, the zooplankton community structure remained similar for the duration of this study. Seasonal variability better explained our results than mesoscale spatial variability. Spatial homogeneity is probably related with island proximity and local dynamics over Condor seamount. Zooplankton literature for the region is sparse, therefore a short review of the most important zooplankton studies from the Azores is also presented.

  1. Seismicity and tectonic tremor accompany the 2014 Gisborne Slow Slip Event: Insights from the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) Experiment, New Zealand

    NASA Astrophysics Data System (ADS)

    Todd, E. K.; Schwartz, S. Y.; Sheehan, A. F.; Mochizuki, K.

    2016-12-01

    The northern Hikurangi Margin is host to some of the shallowest slow slip events (SSEs) in the world. Slow slip offshore Gisborne, New Zealand has been observed at depths as shallow as 2 km and may extend all the way to the trench. Gisborne SSEs are accompanied by tectonic tremor and increased levels of seismicity, but this activity has only been observed at the onshore, downdip edge of the slow slip patch. Between May 2014 and June 2015, 24 absolute pressure gauges, 10 broadband seismometers, and 5 short period seismometers were deployed offshore Gisborne along the east coast of the North Island of New Zealand as part of the HOBITSS Experiment. These instruments were in place during a large Gisborne SSE (peak slip 20 cm) in September and October 2014. Using this new ocean-derived dataset in conjunction with existing land data from the New Zealand National Seismograph Network operated by GeoNet (http://geonet.org.nz), we present an in-depth, systematic investigation of tremor and microseismicity associated with this shallow Gisborne SSE to further examine the spatial heterogeneity of slip processes on the shallow megathrust. Tremor and earthquakes are collocated with the geodetically inverted slow slip patch with tremor occurring offshore and earthquakes concentrated downdip of a shallowly subducted seamount near the region of peak displacement during the SSE. This discovery indicates that the region of the megathrust slipping in these SSEs is capable of multiple types of slip and understanding the spatiotemporal relationships between these strain release modes has implications for local seismic hazards.

  2. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling

    PubMed Central

    Boavida, Joana; Assis, Jorge; Silva, Inga; Serrão, Ester A.

    2016-01-01

    Factors shaping the distribution of mesophotic octocorals (30–200 m depth) remain poorly understood, potentially leaving overlooked coral areas, particularly near their bathymetric and geographic distributional limits. Yet, detailed knowledge about habitat requirements is crucial for conservation of sensitive gorgonians. Here we use Ecological Niche Modelling (ENM) relating thirteen environmental predictors and a highly comprehensive presence dataset, enhanced by SCUBA diving surveys, to investigate the suitable habitat of an important structuring species, Paramuricea clavata, throughout its distribution (Mediterranean and adjacent Atlantic). Models showed that temperature (11.5–25.5 °C) and slope are the most important predictors carving the niche of P. clavata. Prediction throughout the full distribution (TSS 0.9) included known locations of P. clavata alongside with previously unknown or unreported sites along the coast of Portugal and Africa, including seamounts. These predictions increase the understanding of the potential distribution for the northern Mediterranean and indicate suitable hard bottom areas down to >150 m depth. Poorly sampled habitats with predicted presence along Algeria, Alboran Sea and adjacent Atlantic coasts encourage further investigation. We propose that surveys of target areas from the predicted distribution map, together with local expert knowledge, may lead to discoveries of new P. clavata sites and identify priority conservation areas. PMID:27841263

  3. Earth Observations taken by the Expedition 21 Crew

    NASA Image and Video Library

    2009-10-22

    ISS021-E-011832 (22 Oct. 2009) --- The northern Savage Islands in the Atlantic Ocean are featured in this image photographed by an Expedition 21 crew member on the International Space Station. The Savage Islands, or Ilhas Selvagens in Portuguese, comprise a small archipelago in the eastern North Atlantic Ocean between the archipelago of Madeira to the north and the Canary Islands to the south. Like other island groups, the Savage Islands are thought to have been produced by volcanism related to a mantle plume or “hot spot”. Mantle plumes are relatively fixed regions of upwelling magma that can feed volcanoes on an overlying tectonic plate. Active volcanoes form over the plume, and become dormant as they are carried away on the moving tectonic plate. Scientists believe that over geologic time, this creates a line of older extinct volcanoes, seamounts, and islands extending from the leading active volcanoes that are currently over the plume. This view illustrates Selvagem Grande, the largest of the islands with an approximate area of four square kilometers. All of the islands of the archipelago are ringed by bright white breaking waves along the fringing beaches. Coral reefs that surround the Savage Islands make it very difficult to land boats there, and there is no permanent settlement on the islands.

  4. The Azores plume influence on the SASC-Great Meteor and MAR: the importance for the Portuguese Extension of the Continental Shelf Project (PECSP)

    NASA Astrophysics Data System (ADS)

    Ribeiro, Luisa P.; Madureira, Pedro; Hildenbrand, Anthony; Martins, Sofia; Mata, João

    2017-04-01

    The Southern Azores Seamount Chain (SASC) is a group of large seamounts located south of the Azores Plateau and east of the Mid-Atlantic Ridge (MAR) and part of the natural prolongation of the Azores land mass. The SASC, including the Great Meteor Seamount (aprox. 1000km south of São Miguel), is rooted on a flat, gently SE dipping Terrace, surrounded by steep scarps with almost 2000 m high. Only a few studies from the 70-80's discuss the geologic and/or geodynamic evolution of this region based on scarce bathymetry and geophysical data. Wendt et al. (1976) presented geochemical data and K-Ar ages on three basalt from the Great Meteor Seamount (<16Ma old), later analyzed for Sr-Nd-Pb isotopes by Geldmacher et al. (2006). Given the rarity of geochemical data, the origin of the seamounts and the regional evolution of this large area of the Atlantic, remains largely unknown. During the preparatory work of the PECSP, the EMEPC promoted three oceanographic campaigns to the SASC (2007, 2008 and 2009) with multidisciplinary teams. Within these cruises, more than 120 samples were dredged or collected with the Luso ROV (rated to 6000m depth) although less than 50 were suitable for major and trace elements analysis, for Sr-Nd-Pb-Hf isotopes and for K-Ar radiometric dating. Early studies relating the SASC with the New England Seamounts can be refuted by geophysical data and kinematic models presented by Gente et al. (2003) and, also by our new isotopic data, which shows that isotope ratios are clearly distinct from New England (Ribeiro et al., in prep). However, the analyzed SASC basalts display isotope ratios that overlap the Azores isotopic signature. Two new K-Ar ages (unspiked Cassignol-Gillot technique on fresh separated groundmass and/or plagioclase microlites) on the seamounts show coeval volcanism at Plato Seamount SE flank (33.4±0.5 Ma) an at Small Hyeres Seamount (31.7±0.5Ma). The SASC basalts erupted on the Terrace through an oceanic crust with 26Ma and 43Ma, respectively, at the time of eruption. Contemporaneous with this activity, the basalts erupted on-axis at the MAR between the Hayes FZ and the Azores, correspond to E-MORB with an radiogenic isotopic signature trending towards the Azores (Dupré and Bougault, 1985; Jenner et al., 1985). The similarity between the SASC and the Azores mantle source can be explained by the impingement of the long-lived (aprox. 85Ma) Azores plume beneath the Nubian Plate, as argued by Gente et al. (2003), which also influenced the MAR evolution. Our study endorses the genetic link between the Azores Archipelago and the SASC to the Azores plume, contributing to better constrain the temporal-spatial evolution of this region of the north Atlantic, which is enclosed by the Azores Platform. Moreover, the new data gathered within the PECSP contributed to constrain the boundary of the Azores Platform submarine elevation according to the provisions of article 76 of UNCLOS. Wendt et al. (1976) Deep-Sea-Research 23; Geldmacher et al. (2006) Lithos 90; Dupré and Bougault, (1985) DSDP82; Jenner et al., (1985) DSDP82; Gente et al. (2003) G3, 4

  5. Seamount Lineaments of the Northern Galápagos and Plume-ridge Interaction

    NASA Astrophysics Data System (ADS)

    Cushman, W.; Harpp, K. S.; Kurz, M. D.; Geist, D.; Mittelstaedt, E. L.; Fornari, D. J.; Soule, S.; R/v Melville Mv1007 Flamingo Scientific Team

    2010-12-01

    The Northern Galápagos Province (NGP) is located between the Galápagos Archipelago and the Galápagos Spreading Center (GSC). There are 3 volcanic lineaments in the NGP, trending NW/SE. The lineaments’ origins remain enigmatic, but may provide information about plume-ridge interaction. In 2010, the R/V Melville MV1007 Cruise employed EM122 multibeam bathymetry, MR1 sidescan sonar, and dredging to study the area. The western lineament, the Wolf-Darwin Lineament (WDL), intersects the GSC at ~92°10’W and is the largest of the 3. The WDL is ~190km long and has 6 main volcanic centers, with many smaller satellite vents. The Central Lineament (CL) intersects the GSC at ~91°48’W and is ~60 km long with 4 major seamounts. The largest is roughly 2/3 the volume of the WDL’s smallest seamount. The Eastern Lineament (EL) intersects the GSC at ~91°16’W and is ~100km long. The EL includes 5 major seamounts with intermediate volumes. From N to S, the edifices in the WDL and the EL become more elongate, suggesting greater deviatoric stresses away from the ridge. The elongation is more pronounced in WDL seamounts than on those in the EL. The bathymetric footprints of seamounts on the N end of both lineaments are more symmetrical, as are all those of the CL. Seamounts with circular bases are probably monogenetic, with limited ranges of Mg#, phenocryst content, and incompatible trace element (ITE) concentrations. Most have single vents. The larger elongate seamounts have multiple vents and wider compositional ranges, likely the result of polygenetic eruptive histories. Lavas erupted along the lineaments have ITE ratios ranging between Galápagos Plume and depleted upper mantle sources, suggesting that mixing between the 2 sources occurs in the NGP. No seamount is more enriched than GSC axial lavas from within the study area, and no systematic gradient exists along strike of any of the lineaments, indicating that mixing between the plume and ridge is not simply progressive. The CL is the least plume-like, with the EL generally exhibiting more and the WDL the most plume contributions. The 3He/4He ratios along the lineaments are MORB-like, with a slight increase S along the WDL and EL. The Sm/Yb for WDL lavas increase southward, which may reflect increasing depth of melt generation in response to thickening lithosphere away from the GSC. The increase is more pronounced S of a pseudofault that intersects the WDL. Morgan (1978) proposed that the WDL is a channel along which plume material reaches the GSC; more recent models have been proposed for the lineaments in which plume material is transported to the GSC via ‘fingers’ that act as conduits. Data from the lineaments are inconsistent with both hypotheses, which predict increasing plume influence with distance from the GSC. An alternative hypothesis invokes stresses induced on the NGP by the GSC transform fault at ~90°50’W. These stresses create weak zones in the lithosphere along which plume-contaminated mantle is erupted to form lineaments. This hypothesis predicts no channeling of plume material to the GSC, but rather that the lineaments are the result of dispersed, point source eruptions tapping the heterogeneous mantle.

  6. Seismicity detection around the subduting seamount off Ibaraki the Japan Trench using dense OBS array data

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Mochizuki, K.; Shinohara, M.; Yamada, T.; Hino, R.; Ito, Y.; Murai, Y.; Sato, T.

    2013-12-01

    A subducting seamount which has a height of about 3 km was revealed off Ibaraki in the Japan Trench by a seismic survey (Mochizuki et al., 2008). Mochizuki et al. (2008) also interpreted that interplate coupling was weak over the seamount because seismicity was low and the slip of the recent large earthquake did not propagate over it. To carry out further investigation, we deployed dense ocean bottom seismometers (OBSs) array around the seamount for about a year. During the observation period, seismicity off Ibaraki was activated due to the occurrence of the 2011 Tohoku earthquake. The southern edge of the mainshock rupture area was considered to be located around off Ibaraki by many source analyses. Moreover, Kubo et al. (2013) proposes the seamount played an important role in the rupture termination of the largest aftershock. Therefore, in this study, we try to understand about spatiotemporal variation of seismicity around the seamount before and after the Mw 9.0 event as a first step to elucidate relationship between the subducting seamount and seismogenic behavior. We used velocity waveforms of 1 Hz long-term OBSs which were densely deployed at station intervals of about 6 km. The sampling rate is 200 Hz and the observation period is from October 16, 2010 to September 19, 2011. Because of the ambient noise and effects of thick seafloor sediments, it is difficult to apply methods which have been used to on-land observational data for detecting seismicity to OBS data and to handle continuous waveforms automatically. We therefore apply back-projection method (e.g., Kiser and Ishii, 2012) to OBS waveform data which estimate energy-release source by stacking waveforms. Among many back-projection methods, we adopt a semblance analysis (e.g., Honda et al., 2008) which can detect feeble waves. First of all, we constructed a 3-D velocity structure model off Ibaraki by compiling the results of marine seismic surveys (e.g., Nakahigashi et al., 2012). Then, we divided a target area into small areas and calculated P-wave traveltimes between each station and all small areas by fast marching method (Rawlinson et al., 2006). After constructing theoretical travel-time tables, we applied a proper frequency filter to the observed waveforms and estimated seismic energy release by projecting semblance values. As the result of applying our method, we could successfully detect magnitude 2-3 earthquakes.

  7. Satellite-delivered gravimetry for the Vitória-Trindade Chain, Southeast Brazil, and its bearing on the volcanic seamount structure

    NASA Astrophysics Data System (ADS)

    Motoki, A.; Motoki, K. F.; Sichel, S. E.; Souza, K.; Bueno, G. V.; Poseidon

    2013-05-01

    The authors present gravimetric and geomorphologic analyses for the Vitória-Trindade volcanic seamount chain, State of Espírito Santo, Brazil. The seamounts are generally of 30 km in base diameter, 10 km in flat-top diameter, and 2500 to 4000 m in relative height. The flat-tops are constant in depth, without evidence of basement subsidence. The western half of the chain shows basement elevation of 2000 m, which took place before the eruptions. The size and frequency of the seamounts become smaller to the east. Most of them have conical form of central eruptions, and some large ones are of elongated form of fissure eruptions. The volcanic seamounts usually have Bouguer anomaly about 100 mGal lower than the adjacent area, showing funnel-shaped Bouguer depression. Large volcanoes show ring-like Bouguer structure composed of the central high and the marginal low. The marginal low is about 100 mGal lower than the adjacent abyssal plane and the central high is about 80 mGal higher than the marginal low. Very large volcanoes have bull's eye-like low Bouguer sites along the marginal low. On the foot of the volcanoes, there is the area with Bouguer anomaly 20 to 40 mGal higher, called peripheral high. These observations suggest the following growth history of the volcanic seamounts. At the initial stage, repeated central eruptions of lava flow construct the volcanic edifice. The weight of the volcano is sustained by mechanical firmness of the basement. The Bouguer anomaly is characterized by funnel-shaped depression. At the advanced stage, gabbroic radial dyke intrusion occurs along the central conduit in the upper level of the volcanic edifice, which is evidenced by the central Bouguer high. The seamount is supported mainly by mechanical firmness and partially by isostatic compensation of crustal down-buckling. At the highly advanced stage, the intrusion takes place into the lower level of the main volcanic edifice resulting lateral eruptions along its foot, which is shown by the bull's eye-like Bouguer lows. The crustal down-buckling and consequent isostatic compensation become relevant. The peripheral Bouguer high could be the rebound of the crustal down-buckling. The regional Bouguer anomaly suggests lithosphere thinning along the Vitória-Trindade Chain, which is relevant at the western end of the chain and becomes weak to east. The magmatism and tectonism of are strong at the western end of the chain and become less intense to the east.

  8. Unexpected HIMU-type late-stage volcanism on the Walvis Ridge

    NASA Astrophysics Data System (ADS)

    Homrighausen, S.; Hoernle, K.; Geldmacher, J.; Wartho, J.-A.; Hauff, F.; Portnyagin, M.; Werner, R.; van den Bogaard, P.; Garbe-Schönberg, D.

    2018-06-01

    Volcanic activity at many oceanic volcanoes, ridges and plateaus often reawakens after hiatuses of up to several million years. Compared to the earlier magmatic phases, this late-stage (rejuvenated/post-erosional) volcanism is commonly characterized by a distinct geochemical composition. Late-stage volcanism raises two hitherto unanswered questions: Why does volcanism restart after an extended hiatus and what is the origin of this volcanism? Here we present the first 40Ar/39Ar age and comprehensive trace element and Sr-Nd-Pb-Hf isotopic data from seamounts located on and adjacent to the Walvis Ridge in the South Atlantic ocean basin. The Walvis Ridge is the oldest submarine part of the Tristan-Gough hotspot track and is famous as the original type locality for the enriched mantle one (EM I) end member. Consistent with the bathymetric data, the age data indicates that most of these seamounts are 20-40 Myr younger than the underlying or nearby Walvis Ridge basement. The trace element and isotope data reveal a distinct compositional range from the EM I-type basement. The composition of the seamounts extend from the St. Helena HIMU (high time-integrated 238U/204Pb mantle with radiogenic Pb isotope ratios) end member to an enriched (E) Mid-Ocean-Ridge Basalt (MORB) type composition, reflecting a two-component mixing trend on all isotope diagrams. The EMORB end member could have been generated through mixing of Walvis Ridge EM I with normal (N) MORB source mantle, reflecting interaction of Tristan-Gough (EM I-type) plume melts with the upper mantle. The long volcanic quiescence and the HIMU-like geochemical signature of the seamounts are unusual for classical hotspot related late-stage volcanism, indicating that these seamounts are not related to the Tristan-Gough hotspot volcanism. Two volcanic arrays in southwestern Africa (Gibeon-Dicker Willem and Western Cape province) display similar ages to the late-stage Walvis seamounts and also have HIMU-like compositions, suggesting a larger-scale event at ∼77-49 Ma. We propose that the EM I-like mantle plumes rise from the edges of the African Large Low Shear Velocity Province (LLSVP; Tristan-Gough, Discovery and Shona hotspot), whereas the HIMU-dominated intraplate lavas (St. Helena, Gibeon-Dicker Willem and Western Cape province) and the late-stage Walvis seamounts tap material from internal portions of the African LLSVP, suggesting possible lateral and/or vertical chemical zonation of the African LLSVP.

  9. Depth as an Organizing Force in Pocillopora damicornis: Intra-Reef Genetic Architecture

    PubMed Central

    Gorospe, Kelvin D.; Karl, Stephen A.

    2015-01-01

    Relative to terrestrial plants, and despite similarities in life history characteristics, the potential for corals to exhibit intra-reef local adaptation in the form of genetic differentiation along an environmental gradient has received little attention. The potential for natural selection to act on such small scales is likely increased by the ability of coral larval dispersal and settlement to be influenced by environmental cues. Here, we combine genetic, spatial, and environmental data for a single patch reef in Kāne‘ohe Bay, O‘ahu, Hawai‘i, USA in a landscape genetics framework to uncover environmental drivers of intra-reef genetic structuring. The genetic dataset consists of near-exhaustive sampling (n = 2352) of the coral, Pocillopora damicornis at our study site and six microsatellite genotypes. In addition, three environmental parameters – depth and two depth-independent temperature indices – were collected on a 4 m grid across 85 locations throughout the reef. We use ordinary kriging to spatially interpolate our environmental data and estimate the three environmental parameters for each colony. Partial Mantel tests indicate a significant correlation between genetic relatedness and depth while controlling for space. These results are also supported by multi-model inference. Furthermore, spatial Principle Component Analysis indicates a statistically significant genetic cline along a depth gradient. Binning the genetic dataset based on size-class revealed that the correlation between genetic relatedness and depth was significant for new recruits and increased for larger size classes, suggesting a possible role of larval habitat selection as well as selective mortality in structuring intra-reef genetic diversity. That both pre- and post-recruitment processes may be involved points to the adaptive role of larval habitat selection in increasing adult survival. The conservation importance of uncovering intra-reef patterns of genetic diversity is discussed. PMID:25806798

  10. Habitat complexity and fish size affect the detection of Indo-Pacific lionfish on invaded coral reefs

    NASA Astrophysics Data System (ADS)

    Green, S. J.; Tamburello, N.; Miller, S. E.; Akins, J. L.; Côté, I. M.

    2013-06-01

    A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species' detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish ( Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from coral reef systems.

  11. Spatial variability in the structure of intertidal crab and gastropod assemblages within the Seychelles Archipelago (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Smale, Dan A.; Barnes, David K. A.; Barnes, Richard S. K.; Smith, David J.; Suggett, David J.

    2012-04-01

    Tropical nearshore ecosystems represent global hotspots of marine biodiversity and endemism but are often poorly understood and impacted by human activities. The Seychelles Archipelago (Western Indian Ocean) sustains a wealth of marine life, much of which is threatened by rapid development associated with tourism and climate change. Six marine parks exist within the Archipelago, but their biodiversity value and ecological health are poorly known, especially with regards to non-fish and coral species. Here we investigate spatial patterns of littoral biodiversity on 6 islands, 5 of which were granitic and within marine parks, including the first surveys of Curieuse and Ile Cocos. Our surveys formed a nested sampling design, to facilitate an examination of variability in species richness, faunal abundance, taxonomic distinctness and assemblage composition at multiple spatial scales, from islands (> 100 s km) to quadrats (metres). We identified (mostly to species) and enumerated two target taxa, brachyuran decapod crustaceans and gastropod molluscs, and recorded over 8300 individuals belonging to over 150 species. Crabs and gastropods exhibited different patterns of spatial variability, as crab assemblages were generally more distinct between islands, while gastropod assemblages were markedly variable at the smallest spatial scales of 'patch' and 'quadrat'. Intertidal biodiversity was greatest on Curieuse Island and least at Desroches, the latter was being the only coral atoll we surveyed and thereby differing in its geological and ecological context. We discuss likely drivers of these biodiversity patterns and highlight urgently-needed research directions. Our assessment of the status of poorly-known invertebrate assemblages across the Seychelles will complement more extensive surveys of coral and fish assemblages and, in doing so, provide a useful baseline for monitoring the effects of key stressors in the region, such as coastal development and climate change.

  12. 76 FR 54715 - Western Pacific Bottomfish and Seamount Groundfish Fisheries; 2011-12 Main Hawaiian Islands Deep...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... Hawaiian Islands for the 2011-12 fishing year, based on an annual catch limit of 346,000 lb. The expected... in the main Hawaiian Islands (MHI) for the 2011-12 fishing year, based on an annual catch limit (ACL.... 110711384-1534-02] RIN 0648-XA470 Western Pacific Bottomfish and Seamount Groundfish Fisheries; 2011-12 Main...

  13. The End of Monterey Submarine Canyon Incision and Potential River Source Areas-Os, Nd, and Pb Isotope Constraints from Hydrogenetic Fe-Mn Crusts

    NASA Astrophysics Data System (ADS)

    Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.

    2015-12-01

    The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon incision.

  14. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197

    NASA Astrophysics Data System (ADS)

    Duncan, Robert A.; Keller, Randall A.

    2004-08-01

    The Hawaiian-Emperor seamount chain is the "type" example of an age-progressive, hot spot-generated intraplate volcanic lineament. However, our current knowledge of the age distribution within this province is based largely on radiometric ages determined several decades ago. Improvements in instrumentation, sample preparation methods, and new material obtained by recent drilling warrant a reexamination of the age relations among the older Hawaiian volcanoes. We report new age determinations (40Ar-39Ar incremental heating method) on whole rocks and feldspar separates from Detroit (Sites 1203 and 1204), Nintoku (Site 1205), and Koko (Site 1206) Seamounts (Ocean Drilling Program (ODP) Leg 197) and Meiji Seamount (Deep Sea Drilling Project (DSDP) Leg 19, Site 192). Plateaus in incremental heating age spectra for Site 1203 lava flows give a mean age of 75.8 ± 0.6 (2σ) Ma, which is consistent with the normal magnetic polarity directions observed and biostratigraphic age assignments. Site 1204 lavas produced discordant spectra, indicating Ar loss by reheating and K mobilization. Six plateau ages from lava flows at Site 1205 give a mean age of 55.6 ± 0.2 Ma, corresponding to Chron 24r. Drilling at Site 1206 intersected a N-R-N magnetic polarity sequence of lava flows, from which six plateau ages give a mean age of 49.1 ± 0.2 Ma, corresponding to the Chron 21n-22r-22n sequence. Plateau ages from two feldspar separates and one lava from DSDP Site 192 range from 34 to 41 Ma, significantly younger than the Cretaceous age of overlying sediments, which we relate to postcrystallization K mobilization. Combined with new dating results from Suiko Seamount (DSDP Site 433) and volcanoes near the prominent bend in the lineament [, 2002], the overall trend is increasing volcano age from south to north along the Emperor Seamounts, consistent with the hot spot model. However, there appear to be important departures from the earlier modeled simple linear age progression, which we relate to changes in Pacific plate motion and the rate of southward motion of the Hawaiian hot spot.

  15. A Subducted Seamount Revealed: 2016, NOAA OER Deepwater Exploration of the Marianas

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Kelley, C.; Pomponi, S. A.; Glickson, D.; Amon, D.

    2017-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea Plate edge.

  16. Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: novel toxins, their function and phylogeny.

    PubMed

    Olamendi-Portugal, Timoteo; Batista, Cesar V F; Restano-Cassulini, Rita; Pando, Victoria; Villa-Hernandez, Oscar; Zavaleta-Martínez-Vargas, Alfonso; Salas-Arruz, Maria C; Rodríguez de la Vega, Ricardo C; Becerril, Baltazar; Possani, Lourival D

    2008-05-01

    The protein composition of the soluble venom from the South American fish-eating coral snake Micrurus surinamensis surinamensis, here abbreviated M. surinamensis, was separated by RP-HPLC and 2-DE, and their components were analyzed by automatic Edman degradation, MALDI-TOF and ESI-MS/MS. Approximately 100 different molecules were identified. Sixty-two components possess molecular masses between 6 and 8 kDa, are basically charged molecules, among which are cytotoxins and neurotoxins lethal to fish (Brachidanios rerio). Six new toxins (abbreviated Ms1-Ms5 and Ms11) were fully sequenced. Amino acid sequences similar to the enzymes phospholipase A2 and amino acid oxidase were identified. Over 20 additional peptides were identified by sequencing minor components of the HPLC separation and from 2-DE gels. A functional assessment of the physiological activity of the six toxins was also performed by patch clamp using muscular nicotinic acetylcholine receptor assays. Variable degrees of blockade were observed, most of them reversible. The structural and functional data obtained were used for phylogenetic analysis, providing information on some evolutionary aspects of the venom components of this snake. This contribution increases by a factor of two the total number of alpha-neurotoxins sequenced from the Micrurus genus in currently available literature.

  17. Growth history and intrinsic factors influence risk assessment at a critical life transition for a fish

    NASA Astrophysics Data System (ADS)

    Lönnstedt, O. M.; McCormick, M. I.

    2011-09-01

    Making the appropriate decision in the face of predation risk dictates the fate of prey, and predation risk is highest at life history boundaries such as settlement. At the end of the larval phase, most coral reef fishes enter patches of reef containing novel predators. Since vision is often obscured in the complex surroundings, chemical information released from damaged conspecific is used to forewarn prey of an active predator. However, larvae enter the reef environment with their own feeding and growth histories, which will influence their motivation to feed and take risks. The present study explored the link between recent growth, feeding history, current performance and behavioural risk taking in newly settling stages of a coral reef damselfish ( Pomacentrus amboinensis). Older and larger juveniles in good body condition had a stronger response to chemical alarm cues of injured conspecifics; these fish spent a longer time in shelter and displayed a more dramatic decrease in foraging behaviour than fish in lower body condition. Feeding experiments supported these findings and emphasized the importance of body condition in affecting risk assessment. Evidently, larval growth history and body condition influences the likelihood of taking risks under the threat of predation immediately after settlement, thereby affecting the probability of survival in P. amboinensis.

  18. Expanding the Symbiodinium (Dinophyceae, Suessiales) Toolkit Through Protoplast Technology.

    PubMed

    Levin, Rachel A; Suggett, David J; Nitschke, Matthew R; van Oppen, Madeleine J H; Steinberg, Peter D

    2017-09-01

    Dinoflagellates within the genus Symbiodinium are photosymbionts of many tropical reef invertebrates, including corals, making them central to the health of coral reefs. Symbiodinium have therefore gained significant research attention, though studies have been constrained by technical limitations. In particular, the generation of viable cells with their cell walls removed (termed protoplasts) has enabled a wide range of experimental techniques for bacteria, fungi, plants, and algae such as ultrastructure studies, virus infection studies, patch clamping, genetic transformation, and protoplast fusion. However, previous studies have struggled to remove the cell walls from armored dinoflagellates, potentially due to the internal placement of their cell walls. Here, we produce the first Symbiodinium protoplasts from three genetically and physiologically distinct strains via incubation with cellulase and osmotic agents. Digestion of the cell walls was verified by a lack of Calcofluor White fluorescence signal and by cell swelling in hypotonic culture medium. Fused protoplasts were also observed, motivating future investigation into intra- and inter-specific somatic hybridization of Symbiodinium. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Generation of Symbiodinium protoplasts opens exciting, new avenues for researching these crucial symbiotic dinoflagellates, including genetic modification. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  19. New 40Ar / 39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: Support for the mantle plume hypothesis

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hoernle, K.; Bogaard, P. v. d.; Duggen, S.; Werner, R.

    2005-08-01

    The role of mantle plumes in the formation of intraplate volcanic islands and seamount chains is being increasingly questioned. Particular examples are the abundant and somewhat irregularly distributed island and seamount volcanoes off the coast of northwest Africa. New 40Ar / 39Ar ages and Sr-Nd-Pb isotope geochemistry of volcanic rocks from seamounts northeast of the Madeira Islands (Seine and Unicorn) and northeast of the Canary Islands (Dacia and Anika), however, provide support for the plume hypothesis. The oldest ages of shield stage volcanism from Canary and Madeira volcanic provinces confirm progressions of increasing age to the northeast. Average volcanic age progression of ∼1.2 cm/a is consistent with rotation of the African plate at an angular velocity of ∼0.20° ± 0.05 /Ma around a common Euler pole at approximately 56° N, 45° W computed for the period of 0-35 Ma. A Euler pole at 35° N, 45° W is calculated for the time interval of 35-64 Ma. The isotope geochemistry further confirms that the Madeira and Canary provinces are derived from different sources, consistent with distinct plumes having formed each volcanic group. Conventional hotspot models, however, cannot easily explain the up to 40 m.y. long volcanic history at single volcanic centers, long gaps in volcanic activity, and the irregular distribution of islands and seamounts in the Canary province. A possible explanation could involve interaction of the Canary mantle plume with small-scale upper mantle processes such as edge-driven convection. Juxtaposition of plume and non-plume volcanism could also account for observed inconsistencies of the classical hotspot concept in other volcanic areas.

  20. Oolite facies as a transitional unit in deepening-upward carbonate sequences in Atoll, Seamount, and Guyot settings in Pacific basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlanger, S.O.

    Prior to 1968, ooids had not been described from shallow-water carbonate complexes deposited in atoll, seamount, or guyot settings in the Pacific basin. This apparent lack of an oolite facies in the Pacific was puzzling, considering the abundance of ooids in modern Bahamian settings and in the Phanerozoic record in general. Since 1968, Deep Sea Drilling Project operations, marine seismic stratigraphic studies, dredging on drowned atolls, and field studies of an emergent atoll have revealed the presence of a Cretaceous oolite limestone atop Ita Maitai Guyot, Paleocene ooids on Koko Seamount, late Paleocene to middle Eocene ooids on Ojin Seamount,more » Eocene ooids on Harrie Guyot, and Holocene oolite limestone on Malden Island. At Ita Maitai Guyot the oolite limestone overlies normal lagoon sediments and is overlain by deep-water pelagic carbonate. At Malden Island, which is an emergent atoll, 3550-year-old oolite limestone overlies a 125,000-year-old reef complex. At Harrie Guyot and at Koko and Ojin Seamounts, ooids are associated with drowned atoll reef and lagoon complexes. The paleolatitude of deposition of the oolite facies lay between 5/sup 0/S and 18/sup 0/N. In these settings the formation of the oolite facies was apparently related to a rapid rise in sea level that caused flooding of an antecedent reef complex which failed to keep up with the rise in sea level. In Pacific basin environments the oolite facies is a minor and temporally ephemeral one which accounts for its scarcity in the stratigraphic record from this region.« less

  1. Arago Seamount: The missing hotspot found in the Austral Islands

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Le Suavé, Raymond; Audin, Laurence; Clouard, Valérie; Dosso, Laure; Yves Gillot, Pierre; Janney, Philip; Jordahl, Kelsey; Maamaatuaiahutapu, Keitapu

    2002-11-01

    The Austral archipelago, on the western side of the South Pacific superswell, is composed of several volcanic chains, corresponding to distinct events from 35 Ma to the present, and lies on oceanic crust created between 60 and 85 Ma. In 1982, Turner and Jarrard proposed that the two distinct volcanic stages found on Rurutu Island and dated as 12 Ma and 1 Ma could be due to two different hotspots, but no evidence of any recent aerial or submarine volcanic source has ever been found. In July 1999, expedition ZEPOLYF2 aboard the R/V L'Atalante conducted a geophysical survey of the northern part of the Austral volcanic archipelago. Thirty seamounts were mapped for the first time, including a very shallow one (<27 m below sea level), located at lat 23°26.4‧S, long 150°43.8‧W, ˜120 km southeast of Rurutu. A nepheline-rich scoriaceous basalt sample from pillow lavas dredged on the newly mapped seamount's western flank gave a K-Ar age of 230 ± 0.004 ka obtained on pure selected nepheline. We propose that this seamount, already called Arago Seamount after a French Navy ship that discovered its summit in 1993, is the missing hotspot in the Cook-Austral history. This interpretation adds a new hotspot to the already complicated geologic history of this region. We suggest that several hotspots have been active simultaneously on a region of the seafloor that does not exceed 2000 km in diameter and that each of them had a short lifetime (<20 m.y.). These short-lived and closely spaced hotspots cannot be the result of discrete deep-mantle plumes and are likely due to more local upwelling in the upper mantle strongly influenced by weaknesses in the lithosphere.

  2. Discoveries From the Cross-Disciplinary, Multi-Institutional South Seas Expedition from Hawaii to New Zealand and Back

    NASA Astrophysics Data System (ADS)

    Malahoff, A.; Wiltshire, J. C.; Smith, J. R.

    2005-12-01

    The Hawaii Undersea Research Laboratory organised an international research team to explore the chemistry, geology, biology, hydrothermal venting processes, mineral deposition, and biodiversity of seamounts extending south from Hawaii to New Zealand, including the submarine volcanoes of the Tonga-Kermadec Island Arc. Research team members came from a Consortium comprising of principal investigators from the NOAA Pacific Marine Environment Lab and VENTS program, the Inst of Geological and Nuclear Sciences and the National Inst of Water and Atmospheric Research both of New Zealand, the Univ of Kiel in Germany, the Univ of Mississippi, Univ of Hawaii, the NOAA Marine Fisheries Service, Scripps Institution of Oceanography, Univ of Oregon, Oregon State Univ, Stanford Univ, and the U.S. Fish and Wildlife Service. Funding came from the member organizations of the Consortium and the NOAA Office of Ocean Exploration and National Undersea Research Program. The expedition left Hawaii on 18 March 2005 and returned on 05 August, aboard the R/V Ka`imikai-o-Kanaloa with the submersibles Pisces IV and Pisces V and the ROV RCV-150. Sixty-one science dives were executed during the eight legs of the expedition. Twelve active volcanoes in the Samoa to New Zealand legs, one in the Samoan hot spot chain and the flanks of five islands and atolls on the legs between Samoa and Hawaii were investigated. Hundreds of specimens of new and unusual marine life, corals and other benthic organisms, extremophile micro- and macro-organisms, water samples for chemical analysis, polymetallic sulfides and rock samples were collected during the expedition. Unusual processes were observed at the Kermadec submarine volcanoes, including the oozing of liquid sulphur onto the seafloor and profuse carbon dioxide venting into seawater. Extensive submarine hydrothermal venting, black smoker activity and extraordinary chimney formations were studied in the caldera of Brothers Volcano. In addition, extensive communities of animals consisting of giant mussels, long-necked barnacles, pogonopheran worms, crabs, vent fish and mats of micro-organisms were mapped on the volcano flanks down to water depths of 2,000 m. Of note was that each active volcano maintained its own characteristic mix and dominance of animals. New species of life forms were detected and 27 new species of extremophile bacteria have been analysed. The active submarine volcano Vailulu'u in the Samoan chain was found to have a new 300-m high volcanic cone growing in its caldera that was not present when the edifice was last depth sounded in 2001. Turbid waters, hydrothermal activity and a ``Medusa'' rock full of eels were additional noteworthy discoveries. Assessment of living marine resources and habitat, collection of precious corals for dating to infer climate change and marine archaeology were the projects on the Samoa-to-Hawaii legs through the Line Islands. These were first exploration of these waters at depths below 200 m. The terrain was primarily sediment-scoured carbonate cliffs and escarpments, incised with box canyons and deeper chasms. The team consortium approach to a systematic study of these diverse submarine volcano and seamount settings ensured the operational and research success of this ambitious expedition.

  3. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc.

    PubMed

    Hara, Kurt; Kakegawa, Takeshi; Yamashiro, Kan; Maruyama, Akihiko; Ishibashi, Jun-Ichiro; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2005-01-01

    A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  4. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  5. Sound Propagation around Underwater Seamounts

    DTIC Science & Technology

    2009-02-01

    Algorithm 177 C.1 Processing Real World Data .................. ........ 178 C.2 Method for Finding Zero -crossings ................... .... 179 C.3 Handling...BASSEX experiment (figure is from Hyun Joe Kim, M IT, PhD Thesis) ................... .. .......... 25 2-2 Time front generated using the Range...30 2-4 Pressure level, given in dB re 1lPa, inside the forward-scattered field of the Kermit-Roosevelt Seamount. Results are generated using the RAM

  6. Chinstrap penguin foraging area associated with a seamount in Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Kokubun, Nobuo; Lee, Won Young; Kim, Jeong-Hoon; Takahashi, Akinori

    2015-12-01

    Identifying marine features that support high foraging performance of predators is useful to determine areas of ecological importance. This study aimed to identify marine features that are important for foraging of chinstrap penguins (Pygoscelis antarcticus), an abundant upper-trophic level predator in the Antarctic Peninsula region. We investigated the foraging locations of penguins breeding on King George Island using GPS-depth loggers. Tracking data from 18 birds (4232 dives), 11 birds (2095 dives), and 19 birds (3947 dives) were obtained in 2007, 2010, and 2015, respectively. In all three years, penguins frequently visited an area near a seamount (Orca Seamount) in Bransfield Strait. The percentage of dives (27.8% in 2007, 36.1% in 2010, and 19.1% in 2015) and depth wiggles (27.1% in 2007, 37.2% in 2010, and 22.3% in 2015) performed in this area was higher than that expected from the size of the area and distance from the colony (8.4% for 2007, 14.7% for 2010, and 6.3% for 2015). Stomach content analysis showed that the penguins fed mainly on Antarctic krill. These results suggest that the seamount provided a favorable foraging area for breeding chinstrap penguins, with high availability of Antarctic krill, possibly related to local upwelling.

  7. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    USGS Publications Warehouse

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  8. Three-Dimensional Dynamics of Baroclinic Tides Over a Seamount

    NASA Astrophysics Data System (ADS)

    Vlasenko, Vasiliy; Stashchuk, Nataliya; Nimmo-Smith, W. Alex M.

    2018-02-01

    The Massachusetts Institute of Technology general circulation model is used for the analysis of baroclinic tides over Anton Dohrn Seamount (ADS), in the North Atlantic. The model output is validated against in situ data collected during the 136th cruise of the RRS "James Cook" in May-June 2016. The observational data set includes velocity time series recorded at two moorings as well as temperature, salinity, and velocity profiles collected at 22 hydrological stations. Synthesis of observational and model data enabled the reconstruction of the details of baroclinic tidal dynamics over ADS. It was found that the baroclinic tidal waves are generated in the form of tidal beams radiating from the ADS periphery to its center, focusing tidal energy in a surface layer over the seamount's summit. This energy focusing enhances subsurface water mixing and the local generation of internal waves. The tidal beams interacting with the seasonal pycnocline generate short-scale internal waves radiating from the ADS center. An important ecological outcome from this study concerns the pattern of residual currents generated by tides. The rectified flows over ADS have the form of a pair of dipoles, cyclonic and anticyclonic eddies located at the seamount's periphery. These eddies are potentially an important factor in local larvae dispersion and their escape from ADS.

  9. Porosity evolution of upper Miocene reefs, Almeria Province, southern Spain

    USGS Publications Warehouse

    Armstrong, A.K.; Snavely, P.D.; Addicott, W.O.

    1980-01-01

    Sea cliffs 40 km east of Almeria, southeastern Spain, expose upper Miocene reefs and patch reefs of the Plomo formation. These reefs are formed of scleractinian corals, calcareous algae, and mollusks. The reef cores are as much as 65 m thick and several hundred meters wide. Fore-reef talus beds extend 1,300 m across and are 40 m thick. The reefs and reef breccias are composed of calcific dolomite. They lie on volcanic rocks that have a K-Ar date of 11.5 m.y. and in turn are overlain by the upper Miocene Vicar Formation. In the reef cores and fore-reef breccia beds, porosity is both primary and postdepositional. Primary porosity is of three types: (a) boring clam holes in the scleractinian coral heads, cemented reef rocks, and breccias; (b) intraparticle porosity within the corals, Halimeda plates, and vermetid worm tubes; and (c) interparticle porosity between bioclastic fragments and in the reef breccia. Postdepositional moldic porosity was formed by the solution of aragonitic material such as molluscan and coral fragments. The Plomo reef carbonate rocks have high porosity and permeability, and retain a great amount of depositional porosity. Pores range in size from a few micrometers to 30 cm. The extensive intercrystalline porosity and high permeability resulted from dolomitization of micritic matrix. Dolomite rhombs are between 10 and 30 μ across. More moldic porosity was formed by the dissolution of the calclte bioclasts. Some porosity reduction has occurred by incomplete and partial sparry calcite infilling of interparticular, moldic, and intercrystalline voids. The high porosity and permeability of these reefs make them important targets for petroleum exploration in the western Mediterranean off southern Spain. In these offshore areas in the subsurface the volcanic ridge and the Plomo reef complex are locally onlapped or overlapped by 350 m or more of Miocene(?) and Pliocene fine-grained sedimentary rocks. The possibility exists that the buried Plomo reef deposits may form traps for oil and gas in the offshore areas southwest of the type locality. Stratigraphic traps also may occur where the Neogene sequence above the Plomo reef complex onlaps the volcanic ridge.

  10. Platinum Group Element (PGE) Abundances in Lava Flows Generated by the Hawaiian Plume: Insights into Plume Evolution

    NASA Astrophysics Data System (ADS)

    Shafer, J. T.; Neal, C. R.

    2003-12-01

    Picritic and high-MgO (7.7-24 wt.%) basalt samples from Detroit (/sim81-76 Ma) and Koko (/sim48 Ma) Seamounts along the ESC have been analyzed for PGEs (Ru, Rh, Pd, Ir, and Pt) allowing an examination of how the PGEs in lavas from the Hawaiian plume have changed over time. Major and trace element (including the PGEs) concentrations were quantified by ICP methods at the University of Notre Dame. See Ely et al. (1999, Chem. Geol. 157:219) for the PGE analytical method. Bennett et al. (2000) analyzed Hawaiian picrites and found PGE abundances slightly greater than average MORB and comparable to the low-PGE basaltic komatiites. These authors modeled the PGE abundances of these picrites by using variable amounts of residual sulfide during melting, such that Koolau (low PGE contents) formed from a relatively sulfide-rich source and Loihi (high PGEs) from a sulfide-poor source. Our PGE data from Detroit Seamount show slightly higher PGE abundances than Loihi and Kilauea, suggesting these picrites formed from a source lacking residual sulfide. These results suggest that, if the model of Bennett et al. (2000) is correct, the dilution of plume lava with MORB source, as hypothesized on the basis of depleted isotope ratios and lower trace element abundances than modern Hawaii (Keller et al., 2000, Nature 405:603; Kinman & Neal, 2002, Eos 83:F1282; Regelous et al., 2003, JPet 44:113), was not the controlling factor in PGE abundances. However, since MORB PGE concentrations are not substantially different than low-PGE Hawaiian picrites, incorporation of MORB material within the Hawaiian plume at Detroit Seamount would not have drastically reduced the PGE abundances. Koko Seamount has relatively high PGE concentrations (/sim3-12 times greater than those from Detroit lavas). This may be the result of a lack of residual sulfide facilitated by higher degrees of partial melting. Although our initial data are consistent with variable degrees of partial melting and/or source heterogeneity over the life of the Hawaiian plume, the data from Detroit Seamount can be modeled by, for example, magma mixing between Koko-type "PGE-rich" plume and MORB end members (cf. Kinman & Neal, 2002). The Pt/Ir ratios and PGE abundances of picrites from Detroit and Koko Seamounts and from Hawaii (as analyzed by Bennett et al., 2000) increase in the order: Hawaii (4.8), Detroit (5.8), Koko (8.1). Bennett et al. argued that if more sulfide was retained in the source the PGE profile would be more fractionated and abundances would be lower. Our data suggest the opposite is true. For Koko Seamount to have PGE abundances approximately 3-12 times greater than the high-PGE picrites from Hawaii and yet have a more fractionated profile, the source of the Hawaiian plume must have been relatively PGE-enriched at 48 Ma than it is currently. In addition, the more fractionated profile of Detroit Seamount is consistent with the incorporation of MORB material (Pt/Ir /sim 25.9), thereby raising its Pt/Ir ratio.

  11. Digital image processing of Seabeam bathymetric data for structural studies of seamounts near the East Pacific Rise

    NASA Technical Reports Server (NTRS)

    Edwards, M. H.; Arvidson, R. E.; Guinness, E. A.

    1984-01-01

    The problem of displaying information on the seafloor morphology is attacked by utilizing digital image processing techniques to generate images for Seabeam data covering three young seamounts on the eastern flank of the East Pacific Rise. Errors in locations between crossing tracks are corrected by interactively identifying features and translating tracks relative to a control track. Spatial interpolation techniques using moving averages are used to interpolate between gridded depth values to produce images in shaded relief and color-coded forms. The digitally processed images clarify the structural control on seamount growth and clearly show the lateral extent of volcanic materials, including the distribution and fault control of subsidiary volcanic constructional features. The image presentations also clearly show artifacts related to both residual navigational errors and to depth or location differences that depend on ship heading relative to slope orientation in regions with steep slopes.

  12. Jasper Seamount: seven million years of volcanism

    USGS Publications Warehouse

    Pringle, M.S.; Staudigel, H.; Gee, J.

    1991-01-01

    Jasper Seamount is a young, mid-sized (690 km3) oceanic intraplate volcano located about 500 km west-southwest of San Diego, California. Reliable 40Ar/39Ar age data were obtained for several milligram-sized samples of 4 to 10 Ma plagioclase by using a defocused laser beam to clean the samples before fusion. Gee and Staudigel suggested that Jasper Seamount consists of a transitional to tholeiitic shield volcano formed by flank transitional series lavas, overlain by flank alkalic series lavas and summit alkalic series lavas. Twenty-nine individual 40Ar/39Ar laser fusion analyses on nine samples confirm the stratigraphy: 10.3-10.0 Ma for the flank transitional series, 8.7-7.5 Ma for the flank alkalic series, and 4.8-4.1 Ma for the summit alkalic series. The alkalinity of the lavas clearly increases with time, and there appear to be 1 to 3 m.y. hiatuses between each series. -from Authors

  13. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Staudigel, Hubert; Wijbrans, Jan R.; Pringle, Malcolm S.

    1998-11-01

    The Magellan Seamount Trail (MST) delineates a northwest trending chain of four Cretaceous guyots in the West Pacific Seamount Province (WPSP). Seamount morphology, 40Ar/ 39Ar geochronology and Sr-Nd-Pb geochemistry of the MST provides evidence for a hotspot origin between the Samoa, Rarotonga and Society hotspots of the South Pacific Isotopic and Thermal Anomaly (SOPITA). The MST yields an excellent linear age progression of 47.6±1.6 mm/yr ( r2=1.000; MSWD = 0.23; 1 σ SE) including Vlinder guyot (95.1±0.5 Ma, n=5; 2 σ SD), Pako guyot (91.3±0.3 Ma, n=3) and Ioah guyot (87.1±0.3 Ma, n=2). The MST also exhibits a small range in Sr-Nd-Pb isotopic compositions indicating enriched mantle sources with an affinity of EMI. Nevertheless, three volcanic events are found out of sequence with linear MST hotspot volcanism: (1) an independent volcanic pedestal was formed 4-7 Myr before shield-volcanism started at Vlinder guyot, (2) a post-erosional volcanic cone was formed at least 20-30 Myr after drowning of Vlinder guyot, and (3) Ita Mai Tai guyot (118.1±0.5 Ma, n=3) was formed 34-36 Myr before the MST hotspot arrived at the predicted location of this guyot. By identifying and ruling out discordant volcanic events, we can use the age progression in MST to test the fixity of its hotspot. When presuming the fixed hotspot hypothesis, the local age progressions of the MST (47.6±1.6 mm/yr) and the copolar Musicians seamount trail (55.8±6.4 mm/yr) are not compatible with their 100-80 Ma Euler pole. We investigate two options: (1) acceptance of a `forced' Euler pole obeying the hotspot hypothesis by using both the age progressions and the azimuths of the studied seamount trails, or (2) acceptance of a `best-fit' Euler pole by using the azimuths of the studied seamount trail exclusively. In the first option, the angular speed of the Pacific plate during the 100-80 Ma stage pole is calculated at 0.502±0.017°/Myr. In the second option, the `best-fit' Euler pole is found approximately 35° different from the `forced' Euler pole. We argue that the observed age progressions can only be reconciled with the `best-fit' pole when allowing for the relative movement of the MST and Musicians mantle plumes with respect to one another. The calculated maximum velocity component parallel to the line of age progression could then be as much as 23 mm/yr for the mantle plumes — when assuming one fixed hotspot in this alternate model.

  14. Thinning Factors and Crustal Thicknesses at the Propagating Tip of Sea-floor Spreading in the Woodlark Basin

    NASA Astrophysics Data System (ADS)

    Gozzard, S. P.; Kusznir, N.; Goodliffe, A.; Manatschal, G.

    2007-12-01

    Understanding how the continental crust and lithosphere thins at the propagating tip of sea-floor spreading is the key to understanding the continental breakup process. The Woodlark Basin, a young ocean basin located in the Western Pacific to the east of Papua New Guinea, commenced formation at approximately 8.4Ma and is propagating westwards at a rate of approximately 140km/Myr. Immediately to the west of the most recent segment of sea-floor spreading propagation, in the vicinity of the Moresby Seamount, evidence from bathymetry, subsidence and seismic Moho depth suggests that continental lithosphere is being thinned. In this study we have determined lithosphere thinning in the vicinity of the Moresby Seamount at the level of the whole lithosphere, the whole crust and the upper crust. Whole lithosphere thinning factors have been determined from subsidence analysis; whole continental crustal thinning factors have been determined from gravity inversions and upper crustal thinning factors have been determined from fault analysis. Three 2D seismic profiles surrounding the Moresby Seamount have been flexurally backstripped to the base of the syn-rift sediments to determine the water loaded subsidence. Using the McKenzie lithosphere extension model, modified to include volcanic addition at high thinning factors, whole thinning factors for the lithosphere have been determined from the water loaded subsidence. Results show that thermal subsidence alone cannot account for the observed subsidence, and that an additional initial subsidence is needed. Whole lithosphere thinning factors increase from an average of 0.5 to 0.8 across the Moresby Seamount eastwards towards the propagating tip. A satellite gravity inversion incorporating a lithosphere thermal gravity anomaly correction has been used to determine Moho depth, crustal thickness and thinning factors for the propagating tip in the Woodlark Basin. Moho depths are consistent with depths obtained from receiver function analysis (Ferris et al. 2006). Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thinning factors in the vicinity of the Moresby Seamount are similar to those observed for the whole lithosphere. Fault analysis of the three 2D profiles have been used to determine upper crustal thinning factors. Upper crustal thinning factors between 0.1 to 0.2 are observed for the vicinity of the Moresby Seamount, substantially lower than thinning factors predicted for the whole lithosphere and continental crust, suggesting depth-dependent lithosphere thinning. Crustal thicknesses predicted from gravity inversion immediately to the east of the Moresby Seamount are substantially greater than would be expected for oceanic lithosphere in this region, while highly thinned, has not completely ruptured.

  15. Secondary Hotspots in the South Pacific as a Result of Mantle Plumelets and Lithospheric Extension?

    NASA Astrophysics Data System (ADS)

    Koppers, A.; Staudigel, H.; Wijbrans, J.; Pringle, M.

    2003-12-01

    By far the largest number of secondary hotspots (cf. Courtillet et al., 2003) can be found in the "South Pacific Thermal and Isotopic Anomaly" (SOPITA) or "Superswell" region. Its Cretaceous counterpart is preserved in a large range of seamounts and guyots found in the "West Pacific Seamount Province" (WPSP). The seamounts in these regions display very distinct and long-lived isotopic signatures (Staudigel et al., 1991; Koppers et al., 2003) that can be used to combine source region chemistry and seamount geochronology to map out mantle melting anomalies over geological time. These mappings may resolve many important questions regarding the stationary character, continuity and longevity of the melting anomalies in the South Pacific mantle - and its secondary hotspots. Of all secondary hotspots that are currently active in the SOPITA we could identify only two hotspots that appear to be long-lived and that have Cretaceous counterparts in the WPSP. Plate reconstructions show that the "HIMU-type" Southern Wake seamounts may have originated from the Mangaia-Rurutu "hotline" in the Cook-Austral Islands, whereas the "EMI-type" Magellan seamounts may have originated from the Rarotonga hotspot. All other hotspots in the SOPITA and WPSP are short-lived (or intermittently active) as evidenced by the presence of numerous seamount trail "segments" representing no more than 10-40 Myr of volcanism. Our observations violate one or more assumptions of the classical Wilson-Morgan hotspot hypothesis: (1) none of the South Pacific hotspots are continuously active, (2) most are short-lived, (3) some show evidence of hotspot motion, and (4) most of them have poor linear age progressions, if any at all. On top of this we have evidence for volcanism along "hotlines" and the "superposition" of hotspots. The simple and elegant "hotspot" model, therefore, seems insufficient to explain the age distribution and source region characteristics of intra-plate volcanoes in the South Pacific. This has lead to new models that retain the concept of mantle plumes, but these lack both simplicity and predictive power. New models that call on "extension" are indeed simple and they may explain most characteristics of Earth's intra-plate volcanism, but they also have limited predictive power, making it more difficult to test for their validity. We argue that we require a combination of processes: one that forces regional magmatism from a large-scale source of buoyancy from below (like the rise of plumelets shooting off the top of a superplume) and one process that acts from above, as intra-plate extension opens up pathways that allow the lithosphere to be penetrated by magma.

  16. Diapycnal diffusivity in the core and oxycline of the tropical North Atlantic oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim

    2016-08-01

    Diapycnal diffusivity estimates from two Tracer Release Experiments (TREs) and microstructure measurements in the oxycline and core of the oxygen minimum zone (OMZ) in the Eastern Tropical North Atlantic (ETNA) are compared. For the first time, two TREs within the same area at different depths were realized: the Guinea Upwelling Tracer Release Experiment (GUTRE) initiated in 2008 in the oxycline at approximately 320 m depth, and the Oxygen Supply Tracer Release Experiment (OSTRE) initiated in 2012 in the core of the OMZ at approximately 410 m depth. The mean diapycnal diffusivity Dz was found to be insignificantly smaller in the OMZ core with (1.06 ± 0.24) × 10- 5 m2 s- 1 compared to (1.11 ± 0.22) × 10- 5 m2 s- 1 90 m shallower in the oxycline. Unexpectedly, GUTRE tracer was detected during two of the OSTRE surveys which showed that the estimated diapycnal diffusivity from GUTRE over a time period of seven years was within the uncertainty of the previous estimates over a time period of three years. The results are consistent with the Dz estimates from microstructure measurements and demonstrate that Dz does not vary significantly vertically in the OMZ within the depth range of 200-600 m and does not change with time. The presence of a seamount chain in the vicinity of the GUTRE injection region did not cause enhanced Dz compared to the smoother bottom topography of the OSTRE injection region, although the analysis of vertical shear spectra from ship ADCP data showed elevated internal wave energy level in the seamount vicinity. However, the two tracer patches covered increasingly overlapping areas with time and thus spatially integrated increasingly similar fields of local diffusivity, as well as the difference in local stratification counteracted the influence of roughness on Dz. For both experiments no significant vertical displacements of the tracer were observed, thus diapycnal upwelling within the ETNA OMZ is below the uncertainty level of 5 m yr- 1.

  17. Pronounced Shear Velocity Asymmetry in the Mantle Across the Juan de Fuca Ridge and Curious Lack of Features at the Gorda Ridge

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Ruan, Y.; Forsyth, D. W.

    2015-12-01

    With new Rayleigh-wave tomography results, we have detected a clear and strong asymmetry in the shear velocity structure of the Juan de Fuca ridge. Concentrated in a relatively thin layer with a depth range of ~30-60km, there lies a region of very low shear velocity, with velocities ranging from ~3.8km/s to 4.0km/s. Such low velocities provide strong evidence for the presence of partial melt. This low-velocity region is highly asymmetric, extending much further west than east of the ridge. Especially at shallow depths of ~35 km, this low-velocity region is concentrated just west of the southern portion of the ridge. Peaking near the Axial Seamount, the youngest of the Cobb-Eickelberg Seamounts, it extends south to the region around the small Vance Seamounts just north of the junction with the Blanco Fracture Zone. The Juan de Fuca plate is relatively stationary in the hotspot reference frame, and the Juan de Fuca ridge migrates westward in the hotspot reference frame. Seamounts are overwhelmingly concentrated on the western flank of the ridge, and an asymmetric upwelling driven by migration in the hotspot reference frame has been proposed to explain the seamount asymmetry (i.e. Davis and Karsten, 1986). Our velocity asymmetry, which matches the seamount asymmetry, provides evidence for this asymmetric upwelling and its connection to migration in the absolute hotspot reference frame. In the shear velocity results, the Gorda ridge displays a remarkable lack of features, with no clearly identifiable expression in the subsurface velocity. There is evidence of a broad low-velocity feature beneath Gorda beginning at a depth of ~150 km, but no clear shallow features can be tied to the ridge. At the depths we can resolve (~25-250km), the anisotropy beneath and within the Juan de Fuca plate is small, indicating a deep source of the shear wave splitting results (Bodmer et al., in press), which indicate a fast axis aligned with the Juan de Fuca plate's absolute motion. Around the Gorda ridge, we observe clear East-West fast axis orientation on both the Pacific Plate and the Gorda portion of the Juan de Fuca Plate.

  18. Jurassic, slow-spreading ridge in the southeast Gulf of Mexico and its along-strike morpho-volcanic expression explained by a two-phase opening model

    NASA Astrophysics Data System (ADS)

    Lin, P.; Mann, P.

    2016-12-01

    Previous workers have used extensive grids of 2D seismic reflection data to describe the width, structural character, and adjacent oceanic crust of the late Jurassic, slow-spreading ridge in the southeast Gulf of Mexico (SEGOM). Characteristics of the now-buried SEGOM slow spreading ridge include: 1) wide, axial valley segments ranging from 5-20 km; 2) alternating, deep, axial valley segments up to 2 km in depth; 3) normal faults dipping towards the axial valleys; and 4) isolated seamounts within the axial valleys projecting 1 km above regional oceanic basement depth and reflecting along-strike variations in the ridge's magmatic supply. We have used additional seismic reflection, gravity, and magnetic data to map the ridge and its environs to its southern termination, a 2.6-km-high seamount - informally named here Buffler seamount. The southernmost, 427-km long section of the SEGOM ridge from Buffler seamount northwest to the southwestern limit of the DeSoto Canyon arch can be divided into four alternating ridge segments with two distinctive morphologies: 1) wide and deep axial valleys lying below regional oceanic basement depth and characterized by gravity high and magnetic lows; and 2) elevated, linear areas of clustered, seamounts characterized by gravity low and magnetic highs. The continental margins of both Yucatan and Florida exhibit a prominent N60E magnetic fabric created by Phase 1, NW-SE Triassic-early Jurassic continental rifting of the GOM that was subsequently offset at right angles by Phase 2, NE-SW late Jurassic stretching and oceanic spreading. Removal of the V-shaped area of oceanic crust of the SEGOM shows that the wide, axial valleys of the late Jurassic spreading ridge coincide with rifted areas of thicker crust on the "arches" or horst blocks of Triassic-early Jurassic, Phase 1 rifting (Sarasota, Middle Ground) while the elevated areas of elevated and clustered seamounts coincide with thinner crust of the intervening rifts (Apalachicola, Tampa, South Florida). The later SW-NE re-rifting of crust during the late Jurassic that was rifted earlier in the Triassic and early Jurassic in a NW-SE direction is supportive of the widely accepted two-phase opening model for the SEGOM and GOM as a whole.

  19. Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount

    NASA Astrophysics Data System (ADS)

    Aoyama, Shinnosuke; Nishizawa, Manabu; Miyazaki, Junichi; Shibuya, Takazo; Ueno, Yuichiro; Takai, Ken

    2018-06-01

    The identification of microbial activity under extreme conditions is important to define potential boundaries of the habitable and uninhabitable zones of terrestrial and extraterrestrial living forms. The subseafloor regimes of serpentinite seamounts in the Mariana Forearc are among the most extreme environments for life on earth owing to the widespread presence of highly alkaline fluids with pH values greater than 12. The potential activity of sulfate-reducing microorganisms has been suggested within the South Chamorro serpentinite seamounts on the basis of depletion of sulfate and enrichment of dissolved sulfide in pore water. However, the vertical distribution of sulfate-reducing microorganisms and the origin of sulfate are still uncertain. To address these issues, we analyzed quadruple sulfur isotopes of sulfide minerals and pore water sulfate in the upper 56 m of sedimentary sequences at the summit of the S. Chamorro Seamount and those of dissolved sulfate in upwelling fluids collected as deep as 202 mbsf (meters below the seafloor) in a cased hole near the summit of the same seamount. The depth profiles of the concentrations and the δ34S and Δ33S‧ values of sulfide minerals and pore water sulfate indicate microbial sulfate reduction as deep as 30 mbsf. Further, apparent isotopic fractionations (34ε) and exponents of mass dependent relationships (33λ) during sulfate reduction are estimated to be 62 ± 14‰ and 0.512 ± 0.002, respectively. The upwelling fluids show both the chlorine depletion relative to seawater and the negative δ15N values of ammonia (-4‰). Although these signatures point to dehydration of the subducting oceanic plate, the negative Δ33S‧ values of sulfate (-0.16‰ to -0.26‰ with analytical errors of ±0.01‰) are unlikely to originate from surrounding modern crusts. Instead, sulfate in the upwelling fluid likely possess non-mass-dependent (NMD) sulfur. Because NMD sulfur was produced primarily in the Archean atmosphere, our results suggest that the presence of recycled Archean crust that could be incorporated into the upper mantle through subduction of Archean oceanic crusts or from the NMD-bearing OIB seamounts located in the southern margin of the Pacific Plate.

  20. The Changing Nature of the Hawaiian Hotspot in the Late Cretaceous-Early Tertiary: Evidence From Helium Isotopes and Melt Inclusion Compositions

    NASA Astrophysics Data System (ADS)

    Keller, R.; Graham, D.; Duncan, R.; Regelous, M.

    2002-12-01

    Ocean Drilling Program Leg 197 recovered basaltic basement from three of the Late Cretaceous-Paleogene Emperor seamounts: Detroit (Sites 1203 and 1204), Nintoku (Site 1205), and Koko (Site 1206) seamounts. The depths of penetration into basement achieved by this drilling (140-450 m), the range of rock types recovered (hawaiites, alkalic basalts, and tholeiitic basalts), and the age range (48-76 Ma) makes this one of the most comprehensive collections of the volcanic products of the Hawaiian hotspot available, and opens up new opportunities to study the temporal evolution of the Hawaiian hotspot during the Late Cretaceous and early Tertiary. Previous studies of the chemical evolution of the Hawaiian hotspot (Lanphere et al., 1980; Keller et al., 2000) found significant temporal variations. For example, Sr isotopic ratios of the tholeiitic basalts remain fairly constant along the Hawaiian Islands/Ridge between Kilauea volcano on Hawaii and the Hawaiian-Emperor bend, but then decrease steadily northward along the Emperor seamounts. Trace element compositions (especially the rare earth element patterns) also show limited variations along the Hawaiian Islands/Ridge, but change toward more depleted values northward along the Emperor seamounts. The trend to more MORB-like compositions back in time was attributed to a decrease in distance between the hotspot and the nearest spreading center, although a more comprehensive study suggests that variations in lithospheric thickness also caused changes in the composition of the plume melts (Regelous et al., 2002). We will complement these previous studies and the ongoing work of the other Leg 197 scientists by studying two aspects of the Emperor seamount basalts: helium isotopes and melt inclusion compositions. We will measure the helium isotopic ratios of selected olivine separates from three of the Leg 197 drill sites and from DSDP Site 433 on Suiko seamount (65 Ma) to determine if the composition of the Hawaiian "plume signal" has changed over time. We will also analyze the major and trace element compositions of melt inclusions that were isolated from shallow-level magma mixing and crystal fractionation processes to determine how much of the geochemical variations observed in the Emperor basalts are due to changes in melting processes. All of the drill sites recovered olivine and plagioclase phenocrysts suitable for melt inclusion studies.

  1. Radiometric Ages From ODP Leg 197 Drilling Along the Emperor Seamount Chain

    NASA Astrophysics Data System (ADS)

    Duncan, R. A.; Huard, J.

    2002-12-01

    The Hawaiian-Emperor Seamount chain is the "type" example of an age-progressive, hotspot-generated intraplate volcanic lineament. However, our current knowledge of the age distribution within this province is based on radiometric ages determined several decades ago. Improvements in instrumentation, sample preparation methods and new material obtained by recent drilling warrant a re-examination of the age relations among the older Hawaiian volcanoes. We report new age determinations (40Ar-39Ar incremental heating method) on whole rocks and feldspar separates from Detroit (Sites 1203 and 1204), Nintoku (Site 1205) and Koko (Site 1206) seamounts in the Emperor chain, recovered by drilling during ODP Leg 197. Only normal magnetic polarity was observed at Sites 1203 and 1204, and biostratigraphic data assigned ages of 75-76 Ma (nanofossil zone cc22) to sediments interbedded with lava flows. Plateaus in incremental heating age spectra give a mean age for Site 1203 of 75.3 +/- 1.0 Ma (relative to biotite monitor FCT-3 at 28.04 Ma; all errors are 2s). Site 1204 lavas have produced only discordant data so far (5 samples). These new ages are significantly younger than the 81 Ma age reported by Keller et al. (1995) for Site 884 (reverse polarity lavas) on the northeastern flank of Detroit seamount, and suggest that this complex may include several large volcanoes. All volcanic units at Site 1205 exhibit reverse polarity magnetization and biostratigraphic data place the lowermost sediments close to the Eocene-Paleocene boundary. Six plateau ages from lava flows spanning the 283m cored section give a mean age of 55.6 +/- 0.2 Ma (range: 55.2-56.4 Ma), corresponding to Chron 24r. Drilling at Site 1206 intersected a 278m N-R-N sequence of lava flows. Six plateau ages give a mean age of 49.1 +/- 0.2 Ma (range: 47.9-49.7 Ma), corresponding to the Chron 21n-21r-22n sequence. Deep penetration at the three seamounts and shipboard geochemical data suggest that the main shield-post shield stages of volcano development have been sampled at each location and dated. While the overall trend is decreasing volcano age from N to S along the Emperor Seamounts, there appear to be important departures from the earlier modeled simple linear age progression.

  2. Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes

    DTIC Science & Technology

    2014-09-30

    dependence of the energy conversion on the ratio of the IW beam slope to the topographic slope, SIW /Stopo. The top panel of Fig. 8 illustrates that...in the abyssal oceans, where typically SIW /Stopo > 1 for tall seamounts and ridges, the entire bottom topography contributes to the generation of...internal waves. In contrast, for (a) (b) 18 moderate ocean depths (say less than 4 km), where typically SIW /Stopo < 1 for seamounts and ridges, the

  3. The distribution of near-axis seamounts at intermediate spreading ridges

    NASA Astrophysics Data System (ADS)

    Howell, J. K.; Bohnenstiehl, D. R.; White, S. M.; Supak, S. K.

    2008-12-01

    The ridge axes along the intermediate-spreading rate Galapagos Spreading Center (GSC, 46-56 mm/yr) and South East Indian Ridge (SEIR, 72-76 mm/yr) vary from rifted axial valleys to inflated axial highs independent of spreading rate. The delivery and storage of melt is believed to control axial morphology, with axial highs typically observed in areas underlain by a shallow melt lens and axial valleys in areas without a significant melt lens [e.g., Baran et al., 2005 G-cubed; Detrick et al. 2002 G-cubed]. To investigate a possible correlation between the style of seafloor volcanism and axial morphology, a closed contour algorithm is used to identify near axis (2.5km off axis) semi-circular seamounts of heights greater than 20m from shipboard multibeam bathymetry. In areas characterized by an axial high, more seamounts are formed at the ends of the segments than in the center. This is consistent with observations at fast-spreading ridges and suggests a tendency of lavas to erupt at lower effusion rates near second-order segment boundaries. Segments with a rift valley along the GSC show the opposite trend, with more seamounts at the center of second-order segments. Both patterns however are observed along SEIR segments with rift valleys where magma supply may be reflected in size and not their abundance.

  4. Resilience of predators to fishing pressure on coral patch reefs

    USGS Publications Warehouse

    Schroeder, R.E.; Parrish, J.D.

    2005-01-01

    Numbers and biomass of piscivorous fish and their predation on other fish may often be high in undisturbed coral reef communities. The effects of such predation have sometimes been studied by removal of piscivores (either experimentally or by fishermen). Such perturbations have usually involved removal of large, highly vulnerable, mobile piscivores that are often actively sought in fisheries. The effects of fishing on smaller, demersal, semi-resident piscivores have been little studied. We studied such effects on the fish communities of patch reefs at Midway atoll by experimentally removing major resident, demersal, piscivorous fishes. First, four control reefs and four experimental reefs were selected, their dimensions and habitats mapped, and their visible fish communities censused repeatedly over 1 year. Census of all control and experimental reefs was continued for the following 39 months, during which known piscivores were collected repeatedly by hand spearing. Records were kept of catch and effort to calculate CPUE as an index of predator density. Spearfishing on the experimental reefs removed 2504 piscivorous fish from 12 families and 43 taxa (mostly species). The species richness of the catch did not show an overall change over the duration of the experiment. Spearman rank correlation analysis showed some unexpected positive correlations for density in numbers and biomass of major fished piscivorous groups (especially lizardfish) over the experiment. Only two relatively minor fished piscivorous taxa declined in abundance over the experiment, while the overall abundance of piscivores increased. Visual censuses of fish on the experimental reefs also failed to show reduction of total piscivores over the full experimental period. No significant trend in the abundance of lizardfish censused over the full period was apparent on any of the control reefs. The high resilience of piscivores on these experimental reefs to relatively intense fishing pressure could result from their protracted recruitment seasons, high immigration rates, cryptic habits, or naturally high abundances. A major factor was the high immigration rates of lizardfish, replacing lizardfish and other less mobile piscivores removed from the reefs by spearing. On the fished reefs, the removed lizardfish population replaced itself >20 times during the experiment; other piscivorous taxa replaced themselves only 5 times.

  5. Geochemistry of post-spreading lavas from fossil Mathematician and Galapagos spreading axes, revisited

    NASA Astrophysics Data System (ADS)

    Tian, L.; Castillo, P. R.; Hilton, D. R.

    2010-12-01

    The Mathematician Ridge, located west of the northern end of the EPR at about 10-20°N, 110°W, was abandoned during the Pliocene when the Pacific plate captured the Mathematician microplate. The Galapagos Rise, located east of the southern segment of the EPR at about 10-18°S, 95°W, ceased spreading after the Late Miocene capture of the Bauer microplate by the Nazca plate. Here we report new major and trace element and Sr, Nd and Pb isotope data for lavas dredged from seamounts and volcanic ridges along the crest of Mathematician Ridge [Batiza and Vanko, J. Petrol. 26, 1985] and from narrow volcanic ridges built along extinct segments of the Galapagos Rise [Batiza et al., Mar. Geol. 49, 1982]. These lavas consist predominantly of alkalic basalts and their differentiates, similar to the post-spreading alkalic lava series in other fossil spreading axes (e.g., Davidson Seamount, Guide Seamount, Socorro Island, and fossil spreading axes off Baja California Sur) and alkalic lavas from near-ridge seamounts in the eastern Pacific [Castillo et al., G3 11, 2010; Tian et al., sub. to G3]. Collectively, the alkalic lavas have higher incompatible trace element contents and highly/moderately incompatible trace element ratios (e.g., Ba/Zr >1.3, La/Sm >2.7 and Nb/Zr >0.14) than EPR basalts, and are similar to average alkalic OIB. They also have similar 87Sr/86Sr (0.7027 - 0.7037), 143Nd/144Nd (0.51289 - 0.51306) and 206Pb/204Pb (18.70 - 19.84) compositions, which overlap with geochemically enriched (E-) MORB and ~depleted OIB from major hotspot volcanic chains such as Galapagos, Hawaii and Iceland. The new data suggest that intraplate lavas from fossil spreading axes and non-hotspot seamounts in the eastern Pacific share a common enriched source which is geographically dispersed in the upper mantle.

  6. Small-scale Forearc Structure from Residual Bathymetry and Vertical Gravity Gradients at the Cocos-North America Subduction Zone offshore Mexico

    NASA Astrophysics Data System (ADS)

    Garcia, E. S. M.; Ito, Y.

    2017-12-01

    The subduction of topographic relief on the incoming plate at subduction zones causes deformation of the plate interface as well as the overriding plate. Whether the resulting geometric irregularities play any role in inhibiting or inducing seismic rupture is a topic of relevance for megathrust earthquake source studies. A method to discern the small-scale structure at subduction zone forearcs was recently developed by Bassett and Watts (2015). Their technique constructs an ensemble average of the trench-perpendicular topography, and the removal of this regional tectonic signal reveals the short-wavelength residual bathymetric anomalies. Using examples from selected areas at the Tonga, Mariana, and Japan subduction zones, they were able to link residual bathymetric anomalies to the subduction of seamount chains, given the similarities in wavelength and amplitude to the morphology of seamounts that have yet to subduct. We focus here on an analysis of forearc structures found in the Mexico segment of the Middle America subduction zone, and their potential mechanical interaction with areas on the plate interface that have been previously identified as source regions for earthquake ruptures and aseismic events. We identified several prominent residual bathymetric anomalies off the Guerrero and Oaxaca coastlines, mainly in the shallow portion of the plate interface and between 15 and 50 kilometers away from the trench axis. The residual amplitude of these bathymetric anomalies is typically in the hundreds of meters. Some of the residual bathymetric anomalies offshore Oaxaca are found landward of seamount chains on the incoming Cocos Plate, suggesting that these anomalies are associated with the prior subduction of seamounts at the margin. We also separated the residual and regional components of satellite-based vertical gravity gradient data using a directional median filter to isolate the possible gravity signals from the seamount edifices.

  7. Geodynamics and synchronous filling of rift-type basin evolved through compression tectonics

    NASA Astrophysics Data System (ADS)

    Papdimitriou, Nikolas; Nader, Fadi; Gorini, Christian; Deschamps, Remy

    2016-04-01

    The Levant Basin falls in the category of frontier basins, and is bounded by the Eratosthenes seamount to the West, the Nile cone delta to the south, Cyprus to the north and Lebanon to the east. The Levant Basin was initially a rift type basin, which is located at a major plate boundary since the Late Triassic. It evolved later on through compression tectonics. The post-rift phase prevailed since the Late Jurassic and is expressed by the gradual initiation of a passive margin. A thick infill, mostly of deep water sediments (about 12 km thick) is accounted for the Levant Basin. The post-rift sediments are pinching-out along the slope of the well preserved (and imaged) eastern margin of the Eratosthenes seamount, which is essentially made up of Mesozoic platform carbonates (about 5 km). Thus, the Eratosthenes carbonate platform was adjacent to the deep marine facies of the Levant Basin until the late Cretaceous/Cenozoic. At that time, both the Eratosthenes seamount and the Levant Basin became part of a foreland basin along the Cyprus Arc zone as a result of the collision of the African and Eurasian plates. The objective of this contribution is to investigate the timing and the mechanisms of flexural subsidence as well as the sedimentary filling of Levant Basin (through a source-to-sink approach) in a well-deformed tectonic region. The interpretation of twenty-four 2D seismic profiles coupled with the available ODP wells, offshore Cyprus, aims to define the primary reflectors and seismic packages. Then, concepts of seismic stratigraphy and sequence stratigraphy are applied to achieve a better understanding of the tectonostratigraphy and sedimentary architecture of the Eratosthenes seamount (as an isolated carbonate platform) and its surroundings. Recent offshore discoveries south of the Eratosthenes seamount (e.g., Zhor) have confirmed the presence of gas accumulations exceeding 30Tcf in subsalt Lower Miocene carbonate buildups, making out the understanding of the evolution of this new frontier hydrocarbon province of great importance.

  8. Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366

    NASA Astrophysics Data System (ADS)

    Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.

    2017-12-01

    IODP Expedition 366 focused, in part, on the study of geo­chemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.

  9. Demersal Fish Assemblages on Seamounts and Other Rugged Features in Deep Waters of the Greater and Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Quattrini, A.; Demopoulos, A. W.

    2015-12-01

    Caribbean fish communities in shallow waters have been well studied along the Greater and Lesser Antilles for decades; however, the deep (>200 m) assemblages remain poorly known due to the technical challenges associated with focused surveys at these greater depths. The numerous geological features (e.g., seamounts, island ridges, banks) that punctuate the insular margins increase habitat heterogeneity, which may lead to enhanced diversity of the deep demersal fish community in the region. Recent (2013-2014) expeditions in the area using the E/V Nautilus and the ROV Hercules surveyed fish communities during 17 dives across different seafloor features at depths ranging from 64 to 2944 m. These surveys enabled us to investigate whether demersal fish assemblages differed among these seafloor features and/or in response to other environmental factors. Preliminary analyses suggested that assemblage differences are influenced by depth, dissolved oxygen, and differences in benthic microhabitat (i.e., soft substrate, rock outcrop, slope angle). Notably, both abundance and diversity of fishes was low at depths >700 m on seamounts in the Anegada Passage. This pattern is likely due to limited food supply in the region. ROV surveys further elucidated the biogeography of numerous species, as several range and depth extensions were documented. For instance, the morid Lepidion sp., previously known only from the eastern Atlantic and the western North Atlantic, was documented on Norrôit Seamount. A new species, Polylepion sp. A, known only from Curacao, was documented on Conrad Seamount. Also, many common, mesophotic reef species were observed deeper than previously known, including the butterflyfishes Chaetodon sedentarius and Prognathodes aculeatus. This study further supports the importance of environmental conditions influencing local-scale distribution of deep-sea fishes, while demonstrating how little is still known about the biogeography of numerous deep-sea and mesophotic fish species.

  10. Crustal structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a hotspot?

    NASA Astrophysics Data System (ADS)

    Jokat, Wilfried; Hagen, Claudia

    2017-10-01

    The southern South Atlantic Ocean contains several features believed to document the traces of hotspot volcanism during the early formation of the ocean basin, namely the Agulhas Ridge and the Cape Rise seamounts located in the southeast Atlantic between 36°S and 50°S. The Agulhas Ridge parallels the Agulhas-Falkland Fracture Zone, one of the major transform zones of the world. The morphology of the ridge changes dramatically from two parallel segments in the southwest, to the broad plateau-like Agulhas Ridge in the northeast. Because the crustal fabric of the ridge is unknown relating its evolution to hotspots in the southeast Atlantic is an open question. During the RV Polarstern cruise ANT-XXIII-5 seismic reflection and refraction data were collected along a 370 km long profile with 8 Ocean Bottom Stations to investigate its crustal fabric. The profile extends in NNE direction from the Agulhas Basin, 60 km south of the Agulhas Ridge, and continues into the Cape Basin crossing the southernmost of the Cape Rise seamounts. In the Cape Basin we found a crustal thickness of 5.5-7.5 km, and a velocity distribution typical for oceanic crust. The Cape Rise seamounts, however, show a higher velocity in comparison to the surrounding oceanic crust and the Agulhas Ridge. Underplated material is evident below the southernmost of the Cape Rise seamounts. It also has a 5-8% higher density compared to the Agulhas Plateau. The seismic velocities of the Agulhas Ridge are lower, the crustal thickness is approximately 14 km, and age dating of dredge samples from its top provides clear evidence of rejuvenated volcanism at around 26 Ma. Seismic data indicate that although the Cape Rise seamounts formed above a mantle thermal anomaly it had a limited areal extent, whereas the hotspot material that formed the Agulhas Ridge likely erupted along a fracture zone.

  11. Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili

    2018-03-01

    The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.

  12. Lessons from Suiyo Seamount studies, for understanding extreme (ancient?) microbial ecosystems in the deep-sea hydrothermal fields

    NASA Astrophysics Data System (ADS)

    Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.

    2004-12-01

    Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile-related Euryarchaea. By the FISH analysis, however, some specific members of Bacteria that differed from those in the chamber samples were occasionally abundant in hot vent fluids. In clone library analysis of column-type chamber samples, we also found very unique vertical profiles in the community of Archaea, i.e., rich in uncultivable Marine Group I & II members in the upper and middle columns situated at a warm vent site, while heterotrophic thermophiles in the middle and bottom. In a bottom column sample from a hot vent site, hyperthermophilic anaerobes were detected. From these results, we will propose a vertical profile model for the sub-vent Archaea community. From geophysical, geochemical and geological surveys, this sub-vent ecosystem is supposed to be restricted in a shallow subsurface region. Whether these unique ecosystems are general in hydrothermal fields over the sea or specific only to this submarine volcano will be discussed.

  13. The Megafaunal Communities of Mn-crusted Guyots in the Central and Western Pacific

    NASA Astrophysics Data System (ADS)

    Kelley, C.; France, S.; Gerringer, M.; Pomponi, S. A.; Amon, D.; Mundy, B.; Molodtsova, T.; Matsumoto, A. K.; Watling, L.; Baco-Taylor, A.

    2016-12-01

    The NOAA Office of Ocean Exploration and Research (OER) recently completed the second year of its 3 year CAPSTONE initiative to explore the deep waters of the U.S Pacific Monuments. At the preparation of this abstract, six ROV cruises were completed in the Papahanaumokuakea Marine National Monument (PMNM), the Mariana Trench Marine National Monument (MTMNM) and the Johnston Atoll unit of the Pacific Remote Islands Marine National Monument (PRIMNM). A seventh ROV cruise is scheduled for July 27 through August 9 in the Wake unit of PRIMNM. Manganese (Mn)-crusted guyots have been one of the priorities of these cruises. Sixteen guyots have been surveyed to date with 11 more targeted for the dives around Wake. A major science objective has been to gain a better understanding of the megafaunal communities on this type of seamount because interest is building in mining manganese crusts in the Central and Western Pacific, an area referred to as the Prime Crust Zone (PCZ). These surveys revealed the presence of unique animals and in some locations, high density communities of deepwater corals and sponges living on Mn crusts that could be severely impacted by deep sea mining operations. This presentation will summarize the initial findings from the surveys on all 27 guyots and will hopefully raise awareness of the need for cautious and responsible development of the deep sea mining industry.

  14. Earth Observations taken by the Expedition 21 Crew

    NASA Image and Video Library

    2009-10-22

    ISS021-E-011833 (22 Oct. 2009) --- The southern Savage Islands in the Atlantic Ocean are featured in this image photographed by an Expedition 21 crew member on the International Space Station. The Savage Islands, or Ilhas Selvagens in Portuguese, comprise a small archipelago in the eastern North Atlantic Ocean between the archipelago of Madeira to the north and the Canary Islands to the south. Like other island groups, the Savage Islands are thought to have been produced by volcanism related to a mantle plume or ?hot spot?. Mantle plumes are relatively fixed regions of upwelling magma that can feed volcanoes on an overlying tectonic plate. Active volcanoes form over the plume, and become dormant as they are carried away on the moving tectonic plate. Scientists believe that over geologic time, this creates a line of older extinct volcanoes, seamounts, and islands extending from the leading active volcanoes that are currently over the plume. This view illustrates the smaller and more irregularly-shaped Ilheus do Norte, Ilheu de Fora, and Selvagem Pequena. Spain and Portugal both claim sovereignty over the Savage Islands. All of the islands of the archipelago are ringed by bright white breaking waves along the fringing beaches. Coral reefs that surround the Savage Islands make it very difficult to land boats there, and there is no permanent settlement on the islands.

  15. [Structure of reef fish communities in Catalinas Islands and Ocotal beach, North Pacific of Costa Rica].

    PubMed

    Espinoza, Mario; Salas, Eva

    2005-01-01

    The reefs are heterogeneous systems that maintain a high diversity of organisms. Fish community structure varies within and among reefs, so it would be expected that reef structure and heterogeneity should affect fish communities inhabiting reefs. Four reef patches at Catalinas Islands (Sur, La Pared, Roca Sucia and Sombrero) and one in Ocotal beach (10 degrees 28'45" N; 85 degrees 52'35" W) were studied with visual censuses (July-December 2003). The structure and composition of fishes between Catalinas islands and Ocotal beach were different, and habitat structure and composition explain most of the variance founded. The presence of the fleshy algae Caulerpa sertularioides in Ocotal, and the corals Tubastrea coccinea and Pocillopora spp. at Catalinas Island explained the variability among sites and how it affected fish community structure and composition. The butterfly fish Johnrandallia nigrirostris, damselfish Microspathodon dorsalis, and surgeon fish Prionurus punctatus were directly correlated with the ahermatipic coral Tubastrea coccinea in Roca Sucia reef, while the angel fish Holacanthus passer was associated to reefs with a major percentage of rocky substrate. Other species such as the damselfish Abudefduf troschelli and Halichoeres dispilus were more abundant at Ocotal, where the algae C sertularioides dominated. The number and abundance of reef fishes was directly correlated with the rugosity index at the reefs of Roca Sucia and Ocotal, but not at reefs of La Pared and Sombrero.

  16. Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef.

    PubMed

    Glas, Martin S; Motti, Cherie A; Negri, Andrew P; Sato, Yui; Froscio, Suzanne; Humpage, Andrew R; Krock, Bernd; Cembella, Allan; Bourne, David G

    2010-07-01

    Cyanobacterial toxins (i.e. microcystins) produced within the microbial mat of coral black band disease (BBD) have been implicated in disease pathogenicity. This study investigated the presence of toxins within BBD lesions and other cyanobacterial patch (CP) lesions, which, in some instances ( approximately 19%), facilitated the onset of BBD, from an outbreak site at Pelorus Island on the inshore, central Great Barrier Reef (GBR). Cyanobacterial species that dominated the biomass of CP and BBD lesions were cultivated and identified, based on morphology and 16S rRNA gene sequences, as Blennothrix- and Oscillatoria-affiliated species, respectively, and identical to cyanobacterial sequences retrieved from previous molecular studies from this site. The presence of the cyanotoxins microcystin, cylindrospermopsin, saxitoxin, nodularin and anatoxin and their respective gene operons in field samples of CP and BBD lesions and their respective culture isolations was tested using genetic (PCR-based screenings), chemical (HPLC-UV, FTICR-MS and LC/MS(n)) and biochemical (PP2A) methods. Cyanotoxins and cyanotoxin synthetase genes were not detected in any of the samples. Cyanobacterial species dominant within CP and BBD lesions were phylogenetically distinct from species previously shown to produce cyanotoxins and isolated from BBD lesions. The results from this study demonstrate that cyanobacterial toxins appear to play no role in the pathogenicity of CP and BBD at this site on the GBR.

  17. Marine benthic invertebrates from the Upper Jurassic of northern Ethiopia and their biogeographic affinities

    NASA Astrophysics Data System (ADS)

    Kiessling, Wolfgang; Kumar Pandey, Dhirendra; Schemm-Gregory, Mena; Mewis, Heike; Aberhan, Martin

    2011-02-01

    We present the first modern description of corals, brachiopods and bivalves from the Antalo Limestone in the Mekele Outlier of northern Ethiopia. This fauna is largely of Oxfordian age and lived in shallow subtidal environments and in small patch reefs. In combining our new data with fossil occurrence data from the Paleobiology Database, we conducted multidimensional scaling analyses to assess biogeographic patterns and the delineation of the Ethiopian Province for the Callovian to Kimmeridgian stages. Results suggest that an Ethiopian Province is indeed evident for our focal groups, but this is more confined than traditionally assumed. The so defined Ethiopian Province includes Tunisia, the Levant, Arabia and much of East Africa, but excludes Tanzania and India. The special status of India and Tanzania is perhaps due to latitudinal gradients in faunal composition.

  18. Hydrothermal Plume Activity at Teahitia Seamount: Re-Awakening of the Society Islands Hot-Spot?

    NASA Astrophysics Data System (ADS)

    German, C. R.; Xu, G.; Yeo, I. A.; Walker, S. L.; Moffett, J.; Cutter, G. A.; Devey, C. W.; Hyvernaud, O.; Reymond, D.; Resing, J. A.

    2016-12-01

    We report results from a combined mapping and CTD-rosette investigation of the summit of Teahitia Seamount, Society Islands hot-spot, that indicates that high temperature venting may have been present by late 2013 at a site that only hosted low-temperature vents ( 30°C) when previously visited by submersible, 25 years earlier. In 2013, a non-buoyant hydrothermal plume containing high concentrations (>100nmol/L) of both dissolved and total dissolvable Fe was observed at an apparent rise-height of 110-140m above a seafloor source at 1500-1530m water depth, implying a heat-flux for the underlying venting of 13-35MW. From a comparison to the past evolution of venting at Loihi seamount (Hawaii), coupled with an examination of recent seismicity detected by the Polynesian Seismic Network, we hypothesize that venting at Teahitia may have undergone perturbation only recently and that this, in turn, may be linked to a re-awakening of the Society Islands hotspot.

  19. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area

    PubMed Central

    Geersen, Jacob; Ranero, César R.; Barckhausen, Udo; Reichert, Christian

    2015-01-01

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role. PMID:26419949

  20. On the interaction between ocean surface waves and seamounts

    NASA Astrophysics Data System (ADS)

    Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús

    2017-12-01

    Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

  1. Age of the Hawaiian-Emperor bend

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.

    1976-01-01

    40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko??ko Seamounts, the new data indicate that the best age for the bend is 42.0 ?? 1.4 m.y. Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain. 40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with 40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of 39Ar from nonretentive montmorillonite clays that have also lost 40Ar. ?? 1976.

  2. Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable

    PubMed Central

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-01-01

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity. PMID:20689848

  3. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    PubMed

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-08-02

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.

  4. Lithospheric structure beneath the extinct ridge of South China Sea: Constraints from Rayleigh wave phase velocity tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Yang, T.; Le, B. M.; passive-Source Seismic Team, S.

    2016-12-01

    What would happen when a mid-ocean-ridge stops spreading? Global occurrences of such ridges appear to indicate that magmatic activities had continued for million years after ridges were abandoned and often formed seamount chains over ridges. The extinct ridge and the seamount chain at the South China Sea represent one classic example of such ridges. To understand this unique process and the lithospheric and deep mantle structure, we carry out a Rayleigh wave phase velocity tomography using data from a passive-source OBS array experiment in South China Sea from 2012 to 2013. We correct OBS clock errors by using Scholte waves retrieved through cross-correlating hydrophone records of each OBS pair. 60 regional and teleseismic events with high quality Rayleigh waves are selected and their dispersion curves at the OBS array are used to inverse the phase velocities of periods from 15 s to 100 s. The shear wave velocity model derived from phase velocities of all periods shows a strong low-velocity zone situated beneath the seamounts starting at about 30 km depth. The lithosphere thickness of the extinct ridge inferred from this model provide insights on the cooling process and magmatism at this unique oceanic setting. In addition, our model images the tear of the subducting South China Sea plate beneath the Manila trench and Luzon island, which is clearly generated by the subduction of the extinct ridge and overriding seamounts.

  5. Ferromanganese deposits from the Gulf of Alaska seamount province: mineralogy, chemistry, and origin.

    USGS Publications Warehouse

    Koski, R.A.

    1988-01-01

    Petrographic and chemical data presented and discussed permit the following conclusions regarding the high-latitude Gulf of Alaska (GA) Fe-Mn deposits: 1) thick (10-50 mm) Fe-Mn crusts form on alkali-basalt and volcaniclastic substrates by hydrogenetic processes, contain delta -MnO2 as the principal Mn phase, and have compositions similar to those of seamount crusts from comparable depths in the Hawaiian archipelago. GA crusts have higher Mn/Fe and lower Co contents than crusts from low-altitude, central Pacific seamounts; 2) thin (<10 mm) crusts on tuffaceous conglomerate, sandstone and phosphorite have a high proportion of crystalline Mn oxides and are genetically related to vein deposits; 3) vein deposits of todorokite and cryptomelane form during low-T oxidative diagenesis of volcanogenic sediment. Mn and other transition metals are supplied during the initial palagonitization of basaltic glass. The oxidation of Fe2+ to Fe3+ in palagonite and the dissolution of the diluted microfossil fraction of the sediment lower the Eh of the ambient pore fluid and enhance the solubility of Mn2+. The K released during the formation of palagonite may be redeposited in secondary phyllosilicate minerals, phillipsite, todorokite and cryptomelane; 4) the vein deposits formed soon after the deposition of sediment derived from the erosion and mass wasting of Mill Seamount but before crust deposition. Therefore, the deposition of hydrogenous crusts and the deposition of diagenetic veins are chemically distinct processes in time and space.-J.M.H.

  6. Turbulent mixing within the Kuroshio in the Tokara Strait

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Eisuke; Matsuno, Takeshi; Lien, Ren-Chieh; Nakamura, Hirohiko; Senjyu, Tomoharu; Guo, Xinyu

    2017-09-01

    Turbulent mixing and background current were observed using a microstructure profiler and acoustic Doppler current profilers in the Tokara Strait, where many seamounts and small islands exist within the route of the Kuroshio in the East China Sea. Vertical structure and water properties of the Kuroshio were greatly modified downstream from shallow seamounts. In the lee of a seamount crest at 200 m depth, the modification made the flow tend to shear instability, and the vertical eddy diffusivity is enhanced by nearly 100 times that of the upstream site, to Kρ ˜ O(10-3)-O(10-2) m2 s-1. A one-dimensional diffusion model using the observed eddy diffusivity reproduced the observed downstream evolution of the temperature-salinity profile. However, the estimated diffusion time-scale is at least 10 times longer than the observed advection time-scale. This suggests that the eddy diffusivity reaches to O(10-1) m2 s-1 in the vicinity of the seamount. At a site away from the abrupt topography, eddy diffusivity was also elevated to O(10-3) m2 s-1, and was associated with shear instability presumably induced by the Kuroshio shear and near-inertial internal-wave shear. Our study suggests that a better prediction of current, water-mass properties, and nutrients within the Kuroshio requires accurate understanding and parameterization of flow-topography interaction such as internal hydraulics, the associated internal-wave processes, and turbulent mixing processes.

  7. The genetic link between the Azores Archipelago and the Southern Azores Seamount Chain (SASC): The elemental, isotopic and chronological evidences

    NASA Astrophysics Data System (ADS)

    Ribeiro, Luisa Pinto; Martins, Sofia; Hildenbrand, Anthony; Madureira, Pedro; Mata, João

    2017-12-01

    New geochemical, isotopic (Sr-Nd-Hf-Pb) and K-Ar data, are presented here on samples from the Southern Azores Seamount Chain (SASC) located south of the Azores Plateau. The SASC also includes the Great Meteor, Small Meteor and Closs seamounts, morphologically connected by a saddle at - 4100 m deep. We conclude that the SASC are characterized by a narrow isotopic variability that falls within the Azores isotopic field. Although each seamount has its own isotopic signature, their mantle source must comprise four local mantle end-members, three of which are common to the Azores, e.g. Plato isotopic signature results from the mixing between HIMU and N-MORB while Great Meteor signature results from this mix with the Azores Common Component (AzCC). A fourth end-member with high 208Pb/204Pb and decoupled Th/U ratios (Δ8/4 up to 59.2) is identified on Great Meteor northern flank. New K-Ar ages on Plato (33.4 ± 0.5 Ma) and Small Hyeres (31.6 ± 0.4 Ma) show nearly coeval volcanism, which is contemporaneous with the E-MORBs erupted at the MAR, drilled on oceanic crust with 30-34 Ma (DSDP82). This study endorses the genetic link between the Azores Archipelago and the SASC to the long-term activity of the Azores plume and the large-scale ridge-hotspot interaction, contributing to better constrain the temporal-spatial evolution of this region of the North Atlantic.

  8. Evolution of the lithosphere of the Hawaiian-Emperor seamount chain, Pacific Ocean, as inferred from geophysical data

    NASA Astrophysics Data System (ADS)

    Verzhbitsky, E. V.; Kononov, M. V.; Byakov, A. F.; Dulub, V. P.

    2006-12-01

    The analysis of geological and geophysical data on the Hawaiian-Emperor seamount chain indicates that the commonly assumed origin of its lithosphere is inconsistent with the geothermal model of the oceanic-bottom formation. To reveal the nature of the Hawaiian-Emperor Ridge, the main tectonic units of the North Pacific were thoroughly analyzed and a map of geothermal data, magnetic anomalies, and bottom age in this region has been compiled. The subsidence rate of the lithosphere that was thermally rejuvenated by plume material after the passing of the Pacific plate over the Hawaiian hot spot was calculated with the aid of the bathymetric database for the World Ocean. The calculated parameters show that the lithosphere, which underwent thermal rejuvenation, subsides at a much lower rate than it spreads. The obtained empirical equation describes the abrupt uplifting and further subsidence of the oceanic floor during the passing of the Pacific Plate over the Hawaiian plume. The heat flow calculated in line with the thermophysical model of the thermally rejuvenated lithosphere is close to the heat flow measured at the surface of the Hawaiian-Emperor Seamounts. Thus, the proposed model is realistic. Paleogeodynamic reconstructions of the thermal regime during the formation of the Hawaiian-Emperor seamount chain were made in absolute coordinate system for the period 90-20 Ma on the basis of geological and geophysical data and the calculated distribution of bottom ages in the North Pacific.

  9. Late Paleocene-middle Eocene benthic foraminifera on a Pacific seamount (Allison Guyot, ODP Site 865): Greenhouse climate and superimposed hyperthermal events

    NASA Astrophysics Data System (ADS)

    Arreguín-Rodríguez, Gabriela J.; Alegret, Laia; Thomas, Ellen

    2016-03-01

    We investigated the response of late Paleocene-middle Eocene (~60-37.5 Ma) benthic foraminiferal assemblages to long-term climate change and hyperthermal events including the Paleocene-Eocene Thermal Maximum (PETM) at Ocean Drilling Program (ODP) Site 865 on Allison Guyot, a seamount in the Mid-Pacific Mountains. Seamounts are isolated deep-sea environments where enhanced current systems interrupt bentho-pelagic coupling, and fossil assemblages from such settings have been little evaluated. Assemblages at Site 865 are diverse and dominated by cylindrical calcareous taxa with complex apertures, an extinct group which probably lived infaunally. Dominance of an infaunal morphogroup is unexpected in a highly oligotrophic setting, but these forms may have been shallow infaunal suspension feeders, which were ecologically successful on the current-swept seamount. The magnitude of the PETM extinction at Site 865 was similar to other sites globally, but lower diversity postextinction faunas at this location were affected by ocean acidification as well as changes in current regime, which might have led to increased nutrient supply through trophic focusing. A minor hyperthermal saw less severe effects of changes in current regime, with no evidence for carbonate dissolution. Although the relative abundance of infaunal benthic foraminifera has been used as a proxy for surface productivity through bentho-pelagic coupling, we argue that this proxy can be used only in the absence of changes in carbonate saturation and current-driven biophysical linking.

  10. Diversity and Petrogenesis of <4.4 Ma Rhyolites from the Izu Bonin Rear-Arc

    NASA Astrophysics Data System (ADS)

    Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.; Gill, J.

    2016-12-01

    The Izu Bonin subduction zone has a history of abundant rhyolite production that is relevant to the development of intermediate to silicic middle crust. This study presents major and trace elemental compositions (via electron microprobe and LA-ICP-MS) of unaltered volcanic glass and phenocrysts from select medium- to high-K tephra intervals from IODP Site 1437 (Expedition 350, Izu Bonin Rear Arc). These data provide a time-resolved record of regional explosive magmatism ( 4.4Ma to present). Tephra from Site 1437 is basaltic to rhyolitic glass with accompanying phenocrysts, including hornblende. Glass compositions form a medium-K magmatic series with LREE enrichment (LaN/YbN = 2.5-6) whose trace element ratios and isotopic compositions are distinct from magmas with similar SiO2 contents in the main Izu Bonin volcanic front. Other workers have shown progressive enrichment in K and other trace element ratios moving from volcanic front westwards through the extensional region to the western seamounts in the rear arc. The <4.4 Ma rear-arc rhyolites from Site 1437 show pronounced negative Eu anomalies, high LaN/SmN (2-3.5), Ba/La <25 and Th of 1.5-4 ppm. These rhyolites show the highest variability for a given SiO2 content among all rear-arc magmas (rhyolites have 1.5-3.5 wt% K2O, Zr/Y of 1-8, LaN of 5-9 ppm) consistent with variability in literature reports of other rhyolite samples dredged from surrounding seamounts. Rhyolites have been dredged from several nearby seamounts with other high-K rhyolites dredged as close as nearby Meireki Seamount ( 3.8 Ma) and further afield in the Genroku seamount chain ( 1.88 Ma), which we compare to Site 1437 rhyolites. An extremely low-K rhyolite sill (13.6 Ma) was drilled lower in the section at Site U1437, suggesting that the mechanism for producing rhyolites in the Western Seamounts region changed over time. Rhyolites are either produced by differentiation of mafic magmas, by melting of pre-existing arc crust (as hypothesized in the Izu Bonin volcanic front), or through a combination of various processes. Because the oldest rear-arc rhyolites are low-K with limited LREE enrichment, any scenario that requires melting of pre-existing crust to produce the 4.4 Ma high-K rhyolites would require a crustal source that is younger than 13.6 Ma.

  11. High Resolution Dating of Louisville Guyots from IODP Sites U1372, U1375, U1376 and U1377: Implications for post-erosional hotspot ocean island processes and volcanism

    NASA Astrophysics Data System (ADS)

    Heaton, D. E.; Koppers, A. A. P.

    2014-12-01

    Here we will present new 40Ar/39Ar Ages results from the International Ocean Drilling Project (IODP) Sites U1372 (n=18), U1375 (n=3), U1376 (n=15) and U1377 (n=7) during Expedition 330 that drilled the northern end of the Louisville Seamount trail. The Louisville Seamount trail displays age progressive volcanism thought to be formed as the Pacific plate moved over a hotspot. The older seamounts are located in the north (80 Ma, Osbourn Guyot) and younger seamounts to the south. Seamounts in this study are all guyots from the older section of the seamount trail (~74 Ma, Site U1372 at Canopus Guyot to ~51 Ma, Site U1377 at Hadar Guyot). Sites U1372 and U1376 respectively recovered ~230 m and ~140 m of basaltic material beneath a thin sediment interface and contain many in-situ lava flows that are interlayed with volcaniclastics, breccias and intrusive sheets. 40Ar/39Ar measurements will be used to date these different lithologies and, along with paleomagnetic inclination data, determine whether there was post-erosional volcanism and postulate which processes are involved with either the construction or deconstruction of ocean islands. Koppers et al. (2012) noted that some holes had consistent paleomagnetic inclinations suggesting that at least the larger clasts in the volcaniclastic breccias were emplaced hot or otherwise had been reset post deposition. If this is the case and breccias were emplaced hot then this would explain the undetectable levels of CO2 remaining in glasses after a complete degassing of the lithologies (Nichols et al., 2014). This would further support evidence for shallow eruption depths and post-erosional volcanism. In addition, the 40Ar/39Ar ages should be able to resolve whether or not the breccias were emplaced during the same time period as underlying and overlying intrusive sheets. Samples were analyzed using a high-resolution incremental step-heating method at Oregon State University in the Geochronology Lab using a Thermo Scientific ARGUS-VI Noble Gas Multicollector Mass Spectrometer. All samples were treated with a rigorous acid leaching procedure to remove alteration products and carefully handpicked to avoid remaining visible alteration products. Koppers, A. A. P. et al. (2012), Nature Geosci 5, 911-917. Nichols, A. R. L. et al. (2014), Geochem. Geophys. Geosyst. 15, 1718-1738.

  12. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of isotopically heavy Fe-oxides rather than by the activity of dissimilatory Fe reduction in the subsurface. Overall, Fe-isotope compositions of microbial mats at Loihi Seamount display a remarkable range between -1.2‰ and +1.6‰ which indicate that Fe isotope compositions of hydrothermal Fe-oxide precipitates are particularly sensitive to local environmental conditions where they form, and are less sensitive to abiotic versus biotic origins. It follows that FeOx deposits at Loihi Seamount provides important modern analogues for ancient seafloor Fe-rich deposits allowing for testing hypotheses about the biogeochemical cycling of Fe isotopes on early Earth.

  13. Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs

    NASA Astrophysics Data System (ADS)

    McCook, L. J.; Almany, G. R.; Berumen, M. L.; Day, J. C.; Green, A. L.; Jones, G. P.; Leis, J. M.; Planes, S.; Russ, G. R.; Sale, P. F.; Thorrold, S. R.

    2009-06-01

    The global decline in coral reefs demands urgent management strategies to protect resilience. Protecting ecological connectivity, within and among reefs, and between reefs and other ecosystems is critical to resilience. However, connectivity science is not yet able to clearly identify the specific measures for effective protection of connectivity. This article aims to provide a set of principles or practical guidelines that can be applied currently to protect connectivity. These ‘rules of thumb’ are based on current knowledge and expert opinion, and on the philosophy that, given the urgency, it is better to act with incomplete knowledge than to wait for detailed understanding that may come too late. The principles, many of which are not unique to connectivity, include: (1) allow margins of error in extent and nature of protection, as insurance against unforeseen or incompletely understood threats or critical processes; (2) spread risks among areas; (3) aim for networks of protected areas which are: (a) comprehensive and spread—protect all biotypes, habitats and processes, etc., to capture as many possible connections, known and unknown; (b) adequate—maximise extent of protection for each habitat type, and for the entire region; (c) representative—maximise likelihood of protecting the full range of processes and spatial requirements; (d) replicated—multiple examples of biotypes or processes enhances risk spreading; (4) protect entire biological units where possible (e.g. whole reefs), including buffers around core areas. Otherwise, choose bigger rather than smaller areas; (5) provide for connectivity at a wide range of dispersal distances (within and between patches), emphasising distances <20-30 km; and (6) use a portfolio of approaches, including but not limited to MPAs. Three case studies illustrating the application of these principles to coral reef management in the Bohol Sea (Philippines), the Great Barrier Reef (Australia) and Kimbe Bay (Papua New Guinea) are described.

  14. Time-varying interseismic strain rates and similar seismic ruptures on the Nias-Simeulue patch of the Sunda megathrust

    USGS Publications Warehouse

    Meltzner, Aron J.; Sieh, Kerry E.; Chiang, Hong-Wei; Wu, Chung-Che; Tsang, Louisa L.H.; Shen, Chuan-Chou; Hill, Emma M.; Suwargadi, Bambang W.; Natawidjaja, Danny H.; Philibosian, Belle; Briggs, Richard

    2015-01-01

    Fossil coral microatolls from fringing reefs above the great (MW 8.6) megathrust rupture of 2005 record uplift during the historically reported great earthquake of 1861. Such evidence spans nearly the entire 400-km strike length of the 2005 rupture, which was previously shown to be bounded by two persistent barriers to seismic rupture. Moreover, at sites where we have constrained the 1861 uplift amplitude, it is comparable to uplift in 2005. Thus the 1861 and 2005 ruptures appear to be similar in both extent and magnitude. At one site an uplift around AD 1422 also appears to mimic the amount of uplift in 2005. The high degree of similarity among certain ruptures of this Nias–Simeulue section of the Sunda megathrust contrasts with the substantial disparities amongst ruptures along other sections of the Sumatran portion of the Sunda megathrust. At a site on the northwestern tip of Nias, reefs also rose during an earthquake in AD 1843, known historically for its damaging tsunami along the eastern coast of the island.The coral microatolls also record interseismic vertical deformation, at annual to decadal resolution, spanning decades to more than a century before each earthquake. The corals demonstrate significant changes over time in the rates of interseismic deformation. On southern Simeulue, interseismic subsidence rates were low between 1740 and 1820 but abruptly increased by a factor of 4–10, two to four decades before the 1861 rupture. This may indicate that full coupling or deep locking of the megathrust began only a few decades before the great earthquake. In the Banyak Islands, near the pivot line separating coseismic uplift from subsidence in 2005, ongoing interseismic subsidence switched to steady uplift from 1966 until 1981, suggesting a 15-year-long slow slip event, with slip velocities at more than 120% of the plate convergence rate

  15. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance

    PubMed Central

    LaJeunesse, Todd C.; Smith, Robin; Walther, Mariana; Pinzón, Jorge; Pettay, Daniel T.; McGinley, Michael; Aschaffenburg, Matthew; Medina-Rosas, Pedro; Cupul-Magaña, Amilcar L.; Pérez, Andrés López; Reyes-Bonilla, Hector; Warner, Mark E.

    2010-01-01

    Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally ‘sensitive’ symbiont, designated Symbiodinium C1b-c, while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies recovered quickly while others suffered partial or complete mortality. In most colonies, no appreciable change was observed in the identity of the original symbiont, indicating that these partnerships are stable. During the initial phases of recovery, a third species of symbiont B1Aiptasia, genetically identical to that harboured by the invasive anemone, Aiptasia sp., grew opportunistically and was visible as light-yellow patches on the branch tips of several colonies. However, this symbiont did not persist and was displaced in all cases by C1b-c several months later. Colonies with D1 were abundant at inshore habitats along the continental eastern Pacific, where seasonal turbidity is high relative to offshore islands. Environmental conditions of the central and southern coasts of Mexico were not sufficient to explain the exclusivity of D1 Pocillopora in these regions. It is possible that mass mortalities associated with major thermal disturbances during the 1997–1998 El Niño Southern Oscillation eliminated C1b-c holobionts from these locations. The differential loss of Pocillopora holobionts in response to thermal stress suggests that natural selection on existing variation can cause rapid and significant shifts in the frequency of particular coral–algal partnerships. However, coral populations may take decades to recover following episodes of severe selection, thereby raising considerable uncertainty about the long-term viability of these communities. PMID:20444713

  16. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  17. Seafloor Structural Geomorphic Evolution in Response to Seamount Subduction, Poverty Bay Indentation, New Zealand

    NASA Astrophysics Data System (ADS)

    Bodger, K. L.; Pettinga, J. R.; Barnes, P. M.

    2006-12-01

    More than 4000 km2 of high quality bathymetric and backscatter imaging of the Poverty Bay Indentation across the northern part of the Hikurangi subduction zone provide new insights into the relationship between seafloor morphology and active structures. The swath bathymetry extends from the edge of the continental shelf to the abyssal plain, at depths of between 100 to 3500 metres. The origin of the slope re-entrant is inferred to be related to multiple seamount impacts, and these collisions have initiated numerous large-scale gravitational collapse structures, multiple debris flow and avalanche deposits, which range in down-slope length from a few hundred metres to more than 40 km. The Poverty Bay Indentation has been simultaneously eroded by canyon systems that exhibit many of the features of incised river systems onshore. The swath images are complemented by the availability of excellent high-quality processed multi-channel seismic reflection data, single channel high-resolution 3.5 kHz seismic reflection data, as well as a limited number of core samples. Seismic reflection profiles and seafloor morphology are used to provide three morpho-structural sections. The comparison of these sections highlights the different effects of seamount subduction on the evolution of the margin and the re-entrant. The northern two sections are located to the north side of the re-entrant and reveal the role of seamount impact on the interrelationship between the structural evolution with respect to seafloor morphology. Here the development of an over-steepened margin with fault reactivation, inversion and over- printing leads to very complex structural styles of deformation and geometry in both seismic reflection profiles and seafloor morphology. There is evidence of an older, inactive thrust front buried beneath the upper and mid- slope basins. Beneath the mid-slope a subducted seamount is revealed by the presence of relief on the subduction interface and associated structural complexity in the over-riding wedge. The Poverty Bay canyon represents a structural transition zone coinciding with the re-entrant. The accretionary slope south of the re- entrant conforms more closely to the classic accretionary slope style of deformation. Backthrusts in this section propagate from a much shallower level than in the northern sections. Inversion is commonly observed in the mid slope and continental shelf basins, particularly to the south. Initial interpretations indicate that: i) seamount impact significantly influences the structural evolution, and submarine geomorphology of the inboard slope of the Hikurangi subduction zone, including the generation of large-scale gravitational collapse features; ii) the large gully systems located at the upper shelf slope boundary represent the most likely source areas for the multiple mega debris flows recognised from seafloor morphology and in seismic sections; iii) there exists a complex interaction between the evolving thrust-driven submarine ridges, ponded slope basins and the structural geometry and evolution of the near-surface fault zones (imbrication); iv) the submarine canyons may initiate complex patterns of fault zone segmentation and displacement transfer within the accretionary slope; and v) seamount subduction and subsequent instability of the margin may directly result in tsunami generation.

  18. Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber.

    PubMed

    Higashi, Yowsuke; Sunamura, Michinari; Kitamura, Keiko; Nakamura, Ko-ichi; Kurusu, Yasurou; Ishibashi, Jun-ichiro; Urabe, Tetsuro; Maruyama, Akihiko

    2004-03-01

    After excavation using a portable submarine driller near deep-sea hydrothermal vents in the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined in samples collected from inside the boreholes using an in situ growth chamber called a vent catheter. This instrument, which we devised for this study, consists of a heat-tolerant pipe tipped with a titanium mesh entrapment capsule that is packed with sterilized inorganic porous grains, which serve as an adhesion substrate. After this instrument was deployed inside each of the boreholes, as well as a natural vent, for 3-10 days in the vicinity of hot vent fluids (maxima: 156-305 degrees C), DNA was extracted from the adhesion grains, 16S rDNA was amplified, and randomly selected clones were sequenced. In phylogenetic analysis of more than 120 clones, several novel phylotypes were detected within the epsilon-Proteobacteria, photosynthetic bacteria (PSB)-related alpha-Proteobacteria, and Euryarchaeota clusters. Members of epsilon-Proteobacteria were frequently encountered. Half of these were classified between two known groups, Corre's B and D. The other half of the clones were assigned to new groups, SSSV-BE1 and SSSV-BE2 (Suiyo Seamount sub-vent origin, Bacteria domain, epsilon-Proteobacteria, groups 1 and 2). From this hydrothermal vent field, we detected a novel lineage within the PSB cluster, SSNV-BA1 (Suiyo Seamount natural vent origin, Bacteria domain, alpha-Proteobacteria, group 1), which is closely related to Rhodopila globiformis isolated from a hot spring. A number of archaeal clones were also detected from the borehole samples. These clones formed a novel monophyletic clade, SSSV-AE1 (Suiyo Seamount sub-vent origin, Archaea domain, Euryarchaeota, group 1), approximately between methanogenic hyperthermophilic members of Methanococcales and environmental clone members of DHVE Group II. Thus, this hydrothermal vent environment appears to be a noteworthy microbial and genetic resource. It is also noteworthy that some of the findings presented here were made possible by the application of the in situ growth chamber into the hot fluids deep inside the boreholes.

  19. Geophysical investigations of the Southeast Tyrrhenian Sea (Italy): high resolution DTM of the Marsili seamount

    NASA Astrophysics Data System (ADS)

    Milano, G.; Passaro, S.; Marsella, E.

    2009-04-01

    The Tyrrhenian Sea is the small extensional back-arc basin in the Central Mediterranean Sea characterized by a peculiar volcanic activity due to the presence of two sub-basin: Vavilov and Marsili. The central sector of the Marsili sub-basin, younger than the Valilov, is occupied by the Marsili Volcano. On November 2007, a geophysical survey was carried out by IAMC-CNR research institute (Naples, Italy) in the southeastern Tyrrhenian Sea within the "Aeolian_2007" cruise onboard the Urania oceanographic vessel. During the second Leg of the survey, detailed multibeam data acquisition was carried out in order to obtain high resolution DTM of the major Seamounts of the southeast Tyrrhenian Sea. Here, we report a new, very high resolution Digital Terrain Model (DTM) of the summit area of the Marsili Seamount. Multibeam data acquisition was carried out with the use of the Reson Seabat 8160 multibeam sonar system, which properly works in the 50-3500 m depth range. The system, interfaced with a Differential Global Positioning System, is mounted on keel of the R/V Urania and is composed of a ping source of 50 KHz, 150° degree for the whole opening of the transmitted pulse and a 126 beams-receiver. The whole dataset has been processed with the use of the PDS2000 swath editor tool, in accordance with the International Hydrographic Organization standard, and subsequently reorganized in an MXN matrix (Digital Terrain Model, DTM) of 25X25 m of grid cell size. The total amount of area coverage consists in more than 500 squared Km of multibeam sonar data. The Marsili volcano shows a global sigmoidal trend extending for about 55 km in the N10°E direction. Both the eastern and the western sides shows equal average slopes. Throughout the framework, crater-like morphologies are not clearly visible. The western side of the seamount reveals furrowed channels showing peculiar rounded sections. The northern sector morphologically differs from the rest of the seamount and seems separated by lavic or gravitational valleys from the southern ridge sector.

  20. Structural variability of the Tonga-Kermadec forearc characterized using robustly constrained geophysical data

    NASA Astrophysics Data System (ADS)

    Funnell, M. J.; Peirce, C.; Robinson, A. H.

    2017-09-01

    Subducting bathymetric anomalies enhance erosion of the overriding forearc crust. The deformation associated with this process is superimposed on pre-existing variable crustal and sedimentary structures developed as a subduction system evolves. Recent attempts to determine the effect and timescale of Louisville Ridge seamount subduction on the Tonga-Kermadec forearc have been limited by simplistic models of inherited overriding crustal structure that neglect along-strike variability. Synthesis of new robustly tested seismic velocity and density models with existing data sets from the region, highlight along-strike variations in the structure of the Tonga-Kermadec subducting and overriding plates. As the subducting plate undergoes bend-faulting and hydration throughout the trench-outer rise region, observed oceanic upper- and mid-crustal velocities are reduced by ∼1.0 km s-1 and upper mantle velocities by ∼0.5 km s-1. In the vicinity of the Louisville Ridge Seamount Chain (LRSC), the trench shallows by 4 km and normal fault throw is reduced by >1 km, suggesting that the subduction of seamounts reduces plate deformation. We find that the extinct Eocene frontal arc, defined by a high velocity (7.0-7.4 km s-1) and density (3.2 g cm-3) lower-crustal anomaly, increases in thickness by ∼6 km, from 12 to >18 km, over 300 km laterally along the Tonga-Kermadec forearc. Coincident variations in bathymetry and free-air gravity anomaly indicate a regional trend of northward-increasing crustal thickness that predates LRSC subduction, and highlight the present-day extent of the Eocene arc between 32°S and ∼18°S. Within this framework of existing forearc crustal structure, the subduction of seamounts of the LRSC promotes erosion of the overriding crust, forming steep, gravitationally unstable, lower-trench slopes. Trench-slope stability is most likely re-established by the collapse of the mid-trench slope and the trenchward side of the extinct Eocene arc, which, within the framework of forearc characterization, implies seamount subduction commenced at ∼22°S.

  1. In-situ petrophysical properties of hotspot volcanoes. Results from ODP Leg 197, Detroit Seamount and HSDP II borehole, Hawaii

    NASA Astrophysics Data System (ADS)

    Kock, I.; Pechnig, R.; Buysch, A.; Clauser, C.

    2003-04-01

    During ODP Leg 197 an extensive logging program was run on Site 1203, Detroit Seamount. This seamount is part of the Emperor seamount chain, a continuation of the Hawaiian volcanic chain. Standard ODP/LDEO logging tool strings were used to measure porosity, density, resistivity, p- and s-wave velocities and gamma ray activity. The FMS-tool yielded detailed high resolution resistivity images of the borehole wall. By interpretation and statistical analysis of the logging parameters a petrophysical classification of the drilled rock content could be derived. The pillow lava recovered in the cores exhibits low porosity, low resistivity and high density. This indicates no or very little vesicles in the non-fractured rock unit. Compared to the pillow basalts, subaerial basalts show increasing porosity, gamma ray and potassium content and decreasing density, resistivity and velocity. A basalt with no or little vesicles and a basalt with average or many vesicles can clearly be distinguished. The volcaniclastics show lower resistivity, lower sonic velocities, higher porosities and lower densities than the basalts. Three different rock types can be distinguished within the volcaniclastics: Tuffs, resedimented tephra and breccia. The tuff shows medium porosity and density, low gamma ray and potassium content. The log responses from the resedimented tephra suggest that the tephra is more easily altered than the tuff. The log responses from the breccia lie between the tuff and tephra log responses, but the breccia can clearly be identified in the FMS borehole images. A similar rock content was found in the Hawaiian Scientific Drilling Project borehole. Gamma ray activity, electrical resistivity and sonic velocity were measured down to 2700 mbsl.. Compared to the 72-76 Ma old Detroit seamount basalts, the HSDP subaerial and submarine lava flows show a significant lower gamma ray activity, while sonic velocity and electrical resistivity are comparable. Deviations between the gamma ray activity might be due to the different primary compositions of the melt or to long lasting low temperature alteration. Investigations on this topic are in progress.

  2. Axial Seamount Relative Eruption Timing Constraints Based on Paleointensity Data

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Dreyer, B. M.; Clague, D. A.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca Ridge in the northeast Pacific, is one of the most extensively studied seamounts in the world. High-resolution mapping and camera imagery by remotely operated vehicle (ROV) have allowed for the creation of a geologic map of the caldera. Individual flow fields have been identified, and relative ages have been assigned based on ROV observations. Some constraints on absolute age have been obtained by 14C dating of the overlying sediments, and flows with inadequate sediment to sample are assumed to be less than 300 years old. To refine relative age relationships between flow fields, geomagnetic paleointensity recorded in basaltic glass is compared with models of field behavior over the past ~1,000 years. Thellier-type paleointensity experiments were carried out on samples from within Axial caldera. Paleointensity results from the 2011 Axial eruption give a paleofield value of 46.0×4.5 μT compared to the IGRF value of 52.1 μT. This suggests that the geodynamo-produced field is being locally distorted by the pre-existing magnetic topography of Axial seamount. Long-wavelength distortion may arise from the large seamount edifice itself, or short- wavelength distortion may arise from small scale (meters to 10s of meters) roughness in the surface flows. The dominance of long-wavelength distortion is implied by an analysis of samples from other flows within the Axial caldera. Within each flow, the paleointensity values are relatively tightly clustered compared to the overall scatter in the data, suggesting that short-wavelength distortion is minimized. These flows are thought to be less than a few hundred years old, and over this time period, the strength of the geomagnetic field should be monotonically decreasing. Such a decreasing trend is recovered in paleointensity results from flows in the north, south, and east caldera regions, supporting the relative age interpretations made from ROV observations. However, all paleointensity values are lower than expected. This is broadly consistent with sea-surface observations of a magnetic anomaly low over the Axial summit. A regional negative anomaly in the caldera will be further tested by analysis of near-bottom magnetometer data.

  3. Experiments and Phase-field Modeling of Hydrate Growth at the Interface of Migrating Gas Fingers

    NASA Astrophysics Data System (ADS)

    Fu, X.; Jimenez-Martinez, J.; Porter, M. L.; Cueto-Felgueroso, L.; Juanes, R.

    2016-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea Plate edge.

  4. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism

    USGS Publications Warehouse

    Alt, J.C.; Shanks, Wayne C.

    2006-01-01

    The Mariana and Izu-Bonin arcs in the western Pacific are characterized by serpentinite seamounts in the forearc that provide unique windows into the mantle wedge. We present stable isotope (O, H, S, and C) data for serpentinites from Conical seamount in the Mariana forearc and S isotope data for Torishima seamount in the Izu-Bonin forearc in order to understand the compositions of fluids and temperatures of serpentinization in the mantle wedge, and to investigate the transport of sulfur from the slab to the mantle wedge. Six serpentine mineral separates have a restricted range of ??18O (6.5-8.5???). Antigorite separates have ??D values of -29.5??? to -45.5??? that reflect serpentinization within the mantle wedge whereas chrysotile has low ??D values (-51.8??? to -84.0???) as the result of re-equilibration with fluids at low temperatures. Fractionation of oxygen isotopes between serpentine and magnetite indicate serpentinization temperatures of 300-375 ??C. Two late cross-fiber chrysotile veins have higher ??18O values of 8.9??? to 10.8??? and formed at lower temperatures (as low as ???100 ??C). Aqueous fluids in equilibrium with serpentine at 300-375 ??C had ??18O = 6.5-9??? and ??D = -4??? to -26???, consistent with sediment dehydration reactions at temperatures <200 ??C in the subducting slab rather than a basaltic slab source. Three aragonite veins in metabasalt and siltstone clasts within the serpentinite flows have ??18O = 16.7-24.5???, consistent with the serpentinizing fluids at temperatures <250 ??C. ??13C values of 0.1-2.5??? suggest a source in subducting carbonate sediments. The ??34S values of sulfide in serpentinites on Conical Seamount (-6.7??? to 9.8???) result from metasomatism through variable reduction of aqueous sulfate (??34S = 14???) derived from slab sediments. Despite sulfur metasomatism, serpentinites have low sulfur contents (generally < 164 ppm) that reflect the highly depleted nature of the mantle wedge. The serpentinites are mostly enriched in 34S (median ??34Ssulfide = 4.5???), consistent with a 34S-enriched mantle wedge as inferred from arc lavas. ?? 2006 Elsevier B.V. All rights reserved.

  5. Variability of As and other fluid-mobile trace elements (FME) in Mariana forearc serpentinites and entrained crustal rocks

    NASA Astrophysics Data System (ADS)

    Johnston, R.; Ryan, J. G.

    2017-12-01

    In the Mariana subduction system, active serpentinite mud volcanoes are associated with the subduction of the Pacific plate beneath the Philippine Sea plate in a non-accretionary convergent plate margin. We are examining the systematics of As and other fluid-mobile trace elements (FME: Cs, Rb, Pb, B, Li) in serpentinized ultramafic clasts and serpentinite muds recovered during IODP Expedition 366 and previous ODP Legs (125, 195) to constrain the role of slab-derived fluids and the P-T° conditions at which fluids are mobilized. Arsenic concentrations in Exp. 366 serpentinites range from 0.08-2 ppm, while Cs varies from 0.001-0.9 ppm, Rb from 0.05-20 ppm and Pb varies from 0.02-10 ppm. The two different seamount summit sites examined (Yinazao: 55 km distance to trench; Asut Tesoru: 72 km to trench) (Hulme, 2010) show marked mobile element abundance differences, with Yinazao serpentinites showing lower As, Cs and Rb, and higher Pb contents than those from Asut Tesoru. Serpentinite mud samples from each seamount are on average higher in FME abundances than are associated serpentinized clasts, though their ranges overlap. Entrained mafic clasts are as high or higher in FME than the serpentinites, perhaps pointing to greater affinities for many of these elements during fluid-rock exchange. Asut Tesoru serpentinites are similar in As, Cs, and Rb abundances to those from S. Chamorro and Conical Seamounts (Savov et al 2005;2007), which also reflect greater distances to trench (78 and 86 km, respectively)(Hulme, 2010). The patterns of serpentinite FME abundances from seamount to seamount mimic to a great degree the dichotomy in cation abundances observed in their associated porefluids, where B and K are markedly lower, and Sr and Ca are markedly higher in Yinazao summit fluids than at the summits of Asut Tesoru, S. Chamorro, or Conical. These abrupt changes in serpentinite and fluid compositions likely reflect the initiation of carbonate and clay breakdown reactions on the downgoing plate in the earliest stages of subduction metamorphism.

  6. Analysis of gravity and topography in the GLIMPSE study region: Isostatic compensation and uplift of the Sojourn and Hotu Matua Ridge systems

    USGS Publications Warehouse

    Harmon, N.; Forsyth, D.W.; Scheirer, D.S.

    2006-01-01

    The Gravity Lieations Intraplate Melting Petrologic and Seismic Expedition (GLIMPSE) Experiment investigated the formation of a series of non-hot spot, intraplate volcanic ridges in the South Pacific and their relationship to cross-grain gravity lineaments detected by satellite altimetry. Using shipboard gravity measurements and a simple model of surface loading of a thin elastic plate, we estimate effective elastic thicknesses ranging from ???2 km beneath the Sojourn Ridge to a maximum of 10 km beneath the Southern Cross Seamount. These elastic thicknesses are lower than predicted for the 3-9 Ma seafloor on which the volcanoes lie, perhaps due to reheating and thinning of the plate during emplacement. Anomalously low apparent densities estimated for the Matua and Southern Cross seamounts 2050 and 2250 kg m-3, respectively, probably are artifacts caused by the assumption of only surface loading, ignoring the presence of subsurface loading in the form of underplated crust and/or low-density mantle. Using satellite free-air gravity and shipboard bathymetry, we calculate the age-detrended, residual mantle Bouguer anomaly (rMBA). The rMBA corrects the free-air anomaly for the direct effects of topography, including the thickening of the crust beneath the seamounts and volcanic ridges due to surface loading of the volcanic edifices. There are broad, negative rMBA anomalies along the Sojourn and Brown ridges and the Hotu Matua seamount chain that extend nearly to the East Pacific Rise. These negative rMBA anomalies connect to negative free-air anomalies in the western part of the study area that have been recognized previously as the beginnings of the cross-grain gravity lineaments. Subtracting the topographic effects of surface loading by the ridges and seamounts from the observed topography reveals that the ridges are built on broad bands of anomalously elevated seafloor. This swell topography and the negative rMBA anomalies contradict the predictions of lithospheric cracking models for the origin of gravity lineaments and associated volcanic ridges, favoring models with a dynamic mantle component such as small-scale convection or channelized asthenospheric return flow. Copyright 2006 by the American Geophysical Union.

  7. Seamount subduction and related deformation and seismicity of the continental slope off Manzanillo, Mexico, as evidenced by multibeam data

    NASA Astrophysics Data System (ADS)

    Bandy, W. L.; Castillo Maldonado, M.; Mortera-Gutierrez, C. A.

    2014-12-01

    The west coast of Mexico presents a complex pattern of deformation related to the convergence and subduction of the Rivera plate beneath the Jalisco Block/North American plate. Previous single beam bathymetric data have evidenced a large bathymetric high at 104.6218oW, 18.7123oN, in the continental slope region off Manzanillo, Mexico. One school of thought held that this high was the offshore extension of the onshore Manzanillo horst, although the two features are offset in a right-lateral sense. Alternatively, given the presence of a large positive magnetic anomaly near the bathymetric high, the high could also be caused by the collision and subsequent subduction of a large seamount. Given that the offset between the two structures was the main evidence for proposing the existence of a forearc sliver in the offshore area of the Jalisco margin, resolving the nature of this bathymetric high is quite important in our attempts to understand the plate kinematics and tectonics of this region. Thus, to better define the deformation pattern associated with the bathymetric high, multibeam bathymetric data (obtained using the Kongsberg EM300 multibeam system), subbottom profiles (obtained using the Kongsberg TOPAS18 system), and total field magnetic data (obtained using the Geometrics G877 marine proton precession magnetometer) were collected in the continental slope region between Manzanillo, Colima, and Chamela, Jalisco, during several cruises of UNAM´s research vessel the B.O. EL PUMA. The morphology and structural deformation patterns obtained in this study indicate very clearly that a large seamount is in the process of subducting beneath the continental slope off Manzanillo. The results also indicate that not only has the seamount uplifted the slope but has resulted in slumping of the area of the slope landward of the seamount. Given these results the proposal of the existence of an independent forearc sliver in the offshore area of the southern Jalisco block needs to be reevaluated.(Funding provided by DGAPA grants IN115513, IN108110 and IN104707 and CONACyT grant 50235)

  8. Impact of Intrathermocline eddies on seamount and oceanic island off Central Chile: Observation and modeling

    NASA Astrophysics Data System (ADS)

    Hormazabal, Samuel; Morales, Carmen; Cornejo, Marcela; Bento, Joaquim; Valencia, Luis; Auger, Pierre; Rodriguez, Angel; Correa, Marco; Anabalón, Valeria; Silva, Nelson

    2016-04-01

    In the Southeast Pacific, oceanographic processes that sustain the biological production necessary to maintain the ecosystems associated to seamounts and oceanic islands are still poorly understood. Recent studies suggest that the interaction of mesoscale and submesoescale eddies with oceanic islands and seamounts could be playing an important role in the time-space variability of primary production. In this work, research cruises, satellite data and Regional Ocean Modeling System (ROMS) results have been used to describe the main characteristics of intrathermocline eddies (ITE) and their impact on the Juan Fernández archipelago (JFA), off central Chile. The JFA is located off the coast of central Chile (33°S), and is composed of three main islands: Robinson Crusoe (RC), Alejandro Selkirk (AS) and Santa Clara (SC). Between the RC and AS are located the westernmost seamounts (JF6 and JF5) of the Juan Fernández archipelago. Satellite altimetry data (sea surface height from AVISO) were used to detect and track mesoscale eddies through eddy-tracking algorithm. Physical, chemical and biological parameters as temperature, salinity, dissolved oxygen and fluorescence were measured in the water column at JF5 and JF6, and along the coast off central Chile (30-40°S). Results from the research cruise exhibit the interaction between an ITE and the seamount JF6. Eddy-tracking results showed that the ITE observed at the JF6 was formed at the coast off central-southern Chile, traveled ~900 km seaward and after ~9 months reached the JF5 and JF6 region. Observations along the Chilean coast confirmed that the coast corresponds to the formation area of the observed ITE. In this region, ITEs are represented by subsurface lenses (~100 km diameter; 400 m thickness) of homogeneous salinity, nutrient rich and oxygen-poor equatorial subsurface water mass (ESSW) which is transported poleward by the Peru-Chile undercurrent in the coastal band and seaward by ITEs. The effect of ITEs on the ecosystem productivity around the Juan Fernández archipelago (JFA) is discussed.

  9. Diffusive Transfer of Oxygen From Seamount Basaltic Crust Into Overlying Sediments: an Example From the Clarion-Clipperton Fracture Zone, Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Mewes, K.; Mogollón, J.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.

    2015-12-01

    Within the Clarion-Clipperton Fracture Zone (CCFZ) located in the equatorial Pacific Ocean numerous seamounts, with diameters ranging from 3 to 30 km and varying heights above the surrounding seafloor of up to 2500 m, occur throughout the deep-sea plain. There is evidence that these may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. During RV SONNE cruise SO205 in April/May 2010 and BIONOD cruise with RV ĹATALANTE in spring 2012 we took piston and gravity cores for geochemical analyses, as well as for high-resolution pore-water oxygen and nutrient measurements. Specifically, we took cores along a transect at three sites, located 400, 700 and 1000 m away from the foot of a 240 m high seamount, called 'Teddy Bare'. At all 3 sites oxygen penetrates the entire sediment column of the organic carbon-poor sediment. More importantly, oxygen concentrations initially decrease with sediment depth but increase again at depths of 3 m and 7 m above the basaltic basement, suggesting an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. This is the first time this has been shown for the deep subsurface in the Pacific Ocean. Mirroring the oxygen concentrations nitrate concentrations accumulate with sediment depth but decrease towards the basement. Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement exceeds the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the sediment surface and the overlying bottom water. We furthermore show that the upward diffusion of oxygen from the basaltic basement affects the preservation of organic compounds within the oxic sediment column at all 3 sites. Our investigations indicate that an upward diffusion of oxygen from the basalt into the overlying sediment may be a widespread phenomenon in this area of the Pacific Ocean that is characterized by numerous seamounts.

  10. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; de Mol, B.; Escobar, E.; German, C. R.; Levin, L. A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; Narayanaswamy, B. E.; Smith, C. R.; Tittensor, D. P.; Tyler, P. A.; Vanreusel, A.; Vecchione, M.

    2010-09-01

    The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of heterotrophic deep-sea communities, which are adapted to low energy availability. In most of these heterotrophic habitats, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs). Chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust data sets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult, but is essential if we are to analyse large diversity and biogeographic trends.

  11. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; Escobar, E.; German, C. R.; Levin, L. A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; Narayanaswamy, B. E.; Smith, C. R.; Tittensor, D. P.; Tyler, P. A.; Vanreusel, A.; Vecchione, M.

    2010-04-01

    The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th Century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 27 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st Century. However, for most of these habitats, the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation, thus, shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps, where chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of deep-sea communities, which are adapted to low energy availability. In most of the heterotrophic deep-sea settings, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs) and chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust datasets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, is promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems - such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering - is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e.g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop conservation and management options.

  12. Formation of hydrothermal pits and the role of seamounts in the Guatemala Basin (Equatorial East Pacific) from heat flow, seismic, and core studies

    NASA Astrophysics Data System (ADS)

    Villinger, H. W.; Pichler, T.; Kaul, N.; Stephan, S.; Pälike, H.; Stephan, F.

    2017-01-01

    We acquired seismic and heat flow data and collected sediment cores in three areas in the Guatemala Basin (Cocos Plate, Eastern Pacific) to investigate the process by which depressions (pits) in the sedimentary cover on young oceanic crust were formed. Median heat flow of 55 mW/m2 for the three areas is about half of the expected conductive cooling value. The heat deficit is caused by massive recharge of cold seawater into the upper crust through seamounts which is inferred from depressed heat flow in the vicinity of seamounts. Heat flow inside of pits is always elevated, in some cases up to three times (max. 300 mW/m2) relative to background. None of the geochemical pore water profiles from cores inside and outside of the pits show any evidence of active fluid flow inside the pits. All three areas originated within the high productivity equatorial zone and moved northwest over the past 15 to 18 Ma. Pits found in the working areas are likely relict dissolution structures formed by diffuse hydrothermal venting in a zone of high biogenic carbonate production which were sealed when they moved north. It is likely that these pits were discharge sites of "hydrothermal siphons" where recharging seamounts could feed cold seawater via the upper crust to several discharging pits. Probably pit density on the whole Cocos Plate is similar to the three working areas and which may explain the huge heat deficit of the Cocos Plate.

  13. Island biogeography of marine organisms

    NASA Astrophysics Data System (ADS)

    Pinheiro, Hudson T.; Bernardi, Giacomo; Simon, Thiony; Joyeux, Jean-Christophe; Macieira, Raphael M.; Gasparini, João Luiz; Rocha, Claudia; Rocha, Luiz A.

    2017-09-01

    Studies on the distribution and evolution of organisms on oceanic islands have advanced towards a dynamic perspective, where terrestrial endemicity results from island geographical aspects and geological history intertwined with sea-level fluctuations. Diversification on these islands may follow neutral models, decreasing over time as niches are filled, or disequilibrium states and progression rules, where richness and endemism rise with the age of the archipelago owing to the splitting of ancestral lineages (cladogenesis). However, marine organisms have received comparatively little scientific attention. Therefore, island and seamount evolutionary processes in the aquatic environment remain unclear. Here we analyse the evolutionary history of reef fishes that are endemic to a volcanic ridge of seamounts and islands to understand their relations to island evolution and sea-level fluctuations. We also test how this evolutionary history fits island biogeography theory. We found that most endemic species have evolved recently (Pleistocene epoch), during a period of recurrent sea-level changes and intermittent connectivity caused by repeated aerial exposure of seamounts, a finding that is consistent with an ephemeral ecological speciation process. Similar to findings for terrestrial biodiversity, our data suggest that the marine speciation rate on islands is negatively correlated with immigration rate. However, because marine species disperse better than terrestrial species, most niches are filled by immigration: speciation increases with the random accumulation of species with low dispersal ability, with few opportunities for in situ cladogenesis and adaptive radiation. Moreover, we confirm that sea-level fluctuations and seamount location play a critical role in marine evolution, mainly by intermittently providing stepping stones for island colonization.

  14. Tidal currents and anticyclonic motions on two North Pacific seamounts

    USGS Publications Warehouse

    Genin, A.; Noble, M.; Lonsdale, P.F.

    1989-01-01

    Near-bottom currents were measured for several days at three sites on the summits of Fieberling Guyot (32??26???N, 127??46???W) and Horizon Guyot (19??15???N, 160??00???W). Three moorings comprised of two current meters were deployed on each summit; two moorings were deployed on opposite sides of the rim of the summit and one mooring was deployed near the center of the summit. The observed currents were strong, with maximum speeds of 48 and 24 cm s-1 on Fieberling and Horizon, respectively. The currents at specific frequencies were enhanced relative to those in the surrounding ocean. Diurnal currents were the dominant component of the current field on Fieberling Guyot. They accounted for 39-68% of the energy and had amplitudes around 12 cm s-1. We suspect that these diurnal currents were waves trapped over the seamount. Semidiurnal internal tidal currents were the strongest currents over Horizon Guyot, with amplitudes around 4 cm s-1. The flow patterns determined in this study seemed to affect the biological and geological characteristics of the seamounts. ?? 1990.

  15. Early survivorship of juvenile coral reef fishes

    NASA Astrophysics Data System (ADS)

    Sale, Peter F.; Ferrell, Douglas J.

    1988-12-01

    Data on early survivorship of newly settled reef fish were collected by monitoring individuals which recruited to 30 small lagoonal patch reefs over three summers. Preliminary survivorship curves spanning the first 45 days after settlement were derived for 17 species. Most species showed greatest rates of mortality in the first 1 2 weeks in the reef environment however there were substantial differences among species in the extent and the temporal pattern of this. In six species, 75% of individuals survived the 45 days, while in 5 others, 20% or fewer survived that long. In eight species, mortality was negligible after the first 14 days. In the other 9, significant mortality occurred in subsequent weeks. Patterns of survivorship did not appear to differ substantially among years in five of the six species for which data were adequate. In particular, survivorship did not appear to be different among years even when levels of recruitment varied greatly.

  16. Temporal variability of marine debris deposition at Tern Island in the Northwestern Hawaiian Islands.

    PubMed

    Agustin, Alyssa E; Merrifield, Mark A; Potemra, James T; Morishige, Carey

    2015-12-15

    A twenty-two year record of marine debris collected on Tern Island is used to characterize the temporal variability of debris deposition at a coral atoll in the Northwestern Hawaiian Islands. Debris deposition tends to be episodic, without a significant relationship to local forcing processes associated with winds, sea level, waves, and proximity to the Subtropical Convergence Zone. The General NOAA Operational Modeling Environment is used to estimate likely debris pathways for Tern Island. The majority of modeled arrivals come from the northeast following prevailing trade winds and surface currents, with trajectories indicating the importance of the convergence zone, or garbage patch, in the North Pacific High region. Although debris deposition does not generally exhibit a significant seasonal cycle, some debris types contain considerable 3 cycle/yr variability that is coherent with wind and surface pressure over a broad region north of Tern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Aragonite saturation states and nutrient fluxes in coral reef sediments in Biscayne National Park, FL, USA

    USGS Publications Warehouse

    Lisle, John T.; Reich, Christopher D.; Halley, Robert B.

    2014-01-01

    Some coral reefs, such as patch reefs along the Florida Keys reef tract, are not showing significant reductions in calcification rates in response to ocean acidification. It has been hypothesized that this recalcitrance is due to local buffering effects from biogeochemical processes driven by seagrasses. We investigated the influence that pore water nutrients, dissolved inorganic carbon (DIC) and total alkalinity (TA) have on aragonite saturation states (Ωaragonite) in the sediments and waters overlying the sediment surfaces of sand halos and seagrass beds that encircle Alinas and Anniversary reefs in Biscayne National Park. Throughout the sampling period, sediment pore waters from both bottom types had lower oxidation/reduction potentials (ORP), with lower pH relative to the sediment surface waters. The majority (86.5%) of flux rates (n = 96) for ΣNOx–, PO43–, NH4+, SiO2, DIC and TA were positive, sometimes contributing significant concentrations of the respective constituents to the sediment surface waters. The Ωaragonite values in the pore waters (range: 0.18 to 4.78) were always lower than those in the overlying waters (2.40 to 4.46), and 52% (n = 48) of the values were aragonite in 75% (n = 16) of the samples, but increased it in the remainder. The elevated fluxes of nutrients, DIC and TA into the sediment–water interface layer negatively alters the suitability of this zone for the settlement and development of calcifying larvae, while enhancing the establishment of algal communities.

  18. Relative and combined effects of habitat and fishing on reef fish communities across a limited fishing gradient at Ningaloo.

    PubMed

    Wilson, Shaun K; Babcock, Russ C; Fisher, Rebecca; Holmes, Thomas H; Moore, James A Y; Thomson, Damian P

    2012-10-01

    Habitat degradation and fishing are major drivers of temporal and spatial changes in fish communities. The independent effects of these drivers are well documented, but the relative importance and interaction between fishing and habitat shifts is poorly understood, particularly in complex systems such as coral reefs. To assess the combined and relative effects of fishing and habitat we examined the composition of fish communities on patch reefs across a gradient of high to low structural complexity in fished and unfished areas of the Ningaloo Marine Park, Western Australia. Biomass and species richness of fish were positively correlated with structural complexity of reefs and negatively related to macroalgal cover. Total abundance of fish was also positively related to structural complexity, however this relationship was stronger on fished reefs than those where fishing is prohibited. The interaction between habitat condition and fishing pressure is primarily due to the high abundance of small bodied planktivorous fish on fished reefs. However, the influence of management zones on the abundance and biomass of predators and target species is small, implying spatial differences in fishing pressure are low and unlikely to be driving this interaction. Our results emphasise the importance of habitat in structuring reef fish communities on coral reefs especially when gradients in fishing pressure are low. The influence of fishing effort on this relationship may however become more important as fishing pressure increases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Experimental evaluation of diversity-productivity relationships in a coral reef fish assemblage.

    PubMed

    Messmer, Vanessa; Blowes, Shane A; Jones, Geoffrey P; Munday, Philip L

    2014-09-01

    The global decline in biodiversity is causing increasing concern about the effects of biodiversity loss on ecosystem services such as productivity. Biodiversity has been hypothesised to be important in maintaining productivity of biological assemblages because niche complementarity and facilitation among the constituent species can result in more efficient use of resources. However, these conclusions are primarily based on studies with plant communities, and the relationship between diversity and productivity at higher trophic levels is largely unknown, especially in the marine environment. Here, we used a manipulative field experiment to test the effects of species richness and species identity on biomass accumulation in coral reef fish assemblages at Lizard Island. Small patch reefs were stocked with a total of 30 juveniles belonging to three planktivorous damselfish (genus Pomacentrus) according to three different levels of fish species richness (one, two and three species) and seven different combinations of fish species. Species richness had no effect on the relative growth in this assemblage after 18 days, but relative growth differed among individual fish species and the different combinations of species. Patterns of increase in biomass were best explained by species-specific differences and variable effects of intra- and interspecific competition on growth. These results suggest that niche complementarity and facilitation are not the most influential drivers of total productivity within this guild of planktivorous fishes. Total productivity may be resilient to declining reef fish biodiversity, but this will depend on which species are lost and on the life-history traits of remaining species.

  20. An acoustic survey of beaked whales at Cross Seamount near Hawaii.

    PubMed

    McDonald, Mark A; Hildebrand, John A; Wiggins, Sean M; Johnston, David W; Polovina, Jeffrey J

    2009-02-01

    An acoustic record from Cross Seamount, southwest of Hawaii, revealed sounds characteristic of beaked whale echolocation at the same relative abundance year-around (270 of 356 days), occurring almost entirely at night. The most common sound had a linear frequency upsweep from 35 to 100 kHz (the bandwidth of recording), an interpulse interval of 0.11 s, and duration of at least 932 mus. A less common upsweep sound with shorter interpulse interval and slower sweep rate was also present. Sounds matching Cuvier's beaked whale were not detected, and Blainville's beaked whale sounds were detected on only one occasion.

Top