Sample records for coral pathogens identified

  1. Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    PubMed Central

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L.; Porter, James W.; Lipp, Erin K.

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. PMID:21858132

  2. The Urgent Need for Robust Coral Disease Diagnostics

    PubMed Central

    Pollock, F. Joseph; Morris, Pamela J.; Willis, Bette L.; Bourne, David G.

    2011-01-01

    Coral disease has emerged over recent decades as a significant threat to coral reef ecosystems, with declines in coral cover and diversity of Caribbean reefs providing an example of the potential impacts of disease at regional scales. If similar trends are to be mitigated or avoided on reefs worldwide, a deeper understanding of the factors underlying the origin and spread of coral diseases and the steps that can be taken to prevent, control, or reduce their impacts is required. In recent years, an increased focus on coral microbiology and the application of classic culture techniques and emerging molecular technologies has revealed several coral pathogens that could serve as targets for novel coral disease diagnostic tools. The ability to detect and quantify microbial agents identified as indicators of coral disease will aid in the elucidation of disease causation and facilitate coral disease detection and diagnosis, pathogen monitoring in individuals and ecosystems, and identification of pathogen sources, vectors, and reservoirs. This information will advance the field of coral disease research and contribute knowledge necessary for effective coral reef management. This paper establishes the need for sensitive and specific molecular-based coral pathogen detection, outlines the emerging technologies that could serve as the basis of a new generation of coral disease diagnostic assays, and addresses the unique challenges inherent to the application of these techniques to environmentally derived coral samples. PMID:22028646

  3. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    NASA Astrophysics Data System (ADS)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  4. Coral Pathogens Identified for White Syndrome (WS) Epizootics in the Indo-Pacific

    PubMed Central

    Sussman, Meir; Willis, Bette L.; Victor, Steven; Bourne, David G.

    2008-01-01

    Background White Syndrome (WS), a general term for scleractinian coral diseases with acute signs of advancing tissue lesions often resulting in total colony mortality, has been reported from numerous locations throughout the Indo-Pacific, constituting a growing threat to coral reef ecosystems. Methodology/Principal Findings Bacterial isolates were obtained from corals displaying disease signs at three WS outbreak sites: Nikko Bay in the Republic of Palau, Nelly Bay in the central Great Barrier Reef (GBR) and Majuro Atoll in the Republic of the Marshall Islands, and used in laboratory-based infection trials to satisfy Henle-Koch's postulates, Evan's rules and Hill's criteria for establishing causality. Infected colonies produced similar signs to those observed in the field following exposure to bacterial concentrations of 1×106 cells ml−1. Phylogenetic 16S rRNA gene analysis demonstrated that all six pathogens identified in this study were members of the γ-Proteobacteria family Vibrionacae, each with greater than 98% sequence identity with the previously characterized coral bleaching pathogen Vibrio coralliilyticus. Screening for proteolytic activity of more than 150 coral derived bacterial isolates by a biochemical assay and specific primers for a Vibrio family zinc-metalloprotease demonstrated a significant association between the presence of isolates capable of proteolytic activity and observed disease signs. Conclusion/Significance This is the first study to provide evidence for the involvement of a unique taxonomic group of bacterial pathogens in the aetiology of Indo-Pacific coral diseases affecting multiple coral species at multiple locations. Results from this study strongly suggest the need for further investigation of bacterial proteolytic enzymes as possible virulence factors involved in Vibrio associated acute coral infections. PMID:18560584

  5. Temporal Sampling of White Band Disease Infected Corals Reveals Complex and Dynamic Bacterial Communities

    NASA Astrophysics Data System (ADS)

    Gignoux-Wolfsohn, S.; Vollmer, S. V.; Aronson, F. M.

    2016-02-01

    White band disease (WBD) is a coral disease that is currently decimating populations of the endangered staghorn coral, Acropora cervicornis and elkhorn coral, A. palmata across the Caribbean. Since it was first reported in 1979, WBD has killed 95% of these critical reef-building Caribbean corals. WBD is infectious; it can be transmitted through the water column or by a corallivorous snail. While previous research shows that WBD is likely caused by bacteria, identification of a specific pathogen or pathogens has remained elusive. Much of the difficulty of understanding the etiology of the disease comes from a lack of information about how existing bacterial communities respond to disease and separating initial from secondary colonizers. In order to address this lack of information, we performed a fully-crossed tank infection experiment. We exposed healthy corals from two different sites to disease and healthy (control) homogenates from both sites, replicating genotype across tanks. We sampled every coral at three time points: before inoculation with the homogenate, after inoculation, and when the coral showed signs of disease. We then performed 16S rRNA gene sequencing on the Illumina HiSeq 2000. We saw significant differences between time points and disease state. Interestingly, at the first time point (time one) we observed differences between genotypes: every fragment from some genotypes was dominated by Endozoicomonas, while other genotypes were not dominated by one family. At time two we saw an increase in abundance of Alteromonadaceae and Flavobacteriaceae in all corals, and a larger increase in disease-exposed corals. At time three, we saw another increase in Flavobacteriaceae abundance in diseased corals, as well as an introduction of Francisella to diseased corals. While Flavobacteriaceae and Francisella were proposed as potential pathogens, their increase at time three suggests they may be secondary colonizers or opportunists. In genotypes that were dominated by Endozoicomonas at time one, we saw a decrease of Endozoicomonas in diseased corals, indicating that Endozoicomonas may be beneficial symbionts and/or antagonists of the pathogen(s). We also identified a clade of Pasteurella found in the disease dose and diseased corals at times two and three that is likely important in the WBD etiology.

  6. Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus.

    PubMed

    Ushijima, Blake; Richards, Gary P; Watson, Michael A; Schubiger, Carla B; Häse, Claudia C

    2018-01-01

    The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated in mass mortalities of shellfish larvae causing significant economic losses to the shellfish industry. Recently, strain BAA-450, a coral pathogen, was demonstrated to be virulent towards larval Pacific oysters (Crassostrea gigas). However, it is unclear whether other coral-associated V. coralliilyticus strains can cause shellfish mortalities and if infections are influenced by temperature. This study compared dose dependence, temperature impact, and gross pathology of four V. coralliilyticus strains (BAA-450, OCN008, OCN014 and RE98) on larval C. gigas raised at 23°C and 27°C, and evaluated whether select virulence factors are required for shellfish infections as they are for corals. All strains were infectious to larval oysters in a dose-dependent manner with OCN014 being the most pathogenic and BAA-450 being the least. At 27°C, higher larval mortalities (p < 0.05) were observed for all V. coralliilyticus strains, ranging from 38.8-93.7%. Gross pathological changes to the velum and cilia occurred in diseased larvae, but there were no distinguishable differences between oysters exposed to different V. coralliilyticus strains or temperatures. Additionally, in OCN008, the predicted transcriptional regulator ToxR and the outer membrane protein OmpU were important for coral and oyster disease, while mannose sensitive hemagglutinin type IV pili were required only for coral infection. This study demonstrated that multiple coral pathogens can infect oyster larvae in a temperature-dependent manner and identified virulence factors required for infection of both hosts.

  7. Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions

    PubMed Central

    Sussman, Meir; Mieog, Jos C.; Doyle, Jason; Victor, Steven; Willis, Bette L.; Bourne, David G.

    2009-01-01

    Background Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases, whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to their origin and role in coral disease aetiology. Methodology/Principal Findings Here we report on a Vibrio zinc-metalloprotease causing rapid photoinactivation of susceptible Symbiodinium endosymbionts followed by lesions in coral tissue. Symbiodinium photosystem II inactivation was diagnosed by an imaging pulse amplitude modulation fluorometer in two bioassays, performed by exposing Symbiodinium cells and coral juveniles to non-inhibited and EDTA-inhibited supernatants derived from coral white syndrome pathogens. Conclusion/Significance These findings demonstrate a common virulence factor from four phylogenetically related coral pathogens, suggesting that zinc-metalloproteases may play an important role in Vibrio pathogenicity in scleractinian corals. PMID:19225559

  8. Shifting white pox aetiologies affecting Acropora palmata in the Florida Keys, 1994–2014

    PubMed Central

    Berry, Brett; Park, Andrew; Kemp, Dustin W.; Kemp, Keri M.; Lipp, Erin K.; Porter, James W.

    2016-01-01

    We propose ‘the moving target hypothesis’ to describe the aetiology of a contemporary coral disease that differs from that of its historical disease state. Hitting the target with coral disease aetiology is a complex pursuit that requires understanding of host and environment, and may lack a single pathogen solution. White pox disease (WPX) affects the Caribbean coral Acropora palmata. Acroporid serratiosis is a form of WPX for which the bacterial pathogen (Serratia marcescens) has been established. We used long-term (1994–2014) photographic monitoring to evaluate historical and contemporary epizootiology and aetiology of WPX affecting A. palmata at eight reefs in the Florida Keys. Ranges of WPX prevalence over time (0–71.4%) were comparable for the duration of the 20-year study. Whole colony mortality and disease severity were high in historical (1994–2004), and low in contemporary (2008–2014), outbreaks of WPX. Acroporid serratiosis was diagnosed for some historical (1999, 2003) and contemporary (2012, 2013) outbreaks, but this form of WPX was not confirmed for all WPX cases. Our results serve as a context for considering aetiology as a moving target for WPX and other coral diseases for which pathogens are established and/or candidate pathogens are identified. Coral aetiology investigations completed to date suggest that changes in pathogen, host and/or environment alter the disease state and complicate diagnosis. PMID:26880837

  9. Shifting white pox aetiologies affecting Acropora palmata in the Florida Keys, 1994-2014.

    PubMed

    Sutherland, Kathryn P; Berry, Brett; Park, Andrew; Kemp, Dustin W; Kemp, Keri M; Lipp, Erin K; Porter, James W

    2016-03-05

    We propose 'the moving target hypothesis' to describe the aetiology of a contemporary coral disease that differs from that of its historical disease state. Hitting the target with coral disease aetiology is a complex pursuit that requires understanding of host and environment, and may lack a single pathogen solution. White pox disease (WPX) affects the Caribbean coral Acropora palmata. Acroporid serratiosis is a form of WPX for which the bacterial pathogen (Serratia marcescens) has been established. We used long-term (1994-2014) photographic monitoring to evaluate historical and contemporary epizootiology and aetiology of WPX affecting A. palmata at eight reefs in the Florida Keys. Ranges of WPX prevalence over time (0-71.4%) were comparable for the duration of the 20-year study. Whole colony mortality and disease severity were high in historical (1994-2004), and low in contemporary (2008-2014), outbreaks of WPX. Acroporid serratiosis was diagnosed for some historical (1999, 2003) and contemporary (2012, 2013) outbreaks, but this form of WPX was not confirmed for all WPX cases. Our results serve as a context for considering aetiology as a moving target for WPX and other coral diseases for which pathogens are established and/or candidate pathogens are identified. Coral aetiology investigations completed to date suggest that changes in pathogen, host and/or environment alter the disease state and complicate diagnosis. © 2016 The Author(s).

  10. The Presence of Biomarker Enzymes of Selected Scleractinian Corals of Palk Bay, Southeast Coast of India

    PubMed Central

    Anithajothi, R.; Duraikannu, K.; Umagowsalya, G.; Ramakritinan, C. M.

    2014-01-01

    The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen. PMID:25215288

  11. The presence of biomarker enzymes of selected Scleractinian corals of Palk Bay, southeast coast of India.

    PubMed

    Anithajothi, R; Duraikannu, K; Umagowsalya, G; Ramakritinan, C M

    2014-01-01

    The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen.

  12. Emergence of a multi host biofilm forming opportunistic pathogen Staphylococcus sciuri D26 in coral Favites abdita.

    PubMed

    Divya, S; Thinesh, T; Seghal Kiran, G; Hassan, Saqib; Selvin, Joseph

    2018-04-23

    Corals are hotspots of ocean microbial diversity and imbalance in the composition of coral associated microbes has been mostly correlated with the emergence of climate change driven diseases which affect the overall stability of the reef ecosystem. Coral sampling was performed by SCUBA diving at Palk Bay (latitude 9.271580, longitude 79.132203) south Indian coast. Among the 54 bacterial isolates, an isolate MGL-D26 showed comparatively high biofilm formation and was identified as Staphylococcus sciuri based on phylogenetic analysis. The production of exopolysaccharide (EPS) confirmed the formation of a slimy EPS matrix associated with the biofilm. The biofilm formation in S. sciuri D26 was induced significantly by UV exposure followed by other stress factors including pollution, agitation, and salinity. The strain inhibited innate immune factors of corals such as melanin synthesis and phenoloxidase. Challenge experiments in a model organism Aiptasia sp. showed pathogenicity of S. sciuri. Histopathological analysis revealed tissue invasion by S. sciuri which was a predisposing factor leading to mortality in challenged Aiptasia sp. However, specific disease condition of corals infected by S. sciuri requires continuous field monitoring and further investigation. Based on the findings, S. sciuri was a first reported multi-host opportunistic pathogen which has emerged in corals under environmental stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis

    PubMed Central

    Sweet, M. J.; Croquer, A.; Bythell, J. C.

    2014-01-01

    Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle–Koch's postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study. PMID:24943374

  14. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis.

    PubMed

    Sweet, M J; Croquer, A; Bythell, J C

    2014-08-07

    Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle-Koch's postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study.

  15. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals.

    PubMed

    Garren, Melissa; Son, Kwangmin; Raina, Jean-Baptiste; Rusconi, Roberto; Menolascina, Filippo; Shapiro, Orr H; Tout, Jessica; Bourne, David G; Seymour, Justin R; Stocker, Roman

    2014-05-01

    Diseases are an emerging threat to ocean ecosystems. Coral reefs, in particular, are experiencing a worldwide decline because of disease and bleaching, which have been exacerbated by rising seawater temperatures. Yet, the ecological mechanisms behind most coral diseases remain unidentified. Here, we demonstrate that a coral pathogen, Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target the mucus of its coral host, Pocillopora damicornis. A primary driver of this response is the host metabolite dimethylsulfoniopropionate (DMSP), a key element in the global sulfur cycle and a potent foraging cue throughout the marine food web. Coral mucus is rich in DMSP, and we found that DMSP alone elicits chemotactic responses of comparable intensity to whole mucus. Furthermore, in heat-stressed coral fragments, DMSP concentrations increased fivefold and the pathogen's chemotactic response was correspondingly enhanced. Intriguingly, despite being a rich source of carbon and sulfur, DMSP is not metabolized by the pathogen, suggesting that it is used purely as an infochemical for host location. These results reveal a new role for DMSP in coral disease, demonstrate the importance of chemical signaling and swimming behavior in the recruitment of pathogens to corals and highlight the impact of increased seawater temperatures on disease pathways.

  16. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis

    PubMed Central

    Tout, Jessica; Siboni, Nachshon; Messer, Lauren F.; Garren, Melissa; Stocker, Roman; Webster, Nicole S.; Ralph, Peter J.; Seymour, Justin R.

    2015-01-01

    Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2–3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2–3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems. PMID:26042096

  17. Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens

    PubMed Central

    Casey, Jordan M.; Connolly, Sean R.; Ainsworth, Tracy D.

    2015-01-01

    By cultivating turf algae and aggressively defending their territories, territorial damselfishes in the genus Stegastes play a major role in shaping coral-algal dynamics on coral reefs. The epilithic algal matrix (EAM) inside Stegastes’ territories is known to harbor high abundances of potential coral disease pathogens. To determine the impact of territorial grazers on coral microbial assemblages, we established a coral transplant inside and outside of Stegastes’ territories. Over the course of one year, the percent mortality of transplanted corals was monitored and coral samples were collected for microbial analysis. As compared to outside damselfish territories, Stegastes were associated with a higher rate of mortality of transplanted corals. However, 16S rDNA sequencing revealed that territorial grazers do not differentially impact the microbial assemblage of corals exposed to the EAM. Regardless of Stegastes presence or absence, coral transplantation resulted in a shift in the coral-associated microbial community and an increase in coral disease associated potential pathogens. Further, transplanted corals that suffer low to high mortality undergo a microbial transition from a microbiome similar to that of healthy corals to that resembling the EAM. These findings demonstrate that coral transplantation significantly impacts coral microbial communities, and transplantation may increase susceptibility to coral disease. PMID:26144865

  18. Aspergillus sydowii and Other Potential Fungal Pathogens in Gorgonian Octocorals of the Ecuadorian Pacific.

    PubMed

    Soler-Hurtado, M Mar; Sandoval-Sierra, José Vladimir; Machordom, Annie; Diéguez-Uribeondo, Javier

    2016-01-01

    Emerging fungal diseases are threatening ecosystems and have increased in recent decades. In corals, the prevalence and consequences of these infections have also increased in frequency and severity. Coral reefs are affected by an emerging fungal disease named aspergillosis, caused by Aspergillus sydowii. This disease and its pathogen have been reported along the Caribbean and Pacific coasts of Colombia. Despite this, an important number of coral reefs worldwide have not been investigated for the presence of this pathogen. In this work, we carried out the surveillance of the main coral reef of the Ecuadorian Pacific with a focus on the two most abundant and cosmopolitan species of this ecosystem, Leptogorgia sp. and Leptogorgia obscura. We collected 59 isolates and obtained the corresponding sequences of the Internal Transcribed Spacers (ITS) of the ribosomal DNA. These were phylogenetically analyzed using MrBayes, which indicated the presence of two isolates of the coral reef pathogen A. sydowii, as well as 16 additional species that are potentially pathogenic to corals. Although the analyzed gorgonian specimens appeared healthy, the presence of these pathogens, especially of A. sydowii, alert us to the potential risk to the health and future survival of the Pacific Ecuadorian coral ecosystem under the current scenario of increasing threats and stressors to coral reefs, such as habitat alterations by humans and global climate change.

  19. Potential role of viruses in white plague coral disease.

    PubMed

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.

  20. Identification of Antipathogenic Bacterial Coral Symbionts Against Porites Ulcerative White Spots Disease

    NASA Astrophysics Data System (ADS)

    Sa'adah, Nor; Sabdono, Agus; Diah Permata Wijayanti, dan

    2018-02-01

    Coral reef ecosystems are ecosystems that are vulnerable and susceptible to damage due to the exploitation of ocean resources. One of the factors that cause coral damage is the disease that attacks the coral. Porites Ulcerative White Spots (PUWS) is a coral disease found in Indonesia and attacks the coral genera Porites allegedly caused by pathogenic microbial attacks. The purpose of this study was to identify the symbiotic bacteria on healthy coral that have antipatogenic potency against PUWS. The method used in this research was descriptive explorative. Sampling was done in Kemujan Island, Karimunjawa. Bacteria were isolated from healthy coral and coral affected by PUWS disease. Streak method was used to purify coral bacteria, while overlay and agar diffusion were used to test antipathogenic activity. Bacterial identification was carried out based on polyphasic approach. The results of this study showed that coral bacterial symbionts have antipathogenic activity against PUWS disease. The selected bacteria NM 1.2, NM 1.3 and KPSH 5. NM1.2 were closely related to Pseudoalteromonas piscicida, Pseudoalteromonas flavipulchra and Bacillus flexus, respectively.

  1. Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response

    PubMed Central

    Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M.; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

    2014-01-01

    Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845

  2. Anti-Pathogenic Activity of Coral Bacteria Againts White Plaque Disease of Coral Dipsastraea from Tengah Island, Karimunjawa

    NASA Astrophysics Data System (ADS)

    Imam Muchlissin, Sakti; Sabdono, Agus; Permata W, Diah

    2018-02-01

    Coral disease is main factor of degrading coral reefs, such as White Plaque (WP) disease that cause loss of epidermal tissue of corals. The purposes of this research were to identify the bacteria associated with White Plaque Disease of coral Dipsastraea and to investigate coral bacteria that have antipathogenic potency against White Plaque Disease by Coral Dipsastraea. Sampling was carried out by purposive method in Tengah Island, Karimunjawa on March 2015. Streak method was used to isolate and purify coral bacteria, while overlay and agar diffusion method were used to test antibacterial activity. Identification of selected bacteria was conducted by biochemical and molecular methods. Polyphasic identification of bacteria associated with diseased coral White Plague of Dipsastraea. It is found that TFWP1, TFWP2, TFWP3 and TFWP4 were closely related to Bacillus antracis, Virgibacillus olivae, Virgibacillus salarius and Bacillus mojavensis, respectively. While antipathogen activity bacterial isolates, NM1.3, NM1.8 and NM2.3 were closely related to Pseudoalteromonas flavipulchra, Pseudoalteromonas piscicida, and Vibrio azureus, respectively. Phylogenetic data on microbial community composition in coral will help with the knowledge in the biological control of coral diseases.

  3. The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms

    USGS Publications Warehouse

    Weir-Brush, J. R.; Garrison, V.H.; Smith, G.W.; Shinn, E.A.

    2004-01-01

    The number of reports of coral diseases has increased throughout the world in the last 20 years. Aspergillosis, which primarily affects Gorgonia ventalina and G. flabellum, is one of the few diseases to be characterized. This disease is caused by Aspergillus sydowii, a terrestrial fungus with a worldwide distribution. Upon infection, colonies may lose tissue, and ultimately, mortality may occur if the infection is not sequestered. The spores of A. sydowii are <5 ??m, small enough to be easily picked up by winds and dispersed over great distances. Aspergillosis is prevalent in the Caribbean, and it appears that this primarily terrestrial fungus has adapted to a marine environment. It has been proposed that dust storms originating in Africa may be one way in which potential coral pathogens are distributed and deposited into the marine environments of the Caribbean. To test the hypothesis that African dust storms transport and deposit pathogens, we collected air samples from both dust storms and periods of nondust in St. John, U.S. Virgin Islands. Because we focused on fungal pathogens and used A. sydowii as a model, we isolated and cultured fungi on various types of media. Fungi including Aspergillus spp. were isolated from air samples taken from dust events and non-dust events. Twenty-three separate cultures and seven genera were isolated from dust event samples whereas eight cultures from five genera were isolated from non-dust air samples. Three isolates from the Virgin Islands dust event samples morphologically identified as Aspergillus spp. produced signs of aspergillosis in seafans, and the original pathogens were re-isolated from those diseased seafans fulfilling Koch's Postulates. This research supports the hypothesis that African dust storms transport across the Atlantic Ocean and deposit potential coral pathogens in the Caribbean.

  4. The potential roles of bacterial communities in coral defence: A case study at Talang-talang reef

    NASA Astrophysics Data System (ADS)

    Kuek, Felicity W. I.; Lim, Li-Fang; Ngu, Lin-Hui; Mujahid, Aazani; Lim, Po-Teen; Leaw, Chui-Pin; Müller, Moritz

    2015-06-01

    Complex microbial communities are known to exert significant influence over coral reef ecosystems. The Talang- Satang National Park is situated off the coast of Sematan and is one of the most diverse ecosystems found off-Sarawak. Interestingly, the Talang-talang reef thrives at above-average temperatures of 28- 30°C throughout the year. Through isolation and identification (16S rRNA) of native microbes from the coral, the surface mucus layer (SML), as well as the surrounding sediment and waters, we were able to determine the species composition and abundance of the culturable bacteria in the coral reef ecosystem. Isolates found attached to the coral are related mostly to Vibrio spp., presumably attached to the mucus from the water column and surrounding sediment. Pathogenic Vibrio spp. and Bacillus spp. were dominant amongst the isolates from the water column and sediment, while known coral pathogens responsible for coral bleaching, Vibrio coralliilyticus and Vibrio shiloi, were isolated from the coral SML and sediment samples respectively. Coral SML isolates were found to be closely related to known nitrogen fixers and antibiotic producers with tolerance towards elevated temperatures and heavy metal contamination, offering a possible explanation why the local corals are able to thrive in higher than usual temperatures. This specialized microbiota may be important for protecting the corals from pathogens by occupying entry niches and/or through the production of secondary metabolites such as antibiotics. The communities from the coral SML were tested against each other at 28, 30 and 32°C, and were also assessed for the presence of type I modular polyketides synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes which are both involved in the production of antibiotic compounds. The bacterial community from the SML exhibited antimicrobial properties under normal temperatures while pathogenic strains appeared toxic at elevated temperatures and our results highlight the role of the coral SML bacterial community in the coral's defence.

  5. Comparing bacterial community composition of healthy and dark spot-affected Siderastrea siderea in Florida and the Caribbean

    USGS Publications Warehouse

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Andersen, Gary L.

    2014-01-01

    Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.

  6. Comparing bacterial community composition of healthy and dark spot-affected Siderastrea siderea in Florida and the Caribbean

    DOE PAGES

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; ...

    2014-10-07

    Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean ismore » the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.« less

  7. Comparing bacterial community composition of healthy and dark spot-affected Siderastrea siderea in Florida and the Caribbean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.

    Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean ismore » the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.« less

  8. Comparing Bacterial Community Composition of Healthy and Dark Spot-Affected Siderastrea siderea in Florida and the Caribbean

    PubMed Central

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Andersen, Gary L.

    2014-01-01

    Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea. PMID:25289937

  9. What are the physiological and immunological responses of coral to climate warming and disease?

    PubMed

    Mydlarz, Laura D; McGinty, Elizabeth S; Harvell, C Drew

    2010-03-15

    Coral mortality due to climate-associated stress is likely to increase as the oceans get warmer and more acidic. Coral bleaching and an increase in infectious disease are linked to above average sea surface temperatures. Despite the uncertain future for corals, recent studies have revealed physiological mechanisms that improve coral resilience to the effects of climate change. Some taxa of bleached corals can increase heterotrophic food intake and exchange symbionts for more thermally tolerant clades; this plasticity can increase the probability of surviving lethal thermal stress. Corals can fight invading pathogens with a suite of innate immune responses that slow and even arrest pathogen growth and reduce further tissue damage. Several of these responses, such as the melanin cascade, circulating amoebocytes and antioxidants, are induced in coral hosts during pathogen invasion or disease. Some components of immunity show thermal resilience and are enhanced during temperature stress and even in bleached corals. These examples suggest some plasticity and resilience to cope with environmental change and even the potential for evolution of resistance to disease. However, there is huge variability in responses among coral species, and the rate of climate change is projected to be so rapid that only extremely hardy taxa are likely to survive the projected changes in climate stressors.

  10. First characterization of bacterial pathogen, Vibrio alginolyticus, for Porites andrewsi White syndrome in the South China Sea.

    PubMed

    Zhenyu, Xie; Shaowen, Ke; Chaoqun, Hu; Zhixiong, Zhu; Shifeng, Wang; Yongcan, Zhou

    2013-01-01

    White syndrome, a term for scleractinian coral disease with progressive tissue loss, is known to cause depressed growth and increased morality of coral reefs in the major oceans around the world, and the occurrence of this disease has been frequently reported in the past few decades. Investigations during April to September in both 2010 and 2011 identified widespread Porites andrewsi White syndrome (PAWS) in Xisha Archipelago, South China Sea. However, the causes and etiology of PAWS have been unknown. A transmission experiment was performed on P. andrewsi in the Qilianyu Subgroup (QLY). The results showed that there was a significant (P ≤ 0.05) difference between test and control groups after 28 days if the invalid replicates were excluded. Rates of tissue loss ranged from 0.90-10.76 cm(2) d(-1) with a mean of 5.40 ± 3.34 cm(2) d(-1) (mean ± SD). Bacterial strains were isolated from the PAWS corals at the disease outbreak sites in QLY of the Xisha Archipelago, South China Sea, and included in laboratory-based infection trials to satisfy Koch's postulates for establishing causality. Following exposure to bacterial concentrations of 10(5) cells mL(-1), the infected colonies exhibited similar signs to those observed in the field. Using phylogenetic 16S rRNA gene analysis, classical phenotypic trait comparison, Biolog automatic identification system, MALDI-TOF mass spectrometry and MALDI Biotyper method, two pathogenic strains were identified as Vibrio alginolyticus . This is the first report of V. alginolyticus as a pathogenic agent of PAWS in the South China Sea. Our results point out an urgent need to develop sensitive detection methods for V. alginolyticus virulence strains and robust diagnostics for coral disease caused by this and Vibrio pathogenic bacterium in the South China Sea.

  11. First Characterization of Bacterial Pathogen, Vibrio alginolyticus, for Porites andrewsi White Syndrome in the South China Sea

    PubMed Central

    Chaoqun, Hu; Zhixiong, Zhu; Shifeng, Wang; Yongcan, Zhou

    2013-01-01

    Background White syndrome, a term for scleractinian coral disease with progressive tissue loss, is known to cause depressed growth and increased morality of coral reefs in the major oceans around the world, and the occurrence of this disease has been frequently reported in the past few decades. Investigations during April to September in both 2010 and 2011 identified widespread Porites andrewsi White syndrome (PAWS) in Xisha Archipelago, South China Sea. However, the causes and etiology of PAWS have been unknown. Methodology/Principal Findings A transmission experiment was performed on P . andrewsi in the Qilianyu Subgroup (QLY). The results showed that there was a significant (P ≤ 0.05) difference between test and control groups after 28 days if the invalid replicates were excluded. Rates of tissue loss ranged from 0.90-10.76 cm2 d-1 with a mean of 5.40 ± 3.34 cm2 d-1 (mean ± SD). Bacterial strains were isolated from the PAWS corals at the disease outbreak sites in QLY of the Xisha Archipelago, South China Sea, and included in laboratory-based infection trials to satisfy Koch’s postulates for establishing causality. Following exposure to bacterial concentrations of 105 cells mL-1, the infected colonies exhibited similar signs to those observed in the field. Using phylogenetic 16S rRNA gene analysis, classical phenotypic trait comparison, Biolog automatic identification system, MALDI-TOF mass spectrometry and MALDI Biotyper method, two pathogenic strains were identified as Vibrio alginolyticus . Conclusion/Significance This is the first report of V . alginolyticus as a pathogenic agent of PAWS in the South China Sea. Our results point out an urgent need to develop sensitive detection methods for V . alginolyticus virulence strains and robust diagnostics for coral disease caused by this and Vibrio pathogenic bacterium in the South China Sea. PMID:24086529

  12. Corals diseases are a major cause of coral death

    EPA Science Inventory

    Corals, like humans, are susceptible to diseases. Some coral diseases are associated with pathogenic bacteria; however, the causes of most remain unknown. Some diseases trigger rapid and extensive mortality, while others slowly cause localized color changes or injure coral tiss...

  13. Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease

    PubMed Central

    Casey, Jordan M.; Ainsworth, Tracy D.; Choat, J. Howard; Connolly, Sean R.

    2014-01-01

    Microbial community structure on coral reefs is strongly influenced by coral–algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes's territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans's territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease. PMID:24966320

  14. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals

    NASA Astrophysics Data System (ADS)

    Katz, Sefano M.; Pollock, F. Joseph; Bourne, David G.; Willis, Bette L.

    2014-09-01

    Brown band (BrB) disease manifests on corals as a ciliate-dominated lesion that typically progresses rapidly causing extensive mortality, but it is unclear whether the dominant ciliate Porpostoma guamense is a primary or an opportunistic pathogen, the latter taking advantage of compromised coral tissue or depressed host resistance. In this study, manipulative aquarium-based experiments were used to investigate the role of P. guamense as a pathogen when inoculated onto fragments of the coral Acropora hyacinthus that were either healthy, preyed on by Acanthaster planci (crown-of-thorns starfish; COTS), or experimentally injured. Following ciliate inoculation, BrB lesions developed on all of COTS-predated fragments ( n = 9 fragments) and progressed up to 4.6 ± 0.3 cm d-1, resulting in ~70 % of coral tissue loss after 4 d. Similarly, BrB lesions developed rapidly on experimentally injured corals and ~38 % of coral tissue area was lost 60 h after inoculation. In contrast, no BrB lesions were observed on healthy corals following experimental inoculations. A choice experiment demonstrated that ciliates are strongly attracted to physically injured corals, with over 55 % of inoculated ciliates migrating to injured corals and forming distinct lesions, whereas ciliates did not migrate to healthy corals. Our results indicate that ciliates characteristic of BrB disease are opportunistic pathogens that rapidly migrate to and colonise compromised coral tissue, leading to rapid coral mortality, particularly following predation or injury. Predicted increases in tropical storms, cyclones, and COTS outbreaks are likely to increase the incidence of coral injury in the near future, promoting BrB disease and further contributing to declines in coral cover.

  15. Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease.

    PubMed

    Casey, Jordan M; Ainsworth, Tracy D; Choat, J Howard; Connolly, Sean R

    2014-08-07

    Microbial community structure on coral reefs is strongly influenced by coral-algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes's territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans's territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Unseen players shape benthic competition on coral reefs.

    PubMed

    Barott, Katie L; Rohwer, Forest L

    2012-12-01

    Recent work has shown that hydrophilic and hydrophobic organic matter (OM) from algae disrupts the function of the coral holobiont and promotes the invasion of opportunistic pathogens, leading to coral morbidity and mortality. Here we refer to these dynamics as the (3)DAM [dissolved organic matter (DOM), direct contact, disease, algae and microbes] model. There is considerable complexity in coral-algae interactions; turf algae and macroalgae promote heterotrophic microbial overgrowth of coral, macroalgae also directly harm the corals via hydrophobic OM, whereas crustose coralline algae generally encourage benign microbial communities. In addition, complex flow patterns transport OM and pathogens from algae to downstream corals, and direct algal contact enhances their delivery. These invisible players (microbes, viruses, and OM) are important drivers of coral reefs because they have non-linear responses to disturbances and are the first to change in response to perturbations, providing near real-time trajectories for a coral reef, a vital metric for conservation and restoration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease.

    PubMed

    Nicolet, K J; Chong-Seng, K M; Pratchett, M S; Willis, B L; Hoogenboom, M O

    2018-03-27

    Infectious diseases not regulated by host density, such as vector-borne diseases, have the potential to drive population declines and extinctions. Here we test the vector potential of the snail Drupella sp. and butterflyfish Chaetodon plebeius for two coral diseases, black band (BBD) and brown band (BrB) disease. Drupella transmitted BrB to healthy corals in 40% of cases immediately following feeding on infected corals, and even in 12% of cases 12 and 24 hours following feeding. However, Drupella was unable to transmit BBD in either transmission treatment. In a field experiment testing the vector potential of naturally-occurring fish assemblages, equivalent numbers of caged and uncaged coral fragments became infected with either BrB, BBD or skeletal eroding band, indicating that corallivorous fish were unlikely to have caused transmission. In aquaria, C. plebeius did not transmit either BBD or BrB, even following extended feeding on both infected and healthy nubbins. A literature review confirmed only four known coral disease vectors, all invertebrates, corroborating our conclusion that polyp-feeding fishes are unlikely to be vectors of coral diseases. This potentially because polyp-feeding fishes produce shallow lesions, not allowing pathogens to invade coral tissues. In contrast, corallivorous invertebrates that create deeper feeding scars increase pathogens transmission.

  18. White Band Disease (type I) of endangered caribbean acroporid corals is caused by pathogenic bacteria.

    PubMed

    Kline, David I; Vollmer, Steven V

    2011-01-01

    Diseases affecting coral reefs have increased exponentially over the last three decades and contributed to their decline, particularly in the Caribbean. In most cases, the responsible pathogens have not been isolated, often due to the difficulty in isolating and culturing marine bacteria. White Band Disease (WBD) has caused unprecedented declines in the Caribbean acroporid corals, resulting in their listings as threatened on the US Threatened and Endangered Species List and critically endangered on the IUCN Red List. Yet, despite the importance of WBD, the probable pathogen(s) have not yet been determined. Here we present in situ transmission data from a series of filtrate and antibiotic treatments of disease tissue that indicate that WBD is contagious and caused by bacterial pathogen(s). Additionally our data suggest that Ampicillin could be considered as a treatment for WBD (type I).

  19. Status and progress in coral reef disease research.

    PubMed

    Weil, Ernesto; Smith, Garriet; Gil-Agudelo, Diego L

    2006-03-23

    Recent findings on the ecology, etiology and pathology of coral pathogens, host resistance mechanisms, previously unknown disease/syndromes and the global nature of coral reef diseases have increased our concern about the health and future of coral reef communities. Much of what has been discovered in the past 4 years is presented in this special issue. Among the significant findings, the role that various Vibrio species play in coral disease and health, the composition of the 'normal microbiota' of corals, and the possible role of viruses in the disease process are important additions to our knowledge. New information concerning disease resistance and vectors, variation in pathogen composition for both fungal diseases of gorgonians and black band disease across oceans, environmental effects on disease susceptibility and resistance, and temporal and spatial disease variations among different coral species is presented in a number of papers. While the Caribbean may still be the 'disease hot spot' for coral reefs, it is now clear that diseases of coral reef organisms have become a global threat to coral reefs and a major cause of reef deterioration.

  20. Phage therapy for Florida corals?

    USGS Publications Warehouse

    Kellogg, Christina A.

    2007-01-01

    Coral disease is a major cause of reef decline in the Florida Keys. Bacterium has been defined as the most common pathogen (disease-causing organism). Although much is being done to catalog coral diseases, map their locations, determine the causes of disease, or measure the rates of coral demise, very little research has been directed toward actually preventing or eliminating the diseases affecting coral and coral reef decline.

  1. Isolation of potential fungal pathogens in gorgonian corals at the Tropical Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Barrero-Canosa, J.; Dueñas, L. F.; Sánchez, J. A.

    2013-03-01

    A major environmental problem in the ocean is the alarming increase in diseases affecting diverse marine organisms including corals. Environmental factors such as the rising seawater temperatures and terrestrial microbial input to the ocean have contributed to the increase in diseased organisms. We isolated and identified the fungal agents that may be leading to a disease in the Pacific sea fan Pacifigorgia eximia (Gorgoniidae, Octocorallia) in the Tropical Eastern Pacific. We isolated thirteen fungal genera in healthy and diseased colonies including Aspergillus sydowii. Aspergillus has been previously identified as responsible for the mortality of gorgonian corals in the Caribbean. This disease was observed in the Eastern Pacific affecting a completely different set of species nearly 30 years after the Caribbean outbreak, which concur with rising seawater temperatures and thermal anomalies that have been observed in the last 4 years.

  2. Sea fan immunity and disease is influenced by metal pollution, host demography, and multiple stressors

    NASA Astrophysics Data System (ADS)

    Tracy, A. M.; Weil, E.; Harvell, C. D.

    2016-02-01

    Organisms in natural populations experience an onslaught of stressful conditions that may compromise their ability to fight pathogens, particularly if multiple stressors impact a host at the same time. Environmental stressors can also influence the pathogens. Despite the clear importance of environmental factors for coral host-pathogen interactions and the potential for population-level consequences, there is relatively little research to date on multiple stressors. The population of Caribbean sea fans, Gorgonia ventalina, in Parguera, Puerto Rico is a tractable system in which to study the effects of multiple stressors on two pathogens. Sea fans are dominant members of reefs that provide food and habitat for diverse reef inhabitants. In addition, there is already a foundation of research on sea fan disease and immunity. We first conducted field surveys of 15 sites to assess the effects of demographic and environmental factors on the prevalence and severity of multifocal purple spots (MFPS) and a Labyrinthulid stramenopile pathogen, as well as the host's cellular immune response to each pathogen. We complemented the field survey with a fully factorial, clonally replicated experiment on the separate and combined effects of thermal stress and copper pollution on both the host and the pathogen. Although water quality has been linked to coral disease, there are no studies investigating the role of metal or chemical pollutants, which are high at some of our study sites. Preliminary results show that the sea fan immune response to the Labyrinthulid depends on interactive effects of copper and thermal stress. The field survey identifies colony size as the main driver of MFPS. This in-depth perspective on sea fan disease speaks to the immune capabilities of cnidarians, highlights factors that modify those capabilities, and reflects the complex interaction of host, pathogens, and environment in this ecologically important coral.

  3. Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral.

    PubMed

    Gignoux-Wolfsohn, Sarah A; Aronson, Felicia M; Vollmer, Steven V

    2017-07-01

    Increased bacterial diversity on diseased corals can obscure disease etiology and complicate our understanding of pathogenesis. To untangle microbes that may cause white band disease signs from microbes responding to disease, we inoculated healthy Acropora cervicornis corals with an infectious dose from visibly diseased corals. We sampled these dosed corals and healthy controls over time for sequencing of the bacterial 16S region. Endozoicomonas were associated with healthy fragments from 4/10 colonies, dominating microbiomes before dosing and decreasing over time only in corals that displayed disease signs, suggesting a role in disease resistance. We grouped disease-associated bacteria by when they increased in abundance (primary vs secondary) and whether they originated in the dose (colonizers) or the previously healthy corals (responders). We found that all primary responders increased in all dosed corals regardless of final disease state and are therefore unlikely to cause disease signs. In contrast, primary colonizers in the families Pasteurellaceae and Francisellaceae increased solely in dosed corals that ultimately displayed disease signs, and may be infectious foreign bacteria involved in the development of disease signs. Moving away from a static comparison of diseased and healthy bacterial communities, we provide a framework to identify key players in other coral diseases. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Immune response of the Caribbean sea fan, Gorgonia ventalina, exposed to an Aplanochytrium parasite as revealed by transcriptome sequencing

    PubMed Central

    Burge, Colleen A.; Mouchka, Morgan E.; Harvell, C. Drew; Roberts, Steven

    2013-01-01

    Coral reef communities are undergoing marked declines due to a variety of stressors including disease. The sea fan coral, Gorgonia ventalina, is a tractable study system to investigate mechanisms of immunity to a naturally occurring pathogen. Functional studies in Gorgonia ventalina immunity indicate that several key pathways and cellular components are involved in response to natural microbial invaders, although to date the functional and regulatory pathways remain largely un-described. This study used short-read sequencing (Illumina GAIIx) to identify genes involved in the response of G. ventalina to a naturally occurring Aplanochytrium spp. parasite. De novo assembly of the G. ventalina transcriptome yielded 90,230 contigs of which 40,142 were annotated. RNA-Seq analysis revealed 210 differentially expressed genes in sea fans exposed to the Aplanochytrium parasite. Differentially expressed genes involved in immunity include pattern recognition molecules, anti-microbial peptides, and genes involved in wound repair and reactive oxygen species formation. Gene enrichment analysis indicated eight biological processes were enriched representing 36 genes, largely involved with protein translation and energy production. This is the first report using high-throughput sequencing to characterize the host response of a coral to a natural pathogen. Furthermore, we have generated the first transcriptome for a soft (octocoral or non-scleractinian) coral species. Expression analysis revealed genes important in invertebrate innate immune pathways, as well as those whose role is previously un-described in cnidarians. This resource will be valuable in characterizing G. ventalina immune response to infection and co-infection of pathogens in the context of environmental change. PMID:23898300

  5. Big Data Approaches To Coral-Microbe Symbiosis

    NASA Astrophysics Data System (ADS)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  6. Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance

    PubMed Central

    Bromhall, Katrina; Motti, Cherie A.; Munn, Colin B.; Bourne, David G.

    2016-01-01

    ABSTRACT Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg · ml−1) than calculated natural concentrations (4.4 mg · ml−1). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. IMPORTANCE Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure. PMID:27795310

  7. Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance.

    PubMed

    Morrow, Kathleen M; Bromhall, Katrina; Motti, Cherie A; Munn, Colin B; Bourne, David G

    2017-01-01

    Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg · ml -1 ) than calculated natural concentrations (4.4 mg · ml -1 ). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure. © Crown copyright 2016.

  8. Structure and temporal dynamics of the bacterial communities associated to microhabitats of the coral Oculina patagonica.

    PubMed

    Rubio-Portillo, Esther; Santos, Fernando; Martínez-García, Manuel; de Los Ríos, Asunción; Ascaso, Carmen; Souza-Egipsy, Virginia; Ramos-Esplá, Alfonso A; Anton, Josefa

    2016-12-01

    Corals are known to contain a diverse microbiota that plays a paramount role in the physiology and health of holobiont. However, few studies have addressed the variability of bacterial communities within the coral host. In this study, bacterial community composition from the mucus, tissue and skeleton of the scleractinian coral Oculina patagonica were investigated seasonally at two locations in the Western Mediterranean Sea, to further understand how environmental conditions and the coral microbiome structure are related. We used denaturing gradient gel electrophoresis in combination with next-generation sequencing and electron microscopy to characterize the bacterial community. The bacterial communities were significantly different among coral compartments, and coral tissue displayed the greatest changes related to environmental conditions and coral health status. Species belonging to the Rhodobacteraceae and Vibrionaceae families form part of O. patagonica tissues core microbiome and may play significant roles in the nitrogen cycle. Furthermore, sequences related to the coral pathogens, Vibrio mediterranei and Vibrio coralliilyticus, were detected not only in bleached corals but also in healthy ones, even during cold months. This fact opens a new view onto unveiling the role of pathogens in the development of coral diseases in the future. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Microbiota of Healthy Corals Are Active against Fungi in a Light-Dependent Manner

    PubMed Central

    2015-01-01

    Coral reefs are intricate ecosystems that harbor diverse organisms, including 25% of all marine fish. Healthy corals exhibit a complex symbiosis between coral polyps, endosymbiotic alga, and an array of microorganisms, called the coral holobiont. Secretion of specialized metabolites by coral microbiota is thought to contribute to the defense of this sessile organism against harmful biotic and abiotic factors. While few causative agents of coral diseases have been unequivocally identified, fungi have been implicated in the massive destruction of some soft corals worldwide. Because corals are nocturnal feeders, they may be more vulnerable to fungal infection at night, and we hypothesized that the coral microbiota would have the capability to enhance their defenses against fungi in the dark. A Pseudoalteromonas sp. isolated from a healthy octocoral displayed light-dependent antifungal properties when grown adjacent to Penicilliumcitrinum (P. citrinum) isolated from a diseased Gorgonian octocoral. Microbial MALDI-imaging mass spectrometry (IMS) coupled with molecular network analyses revealed that Pseudoalteromonas produced higher levels of antifungal polyketide alteramides in the dark than in the light. The alteramides were inactivated by light through a photoinduced intramolecular cyclization. Further NMR studies led to a revision of the stereochemical structure of the alteramides. Alteramide A exhibited antifungal properties and elicited changes in fungal metabolite distributions of mycotoxin citrinin and citrinadins. These data support the hypothesis that coral microbiota use abiotic factors such as light to regulate the production of metabolites with specialized functions to combat opportunistic pathogens at night. PMID:25058318

  10. To understand coral disease, look at coral cells

    USGS Publications Warehouse

    Work, Thierry M.; Meteyer, Carol U.

    2014-01-01

    Diseases threaten corals globally, but 40 years on their causes remain mostly unknown. We hypothesize that inconsistent application of a complete diagnostic approach to coral disease has contributed to this slow progress. We quantified methods used to investigate coral disease in 492 papers published between 1965 and 2013. Field surveys were used in 65% of the papers, followed by biodetection (43%), laboratory trials (20%), microscopic pathology (21%), and field trials (9%). Of the microscopic pathology efforts, 57% involved standard histopathology at the light microscopic level (12% of the total investigations), with the remainder dedicated to electron or fluorescence microscopy. Most (74%) biodetection efforts focused on culture or molecular characterization of bacteria or fungi from corals. Molecular and immunological tools have been used to incriminate infectious agents (mainly bacteria) as the cause of coral diseases without relating the agent to specific changes in cell and tissue pathology. Of 19 papers that declared an infectious agent as a cause of disease in corals, only one (5%) used microscopic pathology, and none fulfilled all of the criteria required to satisfy Koch’s postulates as applied to animal diseases currently. Vertebrate diseases of skin and mucosal surfaces present challenges similar to corals when trying to identify a pathogen from a vast array of environmental microbes, and diagnostic approaches regularly used in these cases might provide a model for investigating coral diseases. We hope this review will encourage specialists of disease in domestic animals, wildlife, fish, shellfish, and humans to contribute to the emerging field of coral disease.

  11. Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples

    USGS Publications Warehouse

    Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.

    2014-01-01

    Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.

  12. Fungi in healthy and diseased sea fans ( Gorgonia ventalina): is Aspergillus sydowii always the pathogen?

    NASA Astrophysics Data System (ADS)

    Toledo-Hernández, C.; Zuluaga-Montero, A.; Bones-González, A.; Rodríguez, J. A.; Sabat, A. M.; Bayman, P.

    2008-09-01

    Caribbean corals, including sea fans ( Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an oversimplification at best.

  13. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome

    PubMed Central

    Roder, Cornelia; Arif, Chatchanit; Daniels, Camille; Weil, Ernesto; Voolstra, Christian R

    2014-01-01

    Coral diseases are characterized by microbial community shifts in coral mucus and tissue, but causes and consequences of these changes are vaguely understood due to the complexity and dynamics of coral-associated bacteria. We used 16S rRNA gene microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially abundant operational taxonomic units (OTUs) revealed strong differences between healthy and diseased specimens, but not between coral species. A subsequent comparison to data from two Indo-Pacific coral species (Pavona duerdeni and Porites lutea) revealed distinct microbial community patterns associated with ocean basin, coral species and health state. Coral species were clearly separated by site, but also, the relatedness of the underlying bacterial community structures resembled the phylogenetic relationship of the coral hosts. In diseased samples, bacterial richness increased and putatively opportunistic bacteria were consistently more abundant highlighting the role of opportunistic conditions in structuring microbial community patterns during disease. Our comparative analysis shows that it is possible to derive conserved bacterial footprints of diseased coral holobionts that might help in identifying key bacterial species related to the underlying etiopathology. Furthermore, our data demonstrate that similar-appearing disease phenotypes produce microbial community patterns that are consistent over coral species and oceans, irrespective of the putative underlying pathogen. Consequently, profiling coral diseases by microbial community structure over multiple coral species might allow the development of a comparative disease framework that can inform on cause and relatedness of coral diseases. PMID:24350609

  14. Global microbialization of coral reefs.

    PubMed

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  15. Systematic Analysis of White Pox Disease in Acropora palmata of the Florida Keys and Role of Serratia marcescens

    PubMed Central

    Joyner, Jessica L.; Sutherland, Kathryn P.; Kemp, Dustin W.; Berry, Brett; Griffin, Ashton; Porter, James W.; Amador, Molly H. B.; Noren, Hunter K. G.

    2015-01-01

    White pox disease (WPD) affects the threatened elkhorn coral, Acropora palmata. Owing in part to the lack of a rapid and simple diagnostic test, there have been few systematic assessments of the prevalence of acroporid serratiosis (caused specifically by Serratia marcescens) versus general WPD signs. Six reefs in the Florida Keys were surveyed between 2011 and 2013 to determine the disease status of A. palmata and the prevalence of S. marcescens. WPD was noted at four of the six reefs, with WPD lesions found on 8 to 40% of the colonies surveyed. S. marcescens was detected in 26.9% (7/26) of the WPD lesions and in mucus from apparently healthy colonies both during and outside of disease events (9%; 18/201). S. marcescens was detected with greater frequency in A. palmata than in the overlying water column, regardless of disease status (P = 0.0177). S. marcescens could not be cultured from A. palmata but was isolated from healthy colonies of other coral species and was identified as pathogenic pulsed-field gel electrophoresis type PDR60. WPD lesions were frequently observed on the reef, but unlike in prior outbreaks, no whole-colony death was observed. Pathogenic S. marcescens was circulating on the reef but did not appear to be the primary pathogen in these recent WPD episodes, suggesting that other pathogens or stressors may contribute to signs of WPD. Results highlight the critical importance of diagnostics in coral disease investigations, especially given that field manifestation of disease may be similar, regardless of the etiological agent. PMID:25911491

  16. Biomedical and veterinary science can increase our understanding of coral disease

    USGS Publications Warehouse

    Work, Thierry M.; Richardson, Laurie L.; Reynolds, T.L.; Willis, Bette L.

    2008-01-01

    A balanced approach to coral disease investigation is critical for understanding the global decline of corals. Such an approach should involve the proper use of biomedical concepts, tools, and terminology to address confusion and promote clarity in the coral disease literature. Investigating disease in corals should follow a logical series of steps including identification of disease, systematic morphologic descriptions of lesions at the gross and cellular levels, measurement of health indices, and experiments to understand disease pathogenesis and the complex interactions between host, pathogen, and the environment. This model for disease investigation is widely accepted in the medical, veterinary and invertebrate pathology disciplines. We present standard biomedical rationale behind the detection, description, and naming of diseases and offer examples of the application of Koch's postulates to elucidate the etiology of some infectious diseases. Basic epidemiologic concepts are introduced to help investigators think systematically about the cause(s) of complex diseases. A major goal of disease investigation in corals and other organisms is to gather data that will enable the establishment of standardized case definitions to distinguish among diseases. Concepts and facts amassed from empirical studies over the centuries by medical and veterinary pathologists have standardized disease investigation and are invaluable to coral researchers because of the robust comparisons they enable; examples of these are given throughout this paper. Arguments over whether coral diseases are caused by primary versus opportunistic pathogens reflect the lack of data available to prove or refute such hypotheses and emphasize the need for coral disease investigations that focus on: characterizing the normal microbiota and physiology of the healthy host; defining ecological interactions within the microbial community associated with the host; and investigating host immunity, host-agent interactions, pathology, pathogenesis, and factors that promote the pathogenicity of the causative agent(s) of disease.

  17. Cellular Responses in Sea Fan Corals: Granular Amoebocytes React to Pathogen and Climate Stressors

    PubMed Central

    Mydlarz, Laura D.; Holthouse, Sally F.; Peters, Esther C.; Harvell, C. Drew

    2008-01-01

    Background Climate warming is causing environmental change making both marine and terrestrial organisms, and even humans, more susceptible to emerging diseases. Coral reefs are among the most impacted ecosystems by climate stress, and immunity of corals, the most ancient of metazoans, is poorly known. Although coral mortality due to infectious diseases and temperature-related stress is on the rise, the immune effector mechanisms that contribute to the resistance of corals to such events remain elusive. In the Caribbean sea fan corals (Anthozoa, Alcyonacea: Gorgoniidae), the cell-based immune defenses are granular acidophilic amoebocytes, which are known to be involved in wound repair and histocompatibility. Methodology/Principal Findings We demonstrate for the first time in corals that these cells are involved in the organismal response to pathogenic and temperature stress. In sea fans with both naturally occurring infections and experimental inoculations with the fungal pathogen Aspergillus sydowii, an inflammatory response, characterized by a massive increase of amoebocytes, was evident near infections. Melanosomes were detected in amoebocytes adjacent to protective melanin bands in infected sea fans; neither was present in uninfected fans. In naturally infected sea fans a concurrent increase in prophenoloxidase activity was detected in infected tissues with dense amoebocytes. Sea fans sampled in the field during the 2005 Caribbean Bleaching Event (a once-in-hundred-year climate event) responded to heat stress with a systemic increase in amoebocytes and amoebocyte densities were also increased by elevated temperature stress in lab experiments. Conclusions/Significance The observed amoebocyte responses indicate that sea fan corals use cellular defenses to combat fungal infection and temperature stress. The ability to mount an inflammatory response may be a contributing factor that allowed the survival of even infected sea fan corals during a stressful climate event. PMID:18364996

  18. Community Shifts in the Surface Microbiomes of the Coral Porites astreoides with Unusual Lesions

    PubMed Central

    Meyer, Julie L.; Paul, Valerie J.; Teplitski, Max

    2014-01-01

    Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa. PMID:24937478

  19. Chemotaxis by natural populations of coral reef bacteria.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  20. Ballast water as a vector of coral pathogens in the Gulf of Mexico: the case of the Cayo Arcas coral reef.

    PubMed

    Aguirre-Macedo, M Leopoldina; Vidal-Martinez, Victor M; Herrera-Silveira, Jorge A; Valdés-Lozano, David S; Herrera-Rodríguez, Miguel; Olvera-Novoa, Miguel A

    2008-09-01

    The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with "white pox" and "white plague type II" coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.

  1. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    PubMed

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.

  2. Fine-structural analysis of black band disease-infected coral reveals boring cyanobacteria and novel bacteria.

    PubMed

    Miller, Aaron W; Blackwelder, Patricia; Al-Sayegh, Husain; Richardson, Laurie L

    2011-02-22

    Examination of coral fragments infected with black band disease (BBD) at the fine- and ultrastructural levels using scanning (SEM) and transmission electron microscopy (TEM) revealed novel features of the disease. SEM images of the skeleton from the host coral investigated (Montastraea annularis species complex) revealed extensive boring underneath the BBD mat, with cyanobacterial filaments present within some of the bore holes. Cyanobacteria were observed to penetrate into the overlying coral tissue from within the skeleton and were present throughout the mesoglea between tissue layers (coral epidermis and gastrodermis). A population of novel, as yet unidentified, small filamentous bacteria was found at the leading edge of the migrating band. This population increased in number within the band and was present within degrading coral epithelium, suggesting a role in disease etiology. In coral tissue in front of the leading edge of the band, cyanobacterial filaments were observed to be emerging from bundles of sloughed-off epidermal tissue. Degraded gastrodermis that contained actively dividing zooxanthellae was observed using both TEM and SEM. The BBD mat contained cyanobacterial filaments that were twisted, characteristic of negative-tactic responses. Some evidence of boring was found in apparently healthy control coral fragments; however, unlike in BBD-infected fragments, there were no associated cyanobacteria. These results suggest the coral skeleton as a possible source of pathogenic BBD cyanobacteria. Additionally, SEM revealed the presence of a potentially important group of small, filamentous BBD-associated bacteria yet to be identified.

  3. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton.

    PubMed

    Cárdenas, Anny; Neave, Matthew J; Haroon, Mohamed Fauzi; Pogoreutz, Claudia; Rädecker, Nils; Wild, Christian; Gärdes, Astrid; Voolstra, Christian R

    2018-01-01

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  4. Systematic Analysis of White Pox Disease in Acropora palmata of the Florida Keys and Role of Serratia marcescens.

    PubMed

    Joyner, Jessica L; Sutherland, Kathryn P; Kemp, Dustin W; Berry, Brett; Griffin, Ashton; Porter, James W; Amador, Molly H B; Noren, Hunter K G; Lipp, Erin K

    2015-07-01

    White pox disease (WPD) affects the threatened elkhorn coral, Acropora palmata. Owing in part to the lack of a rapid and simple diagnostic test, there have been few systematic assessments of the prevalence of acroporid serratiosis (caused specifically by Serratia marcescens) versus general WPD signs. Six reefs in the Florida Keys were surveyed between 2011 and 2013 to determine the disease status of A. palmata and the prevalence of S. marcescens. WPD was noted at four of the six reefs, with WPD lesions found on 8 to 40% of the colonies surveyed. S. marcescens was detected in 26.9% (7/26) of the WPD lesions and in mucus from apparently healthy colonies both during and outside of disease events (9%; 18/201). S. marcescens was detected with greater frequency in A. palmata than in the overlying water column, regardless of disease status (P = 0.0177). S. marcescens could not be cultured from A. palmata but was isolated from healthy colonies of other coral species and was identified as pathogenic pulsed-field gel electrophoresis type PDR60. WPD lesions were frequently observed on the reef, but unlike in prior outbreaks, no whole-colony death was observed. Pathogenic S. marcescens was circulating on the reef but did not appear to be the primary pathogen in these recent WPD episodes, suggesting that other pathogens or stressors may contribute to signs of WPD. Results highlight the critical importance of diagnostics in coral disease investigations, especially given that field manifestation of disease may be similar, regardless of the etiological agent. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals

    PubMed Central

    Palmer, Caroline V; Mydlarz, Laura D; Willis, Bette L

    2008-01-01

    Increasing evidence of links between climate change, anthropogenic stress and coral disease underscores the importance of understanding the mechanisms by which reef-building corals resist infection and recover from injury. Cellular inflammation and melanin-producing signalling pathway are two mechanisms employed by invertebrates to remove foreign organisms such as pathogens, but they have not been recorded previously in scleractinian corals. This study demonstrates the presence of the phenoloxidase (PO) activating melanin pathway in two species of coral, Acropora millepora and a massive species of Porites, which both develop local pigmentation in response to interactions with a variety of organisms. l-DOPA (3-(3,4-dihydroxyphenyl)-l-alanine) substrate-based enzyme activation assays demonstrated PO activity in healthy tissues of both species and upregulation in pigmented tissues of A. millepora. Histological staining conclusively identified the presence of melanin in Porites tissues. These results demonstrate that the PO pathway is active in both coral species. Moreover, the upregulation of PO activity in areas of non-normal pigmentation in A. millepora and increased melanin production in pigmented Porites tissues suggest the presence of a generalized defence response to localized stress. Interspecific differences in the usage of pathways involved in innate immunity may underlie the comparative success of massive Porites sp. as long-lived stress tolerators. PMID:18700208

  6. Using NanoSIMS coupled with microfluidics to visualize the early stages of coral infection by Vibrio coralliilyticus.

    PubMed

    Gibbin, E; Gavish, A; Domart-Coulon, I; Kramarsky-Winter, E; Shapiro, O; Meibom, A; Vardi, A

    2018-04-20

    Global warming has triggered an increase in the prevalence and severity of coral disease, yet little is known about coral/pathogen interactions in the early stages of infection. The point of entry of the pathogen and the route that they take once inside the polyp is currently unknown, as is the coral's capacity to respond to infection. To address these questions, we developed a novel method that combines stable isotope labelling and microfluidics with transmission electron microscopy (TEM) and nanoscale secondary ion mass spectrometry (NanoSIMS), to monitor the infection process between Pocillopora damicornis and Vibrio coralliilyticus under elevated temperature. Three coral fragments were inoculated with 15 N-labeled V. coralliilyticus and then fixed at 2.5, 6 and 22 h post-inoculation (hpi) according to the virulence of the infection. Correlative TEM/NanoSIMS imaging was subsequently used to visualize the penetration and dispersal of V. coralliilyticus and their degradation or secretion products. Most of the V. coralliilyticus cells we observed were located in the oral epidermis of the fragment that experienced the most virulent infection (2.5 hpi). In some cases, these bacteria were enclosed within electron dense host-derived intracellular vesicles. 15 N-enriched pathogen-derived breakdown products were visible in all tissue layers of the coral polyp (oral epidermis, oral gastrodermis, aboral gastrodermis), at all time points, although the relative 15 N-enrichment depended on the time at which the corals were fixed. Tissues in the mesentery filaments had the highest density of 15 N-enriched hotspots, suggesting these tissues act as a "collection and digestion" site for pathogenic bacteria. Closer examination of the sub-cellular structures associated with these 15 N-hotspots revealed these to be host phagosomal and secretory cells/vesicles. This study provides a novel method for tracking bacterial infection dynamics at the levels of the tissue and single cell and takes the first steps towards understanding the complexities of infection at the microscale, which is a crucial step towards understanding how corals will fare under global warming.

  7. Coral Disease Diagnostics: What's between a Plague and a Band?▿

    PubMed Central

    Ainsworth, T. D.; Kramasky-Winter, E.; Loya, Y.; Hoegh-Guldberg, O.; Fine, M.

    2007-01-01

    Recently, reports of coral disease have increased significantly across the world's tropical oceans. Despite increasing efforts to understand the changing incidence of coral disease, very few primary pathogens have been identified, and most studies remain dependent on the external appearance of corals for diagnosis. Given this situation, our current understanding of coral disease and the progression and underlying causes thereof is very limited. In the present study, we use structural and microbial studies to differentiate different forms of black band disease: atypical black band disease and typical black band disease. Atypical black band diseased corals were infected with the black band disease microbial consortium yet did not show any of the typical external signs of black band disease based on macroscopic observations. In previous studies, these examples, here referred to as atypical black band disease, would have not been correctly diagnosed. We also differentiate white syndrome from white diseases on the basis of tissue structure and the presence/absence of microbial associates. White diseases are those with dense bacterial communities associated with lesions of symbiont loss and/or extensive necrosis of tissues, while white syndromes are characteristically bacterium free, with evidence for extensive programmed cell death/apoptosis associated with the lesion and the adjacent tissues. The pathology of coral disease as a whole requires further investigation. This study emphasizes the importance of going beyond the external macroscopic signs of coral disease for accurate disease diagnosis. PMID:17158622

  8. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals.

    PubMed

    Shapiro, Orr H; Kramarsky-Winter, Esti; Gavish, Assaf R; Stocker, Roman; Vardi, Assaf

    2016-03-04

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology.

  9. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae

    PubMed Central

    Barott, Katie L.; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L.; Vermeij, Mark J. A.; Smith, Jennifer E.; Rohwer, Forest L.

    2012-01-01

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral–CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs. PMID:22090385

  10. Bacterial predation in a marine host-associated microbiome.

    PubMed

    Welsh, Rory M; Zaneveld, Jesse R; Rosales, Stephanie M; Payet, Jérôme P; Burkepile, Deron E; Thurber, Rebecca Vega

    2016-06-01

    In many ecological communities, predation has a key role in regulating community structure or function. Although predation has been extensively explored in animals and microbial eukaryotes, predation by bacteria is less well understood. Here we show that predatory bacteria of the genus Halobacteriovorax are prevalent and active predators on the surface of several genera of reef-building corals. Across a library of 198 16S rRNA samples spanning three coral genera, 79% were positive for carriage of Halobacteriovorax. Cultured Halobacteriovorax from Porites asteroides corals tested positive for predation on the putative coral pathogens Vibrio corallyticus and Vibrio harveyii. Co-occurrence network analysis showed that Halobacteriovorax's interactions with other bacteria are influenced by temperature and inorganic nutrient concentration, and further suggested that this bacterial predator's abundance may be driven by prey availability. Thus, animal microbiomes can harbor active bacterial predators, which may regulate microbiome structure and protect the host by consuming potential pathogens.

  11. Sewage pollution: mitigation is key for coral reef stewardship.

    PubMed

    Wear, Stephanie L; Thurber, Rebecca Vega

    2015-10-01

    Coral reefs are in decline worldwide, and land-derived sources of pollution, including sewage, are a major force driving that deterioration. This review presents evidence that sewage discharge occurs in waters surrounding at least 104 of 112 reef geographies. Studies often refer to sewage as a single stressor. However, we show that it is more accurately characterized as a multiple stressor. Many of the individual agents found within sewage, specifically freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair coral growth and/or reproduction. These components of sewage may interact with each other to create as-yet poorly understood synergisms (e.g., nutrients facilitate pathogen growth), and escalate impacts of other, non-sewage-based stressors. Surprisingly few published studies have examined impacts of sewage in the field, but those that have suggest negative effects on coral reefs. Because sewage discharge proximal to sensitive coral reefs is widespread across the tropics, it is imperative for coral reef-focused institutions to increase investment in threat-abatement strategies for mitigating sewage pollution. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  12. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    PubMed Central

    Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  13. The Year in Ecology and Conservation Biology

    PubMed Central

    Wear, Stephanie L; Thurber, Rebecca Vega

    2015-01-01

    Coral reefs are in decline worldwide, and land-derived sources of pollution, including sewage, are a major force driving that deterioration. This review presents evidence that sewage discharge occurs in waters surrounding at least 104 of 112 reef geographies. Studies often refer to sewage as a single stressor. However, we show that it is more accurately characterized as a multiple stressor. Many of the individual agents found within sewage, specifically freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair coral growth and/or reproduction. These components of sewage may interact with each other to create as-yet poorly understood synergisms (e.g., nutrients facilitate pathogen growth), and escalate impacts of other, non-sewage–based stressors. Surprisingly few published studies have examined impacts of sewage in the field, but those that have suggest negative effects on coral reefs. Because sewage discharge proximal to sensitive coral reefs is widespread across the tropics, it is imperative for coral reef–focused institutions to increase investment in threat-abatement strategies for mitigating sewage pollution. PMID:25959987

  14. Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs.

    PubMed

    Séré, Mathieu G; Tortosa, Pablo; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2013-01-01

    The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.

  15. Bio-prospecting of coral (Porites lutea) mucus associated bacteria, Palk Bay reefs, Southeast coast of India.

    PubMed

    Ahila, N K; Prakash, S; Manikandan, B; Ravindran, J; Prabhu, N M; Kannapiran, E

    2017-12-01

    Coral mucus is one of the key localization in the coral holobiont, as this serves as an energy rich substrate for a wide range of abundant, diverse and multifunctional microbiota. However, very little is known about the functional role of bacterial communities in their associations with corals. In the present study, a total of 48 isolates were obtained from Porites lutea wherein the genus of Bacillus sp. and Vibrio sp. were predominant. Bio-prospecting the coral mucus revealed the existence of (10.42%) antagonistic bacteria against the tested bacterial pathogens. Molecular taxonomy (16S rRNA) proved the identity of these antagonistic bacteria belong to Enterobacter cloacae (CM1), Bacillus subtilis (CM2), Bacillus sp. (CM11) and Bacillus marisflavi (CM12). The secondary screening emphasized that the ethyl acetate extract of B. subtilis showed strong antagonistic effect, followed by the chloroform extract of E. cloacae and ethyl acetate extract of B. marisflavi. The antagonistic activity was statistically confirmed by Principal Component Analysis and Hierarchical Cluster Analysis. The privileged coral mucus associated bacterial (CMAB) solvent extracts inhibited the bacterial pathogens at 100 μg/ml (MIC) and ceased the growth at 200 μg/ml (MBC). The hemolytic and brine shrimp lethality assays disclosed the non-toxic nature of solvent extracts of CMAB. Altogether, the present investigation brought out the diversity of bacteria associated with the mucus of P. lutea. In addition, bio-prospecting corroborated the CMAB as the potential source of pharmacologically important bioactive compounds against a wide range of bacterial pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales.

    PubMed

    Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega

    2016-06-07

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.

  17. The Presence of the Cyanobacterial Toxin Microcystin in Black Band Disease of Corals

    USDA-ARS?s Scientific Manuscript database

    Black band disease (BBD) of corals consists of a pathogenic consortium of microorganisms of four physiological functional groups: phototrophs, heterotrophs, sulfate reducers, and sulfide oxidizers. Together, using a combination of behavioral and physiological strategies, the members of the BBD con...

  18. Resilience of coral-associated bacterial communities exposed to fish farm effluent.

    PubMed

    Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C Drew; Azam, Farooq

    2009-10-06

    The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for improved aquaculture practices that can achieve both sustainable industry goals and long-term coral reef survival.

  19. Resilience of Coral-Associated Bacterial Communities Exposed to Fish Farm Effluent

    PubMed Central

    Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C. Drew; Azam, Farooq

    2009-01-01

    Background The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. Methodology & Principal Findings We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. Significance This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for improved aquaculture practices that can achieve both sustainable industry goals and long-term coral reef survival. PMID:19806190

  20. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales

    PubMed Central

    Zaneveld, Jesse R.; Burkepile, Deron E.; Shantz, Andrew A.; Pritchard, Catharine E.; McMinds, Ryan; Payet, Jérôme P.; Welsh, Rory; Correa, Adrienne M. S.; Lemoine, Nathan P.; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A.; Thurber, Rebecca Vega

    2016-01-01

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral–algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. PMID:27270557

  1. New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities

    PubMed Central

    Rubio-Portillo, Esther; Yarza, Pablo; Peñalver, Cindy; Ramos-Esplá, Alfonso A; Antón, Josefa

    2014-01-01

    Bleaching of Oculina patagonica has been extensively studied in the Eastern Mediterranean Sea, although no studies have been carried out in the Western basin. In 1996 Vibrio mediterranei was reported as the causative agent of bleaching in O. patagonica but it has not been related to bleached or healthy corals since 2003, suggesting that it was no longer involved in bleaching of O. patagonica. In an attempt to clarify the relationship between Vibrio spp., seawater temperature and coral diseases, as well as to investigate the putative differences between Eastern and Western Mediterranean basins, we have analysed the seasonal patterns of the culturable Vibrio spp. assemblages associated with healthy and diseased O. patagonica colonies. Two sampling points located in the Spanish Mediterranean coast were chosen for this study: Alicante Harbour and the Marine Reserve of Tabarca. A complex and dynamic assemblage of Vibrio spp. was present in O. patagonica along the whole year and under different environmental conditions and coral health status. While some Vibrio spp. were detected all year around in corals, the known pathogens V. mediteranei and V. coralliilyticus were only present in diseased specimens. The pathogenic potential of these bacteria was studied by experimental infection under laboratory conditions. Both vibrios caused diseased signs from 24 °C, being higher and faster at 28 °C. Unexpectedly, the co-inoculation of these two Vibrio species seemed to have a synergistic pathogenic effect over O. patagonica, as disease signs were readily observed at temperatures at which bleaching is not normally observed. PMID:24621525

  2. Genome-Wide Mutation Rate Response to pH Change in the Coral Reef Pathogen Vibrio shilonii AK1.

    PubMed

    Strauss, Chloe; Long, Hongan; Patterson, Caitlyn E; Te, Ronald; Lynch, Michael

    2017-08-22

    Recent application of mutation accumulation techniques combined with whole-genome sequencing (MA/WGS) has greatly promoted studies of spontaneous mutation. However, such explorations have rarely been conducted on marine organisms, and it is unclear how marine habitats have influenced genome stability. This report resolves the mutation rate and spectrum of the coral reef pathogen Vibrio shilonii , which causes coral bleaching and endangers the biodiversity maintained by coral reefs. We found that its mutation rate and spectrum are highly similar to those of other studied bacteria from various habitats, despite the saline environment. The mutational properties of this marine bacterium are thus controlled by other general evolutionary forces such as natural selection and genetic drift. We also found that as pH drops, the mutation rate decreases and the mutation spectrum is biased in the direction of generating G/C nucleotides. This implies that evolutionary features of this organism and perhaps other marine microbes might be altered by the increasingly acidic ocean water caused by excess CO 2 emission. Nonetheless, further exploration is needed as the pH range tested in this study was rather narrow and many other possible mutation determinants, such as carbonate increase, are associated with ocean acidification. IMPORTANCE This study explored the pH dependence of a bacterial genome-wide mutation rate. We discovered that the genome-wide rates of appearance of most mutation types decrease linearly and that the mutation spectrum is biased in generating more G/C nucleotides with pH drop in the coral reef pathogen V. shilonii . Copyright © 2017 Strauss et al.

  3. Assessing Coral Reefs on a Pacific-Wide Scale Using the Microbialization Score

    PubMed Central

    McDole, Tracey; Nulton, James; Barott, Katie L.; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O.; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A.; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J.; Brainard, Russell E.; Rohwer, Forest

    2012-01-01

    The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing. PMID:22970122

  4. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    PubMed

    McDole, Tracey; Nulton, James; Barott, Katie L; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J; Brainard, Russell E; Rohwer, Forest

    2012-01-01

    The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  5. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    NASA Astrophysics Data System (ADS)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  6. Unprecedented Disease-Related Coral Mortality in Southeastern Florida

    NASA Astrophysics Data System (ADS)

    Precht, William F.; Gintert, Brooke E.; Robbart, Martha L.; Fura, Ryan; van Woesik, Robert

    2016-08-01

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef.

  7. Unprecedented Disease-Related Coral Mortality in Southeastern Florida.

    PubMed

    Precht, William F; Gintert, Brooke E; Robbart, Martha L; Fura, Ryan; van Woesik, Robert

    2016-08-10

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef.

  8. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host.

    PubMed

    Banin, E; Israely, T; Fine, M; Loya, Y; Rosenberg, E

    2001-05-15

    Vibrio shiloi, the causative agent of bleaching the coral Oculina patagonica in the Mediterranean Sea, adheres to its coral host by a beta-D-galactopyranoside-containing receptor on the coral surface. The receptor is present in the coral mucus, since V. shiloi adhered avidly to mucus-coated ELISA plates. Adhesion was inhibited by methyl-beta-D-galactopyranoside. Removal of the mucus from O. patagonica resulted in a delay in adhesion of V. shiloi to the coral, corresponding to regeneration of the mucus. DCMU inhibited the recovery of adhesion of the bacteria to the mucus-depleted corals, indicating that active photosynthesis by the endosymbiotic zooxanthellae was necessary for the synthesis or secretion of the receptor. Further evidence of the role of the zooxanthellae in producing the receptor came from a study of adhesion of V. shiloi to different species of corals. The bacteria failed to adhere to bleached corals and white (azooxanthellate) O. patagonica cave corals, both of which lacked the algae. In addition, V. shiloi adhered to two Mediterranean corals (Madracis and Cladocora) that contained zooxanthellae and did not adhere to two azooxanthellate Mediterranean corals (Phyllangia and Polycyathus). V. shiloi demonstrated positive chemotaxis towards the mucus of O. patagonica. The data demonstrate that endosymbiotic zooxanthellae contribute to the production of coral mucus and that V. shiloi infects only mucus-containing, zooxanthellate corals.

  9. The rising tide of ocean diseases: Unsolved problems and research priorities

    USGS Publications Warehouse

    Harvell, Drew; Aronson, Richard; Baron, Nancy; Connell, Joseph; Dobson, Andrew P.; Ellner, Steve; Gerber, Leah R.; Kim, Kiho; Kuris, Armand M.; McCallum, Hamish; Lafferty, Kevin D.; McKay, Bruce; Porter, James; Pascual, Mercedes; Smith, Garriett; Sutherland, Katherine; Ward, Jessica

    2004-01-01

    New studies have detected a rising number of reports of diseases in marine organisms such as corals, molluscs, turtles, mammals, and echinoderms over the past three decades. Despite the increasing disease load, microbiological, molecular, and theoretical tools for managing disease in the world's oceans are under-developed. Review of the new developments in the study of these diseases identifies five major unsolved problems and priorities for future research: (1) detecting origins and reservoirs for marine diseases and tracing the flow of some new pathogens from land to sea; (2) documenting the longevity and host range of infectious stages; (3) evaluating the effect of greater taxonomic diversity of marine relative to terrestrial hosts and pathogens; (4) pinpointing the facilitating role of anthropogenic agents as incubators and conveyors of marine pathogens; (5) adapting epidemiological models to analysis of marine disease.

  10. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica.

    PubMed

    Ainsworth, T D; Fine, M; Roff, G; Hoegh-Guldberg, O

    2008-01-01

    Coral bleaching occurs when the endosymbiosis between corals and their symbionts disintegrates during stress. Mass coral bleaching events have increased over the past 20 years and are directly correlated with periods of warm sea temperatures. However, some hypotheses have suggested that reef-building corals bleach due to infection by bacterial pathogens. The 'Bacterial Bleaching' hypothesis is based on laboratory studies of the Mediterranean invading coral, Oculina patagonica, and has further generated conclusions such as the coral probiotic hypothesis and coral hologenome theory of evolution. We aimed to investigate the natural microbial ecology of O. patagonica during the annual bleaching using fluorescence in situ hybridization to map bacterial populations within the coral tissue layers, and found that the coral bleaches on the temperate rocky reefs of the Israeli coastline without the presence of Vibrio shiloi or bacterial penetration of its tissue layers. Bacterial communities were found associated with the endolithic layer of bleached coral regions, and a community dominance shift from an apparent cyanobacterial-dominated endolithic layer to an algal-dominated layer was found in bleached coral samples. While bacterial communities certainly play important roles in coral stasis and health, we suggest environmental stressors, such as those documented with reef-building corals, are the primary triggers leading to bleaching of O. patagonica and suggest that bacterial involvement in patterns of bleaching is that of opportunistic colonization.

  11. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions

    PubMed Central

    Thompson, Janelle R.; Rivera, Hanny E.; Closek, Collin J.; Medina, Mónica

    2015-01-01

    In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health—not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions. PMID:25621279

  12. Characterizing lesions in corals from American Samoa

    NASA Astrophysics Data System (ADS)

    Work, T. M.; Rameyer, R. A.

    2005-11-01

    The study of coral disease has suffered from an absence of systematic approaches that are commonly used to determine causes of diseases in animals. There is a critical need to develop a standardized and portable nomenclature for coral lesions in the field and to incorporate more commonly available biomedical tools in coral disease surveys to determine the potential causes of lesions in corals. We characterized lesions in corals from American Samoa based on gross and microscopic morphology and classified them as discoloration, growth anomalies, or tissue loss. The most common microscopic finding in corals manifesting discoloration was the depletion of zooxanthellae, followed by necrosis, sometimes associated with invasive algae or fungi. The most common microscopic lesion in corals manifesting tissue loss was cell necrosis often associated with algae, fungi, or protozoa. Corals with growth anomaly had microscopic evidence of hyperplasia of gastrovascular canals, followed by necrosis associated with algae or metazoa (polychaete worms). Several species of apparently normal corals also had microscopic changes, including the presence of bacterial aggregates or crustacea in tissues. A single type of gross lesion (e.g., discoloration) could have different microscopic manifestations. This phenomenon underlines the importance of using microscopy to provide a more systematic description of coral lesions and to detect potential pathogens associated with these lesions.

  13. Characterizing lesions in corals from American Samoa

    USGS Publications Warehouse

    Work, Thierry M.; Rameyer, Robert A.

    2005-01-01

    The study of coral disease has suffered from an absence of systematic approaches that are commonly used to determine causes of diseases in animals. There is a critical need to develop a standardized and portable nomenclature for coral lesions in the field and to incorporate more commonly available biomedical tools in coral disease surveys to determine the potential causes of lesions in corals. We characterized lesions in corals from American Samoa based on gross and microscopic morphology and classified them as discoloration, growth anomalies, or tissue loss. The most common microscopic finding in corals manifesting discoloration was the depletion of zooxanthellae, followed by necrosis, sometimes associated with invasive algae or fungi. The most common microscopic lesion in corals manifesting tissue loss was cell necrosis often associated with algae, fungi, or protozoa. Corals with growth anomaly had microscopic evidence of hyperplasia of gastrovascular canals, followed by necrosis associated with algae or metazoa (polychaete worms). Several species of apparently normal corals also had microscopic changes, including the presence of bacterial aggregates or crustacea in tissues. A single type of gross lesion (e.g., discoloration) could have different microscopic manifestations. This phenomenon underlines the importance of using microscopy to provide a more systematic description of coral lesions and to detect potential pathogens associated with these lesions.

  14. Evaluating coral reef health in American Samoa

    USGS Publications Warehouse

    Work, Thierry M.; Rameyer, Robert A.

    2005-01-01

    The study of coral disease has suffered from an absence of systematic approaches that are commonly used to determine causes of diseases in animals. There is a critical need to develop a standardized and portable nomenclature for coral lesions in the field and to incorporate more commonly available biomedical tools in coral disease surveys to determine the potential causes of lesions in corals. We characterized lesions in corals from American Samoa based on gross and microscopic morphology and classified them as discoloration, growth anomalies, or tissue loss. The most common microscopic finding in corals manifesting discoloration was the depletion of zooxanthellae, followed by necrosis, sometimes associated with invasive algae or fungi. The most common microscopic lesion in corals manifesting tissue loss was cell necrosis often associated with algae, fungi, or protozoa. Corals with growth anomaly had microscopic evidence of hyperplasia of gastrovascular canals, followed by necrosis associated with algae or metazoa (polychaete worms). Several species of apparently normal corals also had microscopic changes, including the presence of bacterial aggregates or crustacea in tissues. A single type of gross lesion (e.g., discoloration) could have different microscopic manifestations. This phenomenon underlines the importance of using microscopy to provide a more systematic description of coral lesions and to detect potential pathogens associated with these lesions.

  15. Evidence for water-mediated mechanisms in coral-algal interactions.

    PubMed

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk; Nugues, Maggy M

    2016-08-17

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral-algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral-algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral-algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. © 2016 The Author(s).

  16. Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi.

    PubMed

    Ben-Haim, Y; Banim, E; Kushmaro, A; Loya, Y; Rosenberg, E

    1999-06-01

    Vibrio shiloi is the causative agent of bleaching (loss of endosymbiotic zooxanthellae) of the coral Oculina patagonica in the Mediterranean Sea. To obtain information on the mechanism of bleaching, we examined the effect of secreted material (AK1-S) produced by V. shiloi on zooxanthellae isolated from corals. AK1-S caused a rapid inhibition of photosynthesis of the algae, as measured with a Mini-PAM fluorometer. The inhibition of photosynthesis was caused by (i) ammonia produced during the growth of V. shiloi on protein-containing media and (ii) a non-dialysable heat-resistant factor. This latter material did not inhibit photosynthesis of the algae by itself but, when added to different concentrations of NH4Cl, enhanced the inhibition approximately two- to threefold. Ammonia and the enhancer were effective to different degrees on zooxanthellae isolated from four species of coral examined. In addition to the rapid inhibition of photosynthesis, AK1-S caused bleaching (loss of pigmentation) and lysis of zooxanthellae. Bleaching was more rapid than lysis, reaching a peak (25% bleached algae) after 6 h. The factors in AK1-S responsible for bleaching and lysis were different from those responsible for the inhibition of photosynthesis, because they were heat sensitive, non-dialysable and active in the dark. Thus, the coral pathogen V. shiloi produces an array of extracellular materials that can inhibit photosynthesis, bleach and lyse zooxanthellae.

  17. Octocoral diseases in a changing ocean

    USGS Publications Warehouse

    Weil, Ernesto; Rogers, Caroline S.; Croquer, Aldo

    2017-01-01

    Octocorals (Cnidaria, Octocorallia) constitute a geographically widely distributed and common group of marine invertebrates commonly referred to as “soft-corals,” “sea fans,” “horny corals,” “sea feathers,” and “sea plumes.” They are found from shallow coastal habitats to mesophotic and abyssal depths. Octocorals are important members of most Atlantic-Caribbean, Indo-Pacific, and Mediterranean coastal and mesophotic reef communities; however, information about their susceptibility to diseases, predation, and competition, and their relationship with changing environmental conditions is limited. At least 19 diseases have been observed in at least 42 common octocoral species throughout their range. Twelve of these have been reported in the wider Caribbean (CA), one in Brazil (BR), two in the Mediterranean (ME), one in the Eastern Pacific (EP), and three in the western Pacific (WP). Pathogenic and/or environmental causes have been identified for eight diseases, including viruses, terrestrial fungi, protozoans, bacteria and cyanobacteria, filamentous algae, parasitic copepods, and high temperature. Only a few of the suspected pathogens have been tested with Koch’s postulates. At least eight disease outbreaks have led to extensive octocoral mortalities in the CA, ME, BR, and EP with detrimental ecological consequences. The fungal disease Aspergillosis has produced the highest mortalities in the CA and the EP. Other fungi, protozoans, and the bacterium Vibrio coralliilyticus were identified as potential causes of the death of millions of colonies in two Mediterranean disease outbreaks. Bacterial and fungal agents seemed to be responsible for the mass mortalities in Brazil and the WP. Most outbreaks in all regions were linked to high thermal anomalies associated with climate change, which seems to be the major driver. Other biological stressors such as predation and/or competition produce injuries that may contribute to the spread of infections and mortality. Overfishing of common predators could lead to population explosions of octocoral-feeding species that produced mass mortalities in some Caribbean localities. Our lack of knowledge of causes and pathogenesis of octocoral diseases parallels that of hard corals. New diseases are being described almost every year concomitant with increasing seawater temperatures. The ecological and economic consequences could be significant, with drastic changes in the seascape of shallow coral reefs and other coastal marine habitats and reduction of their ecological services. Given our limited knowledge, our best options for recovery of octocorals and coral reefs in general include sound management of coastal fisheries, development and tourism; reduction of land- and sea-based pollution; and abating effects of climate change.

  18. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome

    PubMed Central

    2013-01-01

    Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives. PMID:23889801

  19. Characterisation of an atypical manifestation of black band disease on Porites lutea in the Western Indian Ocean

    PubMed Central

    Wilkinson, David A.; Schleyer, Michael H.; Chabanet, Pascale; Quod, Jean-Pascal; Tortosa, Pablo

    2016-01-01

    Recent surveys conducted on Reunion Island coral reefs revealed an atypical manifestation of black band disease on the main framework building coral, Porites lutea. This BBD manifestation (PorBBD) presented a thick lighter-colored band, which preceded the typical BBD lesion. Whilst BBD aetiology has been intensively described worldwide, it remains unclear if corals with apparently similar lesions across coral reefs are affected by the same pathogens. Therefore, a multidisciplinary approach involving field surveys, gross lesion monitoring, histopathology and 454-pyrosequencing was employed to provide the first comprehensive characterization of this particular manifestation. Surveys conducted within two geomorphological zones over two consecutive summers and winters showed spatial and seasonal patterns consistent with those found for typical BBD. Genetic analyses suggested an uncharacteristically high level of Vibrio spp. bacterial infection within PorBBD. However, microscopic analysis revealed high densities of cyanobacteria, penetrating the compromised tissue as well as the presence of basophilic bodies resembling bacterial aggregates in the living tissue, adjacent to the bacterial mat. Additionally, classical BBD-associated cyanobacterial strains, genetically related to Pseudoscillatoria coralii and Roseofilum reptotaenium were identified and isolated and the presence of sulfate-reducers or sulfide-oxidizers such as Desulfovibrio and Arcobacter, previously shown to be associated with anoxic microenvironment within typical BBD was also observed, confirming that PorBBD is a manifestation of classical BBD. PMID:27441106

  20. Plastic waste associated with disease on coral reefs.

    PubMed

    Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew

    2018-01-26

    Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Diversity of culturable yeasts associated with zoanthids from Brazilian reef and its relation with anthropogenic disturbance.

    PubMed

    Paulino, Gustavo Vasconcelos Bastos; Félix, Ciro Ramon; Broetto, Leonardo; Landell, Melissa Fontes

    2017-10-15

    Some of the main threats to coral reefs come from human actions on marine environment, such as tourism, overfishing and pollution from urban development. While several studies have demonstrated an association between bacteria and corals, demonstrating how these communities react to different anthropogenic stressors, yeast communities associated with corals have received far less attention from researchers. The aim of this work was therefore to describe cultivable yeasts associated with three coral species and to evaluate the influence of sewage discharge on yeasts community. We obtained 130 isolates, mostly belonging to phylum Ascomycota and many of them had previously been isolated from human samples or are considered pathogens. The mycobiota was more similar among corals collected from the same reef, indicating that the composition of reef yeast community is more influenced by environmental conditions than host species. We suggest further studies to elucidate which factors are most influential on the composition of the coral-associated yeast community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Diversity and antibacterial activities of fungi derived from the Gorgonian Echinogorgia rebekka from the South China Sea.

    PubMed

    Wang, Ya-Nan; Shao, Chang-Lun; Zheng, Cai-Juan; Chen, Yi-Yan; Wang, Chang-Yun

    2011-01-01

    The diversity of symbiotic fungi associated with the gorgonian coral Echinogorgia rebekka from the Weizhou coral reef in the South China Sea was investigated. Combined with morphologic traits, ITS-rDNA sequences revealed 18 fungal strains from this gorgonian. All of the 18 fungi belonged to the phylum Ascomycota and were distributed among seven genera in five orders: Eurotiales (Aspergillus and Penicillium), Pleosporales (Alternaria), Capnodiales (Cladosporium), Trichosphaeriales (Nigrospora) and Hypocreales (Hypocrea and Nectria). Antibacterial activities of these fungal strains were investigated with five pathogenic bacteria. All of the 18 fungal strains displayed different levels of antibacterial activities, most of which exhibited moderate to high antibacterial activities to the Gram-positive pathogens Staphylococcus aureus and Micrococcus tetragenus, and showed relatively low bioactivities to other three pathogenic bacteria. Several fungal strains in the genera Penicillium and Cladosporium with strong antibacterial activities provide potential for further research on isolation of bioactive secondary metabolites.

  3. The versatile nature of coral-associated viruses.

    PubMed

    Bettarel, Yvan; Bouvier, Thierry; Nguyen, Hanh Kim; Thu, Pham The

    2015-10-01

    A recent hypothesis considers that many coral pathologies are the result of a sudden structural alteration of the epibiotic bacterial communities in response to environmental disturbances. However, the ecological mechanisms that lead to shifts in their composition are still unclear. In the ocean, viruses represent a major bactericidal agent but little is known on their occurrence within the coral holobiont. Recent reports have revealed that viruses are abundant and diversified within the coral mucus and therefore could be decisive for coral health. However, their mode of action is still unknown, and there is now an urgent need to shed light on the nature of the relationships they might have with the other prokaryotic and eukaryotic members of the holobiont. In this opinion letter, we are putting forward the hypothesis that coral-associated viruses (mostly bacterial and algal viruses), depending on the environmental conditions might either reinforce coral stability or conversely fasten their decline. We propose that these processes are presumably based on an environmentally driven shift in infection strategies allowing viruses to regulate, circumstantially, both coral symbionts (bacteria or Symbiodinium) and surrounding pathogens. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Gene expression of corals in response to macroalgal competitors.

    PubMed

    Shearer, Tonya L; Snell, Terry W; Hay, Mark E

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens.

  5. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa

    PubMed Central

    Vega Thurber, Rebecca L.; Barott, Katie L.; Hall, Dana; Liu, Hong; Rodriguez-Mueller, Beltran; Desnues, Christelle; Edwards, Robert A.; Haynes, Matthew; Angly, Florent E.; Wegley, Linda; Rohwer, Forest L.

    2008-01-01

    During the last several decades corals have been in decline and at least one-third of all coral species are now threatened with extinction. Coral disease has been a major contributor to this threat, but little is known about the responsible pathogens. To date most research has focused on bacterial and fungal diseases; however, viruses may also be important for coral health. Using a combination of empirical viral metagenomics and real-time PCR, we show that Porites compressa corals contain a suite of eukaryotic viruses, many related to the Herpesviridae. This coral-associated viral consortium was found to shift in response to abiotic stressors. In particular, when exposed to reduced pH, elevated nutrients, and thermal stress, the abundance of herpes-like viral sequences rapidly increased in 2 separate experiments. Herpes-like viral sequences were rarely detected in apparently healthy corals, but were abundant in a majority of stressed samples. In addition, surveys of the Nematostella and Hydra genomic projects demonstrate that even distantly related Cnidarians contain numerous herpes-like viral genes, likely as a result of latent or endogenous viral infection. These data support the hypotheses that corals experience viral infections, which are exacerbated by stress, and that herpes-like viruses are common in Cnidarians. PMID:19017800

  6. Microbiota of the major South Atlantic reef building coral Mussismilia.

    PubMed

    Fernando, Samodha C; Wang, Jia; Sparling, Kimberly; Garcia, Gizele D; Francini-Filho, Ronaldo B; de Moura, Rodrigo L; Paranhos, Rodolfo; Thompson, Fabiano L; Thompson, Janelle R

    2015-02-01

    The Brazilian endemic scleractinian corals, genus Mussismilia, are among the main reef builders of the South Atlantic and are threatened by accelerating rates of disease. To better understand how holobiont microbial populations interact with corals during health and disease and to evaluate whether selective pressures in the holobiont or neutral assembly shape microbial composition, we have examined the microbiota structure of Mussismilia corals according to coral lineage, environment, and disease/health status. Microbiota of three Mussismilia species (Mussismilia harttii, Mussismilia hispida, and Mussismilia braziliensis) was compared using 16S rRNA pyrosequencing and clone library analysis of coral fragments. Analysis of biological triplicates per Mussismilia species and reef site allowed assessment of variability among Mussismilia species and between sites for M. braziliensis. From 173,487 V6 sequences, 6,733 coral- and 1,052 water-associated operational taxonomic units (OTUs) were observed. M. braziliensis microbiota was more similar across reefs than to other Mussismilia species microbiota from the same reef. Highly prevalent OTUs were more significantly structured by coral lineage and were enriched in Alpha- and Gammaproteobacteria. Bacterial OTUs from healthy corals were recovered from a M. braziliensis skeleton sample at twice the frequency of recovery from water or a diseased coral suggesting the skeleton is a significant habitat for microbial populations in the holobiont. Diseased corals were enriched with pathogens and opportunists (Vibrios, Bacteroidetes, Thalassomonas, and SRB). Our study examines for the first time intra- and inter-specific variability of microbiota across the genus Mussismilia. Changes in microbiota may be useful indicators of coral health and thus be a valuable tool for coral reef management and conservation.

  7. Evidence for multiple stressor interactions and effects on coral reefs.

    PubMed

    Ban, Stephen S; Graham, Nicholas A J; Connolly, Sean R

    2014-03-01

    Concern is growing about the potential effects of interacting multiple stressors, especially as the global climate changes. We provide a comprehensive review of multiple stressor interactions in coral reef ecosystems, which are widely considered to be one of the most sensitive ecosystems to global change. First, we synthesized coral reef studies that examined interactions of two or more stressors, highlighting stressor interactions (where one stressor directly influences another) and potentially synergistic effects on response variables (where two stressors interact to produce an effect that is greater than purely additive). For stressor-stressor interactions, we found 176 studies that examined at least 2 of the 13 stressors of interest. Applying network analysis to analyze relationships between stressors, we found that pathogens were exacerbated by more costressors than any other stressor, with ca. 78% of studies reporting an enhancing effect by another stressor. Sedimentation, storms, and water temperature directly affected the largest number of other stressors. Pathogens, nutrients, and crown-of-thorns starfish were the most-influenced stressors. We found 187 studies that examined the effects of two or more stressors on a third dependent variable. The interaction of irradiance and temperature on corals has been the subject of more research (62 studies, 33% of the total) than any other combination of stressors, with many studies reporting a synergistic effect on coral symbiont photosynthetic performance (n = 19). Second, we performed a quantitative meta-analysis of existing literature on this most-studied interaction (irradiance and temperature). We found that the mean effect size of combined treatments was statistically indistinguishable from a purely additive interaction, although it should be noted that the sample size was relatively small (n = 26). Overall, although in aggregate a large body of literature examines stressor effects on coral reefs and coral organisms, considerable gaps remain for numerous stressor interactions and effects, and insufficient quantitative evidence exists to suggest that the prevailing type of stressor interaction is synergistic.

  8. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    PubMed Central

    Liang, Jiayuan; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Huang, Wen; Qin, Zhenjun; Pan, Ziliang; Yao, Qiucui; Wang, Wenhuan; Wu, Zhengchao

    2017-01-01

    It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on). In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress. PMID:28642738

  9. Dual recognition activity of a rhamnose-binding lectin to pathogenic bacteria and zooxanthellae in stony coral Pocillopora damicornis.

    PubMed

    Zhou, Zhi; Yu, Xiaopeng; Tang, Jia; Zhu, Yunjie; Chen, Guangmei; Guo, Liping; Huang, Bo

    2017-05-01

    Rhamnose-binding lectin (RBL) is a type of Ca 2+ -independent lectin with tandem repeat carbohydrate-recognition domain, and is crucial for the innate immunity in many invertebrates. In this study, the cDNA sequence encoding RBL in coral Pocillopora damicornis (PdRBL-1) was cloned. The PdRBL-1 protein shared highest amino acid sequence similarity (55%) with the polyp of Hydra vulgaris, and contained a signal peptide and two tandem carbohydrate-recognition domains in which all cysteine residues were conserved. Surface plasmon resonance method revealed that the recombinant PdRBL-1 protein bound to LPS and Lipid A, but not to LTA, β-glucan, mannose and Poly (I:C). Results also showed that it bonded with zooxanthellae using western blotting method, and that the bound protein was detectable only at concentrations higher than 10 2 zooxanthellae cell mL -1 . When recombinant PdRBL-1 protein was preincubated with LPS, lower amounts of protein bound to zooxanthellae compared to cells not preincubated with LPS. Furthermore, PdRBL-1 mRNA expression increased significantly at 12 h, and declined to the baseline at 24 h after heat stress at 31 °C. These results collectively suggest that PdRBL-1 could recognize not only pathogenic bacteria but also symbiotic zooxanthellae, and that the recognition of zooxanthellae by PdRBL-1 could be repressed by pathogenic bacteria through competitive binding. This information allows us to gain new insights in the mechanisms influencing the establishment and maintenance of coral-zooxanthella symbiosis in coral P. damicornis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evidence for water-mediated mechanisms in coral–algal interactions

    PubMed Central

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  11. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases

    PubMed Central

    Krediet, Cory J.; Ritchie, Kim B.; Paul, Valerie J.; Teplitski, Max

    2013-01-01

    Over the last decade, significant advances have been made in characterization of the coral microbiota. Shifts in its composition often correlate with the appearance of signs of diseases and/or bleaching, thus suggesting a link between microbes, coral health and stability of reef ecosystems. The understanding of interactions in coral-associated microbiota is informed by the on-going characterization of other microbiomes, which suggest that metabolic pathways and functional capabilities define the ‘core’ microbiota more accurately than the taxonomic diversity of its members. Consistent with this hypothesis, there does not appear to be a consensus on the specificity in the interactions of corals with microbial commensals, even though recent studies report potentially beneficial functions of the coral-associated bacteria. They cycle sulphur, fix nitrogen, produce antimicrobial compounds, inhibit cell-to-cell signalling and disrupt virulence in opportunistic pathogens. While their beneficial functions have been documented, it is not certain whether or how these microbes are selected by the hosts. Therefore, understanding the role of innate immunity, signal and nutrient exchange in the establishment of coral microbiota and in controlling its functions will probably reveal ancient, evolutionarily conserved mechanisms that dictate the outcomes of host–microbial interactions, and impact the resilience of the host. PMID:23363627

  12. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  13. Exploration of Fungal Association From Hard Coral Against Pathogen MDR Staphylococcus haemolyticus

    NASA Astrophysics Data System (ADS)

    Cristianawati, O.; Radjasa, O. K.; Sabdono, A.; Trianto, A.; Sabdaningsih, A.; Sibero, M. T.; Nuryadi, H.

    2017-02-01

    Staphylococcus haemolyticus are opportunistic bacteria and as the second leading cause of nosocomial infections. It is a disease causing septicemia, peritonitis, otitis, and urinary tract infections and infections of the eye. It also a phenotype resistant to multiple antibiotics commercial. There is now an urgency to find an alternative antibiotics to combat this bacteria. It has been widely reported that many bioactive marine natural products from marine invertebrate have striking similarities to metabolites of their associated microorganisms including fungi. Hard coral associated microorganisms are among of the most interesting and promising marine natural product sources, which produce with various biological activities. The proposed work focused on the discovery of bioactive compounds and also estimated the phylogenetic diversity from fungal association of hard coral against pathogen MDR Staphylococcus haemolyticus. A total of 32 fungal association, FHP 7 which were isolated from Favia sp. capable of inhibiting the growth MDR. Molecular identification based on 18S rRNA gene sequences revealed that the active fungal association belonged 100% to the members from one of the genera Trichoderma longibrachiatum. Accession Number LC185084.1.

  14. Effects of environmental factors on C-type lectin recognition to zooxanthellae in the stony coral Pocillopora damicornis.

    PubMed

    Zhou, Zhi; Zhao, Shuimiao; Ni, Junyi; Su, Yilu; Wang, Lingui; Xu, Yanlai

    2018-08-01

    C-type lectin is a superfamily of Ca 2+ -dependent carbohydrate-recognition proteins that play significant roles in nonself-recognition and pathogen clearance. In the present study, a C-type lectin (PdC-Lectin) was chosen from stony coral Pocillopora damicornis to understand its recognition characteristics to zooxanthellae. PdC-Lectin protein contained a signal peptide and a carbohydrate-recognition domain with EPN motif in Ca 2+ -binding site 2. The PdC-Lectin recombinant protein was expressed and purified in vitro. The binding of PdC-Lectin protein to zooxanthellae was determined with western blotting method, and the bound protein to 10-10 5  cell mL -1 zooxanthellae was detectable in a concentration-dependent manner. Less PdC-Lectin protein binding to zooxanthellae was observed for the incubation at 36 °C than that at 26 °C. Furthermore, the PAMP recognition spectrum of PdC-Lectin protein was tested through surface plasmon resonance method, and it bound to LPS and Lipid A, but not to LTA, β-glucan, mannose or Poly (I:C). When PdC-Lectin protein was preincubated with LPS, there was less protein binding to zooxanthellae compared with that in non-preincubation group. These results collectively suggest that PdC-Lectin could recognize zooxanthellae, and the recognition could be repressed by high temperature and pathogenic bacteria, which would help to further understand the molecular mechanism of coral bleaching and the establishment of coral-zooxanthella symbiosis in the stony coral P. damicornis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Epizoic communities of prokaryotes on healthy and diseased scleractinian corals in Lingayen Gulf, Philippines.

    PubMed

    Arboleda, Mark; Reichardt, Wolfgang

    2009-01-01

    In search for microbiological indicators of coral health and coral diseases, community profiles of coral-associated epizoic prokaryotes were investigated because of their dual potential as a source of coral pathogens and their antagonists. In pairwise samples of visually healthy and diseased coral specimens from Bolinao Bay (Pangasinan, Philippines), mixed biofilm communities of ectoderm- and mucus-colonizing epizoic prokaryotes were compared using fluorescent in situ hybridization (FISH). Oligonucleotide probes targeted 13 phylotypes representing the main taxonomic groups of marine prokaryotes. Coral taxa tended to show specific community profiles. An attempt to separate the profiles of healthy and diseased specimens by applying principal component analysis (PCA) to a (nonselective) collection of corals (affected by various diseases) proved unsuccessful. On the other hand, separate PCA clusters were obtained from healthy and diseased corals belonging to a single species (Pocillopora damicornis) only. This cluster formation was dominated by principal component 1 with the genus Vibrio accounting for 18%. At the same time, reef-site-specific clusters were formed as well. At a reef site exposed to pollution from intensive fish cage (Chanos chanos) farming, healthy P. damicornis were mainly (93%) colonized by unicellular cyanobacteria. The formal calculation of diversity parameters suggested that evenness in particular was driven by both health status and reef site location. Despite the low resolution of taxonomic levels achieved with FISH probes targeting only large phylotype groups, significant differences between healthy and diseased corals and also between polluted and nonpolluted reef sites were observed.

  16. Changes in coral microbial communities in response to a natural pH gradient.

    PubMed

    Meron, Dalit; Rodolfo-Metalpa, Riccardo; Cunning, Ross; Baker, Andrew C; Fine, Maoz; Banin, Ehud

    2012-09-01

    Surface seawater pH is currently 0.1 units lower than pre-industrial values and is projected to decrease by up to 0.4 units by the end of the century. This acidification has the potential to cause significant perturbations to the physiology of ocean organisms, particularly those such as corals that build their skeletons/shells from calcium carbonate. Reduced ocean pH could also have an impact on the coral microbial community, and thus may affect coral physiology and health. Most of the studies to date have examined the impact of ocean acidification on corals and/or associated microbiota under controlled laboratory conditions. Here we report the first study that examines the changes in coral microbial communities in response to a natural pH gradient (mean pH(T) 7.3-8.1) caused by volcanic CO(2) vents off Ischia, Gulf of Naples, Italy. Two Mediterranean coral species, Balanophyllia europaea and Cladocora caespitosa, were examined. The microbial community diversity and the physiological parameters of the endosymbiotic dinoflagellates (Symbiodinium spp.) were monitored. We found that pH did not have a significant impact on the composition of associated microbial communities in both coral species. In contrast to some earlier studies, we found that corals present at the lower pH sites exhibited only minor physiological changes and no microbial pathogens were detected. Together, these results provide new insights into the impact of ocean acidification on the coral holobiont.

  17. The presence of the cyanobacterial toxin microcystin in black band disease of corals.

    PubMed

    Richardson, Laurie L; Sekar, Raju; Myers, Jamie L; Gantar, Miroslav; Voss, Joshua D; Kaczmarsky, Longin; Remily, Elizabeth R; Boyer, Gregory L; Zimba, Paul V

    2007-07-01

    Black band disease (BBD) is a migrating, cyanobacterial dominated, sulfide-rich microbial mat that moves across coral colonies lysing coral tissue. While it is known that BBD sulfate-reducing bacteria contribute to BBD pathogenicity by production of sulfide, additional mechanisms of toxicity may be involved. Using HPLC/MS, the cyanotoxin microcystin was detected in 22 field samples of BBD collected from five coral species on nine reefs of the wider Caribbean (Florida Keys and Bahamas). Two cyanobacterial cultures isolated from BBD, Geitlerinema and Leptolyngbya sp. contained microcystin based on HPLC/MS, with toxic activity confirmed using the protein phosphatase inhibition assay. The gene mcyA from the microcystin synthesis complex was detected in two field samples and from both BBD cyanobacterial cultures. Microcystin was not detected in six BBD samples from a different area of the Caribbean (St Croix, USVI) and the Philippines, suggesting regional specificity for BBD microcystin. This is the first report of the presence of microcystin in a coral disease.

  18. Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates.

    PubMed

    Hayashi, Aiko; Crombie, Andrew; Lacey, Ernest; Richardson, Anthony J; Vuong, Daniel; Piggott, Andrew M; Hallegraeff, Gustaaf

    2016-03-16

    Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m³) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef.

  19. Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates

    PubMed Central

    Hayashi, Aiko; Crombie, Andrew; Lacey, Ernest; Richardson, Anthony J.; Vuong, Daniel; Piggott, Andrew M.; Hallegraeff, Gustaaf

    2016-01-01

    Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef. PMID:26999164

  20. Monitoring the coral disease, plague type II, on coral reefs in St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Miller, J.; Rogers, C.; Waara, R.

    2003-01-01

    In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has >50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annular is. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2. The average percent cover by the disease within 1 m2 ranged from 0.01% (?? 0.04 SD) to 1.74% (?? 9.08 SD). Photo-monitoring of 28 diseased corals of 9 species begun in September 1997 at Haulover Reef revealed no recovery of diseased portions with all necrotic tissue being overgrown rapidly by turf algae, usually within less than one month. Most coral colonies suffered partial mortality. Very limited recruitment (e.g., of Agaricia spp., Favia spp. and sponges) has been noted on the diseased areas. This coral disease has the potential to cause more loss of live coral on St. John reefs than any other stress to date because it targets the dominant reef building species, M. annularis.

  1. Screening Antibacterial Agent from Crude Extract of Marine-Derived Fungi Associated with Soft Corals against MDR-Staphylococcus haemolyticus

    NASA Astrophysics Data System (ADS)

    Sabdaningsih, A.; Cristianawati, O.; Sibero, M. T.; Nuryadi, H.; Radjasa, O. K.; Sabdono, A.; Trianto, A.

    2017-02-01

    Multidrug resistant Staphylococcus haemolyticus is a Gram-positive bacteria and member of coagulase negative staphylococci (CoNS) which has the highest level of antimicrobial resistance. This nosocomial pathogen due to skin or soft tissue infections, bacteremia, septicemia, peritonitis, otitis media, meningitis and urinary tract infections. The ability to produce enterotoxins, hemolysins, biofilm, and cytotoxins could be an important characteristic for the successful of infection. Marine-derived fungi have potency as a continuous supply of bioactive compound. The aim of this research was screening antibacterial agent from crude extracts of marine-derived fungi associated with soft corals against MDR-S. haemolyticus. Among 23 isolates of marine-derived fungi isolated from 7 soft corals, there were 4 isolates active against MDR-S. haemolyticus. The screening was conducted by using agar plug diffusion method. Isolate PPSC-27-A4 had the highest antibacterial activity with diameter 23±9,6 mm. The crude extract from this isolate had been confirmed to antibacterial susceptibility test and it had the highest antibacterial activity in 12.2 mm with concentration of 300μg/ml from mycelia extract. PPSC-27-A4 had been characterized in molecular, based on the sequence analysis of 18S rRNA, PPSC-27-A4 isolate was identified as Trichoderma longibrachiatum.

  2. Histological observations in the Hawaiian reef coral, Porites compressa, affected by Porites bleaching with tissue loss

    USGS Publications Warehouse

    Sudek, M.; Work, Thierry M.; Aeby, G.S.; Davy, S.K.

    2012-01-01

    The scleractinian finger coral Porites compressa is affected by the coral disease Porites bleaching with tissue loss (PBTL). This disease initially manifests as bleaching of the coenenchyme (tissue between polyps) while the polyps remain brown with eventual tissue loss and subsequent algal overgrowth of the bare skeleton. Histopathological investigation showed a loss of symbiont and melanin-containing granular cells which was more pronounced in the coenenchyme than the polyps. Cell counts confirmed a 65% reduction in symbiont density. Tissue loss was due to tissue fragmentation and necrosis in affected areas. In addition, a reduction in putative bacterial aggregate densities was found in diseased samples but no potential pathogens were observed.

  3. Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef.

    PubMed

    Glas, Martin S; Motti, Cherie A; Negri, Andrew P; Sato, Yui; Froscio, Suzanne; Humpage, Andrew R; Krock, Bernd; Cembella, Allan; Bourne, David G

    2010-07-01

    Cyanobacterial toxins (i.e. microcystins) produced within the microbial mat of coral black band disease (BBD) have been implicated in disease pathogenicity. This study investigated the presence of toxins within BBD lesions and other cyanobacterial patch (CP) lesions, which, in some instances ( approximately 19%), facilitated the onset of BBD, from an outbreak site at Pelorus Island on the inshore, central Great Barrier Reef (GBR). Cyanobacterial species that dominated the biomass of CP and BBD lesions were cultivated and identified, based on morphology and 16S rRNA gene sequences, as Blennothrix- and Oscillatoria-affiliated species, respectively, and identical to cyanobacterial sequences retrieved from previous molecular studies from this site. The presence of the cyanotoxins microcystin, cylindrospermopsin, saxitoxin, nodularin and anatoxin and their respective gene operons in field samples of CP and BBD lesions and their respective culture isolations was tested using genetic (PCR-based screenings), chemical (HPLC-UV, FTICR-MS and LC/MS(n)) and biochemical (PP2A) methods. Cyanotoxins and cyanotoxin synthetase genes were not detected in any of the samples. Cyanobacterial species dominant within CP and BBD lesions were phylogenetically distinct from species previously shown to produce cyanotoxins and isolated from BBD lesions. The results from this study demonstrate that cyanobacterial toxins appear to play no role in the pathogenicity of CP and BBD at this site on the GBR.

  4. Transcriptional Activation of c3 and hsp70 as Part of the Immune Response of Acropora millepora to Bacterial Challenges

    PubMed Central

    Brown, Tanya; Bourne, David; Rodriguez-Lanetty, Mauricio

    2013-01-01

    The impact of disease outbreaks on coral physiology represents an increasing concern for the fitness and resilience of reef ecosystems. Predicting the tolerance of corals to disease relies on an understanding of the coral immune response to pathogenic interactions. This study explored the transcriptional response of two putative immune genes (c3 and c-type lectin) and one stress response gene (hsp70) in the reef building coral, Acropora millepora challenged for 48 hours with bacterial strains, Vibrio coralliilyticus and Alteromonas sp. at concentrations of 106 cells ml-1. Coral fragments challenged with V. coralliilyticus appeared healthy while fragments challenged with Alteromonas sp. showed signs of tissue lesions after 48 hr. Coral-associated bacterial community profiles assessed using denaturing gradient gel electrophoresis changed after challenge by both bacterial strains with the Alteromonas sp. treatment demonstrating the greatest community shift. Transcriptional profiles of c3 and hsp70 increased at 24 hours and correlated with disease signs in the Alteromonas sp. treatment. The expression of hsp70 also showed a significant increase in V. coralliilyticus inoculated corals at 24 h suggesting that even in the absence of disease signs, the microbial inoculum activated a stress response in the coral. C-type lectin did not show a response to any of the bacterial treatments. Increase in gene expression of c3 and hsp70 in corals showing signs of disease indicates their potential involvement in immune and stress response to microbial challenges. PMID:23861754

  5. The future of coral reefs

    NASA Astrophysics Data System (ADS)

    Knowlton, Nancy

    2001-05-01

    Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived "weedy" corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral "bleaching" (the breakdown of coral-algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.

  6. Complete genome sequence for the shellfish pathogen Vibrio coralliilyticus RE98 isolated from a shellfish hatchery

    USDA-ARS?s Scientific Manuscript database

    Vibrio coralliilyticus is a pathogen of corals and larval shellfish. Publications on strain RE98 list it as a Vibrio tubiashii; however, whole genome sequencing confirms RE98 as V. coralliilyticus containing a total of 6,037,824 bp consisting of two chromosomes (3,420,228 and 1,917,482 bp), and two...

  7. Epimicrobiota Associated with the Decay and Recovery of Orbicella Corals Exhibiting Dark Spot Syndrome

    PubMed Central

    Meyer, Julie L.; Rodgers, John M.; Dillard, Brian A.; Paul, Valerie J.; Teplitski, Max

    2016-01-01

    Dark Spot Syndrome (DSS) is one of the most common diseases of boulder corals in the Caribbean. It presents as sunken brown lesions in coral tissue, which can spread quickly over coral colonies. With this study, we tested the hypothesis that similar to other coral diseases, DSS is a dysbiosis characterized by global shifts in the coral microbiome. Because Black Band Disease (BBD) was sometimes found following DSS lesions, we also tested the hypothesis that DSS is a precursor of BBD. To track disease initiation and progression 24 coral colonies were tagged. Of them five Orbicella annularis corals and three O. faveolata corals exhibited DSS lesions at tagging. Microbiota of lesions and apparently healthy tissues from DSS-affected corals over the course of 18 months were collected. Final visual assessment showed that five of eight corals incurred substantial tissue loss while two corals remained stable and one appeared to recover from DSS lesions. Illumina sequencing of the V6 region of bacterial 16S rRNA genes demonstrated no significant differences in bacterial community composition associated with healthy tissue or DSS lesions. The epimicrobiomes of both healthy tissue and DSS lesions contained high relative abundances of Operational Taxonomic Units assigned to Halomonas, an unclassified gammaproteobacterial genus, Moritella, an unclassified Rhodobacteraceae genus, Renibacterium, Pseudomonas, and Acinetobacter. The relative abundance of bacterial taxa was not significantly different between samples when grouped by tissue type (healthy tissue vs. DSS lesion), coral species, collection month, or the overall outcome of DSS-affected corals (substantial tissue loss vs. stable/recovered). Two of the tagged corals with substantial tissue loss also developed BBD during the 18-month sampling period. The bacterial community of the BBD layer was distinct from both healthy tissue and DSS lesions, with high relative abundances of the presumed BBD pathogen Roseofilum reptotaenium and an unclassified Bacteroidales genus, similar to previous results. Roseofilum was detected in all samples from this study, with the highest relative abundance in healthy tissue from DSS-affected corals sampled in August, suggesting that while DSS is not a precursor to BBD, DSS-affected corals are in a weakened state and therefore more susceptible to additional infections. PMID:27375605

  8. A microRNA regulates the response of corals to thermal stress.

    PubMed

    Gajigan, Andrian P; Conaco, Cecilia

    2017-07-01

    Coral reefs are diverse ecosystems of great ecological and economic importance. However, corals are vulnerable to a variety of stressors, including rising seawater temperatures, and yet little is known about the genetic mechanisms underlying their survival and adaptation to stress. Like other animals, corals possess genes for key members of the microRNA (miRNA) machinery. miRNAs are short RNAs that regulate diverse cellular processes, including organismal stress response, through post-transcriptional repression of gene transcripts. Through small RNA sequencing, we identified 26 miRNAs in the coral, Acropora digitifera. Many of the identified miRNAs are novel, while eight are conserved with miRNAs previously identified in other cnidarians. One of the identified miRNAs is differentially expressed in coral tissues exposed to acute thermal stress. This thermally responsive miRNA putatively regulates multiple pathways of the organismal stress response, DNA/RNA expression regulation, repair mechanisms, tissue morphogenesis, and signalling. We propose a model by which miRNA regulation allows the coral to mount a robust stress response through sequestration of a pool of nontranslated transcripts encoding stress response proteins. Release of miRNA-mediated repression under stress conditions may result in rapid and abundant translation of proteins that help the coral maintain cellular homoeostasis. These findings highlight the potential importance of miRNAs in the thermal resilience of corals. © 2017 John Wiley & Sons Ltd.

  9. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata

    PubMed Central

    Drake, Jeana L.; Mass, Tali; Haramaty, Liti; Zelzion, Ehud; Bhattacharya, Debashish; Falkowski, Paul G.

    2013-01-01

    It has long been recognized that a suite of proteins exists in coral skeletons that is critical for the oriented precipitation of calcium carbonate crystals, yet these proteins remain poorly characterized. Using liquid chromatography-tandem mass spectrometry analysis of proteins extracted from the cell-free skeleton of the hermatypic coral, Stylophora pistillata, combined with a draft genome assembly from the cnidarian host cells of the same species, we identified 36 coral skeletal organic matrix proteins. The proteome of the coral skeleton contains an assemblage of adhesion and structural proteins as well as two highly acidic proteins that may constitute a unique coral skeletal organic matrix protein subfamily. We compared the 36 skeletal organic matrix protein sequences to genome and transcriptome data from three other corals, three additional invertebrates, one vertebrate, and three single-celled organisms. This work represents a unique extensive proteomic analysis of biomineralization-related proteins in corals from which we identify a biomineralization “toolkit,” an organic scaffold upon which aragonite crystals can be deposited in specific orientations to form a phenotypically identifiable structure. PMID:23431140

  10. Histological observations in the Hawaiian reef coral, Porites compressa, affected by Porites bleaching with tissue loss.

    PubMed

    Sudek, M; Work, T M; Aeby, G S; Davy, S K

    2012-10-01

    The scleractinian finger coral Porites compressa is affected by the coral disease Porites bleaching with tissue loss (PBTL). This disease initially manifests as bleaching of the coenenchyme (tissue between polyps) while the polyps remain brown with eventual tissue loss and subsequent algal overgrowth of the bare skeleton. Histopathological investigation showed a loss of symbiont and melanin-containing granular cells which was more pronounced in the coenenchyme than the polyps. Cell counts confirmed a 65% reduction in symbiont density. Tissue loss was due to tissue fragmentation and necrosis in affected areas. In addition, a reduction in putative bacterial aggregate densities was found in diseased samples but no potential pathogens were observed. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals.

    PubMed

    Zhang, Xiao-Yong; He, Fei; Wang, Guang-Hua; Bao, Jie; Xu, Xin-Ya; Qi, Shu-Hua

    2013-06-01

    This study describes the diversity and antibacterial activity of culturable actinobacteria isolated from five species of gorgonian corals (Echinogorgia aurantiaca, Melitodes squamata, Muricella flexuosa, Subergorgia suberosa, and Verrucella umbraculum) collected in shallow water of the South China Sea. A total of 123 actinobacterial isolates were recovered using ten different isolation media, and assigned to 11 genera, including Streptomyces and Micromonospora as the dominant genera, followed by Nocardia, Verrucosispora, Nocardiopsis, Rhodococcus, Pseudonocardia, Agrococcus, Saccharomonospora, Saccharopolyspora and Dietzia. Comparable analysis indicated that the numbers of actinobacterial genera and isolates from the five gorgonian coral species varied significantly. It was found that 72 isolates displayed antibacterial activity against at least one indicator bacterium, and the antibacterial strains isolated from different gorgonians had almost the same proportion (~50 %). These results provide direct evidence for the hypotheses that gorgonian coral species contain large and diverse communities of actinobacteria, and suggest that many gorgonian-associated actinobacteria could produce some antibacterial agents to protect their hosts against pathogens. To our knowledge, this is the first report about the diversity of culturable actinobacteria isolated from gorgonian corals.

  12. Devising a Coral Reef Ocean Acidification Monitoring Portfolio

    NASA Astrophysics Data System (ADS)

    Gledhill, D. K.; Jewett, L.

    2012-12-01

    Coral reef monitoring has frequently been based only on descriptive science with limited capacity to assign specific attribution to agents of change. There is a requirement to engineer a diagnostic monitoring approach that can test predictions regarding the response of coral reef ecosystems to ocean acidification, and to identify potential areas of refugia or areas of particular concern. The approach should provide the means to detect not only changes in water chemistry but also changes in coral reef community structure and function which can be anticipated based upon our current understanding of paleo-OA events, experimental findings, process investigations, and modeling projections In August, 2012 a Coral Reef Ocean Acidification Monitoring Portfolio Workshop was hosted by the NOAA Ocean Acidification Program and the National Coral Reef Institute at the Nova Southeastern University Oceanographic Center. The workshop convened researchers and project managers from around the world engaged in coral reef ecosystems ocean acidification monitoring and research. The workshop sought to define a suite of metrics to include as part of long-term coral reef monitoring efforts that can contribute to discerning specific attribution of changes in coral reef ecosystems in response to ocean acidification. This portfolio of observations should leverage existing and proposed monitoring initiatives and would be derived from a suite of chemical, biogeochemical and ecological measurements. This talk will report out on the key findings from the workshop which should include identifying the most valuable that should be integrated into long-term coral reef ecosystem monitoring that will aid in discerning changes in coral reef ecosystems in response to ocean acidification. The outcomes should provide: recommendations of the most efficient and robust ways to monitor these metrics; identified augmentations that would be required to current ocean acidification monitoring necessary to achieve these metrics; identify opportunities for immediate collaborations using existing resources that can serve to reduce the identified gaps; and help to clarify expectations for ocean acidification monitoring.

  13. The corallivorous invertebrate Drupella aids in transmission of brown band disease on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Nicolet, K. J.; Hoogenboom, M. O.; Gardiner, N. M.; Pratchett, M. S.; Willis, B. L.

    2013-06-01

    Brown band disease (BrB) is an increasingly prevalent coral disease in the Indo-Pacific, but although the macroscopic signs of BrB have been associated with the ciliate Philaster guamensis, many aspects of its ecology remain unknown, particularly how the disease is transmitted among coral colonies. The aim of this study was to assess biotic factors affecting BrB transmission, explicitly testing whether corallivorous species contribute to disease spread. Several fish species were observed feeding on diseased tissue in the field, but did not influence either the progression or transmission rates of BrB on coral colonies in situ. In aquarium-based experiments, the butterflyfish Chaetodon aureofasciatus neither aided nor hindered the transmission of BrB from infected to uninfected corals. In contrast, the coral-feeding gastropod Drupella sp. was a highly effective vector of BrB, infecting more than 40 % of experimental colonies. This study also demonstrated the importance of injury in facilitating BrB infection, supporting the hypothesis that the BrB pathogen invades compromised coral tissue. In conclusion, disturbances and corallivorous activities that injure live corals are likely to contribute to increased occurrence of BrB provided that feeding scars create entry wounds sufficiently extensive to facilitate infection. These findings increase the understanding of the ecology of BrB, enabling better predictions of the prevalence and severity of this disease, and informing strategies for managing the impact of BrB on coral reefs.

  14. De novo metatranscriptome assembly and coral gene expression profile of Montipora capitata with growth anomaly.

    PubMed

    Frazier, Monika; Helmkampf, Martin; Bellinger, M Renee; Geib, Scott M; Takabayashi, Misaki

    2017-09-11

    Scleractinian corals are a vital component of coral reef ecosystems, and of significant cultural and economic value worldwide. As anthropogenic and natural stressors are contributing to a global decline of coral reefs, understanding coral health is critical to help preserve these ecosystems. Growth anomaly (GA) is a coral disease that has significant negative impacts on coral biology, yet our understanding of its etiology and pathology is lacking. In this study we used RNA-seq along with de novo metatranscriptome assembly and homology assignment to identify coral genes that are expressed in three distinct coral tissue types: tissue from healthy corals ("healthy"), GA lesion tissue from diseased corals ("GA-affected") and apparently healthy tissue from diseased corals ("GA-unaffected"). We conducted pairwise comparisons of gene expression among these three tissue types to identify genes and pathways that help us to unravel the molecular pathology of this coral disease. The quality-filtered de novo-assembled metatranscriptome contained 76,063 genes, of which 13,643 were identified as putative coral genes. Overall gene expression profiles of coral genes revealed high similarity between healthy tissue samples, in contrast to high variance among diseased samples. This indicates GA has a variety of genetic effects at the colony level, including on seemingly healthy (GA-unaffected) tissue. A total of 105 unique coral genes were found differentially expressed among tissue types. Pairwise comparisons revealed the greatest number of differentially expressed genes between healthy and GA-affected tissue (93 genes), followed by healthy and GA-unaffected tissue (33 genes), and GA-affected and -unaffected tissue (7 genes). The putative function of these genes suggests GA is associated with changes in the activity of genes involved in developmental processes and activation of the immune system. This is one of the first transcriptome-level studies to investigate coral GA, and the first metatranscriptome assembly for the M. capitata holobiont. The gene expression data, metatranscriptome assembly and methodology developed through this study represent a significant addition to the molecular information available to further our understanding of this coral disease.

  15. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance.

    PubMed

    Glasl, Bettina; Herndl, Gerhard J; Frade, Pedro R

    2016-09-01

    Microbes are well-recognized members of the coral holobiont. However, little is known about the short-term dynamics of mucus-associated microbial communities under natural conditions and after disturbances, and how these dynamics relate to the host's health. Here we examined the natural variability of prokaryotic communities (based on 16S ribosomal RNA gene amplicon sequencing) associating with the surface mucus layer (SML) of Porites astreoides, a species exhibiting cyclical mucus aging and shedding. Shifts in the prokaryotic community composition during mucus aging led to the prevalence of opportunistic and potentially pathogenic bacteria (Verrucomicrobiaceae and Vibrionaceae) in aged mucus and to a twofold increase in prokaryotic abundance. After the release of aged mucus sheets, the community reverted to its original state, dominated by Endozoicimonaceae and Oxalobacteraceae. Furthermore, we followed the fate of the coral holobiont upon depletion of its natural mucus microbiome through antibiotics treatment. After re-introduction to the reef, healthy-looking microbe-depleted corals started exhibiting clear signs of bleaching and necrosis. Recovery versus mortality of the P. astreoides holobiont was related to the degree of change in abundance distribution of the mucus microbiome. We conclude that the natural prokaryotic community inhabiting the coral SML contributes to coral health and that cyclical mucus shedding has a key role in coral microbiome dynamics.

  16. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance

    PubMed Central

    Glasl, Bettina; Herndl, Gerhard J; Frade, Pedro R

    2016-01-01

    Microbes are well-recognized members of the coral holobiont. However, little is known about the short-term dynamics of mucus-associated microbial communities under natural conditions and after disturbances, and how these dynamics relate to the host's health. Here we examined the natural variability of prokaryotic communities (based on 16S ribosomal RNA gene amplicon sequencing) associating with the surface mucus layer (SML) of Porites astreoides, a species exhibiting cyclical mucus aging and shedding. Shifts in the prokaryotic community composition during mucus aging led to the prevalence of opportunistic and potentially pathogenic bacteria (Verrucomicrobiaceae and Vibrionaceae) in aged mucus and to a twofold increase in prokaryotic abundance. After the release of aged mucus sheets, the community reverted to its original state, dominated by Endozoicimonaceae and Oxalobacteraceae. Furthermore, we followed the fate of the coral holobiont upon depletion of its natural mucus microbiome through antibiotics treatment. After re-introduction to the reef, healthy-looking microbe-depleted corals started exhibiting clear signs of bleaching and necrosis. Recovery versus mortality of the P. astreoides holobiont was related to the degree of change in abundance distribution of the mucus microbiome. We conclude that the natural prokaryotic community inhabiting the coral SML contributes to coral health and that cyclical mucus shedding has a key role in coral microbiome dynamics. PMID:26953605

  17. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    PubMed

    Kemp, Dustin W; Rivers, Adam R; Kemp, Keri M; Lipp, Erin K; Porter, James W; Wares, John P

    2015-01-01

    Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance), underside (low irradiance), and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  18. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    PubMed

    Schill, Steven R; Raber, George T; Roberts, Jason J; Treml, Eric A; Brenner, Jorge; Halpin, Patrick N

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  19. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks

    PubMed Central

    Schill, Steven R.; Raber, George T.; Roberts, Jason J.; Treml, Eric A.; Brenner, Jorge; Halpin, Patrick N.

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008–2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future. PMID:26641083

  20. 16SrDNA Pyrosequencing of the Mediterranean Gorgonian Paramuricea clavata Reveals a Link among Alterations in Bacterial Holobiont Members, Anthropogenic Influence and Disease Outbreaks

    PubMed Central

    Vezzulli, Luigi; Pezzati, Elisabetta; Huete-Stauffer, Carla; Pruzzo, Carla; Cerrano, Carlo

    2013-01-01

    Mass mortality events of benthic invertebrates in the Mediterranean Sea are becoming an increasing concern with catastrophic effects on the coastal marine environment. Sea surface temperature anomalies leading to physiological stress, starvation and microbial infections were identified as major factors triggering animal mortality. However the highest occurrence of mortality episodes in particular geographic areas and occasionally in low temperature deep environments suggest that other factors play a role as well. We conducted a comparative analysis of bacterial communities associated with the purple gorgonian Paramuricea clavata, one of the most affected species, collected at different geographic locations and depth, showing contrasting levels of anthropogenic disturbance and health status. Using massive parallel 16SrDNA gene pyrosequencing we showed that the bacterial community associated with healthy P. clavata in pristine locations was dominated by a single genus Endozoicomonas within the order Oceanospirillales which represented ∼90% of the overall bacterial community. P. clavata samples collected in human impacted areas and during disease events had higher bacterial diversity and abundance of disease-related bacteria, such as vibrios, than samples collected in pristine locations whilst showed a reduced dominance of Endozoicomonas spp. In contrast, bacterial symbionts exhibited remarkable stability in P. clavata collected both at euphotic and mesophotic depths in pristine locations suggesting that fluctuations in environmental parameters such as temperature have limited effect in structuring the bacterial holobiont. Interestingly the coral pathogen Vibrio coralliilyticus was not found on diseased corals collected during a deep mortality episode suggesting that neither temperature anomalies nor recognized microbial pathogens are solely sufficient to explain for the events. Overall our data suggest that anthropogenic influence may play a significant role in determining the coral health status by affecting the composition of the associated microbial community. Environmental stressful events and microbial infections may thus be superimposed to compromise immunity and trigger mortality outbreaks. PMID:23840768

  1. Sulfur-oxidizing bacterial populations within cyanobacterial dominated coral disease lesions.

    PubMed

    Bourne, David G; van der Zee, Marc J J; Botté, Emmanuelle S; Sato, Yui

    2013-08-01

    This study investigated the diversity and quantitative shifts of sulfur-oxidizing bacteria (SOB) during the onset of black band disease (BBD) in corals using quantitative PCR (qPCR) and cloning approaches targeting the soxB gene, involved in sulfur oxidation. Four Montipora sp. coral colonies identified with lesions previously termed cyanobacterial patches (CP) (comprising microbial communities different from those of BBD lesions), was monitored in situ as CP developed into BBD. The overall abundance of SOB in both CP and BBD lesions were very low and near the detection limit of the qPCR assay, although consistently indicated that SOB populations decreased as the lesions transitioned from CP to BBD. Phylogenetic assessment of retrieved soxB genes showed that SOB in both CP and BBD lesions were dominated by one sequence type, representing > 70% of all soxB gene sequences and affiliated with members of the Rhodobacteraceae within the α-Proteobacteria. This study represents the first assessment targeting SOB within BBD lesions and clearly shows that SOB are not highly diverse or abundant in this complex microbial mat. The lack of oxidation of reduced sulfur compounds by SOB likely aids the accumulation of high levels of sulfide at the base of the BBD mat, a compound contributing to the pathogenicity of BBD lesions. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Heeding a Call to Action for U.S. Coral Reefs: the Untapped Potential of the Clean Water Act

    EPA Science Inventory

    A recently published call to action by Dodge et al. (2008) identifies nine actions needed to protect coral reefs. The authors identify several management goals that cannot be accomplished with MPAs alone, the traditional approach to coral reef protection. For U.S. waters, the Cle...

  3. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023.

    PubMed

    Bao, Jie; Sun, Yu-Lin; Zhang, Xiao-Yong; Han, Zhuang; Gao, Hai-Chun; He, Fei; Qian, Pei-Yuan; Qi, Shu-Hua

    2013-04-01

    Two new polyketides, 6,8,5'6'-tetrahydroxy-3'-methylflavone (1) and paecilin C (2), together with six known analogs secalonic acid D (3), secalonic acid B (4) penicillixanthone A (5), emodin (6), citreorosein (7) and isorhodoptilometrin (8) were obtained from a broth of gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. Compounds 1 and 6-8 had significant antifouling activity against Balanus amphitrite larvae settlement with EC50 values of 6.7, 6.1, 17.9 and 13.7 μg ml(-1), respectively, and 3-5 showed medium antibacterial activity against four tested bacterial strains. This was the first report of antibacterial activity of 3-5 against marine bacteria and antifouling activity of 6-8 against marine biofouling organism's larvae. The results indicated that gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023 strain could produce antifouling and antibacterial compounds that might aid the host gorgonian coral in protection against marine pathogen bacteria, biofouling organisms and other intruders.

  4. Diseases and partial mortality in Montastraea annularis species complex in reefs with differing environmental conditions (NW Caribbean and Gulf of Mexico).

    PubMed

    Jordán-Dahlgren, Eric; Maldonado, Miguel Angel; Rodríguez-Martínez, Rosa Elisa

    2005-01-25

    We documented the prevalence of diseases, syndromes and partial mortality in colonies of the Montastraea annularis species complex on 3 reefs, and tested the assumption that a higher prevalence of these parameters occurs when reefs are closer to point-sources of pollution. One reef was isolated from the impact of local factors with the exception of fishing, 1 potentially influenced by local industrial pollutants, and 1 influenced by local urban pollution. Two reefs were surveyed in 1996 and again in 2001 and 1 in 1998 and again in 2001. In 2001, colonies on all reefs had a high prevalence of the yellow-band syndrome and a relatively high degree of recent partial mortality, while the prevalence of black-band and white-plague diseases was low although a new sign, that we named the thin dark line, had relatively high prevalence in all reefs. As no direct relationship was found between disease prevalence and local environmental quality, our results open the possibility that regional and/or global factors may already be playing an important role in the prevalence of coral disease in the Caribbean, and contradict the theory that coral disease prevalence is primarily related to local environmental degradation. Reasons that may partially explain these findings are the high level of potential pathogen connectivity within the Caribbean as a result of its circulation patterns coupled to the large land-derived pollutants and pathogens input into this Mediterranean sea, together with the surface water warming effects which stress corals and enhance pathogen activity.

  5. Mangrove habitats provide refuge from climate change for reef-building corals

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-03-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business as usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef, coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove shaded and exposed (unshaded) areas. At least 33 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies was living shaded by mangroves, and no shaded colonies bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies bleached. A combination of substrate and habitat heterogeniety, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.

  6. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-08-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.

  7. Protected areas mitigate diseases of reef-building corals by reducing damage from fishing.

    PubMed

    Lamb, Joleah B; Williamson, David H; Russ, Garry R; Willis, Bette L

    2015-09-01

    Parks and protected areas have been instrumental in reducing anthropogenic sources of damage in terrestrial and aquatic environments. Pathogen invasion often succeeds physical wounding and injury, yet links between the reduction of damage and the moderation of disease have not been assessed. Here, we examine the utility of no-take marine reserves as tools for mitigating diseases that affect reef-building corals. We found that sites located within reserves had fourfold reductions in coral disease prevalence compared to non-reserve sites (80466 corals surveyed). Of 31 explanatory variables assessed, coral damage and the abundance of derelict fishing line best explained differences in disease assemblages between reserves and non-reserves. Unexpectedly, we recorded significantly higher levels of disease, coral damage, and derelict fishing line in non-reserves with fishing gear restrictions than in those without gear restrictions. Fishers targeting stocks perceived to be less depleted, coupled with enhanced site access from immediately adjacent boat moorings, may explain these unexpected patterns. Significant correlations between the distance from mooring sites and prevalence values for a ciliate disease known to infest wounded tissue (r = -0.65), coral damage (r = -0.64), and the abundance of derelict fishing line (r = -0.85) corroborate this interpretation. This is the first study to link disease with recreational use intensity in a park, emphasizing the need to evaluate the placement of closures and their direct relationship to ecosystem health. Since corals are modular, ecological processes that govern reproductive and competitive fitness are frequently related to colony surface area therefore, even low levels of cumulative tissue loss from progressing diseases pose significant threats to reef coral persistence. Disease mitigation through reductions in physical injury in areas where human activities are concentrated is another mechanism by which protected areas may improve ecosystem resilience in a changing climate.

  8. Microbial Ecology of Four Coral Atolls in the Northern Line Islands

    PubMed Central

    Smriga, Steven; Edwards, Robert A.; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A.; Thurber, Rebecca Vega; Willis, Bette L.; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-01-01

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems worldwide. PMID:18301735

  9. Microbial ecology of four coral atolls in the Northern Line Islands.

    PubMed

    Dinsdale, Elizabeth A; Pantos, Olga; Smriga, Steven; Edwards, Robert A; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A; Thurber, Rebecca Vega; Willis, Bette L; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-02-27

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems worldwide.

  10. Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals

    NASA Astrophysics Data System (ADS)

    Vieira, Christophe; Thomas, Olivier P.; Culioli, Gérald; Genta-Jouve, Grégory; Houlbreque, Fanny; Gaubert, Julie; de Clerck, Olivier; Payri, Claude E.

    2016-01-01

    Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C21 polyunsaturated alcohols named lobophorenols A-C (1-3) were isolated and identified. Significant allelopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems.

  11. Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals.

    PubMed

    Vieira, Christophe; Thomas, Olivier P; Culioli, Gérald; Genta-Jouve, Grégory; Houlbreque, Fanny; Gaubert, Julie; De Clerck, Olivier; Payri, Claude E

    2016-01-05

    Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C21 polyunsaturated alcohols named lobophorenols A-C (1-3) were isolated and identified. Significant allelopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems.

  12. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages

    PubMed Central

    Nelson, Craig E; Goldberg, Stuart J; Wegley Kelly, Linda; Haas, Andreas F; Smith, Jennifer E; Rohwer, Forest; Carlson, Craig A

    2013-01-01

    Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than coral exudates. PMID:23303369

  13. Terrestrial Sediment and Nutrient Discharge, and Their Potential Influence on Coral Reefs, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Webb, R. M.; Warne, A. G.

    2004-12-01

    Sediment and nutrient discharge to the insular shelf of Puerto Rico (18 degrees latitude), augmented by anthropogenic activity, is believed to have contributed to widespread degradation of coral reefs of Puerto Rico during the 20th century. Sediment deposition degrades coral reefs because it reduces the area of sea floor suitable for growth of new coral, diminishes the amount of light available for photosynthesis by symbiotic algae that live within individual coral animals, and in extreme cases, buries coral colonies. Land-use history and data from 30 water-discharge, 9 daily and 15 intermittent sediment-concentration, and 24 water-quality gaging stations were analyzed to investigate the timing and intensity of terrestrial sediment and nutrient discharge into coastal waters. Watersheds in Puerto Rico generally are small (10's to 100's of square km), channel gradients are steep, and stream valleys are deeply incised and narrow. Major storms are usually brief (<24 h) but intense such that the majority of the annual sediment discharge occurs in a few days. From 1960 through 2000 the highest mean daily discharge for a water year (October - September) accounted for 20 to 60 percent of the total annual sediment discharge. Major storms, with a return frequency of approximately a decade, were capable of discharging up to 30 times the median annual sediment-discharge volume. Prior to agricultural and industrial development, coastal waters are believed to have been relatively transparent, with strong currents and seasonal high-energy swells assisting corals in the removal of minor amounts of sediment deposited after storms. Land clearing and modification, first for agriculture and later for urban development, have increased sediment and nutrient influx to the coast during the 19th and 20th centuries. Although forest cover has increased to approximately 30 percent of the surface of Puerto Rico during the past 60 years, sediment eroded from hillslopes during the agricultural period is still being episodically transported from upland valleys to downstream floodplains and the coast. In response to better land management, the quality of water has improved significantly since the 1980s. Nitrogen and phosphorous concentrations in river waters are now well within regulatory limits, although current concentrations are as much as 10 times the estimated pre-settlement levels. Concentrations of pathogens also are improved but continue to be near or above regulatory limits. Unlike sediment discharge, which is episodic and intense, the discharge of river-borne nutrients and pathogens is a less intense but chronic stressor to coral reefs located near the mouths of rivers.

  14. Developing the Biological Condition Gradient (BCG), as a Tool for Describing the Condition of US Coral Reefs

    EPA Science Inventory

    Understanding effects of human activity on coral reefs requires knowing what characteristics constitute a high quality coral reef and identifying measurable criteria. The BCG is a conceptual model that describes how biological attributes of coral reefs change along a gradient of ...

  15. 78 FR 59657 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... areas of coral abundance, to identify and develop tools for coral impact reduction, and potential management measures to be considered for conserving areas of coral concentrations and associated fish...

  16. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (south Florida): Reef-building corals. [Acropora cervicornis; Acropora palmata; Montastraea annularis; Montastraea cavernosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, J.W.

    1987-08-01

    Four species of reef-building corals are considered: elkhorn coral, staghorn coral, common star coral, and large star coral. All four species spawn annually in the fall during hurricane season. Juvenile recruitment is low in all four species. Rapid growth rates of species in the genus Acropora (10 to 20 cm/yr) contrast with slower growth rates of species in the genus Montastraea (1.0 to 2.0 cm/yr), but both species of Montastraea are also important in reef development due to their form and great longevity. Shallow-water colonies of Montastraea survive hurricanes; shallow colonies of Acropora do not. Because of their dependence onmore » photosynthesis for all of their carbon acquisition, the Acropora species reviewed here have a more restricted depth distribution (0 to 30 m) than do the Montastraea species considered (0 to 70 m). All four species are subject to intense predation by the snail predator, Coralliophila. Species of Montastraea are susceptible to infection from blue-green algae, which produce ''black band disease;'' species of Acropora are susceptible to a different, as yet unidentified pathogen, that produces ''white-band'' disease. Increased water turbidity and sedimentation cause reduced growth rates and partial or whole mortality in all four species.« less

  17. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  18. Investigating Coral Disease Spread Across the Hawaiian Archipelago

    NASA Astrophysics Data System (ADS)

    Sziklay, Jamie

    Coral diseases negatively impact reef ecosystems and they are increasing worldwide; yet, we have a limited understanding of the factors that influence disease risk and transmission. My dissertation research investigated coral disease spread for several common coral diseases in the Hawaiian archipelago to understand how host-pathogenenvironment interactions vary across different spatial scales and how we can use that information to improve management strategies. At broad spatial scales, I developed forecasting models to predict outbreak risk based on depth, coral density and temperature anomalies from remotely sensed data (chapter 1). In this chapter, I determined that host density, total coral density, depth and winter temperature variation were important predictors of disease prevalence for several coral diseases. Expanding on the predictive models, I also found that colony size, wave energy, water quality, fish abundance and nearby human population size altered disease risk (chapter 2). Most of the model variation occurred at the scale of sites and coastline, indicating that local coral composition and water quality were key determinants of disease risk. At the reef scale, I investigated factors that influence disease transmission among individuals using a tissue loss disease outbreak in Kane'ohe Bay, O'ahu, Hawai'i as a case study (chapter 3). I determined that host size, proximity to infected neighbors and numbers of infected neighbors were associated with disease risk. Disease transmission events were very localized (within 15 m) and rates changed dramatically over the course of the outbreak: the transmission rate initially increased quickly during the outbreak and then decreased steadily until the outbreak ended. At the colony scale, I investigated disease progression between polyps within individual coral colonies using confocal microscopy (chapter 4). Here, I determined that fragmented florescent pigment distributions appeared adjacent to the disease front of infected coral and had fewer intact polyps than in healthy coral fragments. These results suggested that disease progression within colonies affected with chronic and acute Montipora white syndromes are highly localized rather than systemic and their bacterial pathogens directly attack the coral tissue rather than zooxanthellae. Overall, my dissertation research indicates that watershed condition and coral community configuration can facilitate and/or inhibit coral disease spread, and that disease transmission may be more spatially constrained than previously thought.

  19. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    PubMed

    Guinotte, John M; Davies, Andrew J

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  20. Predicted Deep-Sea Coral Habitat Suitability for the U.S. West Coast

    PubMed Central

    Guinotte, John M.; Davies, Andrew J.

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled. PMID:24759613

  1. Pharmacological Potential of Phylogenetically Diverse Actinobacteria Isolated from Deep-Sea Coral Ecosystems of the Submarine Avilés Canyon in the Cantabrian Sea.

    PubMed

    Sarmiento-Vizcaíno, Aida; González, Verónica; Braña, Alfredo F; Palacios, Juan J; Otero, Luis; Fernández, Jonathan; Molina, Axayacatl; Kulik, Andreas; Vázquez, Fernando; Acuña, José L; García, Luis A; Blanco, Gloria

    2017-02-01

    Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.

  2. Workshop on Biological Integrity of Coral Reefs August 21-22, 2012, Caribbean Coral Reef Institute, Isla Magueyes, La Parguera, Puerto Rico.

    EPA Science Inventory

    This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characterist...

  3. Coral Reef Resilience, Tipping Points and the Strength of Herbivory

    PubMed Central

    Holbrook, Sally J.; Schmitt, Russell J.; Adam, Thomas C.; Brooks, Andrew J.

    2016-01-01

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience. PMID:27804977

  4. Coral Reef Resilience, Tipping Points and the Strength of Herbivory.

    PubMed

    Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J

    2016-11-02

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.

  5. A microsampling method for genotyping coral symbionts

    NASA Astrophysics Data System (ADS)

    Kemp, D. W.; Fitt, W. K.; Schmidt, G. W.

    2008-06-01

    Genotypic characterization of Symbiodinium symbionts in hard corals has routinely involved coring, or the removal of branches or a piece of the coral colony. These methods can potentially underestimate the complexity of the Symbiodinium community structure and may produce lesions. This study demonstrates that microscale sampling of individual coral polyps provided sufficient DNA for identifying zooxanthellae clades by RFLP analyses, and subclades through the use of PCR amplification of the ITS-2 region of rDNA and denaturing-gradient gel electrophoresis. Using this technique it was possible to detect distinct ITS-2 types of Symbiodinium from two or three adjacent coral polyps. These methods can be used to intensely sample coral-symbiont population/communities while causing minimal damage. The effectiveness and fine scale capabilities of these methods were demonstrated by sampling and identifying phylotypes of Symbiodinium clades A, B, and C that co-reside within a single Montastraea faveolata colony.

  6. Climate warming and disease risks for terrestrial and marine biota

    USGS Publications Warehouse

    Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D.

    2002-01-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño–Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  7. Climate Warming and Disease Risks for Terrestrial and Marine Biota

    NASA Astrophysics Data System (ADS)

    Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.

    2002-06-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  8. Antibacterial Activity of Marine and Black Band Disease Cyanobacteria against Coral-Associated Bacteria

    PubMed Central

    Gantar, Miroslav; Kaczmarsky, Longin T.; Stanić, Dina; Miller, Aaron W.; Richardson, Laurie L.

    2011-01-01

    Black band disease (BBD) of corals is a cyanobacteria-dominated polymicrobial disease that contains diverse populations of heterotrophic bacteria. It is one of the most destructive of coral diseases and is found globally on tropical and sub-tropical reefs. We assessed ten strains of BBD cyanobacteria, and ten strains of cyanobacteria isolated from other marine sources, for their antibacterial effect on growth of heterotrophic bacteria isolated from BBD, from the surface mucopolysaccharide layer (SML) of healthy corals, and three known bacterial coral pathogens. Assays were conducted using two methods: co-cultivation of cyanobacterial and bacterial isolates, and exposure of test bacteria to (hydrophilic and lipophilic) cyanobacterial cell extracts. During co-cultivation, 15 of the 20 cyanobacterial strains tested had antibacterial activity against at least one of the test bacterial strains. Inhibition was significantly higher for BBD cyanobacteria when compared to other marine cyanobacteria. Lipophilic extracts were more active than co-cultivation (extracts of 18 of the 20 strains were active) while hydrophilic extracts had very limited activity. In some cases co-cultivation resulted in stimulation of BBD and SML bacterial growth. Our results suggest that BBD cyanobacteria are involved in structuring the complex polymicrobial BBD microbial community by production of antimicrobial compounds. PMID:22073011

  9. Improved zircon iron corals for the 1990s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, C.

    1992-03-01

    CIBA-GEIGY/Drakenfeld Colors is dedicated to the research and development of consistent and cost-effective ceramic stains for the whitewares industry. After identifying the trends in color for the 1990s. CIBA-GEIGY/Drakenfeld Colors initiated an extensive R D project to improve zircon ion corals for the whitewares industry. These color trends indicated a need for stronger and cleaner zircon iron corals. This paper discusses the chemistry and crystal structure of zircon iron corals. A historical review of Drakenfeld corals will also be presented. The most recent development in Drakenfeld corals will then be compared to other commercially available zircon iron corals. Taking intomore » consideration these comparisons, conclusions will be drawn suggesting the coral of choice for the 1990s.« less

  10. Use of Quantitative Real-Time PCR for Direct Detection of Serratia marcescens in Marine and Other Aquatic Environments

    PubMed Central

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D.

    2014-01-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml−1 and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml−1. This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health. PMID:24375136

  11. Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments.

    PubMed

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D; Lipp, Erin K

    2014-03-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.

  12. Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies

    USGS Publications Warehouse

    Gaetani, G.A.; Cohen, A.L.; Wang, Z.; Crusius, John

    2011-01-01

    This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where instrumental temperature records are available, a Rayleigh-based framework allows the effects of stress on coral calcification to be identified on the basis of anomalies in the skeletal composition.

  13. Global habitat suitability for framework-forming cold-water corals.

    PubMed

    Davies, Andrew J; Guinotte, John M

    2011-04-15

    Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2)) global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts), which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine ecosystems for inclusion in future marine protected areas and reduce coral bycatch by commercial fisheries.

  14. Black reefs: iron-induced phase shifts on coral reefs.

    PubMed

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions.

  15. CORAL CONDITION: HOW TO FATHOM THE DECLINE OF CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Coral reefs have experienced unprecedented levels of bleaching, disease and mortality during the last three decades. The goal of EPA-ORD research is to identify the culpable stressors in different species, reefs and regions using integrated field and laboratory studies.

  16. Some scleractinian corals (Scleractinia: Anthozoa) of Larak Island, Persian Gulf.

    PubMed

    Samiei, Jahangir Vajed; Dab, Koosha; Ghezellou, Parviz; Shirvani, Arash

    2013-01-01

    There is a shortage of knowledge about taxonomy and distribution of coral reef communities in the Persian Gulf. One of the main steps in the conservation and evaluation of such an environment is to locate and identify the communities and their inhabited fauna and flora. In the present study scleractinian corals were collected from depths of 3 to 9 meter around Larak Island, Persian Gulf. Underwater photographs of the sampled specimens were obtained in the natural habitat before sampling. 37 species have been identified via morphological characteristics of exoskeletons. The following study provided a pictorial reference to enhance the basic knowledge about coral reef communities in the Persian Gulf.

  17. Climate-change refugia: shading reef corals by turbidity.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m(-2)  s(-1) , and predict that 16% of reef-coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change. © 2015 John Wiley & Sons Ltd.

  18. Palaeoecological records of coral community development on a turbid, nearshore reef complex: baselines for assessing ecological change

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.; Perry, C. T.; Smithers, S. G.; Morgan, K. M.; Santodomingo, N.; Johnson, K. G.

    2017-09-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. On Australia's Great Barrier Reef (GBR), coral reefs situated within coastal inner-shelf zones are a particular priority. This is due to their close proximity to river point sources, and therefore susceptibility to reduced water quality discharged from coastal catchments, many of which have been modified following European settlement (ca. 1850 AD). However, the extent of water-quality decline and its impacts on the GBR's inner-shelf reefs remain contentious. In this study, palaeoecological coral assemblage records were developed for five proximal coral reefs situated within a nearshore turbid-zone reef complex on the central GBR. A total of 29 genera of Scleractinia were identified from the palaeoecological inventory of the reef complex, with key contributions to reef-building made by Acropora, Montipora, and Turbinaria. Discrete intervals pre- and post-dating European settlement, but associated with equivalent water depths, were identified using Bayesian age-depth modelling, enabling investigation of competing ideas of the main drivers of nearshore coral assemblage change. Specifically, we tested the hypotheses that changes in the composition of nearshore coral assemblages are: (1) intrinsically driven and linked to vertical reef development towards sea level, and (2) the result of changes in water quality associated with coastal river catchment modification. Our records found no discernible evidence of change in the generic composition of coral assemblages relative to European settlement. Instead, two distinctive depth-stratified assemblages were identified. This study demonstrates the robust nature of nearshore coral communities under reported water-quality decline and provides a useful context for the monitoring and assessment of ecological change on reefs located within the most nearshore turbid-zone environments of the central GBR.

  19. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    PubMed

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  20. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  1. Critical research needs for identifying future changes in Gulf coral reef ecosystems.

    PubMed

    Feary, David A; Burt, John A; Bauman, Andrew G; Al Hazeem, Shaker; Abdel-Moati, Mohamed A; Al-Khalifa, Khalifa A; Anderson, Donald M; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H; Chen, Chaolun Allen; Coles, Steve L; Dab, Koosha; Fowler, Ashley M; George, David; Grandcourt, Edwin; Hill, Ross; John, David M; Jones, David A; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R; Wiedenmann, Joerg

    2013-07-30

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    PubMed Central

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A.; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David; Grandcourt, Edwin; Hill, Ross; John, David M.; Jones, David A.; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Joerg

    2014-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/ Persian Gulf (thereafter ‘Gulf’) coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  3. Proteomic profiling of healthy and diseased hybrid soft corals Sinularia maxima × S. polydactyla.

    PubMed

    Gochfeld, Deborah J; Ankisetty, Sridevi; Slattery, Marc

    2015-10-16

    Emerging diseases of marine invertebrates have been implicated as one of the major causes of the continuing decline in coral reefs worldwide. To date, most of the focus on marine diseases has been aimed at hard (scleractinian) corals, which are the main reef builders worldwide. However, soft (alcyonacean) corals are also essential components of tropical reefs, representing food, habitat and the 'glue' that consolidates reefs, and they are subject to the same stressors as hard corals. Sinularia maxima and S. polydactyla are the dominant soft corals on the shallow reefs of Guam, where they hybridize. In addition to both parent species, the hybrid soft coral population in Guam is particularly affected by Sinularia tissue loss disease. Using label-free shotgun proteomics, we identified differences in protein expression between healthy and diseased colonies of the hybrid S. maxima × S. polydactyla. This study provided qualitative and quantitative data on specific proteins that were differentially expressed under the stress of disease. In particular, metabolic proteins were down-regulated, whereas proteins related to stress and to symbiont photosynthesis were up-regulated in the diseased soft corals. These results indicate that soft corals are responding to pathogenesis at the level of the proteome, and that this label-free approach can be used to identify and quantify protein biomarkers of sub-lethal stress in studies of marine disease.

  4. Comparing bacterial community composition between healthy and white plague-like disease states in Orbicella annularis using PhyloChip™ G3 microarrays

    USGS Publications Warehouse

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Zawada, David G.; Andersen, Gary L.

    2013-01-01

    Coral disease is a global problem. Diseases are typically named or described based on macroscopic changes, but broad signs of coral distress such as tissue loss or discoloration are unlikely to be specific to a particular pathogen. For example, there appear to be multiple diseases that manifest the rapid tissue loss that characterizes ‘white plague.’ PhyloChip™ G3 microarrays were used to compare the bacterial community composition of both healthy and white plague-like diseased corals. Samples of lobed star coral (Orbicella annularis, formerly of the genus Montastraea [1]) were collected from two geographically distinct areas, Dry Tortugas National Park and Virgin Islands National Park, to determine if there were biogeographic differences between the diseases. In fact, all diseased samples clustered together, however there was no consistent link to Aurantimonas coralicida, which has been described as the causative agent of white plague type II. The microarrays revealed a large amount of bacterial heterogeneity within the healthy corals and less diversity in the diseased corals. Gram-positive bacterial groups (Actinobacteria, Firmicutes) comprised a greater proportion of the operational taxonomic units (OTUs) unique to healthy samples. Diseased samples were enriched in OTUs from the families Corynebacteriaceae, Lachnospiraceae, Rhodobacteraceae, and Streptococcaceae. Much previous coral disease work has used clone libraries, which seem to be methodologically biased toward recovery of Gram-negative bacterial sequences and may therefore have missed the importance of Gram-positive groups. The PhyloChip™ data presented here provide a broader characterization of the bacterial community changes that occur within Orbicella annularis during the shift from a healthy to diseased state.

  5. Comparing Bacterial Community Composition between Healthy and White Plague-Like Disease States in Orbicella annularis Using PhyloChip™ G3 Microarrays

    PubMed Central

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Zawada, David G.; Andersen, Gary L.

    2013-01-01

    Coral disease is a global problem. Diseases are typically named or described based on macroscopic changes, but broad signs of coral distress such as tissue loss or discoloration are unlikely to be specific to a particular pathogen. For example, there appear to be multiple diseases that manifest the rapid tissue loss that characterizes ‘white plague.’ PhyloChip™ G3 microarrays were used to compare the bacterial community composition of both healthy and white plague-like diseased corals. Samples of lobed star coral (Orbicella annularis, formerly of the genus Montastraea [1]) were collected from two geographically distinct areas, Dry Tortugas National Park and Virgin Islands National Park, to determine if there were biogeographic differences between the diseases. In fact, all diseased samples clustered together, however there was no consistent link to Aurantimonas coralicida, which has been described as the causative agent of white plague type II. The microarrays revealed a large amount of bacterial heterogeneity within the healthy corals and less diversity in the diseased corals. Gram-positive bacterial groups (Actinobacteria, Firmicutes) comprised a greater proportion of the operational taxonomic units (OTUs) unique to healthy samples. Diseased samples were enriched in OTUs from the families Corynebacteriaceae, Lachnospiraceae, Rhodobacteraceae, and Streptococcaceae. Much previous coral disease work has used clone libraries, which seem to be methodologically biased toward recovery of Gram-negative bacterial sequences and may therefore have missed the importance of Gram-positive groups. The PhyloChip™data presented here provide a broader characterization of the bacterial community changes that occur within Orbicella annularis during the shift from a healthy to diseased state. PMID:24278181

  6. Aura-biomes are present in the water layer above coral reef benthic macro-organisms.

    PubMed

    Walsh, Kevin; Haggerty, J Matthew; Doane, Michael P; Hansen, John J; Morris, Megan M; Moreira, Ana Paula B; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D; Thompson, Fabiano; Dinsdale, Elizabeth A

    2017-01-01

    As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis , (2) fleshy macroalgae ( Stypopodium , Dictota and Canistrocarpus ), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific "aura-biome". The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria , Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

  7. Aura-biomes are present in the water layer above coral reef benthic macro-organisms

    PubMed Central

    Haggerty, J. Matthew; Doane, Michael P.; Hansen, John J.; Morris, Megan M.; Moreira, Ana Paula B.; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D.; Thompson, Fabiano; Dinsdale, Elizabeth A.

    2017-01-01

    As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis, (2) fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms. PMID:28828261

  8. Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques

    PubMed Central

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  9. Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques.

    PubMed

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm(2)) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies.

  10. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis

    PubMed Central

    Shikina, Shinya; Chiu, Yi-Ling; Chung, Yi-Jou; Chen, Chieh-Jhen; Lee, Yan-Horn; Chang, Ching-Fong

    2016-01-01

    To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction. PMID:27167722

  11. Identifying corals displaying aberrant behavior in Fiji’s Lau Archipelago

    PubMed Central

    Chen, Chii-Shiarng; Dempsey, Alexandra C.

    2017-01-01

    Abstract Given the numerous threats against Earth’s coral reefs, there is an urgent need to develop means of assessing reef coral health on a proactive timescale. Molecular biomarkers may prove useful in this endeavor because their expression should theoretically undergo changes prior to visible signs of health decline, such as the breakdown of the coral-dinoflagellate (genus Symbiodinium) endosymbiosis. Herein 13 molecular- and physiological-scale biomarkers spanning both eukaryotic compartments of the anthozoan-Symbiodinium mutualism were assessed across 70 pocilloporid coral colonies sampled from reefs of Fiji’s easternmost province, Lau. Eleven colonies were identified as outliers upon employment of a detection method based partially on the Mahalanobis distance; these corals were hypothesized to have been displaying aberrant sub-cellular behavior with respect to their gene expression signatures, as they were characterized not only by lower Symbiodinium densities, but also by higher levels of expression of several stress-targeted genes. Although these findings could suggest that the sampled colonies were physiologically compromised at the time of sampling, further studies are warranted to state conclusively whether these 11 scleractinian coral colonies are more stress-prone than nearby conspecifics that demonstrated statistically normal phenotypes. PMID:28542245

  12. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis.

    PubMed

    Shikina, Shinya; Chiu, Yi-Ling; Chung, Yi-Jou; Chen, Chieh-Jhen; Lee, Yan-Horn; Chang, Ching-Fong

    2016-05-11

    To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction.

  13. Chemical and Bioactive Profiling, and Biological Activities of Coral Fungi from Northwestern Himalayas

    PubMed Central

    Kumar Sharma, Sapan; Gautam, Nandini

    2017-01-01

    Ramaria Fr. and Clavaria L. are the two major genera of coral mushrooms within families Gomphaceae and Clavariaceae, respectively. Besides having important role in forest ecology, some species of these are reported to possess high nutraceutical and bioactive potential. There is a hidden diversity of coral mushrooms in Northwestern Himalayas. Present studies describe the detailed biochemical profiling and antioxidant, and antibacterial activities of twelve coral mushroom species. Biochemical profiling of nutrients and nutraceuticals was done with standard techniques and by using HPLC, UPLC and GC. Experiments were also conducted to check the toxic metals detection. Antioxidant activities were calculated using EC50 values from mushroom extracts. Antibacterial activities were checked on six pathogenic bacterial strains through minimum inhibition concenterations. Although, differences were observed in the net values of individual species but all the species were found to be rich in protein, macro and micro minerals, carbohydrates, unsaturated fatty acids, essential amino acids, phenolics, tocopherols, anthocynadins and carotenoids. All the species showed significant antioxidant and antibacterial activities. These species are reported to free from heavy toxic metals. Present studies will open the way for their large scale commercial exploitations and use in pharmaceutical industries as antioxidant, antibacterial and nutraceutical constituents. PMID:28422148

  14. Chemical and Bioactive Profiling, and Biological Activities of Coral Fungi from Northwestern Himalayas.

    PubMed

    Kumar Sharma, Sapan; Gautam, Nandini

    2017-04-19

    Ramaria Fr. and Clavaria L. are the two major genera of coral mushrooms within families Gomphaceae and Clavariaceae, respectively. Besides having important role in forest ecology, some species of these are reported to possess high nutraceutical and bioactive potential. There is a hidden diversity of coral mushrooms in Northwestern Himalayas. Present studies describe the detailed biochemical profiling and antioxidant, and antibacterial activities of twelve coral mushroom species. Biochemical profiling of nutrients and nutraceuticals was done with standard techniques and by using HPLC, UPLC and GC. Experiments were also conducted to check the toxic metals detection. Antioxidant activities were calculated using EC50 values from mushroom extracts. Antibacterial activities were checked on six pathogenic bacterial strains through minimum inhibition concenterations. Although, differences were observed in the net values of individual species but all the species were found to be rich in protein, macro and micro minerals, carbohydrates, unsaturated fatty acids, essential amino acids, phenolics, tocopherols, anthocynadins and carotenoids. All the species showed significant antioxidant and antibacterial activities. These species are reported to free from heavy toxic metals. Present studies will open the way for their large scale commercial exploitations and use in pharmaceutical industries as antioxidant, antibacterial and nutraceutical constituents.

  15. Symbiodinium associations with diseased and healthy scleractinian corals

    NASA Astrophysics Data System (ADS)

    Correa, A. M. S.; Brandt, M. E.; Smith, T. B.; Thornhill, D. J.; Baker, A. C.

    2009-06-01

    Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts ( Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to colony-level phenotypes, such as thermotolerance, symbiont genotypes might also contribute to the resistance or susceptibility of coral colonies to disease. To explore this, Symbiodinium were identified using the internal transcribed spacer-2 region of ribosomal DNA from diseased and healthy tissues within individual coral colonies infected with black band disease (BB), dark spot syndrome (DSS), white plague disease (WP), or yellow blotch disease (YB) in the Florida Keys (USA) and the US Virgin Islands. Most of the diseased colonies sampled contained B1, B5a, or C1 (depending on host species), while apparently healthy colonies of the same coral species frequently hosted these types and/or additional symbiont diversity. No potentially “parasitic” Symbiodinium types, uniquely associated with diseased coral tissue, were detected. Within most individual colonies, the same dominant Symbiodinium type was detected in diseased and visually healthy tissues. These data indicate that specific Symbiodinium types are not correlated with the infected tissues of diseased colonies and that DSS and WP onset do not trigger symbiont shuffling within infected tissues. However, few diseased colonies contained clade D symbionts suggesting a negative correlation between hosting Symbiodinium clade D and disease incidence in scleractinian corals. Understanding the influence of Symbiodinium diversity on colony phenotypes may play a critical role in predicting disease resistance and susceptibility in scleractinian corals.

  16. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts

    PubMed Central

    D Ainsworth, Tracy; Krause, Lutz; Bridge, Thomas; Torda, Gergely; Raina, Jean-Baptise; Zakrzewski, Martha; Gates, Ruth D; Padilla-Gamiño, Jacqueline L; Spalding, Heather L; Smith, Celia; Woolsey, Erika S; Bourne, David G; Bongaerts, Pim; Hoegh-Guldberg, Ove; Leggat, William

    2015-01-01

    Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse host-associated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes. PMID:25885563

  17. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics

    PubMed Central

    Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  18. Black reefs: iron-induced phase shifts on coral reefs

    PubMed Central

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-01-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km2). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions. PMID:21881615

  19. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    PubMed

    Torres-Pérez, Juan L; Guild, Liane S; Armstrong, Roy A; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  20. Identifying and structuring objectives for a coral reef protection plan at the U.S. Environmental Protection Agency

    EPA Science Inventory

    Region 2 of the U.S. Environmental Protection Agency initiated a Coral Reef Protection Plan (CRPP) in 2014 to reduce anthropogenic stress on Caribbean coral reefs. The CRPP is intended to foster institutional practices that improve reef condition and focus regulatory and non-regu...

  1. Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise.

    PubMed

    Wood-Charlson, Elisha M; Weynberg, Karen D; Suttle, Curtis A; Roux, Simon; van Oppen, Madeleine J H

    2015-10-01

    Reef-building corals form close associations with organisms from all three domains of life and therefore have many potential viral hosts. Yet knowledge of viral communities associated with corals is barely explored. This complexity presents a number of challenges in terms of the metagenomic assessments of coral viral communities and requires specialized methods for purification and amplification of viral nucleic acids, as well as virome annotation. In this minireview, we conduct a meta-analysis of the limited number of existing coral virome studies, as well as available coral transcriptome and metagenome data, to identify trends and potential complications inherent in different methods. The analysis shows that the method used for viral nucleic acid isolation drastically affects the observed viral assemblage and interpretation of the results. Further, the small number of viral reference genomes available, coupled with short sequence read lengths might cause errors in virus identification. Despite these limitations and potential biases, the data show that viral communities associated with corals are diverse, with double- and single-stranded DNA and RNA viruses. The identified viruses are dominated by double-stranded DNA-tailed bacteriophages, but there are also viruses that infect eukaryote hosts, likely the endosymbiotic dinoflagellates, Symbiodinium spp., host coral and other eukaryotes in close association. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Effects of the 2015 heat wave on benthic invertebrates in the Tabarca Marine Protected Area (southeast Spain).

    PubMed

    Rubio-Portillo, Esther; Izquierdo-Muñoz, Andrés; Gago, Juan F; Rosselló-Mora, Ramon; Antón, Josefa; Ramos-Esplá, Alfonso A

    2016-12-01

    In the late summer of 2015, extensive mortality of scleratinian corals, gorgonians, and sponges was observed in the Marine Protected Area of Tabarca (southeast Spain). Quantitative data indicated that at 25 m depth the sea fan Eunicella singularis was the most affected species (50% of colonies affected by partial mortality); while in shallow waters more than 40% of the endemic scleractinian coral Cladocora caespitosa population showed tissue lesions that affected more than 10% of their surfaces. Other affected species were the scleractinian corals Oculina patagonica and Phyllangia mouchezii, the sea fan Leptogorgia sarmentosa and the sponge Sarcotragus fasciculatus. This mortality event coincided with an abnormal rise in seawater temperature in this region. Microbiological analysis showed a higher abundance of culturable Vibrio species in invertebrates exhibiting tissue lesions, which indicated that these opportunistic pathogens could be a key factor in the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Assessing coral health and disease from digital photographs and in situ surveys.

    PubMed

    Page, C A; Field, S N; Pollock, F J; Lamb, J B; Shedrawi, G; Wilson, S K

    2017-01-01

    Methods for monitoring the status of marine communities are increasingly adopting the use of images captured in the field. However, it is not always clear how data collected from photographic images relate to historic data collected using traditional underwater visual census methods. Here, we compare coral health and disease data collected in situ by scuba divers with photographic images collected simultaneously at 12 coral reef sites. Five globally relevant coral diseases were detected on 194 colonies from in situ surveys and 79 colonies from photos, whilst 698 colonies from in situ surveys and 535 colonies from photos exhibited signs of compromised health other than disease. Comparisons of in situ surveys with photographic analyses indicated that the number of disease cases occurring in the examined coral populations (prevalence) was six times higher (4.5 vs. 0.8% of colonies), whilst compromised health was three times higher (14 vs. 4% of colonies) from in situ surveys. Skeletal eroding band disease, sponge overgrowth and presence of Waminoa flatworms were not detected in photographs, though they were identified in situ. Estimates of black band disease and abnormally pigmented coral tissues were similar between the two methods. Estimates of the bleached and healthy colonies were also similar between methods and photographic analyses were a strong predictor of bleached (r 2  = 0.8) and healthy (r 2  = 0.5) colony prevalence from in situ surveys. Moreover, when data on disease and compromised health states resulting in white or pale coral colony appearance were pooled, the prevalence of 'white' colonies from in situ (14%) and photographic analyses (11%) were statistically similar. Our results indicate that information on coral disease and health collected by in situ surveys and photographic analyses are not directly comparable, with in situ surveys generally providing higher estimates of prevalence and greater ability to identify some diseases and compromised states. Careful sampling of photographs can however identify signs of coral stress, including some coral diseases, which may be used to trigger early-warning management interventions.

  4. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals

    PubMed Central

    Torres-Pérez, Juan L.; Guild, Liane S.; Armstrong, Roy A.; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral’s symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5–98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health. PMID:26619210

  5. Crown-of-thorns sea star, Acanthaster cf. solaris, have tissue-characteristic microbiomes with potential roles in health and reproduction.

    PubMed

    Høj, Lone; Levy, Natalie; Baillie, Brett K; Clode, Peta L; Strohmaier, Raphael C; Siboni, Nachshon; Webster, Nicole S; Uthicke, Sven; Bourne, David G

    2018-05-04

    Outbreaks of coral-eating crown-of-thorns sea stars (CoTS; Acanthaster spp. complex) cause substantial coral loss, hence there is considerable interest in developing prevention and control strategies. We characterised the microbiome of captive CoTS and assessed whether dysbiosis was evident in sea stars during a disease event. Most tissue types had a distinct microbiome. The exception was female gonads, which were highly variable amongst individuals. Male gonads were dominated (>97% of reads) by a single Mollicutes -related OTU. Detailed phylogenetic and microscopy analysis demonstrated the presence of a novel Spiroplasma -related bacterium in the spermatogenic layer. Body wall samples had high relative abundance (43-64% of reads) of spirochetes, likely corresponding to subcuticular symbionts reported from many echinoderms. Tube feet were characterised by Hyphomonadaceae (24-55% of reads). Pyloric caeca microbiomes had high alpha diversity, comprising many taxa commonly found in gastro-intestinal systems. The order Oceanospirillales (genera Endozoicomonas and Kistimonas ) was detected in all tissues. A microbiome shift occurred in diseased individuals, although differences between tissue types were retained. The relative abundance of spirochetes was significantly reduced in diseased individuals. Kistimonas was present in all diseased individuals and significantly associated with diseased tube feet, but its role in disease causation is unknown. While Arcobacter was significantly associated with diseased tissues and Vibrionaceae increased in diversity, no single OTUs were detected in all diseased individuals suggesting opportunistic proliferation of these taxa in this case. This study shows that CoTS have tissue-characteristic bacterial communities and identifies taxa that could play a role in reproduction and host health. IMPORTANCE Coral-eating crown of thorns sea stars (CoTS; Acanthaster spp. complex) are native to the Indo-Pacific, but during periodic population outbreaks they can reach extreme densities (>1000 starfish per hectare) and function like a pest species. On the Great Barrier Reef, Australia, CoTS have long been considered one of the major contributors to coral loss. There has been significant investment in a targeted control program using lethal injection, and there is interest in developing additional and complementary technologies that can increase culling efficiencies. The biology of CoTS has been studied extensively but little is known about their associated microbiome. This cultivation-independent analysis of the CoTS microbiome provides a baseline for future analyses targeting the functional role of symbionts, the identification of pathogens, or the development of reproduction manipulators. © Crown copyright 2018.

  6. Early-phase dynamics in coral recovery following cyclone disturbance on the inshore Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Sato, Yui; Bell, Sara C.; Nichols, Cassandra; Fry, Kent; Menéndez, Patricia; Bourne, David G.

    2018-06-01

    Coral recovery (the restoration of abundance and composition of coral communities) after disturbance is a key process that determines the resilience of reef ecosystems. To understand the mechanisms underlying the recovery process of coral communities, colony abundance and size distribution were followed on reefs around Pelorus Island, located in the inshore central region of the Great Barrier Reef, following a severe tropical cyclone in 2011 that caused dramatic loss of coral communities. Permanent quadrats (600 m2) were monitored biannually between 2012 and 2016, and individual coral colonies were counted, sized and categorized into morphological types. The abundance of coral recruits and coral cover were also examined using permanent quadrats and random line intercept transects, respectively. The number of colonies in the smallest size class (4-10 cm) increased substantially during the study period, driving the recovery of coral populations. The total number of coral colonies 5 yr post-cyclone reached between 73 and 122% of pre-cyclone levels though coral cover remained between 16 and 31% of pre-cyclone levels, due to the dominance of small coral colonies in the recovering communities. Temporal transitions of coral demography (i.e., colony-size distributions) illustrated that the number of recently established coral populations overtook communities of surviving colonies. Coral recruits (< 4 cm in size) also showed increasing patterns in abundance over the study period, underscoring the importance of larval supply in coral recovery. A shift in morphological composition of coral communities was also observed, with the relative abundance of encrusting corals reduced post-cyclone in contrast to their dominance prior to the disturbance. This study identifies the fine-scale processes involved in the initial recovery of coral reefs, providing insights into the dynamics of coral demography that are essential for determining coral reef resilience following major disturbance.

  7. Living on the edge: Vulnerability of coral-dependent fishes in the Gulf.

    PubMed

    Buchanan, Jack R; Krupp, Friedhelm; Burt, John A; Feary, David A; Ralph, Gina M; Carpenter, Kent E

    2016-04-30

    In the Gulf, multiple human impacts and recurrent bleaching events have resulted in serious declines of coral assemblages, particularly in near-shore areas. However, the degree to which the extinction risk of coral-dependent fishes is impacted by these coral declines has been uncertain. Using primary literature and expert knowledge, coral-dependent fishes of the Gulf were identified and species-specific data on the regional distribution, population status, life history characteristics, and major threats were compiled to determine their likelihood of extinction under the IUCN Red List of Threatened Species' Categories and Criteria. Due to the limited area and degraded and fragmented nature of coral assemblages in the Gulf, all coral-dependent fishes (where data was sufficient to assess) were listed at elevated risk of extinction. Cross-boundary collaboration among Gulf States is necessary for effective management and protection of coral assemblages and their associated communities within this globally important region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Skeletal records of community-level bleaching in Porites corals from Palau

    NASA Astrophysics Data System (ADS)

    Barkley, Hannah C.; Cohen, Anne L.

    2016-12-01

    Tropical Pacific sea surface temperature is projected to rise an additional 2-3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These "stress bands" are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in conservation efforts to identify temperature-tolerant coral reef communities.

  9. Coral Symbiodinium Community Composition Across the Belize Mesoamerican Barrier Reef System is Influenced by Host Species and Thermal Variability.

    PubMed

    Baumann, J H; Davies, S W; Aichelman, H E; Castillo, K D

    2018-05-01

    Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium, and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral's ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (high TP , mod TP , and low TP ) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. S. siderea was associated with distinct Symbiodinium communities; however, Symbiodinium communities of its congener, S. radians and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these environmental variables may vary by coral host species.

  10. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    USGS Publications Warehouse

    Yates, Kimberly K.; Rogers, Caroline S.; Herlan, James J.; Brooks, Gregg R.; Smiley, Nathan A.; Larson, Rebekka A.

    2014-01-01

    Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.

  11. Trawling damage to Northeast Atlantic ancient coral reefs.

    PubMed Central

    Hall-Spencer, Jason; Allain, Valerie; Fosså, Jan Helge

    2002-01-01

    This contribution documents widespread trawling damage to cold-water coral reefs at 840-1300 m depth along the West Ireland continental shelf break and at 200 m off West Norway. These reefs are spectacular but poorly known. By-catches from commercial trawls for deep-water fish off West Ireland included large pieces (up to 1 m(2)) of coral that had been broken from reefs and a diverse array of coral-associated benthos. Five azooxanthellate scleractinarian corals were identified in these by-catches, viz. Desmophyllum cristagalli, Enallopsammia rostrata, Lophelia pertusa, Madrepora oculata and Solenosmilia variabilis. Dating of carbonate skeletons using (14)C accelerator mass spectrometry showed that the trawled coral matrix was at least 4550 years old. Surveys by remotely operated vehicles in Norway showed extensive fishing damage to L. pertusa reefs. The urgent need for deep-water coral conservation measures is discussed in a Northeast Atlantic context. PMID:11886643

  12. How can "Super Corals" facilitate global coral reef survival under rapid environmental and climatic change?

    PubMed

    Camp, Emma F; Schoepf, Verena; Suggett, David J

    2018-03-26

    Coral reefs are in a state of rapid global decline via environmental and climate change, and efforts have intensified to identify or engineer coral populations with increased resilience. Concurrent with these efforts has been increasing use of the popularized term "Super Coral" in both popular media and scientific literature without a unifying definition. However, how this subjective term is currently applied has the potential to mislead inference over factors contributing to coral survivorship, and the future trajectory of coral reef form and functioning. Here, we discuss that the information required to support a single definition does not exist, and in fact may never be appropriate, i.e. "How Super is Super"? Instead, we advocate caution of this term, and suggest a workflow that enables contextualization and clarification of superiority to ensure that inferred or asserted survivorship is appropriate into future reef projections. This is crucial to robustly unlock how "Super Corals" can be integrated into the suite of management options required to facilitate coral survival under rapid environmental and climate change. © 2018 John Wiley & Sons Ltd.

  13. Reef scent: How brooded coral larvae from a tough coral smell their way to a new home

    NASA Astrophysics Data System (ADS)

    Spies, N.; Richmond, R. H.; Seneca, F.; Murphy, J.; Martinez, J.; Lyman, A.

    2016-02-01

    Coral reefs are highly diverse marine ecosystems of ecological, economic, and cultural value. With the expected negative effects on reefs from global climate change including rising sea temperatures and ocean acidification, the identification of resilient coral species has become increasingly important. Leptastrea purpurea is an encrusting coral that is found throughout the Indo-Pacific and Red Sea. While most corals are broadcast spawners, releasing sperm and eggs to be fertilized in the water column, some corals brood embryos within their tissues after internal fertilization. L. purpurea appears to release planula larvae on a continuous basis from the parent colony as observed during two years of monitoring. The planula larvae show remarkable resilience under a wide range of stressful conditions including temperature, sediment, and chemical stressors, as well as the ability to successfully settle and metamorphose after 180 days in controlled laboratory conditions. Various smells were tested to identify a settlement cue for L. purpurea larvae, and our results suggest that the smell associated with other coral colonies induce larval settlement and metamorphosis. Knowledge of the settlement cues and reproductive biology of this coral is important to our understanding of coral resilience in the face of anthropogenic perturbation.

  14. Super instrumental El Niño events recorded by a Porites coral from the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Xijie; Deng, Wenfeng; Liu, Xi; Wei, Gangjian; Chen, Xuefei; Zhao, Jian-xin; Cai, Guanqiang; Zeng, Ti

    2018-03-01

    The 2-7-year periodicities recorded in fossil coral records have been widely used to identify paleo-El Niño events. However, the reliability of this approach in the South China Sea (SCS) has not been assessed in detail. Therefore, this paper presents monthly resolution geochemical records covering the period 1978-2015 obtained from a Porites coral recovered from the SCS to test the reliability of this method. The results suggest that the SCS coral reliably recorded local seawater conditions and the super El Niño events that occurred over the past 3 decades, but does not appear to have been sensitive enough to record all the other El Niños. In detail, the Sr/Ca series distinctly documents only the two super El Niños of 1997-1998 and 2014-2016 as obvious low values, but does not match the Oceanic Niño Index well. The super El Niño of 1982-1983 was identified by the growth hiatus caused by the coral bleaching and subsequent death of the coral. Three distinct stepwise variations occur in the δ13C series that are coincident with the three super El Niños, which may be related to a substantial decline in endosymbiotic zooxanthellae density caused by the increase in temperature during an El Niño or the selective utilization of different zooxanthellaes that was required to survive in the extreme environment. The increase in rainfall and temperatures over the SCS during El Niños counteracts the effects on seawater δ18O (δ18Osw) and salinity; consequently, coral Δδ18O series can be used as a proxy for δ18Osw and salinity, but are not appropriate for identifying El Niño activity. The findings presented here suggest that the method to identify paleo-El Niño activity based on the 2-7-year periodicities preserved in the SCS coral records might not be reliable, because the SCS is on the edge of El Niño anomalies due to its great distance from the central equatorial Pacific and the imprints of weak and medium strength El Niño events may not be recorded by the corals there.

  15. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa

    USGS Publications Warehouse

    Wilson, Bryan; Aeby, Greta S.; Work, Thierry M.; Bourne, David G.

    2012-01-01

    Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.

  16. Distribution of CpG Motifs in Upstream Gene Domains in a Reef Coral and Sea Anemone: Implications for Epigenetics in Cnidarians.

    PubMed

    Marsh, Adam G; Hoadley, Kenneth D; Warner, Mark E

    2016-01-01

    Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of temperature acclimation genes in a Scleractinian coral Acropora hyacinthus. We wondered what unique characteristics of these genes determined their coordinate expression in response to temperature acclimation, and whether or not other corals and cnidarians would likewise possess these features. Here, we focus on cytosine methylation as an epigenetic DNA modification that is responsive to environmental stressors. We identify common conserved patterns of cytosine-guanosine dinucleotide (CpG) motif frequencies in upstream promoter domains of different functional gene groups in two cnidarian genomes: a coral (Acropora digitifera) and an anemone (Nematostella vectensis). Our analyses show that CpG motif frequencies are prominent in the promoter domains of functional genes associated with environmental adaptation, particularly those identified in A. hyacinthus. Densities of CpG sites in upstream promoter domains near the transcriptional start site (TSS) are 1.38x higher than genomic background levels upstream of -2000 bp from the TSS. The increase in CpG usage suggests selection to allow for DNA methylation events to occur more frequently within 1 kb of the TSS. In addition, observed shifts in CpG densities among functional groups of genes suggests a potential role for epigenetic DNA methylation within promoter domains to impact functional gene expression responses in A. digitifera and N. vectensis. Identifying promoter epigenetic sequence motifs among genes within specific functional groups establishes an approach to describe integrated cellular responses to environmental stress in reef corals and potential roles of epigenetics on survival and fitness in the face of global climate change.

  17. Reef-coral refugia in a rapidly changing ocean.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2015-06-01

    This study sought to identify climate-change thermal-stress refugia for reef corals in the Indian and Pacific Oceans. A species distribution modeling approach was used to identify refugia for 12 coral species that differed considerably in their local response to thermal stress. We hypothesized that the local response of coral species to thermal stress might be similarly reflected as a regional response to climate change. We assessed the contemporary geographic range of each species and determined their temperature and irradiance preferences using a k-fold algorithm to randomly select training and evaluation sites. That information was applied to downscaled outputs of global climate models to predict where each species is likely to exist by the year 2100. Our model was run with and without a 1°C capacity to adapt to the rising ocean temperature. The results show a positive exponential relationship between the current area of habitat that coral species occupy and the predicted area of habitat that they will occupy by 2100. There was considerable decoupling between scales of response, however, and with further ocean warming some 'winners' at local scales will likely become 'losers' at regional scales. We predicted that nine of the 12 species examined will lose 24-50% of their current habitat. Most reductions are predicted to occur between the latitudes 5-15°, in both hemispheres. Yet when we modeled a 1°C capacity to adapt, two ubiquitous species, Acropora hyacinthus and Acropora digitifera, were predicted to retain much of their current habitat. By contrast, the thermally tolerant Porites lobata is expected to increase its current distribution by 14%, particularly southward along the east and west coasts of Australia. Five areas were identified as Indian Ocean refugia, and seven areas were identified as Pacific Ocean refugia for reef corals under climate change. All 12 of these reef-coral refugia deserve high-conservation status. © 2015 John Wiley & Sons Ltd.

  18. Combined Th/U, Pa/U and Ra/Th dating of fossil reef corals

    NASA Astrophysics Data System (ADS)

    Obert, J. C.; Scholz, D.; Lippold, J.; Felis, T.; Jochum, K. P.; Andreae, M. O.

    2016-12-01

    Fossil reef corals are often subject to post-depositional open-system behaviour, which is a major problem for accurate absolute dating. The commonly used 230Th/U-system can be disturbed by diagenetic alteration resulting in wrong apparent 230Th/U-ages. Since fossil reef corals are important palaeoenvironmental archives, precise absolute dating is essential for sea-level reconstruction and high-resolution climate reconstruction. We have developed a method for combined preparation and analysis of fossil reef corals by the 230Th/U-, 231Pa/U- and 226Ra/230Th-methods. Inconsistencies between ages determined by the different methods provide a means to identify diagenetically altered corals. In addition, the comparison of the 230Th/U and 231Pa/U data on concordia diagrams reveals further information about the alteration processes. (226Ra/230Th) and (226Ra/U) ratios in particular provide information about the more recent past (last 10 to approx. 50 ka) of the coral's diagenetic history. We compare these data with quantitative modelling of various diagenetic scenarios in order to identify the potential open-system processes. Here we present new data on the combined application of the three isotope systems to fossil Last Interglacial corals from the Gulf of Aqaba, northern Red Sea. Previous studies have shown that these corals were subject to substantial open-system behaviour, documented by very high initial (234U/238U) activity ratios. The process that was proposed to explain the activity ratios of these corals is U gain with subsequent U loss after a specific amount of time. The amount of U loss is assumed to be proportional to the amount of U previously gained. The application of our new method aims to test whether this diagenetic scenario can be verified.

  19. Does body type really matter? Relating climate change, coral morphology and resiliency

    NASA Astrophysics Data System (ADS)

    Camp, M.; Shein, K. A.; Foster, K.; Hendee, J. C.

    2016-02-01

    Average sea temperatures in many tropical regions are rising approximately 1-2˚C per century, and are thought to be a major driver of increased frequency of coral bleaching. However, certain coral morphologies appear to be more resilient to changes in the environment, particularly to sea temperature variations resulting from global climate change. Although branching corals (e.g., Acropora cervicornis, A. palmata) are highly susceptible to coral bleaching, this morphology is commonly used in coral restoration efforts because of its fast growth rate. Massive corals show higher resistance and resilience to elevated temperature events than branching species, but are less common in coral nurseries. The objective of this study was to compare coral resilience among morphology types in Little Cayman, a remote tropical island with <200 inhabitants where it is possible to decouple environmental and anthropogenic stressors. Three morphological groups (branching, intermediary and massive) were surveyed at 17 sites to estimate the percent cover of each group. Temperature profiles were observed at six moorings around the island, allowing for direct comparison between sea surface temperature, sea temperature at the reef depths, and coral cover, per morphology. The relationship between coral morphological coverage and temperature variation at depth was assessed in the context of geographic variation around the island. Understanding the relationship between coral morphology and resilience to temperature variability will enhance current coral restoration practices by identifying which morphologies have the highest chance of long-term survivorship following outplanting, concurrently optimizing cumulative reef survivorship.

  20. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions.

    PubMed

    Putnam, Hollie M; Gates, Ruth D

    2015-08-01

    Coral reefs are globally threatened by climate change-related ocean warming and ocean acidification (OA). To date, slow-response mechanisms such as genetic adaptation have been considered the major determinant of coral reef persistence, with little consideration of rapid-response acclimatization mechanisms. These rapid mechanisms such as parental effects that can contribute to trans-generational acclimatization (e.g. epigenetics) have, however, been identified as important contributors to offspring response in other systems. We present the first evidence of parental effects in a cross-generational exposure to temperature and OA in reef-building corals. Here, we exposed adults to high (28.9°C, 805 µatm P(CO2)) or ambient (26.5°C, 417 µatm P(CO2)) temperature and OA treatments during the larval brooding period. Exposure to high treatment negatively affected adult performance, but their larvae exhibited size differences and metabolic acclimation when subsequently re-exposed, unlike larvae from parents exposed to ambient conditions. Understanding the innate capacity corals possess to respond to current and future climatic conditions is essential to reef protection and maintenance. Our results identify that parental effects may have an important role through (1) ameliorating the effects of stress through preconditioning and adaptive plasticity, and/or (2) amplifying the negative parental response through latent effects on future life stages. Whether the consequences of parental effects and the potential for trans-generational acclimatization are beneficial or maladaptive, our work identifies a critical need to expand currently proposed climate change outcomes for corals to further assess rapid response mechanisms that include non-genetic inheritance through parental contributions and classical epigenetic mechanisms. © 2015. Published by The Company of Biologists Ltd.

  1. Considering Species Tolerance to Climate Change in Conservation Management at Little Cayman's Coral Reefs

    NASA Astrophysics Data System (ADS)

    Camp, E.; Manfrino, C.; Smith, D.; Suggett, D.

    2013-05-01

    There is growing evidence demonstrating that climate change, notably increased frequency and intensity of thermal anomalies combined with ocean acidification, will negatively impact the future growth and viability of many reef systems, including those in the Caribbean. One key question that remains unanswered is whether or not there are management options aimed at protecting coral species from these threats. Little Cayman (Cayman Islands) provides a rare opportunity to investigate global climate stressors without the confounding impact of local anthropogenic stressors. Our research has focused on two climate change issues: Firstly, we have identified species-specific coral bleaching susceptibility (and the influence of regulation upon this susceptibility) to thermal anomalies. Species level of vulnerability to thermal anomalies can decrease when grown under variable temperature. Environmental variability may be key in influencing the susceptibility of corals to stress. The second part of our research has therefore addressed the variability in inorganic carbon chemistry that naturally occurs where certain reef building corals exist. We have identified how the inorganic carbon chemistry varies naturally among habitats and thus how corals within these habitats are potentially adapted to future acidification. Spatial, diurnal, lunar and seasonal variability have been identified as important factors with pCO2 values of up to 700-800 μatm and pH values as low as 7.801 for lagoon habitats, showing that some species are already being exposed to typical pCO2 and pH levels expected for the oceans in ~50 years' time. Using an eco-physiological approach, we are exploring how some reef-building corals are able to acclimate to more variable chemistry compared to others and whether this natural capacity installs increased tolerance to future acidification. These eco-physiological studies provide important information that can be utilized in a management framework. The aim of this framework will be to provide options to buffer or decrease the future impacts of global climate change on tropical coral reef systems.

  2. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae

    PubMed Central

    Smith, Jennifer E.; Thompson, Melissa

    2014-01-01

    While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2–4 mg L−1) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes. PMID:24482757

  3. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae.

    PubMed

    Haas, Andreas F; Smith, Jennifer E; Thompson, Melissa; Deheyn, Dimitri D

    2014-01-01

    While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2-4 mg L(-1)) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes.

  4. Bottlenecks to coral recovery in the Seychelles

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Graham, N. A. J.; Pratchett, M. S.

    2014-06-01

    Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: `coral-dominated'), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (`rubble-dominated'), and some reefs have high cover of macroalgae (`macroalgal-dominated'). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile-1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile-1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m-2), compared to coral-dominated reefs (16.8 ± 2.4 m-2) and rubble-dominated reefs (33.1 ± 7.3 m-2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This study identified bottlenecks to recovery of coral assemblages that varied depending on post-disturbance habitat condition.

  5. Special issue Oceans and Humans Health: the ecology of marine opportunists.

    PubMed

    Burge, Colleen A; Kim, Catherine J S; Lyles, Jillian M; Harvell, C Drew

    2013-05-01

    Opportunistic marine pathogens, like opportunistic terrestrial pathogens, are ubiquitous in the environment (waters, sediments, and organisms) and only cause disease in immune-compromised or stressed hosts. In this review, we discuss four host-pathogen interactions within the marine environment that are typically considered opportunistic: sea fan coral-fungus, eelgrass-Labyrinthula zosterae, sea fan-Labyrinthulomycetes, and hard clam-Quahog Parasite Unknown with particular focus on disease ecology, parasite pathology, host response, and known associated environmental conditions. Disease is a natural part of all ecosystems; however, in some cases, a shift in the balance between the host, pathogen, and the environment may lead to epizootics in natural or cultured populations. In marine systems, host-microbe interactions are less understood than their terrestrial counterparts. The biological and physical changes to the world's oceans, coupled with other anthropogenic influences, will likely lead to more opportunistic diseases in the marine environment.

  6. Nutrient enrichment can increase the susceptibility of reef corals to bleaching

    NASA Astrophysics Data System (ADS)

    Wiedenmann, Jörg; D'Angelo, Cecilia; Smith, Edward G.; Hunt, Alan N.; Legiret, François-Eric; Postle, Anthony D.; Achterberg, Eric P.

    2013-02-01

    Mass coral bleaching, resulting from the breakdown of coral-algal symbiosis has been identified as the most severe threat to coral reef survival on a global scale. Regionally, nutrient enrichment of reef waters is often associated with a significant loss of coral cover and diversity. Recently, increased dissolved inorganic nitrogen concentrations have been linked to a reduction of the temperature threshold of coral bleaching, a phenomenon for which no mechanistic explanation is available. Here we show that increased levels of dissolved inorganic nitrogen in combination with limited phosphate concentrations result in an increased susceptibility of corals to temperature- and light-induced bleaching. Mass spectrometric analyses of the algal lipidome revealed a marked accumulation of sulpholipids under these conditions. Together with increased phosphatase activities, this change indicates that the imbalanced supply of dissolved inorganic nitrogen results in phosphate starvation of the symbiotic algae. Based on these findings we introduce a conceptual model that links unfavourable ratios of dissolved inorganic nutrients in the water column with established mechanisms of coral bleaching. Notably, this model improves the understanding of the detrimental effects of coastal nutrient enrichment on coral reefs, which is urgently required to support knowledge-based management strategies to mitigate the effects of climate change.

  7. Spectral discrimination of bleached and healthy submerged corals based on principal components analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, H.; LeDrew, E.

    1997-06-01

    Remote discrimination of substrate types in relatively shallow coastal waters has been limited by the spatial and spectral resolution of available sensors. An additional limiting factor is the strong attenuating influence of the water column over the substrate. As a result, there have been limited attempts to map submerged ecosystems such as coral reefs based on spectral characteristics. Both healthy and bleached corals were measured at depth with a hand-held spectroradiometer, and their spectra compared. Two separate principal components analyses (PCA) were performed on two sets of spectral data. The PCA revealed that there is indeed a spectral difference basedmore » on health. In the first data set, the first component (healthy coral) explains 46.82%, while the second component (bleached coral) explains 46.35% of the variance. In the second data set, the first component (bleached coral) explained 46.99%; the second component (healthy coral) explained 36.55%; and the third component (healthy coral) explained 15.44 % of the total variance in the original data. These results are encouraging with respect to using an airborne spectroradiometer to identify areas of bleached corals thus enabling accurate monitoring over time.« less

  8. Workshop on Biological Integrity of Coral Reefs August 21-22 ...

    EPA Pesticide Factsheets

    This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characteristics (reef attributes) that determine the condition of linear coral reefs inhabiting shallow waters (<12 m) in southwestern Puerto Rico.• Use those reef attributes to recommend categorical condition rankings for establishing a biological condition gradient.• Ascertain through expert consensus those reef attributes that characterize biological integrity (a natural, fully-functioning system of organisms and communities) for coral reefs. • Develop a conceptual, narrative model that describes how biological attributes of coral reefs change along a gradient of increasing anthropogenic stress.The workshop brought together scientists with expertise in coral reef taxonomic groups (e.g., stony corals, fishes, sponges, gorgonians, algae, seagrasses and macroinvertebrates), as well as community structure, organism condition, ecosystem function and ecosystem connectivity. The experts evaluated photos and videos from 12 stations collected during EPA Coral Reef surveys (2010 & 2011) from Puerto Rico on coral reefs exhibiting a wide range of conditions. The experts individually rated each station as to observed condition (“good”, “fair” or “poor”) and documented their rationale for

  9. Seascape dynamics of a coral disease outbreak in Hawaii

    NASA Astrophysics Data System (ADS)

    Sziklay, J.; Donahue, M. J.

    2016-02-01

    When trying to understand patterns of disease transmission, it is essential to estimate the rate at which individuals become infected. Over the past five years, there have been three coral disease outbreaks of tissue loss diseases in Kaneohe Bay, Oahu, Hawaii resulting in localized mass mortality of the host coral species Montipora capitata. These progressive tissue loss diseases cause coral tissue to disassociate with the coral skeleton, usually resulting in total colony mortality. During the most recent outbreak (winter 2015) we designed a natural experiment to estimate force of infection in the field, and determine whether benthic characteristics of the coral community (size of host, distance from host to infected individuals, coral community composition) increased or decreased the probability of survival. We determined that colony size and distance to infected neighbors were the most important determinants of infection likelihood and calculated a force of infection, which is key to understanding epidemiology in any disease and for modeling potential intervention strategies. We plan to use this information to better understand disease dynamics for tissue loss diseases in coral more broadly and to identify putative vectors of disease transmission.

  10. Correlation between Detection of a Plasmid and High-Level Virulence of Vibrio nigripulchritudo, a Pathogen of the Shrimp Litopenaeus stylirostris▿

    PubMed Central

    Reynaud, Yann; Saulnier, Denis; Mazel, Didier; Goarant, Cyrille; Le Roux, Frédérique

    2008-01-01

    Vibrio nigripulchritudo, the etiological agent of Litopenaeus stylirostris summer syndrome, is responsible for mass mortalities of shrimp in New Caledonia. Epidemiological studies led to the suggestion that this disease is caused by an emergent group of pathogenic strains. Genomic subtractive hybridization was carried out between two isolates exhibiting low and high virulence. Our subtraction library was constituted of 521 specific fragments; 55 of these were detected in all virulent isolates from our collection (n = 32), and 13 were detected only in the isolates demonstrating the highest pathogenicity (n = 19), suggesting that they could be used as genetic markers for high virulence capacity. Interestingly, 10 of these markers are carried by a replicon of 11.2 kbp that contains sequences highly similar to those of a plasmid detected in Vibrio shilonii, a coral pathogen. The detection of this plasmid was correlated with the highest pathogenicity status of the isolates from our collection. The origin and consequence of this plasmid acquisition are discussed. PMID:18359828

  11. Understanding the murky history of the Coral Triangle: Miocene corals and reef habitats in East Kalimantan (Indonesia)

    NASA Astrophysics Data System (ADS)

    Santodomingo, Nadiezhda; Renema, Willem; Johnson, Kenneth G.

    2016-09-01

    Studies on ancient coral communities living in marginal conditions, including low light, high turbidity, extreme temperatures, or high nutrients, are important to understand the current structure of reefs and how they could potentially respond to global changes. The main goal of this study was to document the rich and well-preserved fossil coral fauna preserved in Miocene exposures of the Kutai Basin in East Kalimantan, Indonesia. Our collections include almost forty thousand specimens collected from 47 outcrops. Seventy-nine genera and 234 species have been identified. Three different coral assemblages were found corresponding to small patch reefs that developed under the influence of high siliciclastic inputs from the Mahakam Delta. Coral assemblages vary in richness, structure, and composition. Platy coral assemblages were common until the Serravallian (Middle Miocene), while branching coral assemblages became dominant in the Tortonian (Late Miocene). By the late Tortonian massive coral assemblages dominated, similar to modern-style coral framework. Our results suggest that challenging habitats, such as the Miocene turbid habitats of East Kalimantan, might have played an important role during the early diversification of the Coral Triangle by hosting a pool of resilient species more likely to survive the environmental changes that have affected this region since the Cenozoic. Further research that integrates fossil and recent turbid habitats may provide a glimpse into the dynamics and future of coral reefs as "typical" clear-water reefs continue to decline in most regions.

  12. Dynamic Stability of Coral Reefs on the West Australian Coast

    PubMed Central

    Speed, Conrad W.; Babcock, Russ C.; Bancroft, Kevin P.; Beckley, Lynnath E.; Bellchambers, Lynda M.; Depczynski, Martial; Field, Stuart N.; Friedman, Kim J.; Gilmour, James P.; Hobbs, Jean-Paul A.; Kobryn, Halina T.; Moore, James A. Y.; Nutt, Christopher D.; Shedrawi, George; Thomson, Damian P.; Wilson, Shaun K.

    2013-01-01

    Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10–35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs. PMID:23922829

  13. A clear human footprint in the coral reefs of the Caribbean.

    PubMed

    Mora, Camilo

    2008-04-07

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs.

  14. Mass coral bleaching in 2010 in the southern Caribbean.

    PubMed

    Alemu I, Jahson Berhane; Clement, Ysharda

    2014-01-01

    Ocean temperatures are increasing globally and the Caribbean is no exception. An extreme ocean warming event in 2010 placed Tobago's coral reefs under severe stress resulting in widespread coral bleaching and threatening the livelihoods that rely on them. The bleaching response of four reef building taxa was monitored over a six month period across three major reefs systems in Tobago. By identifying taxa resilient to bleaching we propose to assist local coral reef managers in the decision making process to cope with mass bleaching events. The bleaching signal (length of exposure to high ocean temperatures) varied widely between the Atlantic and Caribbean reefs, but regardless of this variation most taxa bleached. Colpophyllia natans, Montastraea faveolata and Siderastrea siderea were considered the most bleaching vulnerable taxa. Interestingly, reefs with the highest coral cover showed the greatest decline reef building taxa, and conversely, reefs with the lowest coral cover showed the most bleaching but lowest change in coral cover with little algal overgrowth post-bleaching.

  15. Mass Coral Bleaching in 2010 in the Southern Caribbean

    PubMed Central

    Alemu I, Jahson Berhane; Clement, Ysharda

    2014-01-01

    Ocean temperatures are increasing globally and the Caribbean is no exception. An extreme ocean warming event in 2010 placed Tobago's coral reefs under severe stress resulting in widespread coral bleaching and threatening the livelihoods that rely on them. The bleaching response of four reef building taxa was monitored over a six month period across three major reefs systems in Tobago. By identifying taxa resilient to bleaching we propose to assist local coral reef managers in the decision making process to cope with mass bleaching events. The bleaching signal (length of exposure to high ocean temperatures) varied widely between the Atlantic and Caribbean reefs, but regardless of this variation most taxa bleached. Colpophyllia natans, Montastraea faveolata and Siderastrea siderea were considered the most bleaching vulnerable taxa. Interestingly, reefs with the highest coral cover showed the greatest decline reef building taxa, and conversely, reefs with the lowest coral cover showed the most bleaching but lowest change in coral cover with little algal overgrowth post-bleaching. PMID:24400078

  16. A clear human footprint in the coral reefs of the Caribbean

    PubMed Central

    Mora, Camilo

    2008-01-01

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs. PMID:18182370

  17. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem.

    PubMed

    Pelin, Marco; Brovedani, Valentina; Sosa, Silvio; Tubaro, Aurelia

    2016-02-04

    Palytoxin (PLTX), one the most potent marine toxins, and/or its analogs, have been identified in different marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Although the main concern for human health is PLTXs entrance in the human food chain, there is growing evidence of adverse effects associated with inhalational, cutaneous, and/or ocular exposure to aquarium soft corals contaminated by PLTXs or aquaria waters. Indeed, the number of case reports describing human poisonings after handling these cnidarians is continuously increasing. In general, the signs and symptoms involve mainly the respiratory (rhinorrhea and coughing), skeletomuscular (myalgia, weakness, spasms), cardiovascular (electrocardiogram alterations), gastrointestinal (nausea), and nervous (paresthesia, ataxia, tremors) systems or apparates. The widespread phenomenon, the entity of the signs and symptoms of poisoning and the lack of control in the trade of corals as aquaria decorative elements led to consider these poisonings an emerging sanitary problem. This review summarizes literature data on human poisonings due to, or ascribed to, PLTX-containing soft corals, focusing on the different PLTX congeners identified in these organisms and their toxic potential.

  18. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem

    PubMed Central

    Pelin, Marco; Brovedani, Valentina; Sosa, Silvio; Tubaro, Aurelia

    2016-01-01

    Palytoxin (PLTX), one the most potent marine toxins, and/or its analogs, have been identified in different marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Although the main concern for human health is PLTXs entrance in the human food chain, there is growing evidence of adverse effects associated with inhalational, cutaneous, and/or ocular exposure to aquarium soft corals contaminated by PLTXs or aquaria waters. Indeed, the number of case reports describing human poisonings after handling these cnidarians is continuously increasing. In general, the signs and symptoms involve mainly the respiratory (rhinorrhea and coughing), skeletomuscular (myalgia, weakness, spasms), cardiovascular (electrocardiogram alterations), gastrointestinal (nausea), and nervous (paresthesia, ataxia, tremors) systems or apparates. The widespread phenomenon, the entity of the signs and symptoms of poisoning and the lack of control in the trade of corals as aquaria decorative elements led to consider these poisonings an emerging sanitary problem. This review summarizes literature data on human poisonings due to, or ascribed to, PLTX-containing soft corals, focusing on the different PLTX congeners identified in these organisms and their toxic potential. PMID:26861356

  19. Using the Acropora digitifera genome to understand coral responses to environmental change.

    PubMed

    Shinzato, Chuya; Shoguchi, Eiichi; Kawashima, Takeshi; Hamada, Mayuko; Hisata, Kanako; Tanaka, Makiko; Fujie, Manabu; Fujiwara, Mayuki; Koyanagi, Ryo; Ikuta, Tetsuro; Fujiyama, Asao; Miller, David J; Satoh, Nori

    2011-07-24

    Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.

  20. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing.

    PubMed

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2012-10-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.

  1. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  2. Restricted gene flow and local adaptation highlight the vulnerability of high-latitude reefs to rapid environmental change.

    PubMed

    Thomas, Luke; Kennington, W Jason; Evans, Richard D; Kendrick, Gary A; Stat, Michael

    2017-06-01

    Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef-building coral species. In this study, we apply a genotyping-by-sequencing approach to investigate genome-wide patterns of genetic diversity, gene flow, and local adaptation in a reef-building coral, Pocillopora damicornis, across 10 degrees of latitude and a transition from temperate to tropical waters. We identified strong patterns of differentiation and reduced genetic diversity in high-latitude populations. In addition, genome-wide scans for selection identified a number of outlier loci putatively under directional selection with homology to proteins previously known to be involved in heat tolerance in corals and associated with processes such as photoprotection, protein degradation, and immunity. This study provides genomic evidence for both restricted gene flow and local adaptation in a widely distributed coral species, and highlights the potential vulnerability of leading-edge populations to rapid environmental change as they are locally adapted, reproductively isolated, and have reduced levels of genetic diversity. © 2017 John Wiley & Sons Ltd.

  3. St. Petersburg Coastal and Marine Science Center coral reef research

    USGS Publications Warehouse

    Poore, Richard Z.; Kuffner, Ilsa B.; Kellogg, Christina A.

    2010-01-01

    The U.S. Geological Survey (USGS) Coral Reef Ecosystem STudies (CREST) Project specifically addresses priorities identified in the 'Facing tomorrow's challenges' U.S. Geological Survey science in the decade 2007-2017' document (USGS, 2007). Research includes a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, as well as likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major focus areas. We seek to increase the understanding of reef structure, ecological integrity, and responses to global change.

  4. Identification of Phase Relationships and Incorporation Mechanisms of Barium in Calcite Internodes of Deep-Sea Bamboo Corals

    NASA Astrophysics Data System (ADS)

    Ptacek, J. L.; Geyman, B.; Horner, T. J.; Auro, M. E. E.; Hill, T. M.; LaVigne, M.

    2016-12-01

    Insufficient instrumental and geochemical records have led to a gap in knowledge of how intermediate/deep water masses respond to decadal shifts in surface atmospheric-ocean climate that drive changes in ocean ventilation, nutrient cycling, and export productivity. Due to their longevity, depth range (500-2000m), and radial growth bands, bamboo corals have been proposed as high-resolution intermediate/deep ocean archives of elements with nutrient-like distributions, such as barium. Previous work showed bamboo corals incorporate barium into their calcitic internodes with a near-constant proportionality to dissolved (Ba)sw, indicating that (Ba/Ca)coral may be a useful tracer of refractory nutrient distributions in the past. However, some intermediate- and deep-sea bamboo corals exhibit highly variable Ba/Ca, which may result from incorporation of extraneous Ba-bearing phases into coral skeletons (e.g. barite, organic matter, lithogenic particles) rather than true changes in ambient (Ba)SW. To this end, we developed and applied a sequential cleaning experiment to identify the host phases of Ba in coral samples recovered from the North Pacific California Margin oxygen minimum zone (800-2000m). Milled coral samples were homogenized and subjected to multiple cleaning protocols to isolate and remove detrital/fine grain particles (with H2O and HNO3), organic matter (with H2O2), and barite (with an alkaline DTPA solution), before Ba/Ca analysis via ICP-MS. We found that the cleaning process did not systematically alter the Ba/Ca of the samples, and analysis of powders via SEM BSE-EDS revealed no identifiable barite. Our preliminary results indicate that there is minimal incorporation of non-lattice bound barium phases by these corals, and further verifies the suggestion that the main driver of (Ba/Ca)coral is the incorporation of Ba2+ in proportion to (Ba)sw. The results of our study help to evaluate how the Ba/Ca proxy in deep-sea bamboo corals should be interpreted in future sclerochronological research, particularly in the context of reconstructing biogeochemical changes in intermediate/deep ocean water mass geometry and/or nutrient inventories prior to modern geochemical observations.

  5. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet

    PubMed Central

    Meyer, Christopher P.; Mills, Suzanne C.

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators’ diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction. PMID:26137428

  6. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet.

    PubMed

    Leray, Matthieu; Meyer, Christopher P; Mills, Suzanne C

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators' diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction.

  7. Resilience and climate change: lessons from coral reefs and bleaching in the Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Obura, David O.

    2005-05-01

    The impact of climate change through thermal stress-related coral bleaching on coral reefs of the Western Indian Ocean has been well documented and is caused by rising sea water temperatures associated with background warming trends and extreme climate events. Recent studies have identified a number of factors that may reduce the impact of coral bleaching and mortality at a reef or sub-reef level. However, there is little scientific consensus as yet, and it is unclear how well current science supports the immediate needs of management responses to climate change. This paper provides evidence from the Western Indian Ocean in support of recent hypotheses on coral and reef vulnerability to thermal stress that have been loosely termed 'resistance and resilience to bleaching'. The paper argues for a more explicit definition of terms, and identifies three concepts affecting coral-zooxanthellae holobiont and reef vulnerability to thermal stress previously termed 'resistance to bleaching': 'thermal protection', where some reefs are protected from the thermal conditions that induce bleaching and/or where local physical conditions reduce bleaching and mortality levels; 'thermal resistance', where individual corals bleach to differing degrees to the same thermal stress; and 'thermal tolerance', where individual corals suffer differing levels of mortality when exposed to the same thermal stress. 'Resilience to bleaching' is a special case of ecological resilience, where recovery following large-scale bleaching mortality varies according to ecological and other processes. These concepts apply across multiple levels of biological organization and temporal and spatial scales. Thermal resistance and tolerance are genetic properties and may interact with environmental protection properties resulting in phenotypic variation in bleaching and mortality of corals. The presence or absence of human threats and varying levels of reef management may alter the influence of the above factors, particularly through their impacts on resilience, offering the opportunity for management interventions to mitigate the impacts of thermal stress and recovery on coral reefs. These concepts are compiled within an overarching framework of spatial resilience theory. This provides a framework for developing linked scientific and management questions relating to the larger scale impacts of climate change on coral reefs, their management needs and prospects for their future.

  8. Bleaching response of coral species in the context of assemblage response

    NASA Astrophysics Data System (ADS)

    Swain, Timothy D.; DuBois, Emily; Goldberg, Scott J.; Backman, Vadim; Marcelino, Luisa A.

    2017-06-01

    Caribbean coral reefs are declining due to a mosaic of local and global stresses, including climate change-induced thermal stress. Species and assemblage responses differ due to factors that are not easily identifiable or quantifiable. We calculated a novel species-specific metric of coral bleaching response, taxon- α and - β, which relates the response of a species to that of its assemblages for 16 species over 18 assemblages. By contextualizing species responses within the response of their assemblages, the effects of environmental factors are removed and intrinsic differences among taxa are revealed. Most corals experience either a saturation response, overly sensitive to weak stress ( α > 0) but under-responsive compared to assemblage bleaching ( β < 1), or a threshold response, insensitive to weak stress ( α < 0) but over-responsive compared to assemblage bleaching ( β > 1). This metric may help reveal key factors of bleaching susceptibility and identify species as targets for conservation.

  9. Bleaching response of coral species in the context of assemblage response.

    PubMed

    Swain, Timothy D; DuBois, Emily; Goldberg, Scott J; Backman, Vadim; Marcelino, Luisa A

    2017-06-01

    Caribbean coral reefs are declining due to a mosaic of local and global stresses, including climate change-induced thermal stress. Species and assemblage responses differ due to factors that are not easily identifiable or quantifiable. We calculated a novel species-specific metric of coral bleaching response, taxon-α and -β, which relates the response of a species to that of its assemblages for 16 species over 18 assemblages. By contextualizing species responses within the response of their assemblages, the effects of environmental factors are removed and intrinsic differences among taxa are revealed. Most corals experience either a saturation response, overly-sensitive to weak stress (α > 0) but under-responsive compared to assemblage bleaching (β < 1), or a threshold response, insensitive to weak stress (α < 0) but over-responsive compared to assemblage bleaching (β > 1). This metric may help reveal key factors of bleaching susceptibility and identify species as targets for conservation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Tadakuni; Harashima, Akira; Nakatani, Yukihiro

    Coral reefs are the major sites for photo-synthesis and calcification in the present ocean. Estimating the production rate of calcification by the coral reefs or investigating the sink/source mechanism of CO{sub 2} by the coral reefs in the ocean, the distribution of the coral reefs in the world wide must be identified. Measuring the spectral signatures of underwater coral reefs and mapping of coral reefs by satellite remote sensing are described. The spectral signatures of different species of the coral reefs were measured using a spectroradiometer at off Kuroshima Island, Okinawa, Japan and investigated spectral difference between different species ofmore » the coral reefs. As well as the field experiments, laboratory experiments for measuring the spectral signatures of 9 different species of coral reefs were carried out with the same spectroradiometer. The spectral reflectance of each coral reef showed a significant result that a narrow absorption band exists in the spectral region between 660 and 680 nm, and very strong spectral reflectance from about 700 nm towards the longer wavelength range. On the other hand, absorption and the high reflectance region were not observed from the bottom sands or bare rocks underwater. These experiments suggested that there is a significant spectral difference between coral reefs and bottom sands or bare rocks and so the best spectral range for separating the coral reefs from other underwater objects in the ocean would be between 700 and 800 nm. As well as the basic spectral measurement either in the field or at the laboratory, SPOT satellite imageries were used to classify the underwater coral reefs. Classification methods used here were the principal component analysis, and the maximum likelihood. Finally, the evaluation of classification method for extracting the coral reefs was introduced.« less

  11. Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study

    USGS Publications Warehouse

    Buddemeier, R.W.; Lane, D.R.; Martinich, J.A.

    2011-01-01

    Climatic change threatens the future of coral reefs in the Caribbean and the important ecosystem services they provide. We used a simulation model [Combo ("COral Mortality and Bleaching Output")] to estimate future coral cover in the part of the eastern Caribbean impacted by a massive coral bleaching event in 2005. Combo calculates impacts of future climate change on coral reefs by combining impacts from long-term changes in average sea surface temperature (SST) and ocean acidification with impacts from episodic high temperature mortality (bleaching) events. We used mortality and heat dose data from the 2005 bleaching event to select historic temperature datasets, to use as a baseline for running Combo under different future climate scenarios and sets of assumptions. Results suggest a bleak future for coral reefs in the eastern Caribbean. For three different emissions scenarios from the Intergovernmental Panel on Climate Change (IPCC; B1, A1B, and A1FI), coral cover on most Caribbean reefs is projected to drop below 5% by the year 2035, if future mortality rates are equivalent to some of those observed in the 2005 event (50%). For a scenario where corals gain an additional 1-1. 5??C of heat tolerance through a shift in the algae that live in the coral tissue, coral cover above 5% is prolonged until 2065. Additional impacts such as storms or anthropogenic damage could result in declines in coral cover even faster than those projected here. These results suggest the need to identify and preserve the locations that are likely to have a higher resiliency to bleaching to save as many remnant populations of corals as possible in the face of projected wide-spread coral loss. ?? 2011 The Author(s).

  12. Season, but not symbiont state, drives microbiome structure in the temperate coral Astrangia poculata.

    PubMed

    Sharp, Koty H; Pratte, Zoe A; Kerwin, Allison H; Rotjan, Randi D; Stewart, Frank J

    2017-09-15

    Understanding the associations among corals, their photosynthetic zooxanthella symbionts (Symbiodinium), and coral-associated prokaryotic microbiomes is critical for predicting the fidelity and strength of coral symbioses in the face of growing environmental threats. Most coral-microbiome associations are beneficial, yet the mechanisms that determine the composition of the coral microbiome remain largely unknown. Here, we characterized microbiome diversity in the temperate, facultatively symbiotic coral Astrangia poculata at four seasonal time points near the northernmost limit of the species range. The facultative nature of this system allowed us to test seasonal influence and symbiotic state (Symbiodinium density in the coral) on microbiome community composition. Change in season had a strong effect on A. poculata microbiome composition. The seasonal shift was greatest upon the winter to spring transition, during which time A. poculata microbiome composition became more similar among host individuals. Within each of the four seasons, microbiome composition differed significantly from that of surrounding seawater but was surprisingly uniform between symbiotic and aposymbiotic corals, even in summer, when differences in Symbiodinium density between brown and white colonies are the highest, indicating that the observed seasonal shifts are not likely due to fluctuations in Symbiodinium density. Our results suggest that symbiotic state may not be a primary driver of coral microbial community organization in A. poculata, which is a surprise given the long-held assumption that excess photosynthate is of importance to coral-associated microbes. Rather, other environmental or host factors, in this case, seasonal changes in host physiology associated with winter quiescence, may drive microbiome diversity. Additional studies of A. poculata and other facultatively symbiotic corals will provide important comparisons to studies of reef-building tropical corals and therefore help to identify basic principles of coral microbiome assembly, as well as functional relationships among holobiont members.

  13. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    PubMed

    Bellantuono, Anthony J; Granados-Cifuentes, Camila; Miller, David J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.

  14. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress

    PubMed Central

    Bellantuono, Anthony J.; Granados-Cifuentes, Camila; Miller, David J.; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios. PMID:23226355

  15. Comparative genomics of Paracoccus sp. SM22M-07 isolated from coral mucus: insights into bacteria-host interactions.

    PubMed

    Carlos, Camila; Pereira, Letícia Bianca; Ottoboni, Laura Maria Mariscal

    2017-06-01

    One of the main goals of coral microbiology is to understand the ways in which coral-bacteria associations are established and maintained. This work describes the sequencing of the genome of Paracoccus sp. SM22M-07 isolated from the mucus of the endemic Brazilian coral species Mussismilia hispida. Comparative analysis was used to identify unique genomic features of SM22M-07 that might be involved in its adaptation to the marine ecosystem and the nutrient-rich environment provided by coral mucus, as well as in the establishment and strengthening of the interaction with the host. These features included genes related to the type IV protein secretion system, erythritol catabolism, and succinoglycan biosynthesis. We experimentally confirmed the production of succinoglycan by Paracoccus sp. SM22M-07 and we hypothesize that it may be involved in the association of the bacterium with coral surfaces.

  16. The growth of coral reef science in the Gulf: a historical perspective.

    PubMed

    Burt, John A

    2013-07-30

    Coral reef science has grown exponentially in recent decades in the Gulf. Analysis of literature from 1950 to 2012 identified 270 publications on coral reefs in the Gulf, half of which were published in just the past decade. This paper summarizes the growth and evolution of coral reef science in the Gulf by examining when, where and how research has been conducted on Gulf reefs, who conducted that research, and what themes and taxa have dominated scientific interest. The results demonstrate that there has been significant growth in our understanding of the valuable coral reefs of the Gulf, but also highlight the fact that we are documenting an increasingly degraded ecosystem. Reef scientists must make a concerted effort to improve dialogue with regional reef management and decision-makers if we are to stem the tide of decline in coral reefs in the Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Lobophorin K, a New Natural Product with Cytotoxic Activity Produced by Streptomyces sp. M-207 Associated with the Deep-Sea Coral Lophelia pertusa

    PubMed Central

    Braña, Alfredo F.; Sarmiento-Vizcaíno, Aida; Osset, Miguel; Pérez-Victoria, Ignacio; Martín, Jesús; de Pedro, Nuria; de la Cruz, Mercedes; Díaz, Caridad; Vicente, Francisca; Reyes, Fernando; García, Luis A.; Blanco, Gloria

    2017-01-01

    The present article describes the isolation of a new natural product of the lobophorin family, designated as lobophorin K (1), from cultures of the marine actinobacteria Streptomyces sp. M-207, previously isolated from the cold-water coral Lophelia pertusa collected at 1800 m depth during an expedition to the submarine Avilés Canyon. Its structure was determined using a combination of spectroscopic techniques, mainly ESI-TOF MS and 1D and 2D NMR. This new natural product displayed cytotoxic activity against two human tumor cell lines, such as pancreatic carcinoma (MiaPaca-2) and breast adenocarcinoma (MCF-7). Lobophorin K also displayed moderate and selective antibiotic activity against pathogenic Gram-positive bacteria such as Staphylococcus aureus. PMID:28534807

  18. Lobophorin K, a New Natural Product with Cytotoxic Activity Produced by Streptomyces sp. M-207 Associated with the Deep-Sea Coral Lophelia pertusa.

    PubMed

    Braña, Alfredo F; Sarmiento-Vizcaíno, Aida; Osset, Miguel; Pérez-Victoria, Ignacio; Martín, Jesús; de Pedro, Nuria; de la Cruz, Mercedes; Díaz, Caridad; Vicente, Francisca; Reyes, Fernando; García, Luis A; Blanco, Gloria

    2017-05-19

    The present article describes the isolation of a new natural product of the lobophorin family, designated as lobophorin K ( 1 ), from cultures of the marine actinobacteria Streptomyces sp. M-207, previously isolated from the cold-water coral Lophelia pertusa collected at 1800 m depth during an expedition to the submarine Avilés Canyon. Its structure was determined using a combination of spectroscopic techniques, mainly ESI-TOF MS and 1D and 2D NMR. This new natural product displayed cytotoxic activity against two human tumor cell lines, such as pancreatic carcinoma (MiaPaca-2) and breast adenocarcinoma (MCF-7). Lobophorin K also displayed moderate and selective antibiotic activity against pathogenic Gram-positive bacteria such as Staphylococcus aureus .

  19. Clues to Coral Reef Health: Integrating Radiative Transfer Modeling and Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Guild, Liane; Ganapol, Barry; Kramer, Philip; Armstrong, Roy; Gleason, Art; Torres, Juan; Johnson, Lee; Garfield, Toby; Peterson, David L. (Technical Monitor)

    2002-01-01

    An important contribution to coral reef research is to improve spectral distinction between various health states of coral species in areas subject to harmful anthropogenic activity and climate change. New insights into radiative transfer properties of corals under healthy and stressed conditions can advance understandings of ecological processes on reefs and allow better assessments of the impacts of large-scale bleaching and disease events, Our objective was to examine the spectral and spatial properties of hyperspectral sensors that may be used to remotely sense changes in reef community health. We compare in situ reef environment spectra (healthy coral, stressed coral, dead coral, algae, and sand) with airborne hyperspectral data to identify important spectral characteristics and indices. Additionally, spectral measurements over a range of water depths, relief, and bottom types are compared to help quantify bottom-water column influences. In situ spectra were collected in July and August 2002 at the Long Rock site in the Andros Island, Bahamas coastal zone coral reef. Our primary emphasis was on Acropora palmata (or elkhorn coral), a major reef building coral, which is prevalent in the study area, but is suffering from white band disease. A. palmata is currently being, proposed as an endangered species because its populations have severely declined in many areas of the Caribbean. In addition to the A. palmata biotope, we have collected spectra of at least seven other coral biotopes that exist within the study area, each with different coral community composition, density of corals, relief, and size of corals. Coral spectral reflectance was then input into a radiative transfer model, CORALMOD (CM1), which is based on a leaf radiative transfer model. In CM1, input coral reflectance measurements produce modeled reflectance through an inversion at each visible wavelength to provide the absorption spectrum. Initially, we imposed a scattering baseline that is the same regardless of the coral condition and that coral is optically thick and no light is transmitted through coral. Here we will focus on methodology, experimental design, and initial findings of the in situ spectral measurements and preliminary output from the radiative transfer model.

  20. Yolk formation in a stony coral Euphyllia ancora (Cnidaria, Anthozoa): insight into the evolution of vitellogenesis in nonbilaterian animals.

    PubMed

    Shikina, Shinya; Chen, Chieh-Jhen; Chung, Yi-Jou; Shao, Zi-Fan; Liou, Jhe-Yu; Tseng, Hua-Pin; Lee, Yan-Horn; Chang, Ching-Fong

    2013-09-01

    Vitellogenin (Vg) is a major yolk protein precursor in numerous oviparous animals. Numerous studies in bilateral oviparous animals have shown that Vg sequences are conserved across taxa and that Vgs are synthesized by somatic-cell lineages, transported to and accumulated in oocytes, and eventually used for supporting embryogenesis. In nonbilateral animals (Polifera, Cnidaria, and Ctenophora), which are regarded as evolutionarily primitive, although Vg cDNA has been identified in 2 coral species from Cnidaria, relatively little is known about the characteristics of yolk formation in their bodies. To address this issue, we identified and characterized 2 cDNA encoding yolk proteins, Vg and egg protein (Ep), in the stony coral Euphyllia ancora. RT-PCR analysis revealed that expression levels of both Vg and Ep increased in the female colonies as coral approached the spawning season. In addition, high levels of both Vg and Ep transcripts were detected in the putative ovarian tissue, as determined by tissue distribution analysis. Further analyses using mRNA in situ hybridization and immunohistochemistry determined that, within the putative ovarian tissue, these yolk proteins are synthesized in the mesenterial somatic cells but not in oocytes themselves. Furthermore, Vg proteins that accumulated in eggs were most likely consumed during the coral embryonic development, as assessed by immunoblotting. The characteristics of Vg that we identified in corals were somewhat similar to those of Vg in bilaterian oviparous animals, raising the hypothesis that such characteristics were likely present in the oogenesis of some common ancestor prior to divergence of the cnidarian and bilaterian lineages.

  1. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 2. A regional-scale predictive model for the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A; Heron, Scott F; Brodie, Jon E; Done, Terence J; Masiri, Itsara; Hinrichs, Saskia

    2017-01-15

    A spatial risk assessment model is developed for the Great Barrier Reef (GBR, Australia) that helps identify reef locations at higher or lower risk of coral bleaching in summer heat-wave conditions. The model confirms the considerable benefit of discriminating nutrient-enriched areas that contain corals with enlarged (suboptimal) symbiont densities for the purpose of identifying bleaching-sensitive reef locations. The benefit of the new system-level understanding is showcased in terms of: (i) improving early-warning forecasts of summer bleaching risk, (ii) explaining historical bleaching patterns, (iii) testing the bleaching-resistant quality of the current marine protected area (MPA) network (iv) identifying routinely monitored coral health attributes, such as the tissue energy reserves and skeletal growth characteristics (viz. density and extension rates) that correlate with bleaching resistant reef locations, and (v) targeting region-specific water quality improvement strategies that may increase reef-scale coral health and bleaching resistance. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. NOAA's efforts to map extent, health and condition of deep sea corals and sponges and their habitat on the banks and island slopes of Southern California

    NASA Astrophysics Data System (ADS)

    Etnoyer, P. J.; Salgado, E.; Stierhoff, K.; Wickes, L.; Nehasil, S.; Kracker, L.; Lauermann, A.; Rosen, D.; Caldow, C.

    2015-12-01

    Southern California's deep-sea corals are diverse and abundant, but subject to multiple stressors, including corallivory, ocean acidification, and commercial bottom fishing. NOAA has surveyed these habitats using a remotely operated vehicle (ROV) since 2003. The ROV was equipped with high-resolution cameras to document deep-water groundfish and their habitat in a series of research expeditions from 2003 - 2011. Recent surveys 2011-2015 focused on in-situ measures of aragonite saturation and habitat mapping in notable habitats identified in previous years. Surveys mapped abundance and diversity of fishes and corals, as well as commercial fisheries landings and frequency of fishing gear. A novel priority setting algorithm was developed to identify hotspots of diversity and fishing intensity, and to determine where future conservation efforts may be warranted. High density coral aggregations identified in these analyses were also used to guide recent multibeam mapping efforts. The maps suggest a large extent of unexplored and unprotected hard-bottom habitat in the mesophotic zone and deep-sea reaches of Channel Islands National Marine Sanctuary.

  3. Proline-Rich Peptide from the Coral Pathogen Vibrio shiloi That Inhibits Photosynthesis of Zooxanthellae

    PubMed Central

    Banin, Ehud; Khare, Sanjay K.; Naider, Fred; Rosenberg, Eugene

    2001-01-01

    The coral-bleaching bacterium Vibrio shiloi biosynthesizes and secretes an extracellular peptide, referred to as toxin P, which inhibits photosynthesis of coral symbiotic algae (zooxanthellae). Toxin P was produced during the stationary phase when the bacterium was grown on peptone or Casamino Acids media at 29°C. Glycerol inhibited the production of toxin P. Toxin P was purified to homogeneity, yielding the following 12-residue peptide: PYPVYAPPPVVP (molecular weight, 1,295.54). The structure of toxin P was confirmed by chemical synthesis. In the presence of 12.5 mM NH4Cl, pure natural or synthetic toxin P (10 μM) caused a 64% decrease in the photosynthetic quantum yield of zooxanthellae within 5 min. The inhibition was proportional to the toxin P concentration. Toxin P bound avidly to zooxanthellae, such that subsequent addition of NH4Cl resulted in rapid inhibition of photosynthesis. When zooxanthellae were incubated in the presence of NH4Cl and toxin P, there was a rapid decrease in the pH (pH 7.8 to 7.2) of the bulk liquid, suggesting that toxin P facilitates transport of NH3 into the cell. It is known that uptake of NH3 into cells can destroy the pH gradient and block photosynthesis. This mode of action of toxin P can help explain the mechanism of coral bleaching by V. shiloi. PMID:11282602

  4. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of Zooxanthellae.

    PubMed

    Banin, E; Khare, S K; Naider, F; Rosenberg, E

    2001-04-01

    The coral-bleaching bacterium Vibrio shiloi biosynthesizes and secretes an extracellular peptide, referred to as toxin P, which inhibits photosynthesis of coral symbiotic algae (zooxanthellae). Toxin P was produced during the stationary phase when the bacterium was grown on peptone or Casamino Acids media at 29 degrees C. Glycerol inhibited the production of toxin P. Toxin P was purified to homogeneity, yielding the following 12-residue peptide: PYPVYAPPPVVP (molecular weight, 1,295.54). The structure of toxin P was confirmed by chemical synthesis. In the presence of 12.5 mM NH(4)Cl, pure natural or synthetic toxin P (10 microM) caused a 64% decrease in the photosynthetic quantum yield of zooxanthellae within 5 min. The inhibition was proportional to the toxin P concentration. Toxin P bound avidly to zooxanthellae, such that subsequent addition of NH(4)Cl resulted in rapid inhibition of photosynthesis. When zooxanthellae were incubated in the presence of NH(4)Cl and toxin P, there was a rapid decrease in the pH (pH 7.8 to 7.2) of the bulk liquid, suggesting that toxin P facilitates transport of NH(3) into the cell. It is known that uptake of NH(3) into cells can destroy the pH gradient and block photosynthesis. This mode of action of toxin P can help explain the mechanism of coral bleaching by V. shiloi.

  5. Population Structure of the Coral-eating Fireworm Hermodice carunculata in the Wider Caribbean, Atlantic and Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Cruz, M.; Schizas, N. V.

    2016-02-01

    The bearded fireworm Hermodice carunculata is an important benthic invertebrate scavenger distributed in reefs worldwide. Fireworms are facultative corallivores and have been shown to transfer pathogenic agents between coral colonies. The effects of predation on coral species can be substantial. There is limited data on the genetic population structure of H. carunculata because of its cryptic nature and past studies resulted in ambiguous findings. Both morphological and molecular data suggest the presence of multiple fireworm sibling species but the morphological differences do not reflect the phylogeographic patterns of the species complex. Hermodice carunculata is an ideal species to use for genetic analysis to infer patterns of population structure and gene flow because of its biphasic life style with planktonic larvae and benthic adults. We collected 412 H. carunculata samples from over 20 locations in the Caribbean, Mediterranean Sea, Gulf of Mexico, Western and Eastern Atlantic Ocean. We sequenced two mitochondrial markers: Cytochrome C Oxidase subunit I (COI) and Cytochrome b (Cytb) from each specimen to examine the genetic diversity of H. carunculata. There is substantial genetic diversity within H. carunculata and preliminary evidence suggests the presence of at least two cryptic species in multiple locations. The presence of multiple species in bearded fireworms indicates our incomplete knowledge in one of the most important invertebrate scavengers in tropical and subtropical reefs.

  6. Global coral disease prevalence associated with sea temperature anomalies and local factors.

    PubMed

    Ruiz-Moreno, Diego; Willis, Bette L; Page, A Cathie; Weil, Ernesto; Cróquer, Aldo; Vargas-Angel, Bernardo; Jordan-Garza, Adán Guillermo; Jordán-Dahlgren, Eric; Raymundo, Laurie; Harvell, C Drew

    2012-09-12

    Coral diseases are taking an increasing toll on coral reef structure and biodiversity and are important indicators of declining health in the oceans. We implemented standardized coral disease surveys to pinpoint hotspots of coral disease, reveal vulnerable coral families and test hypotheses about climate drivers from 39 locations worldwide. We analyzed a 3 yr study of coral disease prevalence to identify links between disease and a range of covariates, including thermal anomalies (from satellite data), location and coral cover, using a Generalized Linear Mixed Model. Prevalence of unhealthy corals, i.e. those with signs of known diseases or with other signs of compromised health, exceeded 10% on many reefs and ranged to over 50% on some. Disease prevalence exceeded 10% on 20% of Caribbean reefs and 2.7% of Pacific reefs surveyed. Within the same coral families across oceans, prevalence of unhealthy colonies was higher and some diseases were more common at sites in the Caribbean than those in the Pacific. The effects of high disease prevalence are potentially extensive given that the most affected coral families, the acroporids, faviids and siderastreids, are among the major reef-builders at these sites. The poritids and agaricids stood out in the Caribbean as being the most resistant to disease, even though these families were abundant in our surveys. Regional warm temperature anomalies were strongly correlated with high disease prevalence. The levels of disease reported here will provide a much-needed local reference point against which to compare future change.

  7. Time to cash in on positive interactions for coral restoration

    PubMed Central

    Silliman, Brian R.

    2017-01-01

    Coral reefs are among the most biodiverse and productive ecosystems on Earth, and provide critical ecosystem services such as protein provisioning, coastal protection, and tourism revenue. Despite these benefits, coral reefs have been declining precipitously across the globe due to human impacts and climate change. Recent efforts to combat these declines are increasingly turning to restoration to help reseed corals and speed-up recovery processes. Coastal restoration theory and practice has historically favored transplanting designs that reduce potentially harmful negative species interactions, such as competition between transplants. However, recent research in salt marsh ecosystems has shown that shifting this theory to strategically incorporate positive interactions significantly enhances restoration yield with little additional cost or investment. Although some coral restoration efforts plant corals in protected areas in order to benefit from the facilitative effects of herbivores that reduce competitive macroalgae, little systematic effort has been made in coral restoration to identify the entire suite of positive interactions that could promote population enhancement efforts. Here, we highlight key positive species interactions that managers and restoration practitioners should utilize to facilitate the restoration of corals, including (i) trophic facilitation, (ii) mutualisms, (iii) long-distance facilitation, (iv) positive density-dependence, (v) positive legacy effects, and (vi) synergisms between biodiversity and ecosystem function. As live coral cover continues to decline and resources are limited to restore coral populations, innovative solutions that increase efficiency of restoration efforts will be critical to conserving and maintaining healthy coral reef ecosystems and the human communities that rely on them. PMID:28652942

  8. Biodiversity of Cryptofauna (Decapods) and Their Correlation with Dead Coral Pocillopora sp. Volume at Bunaken Island, North Sulawesi

    NASA Astrophysics Data System (ADS)

    Malik, Muhammad Danie Al; Kholilah, Nenik; Kurniasih, Eka Maya; Sembiring, Andrianus; Pertiwi, Ni Putu Dian; Ambariyanto, Ambariyanto; Munasik, Munasik; Meyer, Christopher

    2018-02-01

    Decapod is known as cryptofauna which is also important component of coral reef biodiversity. Dead corals are one of the area which usually used by decapods to live. This research aims to observe the diversity of cryptofauna (decapods) and the correlation between the number of decapods with the volume of dead corals. Ten dead corals, Pocillopora sp., were collected at 5 m depth at Bunaken Island. These dead corals were measured their volume and all decapods found were counted and identified up to family level. The richness and abundance were analyzed using ACE (Abundance-Based Coverage Estimates) and Chao 1. The results show that there were in total 474 decapods from 13 families found within all ten dead corals. Xanthidae was showed as the most abundance family among all, with 161 individual. Diversity index of decapods was found at medium category with value of 2.01. Rarefaction curve based on richness and abundance showed an estimation of 13 families. The result also indicated that the asymptote stage was reached on the 10th dead coral samples. The correlation between decapod with the volume of dead coral were showed significant positive correlation (r = 0.673, p<0.05). This result provides benefits to basic knowledge about diversity of decapod which one of cryptofauna as component fauna have a habitat on coral reef ecosystem.

  9. Coral Sr/Ca-based sea surface temperature and air temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia.

    PubMed

    Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W

    2016-09-30

    The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient air temperature. In particular, the inshore SST variation is related to air temperature anomalies of the urban center of Jakarta. The latter we relate to air-sea interactions modifying inshore SST associated with the land-sea breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and air temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate.

    PubMed

    Towle, Erica K; Enochs, Ian C; Langdon, Chris

    2015-01-01

    Global climate change threatens coral growth and reef ecosystem health via ocean warming and ocean acidification (OA). Whereas the negative impacts of these stressors are increasingly well-documented, studies identifying pathways to resilience are still poorly understood. Heterotrophy has been shown to help corals experiencing decreases in growth due to either thermal or OA stress; however, the mechanism by which it mitigates these decreases remains unclear. This study tested the ability of coral heterotrophy to mitigate reductions in growth due to climate change stress in the critically endangered Caribbean coral Acropora cervicornis via changes in feeding rate and lipid content. Corals were either fed or unfed and exposed to elevated temperature (30°C), enriched pCO2 (800 ppm), or both (30°C/800 ppm) as compared to a control (26°C/390 ppm) for 8 weeks. Feeding rate and lipid content both increased in corals experiencing OA vs. present-day conditions, and were significantly correlated. Fed corals were able to maintain ambient growth rates at both elevated temperature and elevated CO2, while unfed corals experienced significant decreases in growth with respect to fed conspecifics. Our results show for the first time that a threatened coral species can buffer OA-reduced calcification by increasing feeding rates and lipid content.

  11. Molecular detection and ecological significance of the cyanobacterial genera Geitlerinema and Leptolyngbya in black band disease of corals.

    PubMed

    Myers, Jamie L; Sekar, Raju; Richardson, Laurie L

    2007-08-01

    Black band disease (BBD) is a pathogenic, sulfide-rich microbial mat dominated by filamentous cyanobacteria that infect corals worldwide. We isolated cyanobacteria from BBD into culture, confirmed their presence in the BBD community by using denaturing gradient gel electrophoresis (DGGE), and demonstrated their ecological significance in terms of physiological sulfide tolerance and photosynthesis-versus-irradiance values. Twenty-nine BBD samples were collected from nine host coral species, four of which have not previously been investigated, from reefs of the Florida Keys, the Bahamas, St. Croix, and the Philippines. From these samples, seven cyanobacteria were isolated into culture. Cloning and sequencing of the 16S rRNA gene using universal primers indicated that four isolates were related to the genus Geitlerinema and three to the genus Leptolyngbya. DGGE results, obtained using Cyanobacteria-specific 16S rRNA primers, revealed that the most common BBD cyanobacterial sequence, detected in 26 BBD field samples, was related to that of an Oscillatoria sp. The next most common sequence, 99% similar to that of the Geitlerinema BBD isolate, was present in three samples. One Leptolyngbya- and one Phormidium-related sequence were also found. Laboratory experiments using isolates of BBD Geitlerinema and Leptolyngbya revealed that they could carry out sulfide-resistant oxygenic photosynthesis, a relatively rare characteristic among cyanobacteria, and that they are adapted to the sulfide-rich, low-light BBD environment. The presence of the cyanotoxin microcystin in these cultures and in BBD suggests a role in BBD pathogenicity. Our results confirm the presence of Geitlerinema in the BBD microbial community and its ecological significance, which have been challenged, and provide evidence of a second ecologically significant BBD cyanobacterium, Leptolyngbya.

  12. Unraveling the nitrogen isotopic signature of symbiotic corals

    NASA Astrophysics Data System (ADS)

    Devlin, Q.; Swart, P. K.; Altabet, M. A.

    2013-12-01

    Coral reefs thrive in shallow, tropical, low nutrient waters. Nutrient inputs to a reef environment are often interpreted by measuring the nitrogen isotopic composition of reef organisms. The δ15N signature of scleractinian corals has been historically measured to assess the presence of anthropogenic influences such as sewage and fertilizer runoff. The majority of reef building corals form a symbiotic partnership with the dinoflagellate algae, Symbiodinium microadriaticum. The δ15N signature of symbiotic corals is complex as it is not only dependent on nitrogen acquisition by the coral, but also by the algal symbionts that reside within the gastrodermal tissue layer. The relationship between the δ15N of dissolved inorganic nitrogen (DIN) and the δ15N of coral tissue has not been established. The aim of this study is to identify considerations necessary when interpreting nitrogen sources based on δ15N of coral tissue. Incubations were carried out in order to measure isotopic fractionation associated with nitrate and ammonium incorporation by the Pacific branching coral, Pocillopora damicornis. We investigated the dependence of nitrogen isotope fractionation on species of DIN (nitrate or ammonium), concentration of DIN (range: 1-50 μM N), genetic diversity of algal symbionts (clade C or clade D) and light levels.

  13. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales

    PubMed Central

    Neave, Matthew J; Rachmawati, Rita; Xun, Liping; Michell, Craig T; Bourne, David G; Apprill, Amy; Voolstra, Christian R

    2017-01-01

    Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning. PMID:27392086

  14. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales.

    PubMed

    Neave, Matthew J; Rachmawati, Rita; Xun, Liping; Michell, Craig T; Bourne, David G; Apprill, Amy; Voolstra, Christian R

    2017-01-01

    Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning.

  15. Evaluation of Stony Coral Indicators for Coral Reef ...

    EPA Pesticide Factsheets

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for their response to gradients of human disturbance. The purpose of the study was to identify indicators that could be used for regulatory assessments under authority of the Clean Water Act--this requires that indicators distinguish anthropogenic disturbances from natural variation. Stony coral indicators were tested for correlation with human disturbance across gradients located on three different sides of the island. At the most intensely disturbed location, five of eight primary indicators were highly correlated with distance from the source of disturbance: Coral taxa richness, average colony size, the coefficient of variation of colony size (an indicator of colony size heterogeneity), total topographic coral surface area, and live coral surface area. An additional set of exploratory indicators related to rarity, reproductive and spawning mode, and taxonomic identity were also screened for association with disturbance at the same location. For the other two locations, there were no significant changes in indicator values and therefore no discernible effects of human activity. Coral indicators demonstrated sufficient precision to detect levels of change that would be applicable in a regio

  16. A Trait-Based Approach to Advance Coral Reef Science.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H

    2016-06-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish

    PubMed Central

    2012-01-01

    Background Coral reefs are areas of maximum biodiversity, but the parasites of coral reef fishes, and especially their species richness, are not well known. Over an 8-year period, parasites were collected from 24 species of Lutjanidae, Nemipteridae and Caesionidae off New Caledonia, South Pacific. Results Host-parasite and parasite-host lists are provided, with a total of 207 host-parasite combinations and 58 parasite species identified at the species level, with 27 new host records. Results are presented for isopods, copepods, monogeneans, digeneans, cestodes and nematodes. When results are restricted to well-sampled reef fish species (sample size > 30), the number of host-parasite combinations is 20–25 per fish species, and the number of parasites identified at the species level is 9–13 per fish species. Lutjanids include reef-associated fish and deeper sea fish from the outer slopes of the coral reef: fish from both milieus were compared. Surprisingly, parasite biodiversity was higher in deeper sea fish than in reef fish (host-parasite combinations: 12.50 vs 10.13, number of species per fish 3.75 vs 3.00); however, we identified four biases which diminish the validity of this comparison. Finally, these results and previously published results allow us to propose a generalization of parasite biodiversity for four major families of reef-associated fishes (Lutjanidae, Nemipteridae, Serranidae and Lethrinidae): well-sampled fish have a mean of 20 host-parasite combinations per fish species, and the number of parasites identified at the species level is 10 per fish species. Conclusions Since all precautions have been taken to minimize taxon numbers, it is safe to affirm than the number of fish parasites is at least ten times the number of fish species in coral reefs, for species of similar size or larger than the species in the four families studied; this is a major improvement to our estimate of biodiversity in coral reefs. Our results suggest that extinction of a coral reef fish species would eventually result in the coextinction of at least ten species of parasites. PMID:22947621

  18. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish.

    PubMed

    Justine, Jean-Lou; Beveridge, Ian; Boxshall, Geoffrey A; Bray, Rodney A; Miller, Terrence L; Moravec, František; Trilles, Jean-Paul; Whittington, Ian D

    2012-09-04

    Coral reefs are areas of maximum biodiversity, but the parasites of coral reef fishes, and especially their species richness, are not well known. Over an 8-year period, parasites were collected from 24 species of Lutjanidae, Nemipteridae and Caesionidae off New Caledonia, South Pacific. Host-parasite and parasite-host lists are provided, with a total of 207 host-parasite combinations and 58 parasite species identified at the species level, with 27 new host records. Results are presented for isopods, copepods, monogeneans, digeneans, cestodes and nematodes. When results are restricted to well-sampled reef fish species (sample size > 30), the number of host-parasite combinations is 20-25 per fish species, and the number of parasites identified at the species level is 9-13 per fish species. Lutjanids include reef-associated fish and deeper sea fish from the outer slopes of the coral reef: fish from both milieus were compared. Surprisingly, parasite biodiversity was higher in deeper sea fish than in reef fish (host-parasite combinations: 12.50 vs 10.13, number of species per fish 3.75 vs 3.00); however, we identified four biases which diminish the validity of this comparison. Finally, these results and previously published results allow us to propose a generalization of parasite biodiversity for four major families of reef-associated fishes (Lutjanidae, Nemipteridae, Serranidae and Lethrinidae): well-sampled fish have a mean of 20 host-parasite combinations per fish species, and the number of parasites identified at the species level is 10 per fish species. Since all precautions have been taken to minimize taxon numbers, it is safe to affirm than the number of fish parasites is at least ten times the number of fish species in coral reefs, for species of similar size or larger than the species in the four families studied; this is a major improvement to our estimate of biodiversity in coral reefs. Our results suggest that extinction of a coral reef fish species would eventually result in the coextinction of at least ten species of parasites.

  19. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    NASA Technical Reports Server (NTRS)

    van den Bergh, Jarrett; Schutz, Joey; Li, Alan; Chirayath, Ved

    2017-01-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Nets convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign. Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users input against pre-classified coral imagery to gauge their accuracy and utilize in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  20. Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?

    PubMed Central

    Langdon, Chris; Ekstrom, Julia A.; Cooley, Sarah R.; Suatoni, Lisa; Beck, Michael W.; Brander, Luke M.; Burke, Lauretta; Cinner, Josh E.; Doherty, Carolyn; Edwards, Peter E. T.; Gledhill, Dwight; Jiang, Li-Qing; van Hooidonk, Ruben J.; Teh, Louise; Waldbusser, George G.; Ritter, Jessica

    2016-01-01

    Reefs and People at Risk Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortality), and 2) ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services. Impacts to people will be most grave where a) human dependence on coral reef ecosystems is high, b) sea surface temperature reaches critical levels soonest, and c) ocean acidification levels are most severe. Where these elements align, swift action will be needed to protect people’s lives and livelihoods, but such action must be informed by data and science. An Indicator Approach Designing policies to offset potential harm to coral reef ecosystems and people requires a better understanding of where CO2-related global environmental stresses could cause the most severe impacts. Mapping indicators has been proposed as a way of combining natural and social science data to identify policy actions even when the needed science is relatively nascent. To identify where people are at risk and where more science is needed, we map indicators of biological, physical and social science factors to understand how human dependence on coral reef ecosystems will be affected by globally-driven threats to corals expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Australia have high human dependence and will likely face severe combined threats. As a region, Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef ecosystems are places for which we have the least robust data on ocean acidification. These areas require new data and interdisciplinary scientific research to help coral reef-dependent human communities better prepare for a high CO2 world. PMID:27828972

  1. Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?

    PubMed

    Pendleton, Linwood; Comte, Adrien; Langdon, Chris; Ekstrom, Julia A; Cooley, Sarah R; Suatoni, Lisa; Beck, Michael W; Brander, Luke M; Burke, Lauretta; Cinner, Josh E; Doherty, Carolyn; Edwards, Peter E T; Gledhill, Dwight; Jiang, Li-Qing; van Hooidonk, Ruben J; Teh, Louise; Waldbusser, George G; Ritter, Jessica

    2016-01-01

    Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortality), and 2) ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services. Impacts to people will be most grave where a) human dependence on coral reef ecosystems is high, b) sea surface temperature reaches critical levels soonest, and c) ocean acidification levels are most severe. Where these elements align, swift action will be needed to protect people's lives and livelihoods, but such action must be informed by data and science. Designing policies to offset potential harm to coral reef ecosystems and people requires a better understanding of where CO2-related global environmental stresses could cause the most severe impacts. Mapping indicators has been proposed as a way of combining natural and social science data to identify policy actions even when the needed science is relatively nascent. To identify where people are at risk and where more science is needed, we map indicators of biological, physical and social science factors to understand how human dependence on coral reef ecosystems will be affected by globally-driven threats to corals expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Australia have high human dependence and will likely face severe combined threats. As a region, Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef ecosystems are places for which we have the least robust data on ocean acidification. These areas require new data and interdisciplinary scientific research to help coral reef-dependent human communities better prepare for a high CO2 world.

  2. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    NASA Astrophysics Data System (ADS)

    van den Bergh, J.; Schutz, J.; Chirayath, V.; Li, A.

    2017-12-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Net's convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign.Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users' input against pre-classified coral imagery to gauge their accuracy and utilizes in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  3. Skeletal light-scattering accelerates bleaching response in reef-building corals.

    PubMed

    Swain, Timothy D; DuBois, Emily; Gomes, Andrew; Stoyneva, Valentina P; Radosevich, Andrew J; Henss, Jillian; Wagner, Michelle E; Derbas, Justin; Grooms, Hannah W; Velazquez, Elizabeth M; Traub, Joshua; Kennedy, Brian J; Grigorescu, Arabela A; Westneat, Mark W; Sanborn, Kevin; Levine, Shoshana; Schick, Mark; Parsons, George; Biggs, Brendan C; Rogers, Jeremy D; Backman, Vadim; Marcelino, Luisa A

    2016-03-21

    At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, μ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-μ'(S,m) corals bleach at higher rate and severity than high-μ'(S,m) corals and the Symbiodinium associated with low-μ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-μ'(S,m) corals. While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes μ'(S,m) as one of the key determinants of differential bleaching response.

  4. Coral snake bites and envenomation in children: a case series.

    PubMed

    Sasaki, Jun; Khalil, Paul A; Chegondi, Madhuradhar; Raszynski, Andre; Meyer, Keith G; Totapally, Balagangadhar R

    2014-04-01

    North America is home to 2 families of venomous snakes, Crotalinae (pit viper family) and Elapidae (coral snake family). Although there are several published reports describing and reviewing the management of pit viper snakebites in children, there are no recent similar publications detailing the clinical course and management of coral snake envenomation. Our case series describes the hospital course of children with coral snake bites admitted to our regional pediatric intensive care. We also reviewed prior published case reports of coral snake bites in the United States. We identified 4 patients with either confirmed or suspected coral snake envenomation from our hospital's records. In 2 cases, the snakebite occurred after apparent provocation. Antivenom was administered to 3 patients. The regional venom response team was consulted for management advice and supplied the antivenom. One patient had a prolonged hospital course, which was complicated by respiratory failure, bulbar palsy, and ataxia. All survived to discharge. Admission to pediatric intensive care is warranted after all Eastern coral snake bites. A specialized regional or national venom response team can be a useful resource for management advice and as a source of antivenom.

  5. Florida Integrated Science Center (FISC) Coral Reef Research

    USGS Publications Warehouse

    Poore, D.Z.

    2008-01-01

    Coral reefs provide important ecosystem services such as shoreline protection and the support of lucrative industries including fisheries and tourism. Such ecosystem services are being compromised as reefs decline due to coral disease, climate change, overfishing, and pollution. There is a need for focused, integrated science to understand the complex ecological interactions and effects of these many stressors and to provide information that will effectively guide policies and best management practices to preserve and restore these important resources. The U.S. Geological Survey Florida Integrated Science Center (USGS-FISC) is conducting a coordinated Coral Reef Research Project beginning in 2009. Specific research topics are aimed at addressing priorities identified in the 'Strategic Science for Coral Ecosystems 2007-2011' document (U.S. Geological Survey, 2007). Planned research will include a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, and likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major themes of understanding reef structure, ecological integrity, and responses to global change.

  6. An assessment of Qatar's coral communities in a regional context.

    PubMed

    Burt, John A; Smith, Edward G; Warren, Christopher; Dupont, Jennifer

    2016-04-30

    Qatar's once extensive coral communities have undergone considerable change in recent decades. We quantitatively surveyed three coral assemblages in Qatar to assess current status, and compared these against 14 sites in Bahrain and the United Arab Emirates to evaluate Qatar in a larger biogeographic context. Umm Al-Arshan had the highest species richness of 17 sites examined in the southern Arabian Gulf, as well as the highest coral cover and the only Acropora observed on sites in Qatar. Coral cover and richness were more modest at Fuwayrit and Al-Ashat, reflecting greater impacts from earlier stress events. Two distinct communities were identified across the southern Gulf, with Umm Al-Arshan clustering with high-cover, mixed merulinid/poritid assemblages that were less impacted by earlier bleaching and long-term stress, while Fuwayrit and Al-Ashat grouped with a lower-cover, stress-tolerant community characteristic of more extreme environments in the southern Gulf. We recommend implementation of a nation-wide baseline assessment of coral communities to guide development of an MPA network and long-term coral monitoring program for Qatar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Metagenomic analysis of the microbial community associated with the coral Porites astreoides.

    PubMed

    Wegley, Linda; Edwards, Robert; Rodriguez-Brito, Beltran; Liu, Hong; Rohwer, Forest

    2007-11-01

    The coral holobiont is a dynamic assemblage of the coral animal, zooxanthellae, endolithic algae and fungi, Bacteria,Archaea and viruses. Zooxanthellae and some Bacteria form relatively stable and species-specific associations with corals. Other associations are less specific; coral-associated Archaea differ from those in the water column, but the same archaeal species may be found on different coral species. It has been hypothesized that the coral animal can adapt to differing ecological niches by 'switching' its microbial associates. In the case of corals and zooxanthellae, this has been termed adaptive bleaching and it has important implications for carbon cycling within the coral holobiont and ultimately the survival of coral reefs. However, the roles of other components of the coral holobiont are essentially unknown. To better understand these other coral associates, a fractionation procedure was used to separate the microbes, mitochondria and viruses from the coral animal cells and zooxanthellae. The resulting metagenomic DNA was sequenced using pyrosequencing. Fungi, Bacteria and phage were the most commonly identified organisms in the metagenome. Three of the four fungal phyla were represented, including a wide diversity of fungal genes involved in carbon and nitrogen metabolism, suggesting that the endolithic community is more important than previously appreciated. In particular, the data suggested that endolithic fungi could be converting nitrate and nitrite to ammonia, which would enable fixed nitrogen to cycle within the coral holobiont. The most prominent bacterial groups were Proteobacteria (68%), Firmicutes (10%), Cyanobacteria (7%) and Actinobacteria (6%). Functionally, the bacterial community was primarily heterotrophic and included a number of pathways for the degradation of aromatic compounds, the most abundant being the homogentisate pathway. The most abundant phage family was the ssDNA Microphage and most of the eukaryotic viruses were most closely related to those known to infect aquatic organisms. This study provides a metabolic and taxonomic snapshot of microbes associated with the reef-building coral Porites astreoides and presents a basis for understanding how coral-microbial interactions structure the holobiont and coral reefs.

  8. Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish.

    PubMed

    Grol, Monique G G; Nagelkerken, Ivan; Rypel, Andrew L; Layman, Craig A

    2011-01-01

    Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24-47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77-100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change.

  9. Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish

    PubMed Central

    Grol, Monique G. G.; Rypel, Andrew L.; Layman, Craig A.

    2010-01-01

    Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24–47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77–100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change. PMID:21072542

  10. In Silico Comparative Transcriptome Analysis of Two Color Morphs of the Common Coral Trout (Plectropomus Leopardus)

    PubMed Central

    Wang, Le; Yu, Cuiping; Guo, Liang; Lin, Haoran; Meng, Zining

    2015-01-01

    The common coral trout is one species of major importance in commercial fisheries and aquaculture. Recently, two different color morphs of Plectropomus leopardus were discovered and the biological importance of the color difference is unknown. Since coral trout species are poorly characterized at the molecular level, we undertook the transcriptomic characterization of the two color morphs, one black and one red coral trout, using Illumina next generation sequencing technologies. The study produced 55162966 and 54588952 paired-end reads, for black and red trout, respectively. De novo transcriptome assembly generated 95367 and 99424 unique sequences in black and red trout, respectively, with 88813 sequences shared between them. Approximately 50% of both trancriptomes were functionally annotated by BLAST searches against protein databases. The two trancriptomes were enriched into 25 functional categories and showed similar profiles of Gene Ontology category compositions. 34110 unigenes were grouped into 259 KEGG pathways. Moreover, we identified 14649 simple sequence repeats (SSRs) and designed primers for potential application. We also discovered 130524 putative single nucleotide polymorphisms (SNPs) in the two transcriptomes, supplying potential genomic resources for the coral trout species. In addition, we identified 936 fast-evolving genes and 165 candidate genes under positive selection between the two color morphs. Finally, 38 candidate genes underlying the mechanism of color and pigmentation were also isolated. This study presents the first transcriptome resources for the common coral trout and provides basic information for the development of genomic tools for the identification, conservation, and understanding of the speciation and local adaptation of coral reef fish species. PMID:26713756

  11. Suppression of NF-κB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress.

    PubMed

    Zhou, Zhi; Wu, Yibo; Zhang, Chengkai; Li, Can; Chen, Guangmei; Yu, Xiaopeng; Shi, Xiaowei; Xu, Yanlai; Wang, Lingui; Huang, Bo

    2017-08-01

    Heat stress is the most common factor for coral bleaching, which has increased both in frequency and severity due to global warming. In the present study, the stony coral Acropora aculeus was subjected to acute heat stress and entire transcriptomes were sequenced via the next generation sequencing platform. Four paired-end libraries were constructed and sequenced in two groups, including a control and a heat stress group. A total of 120,319,751 paired-end reads with lengths of 2 × 100 bp were assembled and 55,021 coral-derived genes were obtained. After read mapping and abundance estimation, 9110 differentially expressed genes were obtained in the comparison between the control and heat stress group, including 4465 significantly upregulated and 4645 significantly downregulated genes. Twenty-three GO terms in the Biological Process category were overrepresented for significantly upregulated genes, and divided into six groups according to their relationship. These three groups were related to the NF-κB signal pathway, and the remaining three groups were relevant for pathogen response, immunocyte activation and protein ubiquitination. Forty-three common genes were found in four GO terms, which were directly related to the NF-κB signal pathway. These included 2 NACHT, LRR, PYD domains-containing protein, 5 nucleotide-binding oligomerization domain-containing protein, 29 NLRC3-like protein, 4 NLRC5-like protein, and 3 uncharacterized protein. For significantly downregulated genes, 27 overrepresented GO terms were found in the Biological Process category, which were relevant to protein ubiquitination and ATP metabolism. Our results indicate that heat stress suppressed the immune response level via the NLRC3-like protein, the fine-tuning of protein turnover activity, and ATP metabolism. This might disrupt the balance of coral-zooxanthellae symbiosis and result in the bleaching of the coral A. aculeus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Coral reproduction in Western Australia

    PubMed Central

    Speed, Conrad W.; Babcock, Russ

    2016-01-01

    Larval production and recruitment underpin the maintenance of coral populations, but these early life history stages are vulnerable to extreme variation in physical conditions. Environmental managers aim to minimise human impacts during significant periods of larval production and recruitment on reefs, but doing so requires knowledge of the modes and timing of coral reproduction. Most corals are hermaphroditic or gonochoric, with a brooding or broadcast spawning mode of reproduction. Brooding corals are a significant component of some reefs and produce larvae over consecutive months. Broadcast spawning corals are more common and display considerable variation in their patterns of spawning among reefs. Highly synchronous spawning can occur on reefs around Australia, particularly on the Great Barrier Reef. On Australia’s remote north-west coast there have been fewer studies of coral reproduction. The recent industrial expansion into these regions has facilitated research, but the associated data are often contained within confidential reports. Here we combine information in this grey-literature with that available publicly to update our knowledge of coral reproduction in WA, for tens of thousands of corals and hundreds of species from over a dozen reefs spanning 20° of latitude. We identified broad patterns in coral reproduction, but more detailed insights were hindered by biased sampling; most studies focused on species of Acropora sampled over a few months at several reefs. Within the existing data, there was a latitudinal gradient in spawning activity among seasons, with mass spawning during autumn occurring on all reefs (but the temperate south-west). Participation in a smaller, multi-specific spawning during spring decreased from approximately one quarter of corals on the Kimberley Oceanic reefs to little participation at Ningaloo. Within these seasons, spawning was concentrated in March and/or April, and October and/or November, depending on the timing of the full moon. The timing of the full moon determined whether spawning was split over two months, which was common on tropical reefs. There were few data available for non-Acropora corals, which may have different patterns of reproduction. For example, the massive Porites seemed to spawn through spring to autumn on Kimberley Oceanic reefs and during summer in the Pilbara region, where other common corals (e.g. Turbinaria & Pavona) also displayed different patterns of reproduction to the Acropora. The brooding corals (Isopora & Seriatopora) on Kimberley Oceanic reefs appeared to planulate during many months, possibly with peaks from spring to autumn; a similar pattern is likely on other WA reefs. Gaps in knowledge were also due to the difficulty in identifying species and issues with methodology. We briefly discuss some of these issues and suggest an approach to quantifying variation in reproductive output throughout a year. PMID:27231651

  13. Using coral disease prevalence to assess the effects of concentrating tourism activities on offshore reefs in a tropical marine park.

    PubMed

    Lamb, Joleah B; Willis, Bette L

    2011-10-01

    Concentrating tourism activities can be an effective way to closely manage high-use parks and minimize the extent of the effects of visitors on plants and animals, although considerable investment in permanent tourism facilities may be required. On coral reefs, a variety of human-related disturbances have been associated with elevated levels of coral disease, but the effects of reef-based tourist facilities (e.g., permanent offshore visitor platforms) on coral health have not been assessed. In partnership with reef managers and the tourism industry, we tested the effectiveness of concentrating tourism activities as a strategy for managing tourism on coral reefs. We compared prevalence of brown band disease, white syndromes, black band disease, skeletal eroding band, and growth anomalies among reefs with and without permanent tourism platforms within the Great Barrier Reef Marine Park. Coral diseases were 15 times more prevalent at reefs with offshore tourism platforms than at nearby reefs without platforms. The maximum prevalence and maximum number of cases of each disease type were recorded at reefs with permanently moored tourism platforms. Diseases affected 10 coral genera from 7 families at reefs with platforms and 4 coral genera from 3 families at reefs without platforms. The greatest number of disease cases occurred within the spatially dominant acroporid corals, which exhibited 18-fold greater disease prevalence at reefs with platforms than at reefs without platforms. Neither the percent cover of acroporids nor overall coral cover differed significantly between reefs with and without platforms, which suggests that neither factor was responsible for the elevated levels of disease. Identifying how tourism activities and platforms facilitate coral disease in marine parks will help ensure ongoing conservation of coral assemblages and tourism. ©2011 Society for Conservation Biology.

  14. Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss

    NASA Astrophysics Data System (ADS)

    Bonin, M. C.

    2012-03-01

    Coral reef habitats are increasingly being degraded and destroyed by a range of disturbances, most notably climate-induced coral bleaching. Habitat specialists, particularly those associated with susceptible coral species, are clearly among the most vulnerable to population decline or extinction. However, the degree of specialization on coral microhabitats is still unclear for one of the most ubiquitous, abundant and well studied of coral reef fish families—the damselfishes (Pomacentridae). Using high taxonomic resolution surveys of microhabitat use and availability, this study provides the first species-level description of patterns of Acropora selectivity among recruits of 10 damselfish species in order to determine their vulnerability to habitat degradation. In addition, surveys of the bleaching susceptibility of 16 branching coral species revealed which preferred recruitment microhabitats are at highest risk of decline as a result of chronic coral bleaching. Four species (i.e., Chrysiptera parasema, Pomacentrus moluccensis, Dascyllus melanurus and Chromis retrofasciata) were identified as highly vulnerable because they used only branching hard corals as recruitment habitat and primarily associated with only 2-4 coral species. The bleaching surveys revealed that five species of Acropora were highly susceptible to bleaching, with more than 50% of colonies either severely bleached or already dead. These highly susceptible corals included two of the preferred microhabitats of the specialist C. parasema and represented a significant proportion of its total recruitment microhabitat. In contrast, highly susceptible corals were rarely used by another specialist, P. moluccensis, suggesting that this species faces a lower risk of bleaching-induced habitat loss compared to C. parasema. As degradation to coral reef habitats continues, specialists will increasingly be forced to use alternative recruitment microhabitats, and this is likely to reduce population replenishment. Future research should focus on examining the fitness costs of using these alternative microhabitats.

  15. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    PubMed

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  16. Morphological characterization of coral reefs by combining lidar and MBES data: A case study from Yuanzhi Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yang, Fanlin; Zhang, Hande; Su, Dianpeng; Li, QianQian

    2017-06-01

    The correlation between seafloor morphological features and biological complexity has been identified in numerous recent studies. This research focused on the potential for accurate characterization of coral reefs based on high-resolution bathymetry from multiple sources. A standard deviation (STD) based method for quantitatively characterizing terrain complexity was developed that includes robust estimation to correct for irregular bathymetry and a calibration for the depth-dependent variablity of measurement noise. Airborne lidar and shipborne sonar bathymetry measurements from Yuanzhi Island, South China Sea, were merged to generate seamless high-resolution coverage of coral bathymetry from the shoreline to deep water. The new algorithm was applied to the Yuanzhi Island surveys to generate maps of quantitive terrain complexity, which were then compared to in situ video observations of coral abundance. The terrain complexity parameter is significantly correlated with seafloor coral abundance, demonstrating the potential for accurately and efficiently mapping coral abundance through seafloor surveys, including combinations of surveys using different sensors.

  17. Tissue-Associated “Candidatus Mycoplasma corallicola” and Filamentous Bacteria on the Cold-Water Coral Lophelia pertusa (Scleractinia)▿ †

    PubMed Central

    Neulinger, Sven C.; Gärtner, Andrea; Järnegren, Johanna; Ludvigsen, Martin; Lochte, Karin; Dullo, Wolf-Christian

    2009-01-01

    The cold-water coral Lophelia pertusa (Scleractinia, Caryophylliidae) is a key species in the formation of cold-water reefs, which are among the most diverse deep-sea ecosystems. It occurs in two color varieties: white and red. Bacterial communities associated with Lophelia have been investigated in recent years, but the role of the associated bacteria remains largely obscure. This study uses catalyzed reporter deposition fluorescence in situ hybridization to detect the in situ location of specific bacterial groups on coral specimens from the Trondheimsfjord (Norway). Two tissue-associated groups were identified: (i) bacteria on the host's tentacle ectoderm, “Candidatus Mycoplasma corallicola,” are flasklike, pointed cells and (ii) endoderm-associated bona fide TM7 bacteria form long filaments in the gastral cavity. These tissue-bound bacteria were found in all coral specimens from the Trondheimsfjord, indicating a closer relationship with the coral compared to bacterial assemblages present in coral mucus and gastric fluid. PMID:19114511

  18. How do corals make rocks?

    NASA Astrophysics Data System (ADS)

    Falkowski, P. G.; Mass, T.; Drake, J.; Schaller, M. F.; Rosenthal, Y.; Schofield, O.; Sherrell, R. M.

    2014-12-01

    We have developed a three pronged approach to understanding how corals precipitate aragonite crystals and contain proxy biogeochemical information. Using proteomic and genomic approaches, we have identified 35 proteins in coral skeletons. Among these are a series of coral acidic proteins (CARPs). Based on their gene sequences, we cloned a subset of these proteins and purified them. Each of the proteins precipitate aragonite in vitro in unamended seawater. Antibodies raised against these proteins react with individual crystals of the native coral, clearly revealing that they are part of a biomineral structure. Based on the primary structure of the proteins we have developed a model of the precipitation reaction that focuses on a Lewis acid displacement of protons from bicarbonate anions by calcium ligated to the carboxyl groups on the CARPs. The reactions are highly acidic and are not manifestly influenced by pH above ca. 6. These results suggest that corals will maintain the ability to calcify in the coming centuries, despite acidification of the oceans.

  19. New protection initiatives announced for coral reefs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Off the coasts of some of the South Pacific's most idyllic-sounding atolls, Austin Bowden-Kerby has seen first-hand the heavy damage to coral reefs from dynamite and cyanide fishing. For instance, while snorkeling near Chuuk, an island in Micronesia, he has observed craters and rubble beds of coral, which locals have told him date to World War II ordnance.A marine biologist and project scientist for the Coral Gardens Initiative of the Foundation for the Peoples of the South Pacific, Bowden-Kerby has also identified what he says are some public health effects related to destroyed coral reefs and their dying fisheries. These problems include protein and vitamin A deficiency and blindness, all of which may—in some instances—be linked to poor nutrition resulting from lower reef fish consumption by islanders, according to Bowden-Kerby.

  20. 77 FR 39990 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ...' Knowledge, Attitudes and Perceptions of Coral Reefs in Two Hawaii Priority Sites. OMB Control Number: None... this survey is to identify resident users' knowledge, attitudes, and perceptions regarding coral reef... and education. A representative study of resident users' knowledge, attitudes, and perceptions will...

  1. Genomic basis for coral resilience to climate change.

    PubMed

    Barshis, Daniel J; Ladner, Jason T; Oliver, Thomas A; Seneca, François O; Traylor-Knowles, Nikki; Palumbi, Stephen R

    2013-01-22

    Recent advances in DNA-sequencing technologies now allow for in-depth characterization of the genomic stress responses of many organisms beyond model taxa. They are especially appropriate for organisms such as reef-building corals, for which dramatic declines in abundance are expected to worsen as anthropogenic climate change intensifies. Different corals differ substantially in physiological resilience to environmental stress, but the molecular mechanisms behind enhanced coral resilience remain unclear. Here, we compare transcriptome-wide gene expression (via RNA-Seq using Illumina sequencing) among conspecific thermally sensitive and thermally resilient corals to identify the molecular pathways contributing to coral resilience. Under simulated bleaching stress, sensitive and resilient corals change expression of hundreds of genes, but the resilient corals had higher expression under control conditions across 60 of these genes. These "frontloaded" transcripts were less up-regulated in resilient corals during heat stress and included thermal tolerance genes such as heat shock proteins and antioxidant enzymes, as well as a broad array of genes involved in apoptosis regulation, tumor suppression, innate immune response, and cell adhesion. We propose that constitutive frontloading enables an individual to maintain physiological resilience during frequently encountered environmental stress, an idea that has strong parallels in model systems such as yeast. Our study provides broad insight into the fundamental cellular processes responsible for enhanced stress tolerances that may enable some organisms to better persist into the future in an era of global climate change.

  2. Ingestion of Microplastics and Their Impact on Calcification in Reef-Building Corals

    NASA Astrophysics Data System (ADS)

    Zink, C. P.; Smith, R. T.

    2016-02-01

    Since the early 1970's, researchers began identifying plastics and other sources of litter as harmful to ecosystems. In recent years, there's been a growing concern about microscopic plastic debris (microplastics) and its impact on marine organisms. Likewise, microplastics are currently and continuously being documented from environmental samples on a global scale. The ecosystems most likely affected by their presence are shallow marine habitats, such as near-shore coral reefs. One concern is that microplastics may be ingested by reef-building corals and negatively impact their physiology. In this study, two species of Caribbean reef-building corals, Orbicella faveolata and Porites porites were investigated for rates of ingesting microplastics. Coral samples were incubated with 100μm micro-beads manufactured with a fluorescent label to aid in recovery and quantification from the coral tissue. Following the consumption of plastic, we measured instantaneous rates of calcification as a proxy for physiological performance compared to controls. Our results indicate that corals ingest microplastic particles and maintain them internally for at least 24 hours. Our initial findings suggest that the ingestion of ≥ 3 microplastic particles cm-2 may negatively impact rates of coral calcification. In light of these preliminary findings, further investigations should examine the long-term effect of environmentally relevant concentrations of microplastics on reef corals and its potential detriment to reef building capacity.

  3. Response of Holobiont Compartments to Salinity Changes Indicates Osmoregulation of Scleractinian Corals

    NASA Astrophysics Data System (ADS)

    Roethig, T.; Ochsenkuehn, M. A.; van der Merwe, R.; Roik, A.; Voolstra, C. R.

    2016-02-01

    Environmental change is expected to render the oceans more saline, but scleractinian corals are assumed to be stenohaline osmoconformers. Yet, some corals are able to tolerate salinities up to 50 PSU, but we know little about the mechanisms involved. Previous studies have exclusively addressed the coral host and their algal symbionts (Symbiodinium) in hospite. To disentangle the role of all compartments of the coral holobiont we assessed the response of the coral host, its symbiont algae in the genus Symbiodinium (in hospite and in culture), and the associated bacterial community to strongly increased salinities. In a short-term incubation (4h) we could measure decreases in the calcification rate of the coral host and the photosynthetic performance of its algal symbiont in hospite. In a long-term (29 days) setup we found no differences in the photosynthetic efficiency but a major restructuring of the bacterial communities. In four Symbiodinium cultures we identified changes in photosynthetic yields and osmolytes composition upon short-term salinity exposure (≤24h). Our results show a short-term reaction of coral host and Symbiodinium to strongly increased salinities. However, lack of an apparent physiological long-term response indicates an acclimation process that is accompanied by a microbiome community shift towards a microbiome that potentially supports increased osmolyte production. Furthermore, changes in osmolytes composition in the Symbiodinium cultures display conserved osmoregulatory processes that may translate to osmoregulation for the coral holobiont.

  4. Assessment of the Coral Temperature Proxies for Orbicella faveolata in the Southwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Vara, M. A.; DeLong, K. L.; Herrmann, A. D.; Ouellette, G., Jr.; Richey, J. N.

    2017-12-01

    Coral Sr/Ca is a robust proxy of sea surface temperature (SST); however, discrepancies in the Sr/Ca-SST relationship among colonies of the same species may reduce confidence in absolute temperature reconstructions. Furthermore, terrestrial carbonate weathering can provide local sources of Sr and/or Ca to coastal waters that may disrupt the temperature-based coral Sr/Ca signal. Thus other trace metal SST proxies have been suggested to circumvent these issues (Li/Ca, Li/Mg, and Sr-U). Coral Ba/Ca has been used as a proxy for runoff and coastal upwelling, and therefore may be used to identify intervals when these processes overprint the Sr/Ca-SST signal. This study tests multiple coral SST proxies using reproducibility assessments to determine the best performing SST proxy. We conduct these assessments with cores recovered in 1991 by the U.S. Geological Survey from five Orbicella faveolata colonies from three reefs offshore of Veracruz, Mexico (19.06°N, 96.93°W) in water depths varying from 3 to 12 m. Previous studies found micromilling the complex skeletal structure of O. faveolata challenging and that monthly resolution may not recover full seasonal cycles. We use a laser ablation inductively coupled plasma mass spectrometer to simultaneously sample this coral's structure at weekly intervals spanning 8 years for Li/Ca, Li/Mg, Sr-U, Sr/Ca, and Ba/Ca. Here we found coral Li/Ca means and seasonal variations are similar among colonies thus this proxy may capture absolute temperature and SST variability. Similar to previous research with Porites corals, Li/Ca in these O. faveolata corals decreases with increases in SST with similar slopes and intercepts. During the last 10 years of these corals' lives, coral Sr/Ca analysis reveals a mean shift among colonies suggesting an external source could have disrupted the Sr/Ca signal, possibly seasonal runoff and/or winter upwelling common to Veracruz waters. Coral Ba/Ca analyses reveals elevated values in winters that coincide with increases in coral Sr/Ca in the deeper colony suggesting upwelling is occurring at that location. However, the coral Ba/Ca does not coincide with increase coral Sr/Ca in the shallower coral indicating no direct influence from runoff. Coral Li/Mg and Sr-U do not show substantial seasonal variations as expected with a coral-SST proxy.

  5. Comparing the Effects of Symbiotic Algae (Symbiodinium) Clades C1 and D on Early Growth Stages of Acropora tenuis

    PubMed Central

    Yuyama, Ikuko; Higuchi, Tomihiko

    2014-01-01

    Reef-building corals switch endosymbiotic algae of the genus Symbiodinium during their early growth stages and during bleaching events. Clade C Symbiodinium algae are dominant in corals, although other clades — including A and D — have also been commonly detected in juvenile Acroporid corals. Previous studies have been reported that only molecular data of Symbiodinium clade were identified within field corals. In this study, we inoculated aposymbiotic juvenile polyps with cultures of clades C1 and D Symbiodinium algae, and investigated the different effect of these two clades of Symbiodinium on juvenile polyps. Our results showed that clade C1 algae did not grow, while clade D algae grew rapidly during the first 2 months after inoculation. Polyps associated with clade C1 algae exhibited bright green fluorescence across the body and tentacles after inoculation. The growth rate of polyp skeletons was lower in polyps associated with clade C1 algae than those associated with clade D algae. On the other hand, antioxidant activity (catalase) of corals was not significantly different between corals with clade C1 and clade D algae. Our results suggested that clade D Symbiodinium algae easily form symbiotic relationships with corals and that these algae could contribute to coral growth in early symbiosis stages. PMID:24914677

  6. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH

    PubMed Central

    Tambutté, E.; Carpenter, R. C.; Edmunds, P. J.; Evensen, N. R.; Allemand, D.; Ferrier-Pagès, C.; Tambutté, S.; Venn, A. A.

    2017-01-01

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pHCF) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pHCF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (AT). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pHCF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [AT], revealing that seawater pH is not the sole driver of pHCF. Notably, when we synthesize our results with published data, we identify linear relationships of pHCF with the seawater [DIC]/[H+] ratio, [AT]/ [H+] ratio and []. Our findings contribute new insights into the mechanisms determining the sensitivity of coral calcification to changes in seawater carbonate chemistry, which are needed for predicting effects of environmental change on coral reefs and for robust interpretations of isotopic palaeoenvironmental records in coral skeletons. PMID:28100813

  7. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    PubMed

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  8. A multi-indicator approach for identifying shoreline sewage pollution hotspots adjacent to coral reefs.

    PubMed

    Abaya, Leilani M; Wiegner, Tracy N; Colbert, Steven L; Beets, James P; Carlson, Kaile'a M; Kramer, K Lindsey; Most, Rebecca; Couch, Courtney S

    2018-04-01

    Sewage pollution is contributing to the global decline of coral reefs. Identifying locations where it is entering waters near reefs is therefore a management priority. Our study documented shoreline sewage pollution hotspots in a coastal community with a fringing coral reef (Puakō, Hawai'i) using dye tracer studies, sewage indicator measurements, and a pollution scoring tool. Sewage reached shoreline waters within 9 h to 3 d. Fecal indicator bacteria concentrations were high and variable, and δ 15 N macroalgal values were indicative of sewage at many stations. Shoreline nutrient concentrations were two times higher than those in upland groundwater. Pollution hotspots were identified with a scoring tool using three sewage indicators. It confirmed known locations of sewage pollution from dye tracer studies. Our study highlights the need for a multi-indicator approach and scoring tool to identify sewage pollution hotspots. This approach will be useful for other coastal communities grappling with sewage pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Sources of plutonium to the tropical Northwest Pacific Ocean (1943-1999) identified using a natural coral archive

    NASA Astrophysics Data System (ADS)

    Lindahl, Patric; Asami, Ryuji; Iryu, Yasufumi; Worsfold, Paul; Keith-Roach, Miranda; Choi, Min-Seok

    2011-03-01

    The Pu isotopes, 239Pu and 240Pu, were determined in annually-banded skeletons of an accurately dated (1943-1999) modern coral ( Porites lobata) from Guam Island to identify historical Pu sources to the tropical Northwest Pacific Ocean. Activity concentrations of 239+240Pu and 240Pu/ 239Pu atom ratios were determined in the dated coral bands using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands and global fallout were identified as the two main sources. The Guam site was dominated by PPG close-in fallout in the 1950s, with an average 240Pu/ 239Pu atom ratio of 0.315 ± 0.005. In addition, a higher 240Pu/ 239Pu atom ratio (0.456 ± 0.020) was observed that could be attributed to fallout from the "Ivy Mike" thermonuclear detonation in 1952. The atom ratio decreased in the 1960s and 1970s due to increase in the global fallout with a low 240Pu/ 239Pu atom ratio (˜0.18). Recent coral bands (1981-1999) are dominated by the transport of remobilised Pu, with high 240Pu/ 239Pu atom ratios, from the Marshall Islands to Guam Island along the North Equatorial Current (NEC). This remobilised Pu was estimated to comprise 69% of the total Pu in the recent coral bands, although its contribution was variable over time.

  10. Factors affecting infection of corals and larval oysters by vibrio coralliilyticus

    USDA-ARS?s Scientific Manuscript database

    The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated...

  11. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications

    PubMed Central

    Shannon, Emer; Abu-Ghannam, Nissreen

    2016-01-01

    The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article. PMID:27110798

  12. Reconnaissance 14C Dating and the Evaluation of Mg/Li as a Temperature Proxy in Bamboo Corals from the California Margin

    NASA Astrophysics Data System (ADS)

    Freiberger, M. M.; LaVigne, M.; Miller, H.; Hill, T. M.; McNichol, A. P.; Lardie Gaylord, M.

    2015-12-01

    In the face of anthropogenically induced climate changes, it is becoming increasingly important to develop high-resolution paleoceanographic records that may elucidate how ocean conditions may shift in coming decades. Recently, bamboo corals (gorgonian octocorals) have been proposed as archives of intermediate ocean conditions. This study used 'reconnaissance' radiocarbon analysis to identify the nuclear bomb 14C spike in the proteinaceous nodes of bamboo corals and to quantify radial growth rates and ages of corals spanning the eastern Pacific oxygen minimum zone (OMZ) (790-2055 m). Preliminary data suggest that these corals exhibit a wide range of growth rates (9.4-350 μm/yr) that are non-linear over time and decrease with coral age and depth. Records of Mg/Li were investigated in these corals, given that previous studies have demonstrated positive correlations between Mg/Li and temperature in benthic foraminifera and surface and deep-sea aragonitic corals, with a reduced influence of vital effects over Mg/Ca. Intracoral reproducibility observed for replicate Mg/Li timeseries within each sample (p=0.6±0.2, n=6) and strong correlations between Mg/Ca and Li/Ca (0.9±0.1, n=6) indicate similar environmental or biological drivers of Mg and Li incorporation in bamboo corals. Given the strong positive correlations between Mg/Li and water temperature across a depth transect (r2=0.87, n=6), increasing Mg/Li observed over the growth history of each of the corals more likely reflects declining growth rates resulting in decreased Li incorporation over time rather than cooling of California Margin intermediate waters. Reductions in growth rate over the lifespan of each coral (~100+ years) may be a function of natural coral growth patterns or changes in carbonate chemistry, oxygen, or food supply in a sensitive OMZ coral ecosystem.

  13. Growth Dynamics of the Threatened Caribbean Staghorn Coral Acropora cervicornis: Influence of Host Genotype, Symbiont Identity, Colony Size, and Environmental Setting

    PubMed Central

    Lirman, Diego; Schopmeyer, Stephanie; Galvan, Victor; Drury, Crawford; Baker, Andrew C.; Baums, Iliana B.

    2014-01-01

    Background The drastic decline in the abundance of Caribbean acroporid corals (Acropora cervicornis, A. palmata) has prompted the listing of this genus as threatened as well as the development of a regional propagation and restoration program. Using in situ underwater nurseries, we documented the influence of coral genotype and symbiont identity, colony size, and propagation method on the growth and branching patterns of staghorn corals in Florida and the Dominican Republic. Methodology/Principal Findings Individual tracking of> 1700 nursery-grown staghorn fragments and colonies from 37 distinct genotypes (identified using microsatellites) in Florida and the Dominican Republic revealed a significant positive relationship between size and growth, but a decreasing rate of productivity with increasing size. Pruning vigor (enhanced growth after fragmentation) was documented even in colonies that lost 95% of their coral tissue/skeleton, indicating that high productivity can be maintained within nurseries by sequentially fragmenting corals. A significant effect of coral genotype was documented for corals grown in a common-garden setting, with fast-growing genotypes growing up to an order of magnitude faster than slow-growing genotypes. Algal-symbiont identity established using qPCR techniques showed that clade A (likely Symbiodinium A3) was the dominant symbiont type for all coral genotypes, except for one coral genotype in the DR and two in Florida that were dominated by clade C, with A- and C-dominated genotypes having similar growth rates. Conclusion/Significance The threatened Caribbean staghorn coral is capable of extremely fast growth, with annual productivity rates exceeding 5 cm of new coral produced for every cm of existing coral. This species benefits from high fragment survivorship coupled by the pruning vigor experienced by the parent colonies after fragmentation. These life-history characteristics make A. cervicornis a successful candidate nursery species and provide optimism for the potential role that active propagation can play in the recovery of this keystone species. PMID:25268812

  14. Induction of Larval Settlement in the Reef Coral Porites astreoides by a Cultivated Marine Roseobacter Strain.

    PubMed

    Sharp, K H; Sneed, J M; Ritchie, K B; Mcdaniel, L; Paul, V J

    2015-04-01

    Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces. © 2015 Marine Biological Laboratory.

  15. Coral Luminescence Identifies the Pacific Decadal Oscillation as a Primary Driver of River Runoff Variability Impacting the Southern Great Barrier Reef

    PubMed Central

    Rodriguez-Ramirez, Alberto; Grove, Craig A.; Zinke, Jens; Pandolfi, John M.; Zhao, Jian-xin

    2014-01-01

    The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability. PMID:24416214

  16. Coral luminescence identifies the Pacific Decadal Oscillation as a primary driver of river runoff variability impacting the southern Great Barrier Reef.

    PubMed

    Rodriguez-Ramirez, Alberto; Grove, Craig A; Zinke, Jens; Pandolfi, John M; Zhao, Jian-xin

    2014-01-01

    The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability.

  17. Conditions of Decapods Infraorders in Dead Coral Pocillopora sp. at Pemuteran, Bali: Study Case 2011 and 2016

    NASA Astrophysics Data System (ADS)

    Kholilah, Nenik; Malik, Muhammad Danie Al; Kurniasih, Eka Maya; Sembiring, Andrianus; Ambariyanto, Ambariyanto; Mayer, Christopher

    2018-02-01

    Decapods are marine organism which have burrowing-life characteristic and tend to live in the hard coral, such as Pocillopora sp. Pemuteran district is located in West Bali with high marine biodiversity. In 2016 almost all of the coral reefs in this area have bleached. This research investigates the condition of decapods before and after coral bleaching in Pemuteran. Dead corals, Pocillopora sp., were taken from 8-12 meters depth in 2016. All organisms within those corals were collected and identified until infraorder and family level. Comparison was done with data collected in 2011. This study found 12 families with a total of 5 infraorder which are equal to the previous data. The number of individual has increased from 88 into 214 individual. The mean presence increased from 6.2875 ind/fam to 15.2875 ind/fam. While the density also increased from 23.68 ind/L to 42.09 ind/L. Uniformity and dominance indices for all infraorder is low. These results show that there is an increase of the density of decapods after coral bleaching event, but the diversity of decapods was slightly changed.

  18. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    PubMed

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  19. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    PubMed Central

    Bohnenstiehl, DelWayne; Peters, Jason W.; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species. PMID:27761342

  20. Past exposure to climate extremes can inform future projections and guide management: coral reefs as a model system

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2016-12-01

    Coral reefs are thought to be more sensitive to climate change than any other marine ecosystem. Episodes of mass coral bleaching, due to anomalously warm water temperatures, have led to coral mortality, declines in coral cover and shifts in the population of other reef-dwelling organisms. The onset of mass bleaching is typically predicted using accumulated heat stress, specifically when the SST exceeds a local climatological maximum by 1-2 °C for a month or more. However, recent evidence suggests that the threshold at which bleaching occurs depends on the past thermal experience of the coral reef and the composition of the coral community. This presentation describes the results of a long-term field and modelling research program evaluating the influence of climate experience on the susceptibility of coral reef ecosystems to future climate extremes. Modeling work identified Kiribati's equatorial Gilbert Islands, where the El Niño / Southern Oscillation drives year-to-year shifts in current strength, current direction and consequently ocean temperatures, as an ideal natural laboratory for studying ocean climate extremes. The field program then tracked changes in the coral communities over multiple heat stress events (e.g. 2004-5, 2009-10 El Niño) at a matrix of sites exposed to different levels of historical climate variability and human disturbance. Among the results is evidence that coral bleaching patterns are best predicted by the coefficient of variation of past SST, light exposure, and the presence of particular resilient coral taxa, rather than the standard heat stress metrics. The lessons of this research can be applicable other systems where past experience influences the response to climate extremes

  1. Cold-water coral habitats of Rockall and Porcupine Bank, NE Atlantic Ocean: Sedimentary facies and benthic foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Smeulders, G. G. B.; Koho, K. A.; de Stigter, H. C.; Mienis, F.; de Haas, H.; van Weering, T. C. E.

    2014-01-01

    The extent of the cold-water coral mounds in the modern ocean basins has been recently revealed by new state-of-the-art equipment. However, not much is known about their geological extent or development through time. In the facies model presented here seven different types of seabed substrate are distinguished, which may be used for reconstruction of fossil coral habitats. The studied substrates include: off-mound settings, (foram) sands, hardgrounds, dead coral debris, and substrates characterized by a variable density of living coral framework. Whereas sediment characteristics only provide a basis for distinguishing on- and off-mound habitats and the loci of most prolific coral growth, benthic foraminiferal assemblages are the key to identifying different mound substrates in more detail. Specific foraminiferal assemblages are distinguished that are characteristic of these specific environments. Assemblages from off-mound settings are dominated by (attached) epifaunal species such as Cibicides refulgens and Cibicides variabilis. The attached epibenthic species Discanomalina coronata is also common in off-mound sediments, but it is most abundant where hardgrounds have formed. In contrast, the settings with coral debris or living corals attract shallow infaunal species that are associated with more fine-grained soft sediments. The typical ‘living coral assemblage' is composed of Cassidulina obtusa, Bulimina marginata, and Cassidulina laevigata. The abundance of these species shows an almost linear increase with the density of the living coral cover. The benthic foraminifera encountered from off-mound to top-mound settings appear to represent a gradient of decreasing current intensity and availability of suspended food particles, and increasing availability of organic matter associated with fine-grained sediment trapped in between coral framework.

  2. Comparative genomics explains the evolutionary success of reef-forming corals.

    PubMed

    Bhattacharya, Debashish; Agrawal, Shobhit; Aranda, Manuel; Baumgarten, Sebastian; Belcaid, Mahdi; Drake, Jeana L; Erwin, Douglas; Foret, Sylvian; Gates, Ruth D; Gruber, David F; Kamel, Bishoy; Lesser, Michael P; Levy, Oren; Liew, Yi Jin; MacManes, Matthew; Mass, Tali; Medina, Monica; Mehr, Shaadi; Meyer, Eli; Price, Dana C; Putnam, Hollie M; Qiu, Huan; Shinzato, Chuya; Shoguchi, Eiichi; Stokes, Alexander J; Tambutté, Sylvie; Tchernov, Dan; Voolstra, Christian R; Wagner, Nicole; Walker, Charles W; Weber, Andreas Pm; Weis, Virginia; Zelzion, Ehud; Zoccola, Didier; Falkowski, Paul G

    2016-05-24

    Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years.

  3. Predicting the Location and Spatial Extent of Submerged Coral Reef Habitat in the Great Barrier Reef World Heritage Area, Australia

    PubMed Central

    Bridge, Tom; Beaman, Robin; Done, Terry; Webster, Jody

    2012-01-01

    Aim Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Location Great Barrier Reef, Australia. Methods Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Results Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Main Conclusion Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an important role in resilience of the GBR ecosystem to climate change. PMID:23118952

  4. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments.

    PubMed

    Kenkel, C D; Meyer, E; Matz, M V

    2013-08-01

    Recent evidence suggests that corals can acclimatize or adapt to local stress factors through differential regulation of their gene expression. Profiling gene expression in corals from diverse environments can elucidate the physiological processes that may be responsible for maximizing coral fitness in their natural habitat and lead to a better understanding of the coral's capacity to survive the effects of global climate change. In an accompanying paper, we show that Porites astreoides from thermally different reef habitats exhibit distinct physiological responses when exposed to 6 weeks of chronic temperature stress in a common garden experiment. Here, we describe expression profiles obtained from the same corals for a panel of 9 previously reported and 10 novel candidate stress response genes identified in a pilot RNA-Seq experiment. The strongest expression change was observed in a novel candidate gene potentially involved in calcification, SLC26, a member of the solute carrier family 26 anion exchangers, which was down-regulated by 92-fold in bleached corals relative to controls. The most notable signature of divergence between coral populations was constitutive up-regulation of metabolic genes in corals from the warmer inshore location, including the gluconeogenesis enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase and the lipid beta-oxidation enzyme acyl-CoA dehydrogenase. Our observations highlight several molecular pathways that were not previously implicated in the coral stress response and suggest that host management of energy budgets might play an adaptive role in holobiont thermotolerance. © 2013 John Wiley & Sons Ltd.

  5. Mapping "Vital Effects": Unlocking the Archive of Deep Sea Stylasterid δ18O and δ13C

    NASA Astrophysics Data System (ADS)

    King, T. M.; Rosenheim, B. E.

    2017-12-01

    Deep sea coral skeletons are able to incorporate chemical and isotopic signals from the dissolved inorganic pool of the surrounding water mass, attributing them with continuous, high-resolution records that span centuries to millennia. Most importantly, they are sessile organisms and remain fixed to the seafloor with respect to fluctuating water mass boundaries. Stylasterid corals (order Anthoathecata) are abundant in the Southern Ocean but not as commonly used for paleoceanographic reconstructions as corals of the order Scleractinia. Little is known about stylasterid growth rate, skeletal structure, or their effects on chemical and isotopic signals from the surrounding environment. Here, we present stable isotope "heat maps" over cross sections of stylasterid corals (genus Errina) from the western Ross Sea and eastern Wilkes Land, Antarctica. Isotope heat maps are used to illustrate isotope variability over small spatial scales within different sections of the coral skeletons. These maps indicate that the central growth axis of the coral stem is subject to kinetic effects, whereas, the outer coral skeleton is precipitated nearer to equilibrium with the surrounding water mass. We present several maps of both live and dead-collected corals (spanning 40,000 years from present) in order to examine natural variability through time and to identify possible diagenetic effects. Our results begin to clarify stylasterid growth patterns so that we are able to optimize sampling plans of these corals. These results also provide us with a context in which to interpret radiocarbon records, and potentially independent radio chronologies, compiled from the same coral collection (King et al., in review; GRL).

  6. Coral Reef Genomics: Developing tools for functional genomics ofcoral symbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Jodi; Brokstein, Peter; Manohar, Chitra

    Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are widespread in the marine environment. The importance of this symbiosis to reef-building corals and reef nutrient and carbon cycles is well documented, but little is known about the mechanisms by which the partners establish and regulate the symbiosis. Because the dinoflagellate symbionts live inside the cells of their host coral, the interactions between the partners occur on cellular and molecular levels, as each partner alters the expression of genes and proteins to facilitate the partnership. These interactions can examined using high-throughput techniques that allow thousands of genes to be examinedmore » simultaneously. We are developing the groundwork so that we can use DNA microarray profiling to identify genes involved in the Montastraea faveolata and Acropora palmata symbioses. Here we report results from the initial steps in this microarray initiative, that is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs to identify candidate genes to include in the microarrays. An understanding of how the coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and ocean sciences, conservation biology, the study and diagnosis of coral bleaching and disease, and comparative studies of animal-protest interactions.« less

  7. Quantifying bamboo coral growth rate nonlinearity with the radiocarbon bomb spike: A new model for paleoceanographic chronology development

    NASA Astrophysics Data System (ADS)

    Frenkel, M. M.; LaVigne, M.; Miller, H. R.; Hill, T. M.; McNichol, A.; Gaylord, M. Lardie

    2017-07-01

    Bamboo corals, long-lived cold water gorgonin octocorals, offer unique paleoceanographic archives of the intermediate ocean. These Isididae corals are characterized by alternating gorgonin nodes and high Mg-calcite internodes, which synchronously extend radially. Bamboo coral calcite internodes have been utilized to obtain geochemical proxy data, however, growth rate uncertainty has made it difficult to construct precise chronologies for these corals. Previous studies have relied upon a single tie point from records of the anthropogenic Δ14C bomb spike preserved in the gorgonin nodes of live-collected corals to calculate a mean radial extension rate for the outer 50 years of skeletal growth. Bamboo coral chronologies are typically constructed by applying this mean extension rate to the entire coral record, assuming constant radial extension with coral age. In this study, we aim to test this underlying assumption by analyzing the organic nodes of six California margin bamboo corals at high enough resolution (<0.5 mm) to identify the Δ14C bomb spike, including two tie points at 1957 and 1970, plus the coral collection date (2007.5) for four samples. Radial extension rates between tie points ranged from 10 to 204 μm/year, with a decrease in growth rate evident between the 1957-1970 and 1970-2007.5 periods for all four corals. A negative correlation between growth rate and coral radius (r =-0.7; p=0.04) was determined for multiple bamboo coral taxa and individuals from the California margin, demonstrating a decline in radial extension rate with specimen age and size. To provide a mechanistic basis for these observations, a simple mathematical model was developed based on the assumption of a constant increase in circular cross sectional area with time to quantify this decline in radial extension rate with coral size between chronological tie points. Applying the area-based model to our Δ14C bomb spike time series from individual corals improves chronology accuracy for all live-collected corals with complete Δ14C bomb spikes. Hence, this study provides paleoceanographers utilizing bamboo corals with a method for reducing age model uncertainty within the anthropogenic bomb spike era ( 1957-present). Chronological uncertainty is larger for the earliest portion of coral growth, particularly for skeleton precipitated prior to bomb spike tie points, meaning age estimations for samples living before 1957 remain uncertain. Combining this technique with additional chronological markers could improve age models for an entire bamboo coral. Finally, the relative consistency in growth rate in similarly-aged corals of the same depth and location supports the hypothesis that skeletal growth may be limited by local environmental conditions.

  8. Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals.

    PubMed

    Aguilar, Catalina; Raina, Jean-Baptiste; Motti, Cherie A; Fôret, Sylvain; Hayward, David C; Lapeyre, Bruno; Bourne, David G; Miller, David J

    2017-08-14

    Dimethylsulfoniopropionate (DMSP) is a small sulphur compound which is produced in prodigious amounts in the oceans and plays a pivotal role in the marine sulfur cycle. Until recently, DMSP was believed to be synthesized exclusively by photosynthetic organisms; however we now know that corals and specific bacteria can also produce this compound. Corals are major sources of DMSP, but the molecular basis for its biosynthesis is unknown in these organisms. Here we used salinity stress, which is known to trigger DMSP production in other organisms, in conjunction with transcriptomics to identify coral genes likely to be involved in DMSP biosynthesis. We focused specifically on both adults and juveniles of the coral Acropora millepora: after 24 h of exposure to hyposaline conditions, DMSP concentrations increased significantly by 2.6 fold in adult corals and 1.2 fold in juveniles. Concomitantly, candidate genes enabling each of the necessary steps leading to DMSP production were up-regulated. The data presented strongly suggest that corals use an algal-like pathway to generate DMSP from methionine, and are able to rapidly change expression of the corresponding genes in response to environmental stress. However, our data also indicate that DMSP is unlikely to function primarily as an osmolyte in corals, instead potentially serving as a scavenger of ROS and as a molecular sink for excess methionine produced as a consequence of proteolysis and osmolyte catabolism in corals under hypo-osmotic conditions.

  9. Ecological Inferences from a deep screening of the Complex Bacterial Consortia associated with the coral, Porites astreoides.

    PubMed

    Rodriguez-Lanetty, Mauricio; Granados-Cifuentes, Camila; Barberan, Albert; Bellantuono, Anthony J; Bastidas, Carolina

    2013-08-01

    The functional role of the bacterial organisms in the reef ecosystem and their contribution to the coral well-being remain largely unclear. The first step in addressing this gap of knowledge relies on in-depth characterization of the coral microbial community and its changes in diversity across coral species, space and time. In this study, we focused on the exploration of microbial community assemblages associated with an ecologically important Caribbean scleractinian coral, Porites astreoides, using Illumina high-throughput sequencing of the V5 fragment of 16S rRNA gene. We collected data from a large set of biological replicates, allowing us to detect patterns of geographical structure and resolve co-occurrence patterns using network analyses. The taxonomic analysis of the resolved diversity showed consistent and dominant presence of two OTUs affiliated with the order Oceanospirillales, which corroborates a specific pattern of bacterial association emerging for this coral species and for many other corals within the genus Porites. We argue that this specific association might indicate a symbiotic association with the adult coral partner. Furthermore, we identified a highly diverse rare bacterial 'biosphere' (725 OTUs) also living along with the dominant bacterial symbionts, but the assemblage of this biosphere is significantly structured along the geographical scale. We further discuss that some of these rare bacterial members show significant association with other members of the community reflecting the complexity of the networked consortia within the coral holobiont. © 2013 John Wiley & Sons Ltd.

  10. Symbiotic specificity, association patterns, and function determine community responses to global changes: defining critical research areas for coral-Symbiodinium symbioses.

    PubMed

    Fabina, Nicholas S; Putnam, Hollie M; Franklin, Erik C; Stat, Michael; Gates, Ruth D

    2013-11-01

    Climate change-driven stressors threaten the persistence of coral reefs worldwide. Symbiotic relationships between scleractinian corals and photosynthetic endosymbionts (genus Symbiodinium) are the foundation of reef ecosystems, and these associations are differentially impacted by stress. Here, we couple empirical data from the coral reefs of Moorea, French Polynesia, and a network theoretic modeling approach to evaluate how patterns in coral-Symbiodinium associations influence community stability under climate change. To introduce the effect of climate perturbations, we simulate local 'extinctions' that represent either the loss of coral species or the ability to engage in symbiotic interactions. Community stability is measured by determining the duration and number of species that persist through the simulated extinctions. Our results suggest that four factors greatly increase coral-Symbiodinium community stability in response to global changes: (i) the survival of generalist hosts and symbionts maximizes potential symbiotic unions; (ii) elevated symbiont diversity provides redundant or complementary symbiotic functions; (iii) compatible symbiotic assemblages create the potential for local recolonization; and (iv) the persistence of certain traits associate with symbiotic diversity and redundancy. Symbiodinium may facilitate coral persistence through novel environmental regimes, but this capacity is mediated by symbiotic specificity, association patterns, and the functional performance of the symbionts. Our model-based approach identifies general trends and testable hypotheses in coral-Symbiodinium community responses. Future studies should consider similar methods when community size and/or environmental complexity preclude experimental approaches. © 2013 John Wiley & Sons Ltd.

  11. Profiling differential gene expression of corals along a transect of waters adjacent to the Bermuda municipal dump.

    PubMed

    Morgan, Michael B; Edge, Sara E; Snell, Terry W

    2005-01-01

    A coral cDNA array containing 32 genes was used to examine the gene expression profiles of coral populations located at four sites that varied with distance from a semi-submerged municipal dump in Castle Harbour, Bermuda (previously identified as a point source of anthropogenic stressors). Genes on the array represent transcripts induced under controlled laboratory conditions to a variety of stressors both natural (temperature, sediment, salinity, darkness) and xenobiotic (heavy metals, pesticides, PAH) in origin. The gene expression profiles produced revealed information about the types of stressors. Consistent with other studies undertaken in Castle Harbour, the coral cDNA array detected responses to heavy metals, sedimentation, as well as oxidative stress.

  12. Implications of coral harvest and transplantation on reefs in northwestern Dominica.

    PubMed

    Bruckner, Andrew W; Borneman, Eric H

    2010-10-01

    In June, 2002, the government of Dominica requested assistance in evaluating the coral culture and transplantation activities being undertaken by Oceanographic Institute of Dominica (OID), a coral farm culturing both western Atlantic and Indo-Pacific corals for restoration and commercial sales. We assessed the culture facilities of OID, the condition of reefs, potential impacts of coral collection and benefits of coral transplantation. Coral reefs (9 reefs, 3-20 m depth) were characterized by 35 species of scleractinian corals and a live coral cover of 8-35%. Early colonizing, brooders such as Porites astreoides (14.8% of all corals), P. porites (14.8%), Meandrina meandrites (14.7%) and Agaricia agaricites (9.1%) were the most abundant corals, but colonies were mostly small (mean = 25 cm diameter). Montastraea annularis (complex) was the other dominant taxa (20.8% of all corals) and colonies were larger (mean = 70 cm). Corals (pooled species) were missing an average of 20% of their tissue, with a mean of 1.4% recent mortality. Coral diseases affected 6.4% of all colonies, with the highest prevalence at Cabrits West (11.0%), Douglas Bay (12.2%) and Coconut Outer reef (20.7%). White plague and yellow band disease were causing the greatest loss of tissue, especially among M. annularis (complex), with localized impacts from corallivores, overgrowth by macroalgae, storm damage and sedimentation. While the reefs appeared to be undergoing substantial decline, restoration efforts by OlD were unlikely to promote recovery. No Pacific species were identified at OID restoration sites, yet species chosen for transplantation with highest survival included short-lived brooders (Agaricia and Porites) that were abundant in restoration sites, as well as non-reef builders (Palythoa and Erythropodium) that monopolize substrates and overgrow corals. The species of highest value for restoration (massive broadcast spawners) showed low survivorship and unrestored populations of these species were most affected by biotic stressors and human impacts, all of which need to be addressed to enhance survival of outplants. Problems with culture practices at OID, such as high water temperature, adequate light levels and persistent overgrowth by macroalgae could be addressed through simple modifications. Nevertheless, coral disease and other stressors are of major concern to the most important reef builders, as these species are less amenable to restoration, collection could threaten their survival and losses require decades to centuries to replace.

  13. Human Impacts on Coral Reefs in the Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Al-Jufaili, S.; Al-Jabri, M.; Al-Baluchi, A.; Baldwin, R. M.; Wilson, S. C.; West, F.; Matthews, A. D.

    1999-08-01

    A rapid assessment survey of the coral reefs of the Sultanate of Oman was conducted by the Ministry of Regional Municipalities and Environment during the first half of 1996. The survey revealed new information on the distribution pattern of corals in Oman and identified impacts, threats and potential threats to coral communities for the purpose of preparation of a National Coral Reef Management Plan (Phase One of the implementation of a National Coastal Zone Management Plan). Impacts on coral reefs in Oman were found to be attributable to both natural and human causes, resulting in significant and widespread degradation. Damage resulting from fisheries activities was the most commonly recorded human impact, with the most severe effects. Other human impacts resulted from coastal construction, recreational activities, oil pollution and eutrophication. Predation of corals by Acanthaster planci, damage caused by storms, coral diseases and temperature-related stress were the most commonly recorded natural impacts to coral reefs. Further minor natural impacts were attributable to siltation, rock falls and predation by a corallivorous gastropod (Drupella sp.). Significant differences between different areas of the country were found in terms of human impacts on coral reefs and these were related to coastal demography and human activity. Eighty per cent of sites studied were recorded to have been affected by human impacts to some degree. Impacts attributable to fisheries activities were found at 69% of the sites. Lost or abandoned gill nets were found to affect coral reefs at 49% of sites throughout Oman and accounted for 70% of all severe human impacts. Lost gill nets were also found to have a negative affect on fisheries resources and other marine wildlife. Observations of the behaviour of gill nets on coral reefs suggested a predictable pattern of damage over time and a significant increase in damage intensity during storms. Fishing nets were found to act selectively, causing greater damage to certain coral communities than to others. Results of the study are discussed in relation to management of coral reef areas in Oman.

  14. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific) coral reef.

    PubMed

    Zapata, Fernando A; Rodríguez-Ramírez, Alberto; Caro-Zambrano, Carlos; Garzón-Ferreira, Jaime

    2010-05-01

    Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC) was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004) from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7%) and algal cover low (28.8%-37.5%) and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP), recovering pre-disturbance (1979) levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (< 6% reduction). Despite recurrent natural disturbances, live coral cover in 2004 was as high as that existing before 1982 at La Azufrada, and one of the highest observed on healthy coral reefs in the TEP region.

  15. Thresholds for Coral Bleaching: Are Synergistic Factors and Shifting Thresholds Changing the Landscape for Management? (Invited)

    NASA Astrophysics Data System (ADS)

    Eakin, C.; Donner, S. D.; Logan, C. A.; Gledhill, D. K.; Liu, G.; Heron, S. F.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Hoegh-Guldberg, O.; Skirving, W. J.; Strong, A. E.

    2010-12-01

    As carbon dioxide rises in the atmosphere, climate change and ocean acidification are modifying important physical and chemical parameters in the oceans with resulting impacts on coral reef ecosystems. Rising CO2 is warming the world’s oceans and causing corals to bleach, with both alarming frequency and severity. The frequent return of stressful temperatures has already resulted in major damage to many of the world’s coral reefs and is expected to continue in the foreseeable future. Warmer oceans also have contributed to a rise in coral infectious diseases. Both bleaching and infectious disease can result in coral mortality and threaten one of the most diverse ecosystems on Earth and the important ecosystem services they provide. Additionally, ocean acidification from rising CO2 is reducing the availability of carbonate ions needed by corals to build their skeletons and perhaps depressing the threshold for bleaching. While thresholds vary among species and locations, it is clear that corals around the world are already experiencing anomalous temperatures that are too high, too often, and that warming is exceeding the rate at which corals can adapt. This is despite a complex adaptive capacity that involves both the coral host and the zooxanthellae, including changes in the relative abundance of the latter in their coral hosts. The safe upper limit for atmospheric CO2 is probably somewhere below 350ppm, a level we passed decades ago, and for temperature is a sustained global temperature increase of less than 1.5°C above pre-industrial levels. How much can corals acclimate and/or adapt to the unprecedented fast changing environmental conditions? Any change in the threshold for coral bleaching as the result of acclimation and/or adaption may help corals to survive in the future but adaptation to one stress may be maladaptive to another. There also is evidence that ocean acidification and nutrient enrichment modify this threshold. What do shifting thresholds mean for identifying limits and taking management actions to adapt to climate change?

  16. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals

    PubMed Central

    Sneed, Jennifer M.; Sharp, Koty H.; Ritchie, Kimberly B.; Paul, Valerie J.

    2014-01-01

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. PMID:24850918

  17. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates.

    PubMed

    Rosset, Sabrina; Wiedenmann, Jörg; Reed, Adam J; D'Angelo, Cecilia

    2017-05-15

    Enrichment of reef environments with dissolved inorganic nutrients is considered a major threat to the survival of corals living in symbiosis with dinoflagellates (Symbiodinium sp.). We argue, however, that the direct negative effects on the symbiosis are not necessarily caused by the nutrient enrichment itself but by the phosphorus starvation of the algal symbionts that can be caused by skewed nitrogen (N) to phosphorus (P) ratios. We exposed corals to imbalanced N:P ratios in long-term experiments and found that the undersupply of phosphate severely disturbed the symbiosis, indicated by the loss of coral biomass, malfunctioning of algal photosynthesis and bleaching of the corals. In contrast, the corals tolerated an undersupply with nitrogen at high phosphate concentrations without negative effects on symbiont photosynthesis, suggesting a better adaptation to nitrogen limitation. Transmission electron microscopy analysis revealed that the signatures of ultrastructural biomarkers represent versatile tools for the classification of nutrient stress in symbiotic algae. Notably, high N:P ratios in the water were clearly identified by the accumulation of uric acid crystals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Testing coral-based tropical cyclone reconstructions: An example from Puerto Rico

    USGS Publications Warehouse

    Kilbourne, K. Halimeda; Moyer, Ryan P.; Quinn, Terrence M.; Grottoli, Andrea G.

    2011-01-01

    Complimenting modern records of tropical cyclone activity with longer historical and paleoclimatological records would increase our understanding of natural tropical cyclone variability on decadal to centennial time scales. Tropical cyclones produce large amounts of precipitation with significantly lower δ18O values than normal precipitation, and hence may be geochemically identifiable as negative δ18O anomalies in marine carbonate δ18O records. This study investigates the usefulness of coral skeletal δ18O as a means of reconstructing past tropical cyclone events. Isotopic modeling of rainfall mixing with seawater shows that detecting an isotopic signal from a tropical cyclone in a coral requires a salinity of ~ 33 psu at the time of coral growth, but this threshold is dependent on the isotopic composition of both fresh and saline end-members. A comparison between coral δ18O and historical records of tropical cyclone activity, river discharge, and precipitation from multiple sites in Puerto Rico shows that tropical cyclones are not distinguishable in the coral record from normal rainfall using this approach at these sites.

  19. The ;Sardinian cold-water coral province; in the context of the Mediterranean coral ecosystems

    NASA Astrophysics Data System (ADS)

    Taviani, M.; Angeletti, L.; Canese, S.; Cannas, R.; Cardone, F.; Cau, A.; Cau, A. B.; Follesa, M. C.; Marchese, F.; Montagna, P.; Tessarolo, C.

    2017-11-01

    A new cold-water coral (CWC) province has been identified in the Mediterranean Sea in the Capo Spartivento canyon system offshore the southern coast of Sardinia. The 'Sardinia cold-water coral province' is characterized in the Nora canyon by a spectacular coral growth dominated by the branching scleractinian Madrepora oculata at a depth of 380-460 m. The general biohermal frame is strengthened by the common occurrence of the solitary scleractinian Desmophyllum dianthus and the occasional presence of Lophelia pertusa. As documented by Remotely Operated Vehicle survey, this area is a hotspot of megafaunal diversity hosting among other also live specimens of the deep oyster Neopycnodonte zibrowii. The new coral province is located between the central Mediterranean CWC provinces (Bari Canyon, Santa Maria di Leuca, South Malta) and the western and northern ones (Melilla, Catalan-Provençal-Ligurian canyons). As for all the best developed CWC situations in the present Mediterranean Sea, the new Sardinian province is clearly influenced by Levantine Intermediate Water which appears to be a main driver for CWC distribution and viability in this basin.

  20. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands

    USGS Publications Warehouse

    Muller, E.M.; Rogers, Caroline S.; Spitzack, Anthony S.; van Woesik, R.

    2007-01-01

    Anomalously high water temperatures may enhance the likelihood of coral disease outbreaks by increasing the abundance or virulence of pathogens, or by increasing host susceptibility. This study tested the compromised-host hypothesis, and documented the relationship between disease and temperature, through monthly monitoring of Acropora palmata colonies from May 2004 to December 2006, in Hawksnest Bay, St John, US Virgin Islands (USVI). Disease prevalence and the rate of change in prevalence showed a positive linear relationship with water temperature and rate of change in water temperature, respectively, but only in 2005 during prolonged periods of elevated temperature. Both bleached and unbleached colonies showed a positive relationship between disease prevalence and temperature in 2005, but the average area of disease-associated mortality increased only for bleached corals, indicating host susceptibility, rather than temperature per se, influenced disease severity on A. palmata.

  1. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands

    USGS Publications Warehouse

    Muller, E.M.; Rogers, C.S.; Spitzack, Anthony S.; van Woesik, R.

    2008-01-01

    Anomalously high water temperatures may enhance the likelihood of coral disease outbreaks by increasing the abundance or virulence of pathogens, or by increasing host susceptibility. This study tested the compromised-host hypothesis, and documented the relationship between disease and temperature, through monthly monitoring of Acropora palmata colonies from May 2004 to December 2006, in Hawksnest Bay, St John, US Virgin Islands (USVI). Disease prevalence and the rate of change in prevalence showed a positive linear relationship with water temperature and rate of change in water temperature, respectively, but only in 2005 during prolonged periods of elevated temperature. Both bleached and unbleached colonies showed a positive relationship between disease prevalence and temperature in 2005, but the average area of disease-associated mortality increased only for bleached corals, indicating host susceptibility, rather than temperature per se, influenced disease severity on A. palmata. ?? 2007 Springer-Verlag.

  2. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Muller, E. M.; Rogers, C. S.; Spitzack, A. S.; van Woesik, R.

    2008-03-01

    Anomalously high water temperatures may enhance the likelihood of coral disease outbreaks by increasing the abundance or virulence of pathogens, or by increasing host susceptibility. This study tested the compromised-host hypothesis, and documented the relationship between disease and temperature, through monthly monitoring of Acropora palmata colonies from May 2004 to December 2006, in Hawksnest Bay, St John, US Virgin Islands (USVI). Disease prevalence and the rate of change in prevalence showed a positive linear relationship with water temperature and rate of change in water temperature, respectively, but only in 2005 during prolonged periods of elevated temperature. Both bleached and unbleached colonies showed a positive relationship between disease prevalence and temperature in 2005, but the average area of disease-associated mortality increased only for bleached corals, indicating host susceptibility, rather than temperature per se, influenced disease severity on A. palmata.

  3. Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances

    NASA Astrophysics Data System (ADS)

    Shedrawi, George; Falter, James L.; Friedman, Kim J.; Lowe, Ryan J.; Pratchett, Morgan S.; Simpson, Christopher J.; Speed, Conrad W.; Wilson, Shaun K.; Zhang, Zhenlin

    2017-09-01

    The movement of water can have a significant influence on the vulnerability of hermatypic corals to environmental disturbances such as cyclone damage, heat stress and anoxia. Here, we explore the relationship between small reef-scale water circulation patterns and measured differences in the abundance, composition and vulnerability of coral assemblages over decades. Changes in coral cover and community structure within Bill's Bay (Ningaloo Reef, Western Australia) over a 22-yr period, during which multiple disturbance events (including mass bleaching, anoxia, and tropical cyclones) have impacted the area, were compared with spatial variation in water residence times (WRT). We found that reef sites associated with longer water residence times (WRT >15 h) experienced higher rates of coral mortality during acute environmental disturbances compared to reef sites with shorter WRT. Shifts in coral community composition from acroporid to faviid-dominated assemblages were also more prominent at sites with long WRT compared to reef sites with shorter WRT, although shifts in community composition were also observed at sites close to shore. Interestingly, these same long-WRT sites also tended to have the fastest recovery rates so that coral cover was returned to original levels of approximately 20% over two decades. This study provides empirical evidence that spatial patterns in water circulation and flushing can influence the resilience of coral communities, thus identifying areas sensitive to emerging threats associated with global climate change.

  4. Up-Regulated Expression of AOS-LOXa and Increased Eicosanoid Synthesis in Response to Coral Wounding

    PubMed Central

    Lõhelaid, Helike; Teder, Tarvi; Tõldsepp, Kadri; Ekins, Merrick; Samel, Nigulas

    2014-01-01

    In octocorals, a catalase–like allene oxide synthase (AOS) and an 8R-lipoxygenase (LOX) gene are fused together encoding for a single AOS-LOX fusion protein. Although the AOS-LOX pathway is central to the arachidonate metabolism in corals, its biological function in coral homeostasis is unclear. Using an acute incision wound model in the soft coral Capnella imbricata, we here test whether LOX pathway, similar to its role in plants, can contribute to the coral damage response and regeneration. Analysis of metabolites formed from exogenous arachidonate before and after fixed time intervals following wounding indicated a significant increase in AOS-LOX activity in response to mechanical injury. Two AOS-LOX isoforms, AOS-LOXa and AOS-LOXb, were cloned and expressed in bacterial expression system as active fusion proteins. Transcription levels of corresponding genes were measured in normal and stressed coral by qPCR. After wounding, AOS-LOXa was markedly up-regulated in both, the tissue adjacent to the incision and distal parts of a coral colony (with the maximum reached at 1 h and 6 h post wounding, respectively), while AOS-LOXb was stable. According to mRNA expression analysis, combined with detection of eicosanoid product formation for the first time, the AOS-LOX was identified as an early stress response gene which is induced by mechanical injury in coral. PMID:24551239

  5. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings

    PubMed Central

    Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.

    2016-01-01

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km2), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R2 = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances. PMID:27432782

  6. The genetics of colony form and function in Caribbean Acropora corals.

    PubMed

    Hemond, Elizabeth M; Kaluziak, Stefan T; Vollmer, Steven V

    2014-12-17

    Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct "staghorn" versus "elkhorn" morphologies of these two sister species. The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans.

  7. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings.

    PubMed

    Morgan, Kyle M; Perry, Chris T; Smithers, Scott G; Johnson, Jamie A; Daniell, James J

    2016-07-19

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km(2)), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R(2) = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.

  8. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    NASA Astrophysics Data System (ADS)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the information derived from image classification. The research will be applied to the Kuwait's southern coral reefs: Kubbar and Um Al-Maradim.

  9. A Snapshot of a Coral “Holobiont”: A Transcriptome Assembly of the Scleractinian Coral, Porites, Captures a Wide Variety of Genes from Both the Host and Symbiotic Zooxanthellae

    PubMed Central

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire “coral holobiont”. We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses. PMID:24454815

  10. Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats

    NASA Astrophysics Data System (ADS)

    De Clippele, L. H.; Gafeira, J.; Robert, K.; Hennige, S.; Lavaleye, M. S.; Duineveld, G. C. A.; Huvenne, V. A. I.; Roberts, J. M.

    2017-03-01

    Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of mapping approaches were used at a range of scales to map the distribution of both cold-water coral habitats and individual coral colonies at the Mingulay Reef Complex (west Scotland). The new ArcGIS-based British Geological Survey (BGS) seabed mapping toolbox semi-automatically delineated over 500 Lophelia reef `mini-mounds' from bathymetry data with 2-m resolution. The morphometric and acoustic characteristics of the mini-mounds were also automatically quantified and captured using this toolbox. Coral presence data were derived from high-definition remotely operated vehicle (ROV) records and high-resolution microbathymetry collected by a ROV-mounted multibeam echosounder. With a resolution of 0.35 × 0.35 m, the microbathymetry covers 0.6 km2 in the centre of the study area and allowed identification of individual live coral colonies in acoustic data for the first time. Maximum water depth, maximum rugosity, mean rugosity, bathymetric positioning index and maximum current speed were identified as the environmental variables that contributed most to the prediction of live coral presence. These variables were used to create a predictive map of the likelihood of presence of live cold-water coral colonies in the area of the Mingulay Reef Complex covered by the 2-m resolution data set. Predictive maps of live corals across the reef will be especially valuable for future long-term monitoring surveys, including those needed to understand the impacts of global climate change. This is the first study using the newly developed BGS seabed mapping toolbox and an ROV-based microbathymetric grid to explore the environmental variables that control coral growth on cold-water coral reefs.

  11. Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico

    USGS Publications Warehouse

    Kellogg, C.A.; Lisle, J.T.; Galkiewicz, J.P.

    2009-01-01

    Bacteria are recognized as an important part of the total biology of shallow-water corals. Studies of shallow-water corals suggest that associated bacteria may benefit the corals by cycling carbon, fixing nitrogen, chelating iron, and producing antibiotics that protect the coral from other microbes. Cold-water or deep-sea corals have a fundamentally different ecology due to their adaptation to cold, dark, high-pressure environments and as such have novel microbiota. The goal of this study was to characterize the microbial associates of Lophelia pertusa in the northeastern Gulf of Mexico. This is the first study to collect the coral samples in individual insulated containers and to preserve coral samples at depth in an effort to minimize thermal shock and evaluate the effects of environmental gradients on the microbial diversity of samples. Molecular analysis of bacterial diversity showed a marked difference between the two study sites, Viosca Knoll 906/862 (VK906/862) and Viosca Knoll 826 (VK826). The bacterial communities from VK826 were dominated by a variety of unknown mycoplasmal members of the Tenericutes and Bacteroidetes, whereas the libraries from VK906/862 were dominated by members of the Proteobacteria. In addition to novel sequences, the 16S rRNA gene clone libraries revealed many bacterial sequences in common between Gulf of Mexico Lophelia corals and Norwegian fjord Lophelia corals, as well as shallow-water corals. Two Lophelia-specific bacterial groups were identified: a cluster of gammaproteobacteria related to sulfide-oxidizing gill symbionts of seep clams and a group of Mycoplasma spp. The presence of these groups in both Gulf and Norwegian Lophelia corals indicates that in spite of the geographic heterogeneity observed in Lophelia-associated bacterial communities, there are Lophelia-specific microbes. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  12. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae.

    PubMed

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses.

  13. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea.

    PubMed

    Braña, Alfredo F; Braña, Afredo F; Fiedler, Hans-Peter; Nava, Herminio; González, Verónica; Sarmiento-Vizcaíno, Aida; Molina, Axayacatl; Acuña, José L; García, Luis A; Blanco, Gloria

    2015-04-01

    Streptomycetes are widely distributed in the marine environment, although only a few studies on their associations to algae and coral ecosystems have been reported. Using a culture-dependent approach, we have isolated antibiotic-active Streptomyces species associated to diverse intertidal marine macroalgae (Phyllum Heterokontophyta, Rhodophyta, and Chlorophyta), from the central Cantabrian Sea. Two strains, with diverse antibiotic and cytotoxic activities, were found to inhabit these coastal environments, being widespread and persistent over a 3-year observation time frame. Based on 16S rRNA sequence analysis, the strains were identified as Streptomyces cyaneofuscatus M-27 and Streptomyces carnosus M-40. Similar isolates to these two strains were also associated to corals and other invertebrates from deep-sea coral reef ecosystem (Phyllum Cnidaria, Echinodermata, Arthropoda, Sipuncula, and Anelida) living up to 4.700-m depth in the submarine Avilés Canyon, thus revealing their barotolerant feature. These two strains were also found to colonize terrestrial lichens and have been repeatedly isolated from precipitations from tropospheric clouds. Compounds with antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. Antitumor compounds with antibacterial activities and members of the anthracycline family (daunomycin, cosmomycin B, galtamycin B), antifungals (maltophilins), anti-inflamatory molecules also with antituberculosis properties (lobophorins) were identified in this work. Many other compounds produced by the studied strains still remain unidentified, suggesting that Streptomyces associated to algae and coral ecosystems might represent an underexplored promising source for pharmaceutical drug discovery.

  14. An evaluation of coral lophelia pertusa mucus as an analytical matrix for environmental monitoring: A preliminary proteomic study.

    PubMed

    Provan, Fiona; Nilsen, Mari Mæland; Larssen, Eivind; Uleberg, Kai-Erik; Sydnes, Magne O; Lyng, Emily; Øysæd, Kjell Birger; Baussant, Thierry

    2016-01-01

    For the environmental monitoring of coral, mucus appears to be an appropriate biological matrix due to its array of functions in coral biology and the non-intrusive manner in which it can be collected. The aim of the present study was to evaluate the feasibility of using mucus of the stony coral Lophelia pertusa (L. pertusa) as an analytical matrix for discovery of biomarkers used for environmental monitoring. More specifically, to assess whether a mass-spectrometry-based proteomic approach can be applied to characterize the protein composition of coral mucus and changes related to petroleum discharges at the seafloor. Surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS) screening analyses of orange and white L. pertusa showed that the mucosal protein composition varies significantly with color phenotype, a pattern not reported prior to this study. Hence, to reduce variability from phenotype difference, L. pertusa white individuals only were selected to characterize in more detail the basal protein composition in mucus using liquid chromatography, mass spectrometry, mass spectrometry (LC-MS/MS). In total, 297 proteins were identified in L. pertusa mucus of unexposed coral individuals. Individuals exposed to drill cuttings in the range 2 to 12 mg/L showed modifications in coral mucus protein composition compared to unexposed corals. Although the results were somewhat inconsistent between individuals and require further validation in both the lab and the field, this study demonstrated preliminary encouraging results for discovery of protein markers in coral mucus that might provide more comprehensive insight into potential consequences attributed to anthropogenic stressors and may be used in future monitoring of coral health.

  15. Eukarya associated with the stony coral Oculina patagonica from the Mediterranean Sea.

    PubMed

    Rubio-Portillo, Esther; Souza-Egipsy, Virginia; Ascaso, Carmen; de Los Rios Murillo, Asunción; Ramos-Esplá, Alfonso A; Antón, Josefa

    2014-10-01

    Oculina patagonica is a putative alien scleractinian coral from the Southwest Atlantic that inhabits across the Mediterranean Sea. Here, we have addressed the diversity of Eukarya associated with this coral and its changes related to the environmental conditions and coral status. A total of 46 colonies of O. patagonica were taken from Alicante coast (Spain) and Pietra Ligure coast (Italy) and analyzed using denaturing gradient gel electrophoresis (DGGE) of the small-subunit 18S rRNA and 16S plastid rRNA genes, internal transcribed spacer region 2 (ITS 2) analyses, and electron microscopy. Our results show that Eukarya and plastid community associated to O. patagonica change with environmental conditions and coral status. Cryptic species, which can be difficult to identify by optical methods, were distinguished by 18S rRNA gene DGGE: the barnacle Megatrema anglicum, which was detected at two locations, and two boring sponges related to Cliona sp. and Siphonodictyon coralliphagum detected in samples from Tabarca and Alicante Harbour, respectively. Eukaryotic phototrophic community from the skeletal matrix of healthy corals was dominated by Ochrosphaera sp. while bleached corals from the Harbour and Tabarca were associated to different uncultured phototrophic organism. Differences in ultrastructural morphologies of the zooxanthellae between healthy and bleached corals were observed. Nevertheless, no differences were found in Symbiodinium community among time, environments, coral status and location, showing that O. patagonica hosted only one genotype of Symbiodinium belonging to clade B2. The fact that this clade has not been previously detected in other Mediterranean corals and is more frequent in the tropical Western Atlantic, is a new evidence that O. patagonica is an alien species in the Mediterranean Sea. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Live coral predation by fish in Tayrona Nature National Park, Colombian Caribbean].

    PubMed

    Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2004-12-01

    Live coral predation by fish was evaluated in two bays of the Tayrona National Natural Park (Colombia), as a possible biological agent causing coral mortality. Visual censuses were used to identify the most important predator. Predation incidence was determined by examining all colonies present in permanent belt transects (20 x 2 m) in two reef environments (one dominated by Colpophyllia natans and the other one by Montastraea faveolata), for two climatic seasons (rainy and dry seasons). The parrotfish Sparisoma viride was the most important predator due to its biting frequency and bite size. S. viride adults of the initial and terminal phases, removed live tissue and part of the calcareous matrix of M. faveolata, M. annularis, Porites astreoides and C. natans, of which, the last one lost a major amount of tissue per area (3.51 cm2) and volume (3.22 cm3) per bite. A negative exponential tendency (r2=0.94), between coral density and volume removed was found, indicating that the coral density determines the bite's damage. There is no clear relationship between predation incidence and climatic seasons at the sites studied. At Chengue and Gayraca bays, live coral predation is one of the factors contributing to coral tissue loss and could have important consequences on the dynamic of these reefs.

  17. Examining the utility of coral Ba/Ca as a proxy for river discharge and hydroclimate variability at Coiba Island, Gulf of Chirquí, Panamá.

    PubMed

    Brenner, Logan D; Linsley, Braddock K; Dunbar, Robert B

    2017-05-15

    Panamá's extreme hydroclimate seasonality is driven by Intertropical Convergence Zone rainfall and resulting runoff. River discharge (Q) carries terrestrially-derived barium to coastal waters that can be recorded in coral. We present a Ba/Ca record (1996-1917) generated from a Porites coral colony in the Gulf of Chiriquí near Coiba Island (Panamá) to understand regional hydroclimate. Here coral Ba/Ca is correlated to instrumental Q (R=0.67, p<0.001), producing a seasonally-resolved Reduced Major Axis regression of Ba/Ca (μmol/mol)=Q (m 3 /s)×0.006±0.001 (μmol/mol)(m 3 /s) -1 +4.579±0.151. Our results support work in the neighboring Gulf of Panamá that determined seawater Ba/Ca, controlled by Q, is correlated to coral Ba/Ca (LaVigne et al., 2016). Additionally, the Coiba coral Ba/Ca records at least 5 El Niño events and identified 22 of the 37 wet seasons with below average precipitation. These data corroborate the Q proxy and provide insight into the use of coral Ba/Ca as an El Niño and drought indicator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment

    PubMed Central

    Röthig, Till; Yum, Lauren K.; Kremb, Stephan G.; Roik, Anna; Voolstra, Christian R.

    2017-01-01

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment. PMID:28303925

  19. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment.

    PubMed

    Röthig, Till; Yum, Lauren K; Kremb, Stephan G; Roik, Anna; Voolstra, Christian R

    2017-03-17

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L -1 ) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.

  20. Application of medical X-ray computed tomography in the study of cold-water carbonate mounds

    NASA Astrophysics Data System (ADS)

    de Mol, L.; Pirlet, H.; van Rooij, D.; Blamart, D.; Cnudde, V.; Duyck, P.; Houbrechts, H.; Jacobs, P.; Henriet, J.-P.; Dufresne 169 Shipboard Party, The Marion

    2009-04-01

    During the R/V Marion Dufresne 169 'MiCROSYSTEMS' cruise (July 2008) to the El Arraiche mud volcano field in the Gulf of Cadiz cold-water coral mounds were targeted. Four on-mound gravity cores, with a total length of 17.5 m, were obtained for sedimentological and palaeoceanographic analyses in order to unveil the history of the uppermost meters of these cold-water coral build-ups. In parallel, four on-mound cores were taken on approximately the same location for microbiological and biogeochemical analyses. By comparing and correlating both results, more information can be revealed about the processes acting in the dead coral rubble fields which cover these mounds. Computed X-ray tomography (CT) was used for the identification and quantification of the corals inside the gravity cores. Furthermore, this technique is also useful for the investigation of sedimentological features, i.e. bioturbation, porosity, laminations... In this study, cores were scanned using a medical CT scanner on a relative high resolution which allows the three-dimensional visualization of the corals and sedimentological features. Slices were taken every 3 mm with an overlap of 1 mm. Based on these data it was possible to delineate different "CT" facies within the cores. On one hand there are intervals with a high amount of corals and on the other hand zones with a very low amount of corals or even no corals at all. In the first case two different facies can be distinguished: one facies with clearly recognizable, well preserved corals, and the second facies with crushed coral fragments. In both facies the corals are embedded in a homogenous matrix. Different facies could also be defined in the intervals containing little or no corals. For example, a homogenous facies with bioturbations and/or cracks. Also an important observation is the presence of pyrite which appears in all cores at a certain depth. Sometimes the pyrite could be observed in bioturbations or inside the corals. Besides that also the percentage of corals in these gravity cores were quantified using the "Morpho+" software, which was developed at the UGCT (Centre for X-ray Tomography, Ghent University, Belgium). Based on these results, a clear difference can be noticed between the four mounds. On Conger cliff, corals were only observed in the upper 34 cm while in the other locations corals can be found throughout the entire core with significant variations in the amount of corals. Finally, it was possible to identify different species of cold-water corals, namely Lophelia pertusa, Madrepora oculata, Desmophyllum cristagalli and Dendrophyllia. In conjunction with dating and palaeoenvironmental analyses of the corals and the sediment matrix, this can yield valuable information about the build-up of these cold-water coral mounds in the El Arraiche mud volcano field and the palaeoenvironmental characteristics at the time the corals were living.

  1. A coral reef refuge in the Red Sea.

    PubMed

    Fine, Maoz; Gildor, Hezi; Genin, Amatzia

    2013-12-01

    The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio-economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We suggest that the Gulf of Aqaba (GoA) (Red Sea) may serve as a reef refugium due to a unique suite of environmental conditions. Our hypothesis is based on experimental detection of an exceptionally high bleaching threshold of northern Red Sea corals and on the potential dispersal of coral planulae larvae through a selective thermal barrier estimated using an ocean model. We propose that millennia of natural selection in the form of a thermal barrier at the southernmost end of the Red Sea have selected coral genotypes that are less susceptible to thermal stress in the northern Red Sea, delaying bleaching events in the GoA by at least a century. © 2013 John Wiley & Sons Ltd.

  2. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. Comparative genomics explains the evolutionary success of reef-forming corals

    PubMed Central

    Bhattacharya, Debashish; Agrawal, Shobhit; Aranda, Manuel; Baumgarten, Sebastian; Belcaid, Mahdi; Drake, Jeana L; Erwin, Douglas; Foret, Sylvian; Gates, Ruth D; Gruber, David F; Kamel, Bishoy; Lesser, Michael P; Levy, Oren; Liew, Yi Jin; MacManes, Matthew; Mass, Tali; Medina, Monica; Mehr, Shaadi; Meyer, Eli; Price, Dana C; Putnam, Hollie M; Qiu, Huan; Shinzato, Chuya; Shoguchi, Eiichi; Stokes, Alexander J; Tambutté, Sylvie; Tchernov, Dan; Voolstra, Christian R; Wagner, Nicole; Walker, Charles W; Weber, Andreas PM; Weis, Virginia; Zelzion, Ehud; Zoccola, Didier; Falkowski, Paul G

    2016-01-01

    Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI: http://dx.doi.org/10.7554/eLife.13288.001 PMID:27218454

  4. Transcriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners

    PubMed Central

    Lin, Zhenyue; Chen, Mingliang; Dong, Xu; Zheng, Xinqing; Huang, Haining; Xu, Xun; Chen, Jianming

    2017-01-01

    In the South China Sea, coastal eutrophication in the Beibu Gulf has seriously threatened reef habitats by subjecting corals to chronic physiological stress. To determine how coral holobionts may tolerate such conditions, we examined the transcriptomes of healthy colonies of the galaxy coral Galaxea fascicularis and its endosymbiont Symbiodinium from two reef sites experiencing pristine or eutrophied nutrient regimes. We identified 236 and 205 genes that were differentially expressed in eutrophied hosts and symbionts, respectively. Both gene sets included pathways related to stress responses and metabolic interactions. An analysis of genes originating from each partner revealed striking metabolic integration with respect to vitamins, cofactors, amino acids, fatty acids, and secondary metabolite biosynthesis. The expression levels of these genes supported the existence of a continuum of mutualism in this coral-algal symbiosis. Additionally, large sets of transcription factors, cell signal transduction molecules, biomineralization components, and galaxin-related proteins were expanded in G. fascicularis relative to other coral species. PMID:28181581

  5. Post-bleaching coral community change on southern Maldivian reefs: is there potential for rapid recovery?

    NASA Astrophysics Data System (ADS)

    Perry, C. T.; Morgan, K. M.

    2017-12-01

    Given the severity of the 2016 global bleaching event, there are major questions about how quickly reef communities will recover. Here, we explore the ecological and physical structural changes that occurred across five atoll interior reefs in the southern Maldives using data collected at 6 and 12 months post-bleaching. Following initial severe coral mortality, further minor coral mortality had occurred by 12 months post-bleaching, and coral cover is now low (<6%). In contrast, reef rugosity has continued to decline over time, and our observations suggest transitions to rubble-dominated states will occur in the near future. Juvenile coral densities in shallow fore-reef habitats are also exceptionally low (<6 individuals m-2), well below those measured 9-12 months following the 1998 bleaching event, and below recovery thresholds identified on other Indian Ocean reefs. Our findings suggest that the physical structure of these reefs will need to decline further before effective recruitment and recovery can begin.

  6. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    NASA Astrophysics Data System (ADS)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological responses in corals, and other marine invertebrates, can guide and evaluate mitigation and conservation approaches for marine ecosystem protection.

  7. Investigation of Baseline Antioxidant Enzyme Expression in Pocillopora damicornis

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Richmond, R. H.

    2016-02-01

    Coral reefs are some of the most diverse and valuable ecosystems in the world. Vital for maintaining ecological balance in coastal tropical environments, they also stand as the foundation for enormous cultural and economic resources. However, the continued degradation of coral reefs around the world, particularly within NOAA's Hawaii Marine Sanctuary, is an alarming call for action towards the identification of stressors and subsequent rehabilitation of these national treasures. Aligned with the goals of NOAA's National Marine Sanctuary to protect areas of the marine environment that are of special national significance to cultural, scientific, educational, and ecological values, this research targets addressing and standardizing antioxidant enzyme stress levels in Hawaiian coral over reproductive cycles in order to increase management aptitude and efficiency. By developing a greater understanding for biochemical biomarkers of stress in corals, specifically through the study of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity and expression, my research will aid in the adaptation and further development of biochemical tests to understand baseline thresholds of stress on coral reefs within Sanctuary waters. Slight, but significant variations in enzyme expression over reproductive time points alert us to modifications that must be made to consider fluctuating levels of coral susceptibility when sampling corals under stress. These findings will be applied to diagnostic tests describing the effect of different chemical pollutants on coral health in order to identify ecological issues and expand the knowledge of local communities and NOAA, so that steps can be taken to mitigate human Sanctuary impacts.

  8. Mapping coral and sponge habitats on a shelf-depth environment using multibeam sonar and ROV video observations: Learmonth Bank, northern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Neves, Bárbara M.; Du Preez, Cherisse; Edinger, Evan

    2014-01-01

    Efforts to locate and map deep-water coral and sponge habitats are essential for the effective management and conservation of these vulnerable marine ecosystems. Here we test the applicability of a simple multibeam sonar classification method developed for fjord environments to map the distribution of shelf-depth substrates and gorgonian coral- and sponge-dominated biotopes. The studied area is a shelf-depth feature Learmonth Bank, northern British Columbia, Canada and the method was applied aiming to map primarily non-reef forming coral and sponge biotopes. Aside from producing high-resolution maps (5 m2 raster grid), biotope-substrate associations were also investigated. A multibeam sonar survey yielded bathymetry, acoustic backscatter strength and slope. From benthic video transects recorded by remotely operated vehicles (ROVs) six primary substrate types and twelve biotope categories were identified, defined by the primary sediment and dominant biological structure, respectively. Substrate and biotope maps were produced using a supervised classification mostly based on the inter-quartile range of the acoustic variables for each substrate type and biotope. Twenty-five percent of the video observations were randomly reserved for testing the classification accuracy. The dominant biotope-defining corals were red tree coral Primnoa pacifica and small styasterids, of which Stylaster parageus was common. Demosponges and hexactinellid sponges were frequently observed but no sponge reefs were observed. The substrate classification readily distinguished fine sediment, Sand and Bedrock from the other substrate types, but had greater difficulty distinguishing Bedrock from Boulders and Cobble. The biotope classification accurately identified Gardens (dense aggregations of sponges and corals) and Primnoa-dominated biotopes (67% accuracy), but most other biotopes had lower accuracies. There was a significant correspondence between Learmonth's biotopes and substrate types, with many biotopes strongly associated with only a single substrate type. This strong correspondence allowed substrate types to function as a surrogate for helping to map biotope distributions. Our results add new information on the distribution of corals and sponges at Learmonth Bank, which can be used to guide management at this location.

  9. Temperature shapes coral-algal symbiosis in the South China Sea

    NASA Astrophysics Data System (ADS)

    Tong, Haoya; Cai, Lin; Zhou, Guowei; Yuan, Tao; Zhang, Weipeng; Tian, Renmao; Huang, Hui; Qian, Pei-Yuan

    2017-01-01

    With the increase in sea surface temperature (SST), scleractinian corals are exposed to bleaching threats but may possess certain flexibilities in terms of their associations with symbiotic algae. Previous studies have shown a close symbiosis between coral the and Symbiodinium; however, the spatial variation of the symbiosis and the attribution underlying are not well understood. In the present study, we examined coral-algal symbiosis in Galaxea fascicularis and Montipora spp. from three biogeographic regions across ~10° of latitude in the South China Sea. Analysis of similarities (ANOSIM) indicated a highly flexible coral-algal symbiosis in both G. fascicularis and Montipora spp. and canonical correspondence analysis (CCA) showed that temperature explained 83.2% and 60.1% of the explanatory subclade variations in G. fascicularis and Montipora spp., respectively, which suggested that temperature was the main environmental factor contributing to the diversity of Symbiodinium across the three regions. The geographic specificity of the Symbiodinium phylogeny was identified, revealing possible environmental selection across the three regions. These results suggest that scleractinian corals may have the ability to regulate Symbiodinium community structures under different temperatures and thus be able to adapt to gradual climate change.

  10. Temperature shapes coral-algal symbiosis in the South China Sea

    PubMed Central

    Tong, Haoya; Cai, Lin; Zhou, Guowei; Yuan, Tao; Zhang, Weipeng; Tian, Renmao; Huang, Hui; Qian, Pei-Yuan

    2017-01-01

    With the increase in sea surface temperature (SST), scleractinian corals are exposed to bleaching threats but may possess certain flexibilities in terms of their associations with symbiotic algae. Previous studies have shown a close symbiosis between coral the and Symbiodinium; however, the spatial variation of the symbiosis and the attribution underlying are not well understood. In the present study, we examined coral-algal symbiosis in Galaxea fascicularis and Montipora spp. from three biogeographic regions across ~10° of latitude in the South China Sea. Analysis of similarities (ANOSIM) indicated a highly flexible coral-algal symbiosis in both G. fascicularis and Montipora spp. and canonical correspondence analysis (CCA) showed that temperature explained 83.2% and 60.1% of the explanatory subclade variations in G. fascicularis and Montipora spp., respectively, which suggested that temperature was the main environmental factor contributing to the diversity of Symbiodinium across the three regions. The geographic specificity of the Symbiodinium phylogeny was identified, revealing possible environmental selection across the three regions. These results suggest that scleractinian corals may have the ability to regulate Symbiodinium community structures under different temperatures and thus be able to adapt to gradual climate change. PMID:28084322

  11. Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa

    USGS Publications Warehouse

    Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.

    2011-01-01

    Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.

  12. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis

    PubMed Central

    Kvitt, Hagit; Kramarsky-Winter, Esti; Maor-Landaw, Keren; Zandbank, Keren; Kushmaro, Ariel; Rosenfeld, Hanna; Fine, Maoz; Tchernov, Dan

    2015-01-01

    Certain stony corals can alternate between a calcifying colonial form and noncalcifying solitary polyps, supporting the hypothesis that corals have survived through geologic timescale periods of unfavorable calcification conditions. However, the mechanisms enabling this biological plasticity are yet to be identified. Here we show that incubation of two coral species (Pocillopora damicornis and Oculina patagonica) under reduced pH conditions (pH 7.2) simulating past ocean acidification induce tissue-specific apoptosis that leads to the dissociation of polyps from coenosarcs. This in turn leads to the breakdown of the coenosarc and, as a consequence, to loss of coloniality. Our data show that apoptosis is initiated in the polyps and that once dissociation between polyp and coenosarc terminates, apoptosis subsides. After reexposure of the resulting solitary polyps to normal pH (pH 8.2), both coral species regenerated coenosarc tissues and resumed calcification. These results indicate that regulation of coloniality is under the control of the polyp, the basic modular unit of the colony. A mechanistic explanation for several key evolutionarily important phenomena that occurred throughout coral evolution is proposed, including mechanisms that permitted species to survive the third tier of mass extinctions. PMID:25646434

  13. Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico

    PubMed Central

    Green, Elizabeth A.; Davies, Sarah W.; Matz, Mikhail V.

    2014-01-01

    The genetic composition of the resident Symbiodinium endosymbionts can strongly modulate the physiological performance of reef-building corals. Here, we used quantitative metabarcoding to investigate Symbiodinium genetic diversity in two species of mountainous star corals, Orbicella franksi and Orbicella faveolata, from two reefs separated by 19 km of deep water. We aimed to determine if the frequency of different symbiont genotypes varied with respect to coral host species or geographic location. Our results demonstrate that across the two reefs both coral species contained seven haplotypes of Symbiodinium, all identifiable as clade B and most closely related to type B1. Five of these haplotypes have not been previously described and may be endemic to the Flower Garden Banks. No significant differences in symbiont composition were detected between the two coral species. However, significant quantitative differences were detected between the east and west banks for three background haplotypes comprising 0.1%–10% of the total. The quantitative metabarcoding approach described here can help to sensitively characterize cryptic genetic diversity of Symbiodinium and potentially contribute to the understanding of physiological variations among coral populations. PMID:24883247

  14. Genetic markers for antioxidant capacity in a reef-building coral.

    PubMed

    Jin, Young K; Lundgren, Petra; Lutz, Adrian; Raina, Jean-Baptiste; Howells, Emily J; Paley, Allison S; Willis, Bette L; van Oppen, Madeleine J H

    2016-05-01

    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs.

  15. Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico.

    PubMed

    Green, Elizabeth A; Davies, Sarah W; Matz, Mikhail V; Medina, Mónica

    2014-01-01

    The genetic composition of the resident Symbiodinium endosymbionts can strongly modulate the physiological performance of reef-building corals. Here, we used quantitative metabarcoding to investigate Symbiodinium genetic diversity in two species of mountainous star corals, Orbicella franksi and Orbicella faveolata, from two reefs separated by 19 km of deep water. We aimed to determine if the frequency of different symbiont genotypes varied with respect to coral host species or geographic location. Our results demonstrate that across the two reefs both coral species contained seven haplotypes of Symbiodinium, all identifiable as clade B and most closely related to type B1. Five of these haplotypes have not been previously described and may be endemic to the Flower Garden Banks. No significant differences in symbiont composition were detected between the two coral species. However, significant quantitative differences were detected between the east and west banks for three background haplotypes comprising 0.1%-10% of the total. The quantitative metabarcoding approach described here can help to sensitively characterize cryptic genetic diversity of Symbiodinium and potentially contribute to the understanding of physiological variations among coral populations.

  16. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture.

    PubMed

    Den Uyl, Paul A; Richardson, Laurie L; Jain, Sunit; Dick, Gregory J

    2016-01-01

    Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification of reactive oxygen species and resistance to antibiotics suggest mechanisms for combating coral defense strategies. This study builds upon previous research on BBD and provides new insights into BBD disease etiology.

  17. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture

    PubMed Central

    Den Uyl, Paul A.; Richardson, Laurie L.; Jain, Sunit

    2016-01-01

    Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification of reactive oxygen species and resistance to antibiotics suggest mechanisms for combating coral defense strategies. This study builds upon previous research on BBD and provides new insights into BBD disease etiology. PMID:27336619

  18. A Possible Role for Vitamin C in Coral Calcification

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. J.; Roberson, L.; Vazquez, N.

    2016-02-01

    Despite the importance of coral reefs to tropical, marine ecosystems, the biological components of the calcification process are poorly understood. Because calcification must involve the delivery of organic and inorganic components across cell membranes, we postulate that it has similar features to epithelial and neuronal transport mechanisms in vertebrates. Accordingly, we are interested in identifying the specific membrane transporters underlying skeleton formation. As a model, we are using larvae from the ubiquitous Caribbean species Porites astreoides, a rapidly growing stony coral that is resistant to anthropogenic stressors. Using Illumina RNAseq, we assembled a larval transcriptome and compared gene expression between swimming larvae and recently settled ones that had just commenced the process of calcification. As expected, we identified many ion transporter, pump and channel transcripts that were upregulated in settled larvae. It was surprising, however, to find that the most upregulated transcript appeared to encode a Na-dependent Vitamin C transporter (SLC23A). In vertebrates, SLC23A transporters play a vital role in bone morphogenesis where Vitamin C is an essential cofactor for enzymes that condition collagen precursors for assembly into mature molecules. In corals, collagen has been identified as a component of the skeleton's extracellular matrix. Using in situ hybridization, we showed that the P. astreoides SLC23A messages were expressed in regions adjacent to rapid skeleton formation, on the aboral surface and septa of settled larvae. To confirm that the coral clone is indeed a Vitamin C transporter, we expressed it in Xenopus oocytes and studied its activity using voltage-clamp. Preliminary data demonstrate that it induces a current that is activated by Na and Vitamin C. This approach will help us better understand the molecular mechanisms underlying calcification and how they might respond to environmental change.

  19. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.

    PubMed

    Foden, Wendy B; Butchart, Stuart H M; Stuart, Simon N; Vié, Jean-Christophe; Akçakaya, H Resit; Angulo, Ariadne; DeVantier, Lyndon M; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A; Hughes, Adrian F; O'Hanlon, Susannah E; Garnett, Stephen T; Sekercioğlu, Cagan H; Mace, Georgina M

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.

  20. Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

    PubMed Central

    Foden, Wendy B.; Butchart, Stuart H. M.; Stuart, Simon N.; Vié, Jean-Christophe; Akçakaya, H. Resit; Angulo, Ariadne; DeVantier, Lyndon M.; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D.; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A.; Hughes, Adrian F.; O’Hanlon, Susannah E.; Garnett, Stephen T.; Şekercioğlu, Çagan H.; Mace, Georgina M.

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts. PMID:23950785

  1. Monitoring Land Based Sources of Pollution over Coral Reefs using VIIRS Ocean Color Products

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Strong, A. E.; Eakin, C. M.; Wang, M.; Hernandez, W. J.; Cardona Maldonado, M. A.; De La Cour, J. L.; Liu, G.; Tirak, K.; Heron, S. F.; Skirving, W. J.; Armstrong, R.; Warner, R. A.

    2016-02-01

    NOAA's Coral Reef Watch (CRW) program and the NESDIS Ocean Color Team are developing new products to monitor land based sources of pollution (LBSP) over coral reef ecosystems using the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the S-NPP satellite. LBSP are a major threat to corals that can cause disease and mortality, disrupt critical ecological reef functions, and impede growth, reproduction, and larval settlement, among other impacts. From VIIRS, near-real-time satellite products of Chlorophyll-a, Kd(490), and sea surface temperature are being developed for three U.S. Coral Reef Task Force priority watershed sites - Ka'anapali (West Maui, Hawai'i), Faga'alu (American Samoa), and Guánica Bay (Puerto Rico). Background climatological levels of these parameters are being developed to construct anomaly products. Time-series data are being generated to monitor changes in water quality in near-real-time and provide information on historical variations, especially following significant rain events. A pilot calibration/validation field study of the VIIRS-based ocean color products is underway in Puerto Rico; we plan to expand this validation effort to the other two watersheds. Working with local resource managers, we have identified a focal area for product development and validation for each watershed and its associated local reefs. This poster will present preliminary results and identify a path forward to ensure marine resource managers understand and correctly use the new ocean color products, and to help NOAA CRW refine its satellite products to maximize their benefit to coral reef management. NOAA - National Oceanic and Atmospheric Administration NESDIS - NOAA/National Environmental Satellite, Data, and Information Service S-NPP - Suomi National Polar-orbiting Partnership

  2. Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral.

    PubMed

    Warner, Patricia A; Willis, Bette L; van Oppen, Madeleine J H

    2016-03-01

    Within populations of brooding sessile corals, sperm dispersal constitutes the mechanism by which gametes interact and mating occurs, and forms the first link in the network of processes that determine specieswide connectivity patterns. However, almost nothing is known about sperm dispersal for any internally fertilizing coral. In this study, we conducted a parentage analysis on coral larvae collected from an area of mapped colonies, to measure the distance sperm disperses for the first time in a reef-building coral and estimated the mating system characteristics of a recently identified putative cryptic species within the Seriatopora hystrix complex (ShA; Warner et al. 2015). We defined consensus criteria among several replicated methods (COLONY 2.0, CERVUS 3.0, MLTR v3.2) to maximize accuracy in paternity assignments. Thirteen progeny arrays indicated that this putative species produces exclusively sexually derived, primarily outcrossed larvae (mean t(m) = 0.999) in multiple paternity broods (mean r(p) = 0.119). Self-fertilization was directly detected at low frequency for all broods combined (2.8%), but comprised 23% of matings in one brood. Although over 82% of mating occurred between colonies within 10 m of each other (mean sperm dispersal = 5.5 m ± 4.37 SD), we found no evidence of inbreeding in the established population. Restricted dispersal of sperm compared to slightly greater larval dispersal appears to limit inbreeding among close relatives in this cryptic species. Our findings establish a good basis for further work on sperm dispersal in brooding corals and provide the first information about the mating system of a newly identified and abundant cryptic species. © 2016 John Wiley & Sons Ltd.

  3. Late Quaternary Deformation and Relative Sea Level Changes in Southwest Luzon, Philippines Constrained from Emergent Coral Reef Terraces

    NASA Astrophysics Data System (ADS)

    Maxwell, K. V.; Ramos, N. T.; Tsutsumi, H.; Shen, C. C.

    2017-12-01

    Emergent coral reef terraces fringing the islands of Lubang and Cabra located offshore southwest Luzon Island, Philippines are studied to understand Late Quaternary deformation and relative sea level changes along the southern terminus of the Manila subduction zone. In both islands, the emergent coral reef platforms have two to three terrace steps with meter-scale terrace risers and often well preserved. We also observed varied elevations of emergent coral reef platforms in both localities. In the northwest portion of Lubang Island, we identified three terrace steps, which rise to about 5 m above mean sea level (amsl). Cabra Island is a coral island that is fringed by two to possibly three steps of emergent coral reef terraces rising up to 11.9 m amsl with TI measured at 3-6 m, TII: 7-8 m, and TIII: 11.9 m amsl. Age constraints are provided by Thorium-230 of fossil corals taken on terrace surfaces. Thorium-230 ages obtained from attached fossil coral samples yielded mid-Holocene ages of 5,121 ± 16 and 3,221 ± 10 years BP. Late Holocene ages of 76 ± 2, 153 ± 2, and 330 ± 3 years BP are meanwhile provided by coral boulders found on the surface of TI in Cabra Island. The two sets of Holocene ages provide interesting insights on relative sea level changes and uplift along the southern end of the Manila Trench. The mid-Holocene ages possibly account for accumulated uplift in southwest Luzon while the late Holocene ages could provide evidence for extreme wave events that occurred in the region since the 1600s.

  4. Contrasting light spectra constrain the macro and microstructures of scleractinian corals.

    PubMed

    Rocha, Rui J M; Silva, Ana M B; Fernandes, M Helena Vaz; Cruz, Igor C S; Rosa, Rui; Calado, Ricardo

    2014-01-01

    The morphological plasticity of scleractinian corals can be influenced by numerous factors in their natural environment. However, it is difficult to identify in situ the relative influence of a single biotic or abiotic factor, due to potential interactions between them. Light is considered as a major factor affecting coral skeleton morphology, due to their symbiotic relation with photosynthetic zooxanthellae. Nonetheless, most studies addressing the importance of light on coral morphological plasticity have focused on photosynthetically active radiation (PAR) intensity, with the effect of light spectra remaining largely unknown. The present study evaluated how different light spectra affect the skeleton macro- and microstructures in two coral species (Acropora formosa sensu Veron (2000) and Stylophora pistillata) maintained under controlled laboratory conditions. We tested the effect of three light treatments with the same PAR but with a distinct spectral emission: 1) T5 fluorescent lamps with blue emission; 2) Light Emitting Diodes (LED) with predominantly blue emission; and 3) Light Emitting Plasma (LEP) with full spectra emission. To exclude potential bias generated by genetic variability, the experiment was performed with clonal fragments for both species. After 6 months of experiment, it was possible to detect in coral fragments of both species exposed to different light spectra significant differences in morphometry (e.g., distance among corallites, corallite diameter, and theca thickness), as well as in the organization of their skeleton microstructure. The variability found in the skeleton macro- and microstructures of clonal organisms points to the potential pitfalls associated with the exclusive use of morphometry on coral taxonomy. Moreover, the identification of a single factor influencing the morphology of coral skeletons is relevant for coral aquaculture and can allow the optimization of reef restoration efforts.

  5. Soft Corals Biodiversity in the Egyptian Red Sea: A Comparative MS and NMR Metabolomics Approach of Wild and Aquarium Grown Species.

    PubMed

    Farag, Mohamed A; Porzel, Andrea; Al-Hammady, Montasser A; Hegazy, Mohamed-Elamir F; Meyer, Achim; Mohamed, Tarik A; Westphal, Hildegard; Wessjohann, Ludger A

    2016-04-01

    Marine life has developed unique metabolic and physiologic capabilities and advanced symbiotic relationships to survive in the varied and complex marine ecosystems. Herein, metabolite composition of the soft coral genus Sarcophyton was profiled with respect to its species and different habitats along the coastal Egyptian Red Sea via (1)H NMR and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) large-scale metabolomics analyses. The current study extends the application of comparative secondary metabolite profiling from plants to corals revealing for metabolite compositional differences among its species via a comparative MS and NMR approach. This was applied for the first time to investigate the metabolism of 16 Sarcophyton species in the context of their genetic diversity or growth habitat. Under optimized conditions, we were able to simultaneously identify 120 metabolites including 65 diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids. Principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS) were used to define both similarities and differences among samples. For a compound based classification of coral species, UPLC-MS was found to be more effective than NMR. The main differentiations emanate from cembranoids and oxylipids. The specific metabolites that contribute to discrimination between soft corals of S. ehrenbergi from the three different growing habitats also belonged to cembrane type diterpenes, with aquarium S. ehrenbergi corals being less enriched in cembranoids compared to sea corals. PCA using either NMR or UPLC-MS data sets was found equally effective in predicting the species origin of unknown Sarcophyton. Cyclopropane containing sterols observed in abundance in corals may act as cellular membrane protectant against the action of coral toxins, that is, cembranoids.

  6. Modeling fine-scale coral larval dispersal and interisland connectivity to help designate mutually-supporting coral reef marine protected areas: Insights from Maui Nui, Hawaii

    USGS Publications Warehouse

    Storlazzi, Curt; van Ormondt, Maarten; Chen, Yi-Leng; Elias, Edwin P. L.

    2017-01-01

    Connectivity among individual marine protected areas (MPAs) is one of the most important considerations in the design of integrated MPA networks. To provide such information for managers in Hawaii, USA, a numerical circulation model was developed to determine the role of ocean currents in transporting coral larvae from natal reefs throughout the high volcanic islands of the Maui Nui island complex in the southeastern Hawaiian Archipelago. Spatially- and temporally-varying wind, wave, and circulation model outputs were used to drive a km-scale, 3-dimensional, physics-based circulation model for Maui Nui. The model was calibrated and validated using satellite-tracked ocean surface current drifters deployed during coral-spawning conditions, then used to simulate the movement of the larvae of the dominant reef-building coral, Porites compressa, from 17 reefs during eight spawning events in 2010–2013. These simulations make it possible to investigate not only the general dispersal patterns from individual coral reefs, but also how anomalous conditions during individual spawning events can result in large deviations from those general patterns. These data also help identify those reefs that are dominated by self-seeding and those where self-seeding is limited to determine their relative susceptibility to stressors and potential roadblocks to recovery. Overall, the numerical model results indicate that many of the coral reefs in Maui Nui seed reefs on adjacent islands, demonstrating the interconnected nature of the coral reefs in Maui Nui and providing a key component of the scientific underpinning essential for the design of a mutually supportive network of MPAs to enhance conservation of coral reefs.

  7. Coral reef fish assemblages along a disturbance gradient in the northern Persian Gulf: A seasonal perspective.

    PubMed

    Ghazilou, Amir; Shokri, Mohammad Reza; Gladstone, William

    2016-04-30

    Seasonal dynamics of coral reef fish assemblages were assessed along a gradient of potential anthropogenic disturbance in the Northern Persian Gulf. Overall, the attributes of coral reef fish assemblages showed seasonality at two different levels: seasonal changes irrespective of the magnitude of disturbance level (e.g. species richness), and seasonal changes in response to disturbance level (e.g. total abundance and assemblage composition). The examined parameters mostly belonged to the second group, but the interpretation of the relationship between patterns of seasonal changes and the disturbance level was not straightforward. The abundance of carnivorous fishes did not vary among seasons. SIMPER identified the family Nemipteridae as the major contributor to the observed spatiotemporal variations in the composition of coral reef fish assemblages in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Identification of a molecular pH sensor in coral.

    PubMed

    Barott, Katie L; Barron, Megan E; Tresguerres, Martin

    2017-11-15

    Maintaining stable intracellular pH (pHi) is essential for homeostasis, and requires the ability to both sense pH changes that may result from internal and external sources, and to regulate downstream compensatory pH pathways. Here we identified the cAMP-producing enzyme soluble adenylyl cyclase (sAC) as the first molecular pH sensor in corals. sAC protein was detected throughout coral tissues, including those involved in symbiosis and calcification. Application of a sAC-specific inhibitor caused significant and reversible pHi acidosis in isolated coral cells under both dark and light conditions, indicating sAC is essential for sensing and regulating pHi perturbations caused by respiration and photosynthesis. Furthermore, pHi regulation during external acidification was also dependent on sAC activity. Thus, sAC is a sensor and regulator of pH disturbances from both metabolic and external origin in corals. Since sAC is present in all coral cell types, and the cAMP pathway can regulate virtually every aspect of cell physiology through post-translational modifications of proteins, sAC is likely to trigger multiple homeostatic mechanisms in response to pH disturbances. This is also the first evidence that sAC modulates pHi in any non-mammalian animal. Since corals are basal metazoans, our results indicate this function is evolutionarily conserved across animals. © 2017 The Author(s).

  9. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses

    NASA Astrophysics Data System (ADS)

    Salvo, Flora; Hamoutene, Dounia; Hayes, Vonda E. Wareham; Edinger, Evan N.; Parrish, Christopher C.

    2018-03-01

    The trophic behavior of some deep-sea Newfoundland cold-water corals was explored using fatty acid (FA) and lipid profiles. No significant effect of geographic location and/or depth was identified in lipid or FA composition. However, differences were detected between and within taxon groups in hexa- or octocoral subclasses. Phospholipids constituted the main lipid class in all groups except black-thorny corals which had less structural lipids likely due to their morphology (stiff axes) and slower growth rates. Within each subclass, major differences in the identity of dominant FAs were detected at the order level, whereas differences between species and taxon groups of the same order were mainly driven by a variation in proportions of the dominant FA. Soft corals and gorgonians (Order Alcyonacea) were close in composition and are likely relying on phytodetritus resulting from algae, macrophytes and/or foraminifera, while sea pens (Order Pennatulacea) seem to consume more diatoms and/or herbivorous zooplankton with the exception of Pennatula sp. In the hexacoral subclass, black-thorny corals ( Stauropathes arctica) differed significantly from the stony-cup corals ( Flabellum alabastrum); S. arctica was seemingly more carnivorous (zooplankton markers) than F. alabastrum, which appears omnivorous (phyto- and zooplankton markers). Our results suggest that deep-sea corals are not as opportunistic as expected but have some selective feeding associated with taxonomy.

  10. A Coral-based Reconstruction of Interannual Climate Variability at Vanuatu during the Medieval Climate Anomaly (950-1250 CE)

    NASA Astrophysics Data System (ADS)

    Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.

    2016-12-01

    The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of proxy records. We investigate the El Niño-Southern Oscillation (ENSO), the leading mode of global interannual variability, during the MCA using geochemical records developed from well preserved fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15° 37' S, 166° 54.5' E). We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity) variability associated with ENSO. We present Sr/Ca and δ18O data from a 1.68-m-long Porites lutea coral head collected from Tasmaloum, Vanuatu. An absolute U/Th date of 1127.1 ± 2.7 CE indicates that the selected coral lived during the MCA. Preliminary assessment of >65 years of monthly resolved Sr/Ca data yields a mean value of 8.937 ± 0.120 mmol/mol (2σ, n = 757), and an average seasonal cycle of 0.156 ± 0.009 mmol/mol or 2.7 ± 0.1°C based on modern Sr/Ca-SST calibrations. We find that the magnitude and variability of the SST seasonal cycle is comparable to gridded and in situ SST datasets for Vanuatu as well as a published, modern 165 year-long coral record from Sabine Bank, Vanuatu, located 90 km to the SW of Tasmaloum. Applying a 2-8 year band pass filter to the Sr/Ca time series, we identify 8 El Niño and 3 La Niña events based on Sr/Ca (SST) anomalies. Preliminary assessment of >45 years of paired δ18O measurements yields a mean value of -4.67 ± 0.43‰ (2σ, n = 373). We also identify ENSO activity in the 2-8 year band pass filtered data. We expect to develop a 120-year record of paired coral Sr/Ca and δ18O measurements when data acquisition is complete, which will be used to investigate the frequency and magnitude of ENSO events during the MCA.

  11. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    USGS Publications Warehouse

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  12. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global climate change emphasize the need for more effective identification and protection of ecosystem components that are critical for the prevention of coral reef phase shifts.

  13. SSTs from Fossil Corals using Sr-U Thermometry

    NASA Astrophysics Data System (ADS)

    Cohen, A. L.; Alpert, A.; Soucy, A.; DeCarlo, T. M.; Vasquez-Bedoya, L. F.; Blanchon, P.; Oppo, D.; Gaetani, G. A.

    2017-12-01

    Earth's climate varies naturally on decadal through millennial timescales. Resolving and attributing the anthropogenic influence on climate therefore, requires accurate, continuous records that exceed the duration of the short observational dataset. Sea surface temperatures (SSTs) of warm tropical regions are especially important because the tropics are regions of deep atmospheric convection that redistribute heat and moisture. The skeletons of long-lived corals are valuable archives of tropical ocean temperature, yet the pre-instrumental SST evolution of the global tropical oceans remains poorly constrained. One reason is the limited lifespan of individual coral colonies, which seldom exceeds 150-200 years. Thus, extending SST records well beyond the observational period requires use of well-dated sub-fossil material but the current coral-based temperature proxy, Sr/Ca, is not well-suited for application to non-living material. The sensitivity of the Sr/Ca-SST relationship can vary from coral to coral, limiting the accuracy with which absolute temperature and trends can be interpreted from non-living corals. To overcome this constraint, we developed a new thermometer, Sr-U, based on a robust understanding of the processes responsible for colony-to-colony variability. Our Sr-U SST calibration is derived from three coral species representing two Atlantic and one Pacific site, validated against the instrumental record of SST and spanning a temperature range of 24.5 through 28.5 °C. We applied Sr-U to U-series dated fossil corals that grew on tropical Atlantic reefs during the Little Ice Age (1450-1650 AD) and Last Interglacial (122 000 yr BP). Our results show that SSTs in the region fluctuated within 1°C of modern values, with much of the late LIA slightly cooler and the LIG slightly warmer than late 20th century SSTs. Each continuous coral-based record spans multiple decades, enabling us to identify multi-decadal AMO-like variability as a persistent characteristic of tropical Atlantic variability.

  14. Modelling detrital coral grain-size and age: Insights from sediment abrasion process of Yongle Atoll of South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zou, X.; Ge, C.; Tan, M.; Wang, C.

    2017-12-01

    Reef islands situated on the rims of atolls are composed almost exclusively of bioclastic materials locally supplied from adjacent coral reefs. Major skeletal component of these islands include coral, coralline algae, mollusks and foraminifera, produced in adjacent reefs. As the island builder, the bioclastic material is the sedimentary products, which also is the point of penetration to decipher the process. The bioclast of coral islands decrease in size with the transportation process. The grain-size provides a proxy record for the abrasion history of the unconsolidated sediment. The 230Th age of coral record the abrasion time. We hereby present a model to calculate the abrasion rate based on the data of 230Th age and grain-size of Yongle Atoll of Xisha Island, South China Sea. The grain size pattern in Yongle Atoll environment have confirm that the coral article diminution behave exponentially. The sediment composition of Yongle Atoll is identified, coral is dominant sediment constituent and the Th230 age is shown to exert an age distribution characteristics of coral detritus. We illustrate this approach by calculate the coral debris age of Xude Atoll, which located near the Yongle Atoll and then by comparing actual measured age and calculated age and to explore the dependence of the model. Observed 230 Th ages are well matched by predicted ages for medium age sediment. A poorer match for young and old sediment may result from some combination of large analytical uncertainties in the detrital ages and inhomogeneous erosion rates within the atoll. Such mismatches emphasize the need for more accurate kinematic models and for sampling strategies that are adapted to atoll-specific geologic and geomorphic conditions. Results presented constitute important new insights into regional sediment abrasion processed and on the evolution of coral atoll islands.

  15. Coral skeletal geochemistry as a monitor of inshore water quality.

    PubMed

    Saha, Narottam; Webb, Gregory E; Zhao, Jian-Xin

    2016-10-01

    Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current 'state of the art' in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and [sup 234]U/[sup 238]U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar-Matthews, M.; Wasserburg, G.J.; Chen, J.H.

    1993-01-01

    A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographic and trace element analyses on a suite of Pleistocene samples that had previously been studied from [sup 234]U, [sup 230]Th, and U-[sup 230]Th ages (Chen et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles aremore » highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial [delta][sup 234]U, are generally correlated (Chen et al., 1991). As all these diagenetic changes involve the recystallization and deposition of aragonite, the authors infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the [sup 234]U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U-[sup 230]Th dating. The basic problem of identifying a priori unaltered coral skeletons for [sup 230]Th dating is not yet resolved. 64 refs., 16 figs., 5 tabs.« less

  17. Coral Ensemble Estimates of Central Pacific Mean Climate During the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Sayani, H. R.; Cobb, K. M.; O'Connor, G.; Khare, A.; Atwood, A. R.; Grothe, P. R.; Chen, T.; Hagos, M. M.; Hitt, N. T.; Thompson, D. M.; Deocampo, D.; Lu, Y.; Cheng, H.; Edwards, R. L.

    2016-12-01

    Multi-century, robust records of tropical Pacific sea-surface temperature (SST) and salinity (SSS) variability from the pre-industrial era are needed to quantify anthropogenic contributions to present-day climate trends and to improve the accuracy of regional climate projections. However, high-resolution reconstructions of tropical Pacific climate are scarce prior to the 20th century, and only a handful exist from the Little Ice Age (LIA, 1500-1850CE) immediately prior to the documented rise of anthropogenic greenhouse gases. Modern and fossil corals from the northern Line Islands (2-6°N, 157-162°W) have been used to extend the instrumental climate record back into the LIA and beyond, primarily for paleo-ENSO investigations [Cobb et al., 2003, 2013]. However, large offsets in mean coral Sr/Ca and δ18O values observed across overlapping coral colonies translate into 1-2°C (1σ) uncertainties for mean climate reconstructions based on any single fossil coral colony. Here we present the results of a new approach to reconstructing mean climate during the LIA using a large ensemble (N>10) of relatively short (7-15yr long), U/Th-dated fossil corals from Christmas Island (2°N, 157°W). We employ pseudo-coral estimates of paleo-SST and paleo-seawater δ18O variations as benchmarks for our reconstructions, with a focus on quantifying the maximum and minimum potential tropical Pacific SST changes during the LIA that are consistent with our new ensemble of coral data. Lastly, by comparing bulk and high-resolution coral d18O and Sr/Ca records, we identify the strengths and limitations of using a high-N, ensemble approach to climate reconstruction from fossil corals. References:Cobb, K. M., et al. (2003) Nature. doi:10.1038/nature01779Cobb, K. M., et al. (2013) Science. doi: 10.1126/science.1228246

  18. Biomonitor of Environmental Stress: Coral Trace Metal Analysis

    NASA Astrophysics Data System (ADS)

    Grumet, N.; Hughen, K.

    2006-12-01

    Tropical reef corals are extremely sensitive to changes in environmental conditions and, as a result of environmental degradation and global climate change, coral reefs around the globe are severely threatened. Increased human population and development in tropical regions is leading to higher turbidity and silt loading from terrestrial runoff, increased pesticides and nutrients from agricultural land-use and sewage, and the release of toxic trace metals to coastal waters from industrial pollution. The uptake of these metals and nutrients within the coral skeletal aragonite is a sensitive biomonitor of environmental stresses on coral health. We analyzed 18 trace metals from the surface of coral skeletons collected in Bermuda, Indonesia and Belize to assess a range of threats to coral reef health - including climate change, agricultural runoff and pesticides, and coastal development and tourism. This surface sample network also includes samples representing 4 different coral species. Trace metal analysis was performed on an inductively coupled plasma mass spectrometer (ICP-MS) to a high degree of accuracy and precision at extremely low (ppb) concentrations using a protocol we developed for samples less than 2 mg. Proper cleaning techniques were employed to minimize blank level concentrations for ultra-trace metal ICP-MS solution analysis. However, Zn/Ca and Ni/Ca concentrations remain below analytical detection limits. Initial results indicate that sea surface temperature proxies (e.g., Sr/Ca, B/Ca and Mg/Ca) display similar ratios between the different sites, whereas those metals associated with anthropogenic activities, such as Co, Pb and Cu, are site-specific and are linked to individual environmental stressors. Results from this study will be applied to down core trace metal records in the future. In doing so, we aim to understand the impacts of compounding environmental stresses on coral health, and to identify regional threshold values beyond which corals become susceptible to disease, bleaching and death.

  19. In-situ Effects of Eutrophication and Overfishing on Physiology and Bacterial Diversity of the Red Sea Coral Acropora hemprichii

    PubMed Central

    Jessen, Christian; Villa Lizcano, Javier Felipe; Bayer, Till; Roder, Cornelia; Aranda, Manuel; Wild, Christian; Voolstra, Christian R

    2013-01-01

    Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ 15N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account. PMID:23630625

  20. Analytical pyrolysis-based study on intra-skeletal organic matrices from Mediterranean corals.

    PubMed

    Adamiano, Alessio; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren; Fermani, Simona; Fabbri, Daniele; Falini, Giuseppe

    2014-09-01

    Off-line analytical pyrolysis combined with gas chromatography–mass spectroscopy (GC–MS), directly or after trimethylsilylation, along with infrared spectroscopy and amino acid analysis was applied for the first time to the characterization of the intra-skeletal organic matrix (OM) extracted from four Mediterranean hard corals. They were diverse in growth form and trophic strategy namely Balanophyllia europaea and Leptopsammia pruvoti—solitary corals, only the first having zooxanthelle—and Cladocora caespitosa and Astroides calycularis—colonial corals, only the first with zooxanthelle. Pyrolysis products evolved from OM could be assigned to lipid (e.g. fatty acids, fatty alcohols, monoacylglicerols), protein (e.g. 2,5-diketopiperazines, DKPs) and polysaccharide (e.g. anhydrosugars) precursors. Their quantitative distribution showed for all the species a low protein content with respect to lipids and polysaccharides. A chemometric approach using principal component analysis (PCA) and clustering analysis was applied on OM mean amino acidic compositions. The small compositional diversity across coral species was tentatively related with coral growth form. The presence of N-acetyl glucosamine markers suggested a functional link with other calcified tissues containing chitin. The protein fraction was further investigated using novel DKP markers tentatively identified from analytical pyrolysis of model polar linear dipeptides. Again, no correlation was observed in relation to coral ecology. These analytical results revealed that the bulk structure and composition of OMs among studied corals are similar, as it is the textural organization of the skeleton mineralized units. Therefore, they suggest that coral’s biomineralization is governed by similar macromolecules, and probably mechanisms, independently from their ecology.

  1. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation

    NASA Astrophysics Data System (ADS)

    Wienberg, Claudia; Titschack, Jürgen; Freiwald, André; Frank, Norbert; Lundälv, Tomas; Taviani, Marco; Beuck, Lydia; Schröder-Ritzrau, Andrea; Krengel, Thomas; Hebbeln, Dierk

    2018-04-01

    The largest coherent cold-water coral (CWC) mound province in the Atlantic Ocean exists along the Mauritanian margin, where up to 100 m high mounds extend over a distance of ∼400 km, arranged in two slope-parallel chains in 400-550 m water depth. Additionally, CWCs are present in the numerous submarine canyons with isolated coral mounds being developed on some canyon flanks. Seventy-seven Uranium-series coral ages were assessed to elucidate the timing of CWC colonisation and coral mound development along the Mauritanian margin for the last ∼120,000 years. Our results show that CWCs were present on the mounds during the Last Interglacial, though in low numbers corresponding to coral mound aggradation rates of 16 cm kyr-1. Most prolific periods for CWC growth are identified for the last glacial and deglaciation, resulting in enhanced mound aggradation (>1000 cm kyr-1), before mound formation stagnated along the entire margin with the onset of the Holocene. Until today, the Mauritanian mounds are in a dormant state with only scarce CWC growth. In the canyons, live CWCs are abundant since the Late Holocene at least. Thus, the canyons may serve as a refuge to CWCs potentially enabling the observed modest re-colonisation pulse on the mounds along the open slope. The timing and rate of the pre-Holocene coral mound aggradation, and the cessation of mound formation varied between the individual mounds, which was likely the consequence of vertical/lateral changes in water mass structure that placed the mounds near or out of oxygen-depleted waters, respectively.

  2. Seawater 234U/238U recorded by modern and fossil corals

    NASA Astrophysics Data System (ADS)

    Chutcharavan, Peter M.; Dutton, Andrea; Ellwood, Michael J.

    2018-03-01

    U-series dating of corals is a crucial tool for generating absolute chronologies of Late Quaternary sea-level change and calibrating the radiocarbon timescale. Unfortunately, coralline aragonite is susceptible to post-depositional alteration of its primary geochemistry. One screening technique used to identify unaltered corals relies on the back-calculation of initial 234U/238U activity (δ234Ui) at the time of coral growth and implicitly assumes that seawater δ234U has remained constant during the Late Quaternary. Here, we test this assumption using the most comprehensive compilation to date of coral U-series measurements. Unlike previous compilations, this study normalizes U-series measurements to the same decay constants and corrects for offsets in interlaboratory calibrations, thus reducing systematic biases between reported δ234U values. Using this approach, we reassess (a) the value of modern seawater δ234U, and (b) the evolution of seawater δ234U over the last deglaciation. Modern coral δ234U values (145.0 ± 1.5‰) agree with previous measurements of seawater and modern corals only once the data have been normalized. Additionally, fossil corals in the surface ocean display δ234Ui values that are ∼5-7‰ lower during the last glacial maximum regardless of site, taxon, or diagenetic setting. We conclude that physical weathering of U-bearing minerals exposed during ice sheet retreat drives the increase in δ234U observed in the oceans, a mechanism that is consistent with the interpretation of the seawater Pb-isotope signal over the same timescale.

  3. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the red sea coral Acropora hemprichii.

    PubMed

    Jessen, Christian; Villa Lizcano, Javier Felipe; Bayer, Till; Roder, Cornelia; Aranda, Manuel; Wild, Christian; Voolstra, Christian R

    2013-01-01

    Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ (15)N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account.

  4. Microarray analysis identifies candidate genes for key roles in coral development

    PubMed Central

    Grasso, Lauretta C; Maindonald, John; Rudd, Stephen; Hayward, David C; Saint, Robert; Miller, David J; Ball, Eldon E

    2008-01-01

    Background Anthozoan cnidarians are amongst the simplest animals at the tissue level of organization, but are surprisingly complex and vertebrate-like in terms of gene repertoire. As major components of tropical reef ecosystems, the stony corals are anthozoans of particular ecological significance. To better understand the molecular bases of both cnidarian development in general and coral-specific processes such as skeletogenesis and symbiont acquisition, microarray analysis was carried out through the period of early development – when skeletogenesis is initiated, and symbionts are first acquired. Results Of 5081 unique peptide coding genes, 1084 were differentially expressed (P ≤ 0.05) in comparisons between four different stages of coral development, spanning key developmental transitions. Genes of likely relevance to the processes of settlement, metamorphosis, calcification and interaction with symbionts were characterised further and their spatial expression patterns investigated using whole-mount in situ hybridization. Conclusion This study is the first large-scale investigation of developmental gene expression for any cnidarian, and has provided candidate genes for key roles in many aspects of coral biology, including calcification, metamorphosis and symbiont uptake. One surprising finding is that some of these genes have clear counterparts in higher animals but are not present in the closely-related sea anemone Nematostella. Secondly, coral-specific processes (i.e. traits which distinguish corals from their close relatives) may be analogous to similar processes in distantly related organisms. This first large-scale application of microarray analysis demonstrates the potential of this approach for investigating many aspects of coral biology, including the effects of stress and disease. PMID:19014561

  5. Power analysis as a tool to identify statistically informative indicators for monitoring coral reef disturbances.

    PubMed

    Van Wynsberge, Simon; Gilbert, Antoine; Guillemot, Nicolas; Heintz, Tom; Tremblay-Boyer, Laura

    2017-07-01

    Extensive biological field surveys are costly and time consuming. To optimize sampling and ensure regular monitoring on the long term, identifying informative indicators of anthropogenic disturbances is a priority. In this study, we used 1800 candidate indicators by combining metrics measured from coral, fish, and macro-invertebrate assemblages surveyed from 2006 to 2012 in the vicinity of an ongoing mining project in the Voh-Koné-Pouembout lagoon, New Caledonia. We performed a power analysis to identify a subset of indicators which would best discriminate temporal changes due to a simulated chronic anthropogenic impact. Only 4% of tested indicators were likely to detect a 10% annual decrease of values with sufficient power (>0.80). Corals generally exerted higher statistical power than macro-invertebrates and fishes because of lower natural variability and higher occurrence. For the same reasons, higher taxonomic ranks provided higher power than lower taxonomic ranks. Nevertheless, a number of families of common sedentary or sessile macro-invertebrates and fishes also performed well in detecting changes: Echinometridae, Isognomidae, Muricidae, Tridacninae, Arcidae, and Turbinidae for macro-invertebrates and Pomacentridae, Labridae, and Chaetodontidae for fishes. Interestingly, these families did not provide high power in all geomorphological strata, suggesting that the ability of indicators in detecting anthropogenic impacts was closely linked to reef geomorphology. This study provides a first operational step toward identifying statistically relevant indicators of anthropogenic disturbances in New Caledonia's coral reefs, which can be useful in similar tropical reef ecosystems where little information is available regarding the responses of ecological indicators to anthropogenic disturbances.

  6. Impact of milk fish farming in the tropics on potentially pathogenic vibrios.

    PubMed

    Reichardt, W T; Reyes, J M; Pueblos, M J; Lluisma, A O

    2013-12-15

    Ratios of sucrose-negative to sucrose-positive vibrios on TCBS agar (suc-/suc+) indicate the abundance of potential human pathogenic non-cholera vibrios in coastal mariculture environments of the Lingayen Gulf (Philippines. In guts of adult maricultured milkfish (Chanos chanos) of suc- vibrios reached extreme peak values ranging between 2 and 545 million per g wet weight. Suc- vibrios outnumbered suc+ vibrios in anoxic sediments, too, and were rarely predominant in coastal waters or in oxidized sediments. Suc-/suc+ ratios in sediments increased toward the mariculture areas with distance from the open sea at decreasing redox potentials. There is circumstantial evidence that suc- vibrios can be dispersed from mariculture areas to adjacent environments including coral reefs. An immediate human health risk by pathogenic Vibrio species is discounted, since milkfish guts contained mainly members of the Enterovibrio group. A representative isolate of these contained proteolytic and other virulence factors, but no genes encoding toxins characteristic of clinical Vibrio species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Pleistocene reefs of the Egyptian Red Sea: environmental change and community persistence

    PubMed Central

    2017-01-01

    The fossil record of Red Sea fringing reefs provides an opportunity to study the history of coral-reef survival and recovery in the context of extreme environmental change. The Middle Pleistocene, the Late Pleistocene, and modern reefs represent three periods of reef growth separated by glacial low stands during which conditions became difficult for symbiotic reef fauna. Coral diversity and paleoenvironments of eight Middle and Late Pleistocene fossil terraces are described and characterized here. Pleistocene reef zones closely resemble reef zones of the modern Red Sea. All but one species identified from Middle and Late Pleistocene outcrops are also found on modern Red Sea reefs despite the possible extinction of most coral over two-thirds of the Red Sea basin during glacial low stands. Refugia in the Gulf of Aqaba and southern Red Sea may have allowed for the persistence of coral communities across glaciation events. Stability of coral communities across these extreme climate events indicates that even small populations of survivors can repopulate large areas given appropriate water conditions and time. PMID:28674659

  8. Change detection of Bunaken Island coral reefs using 15years of very high resolution satellite images: A kaleidoscope of habitat trajectories.

    PubMed

    Ampou, Eghbert Elvan; Ouillon, Sylvain; Iovan, Corina; Andréfouët, Serge

    2018-06-01

    In Bunaken Island (Indonesia), a time-series of very high resolution (2-4m) satellite imagery was used to draw the long-term dynamics of shallow reef flat habitats from 2001 to 2015. Lack of historical georeferenced ground-truth data oriented the analysis towards a scenario-approach based on the monitoring of selected unambiguously-changing habitat polygons characterized in situ in 2014 and 2015. Eight representative scenarios (coral colonization, coral loss, coral stability, and sand colonization by seagrass) were identified. All occurred simultaneously in close vicinity, precluding the identification of a single general cause of changes that could have affected the whole reef. Likely, very fine differences in reef topography, exposure to wind/wave and sea level variations were responsible for the variety of trajectories. While trajectories of reef habitats is a way to measure resilience and coral recovery, here, the 15-year time-series was too short to be able to conclude on the resilience of Bunaken reefs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH.

    PubMed

    Comeau, S; Tambutté, E; Carpenter, R C; Edmunds, P J; Evensen, N R; Allemand, D; Ferrier-Pagès, C; Tambutté, S; Venn, A A

    2017-01-25

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pH CF ) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pH CF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (A T ). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pH CF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [A T ], revealing that seawater pH is not the sole driver of pH CF Notably, when we synthesize our results with published data, we identify linear relationships of pH CF with the seawater [DIC]/[H + ] ratio, [A T ]/ [H + ] ratio and [[Formula: see text

  10. Pleistocene reefs of the Egyptian Red Sea: environmental change and community persistence.

    PubMed

    Casazza, Lorraine R

    2017-01-01

    The fossil record of Red Sea fringing reefs provides an opportunity to study the history of coral-reef survival and recovery in the context of extreme environmental change. The Middle Pleistocene, the Late Pleistocene, and modern reefs represent three periods of reef growth separated by glacial low stands during which conditions became difficult for symbiotic reef fauna. Coral diversity and paleoenvironments of eight Middle and Late Pleistocene fossil terraces are described and characterized here. Pleistocene reef zones closely resemble reef zones of the modern Red Sea. All but one species identified from Middle and Late Pleistocene outcrops are also found on modern Red Sea reefs despite the possible extinction of most coral over two-thirds of the Red Sea basin during glacial low stands. Refugia in the Gulf of Aqaba and southern Red Sea may have allowed for the persistence of coral communities across glaciation events. Stability of coral communities across these extreme climate events indicates that even small populations of survivors can repopulate large areas given appropriate water conditions and time.

  11. Decision Support Tool Evaluation Report for Coral Reef Early Warning System (CREWS) Version 7.0

    NASA Technical Reports Server (NTRS)

    D'Sa, Eurico; Hall, Callie; Zanoni, Vicki; Holland, Donald; Blonski, Slawomir; Pagnutti, Mary; Spruce, Joseph P.

    2004-01-01

    The Coral Reef Early Warning System (CREWS) is operated by NOAA's Office of Oceanic and Atmospheric Research as part of its Coral Reef Watch program in response to the deteriorating global state of coral reef and related benthic ecosystems. In addition to sea surface temperatures (SSTs), the two most important parameters used by the CREWS network in generating coral reef bleaching alerts are 1) wind speed and direction and 2) photosynthetically available radiation (PAR). NASA remote sensing products that can enhance CREWS in these areas include SST and PAR products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and wind data from the Quick Scatterometer (QuikSCAT). CREWS researchers are also interested in chlorophyll, chromophoric dissolved organic matter (CDOM), and salinity. Chlorophyll and CDOM are directly available as NASA products, while rainfall (an available NASA product) can be used as a proxy for salinity. Other potential NASA inputs include surface reflectance products from MODIS, the Advanced Spaceborne Thermal Emission and Reflection Radiometer, and Landsat. This report also identifies NASA-supported ocean circulation models and products from future satellite missions that might enchance the CREWS DST.

  12. Confronting the coral reef crisis.

    PubMed

    Bellwood, D R; Hughes, T P; Folke, C; Nyström, M

    2004-06-24

    The worldwide decline of coral reefs calls for an urgent reassessment of current management practices. Confronting large-scale crises requires a major scaling-up of management efforts based on an improved understanding of the ecological processes that underlie reef resilience. Managing for improved resilience, incorporating the role of human activity in shaping ecosystems, provides a basis for coping with uncertainty, future changes and ecological surprises. Here we review the ecological roles of critical functional groups (for both corals and reef fishes) that are fundamental to understanding resilience and avoiding phase shifts from coral dominance to less desirable, degraded ecosystems. We identify striking biogeographic differences in the species richness and composition of functional groups, which highlight the vulnerability of Caribbean reef ecosystems. These findings have profound implications for restoration of degraded reefs, management of fisheries, and the focus on marine protected areas and biodiversity hotspots as priorities for conservation.

  13. Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges.

    PubMed

    Mellin, C; Mouillot, D; Kulbicki, M; McClanahan, T R; Vigliola, L; Bradshaw, C J A; Brainard, R E; Chabanet, P; Edgar, G J; Fordham, D A; Friedlander, A M; Parravicini, V; Sequeira, A M M; Stuart-Smith, R D; Wantiez, L; Caley, M J

    2016-02-03

    Coral reefs are among the most species-rich and threatened ecosystems on Earth, yet the extent to which human stressors determine species occurrences, compared with biogeography or environmental conditions, remains largely unknown. With ever-increasing human-mediated disturbances on these ecosystems, an important question is not only how many species can inhabit local communities, but also which biological traits determine species that can persist (or not) above particular disturbance thresholds. Here we show that human pressure and seasonal climate variability are disproportionately and negatively associated with the occurrence of large-bodied and geographically small-ranging fishes within local coral reef communities. These species are 67% less likely to occur where human impact and temperature seasonality exceed critical thresholds, such as in the marine biodiversity hotspot: the Coral Triangle. Our results identify the most sensitive species and critical thresholds of human and climatic stressors, providing opportunity for targeted conservation intervention to prevent local extinctions.

  14. Effects of reduced water quality on coral reefs in and out of no-take marine reserves.

    PubMed

    Wenger, Amelia S; Williamson, David H; da Silva, Eduardo T; Ceccarelli, Daniela M; Browne, Nicola K; Petus, Caroline; Devlin, Michelle J

    2016-02-01

    Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ∼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ∼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water quality on near-shore coral reefs underscores the importance of integrated management approaches that combine effective land-based management with networks of no-take reserves. © 2015 Society for Conservation Biology.

  15. Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Frometa, Janessy

    2014-01-01

    Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa may influence the macrofaunal community structure beyond the edges of the reef. This study represents the first assessment of L. pertusa-associated sediment communities in the GOM and provides baseline data that can help define the role of transition zones, from deep reefs to soft sediments, in shaping macrofaunal community structure and maintaining biodiversity; this information can help guide future conservation and management activities.

  16. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    USGS Publications Warehouse

    Garrison, Virginia H.; Ward, Greg A.

    2012-01-01

    In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community.  The ultimate goal was to enhance abundance of threatened reef-building species on local reefs.  Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs.  Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate.  Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place.  Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only.  Location was a factor in survival only for A. palmata reference colonies and after year 10.  Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and mitigated or eliminated. Rev. Biol. Trop. 60 (Suppl. 1): 59-70. Epub 2012 March 01.

  17. Self-recognition in corals facilitates deep-sea habitat engineering

    USGS Publications Warehouse

    Hennige, Sebastian J; Morrison, Cheryl L.; Form, Armin U.; Buscher, Janina; Kamenos, Nicholas A.; Roberts, J. Murray

    2014-01-01

    The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.

  18. Developing a multi-stressor gradient for coral reefs | Science ...

    EPA Pesticide Factsheets

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be established. Developing stressor gradients presents challenges including: stressors which co-occur but operate at different or unknown spatial and temporal scales, inconsistent data availability measuring stressor levels, and unknown effects on exposed reef biota. We are developing a generalized stressor model using Puerto Rico as case study location, to represent the cumulative spatial/temporal co-occurrence of multiple anthropogenic stressors. Our approach builds on multi-stressor research in streams and rivers, and focuses on three high-priority stressors identified by coral reef experts: land-based sources of pollution (LBSP), global climate change (GCC) related temperature anomalies, and fishing pressure. Landscape development intensity index, based on land use/land cover data, estimates human impact in watersheds adjacent to coral reefs and is proxy for LBSP. NOAA’s retrospective daily thermal anomaly data is used to determine GCC thermal anomalies. Fishing pressure is modeled using gear-specific and fishery landings data. Stressor data was adjusted to a common scale or weighted for relative importance, buffered to account for diminished impact further from source, and compared wit

  19. Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions

    NASA Astrophysics Data System (ADS)

    Van Hooidonk, R. J.

    2011-12-01

    Future widespread coral bleaching and subsequent mortality has been projected with sea surface temperature (SST) data from global, coupled ocean-atmosphere general circulation models (GCMs). While these models possess fidelity in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. These model weaknesses likely reduce the skill of coral bleaching predictions, but little attention has been paid to the important issue of understanding potential errors and biases, the interaction of these biases with trends and their propagation in predictions. To analyze the relative importance of various types of model errors and biases on coral reef bleaching predictive skill, various intra- and inter-annual frequency bands of observed SSTs were replaced with those frequencies from GCMs 20th century simulations to be included in the Intergovernmental Panel on Climate Change (IPCC) 5th assessment report. Subsequent thermal stress was calculated and predictions of bleaching were made. These predictions were compared with observations of coral bleaching in the period 1982-2007 to calculate skill using an objective measure of forecast quality, the Peirce Skill Score (PSS). This methodology will identify frequency bands that are important to predicting coral bleaching and it will highlight deficiencies in these bands in models. The methodology we describe can be used to improve future climate model derived predictions of coral reef bleaching and it can be used to better characterize the errors and uncertainty in predictions.

  20. Exploring the hidden shallows: extensive reef development and resilience within the turbid nearshore Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James

    2016-04-01

    Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (<10 m depth) of the central GBR, where terrigenous seafloor sediments are persistently resuspended by wave processes, coral cover averages 38% (twice that reported on mid- and outer-shelf reefs). Of the mapped area, 11% of the seafloor has distinct reef or coral community cover, a density comparable to that measured across the entire GBR shelf (9%). Identified coral taxa (21 genera) exhibited clear depth-stratification corresponding closely to light attenuation and seafloor topography. Reefs have accreted relatively rapidly during the late-Holocene (1.8-3.0 mm y-1) with rates of vertical reef growth influenced by intrinsic shifts in coral assemblages associated with reef development. Indeed, these shallow-water reefs may have similar potential as refugia from large-scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.

  1. Water Quality and Herbivory Interactively Drive Coral-Reef Recovery Patterns in American Samoa

    PubMed Central

    Houk, Peter; Musburger, Craig; Wiles, Phil

    2010-01-01

    Background Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process. Methodology/Principal Findings This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of ‘recovery status’, defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. Conclusions/Significance Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management. PMID:21085715

  2. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa.

    PubMed

    Houk, Peter; Musburger, Craig; Wiles, Phil

    2010-11-10

    Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process. This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.

  3. Metatranscriptome Sequencing of a Reef-building Coral Elucidates Holobiont Community Gene Functions in Health and Disease

    NASA Astrophysics Data System (ADS)

    Timberlake, S.; Helbig, T.; Fernando, S.; Penn, K.; Alm, E.; Thompson, F.; Thompson, J. R.

    2012-12-01

    The coral reefs of the Abrolhos Bank of Brazil play a vital ecological role in the health of the Southern Atlantic Ocean, but accelerating rates of disease, particularly white plague, threaten this ecosystem. Thus, an understanding of white plague disease and diagnostic tests for it are urgently needed. The coral animal is associated with a distinct microbiome, a diverse assemblage of eukaryotes, bacteria, and viruses. That these microbes have a great influence on the health of the coral has been long known, however, most of their functions are still mysterious. While recent studies have contrasted healthy and white-plague-associated communities, the causative agents and mechanisms of the disease remain unknown. We collected fragments of healthy and diseased corals, as well as post-disease skeleton, from 12 colonies of the genus Mussismilia, the major component of the reef structure in the Abrolhos bank, and increasingly, a victim of white-plague disease. Fragments were flash-frozen in situ, and prepped for culture-free high throughput sequencing of gene transcripts with the Illumina II-G. While the membership of the microbial communities associated with coral has been previously described, the a coral holobiont community's gene function has, to date, never been assayed by this powerful approach. We designed a bioinformatics pipeline to analyze the short-read data from this complex sample: identifying the functions of genes expressed in the holobiont, and describing the active community's taxonomic composition. We show that gene functions expressed by the coral's bacterial assemblage are distinct from those of the underlying skeleton, and we highlight differences in the disease samples. We find that gene markers for the dissimilatory sulfate reduction pathway more abundant in the disease state, and we further quantify this difference with qPCR. Finally, we report the abundant expression of highly repetitive transcripts in the diseased coral samples, and highlight other coral host genes whose expression differs in this disease. Our work provides a first glimpse into coral holobiont community gene function and its deviations in disease. Moreover, we hope that our bioinformatic protocol, designed to cope with the challenges of short-read transcriptomics from complex ecosystems with no close reference, will be a useful template to further understanding of the gene functions and ecological partnerships in coral reefs and other complex ecosystems.

  4. Geobiological Responses to Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Potts, D. C.

    2008-12-01

    During 240Ma of evolution, scleractinian corals survived major changes in ocean chemistry, yet recent concerns with rapid acidification after ca. 40Ma of almost constant oceanic pH have tended to distract attention from natural pH variation in coastal waters, where most corals and reefs occur. Unaltered skeletal environmental proxies reflect conditions experienced by individual organisms, with any variation on micro- habitat and micro-time scales appropriate for that individual's ecology, behavior and physiology, but proxy interpretation usually extrapolates to larger spatial (habitat, region to global) and temporal (seasonal, annual, interannual) scales. Therefore, predicting consequences of acidification for both corals and reefs requires greater understanding of: 1. Many potential indirect consequences of pH change that may affect calcification and/or carbonate accretion: e.g. an individual's developmental rates, growth, final size, general physiology and reproductive success; its population's distribution and abundance, symbionts, food availability, predators and pathogens; and its community and ecosystem services. 2. Potentially diverse responses to declining pH, ranging from non-evolutionary, rapid physiological changes (acclimation) or long term (seasonal to interannual) plasticity (acclimatization) of individuals, through genetic adaptation in local populations, and up to directional changes in species" characteristics and/or radiations/extinctions. 3. The evolutionary and environmental history of an organism's lineage, its ecological (own lifetime) exposure to environmental variation, and "pre-adaptation" via other factors acting on correlated characters.

  5. Coral diversity and the severity of disease outbreaks: a cross-regional comparison of Acropora white syndrome in a species-rich region (American Samoa) with a species-poor region (Northwestern Hawaiian Islands).

    USGS Publications Warehouse

    Aeby, G.S.; Bourne, D.G.; Wilson, B.; Work, Thierry M.

    2011-01-01

    The dynamics of the coral disease, Acropora white syndrome (AWS), was directly compared on reefs in the species-poor region of the Northwestern Hawaiian Islands (NWHI) and the species-rich region of American Samoa (AS) with results suggesting that biodiversity, which can affect the abundance of susceptible hosts, is important in influencing the impacts of coral disease outbreaks. The diversity-disease hypothesis predicts that decreased host species diversity should result in increased disease severity of specialist pathogens. We found that AWS was more prevalent and had a higher incidence within the NWHI as compared to AS. Individual Acropora colonies affected by AWS showed high mortality in both regions, but case fatality rate and disease severity was higher in the NWHI. The site within the NWHI had a monospecific stand of A. cytherea; a species that is highly susceptible to AWS. Once AWS entered the site, it spread easily amongst the abundant susceptible hosts. The site within AS contained numerous Acropora species, which differed in their apparent susceptibility to infection and disease severity, which in turn reduced disease spread. Manipulative studies showed AWS was transmissible through direct contact in three Acropora species. These results will help managers predict and respond to disease outbreaks.

  6. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    PubMed

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  7. Deep-Sea Coral Image Catalog: Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Freed, J. C.

    2016-02-01

    In recent years, deep-sea exploration in the Northeast Pacific ocean has been on the rise using submersibles and remotely operated vehicles (ROVs), acquiring a plethora of underwater videos and photographs. Analysis of deep-sea fauna revealed by this research has been hampered by the lack of catalogs or guides that allow identification of species in the field. Deep-sea corals are of particular conservation concern, but currently, there are few catalogs which describe and provide detailed information on deep-sea corals from the Northeast Pacific and those that exist are focused on small, specific areas. This project, in collaboration with NOAA's Deep-Sea Coral Ecology Laboratory at the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) and the Southwest Fisheries Science Center (SWFSC), developed pages for a deep-sea coral identification guide that provides photos and information on the visual identification, distributions, and habitats of species found in the Northeast Pacific. Using online databases, photo galleries, and literature, this catalog has been developed to be a living document open to future additions. This project produced 12 entries for the catalog on a variety of different deep-sea corals. The catalog is intended to be used during underwater surveys in the Northeast Pacific, but will also assist in identification of deep-sea coral by-catch by fishing vessels, and for general educational use. These uses will advance NOAA's ability to identify and protect sensitive deep-sea habitats that act as biological hotspots. The catalog is intended to be further developed into an online resource with greater interactive features with links to other resources and featured on NOAA's Deep-Sea Coral Data Portal.

  8. Physiology can contribute to better understanding, management, and conservation of coral reef fishes.

    PubMed

    Illing, Björn; Rummer, Jodie L

    2017-01-01

    Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes.

  9. Operationalizing resilience for adaptive coral reef management under global environmental change

    PubMed Central

    Anthony, Kenneth RN; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas AJ; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. PMID:25196132

  10. Environmental Records from Great Barrier Reef Corals: Inshore versus Offshore Drivers

    PubMed Central

    Walther, Benjamin D.; Kingsford, Michael J.; McCulloch, Malcolm T.

    2013-01-01

    The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR). We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions. PMID:24204743

  11. Growth form-dependent response to physical disturbance and thermal stress in Acropora corals

    NASA Astrophysics Data System (ADS)

    Muko, S.; Arakaki, S.; Nagao, M.; Sakai, Kazuhiko

    2013-03-01

    To predict the community structure in response to changing environmental conditions, it is necessary to know the species-specific reaction and relative impact strength of each disturbance. We investigated the coral communities in two sites, an exposed and a protected site, at Iriomote Island, Japan, from 2005 to 2008. During the study period, a cyclone and thermal stress were observed. All Acropora colonies, classified into four morphologies (arborescent, tabular, corymbose, and digitate), were identified and tracked through time to calculate the annual mortality and growth rate. The mortality of all Acropora colonies in the protected site was lower than that in the exposed site during the period without disturbances. Extremely higher mortality due to bleaching was observed in tabular and corymbose Acropora, compared to other growth forms, at the protected sites after thermal stress. In contrast, physical disturbance by a tropical cyclone induced the highest mortality in arborescent and digitate corals at the exposed site. Moreover, arborescent corals exhibited a remarkable decline 1 year after the tropical cyclone at the exposed site. The growth of colonies that survived coral bleaching did not decrease in the following year compared to previous year for all growth forms, but the growth of arborescent and tabular remnant corals at the exposed site declined severely after the tropical cyclone compared to previous year. The delayed mortality and lowered growth rate after the tropical cyclone were probably due to the damage caused by the tropical cyclone. These results indicate that the cyclone had a greater impact on fragile corals than expected. This study provides useful information for the evaluation of Acropora coral response to progressing global warming conditions, which are predicted to increase in frequency and intensity in the near future.

  12. Identification of MicroRNAs in the Coral Stylophora pistillata

    PubMed Central

    Liew, Yi Jin; Aranda, Manuel; Carr, Adrian; Baumgarten, Sebastian; Zoccola, Didier; Tambutté, Sylvie; Allemand, Denis; Micklem, Gos; Voolstra, Christian R.

    2014-01-01

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways. PMID:24658574

  13. Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean.

    PubMed

    Davies, S W; Treml, E A; Kenkel, C D; Matz, M V

    2015-01-01

    Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo-West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef-building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation-by-distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15-21% of the observed genetic variation compared to between-island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species-rich Coral Triangle. However, for A. hyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast-spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale. © 2014 John Wiley & Sons Ltd.

  14. Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management

    PubMed Central

    Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua

    2011-01-01

    Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions are achieved through global negotiations. PMID:21860667

  15. Population connectivity of the plating coral Agaricia lamarcki from southwest Puerto Rico

    NASA Astrophysics Data System (ADS)

    Hammerman, Nicholas M.; Rivera-Vicens, Ramon E.; Galaska, Matthew P.; Weil, Ernesto; Appledoorn, Richard S.; Alfaro, Monica; Schizas, Nikolaos V.

    2018-03-01

    Identifying genetic connectivity and discrete population boundaries is an important objective for management of declining Caribbean reef-building corals. A double digest restriction-associated DNA sequencing protocol was utilized to generate 321 single nucleotide polymorphisms to estimate patterns of horizontal and vertical gene flow in the brooding Caribbean plate coral, Agaricia lamarcki. Individual colonies ( n = 59) were sampled from eight locations throughout southwestern Puerto Rico from six shallow ( 10-20 m) and two mesophotic habitats ( 30-40 m). Descriptive summary statistics (fixation index, F ST), analysis of molecular variance, and analysis through landscape and ecological associations and discriminant analysis of principal components estimated high population connectivity with subtle subpopulation structure among all sampling localities.

  16. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    PubMed

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. © 2014 John Wiley & Sons Ltd.

  17. [Isolation of actinobacteria with antibiotic associated with soft coral Nephthea sp].

    PubMed

    Ma, Liang; Zhang, Wenjun; Zhu, Yiguang; Wu, Zhengchao; Saurav, Kumar; Hang, Hui; Zhang, Changsheng

    2013-10-04

    The present study aims to isolate and identify actinobacteria associated with the soft coral Nephthea sp., and to isolate natural products from these actinobacteria under the guidance of PCR screening for polyketides synthase (PKS) genes. Eleven selective media were used to isolate actinobacteria associated with the soft coral Nephthea sp. collected from Yongxin Island. The isolated actinobacteria were classified on the basis of phylogenetic tree analysis of their 16S rRNA genes. Degenerated primers targeted on conserved KS (ketoacyl-synthase) domain of type I PKS genes were used to screen for potential isolates. The positive isolates were cultured in three different media to check their producing profiles. One bioactive strain that is rich in metabolites was subjected to larger scale fermentation for isolating bioactive natural products. A total of 20 strains were isolated from Nephthea sp., and were categorized into 3 genera including Streptomyces, Dietzia and Salinospora, among which 18 strains were positive in screening with type I PKS genes. Two bioactive compounds rifamycin S and rifamycin W were isolated and identified from Salinospora arenicola SH04. This is the first report of isolating indigenous marine actinobacteria Salinospora from the soft coral Nephthea sp. It provides an example of isolating bioactive secondary metabolites from cultivable actinobacteria associated with Nephthea sp. by PCR screening.

  18. Is substrate composition a suitable predictor for deep-water coral occurrence on fine scales?

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Metaxas, Anna

    2017-06-01

    Species distribution modelling can be applied to identify potentially suitable habitat for species with largely unknown distributions, such as many deep-water corals. Important variables influencing species occurrence in the deep sea, e.g. substrate composition, are often not included in these modelling approaches because high-resolution data are unavailable. We investigated the relationship between substrate composition and the occurrence of the two deep-water octocoral species Primnoa resedaeformis and Paragorgia arborea, which require hard substrate for attachment. On a scale of 10s of metres, we analysed images of the seafloor taken at two locations inside the Northeast Channel Coral Conservation Area in the Northwest Atlantic. We interpolated substrate composition over the sampling areas and determined the contribution of substrate classes, depth and slope to describe habitat suitability using maximum entropy modelling (Maxent). Substrate composition was similar at both sites - dominated by pebbles in a matrix of sand (>80%) with low percentages of suitable substrate for coral occurrence. Coral abundance was low at site 1 (0.9 colonies of P. resedaeformis per 100 m2) and high at site 2 (63 colonies of P. resedaeformis per 100 m2) indicating that substrate alone is not sufficient to explain varying patterns in coral occurrence. Spatial interpolations of substrate classes revealed the difficulty to accurately resolve sparsely distributed boulders (3-5% of substrate). Boulders were by far the most important variable in the habitat suitability model (HSM) for P. resedaeformis at site 1, indicating the fundamental influence of a substrate class that is the least abundant. At site 2, HSMs identified cobbles and sand/pebble as the most important variables for habitat suitability. However, substrate classes were correlated making it difficult to determine the influence of individual variables. To provide accurate information on habitat suitability for the two coral species, substrate composition needs to be quantified so that small fractions (<20% contribution of certain substrate class) of suitable substrate are resolved. While the collection and analysis of high-resolution data is costly and spatially limited, the required resolution is unlikely to be achieved in coarse-scale interpolations of substrate data.

  19. Antimicrobial peptides in marine invertebrate health and disease

    PubMed Central

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-01-01

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as ‘marine invertebrates’. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160602

  20. Antimicrobial peptides in marine invertebrate health and disease.

    PubMed

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  1. Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean): an assessment of coral coverage and associated vulnerability.

    PubMed

    Savini, Alessandra; Vertino, Agostina; Marchese, Fabio; Beuck, Lydia; Freiwald, André

    2014-01-01

    In this study, we mapped the distribution of Cold-Water Coral (CWC) habitats on the northern Ionian Margin (Mediterranean Sea), with an emphasis on assessing coral coverage at various spatial scales over an area of 2,000 km(2) between 120 and 1,400 m of water depth. Our work made use of a set of data obtained from ship-based research surveys. Multi-scale seafloor mapping data, video inspections, and previous results from sediment samples were integrated and analyzed using Geographic Information System (GIS)-based tools. Results obtained from the application of spatial and textural analytical techniques to acoustic meso-scale maps (i.e. a Digital Terrain Model (DTM) of the seafloor at a 40 m grid cell size and associated terrain parameters) and large-scale maps (i.e. Side-Scan Sonar (SSS) mosaics of 1 m in resolution ground-truthed using underwater video observations) were integrated and revealed that, at the meso-scale level, the main morphological pattern (i.e. the aggregation of mound-like features) associated with CWC habitat occurrences was widespread over a total area of 600 km(2). Single coral mounds were isolated from the DTM and represented the geomorphic proxies used to model coral distributions within the investigated area. Coral mounds spanned a total area of 68 km(2) where different coral facies (characterized using video analyses and mapped on SSS mosaics) represent the dominant macro-habitat. We also mapped and classified anthropogenic threats that were identifiable within the examined videos, and, here, discuss their relationship to the mapped distribution of coral habitats and mounds. The combined results (from multi-scale habitat mapping and observations of the distribution of anthropogenic threats) provide the first quantitative assessment of CWC coverage for a Mediterranean province and document the relevant role of seafloor geomorphology in influencing habitat vulnerability to different types of human pressures.

  2. Methods for monitoring corals and crustose coralline algae to quantify in-situ calcification rates

    USGS Publications Warehouse

    Morrison, Jennifer M.; Kuffner, Ilsa B.; Hickey, T. Don

    2013-01-01

    The potential effect of global climate change on calcifying marine organisms, such as scleractinian (reef-building) corals, is becoming increasingly evident. Understanding the process of coral calcification and establishing baseline calcification rates are necessary to detect future changes in growth resulting from climate change or other stressors. Here we describe the methods used to establish a network of calcification-monitoring stations along the outer Florida Keys Reef Tract in 2009. In addition to detailing the initial setup and periodic monitoring of calcification stations, we discuss the utility and success of our design and offer suggestions for future deployments. Stations were designed such that whole coral colonies were securely attached to fixed apparati (n = 10 at each site) on the seafloor but also could be easily removed and reattached as needed for periodic weighing. Corals were weighed every 6 months, using the buoyant weight technique, to determine calcification rates in situ. Sites were visited in May and November to obtain winter and summer rates, respectively, and identify seasonal patterns in calcification. Calcification rates of the crustose coralline algal community also were measured by affixing commercially available plastic tiles, deployed vertically, at each station. Colonization by invertebrates and fleshy algae on the tiles was low, indicating relative specificity for the crustose coralline algal community. We also describe a new, nonlethal technique for sampling the corals, used following the completion of the monitoring period, in which two slabs were obtained from the center of each colony. Sampled corals were reattached to the seafloor, and most corals had completely recovered within 6 months. The station design and sampling methods described herein provide an effective approach to assessing coral and crustose coralline algal calcification rates across time and space, offering the ability to quantify the potential effects of ocean warming and acidification on calcification processes.

  3. Changes in coral reef metabolism during the 2015 El Niño in the eastern Pacific

    NASA Astrophysics Data System (ADS)

    McGillis, W. R.; Manzello, D.; Smith, T. B.; Baker, A.; Fong, P.; Glynn, P.; Smith, J.; Takeshita, Y.; Martz, T. R.; Hsueh, D.; Langdon, C.; Price, N.; Mate, J.

    2016-02-01

    The likely strong 2015-2016 El Niño event offers an opportunity to assess coral reef benthic metabolism under stressful high temperatures, coral bleaching, and mortality. During a period of increasing ocean temperatures caused by the 2015-2016 El Niño-Southern Oscillation (ENSO), we assessed the metabolism, at hourly intervals, of eastern Pacific coral reefs using the Benthic Ecosystem and Acidification Measurement System (BEAMS). We measured coral reef net ecosystem productivity (NEP) and net ecosystem calcification (NEC) in 2014 before the start of the El Niño event and in 2015 during the first anomalously high sea surface temperatures of the 2015 El Niño. Increases in ocean temperatures of 1-2°C between 2014 and 2015 caused over 30% decline in calcification at Uva Is. (Panama) and Darwin Is. (Galapagos), along with significant coral bleaching at Uva and coral paling at Darwin. Warming at Saboga Island, in the seasonally upwelling Gulf of Panama, was only 0.3oC, did not result in significant bleaching, and was accompanied by a significant increase in coral reef metabolism. Additional key findings include an increase in nighttime dissolution of calcium carbonate during ENSO heating. Light-NEP and light-NEC relationships were generated for each location, and showed that variations in metabolism were strongly correlated with the incident bottom solar intensity, with strong daily cycles and patterns of light-enhanced calcification also identified. The response of different coral species also provides in situ data on the varying metabolism. The metabolism of the 2015-2016 El Niño shows the possible reef function under future warming and acidified conditions. These emerging results may be harbingers of significant further decreases in metabolism, and other detrimental impacts, if this region experiences additional warming during the current ENSO event.

  4. Insights Into Intermediate Ocean Barium Cycling From Deep-Sea Bamboo Coral Records on the California Margin

    NASA Astrophysics Data System (ADS)

    LaVigne, M.; Serrato Marks, G.; Freiberger, M. M.; Miller, H. R.; Hill, T. M.; McNichol, A. P.; Lardie Gaylord, M.

    2016-02-01

    Dissolved barium (BaSW) has been linked to several biogeochemical processes such as the cycling and export of nutrients, organic carbon (Corg), and barite in surface and intermediate oceans. The dynamic nature of barium cycling in the water column has been demonstrated on short timescales (days-weeks) while sedimentary records have documented geologic-scale changes in barite preservation driven by export production. Our understanding of how inter-annual-decadal scale climate variability impacts these biogeochemical processes currently lacks robust instrumental and paleoceanographic records. Recent work has calibrated and demonstrated the reproducibility of a new BaSW proxy in California Current System (CCS) bamboo corals (Ba/Ca) using a coral depth transect spanning the CCS oxygen minimum zone (792-2055m water depth). New `reconnaissance' radiocarbon data identifying the bomb 14C spike in coral proteinaceous nodes and sclerochronological analyses of calcitic internodes are used to assign chronologies to the CCS coral records. Century-long coral records from 900-1500m record 4-7 year long increases in Ba/Ca ( 10-70 nmol/kg BaSW) at depths where rapid barite cycling occurs on day-weekly timescales. The BaSW peaks punctuate the coral records at different time periods and depths and do not coincide with inter-annual/decadal climate transitions (e.g. ENSO/PDO). Stable surface productivity and coral δ15N records indicate that Corg export from CCS surface waters has been relatively constant over the past century. Thus, the inter-annual scale BaSW peaks recorded by the 900-1500m corals more likely reflect periods of decreased barite formation (and/or increased dissolution) via reduced bacterial Corg respiration or barite saturation state. Paleoceanographic BaSW records and continued research on barium cycling in the modern ocean have the potential to elucidate the mechanisms linking intermediate water carbon and barium cycling, climate, and ocean oxygenation in the past.

  5. Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fallon, Stewart J.; White, Jamie C.; McCulloch, Malcolm T.

    2002-01-01

    In 1989 open-cut gold mining commenced on Misima Island in Papua New Guinea (PNG). Open-cut mining by its nature causes a significant increase in sedimentation via the exposure of soils to the erosive forces of rain and runoff. This increased sedimentation affected the nearby fringing coral reef to varying degrees, ranging from coral mortality (smothering) to relatively minor short-term impacts. The sediment associated with the mining operation consists of weathered quartz feldspar, greenstone, and schist. These rocks have distinct chemical characteristics (rare earth element patterns and high abundances of manganese, zinc, and lead) and are entering the near-shore environment in considerably higher than normal concentrations. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), we analyzed eight colonies (two from high sedimentation, two transitional, two minor, and two unaffected control sites) for Y, La, Ce, Mn, Zn, and Pb. All sites show low steady background levels prior to the commencement of mining in 1988. Subsequently, all sites apart from the control show dramatic increases of Y, La, and Ce associated with the increased sedimentation as well as rapid decreases following the cessation of mining. The elements Zn and Pb exhibit a different behavior, increasing in concentration after 1989 when ore processing began and one year after initial mining operations. Elevated levels of Zn and Pb in corals has continued well after the cessation of mining, indicating ongoing transport into the reef of these metals via sulfate-rich waters. Rare earth element (REE) abundance patterns measured in two corals show significant differences compared to Coral Sea seawater. The corals display enrichments in the light and middle REEs while the heavy REEs are depleted relative to the seawater pattern. This suggests that the nearshore seawater REE pattern is dominated by island sedimentation. Trace element abundances of Misima Island corals clearly record the dramatic changes in the environmental conditions at this site and provide a basis for identifying anthropogenic influences on corals reefs.

  6. Remote sensing of Qatar nearshore habitats with perspectives for coastal management.

    PubMed

    Warren, Christopher; Dupont, Jennifer; Abdel-Moati, Mohamed; Hobeichi, Sanaa; Palandro, David; Purkis, Sam

    2016-04-30

    A framework is proposed for utilizing remote sensing and ground-truthing field data to map benthic habitats in the State of Qatar, with potential application across the Arabian Gulf. Ideally the methodology can be applied to optimize the efficiency and effectiveness of mapping the nearshore environment to identify sensitive habitats, monitor for change, and assist in management decisions. The framework is applied to a case study for northeastern Qatar with a key focus on identifying high sensitivity coral habitat. The study helps confirm the presence of known coral and provides detail on a region in the area of interest where corals have not been previously mapped. Challenges for the remote sensing methodology associated with natural heterogeneity of the physical and biological environment are addressed. Recommendations on the application of this approach to coastal environmental risk assessment and management planning are discussed as well as future opportunities for improvement of the framework. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Are diseases increasing in the ocean?

    USGS Publications Warehouse

    Lafferty, Kevin D.; Porter, James W.; Ford, Susan E.

    2004-01-01

    Many factors (climate warming, pollution, harvesting, introduced species) can contribute to disease outbreaks in marine life. Concomitant increases in each of these makes it difficult to attribute recent changes in disease occurrence or severity to any one factor. For example, the increase in disease of Caribbean coral is postulated to be a result of climate change and introduction of terrestrial pathogens. Indirect evidence exists that (a) warming increased disease in turtles; (b) protection, pollution, and terrestrial pathogens increased mammal disease; (c) aquaculture increased disease in mollusks; and (d) release from overfished predators increased sea urchin disease. In contrast, fishing and pollution may have reduced disease in fishes. In other taxa (e.g., sea grasses, crustaceans, sharks), there is little evidence that disease has changed over time. The diversity of patterns suggests there are many ways that environmental change can interact with disease in the ocean.

  8. Distribution and habitat association of benthic fish on the Condor seamount (NE Atlantic, Azores) from in situ observations

    NASA Astrophysics Data System (ADS)

    Porteiro, Filipe M.; Gomes-Pereira, José N.; Pham, Christopher K.; Tempera, Fernando; Santos, Ricardo S.

    2013-12-01

    Distribution of fish assemblages and habitat associations of demersal fishes on the Condor seamount were investigated by analyzing in situ video imagery acquired by the Remotely-Operated Vehicles ROV SP300 and Luso 6000. A total of 51 fish taxa from 32 families were inventoried. Zooplanktivores (10 species) were the most abundant group followed by carnivores (23 species) and benthivores (18 species). Non-metric multidimensional scaling (MDS) analyses were performed on dive segments to visualize the spatial relationships between species and habitat type, substrate type or depth, with depth being the most significant parameter influencing fish distribution. Four major fish groups were identified from their vertical distribution alone: summit species (generally to <300 m depth); broad ranging species (ca. from 200 to 800 m); intermediate ranging slope species (ca. from 400 m to 800-850 m); and deeper species (800-850-1100 m). The fish fauna observed at the summit is more abundant (15.2 fish/100 m2) and habitat-specialized than the fish observed along the seamount slope. Down the seamount slope, the summit fish assemblage is gradually replaced as depth increases, with an overall reduction in abundance. On the summit, three species (Callanthias ruber, Anthias anthias and Lappanella fasciata) had higher affinity to coral habitats compared to non-coral habitats. A coherent specialized fish assemblage associated to coral habitats could not be identified, because most species were observed also in non-coral areas. On the seamount's slope (300-1100 m), no relationship between fish and coral habitats could be identified, although these might occur at larger scales. This study shows that in situ video imagery complements traditional fishing surveys, by providing information on unknown or rarely seen species, being fundamental for the development of more comprehensive ecosystem-based management towards a sustainable use of the marine environment.

  9. U-Th dating of calcite corals from the Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    Yehudai, Maayan; Lazar, Boaz; Bar, Neta; Kiro, Yael; Agnon, Amotz; Shaked, Yonathan; Stein, Mordechai

    2017-02-01

    Most of the fossil corals in the elevated reef terraces along the Gulf of Aqaba (GOA) were extensively altered to calcite. This observation indicates extensive interaction with freshwater, possibly when the terraces passed through a coastal aquifer that existed along the shores of the GOA, implying a wetter climate during the time of recrystallization from aragonite to calcite. Thus, dating of the recrystallization events should yield the timing of past wetter conditions in the current hyper-arid area of the GOA. In the present study, 18 aragonite and calcite corals were collected from several elevated coral reef terraces off the coast, south of the city of Aqaba. While aragonite corals were dated with the conventional closed system age equation (assuming zero initial Th), the dating of the calcite corals required the development of adequate equations to allow the calculation of both the initial formation age of the aragonite corals and the time of recrystallization to calcite. The two age calculations were based on the assumptions that each reef terrace went through a single and rapid recrystallization event and that the pristine aragonite corals were characterized by a rather uniform initial U concentration, typical for pristine modern corals. Two recrystallization events were identified at 104 ± 6 ka and 124 ± 8 ka. The ages coincide with the timing of sapropel events S4 and S5, respectively, when the African monsoon induced enhanced wetness in the desert area. Considering the age uncertainties, the times of formation of the two major reef terraces are estimated to be ∼124 ka (reef terrace R2) and ∼130 ka (reef terrace R3), matching the peaks in the global sea level during the last interglacial MIS 5e stage. Apparently, sea level of the GOA did not fluctuate a lot during the period between ∼130 ka and ∼104 ka and remained close to the Marine Isotopic stage (MIS) 5e highstand. The availability of freshwater (during the sapropel periods) and limited sea level fluctuations facilitated the recrystallization of the GOA reef corals to calcite.

  10. Microbial communities in the reef water at Kham Island, lower Gulf of Thailand.

    PubMed

    Somboonna, Naraporn; Wilantho, Alisa; Monanunsap, Somchai; Chavanich, Suchana; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2017-01-01

    Coral reefs are among the most biodiverse habitats on Earth, but knowledge of their associated marinemicrobiome remains limited. To increase the understanding of the coral reef ecosystem in the lower Gulf of Thailand, this study utilized 16S and 18S rRNA gene-based pyrosequencing to identify the prokaryotic and eukaryotic microbiota present in the reef water at Kham Island, Trat province, Thailand (N6.97 E100.86). The obtained result was then compared with the published microbiota from different coral reef water and marine sites. The coral reefs at Kham Island are of the fringe type. The reefs remain preserved and abundant. The community similarity indices (i.e., Lennon similarity index, Yue & Clayton similarity index) indicated that the prokaryotic composition of Kham was closely related to that of Kra, another fringing reef site in the lower Gulf of Thailand, followed by coral reef water microbiota at GS048b (Cooks Bay, Fr. Polynesia), Palmyra (Northern Line Islands, United States) and GS108b (Coccos Keeling, Australia), respectively. Additionally, the microbial eukaryotic populations at Kham was analyzed and compared with the available database at Kra. Both eukaryotic microbiota, in summer and winter seasons, were correlated. An abundance of Dinophysis acuminata was noted in the summer season, in accordance with its reported cause of diarrhoeatic shellfish outbreak in the summer season elsewhere. The slightly lower biodiversity in Kham than at Kra might reflect the partly habitat difference due to coastal anthropogenic activities and minor water circulation, as Kham locates close to the mainland and is surrounded by islands (e.g., Chang and Kut islands). The global marine microbiota comparison suggested relatively similar microbial structures among coral sites irrespective of geographical location, supporting the importance of coral-associated marine microbiomes, and Spearman's correlation analysis between community membership and factors of shore distance and seawater temperature indicated potential correlation of these factors ( p -values < 0.05) with Kham, Kra, and some other coral and coastal sites. Together, this study provided the second marine microbial database for the coral reef of the lower Gulf of Thailand, and a comparison of the coral-associated marine microbial diversity among global ocean sites.

  11. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within Mesophotic reefs.

    PubMed

    Brazeau, Daniel A; Lesser, Michael P; Slattery, Marc

    2013-01-01

    Mesophotic coral reefs (30-150 m) have recently received increased attention as a potential source of larvae (e.g., the refugia hypothesis) to repopulate a select subset of the shallow water (<30 m) coral fauna. To test the refugia hypothesis we used highly polymorphic Amplified Fragment Length Polymorphism (AFLP) markers as a means to assess small-scale genetic heterogeneity between geographic locations and across depth clines in the Caribbean coral, Montastraea cavernosa. Zooxanthellae-free DNA extracts of coral samples (N = 105) were analyzed from four depths, shallow (3-10 m), medium (15-25 m), deep (30-50 m) and very deep (60-90 m) from Little Cayman Island (LCI), Lee Stocking Island (LSI), Bahamas and San Salvador (SS), Bahamas which range in distance from 170 to 1,600 km apart. Using AMOVA analysis there were significant differences in ΦST values in pair wise comparisons between LCI and LSI. Among depths at LCI, there was significant genetic differentiation between shallow and medium versus deep and very deep depths in contrast there were no significant differences in ΦST values among depths at LSI. The assignment program AFLPOP, however, correctly assigned 95.7% of the LCI and LSI samples to the depths from which they were collected, differentiating among populations as little as 10 to 20 m in depth from one another. Discriminant function analysis of the data showed significant differentiation among samples when categorized by collection site as well as collection depth. FST outlier analyses identified 2 loci under positive selection and 3 under balancing selection at LCI. At LSI 2 loci were identified, both showing balancing selection. This data shows that adult populations of M. cavernosa separated by depths of tens of meters exhibits significant genetic structure, indicative of low population connectivity among and within sites and are not supplying successful recruits to adjacent coral reefs less than 30 m in depth.

  12. Species richness of motile cryptofauna across a gradient of reef framework erosion

    NASA Astrophysics Data System (ADS)

    Enochs, I. C.; Manzello, D. P.

    2012-09-01

    Coral reef ecosystems contain exceptionally high concentrations of marine biodiversity, potentially encompassing millions of species. Similar to tropical rainforests and their insects, the majority of reef animal species are small and cryptic, living in the cracks and crevices of structural taxa (trees and corals). Although the cryptofauna make up the majority of a reef's metazoan biodiversity, we know little about their basic ecology. We sampled motile cryptofaunal communities from both live corals and dead carbonate reef framework across a gradient of increasing erosion on a reef in Pacific Panamá. A total of 289 Operational Taxonomic Units (OTUs) from six phyla were identified. We used species-accumulation models fitted to individual- and sample-based rarefaction curves, as well as seven nonparametric richness estimators to estimate species richness among the different framework types. All procedures predicted the same trends in species richness across the differing framework types. Estimated species richness was higher in dead framework (261-370 OTUs) than in live coral substrates (112-219 OTUs). Surprisingly, richness increased as framework structure was eroded: coral rubble contained the greatest number of species (227-320 OTUs) and the lowest estimated richness of 47-115 OTUs was found in the zone where the reef framework had the greatest vertical relief. This contradicts the paradigm that abundant live coral indicates the apex of reef diversity.

  13. Using virtual reality to estimate aesthetic values of coral reefs

    PubMed Central

    Clifford, Sam; Caley, M. Julian; Pearse, Alan R.; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E.

    2018-01-01

    Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems. PMID:29765676

  14. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae

    NASA Astrophysics Data System (ADS)

    Wooldridge, S. A.

    2012-07-01

    Impairment of the photosynthetic machinery of the algal endosymbiont ("zooxanthellae") is the proximal trigger for the thermal breakdown of the coral-algae symbiosis ("coral bleaching"). Yet, the primary site of thermal damage is not well resolved. In this perspective essay, I consider further a recent hypothesis which proposes an energetic disruption to the carbon-concentrating mechanisms (CCMs) of the coral host, and the resultant onset of CO2-limitation within the photosynthetic "dark reactions", as a unifying cellular mechanism. The hypothesis identifies the enhanced retention of photosynthetic carbon for zooxanthellae (re)growth following an initial irradiance-driven expulsion event as the cause of the energetic disruption. If true, then it implies that the onset of the bleaching syndrome and setting of upper thermal bleaching limits are emergent attributes of the coral symbiosis that are ultimately underpinned by the characteristic growth profile of the intracellular zooxanthellae; which is known to depend not just on temperature, but also external (seawater) nutrient availability and zooxanthellae genotype. Here, I review this proposed bleaching linkage at a variety of observational scales, and find it to be parsimonious with the available evidence. This provides a new standpoint to consider the future prospects of the coral symbiosis in an era of rapid environmental change, including the now crucial importance of reef water quality in co-determining thermal bleaching resistance.

  15. Reproductive output of a non-zooxanthellate temperate coral is unaffected by temperature along an extended latitudinal gradient.

    PubMed

    Airi, Valentina; Prantoni, Selena; Calegari, Marco; Lisini Baldi, Veronica; Gizzi, Francesca; Marchini, Chiara; Levy, Oren; Falini, Giuseppe; Dubinsky, Zvy; Goffredo, Stefano

    2017-01-01

    Global environmental change, in marine ecosystems, is associated with concurrent shifts in water temperature, circulation, stratification, and nutrient input, with potentially wide-ranging biological effects. Variations in seawater temperature might alter physiological functioning, reproductive efficiency, and demographic traits of marine organisms, leading to shifts in population size and abundance. Differences in temperature tolerances between organisms can identify individual and ecological characteristics, which make corals able to persist and adapt in a climate change context. Here we investigated the possible effect of temperature on the reproductive output of the solitary non-zooxanthellate temperate coral Leptopsammia pruvoti, along an 8° latitudinal gradient. Samples have been collected in six populations along the gradient and each polyp was examined using histological and cyto-histometric analyses. We coupled our results with previous studies on the growth, demography, and calcification of L. pruvoti along the same temperature gradient, and compared them with those of another sympatric zooxanthellate coral Balanophyllia europaea to understand which trophic strategy makes the coral more tolerant to increasing temperature. The non-zooxanthellate species seemed to be quite tolerant to temperature increases, probably due to the lack of the symbiosis with zooxanthellae. To our knowledge, this is the first field investigation of the relationship between reproductive output and temperature increase of a temperate asymbiotic coral, providing novel insights into the poorly studied non-zooxanthellate scleractinians.

  16. Using virtual reality to estimate aesthetic values of coral reefs.

    PubMed

    Vercelloni, Julie; Clifford, Sam; Caley, M Julian; Pearse, Alan R; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E

    2018-04-01

    Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems.

  17. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus.

    PubMed

    Kellogg, Christina A; Ross, Steve W; Brooke, Sandra D

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus . Samples from five colonies of P. placomus were collected from Baltimore Canyon (379-382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68-90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas , which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  18. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites

    PubMed Central

    Forsman, Zac H; Barshis, Daniel J; Hunter, Cynthia L; Toonen, Robert J

    2009-01-01

    Background Corals are notoriously difficult to identify at the species-level due to few diagnostic characters and variable skeletal morphology. This 'coral species problem' is an impediment to understanding the evolution and biodiversity of this important and threatened group of organisms. We examined the evolution of the nuclear ribosomal internal transcribed spacer (ITS) and mitochondrial markers (COI, putative control region) in Porites, one of the most taxonomically challenging and ecologically important genera of reef-building corals. Results Nuclear and mitochondrial markers were congruent, clearly resolving many traditionally recognized species; however, branching and mounding varieties were genetically indistinguishable within at least two clades, and specimens matching the description of 'Porites lutea' sorted into three genetically divergent groups. Corallite-level features were generally concordant with genetic groups, although hyper-variability in one group (Clade I) overlapped and obscured several others, and Synarea (previously thought to be a separate subgenus) was closely related to congeners despite its unique morphology. Scanning electron microscopy revealed subtle differences between genetic groups that may have been overlooked previously as taxonomic characters. Conclusion This study demonstrates that the coral skeleton can be remarkably evolutionarily plastic, which may explain some taxonomic difficulties, and obscure underlying patterns of endemism and diversity. PMID:19239678

  19. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  20. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    USGS Publications Warehouse

    Kellogg, Christina A.; Ross, Steve W.; Brooke, Sandra D.

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomuscolonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomusdoes not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  1. Mass coral bleaching causes biotic homogenization of reef fish assemblages.

    PubMed

    Richardson, Laura E; Graham, Nicholas A J; Pratchett, Morgan S; Eurich, Jacob G; Hoey, Andrew S

    2018-04-06

    Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait-based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system-wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small-bodied, algal-farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances. © 2018 John Wiley & Sons Ltd.

  2. Balance of constructive and destructive carbonate processes on mesophotic coral reefs

    NASA Astrophysics Data System (ADS)

    Weinstein, D. K.; Klaus, J. S.; Smith, T. B.; Helmle, K. P.; Marshall, D.

    2013-12-01

    Net carbonate accumulation of coral reefs is the product of both constructive and destructive processes that can ultimately influence overall reef geomorphology. Differences in these processes with depth may in part explain why the coral growth-light intensity association does no result in the traditionally theorized reef accretion decrease with depth. Until recently, physical sampling limitations had prevented the acquisition of sedimentary data needed to assess in situ carbonate accumulation in mesophotic reefs (30-150 m). Coral framework production, secondary carbonate production (calcareous encrusters), and bioerosion, the three most critical components of net carbonate accumulation, were analyzed in mesophotic reefs more than 10 km south of St. Thomas, U.S. Virgin Islands along a very gradual slope that limits sediment transport and sedimentation. Recently dead samples of the massive coral, Orbicella annularis collected from three structurally different upper mesophotic coral reef habitats (30-45 m) were cut parallel to the primary growth axis to identify density banding through standard x-radiographic techniques. Assuming annual banding, mesophotic linear extension rates were calculated on the order of 0.7-1.5 mm/yr. Weight change of experimental coral substrates exposed for 3 years indicate differing rates (1.1-17.2 g/yr) of bioerosion and secondary accretion between mesophotic sites. When correcting bioerosion rates for high mesophotic skeletal density, carbonate accumulation rates were found to vary significantly between neighboring mesophotic reefs with distinctive structures. Results imply variable rates of mesophotic reef net carbonate accretion with the potential to influence overall reef/platform morphology, including localized mesophotic reef structure.

  3. Seaweed allelopathy to corals: are active compounds on, or in, seaweeds?

    NASA Astrophysics Data System (ADS)

    Longo, G. O.; Hay, M. E.

    2017-03-01

    Numerous seaweeds produce secondary metabolites that are allelopathic to corals. To date, most of the compounds identified in this interaction are lipid-soluble instead of water-soluble. Thus, understanding whether these compounds are stored internally where they would not contact corals, or occur on external surfaces where they could be transferred to corals, is critical to understanding seaweed-coral interactions and to informing realistic experiments on chemically mediated interactions. We conducted field experiments assessing the effects of lipid-soluble extracts from macroalgal surfaces alone versus total lipid-soluble extracts from both internal and external tissues on the coral Pocillopora verrucosa. Extracts of the red algae Amansia rhodantha and Asparagopsis taxiformis, the green alga Chlorodesmis fastigiata, and the brown alga Dictyota bartayresiana suppressed coral photochemical efficiency; in these bioactive species, the total lipid-soluble extracts were not more potent than surface-only extracts despite the concentration of total extracts being many times greater than surface-only extracts. This suggests that previous assays with total extracts may be ecologically meaningful, but also that future assays should be conducted with the simpler, less concentrated, and more ecologically relevant surface extracts. Allelopathic effects of As. taxiformis and C. fastigiata were significantly greater than the effect of D. bartayresiana, with effects of Am. rhodantha intermediate between these groups. Neither surface-only nor total lipid-soluble extracts of the seaweed Turbinaria ornata were allelopathic, and its lack of potency differed significantly from all other species. Our results suggest that lipid-soluble, allelopathic compounds are usually deployed on seaweed surfaces where they can be effective in surface-mediated interactions against other species.

  4. Challenges at the Intersection of Energy, Economy, Environment, & Security and the Role of the Defense Sector in Addressing Them

    DTIC Science & Technology

    2011-11-29

    economies need in ways that are imperiling  the  climate  its environment needs. 2 The climate - change dimension • Global climate is changing rapidly compared...cloudy & clear • humid & dry • drizzles & downpours • snowfall, snowpack, & snowmelt • breezes, blizzards, tornadoes, & typhoons Climate change means...droughts • heat waves • pest outbreaks • coastal erosion • coral bleaching events • power of typhoons & hurricanes • geographic range of tropical pathogens

  5. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree

    PubMed Central

    Mejía, Luis C.; Herre, Edward A.; Sparks, Jed P.; Winter, Klaus; García, Milton N.; Van Bael, Sunshine A.; Stitt, Joseph; Shi, Zi; Zhang, Yufan; Guiltinan, Mark J.; Maximova, Siela N.

    2014-01-01

    It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host's ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E−) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic and phenotypic studies of plants. PMID:25309519

  6. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40,000 individual deep-water lithoherms may occur on the Blake Plateau and Straits of Florida, perhaps exceeding the areal extent of all the shallow-water reefs of the southeastern U.S. Our research program has provided data on the status of knowledge concerning these deep-reef habitats to the South Atlantic Fishery Management Council (SAFMC). Currently pending is a proposal by the SAFMC for a deep- water coral Habitat Area of Particular Concern (HAPC) that would extend from North Carolina to south Florida (78,888 km2) to protect these diverse and irreplaceable resources from destructive fishing activities such as bottom trawling. Deep-water reefs worldwide have been severely impacted by bottom trawling, including the deep-water Oculina coral reefs off central eastern Florida, which are structurally similar to the Lophelia reefs. Over a 30-year period, up to 99% of unprotected portions of the Oculina reefs were destroyed by rock shrimp trawling, whereas reefs designated as the Oculina HAPC in 1984 were protected from trawling and long-lines and are still relatively healthy. Numerous fisheries may target the deep-water Lophelia reef habitat including royal red shrimp, golden crab, and various fin fish.

  7. Ecology shapes the evolutionary trade-off between predator avoidance and defence in coral reef butterflyfishes.

    PubMed

    Hodge, Jennifer R; Alim, Chidera; Bertrand, Nick G; Lee, Wesley; Price, Samantha A; Tran, Binh; Wainwright, Peter C

    2018-07-01

    Antipredator defensive traits are thought to trade-off evolutionarily with traits that facilitate predator avoidance. However, complexity and scale have precluded tests of this prediction in many groups, including fishes. Using a macroevolutionary approach, we test this prediction in butterflyfishes, an iconic group of coral reef inhabitants with diverse social behaviours, foraging strategies and antipredator adaptations. We find that several antipredator traits have evolved adaptively, dependent primarily on foraging strategy. We identify a previously unrecognised axis of diversity in butterflyfishes where species with robust morphological defences have riskier foraging strategies and lack sociality, while species with reduced morphological defences feed in familiar territories, have adaptations for quick escapes and benefit from the vigilance provided by sociality. Furthermore, we find evidence for the constrained evolution of fin spines among species that graze solely on corals, highlighting the importance of corals, as both prey and structural refuge, in shaping fish morphology. © 2018 John Wiley & Sons Ltd/CNRS.

  8. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians

    NASA Astrophysics Data System (ADS)

    Wolfowicz, Iliona; Baumgarten, Sebastian; Voss, Philipp A.; Hambleton, Elizabeth A.; Voolstra, Christian R.; Hatta, Masayuki; Guse, Annika

    2016-09-01

    Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.

  9. Coral reefs as the first line of defense: Shoreline protection in face of climate change.

    PubMed

    Elliff, Carla I; Silva, Iracema R

    2017-06-01

    Coral reefs are responsible for a wide array of ecosystem services including shoreline protection. However, the processes involved in delivering this particular service have not been fully understood. The objective of the present review was to compile the main results in the literature regarding the study of shoreline protection delivered by coral reefs, identifying the main threats climate change imposes to the service, and discuss mitigation and recovery strategies that can and have been applied to these ecosystems. While different zones of a reef have been associated with different levels of wave energy and wave height attenuation, more information is still needed regarding the capacity of different reef morphologies to deliver shoreline protection. Moreover, the synergy between the main threats imposed by climate change to coral reefs has also not been thoroughly investigated. Recovery strategies are being tested and while there are numerous mitigation options, the challenge remains as to how to implement them and monitor their efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals.

    PubMed

    Fuess, Lauren E; Pinzόn C, Jorge H; Weil, Ernesto; Mydlarz, Laura D

    2016-09-01

    Disease outbreaks in marine ecosystems have driven worldwide declines of numerous taxa, including corals. Some corals, such as Orbicella faveolata, are particularly susceptible to disease. To explore the mechanisms contributing to susceptibility, colonies of O. faveolata were exposed to immune challenge with lipopolysaccharides. RNA sequencing and protein activity assays were used to characterize the response of corals to immune challenge. Differential expression analyses identified 17 immune-related transcripts that varied in expression post-immune challenge. Network analyses revealed several groups of transcripts correlated to immune protein activity. Several transcripts, which were annotated as positive regulators of immunity were included in these groups, and some were downregulated following immune challenge. Correlations between expression of these transcripts and protein activity results further supported the role of these transcripts in positive regulation of immunity. The observed pattern of gene expression and protein activity may elucidate the processes contributing to the disease susceptibility of species like O. faveolata. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges

    PubMed Central

    Mellin, C.; Mouillot, D.; Kulbicki, M.; McClanahan, T. R.; Vigliola, L.; Bradshaw, C. J. A.; Brainard, R. E.; Chabanet, P.; Edgar, G. J.; Fordham, D. A.; Friedlander, A. M.; Parravicini, V.; Sequeira, A. M. M.; Stuart-Smith, R. D.; Wantiez, L.; Caley, M. J.

    2016-01-01

    Coral reefs are among the most species-rich and threatened ecosystems on Earth, yet the extent to which human stressors determine species occurrences, compared with biogeography or environmental conditions, remains largely unknown. With ever-increasing human-mediated disturbances on these ecosystems, an important question is not only how many species can inhabit local communities, but also which biological traits determine species that can persist (or not) above particular disturbance thresholds. Here we show that human pressure and seasonal climate variability are disproportionately and negatively associated with the occurrence of large-bodied and geographically small-ranging fishes within local coral reef communities. These species are 67% less likely to occur where human impact and temperature seasonality exceed critical thresholds, such as in the marine biodiversity hotspot: the Coral Triangle. Our results identify the most sensitive species and critical thresholds of human and climatic stressors, providing opportunity for targeted conservation intervention to prevent local extinctions. PMID:26839155

  12. Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and 234U /238U

    NASA Astrophysics Data System (ADS)

    Bar-Matthews, M.; Wasserburg, G. J.; Chen, J. H.

    1993-01-01

    A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographie and trace element analyses on a suite of Pleistocene samples that had previously been studied for 234U, 230Th, and U- 230Th ages ( CHEN et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). The normal texture exhibited by modern corals under OM consists of fine needles of aragonite forming a radial-fibrous pattern around a central dark line (center of calcification). This pattern can also be seen in many fossil corals. In most cases, the central dark line partially disappears during diagenesis, the radialfibrous pattern is obscured, and there is a distinct coarsening of the radial fabric of aragonite to unoriented platy or equant aragonite crystals. SEM images show diagenetic textures ranging from dense structureless images of the coralline matrix, with sharp boundaries at the septa walls, to the development of (1) a patchy distribution of dissolution micropores partially filled with aragonite fibers in the matrix, (2)aragonite needles coming from selvages in the septa walls which radiate into the septa voids. Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles are highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial δ 234U, are generally correlated ( CHEN et al., 1991). As all these diagenetic changes involve the recrystallization and deposition of aragonite, we infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the 234U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U- 230Th dating. The basic problem of identifying a priori unaltered coral skeletons for 230Th dating is not yet resolved.

  13. Uranium-Series Ages of Marine Terrace Corals from the Pacific Coast of North America and Implications for Last-Interglacial Sea Level History

    USGS Publications Warehouse

    Muhs, D.R.; Kennedy, G.L.; Rockwell, T.K.

    1994-01-01

    Few of the marine terraces along the Pacific coast of North America have been dated using uranium-series techniques. Ten terrace sequences from southern Oregon to southern Baja California Sur have yielded fossil corals in quantities suitable for U-series dating by alpha spectrometry. U-series-dated terraces representing the ???80,000 yr sea-level high stand are identified in five areas (Bandon, Oregon; Point Arena, San Nicolas Island, and Point Loma, California; and Punta Banda, Baja California); terraces representing the ???125,000 yr sea-level high stand are identified in eight areas (Cayucos, San Luis Obispo Bay, San Nicolas Island, San Clemente Island, and Point Loma, California; Punta Bands and Isla Guadalupe, Baja California; and Cabo Pulmo, Baja California Sur). On San Nicolas Island, Point Loma, and Punta Bands, both the ???80,000 and the ???125,000 yr terraces are dated. Terraces that may represent the ???105,000 sea-level high stand are rarely preserved and none has yielded corals for U-series dating. Similarity of coral ages from midlatitude, erosional marine terraces with coral ages from emergent, constructional reefs on tropical coastlines suggests a common forcing mechanism, namely glacioeustatically controlled fluctuations in sea level superimposed on steady tectonic uplift. The low marine terrace dated at ???125,000 yr on Isla Guadalupe, Baja California, presumed to be tectonically stable, supports evidence from other localities for a +6-m sea level at that time. Data from the Pacific Coast and a compilation of data from other coasts indicate that sea levels at ???80,000 and ???105,000 yr may have been closer to present sea level (within a few meters) than previous studies have suggested.

  14. Genomic variation among populations of threatened coral: Acropora cervicornis.

    PubMed

    Drury, C; Dale, K E; Panlilio, J M; Miller, S V; Lirman, D; Larson, E A; Bartels, E; Crawford, D L; Oleksiak, M F

    2016-04-13

    Acropora cervicornis, a threatened, keystone reef-building coral has undergone severe declines (>90 %) throughout the Caribbean. These declines could reduce genetic variation and thus hamper the species' ability to adapt. Active restoration strategies are a common conservation approach to mitigate species' declines and require genetic data on surviving populations to efficiently respond to declines while maintaining the genetic diversity needed to adapt to changing conditions. To evaluate active restoration strategies for the staghorn coral, the genetic diversity of A. cervicornis within and among populations was assessed in 77 individuals collected from 68 locations along the Florida Reef Tract (FRT) and in the Dominican Republic. Genotyping by Sequencing (GBS) identified 4,764 single nucleotide polymorphisms (SNPs). Pairwise nucleotide differences (π) within a population are large (~37 %) and similar to π across all individuals. This high level of genetic diversity along the FRT is similar to the diversity within a small, isolated reef. Much of the genetic diversity (>90 %) exists within a population, yet GBS analysis shows significant variation along the FRT, including 300 SNPs with significant FST values and significant divergence relative to distance. There are also significant differences in SNP allele frequencies over small spatial scales, exemplified by the large FST values among corals collected within Miami-Dade county. Large standing diversity was found within each population even after recent declines in abundance, including significant, potentially adaptive divergence over short distances. The data here inform conservation and management actions by uncovering population structure and high levels of diversity maintained within coral collections among sites previously shown to have little genetic divergence. More broadly, this approach demonstrates the power of GBS to resolve differences among individuals and identify subtle genetic structure, informing conservation goals with evolutionary implications.

  15. Cold-water coral ecosystems in the Penmarc’h and Guilvinec canyons (Bay of Biscay): deep-water versus shallow water settings

    NASA Astrophysics Data System (ADS)

    de Mol, L.; van Rooij, D.; Pirlet, H.; Quemmerais, F.; Greinert, J.; Frank, N.; Henriet, J.

    2009-12-01

    In 1948, Le Danois reported for the first time the occurrence of “massifs coralliens” along the European Atlantic continental margin. Within the framework of the EC FP6 IP HERMES and ESF EuroDIVERSITY MiCROSYSTEMS projects, the R/V Belgica BiSCOSYSTEMS cruise was set out to rediscover these cold-water corals in the Penmarc’h and Guilvinec canyons along the Gascogne margin of the Bay of Biscay. During this cruise, an area of 560 km2 was studied using swath bathymetry (EM1002), high-resolution reflection seismic profiling, CTD casts, ROV observations and USBL-guided boxcoring. Based on the multibeam data and the ROV video images, two different cold-water coral reef settings were distinguished. In water depths ranging from 260 to 350 m, mini-mounds up to 10 m high, covered by dead cold-water coral rubble, were observed. In between these mounds, an alternation of rippled and unrippled seabed with a patchy distribution of dropstones was observed. The second setting features both living and dead cold-water corals (predominantly Madrepora oculata) in water depths of 700 to 950 m. At certain locations, they form dense coral fields with a size of about 10-60 m, characterized by mostly dead corals and a few living ones. In this area also hard substrate with cracks, ridges, cliffs and oyster banks was noticed. Both the shallow area with the mini mounds (SE flank of the Guilvinec canyon) and the living and dead corals in the deeper setting were sampled with boxcores. These boxcores were used to determine the different sedimentary facies and to identify coral species present on the site. For this purpose, grain size analysis, U/Th dating of coral fragments, C14 datings of foraminifera and phylogenetic/genomic studies on living species were established. The cold-water corals from the deeper area occur in a density envelope (sigma-theta) of 27.3 - 27.4 kg.m-3, falling within the range of values which are considered to be a prerequisite for the development, growth and distribution of cold-water coral reefs along the northern Atlantic margin (Dullo et al., 2008). The presented data prove for the very first time that this prerequisite is also valid for the Bay of Biscay. However, this does not explain the presence of the shallow mini mounds, for which another genetic model needs to be proposed. References: Dullo, W.-C., Flögel, S., Rüggeberg, A., 2008. Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol Prog Ser 371, 165-176.

  16. A new pyrimidinedione derivative from the gorgonian coral Verrucella umbraculum.

    PubMed

    Huang, Riming; Peng, Yan; Zhou, Xuefeng; Fu, Manqin; Tian, Shuai; Liu, Yonghong

    2013-03-01

    A new pyrimidinedione derivative, 9-acetyl-1,3,7-trimethyl-pyrimidinedione (1), was isolated from the gorgonian coral Verrucella umbraculum, together with two known compounds, caffeine (2) and 1,3-dimethylpyrimidine-2,4(1H,3H)-dione (3). The structure of 1 was elucidated by the aid of 1D, 2D NMR and MS experiments. The structures of the known compounds were identified by comparison of their spectroscopic data with those reported in the literature.

  17. Culture-dependent and culture-independent analyses reveal no prokaryotic community shifts or recovery of Serratia marcescens in Acropora palmata with white pox disease.

    PubMed

    Lesser, Michael P; Jarett, Jessica K

    2014-06-01

    Recently, the etiological agent of white pox (WP) disease, also known as acroporid serratiosis, in the endangered coral Acropora palmata is the enteric bacterium Serratia marcescens with the source being localized sewage release onto coastal coral reef communities. Here, we show that both culture-dependent and culture-independent approaches could not recover this bacterium from samples of tissue and mucus from A. palmata colonies affected by WP disease in the Bahamas, or seawater collected adjacent to A. palmata colonies. Additionally, a metagenetic 16S rRNA pyrosequencing study shows no significant difference in the bacterial communities of coral tissues with and without WP lesions. As recent studies have shown for other coral diseases, S. marcescens cannot be identified in all cases of WP disease in several geographically separated populations of A. palmata with the same set of signs. As a result, its identification as the etiological agent of WP disease, and cause of a reverse zoonosis, cannot be broadly supported. However, the prevalence of WP disease associated with S. marcescens does appear to be associated with proximity to population centers, and research efforts should be broadened to examine this association, and to identify other causes of this syndrome. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Consequences of ecological, evolutionary and biogeochemical uncertainty for coral reef responses to climatic stress.

    PubMed

    Mumby, Peter J; van Woesik, Robert

    2014-05-19

    Coral reefs are highly sensitive to the stress associated with greenhouse gas emissions, in particular ocean warming and acidification. While experiments show negative responses of most reef organisms to ocean warming, some autotrophs benefit from ocean acidification. Yet, we are uncertain of the response of coral reefs as systems. We begin by reviewing sources of uncertainty and complexity including the translation of physiological effects into demographic processes, indirect ecological interactions among species, the ability of coral reefs to modify their own chemistry, adaptation and trans-generational plasticity. We then incorporate these uncertainties into two simple qualitative models of a coral reef system under climate change. Some sources of uncertainty are far more problematic than others. Climate change is predicted to have an unambiguous negative effect on corals that is robust to several sources of uncertainty but sensitive to the degree of biogeochemical coupling between benthos and seawater. Macroalgal, zoanthid, and herbivorous fish populations are generally predicted to increase, but the ambiguity (confidence) of such predictions are sensitive to the source of uncertainty. For example, reversing the effect of climate-related stress on macroalgae from being positive to negative had no influence on system behaviour. By contrast, the system was highly sensitive to a change in the stress upon herbivorous fishes. Minor changes in competitive interactions had profound impacts on system behaviour, implying that the outcomes of mesocosm studies could be highly sensitive to the choice of taxa. We use our analysis to identify new hypotheses and suggest that the effects of climatic stress on coral reefs provide an exceptional opportunity to test emerging theories of ecological inheritance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Modeling the Lead(Pb) concentrations in corals in the Singapore Straits

    NASA Astrophysics Data System (ADS)

    Chen, M.; Lee, J.; Nurhati, I. S.; Switzer, A. D.; Boyle, E. A.

    2012-12-01

    The leaded gasoline has dominated the global Pb emission and has imposed serious health problems in the past 50 years. While countries in North America and Western Europe phased out leaded gasoline in 1970s and early 1980s, many fast developing Asian countries have been using it until recently. In order to monitor anthropogenic Pb variations in marine environments, the history of seawater Pb in the Singapore Strait -- one of the world's busiest shipping lanes has been reconstructed from a 50 year-long coral core (Lee et al., unpublished record). A 50-year-long coral Pb/Ca record from the Singapore Strait was measured using isotope dilution ICPMS (for Pb) and FAAS (for Ca). Here, we propose a statistical model to correlate lead measured in the Singapore coral (Pb/Ca) and the possible Pb sources in the region. The measurement reveals that the Pb in coral is only weakly correlated with Pb the gasoline emission from the neighboring countries (i.e. Singapore, Malaysia, and Batam Indonesia). Such weak correlation implies that either the gasoline may not be a dominating source to Singapore Strait or the transport process of the Pb (either atmospheric or oceanographic) in this region complicates the interpretation. In this case, we tested a number of statistical correlations to understand the possible roles of leaded gasoline emission, rainfall, sediment flux and the residence time of the Pb inferred by the Pb210 data. From our current tests, a relatively high correlation appeared between the Pb in coral and the local annual precipitation, with a lag time of 2 years. The 2 year lag is somewhat surprising and we expect to elaborate further by correlating the Pb in coral with the Pb isotope signatures in an attempt to identify possible sources.;

  20. Discovery of the Corallivorous Polyclad Flatworm, Amakusaplana acroporae, on the Great Barrier Reef, Australia – the First Report from the Wild

    PubMed Central

    Rawlinson, Kate A.; Stella, Jessica S.

    2012-01-01

    The role of corallivory is becoming increasingly recognised as an important factor in coral health at a time when coral reefs around the world face a number of other stressors. The polyclad flatworm, Amakusaplana acroporae, is a voracious predator of Indo-Pacific acroporid corals in captivity, and its inadvertent introduction into aquaria has lead to the death of entire coral colonies. While this flatworm has been a pest to the coral aquaculture community for over a decade, it has only been found in aquaria and has never been described from the wild. Understanding its biology and ecology in its natural environment is crucial for identifying viable biological controls for more successful rearing of Acropora colonies in aquaria, and for our understanding of what biotic interactions are important to coral growth and fitness on reefs. Using morphological, histological and molecular techniques we determine that a polyclad found on Acropora valida from Lizard Island, Australia is A. acroporae. The presence of extracellular Symbiodinium in the gut and parenchyma and spirocysts in the gut indicates that it is a corallivore in the wild. The examination of a size-range of individuals shows maturation of the sexual apparatus and increases in the number of eyes with increased body length. Conservative estimates of abundance show that A. acroporae occurred on 7 of the 10 coral colonies collected, with an average of 2.6±0.65 (mean ±SE) animals per colony. This represents the first report of A. acroporae in the wild, and sets the stage for future studies of A. acroporae ecology and life history in its natural habitat. PMID:22870308

  1. Explained and unexplained tissue loss in corals from the Tropical Eastern Pacific

    USGS Publications Warehouse

    Rodriguez-Villalobos, Jenny Carolina; Work, Thierry M.; Calderon-Aguilera, Luis Eduardo; Reyes-Bonilla, Hector; Hernández, Luis

    2015-01-01

    Coral reefs rival rainforest in biodiversity, but are declining in part because of disease. Tissue loss lesions, a manifestation of disease, are present in dominant Pocillopora along the Pacific coast of Mexico. We characterized tissue loss in 7 species of Pocillopora from 9 locations (44 sites) spanning southern to northern Mexico. Corals were identified to species, and tissue loss lesions were photographed and classified as those explainable by predation and those that were unexplained. A focal predation study was done concurrently at 3 locations to confirm origin of explained lesions. Of 1054 cases of tissue loss in 7 species of corals, 84% were associated with predation (fish, snails, or seastar) and the remainder were unexplained. Types of tissue loss were not related to coral density; however there was significant geographic heterogeneity in type of lesion; one site in particular (Cabo Pulmo) had the highest prevalence of predator-induced tissue loss (mainly pufferfish predation). Crown-of-thorns starfish, pufferfish, and snails were the most common predators and preferred P. verrucosa, P. meandrina, and P. capitata, respectively. Of the 9 locations, 4 had unexplained tissue loss with prevalence ranging from 1 to 3% with no species predilection. Unexplained tissue loss was similar to white syndrome (WS) in morphology, indicating additional study is necessary to clarify the cause(s) of the lesions and the potential impacts to dominant corals along the Pacific coast of Mexico.

  2. Ten years of change to coral communities off Mona and Desecheo Islands, Puerto Rico, from disease and bleaching.

    PubMed

    Bruckner, Andrew W; Hill, Ronald L

    2009-11-16

    Remote reefs off southwest Puerto Rico have experienced recent losses in live coral cover of 30 to 80%, primarily due to the decline of Montastraea annularis and M. faveolata from disease and bleaching. These species were formerly the largest, oldest, and most abundant corals on these reefs, constituting over 65% of the living coral cover and 40 to 80% of the total number of colonies. From 1998 to 2001, outbreaks of yellow band disease (YBD) and white plague (WP) affected 30 to 60% of the M. annularis (complex) colonies. Disease prevalence declined beginning in 2002, and then increased immediately following the 2005 mass bleaching event. Colonies of M. annularis (complex) have been reduced in abundance by 24 to 32%, and remaining colonies are missing more than half their tissue. Both M. annularis and M. faveolata have failed to recruit, resheeting has been minimal, and exposed skeletal surfaces are being colonized by macroalgae, bioeroding sponges, and hydrozoans. Other scleractinian corals were smaller in size (mean = 28 cm diameter) and exhibited lower levels of partial mortality; these taxa were affected to a lesser extent by coral diseases and bleaching-associated tissue loss over the last decade. The numbers of small colonies (1 to 9 cm) of these species identified since 2005 also exceeded numbers of larger colonies that died. These reefs appear to be exhibiting shifts in species assemblages, with replacement of M. annularis (complex) by shorter-lived brooding species and other massive and plating corals (Agaricia, Porites, Meandrina, Eusmilia, Diploria, and Siderastrea spp.). To avoid a catastrophic and permanent loss of the dominant, slow-growing reef-building corals, the causes and effects of diseases need to be better understood, and possible control mechanisms must be developed. In particular, steps must be taken to mitigate environmental and anthropogenic stressors that increase the spread and severity of disease.

  3. Operationalizing resilience for adaptive coral reef management under global environmental change.

    PubMed

    Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. © 2014 John Wiley & Sons Ltd.

  4. Physiology can contribute to better understanding, management, and conservation of coral reef fishes

    PubMed Central

    Rummer, Jodie L.

    2017-01-01

    Abstract Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes. PMID:28852508

  5. Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    PubMed Central

    Schwarz, Jodi A; Brokstein, Peter B; Voolstra, Christian; Terry, Astrid Y; Miller, David J; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica

    2008-01-01

    Background Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Results We generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. Conclusion Partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies. PMID:18298846

  6. Coral Life History and Symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    DOE PAGES

    Schwarz, Jodi A.; Brokstein, Peter B.; Voolstra, Christian R.; ...

    2008-02-25

    Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Here we generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembledmore » into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. In conclusion, partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.« less

  7. Coral Life History and Symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Jodi A.; Brokstein, Peter B.; Voolstra, Christian R.

    Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Here we generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembledmore » into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. In conclusion, partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.« less

  8. A New Perspective: Assessing the Spatial Distribution of Coral Bleaching with Unmanned Low Altitude Remote Sensing Systems

    NASA Astrophysics Data System (ADS)

    Levy, J.; Franklin, E. C.; Hunter, C. L.

    2016-12-01

    Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef scientists a new perspective on meso-scale coral reef dynamics. We envision that similar low altitude aerial surveys will be incorporated as a standard component of shallow-water reef studies, especially on reefs too dangerous or remote for in situ surveys.

  9. Ten things to get right for marine conservation planning in the Coral Triangle.

    PubMed

    Weeks, Rebecca; Pressey, Robert L; Wilson, Joanne R; Knight, Maurice; Horigue, Vera; Abesamis, Rene A; Acosta, Renerio; Jompa, Jamaluddin

    2014-01-01

    Systematic conservation planning increasingly underpins the conservation and management of marine and coastal ecosystems worldwide. Amongst other benefits, conservation planning provides transparency in decision-making, efficiency in the use of limited resources, the ability to minimise conflict between diverse objectives, and to guide strategic expansion of local actions to maximise their cumulative impact. The Coral Triangle has long been recognised as a global marine conservation priority, and has been the subject of huge investment in conservation during the last five years through the Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security. Yet conservation planning has had relatively little influence in this region. To explore why this is the case, we identify and discuss 10 challenges that must be resolved if conservation planning is to effectively inform management actions in the Coral Triangle. These are: making conservation planning accessible; integrating with other planning processes; building local capacity for conservation planning; institutionalising conservation planning within governments; integrating plans across governance levels; planning across governance boundaries; planning for multiple tools and objectives; understanding limitations of data; developing better measures of progress and effectiveness; and making a long term commitment. Most important is a conceptual shift from conservation planning undertaken as a project, to planning undertaken as a process, with dedicated financial and human resources committed to long-term engagement.

  10. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs

    NASA Astrophysics Data System (ADS)

    Henry, L.-A.; Moreno Navas, J.; Roberts, J. M.

    2013-04-01

    We investigated how interactions between hydrography, topography and species ecology influence the assembly of species and functional traits across multiple spatial scales of a cold-water coral reef seascape. In a novel approach for these ecosystems, we used a spatially resolved complex three-dimensional flow model of hydrography to help explain assembly patterns. Forward-selection of distance-based Moran's eigenvector mapping (dbMEM) variables identified two submodels of spatial scales at which communities change: broad-scale (across reef) and fine-scale (within reef). Variance partitioning identified bathymetric and hydrographic gradients important in creating broad-scale assembly of species and traits. In contrast, fine-scale assembly was related more to processes that created spatially autocorrelated patches of fauna, such as philopatric recruitment in sessile fauna, and social interactions and food supply in scavenging detritivores and mobile predators. Our study shows how habitat modification of reef connectivity and hydrography by bottom fishing and renewable energy installations could alter the structure and function of an entire cold-water coral reef seascape.

  11. Coral calcification and ocean acidification

    USGS Publications Warehouse

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives calcification and increases in Gnet. These relationships result in a correlation between Gnet and Ωarag, with both parameters being variables dependent on Pnet. Consequently the correlation between Gnet and Ωarag varies widely between different locations and times depending on the relative metabolic contributions of various calcifying and photosynthesizing organisms and local rates of carbonate dissolution. High rates of H+ efflux continue for several hours following the mid-day Gnet peak suggesting that corals have difficulty in shedding waste protons as described by the Proton Flux Model. DIC flux (uptake) tracks Pnet and Gnet and drops off rapidly after the photosynthesis-calcification maxima, indicating that corals can cope more effectively with the problem of limited DIC supply compared to the problem of eliminating H+. Predictive models of future global changes in coral and coral reef growth based on oceanic Ωarag must include the influence of future changes in localized Pnet on Gnet as well as changes in rates of reef carbonate dissolution. The correlation between Ωarag and Gnet over the diel cycle is simply the result of increasing pH due to photosynthesis that shifts the CO2-carbonate system equilibria to increase [CO32] relative to the other DIC components of [HCO3] and [CO2]. Therefore Ωarag closely tracks pH as an effect of Pnet, which also drives changes in Gnet. Measurements of DIC flux and H+ flux are far more useful than concentrations in describing coral metabolism dynamics. Coral reefs are systems that exist in constant disequilibrium with the water column.

  12. Molecular evolution of calcification genes in morphologically similar but phylogenetically unrelated scleractinian corals.

    PubMed

    Wirshing, Herman H; Baker, Andrew C

    2014-08-01

    Molecular phylogenies of scleractinian corals often fail to agree with traditional phylogenies derived from morphological characters. These discrepancies are generally attributed to non-homologous or morphologically plastic characters used in taxonomic descriptions. Consequently, morphological convergence of coral skeletons among phylogenetically unrelated groups is considered to be the major evolutionary process confounding molecular and morphological hypotheses. A strategy that may help identify cases of convergence and/or diversification in coral morphology is to compare phylogenies of existing "neutral" genetic markers used to estimate genealogic phylogenetic history with phylogenies generated from non-neutral genes involved in calcification (biomineralization). We tested the hypothesis that differences among calcification gene phylogenies with respect to the "neutral" trees may represent convergent or divergent functional strategies among calcification gene proteins that may correlate to aspects of coral skeletal morphology. Partial sequences of two nuclear genes previously determined to be involved in the calcification process in corals, "Cnidaria-III" membrane-bound/secreted α-carbonic anhydrase (CIII-MBSα-CA) and bone morphogenic protein (BMP) 2/4, were PCR-amplified, cloned and sequenced from 31 scleractinian coral species in 26 genera and 9 families. For comparison, "neutral" gene phylogenies were generated from sequences from two protein-coding "non-calcification" genes, one nuclear (β-tubulin) and one mitochondrial (cytochrome b), from the same individuals. Cloned CIII-MBSα-CA sequences were found to be non-neutral, and phylogenetic analyses revealed CIII-MBSα-CAs to exhibit a complex evolutionary history with clones distributed between at least 2 putative gene copies. However, for several coral taxa only one gene copy was recovered. With CIII-MBSα-CA, several recovered clades grouped taxa that differed from the "non-calcification" loci. In some cases, these taxa shared aspects of their skeletal morphology (i.e., convergence or diversification relative to the "non-calcification" loci), but in other cases they did not. For example, the "non-calcification" loci recovered Atlantic and Pacific mussids as separate evolutionary lineages, whereas with CIII-MBSα-CA, clones of two species of Atlantic mussids (Isophyllia sinuosa and Mycetophyllia sp.) and two species of Pacific mussids (Acanthastrea echinata and Lobophyllia hemprichii) were united in a distinct clade (except for one individual of Mycetophyllia). However, this clade also contained other taxa which were not unambiguously correlated with morphological features. BMP2/4 also contained clones that likely represent different gene copies. However, many of the sequences showed no significant deviation from neutrality, and reconstructed phylogenies were similar to the "non-calcification" tree topologies with a few exceptions. Although individual calcification genes are unlikely to precisely explain the diverse morphological features exhibited by scleractinian corals, this study demonstrates an approach for identifying cases where morphological taxonomy may have been misled by convergent and/or divergent molecular evolutionary processes in corals. Studies such as this may help illuminate our understanding of the likely complex evolution of genes involved in the calcification process, and enhance our knowledge of the natural history and biodiversity within this central ecological group. Published by Elsevier Inc.

  13. CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black Band Disease

    PubMed Central

    Buerger, Patrick; Wood-Charlson, Elisha M.; Weynberg, Karen D.; Willis, Bette L.; van Oppen, Madeleine J. H.

    2016-01-01

    Understanding how pathogens maintain their virulence is critical to developing tools to mitigate disease in animal populations. We sequenced and assembled the first draft genome of Roseofilum reptotaenium AO1, the dominant cyanobacterium underlying pathogenicity of the virulent coral black band disease (BBD), and analyzed parts of the BBD-associated Geitlerinema sp. BBD_1991 genome in silico. Both cyanobacteria are equipped with an adaptive, heritable clustered regularly interspaced short palindromic repeats (CRISPR)-Cas defense system type I-D and have potential virulence genes located within several prophage regions. The defense system helps to prevent infection by viruses and mobile genetic elements via identification of short fingerprints of the intruding DNA, which are stored as templates in the bacterial genome, in so-called “CRISPRs.” Analysis of CRISPR target sequences (protospacers) revealed an unusually high number of self-targeting spacers in R. reptotaenium AO1 and extraordinary long CRIPSR arrays of up to 260 spacers in Geitlerinema sp. BBD_1991. The self-targeting spacers are unlikely to be a form of autoimmunity; instead these target an incomplete lysogenic bacteriophage. Lysogenic virus induction experiments with mitomycin C and UV light did not reveal an actively replicating virus population in R. reptotaenium AO1 cultures, suggesting that phage functionality is compromised or excision could be blocked by the CRISPR-Cas system. Potential prophages were identified in three regions of R. reptotaenium AO1 and five regions of Geitlerinema sp. BBD_1991, containing putative BBD relevant virulence genes, such as an NAD-dependent epimerase/dehydratase (a homolog in terms of functionality to the third and fourth most expressed gene in BBD), lysozyme/metalloendopeptidases and other lipopolysaccharide modification genes. To date, viruses have not been considered to be a component of the BBD consortium or a contributor to the virulence of R. reptotaenium AO1 and Geitlerinema sp. BBD_1991. We suggest that the presence of virulence genes in potential prophage regions, and the CRISPR-Cas defense systems are evidence of an arms race between the respective cyanobacteria and their bacteriophage predators. The presence of such a defense system likely reduces the number of successful bacteriophage infections and mortality in the cyanobacteria, facilitating the progress of BBD. PMID:28066391

  14. CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black Band Disease.

    PubMed

    Buerger, Patrick; Wood-Charlson, Elisha M; Weynberg, Karen D; Willis, Bette L; van Oppen, Madeleine J H

    2016-01-01

    Understanding how pathogens maintain their virulence is critical to developing tools to mitigate disease in animal populations. We sequenced and assembled the first draft genome of Roseofilum reptotaenium AO1, the dominant cyanobacterium underlying pathogenicity of the virulent coral black band disease (BBD), and analyzed parts of the BBD-associated Geitlerinema sp. BBD_1991 genome in silico . Both cyanobacteria are equipped with an adaptive, heritable clustered regularly interspaced short palindromic repeats (CRISPR)-Cas defense system type I-D and have potential virulence genes located within several prophage regions. The defense system helps to prevent infection by viruses and mobile genetic elements via identification of short fingerprints of the intruding DNA, which are stored as templates in the bacterial genome, in so-called "CRISPRs." Analysis of CRISPR target sequences (protospacers) revealed an unusually high number of self-targeting spacers in R. reptotaenium AO1 and extraordinary long CRIPSR arrays of up to 260 spacers in Geitlerinema sp. BBD_1991. The self-targeting spacers are unlikely to be a form of autoimmunity; instead these target an incomplete lysogenic bacteriophage. Lysogenic virus induction experiments with mitomycin C and UV light did not reveal an actively replicating virus population in R. reptotaenium AO1 cultures, suggesting that phage functionality is compromised or excision could be blocked by the CRISPR-Cas system. Potential prophages were identified in three regions of R. reptotaenium AO1 and five regions of Geitlerinema sp. BBD_1991, containing putative BBD relevant virulence genes, such as an NAD-dependent epimerase/dehydratase (a homolog in terms of functionality to the third and fourth most expressed gene in BBD), lysozyme/metalloendopeptidases and other lipopolysaccharide modification genes. To date, viruses have not been considered to be a component of the BBD consortium or a contributor to the virulence of R. reptotaenium AO1 and Geitlerinema sp. BBD_1991. We suggest that the presence of virulence genes in potential prophage regions, and the CRISPR-Cas defense systems are evidence of an arms race between the respective cyanobacteria and their bacteriophage predators. The presence of such a defense system likely reduces the number of successful bacteriophage infections and mortality in the cyanobacteria, facilitating the progress of BBD.

  15. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms

    PubMed Central

    2013-01-01

    Background Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. Results We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A2 and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A2 expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. Conclusions We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was significantly higher than that of nontoxins. Diversification among toxins appeared to follow speciation reflecting species-specific adaptation, and this divergence may be directly related to dietary shifts and is suggestive of a coevolutionary arms race. PMID:23915248

  16. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

    PubMed

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-08-02

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A(2) and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A(2) expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was significantly higher than that of nontoxins. Diversification among toxins appeared to follow speciation reflecting species-specific adaptation, and this divergence may be directly related to dietary shifts and is suggestive of a coevolutionary arms race.

  17. Quaternary onset and evolution of Kimberley coral reefs (Northwest Australia) revealed by high-resolution seismic imaging

    NASA Astrophysics Data System (ADS)

    Bufarale, Giada; Collins, Lindsay B.; O'Leary, Michael J.; Stevens, Alexandra; Kordi, Moataz; Solihuddin, Tubagus

    2016-07-01

    The inner shelf Kimberley Bioregion of Northwest Australia is characterised by a macrotidal setting where prolific coral reefs growth as developed around a complex drowned landscape and is considered a biodiversity "hotspot". High-resolution shallow seismic studies were conducted across various reef settings in the Kimberley (Buccaneer Archipelago, north of Dampier Peninsula, latitude: between 16°40‧S and 16°00‧S) to evaluate stratigraphic evolution, interaction with different substrates, morphological patterns and distribution. Reef sites were chosen to assess most of the reef types present, particularly high intertidal planar reefs and fringing reefs. Reef internal acoustic reflectors were identified according to their shape, stratigraphic position and characteristics. Two main seismic horizons were identified marking the boundaries between Holocene reef (Marine Isotope Stage 1, MIS 1, last 12 ky), commonly 10-20 m thick, and MIS 5 (Last Interglacial, LIG, ~120 ky, up to 12 m thick) and Proterozoic rock foundation over which Quaternary reef growth occurred. Within the Holocene Reef unit, at least three minor internal reflectors, generally discontinuous, subparallel to the reef flat were recognised and interpreted as either growth hiatuses or a change of the coral framework or sediment matrix. The LIG reefs represent a new northernmost occurrence along the Western Australian coast. The research presented here achieved the first regional geophysical study of the Kimberley reefs. Subbottom profiles demonstrated that the surveyed reefs are characterised by a multi-stage reef buildup, indicating that coral growth occurred in the Kimberley during previous sea level highstands. The data show also that antecedent substrate and regional subsidence have contributed, too, in determining the amount of accommodation available for reef growth and controlling the morphology of the successive reef building stages. Moreover, the study showed that in spite of macrotidal conditions, high-turbidity and frequent high-energy cyclonic events, corals have exhibited prolific reef growth during the Holocene developing significant reef accretionary structures. As a result coral reefs have generating habitat complexity and species diversity in what is a biodiversity hotspot.

  18. The Distribution and Appearance of Cold-Water Coral Carbonate Mounds and Mound-Like Structures in the NE Atlantic: Pre-site Appraisal for CARBONATE Drilling

    NASA Astrophysics Data System (ADS)

    Dorschel, B.; Wheeler, A. J.; Monteys, X.

    2007-12-01

    Cold-water coral carbonate mounds on the continental slope of the northeast Atlantic are certainly among the most amazing geological discoveries of the last decade. They developed as a result of hydrological, biological and geological processes with thickets of cold-water corals mainly Lophelia pertus and Madrepora oculata reported from numerous mound sites. Over the last years, research focused on selected mounds e.g. IODP Sites 1317 visited during IODP Expedition 307 has revealed that many of the investigated mounds are true coral built-ups. The recovered mound sediments were composed of loose coral frameworks embedded in a matrix of fine grained hemipelagic sediments. The additional calcium carbonate added by the corals was in the form of fragments and bioeroded fine grained carbonate flakes. This increase in calcium carbonate classifies the mounds as spots of enhanced carbonate accumulation in intermediate water depth. So far, the carbonate stored in submarine carbonate mounds in the northeast Atlantic has not been included in any carbon budget estimations. This was mainly due to the lack of information on the abundance and distribution of those mounds. The recently available high resolution multi-beam bathymetry data recorded during the Irish National Seabed Survey (INSS) allows, for the first time, a mapping of these mounds and mound-like structures enabling an estimation of their abundance and quantification of their contribution to continental slope sediments. Here, we present the first comprehensive overview and quantification of mounds and mound-like structures based on 25m rastered bathymetric data for the Irish sector of the NE Atlantic. Based on the data, we identified over 1600 mound-like structures along the NE Atlantic slope between 46°45'N and 57°30'N. The structures elevate up to 300m above the surrounding seafloor and were usually grouped into distinct provinces often associated with erosive structures such as canyons and moats. 90% of the identified features occurred in water depth between 500 and 1500m. Assessment of this data will be used to target mounds for drilling during the ESF CARBONATE project.

  19. Broadcast Spawning Coral Mussismilia hispida Can Vertically Transfer its Associated Bacterial Core

    PubMed Central

    Leite, Deborah C. A.; Leão, Pedro; Garrido, Amana G.; Lins, Ulysses; Santos, Henrique F.; Pires, Débora O.; Castro, Clovis B.; van Elsas, Jan D.; Zilberberg, Carla; Rosado, Alexandre S.; Peixoto, Raquel S.

    2017-01-01

    The hologenome theory of evolution (HTE), which is under fierce debate, presupposes that parts of the microbiome are transmitted from one generation to the next [vertical transmission (VT)], which may also influence the evolution of the holobiont. Even though bacteria have previously been described in early life stages of corals, these early life stages (larvae) could have been inoculated in the water and not inside the parental colony (through gametes) carrying the parental microbiome. How Symbiodinium is transmitted to offspring is also not clear, as only one study has described this mechanism in spawners. All other studies refer to incubators. To explore the VT hypothesis and the key components being transferred, colonies of the broadcast spawner species Mussismilia hispida were kept in nurseries until spawning. Gamete bundles, larvae and adult corals were analyzed to identify their associated microbiota with respect to composition and location. Symbiodinium and bacteria were detected by sequencing in gametes and coral planula larvae. However, no cells were detected using microscopy at the gamete stage, which could be related to the absence of those cells inside the oocytes/dispersed in the mucus or to a low resolution of our approach. A preliminary survey of Symbiodinium diversity indicated that parental colonies harbored Symbiodinium clades B, C and G, whereas only clade B was found in oocytes and planula larvae [5 days after fertilization (a.f.)]. The core bacterial populations found in the bundles, planula larvae and parental colonies were identified as members of the genera Burkholderia, Pseudomonas, Acinetobacter, Ralstonia, Inquilinus and Bacillus, suggesting that these populations could be vertically transferred through the mucus. The collective data suggest that spawner corals, such as M. hispida, can transmit Symbiodinium cells and the bacterial core to their offspring by a coral gamete (and that this gamete, with its bacterial load, is released into the water), supporting the HTE. However, more data are required to indicate the stability of the transmitted populations to indicate whether the holobiont can be considered a unit of natural selection or a symbiotic assemblage of independently evolving organisms. PMID:28223979

  20. North-Australian tropical seas circulation study

    NASA Technical Reports Server (NTRS)

    Burrage, Derek; Coleman, R.; Bode, L.; Inoue, M.

    1991-01-01

    This investigation is intended to fully address the stated objective of the TOPEX/POSEIDON mission (National Aeronautics and Space Administration, 1986). Hence, we intend to use TOPEX/POSEIDON altimetry data to study the large-scale circulation of the Coral Sea Basin and the Arafura Sea and the mass exchange between these and adjoining basins. We will obtain data from two such cruises in 1993 and 1994 and combine them with TOPEX/POSEIDON radar altimetry data to identify interannual and seasonal changes in: (1) the location of the major ocean currents and the South Equatorial Current bifurcation in the Coral Sea; (2) the source region of the South Tropical Counter Current (STCC); and (3) the water exchange between the Coral Sea and the adjoining seas. We will also estimate seasonal and interannual variations in the horizontal transport of mass and heat associated with near-surface geostrophic and wind-driven currents. In addition, the tidal components of the Coral Sea will be studied to provide a correction for altimetry subtidal sea level changes and to develop a regional numerical model for tidal forcing in the Great Barrier Reef (GBR) and Papua New Guinea Reef regions.

Top