Science.gov

Sample records for cord blood cells

  1. Banking on cord blood stem cells.

    PubMed

    Sullivan, Michael J

    2008-07-01

    Umbilical cord blood gifted to non-profit public cord blood banks is now routinely used as an alternative source of haematopoietic stem cells for allogeneic transplantation for children and adults with cancer, bone marrow failure syndromes, haemoglobinopathies and many genetic metabolic disorders. Because of the success and outcomes of public cord banking, many companies now provide private cord banking services. However, in the absence of any published transplant evidence to support autologous and non-directed family banking, commercial cord banks currently offer a superfluous service.

  2. Osmotic parameters of red blood cells from umbilical cord blood.

    PubMed

    Zhurova, Mariia; McGann, Locksley E; Acker, Jason P

    2014-06-01

    The transfusion of red blood cells from umbilical cord blood (cord RBCs) is gathering significant interest for the treatment of fetal and neonatal anemia, due to its high content of fetal hemoglobin as well as numerous other potential benefits to fetuses and neonates. However, in order to establish a stable supply of cord RBCs for clinical use, a cryopreservation method must be developed. This, in turn, requires knowledge of the osmotic parameters of cord RBCs. Thus, the objective of this study was to characterize the osmotic parameters of cord RBCs: osmotically inactive fraction (b), hydraulic conductivity (Lp), permeability to cryoprotectant glycerol (Pglycerol), and corresponding Arrhenius activation energies (Ea). For Lp and Pglycerol determination, RBCs were analyzed using a stopped-flow system to monitor osmotically-induced RBC volume changes via intrinsic RBC hemoglobin fluorescence. Lp and Pglycerol were characterized at 4°C, 20°C, and 35°C using Jacobs and Stewart equations with the Ea calculated from the Arrhenius plot. Results indicate that cord RBCs have a larger osmotically inactive fraction compared to adult RBCs. Hydraulic conductivity and osmotic permeability to glycerol of cord RBCs differed compared to those of adult RBCs with the differences dependent on experimental conditions, such as temperature and osmolality. Compared to adult RBCs, cord RBCs had a higher Ea for Lp and a lower Ea for Pglycerol. This information regarding osmotic parameters will be used in future work to develop a protocol for cryopreserving cord RBCs.

  3. Quality of Red Blood Cells Isolated from Umbilical Cord Blood Stored at Room Temperature

    PubMed Central

    Zhurova, Mariia; Akabutu, John; Acker, Jason

    2012-01-01

    Red blood cells (RBCs) from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product. PMID:24089645

  4. Insights and hopes in umbilical cord blood stem cell transplantations.

    PubMed

    Shahrokhi, Somayeh; Menaa, Farid; Alimoghaddam, Kamran; McGuckin, Colin; Ebtekar, Massoumeh

    2012-01-01

    Over 20.000 umblical cord blood transplantations (UCBT) have been carried out around the world. Indeed, UCBT represents an attractive source of donor hematopoietic stem cells (HSCs) and, offer interesting features (e.g., lower graft-versus-host disease) compared to bone marrow transplantation (BMT). Thereby, UCBT often represents the unique curative option against several blood diseases. Recent advances in the field of UCBT, consisted to develop strategies to expand umbilical stem cells and shorter the timing of their engraftment, subsequently enhancing their availability for enhanced efficacy of transplantation into indicated patients with malignant diseases (e.g., leukemia) or non-malignant diseases (e.g., thalassemia major). Several studies showed that the expansion and homing of UCBSCs depends on specific biological factors and cell types (e.g., cytokines, neuropeptides, co-culture with stromal cells). In this review, we extensively present the advantages and disadvantages of current hematopoietic stem cell transplantations (HSCTs), compared to UBCT. We further describe the importance of cord blood content and obstetric factors on cord blood selection, and report the recent approaches that can be undertook to improve cord blood stem cell expansion as well as engraftment. Eventually, we provide two majors examples underlining the importance of UCBT as a potential cure for blood diseases.

  5. Insights and Hopes in Umbilical Cord Blood Stem Cell Transplantations

    PubMed Central

    Shahrokhi, Somayeh; Menaa, Farid; Alimoghaddam, Kamran; McGuckin, Colin; Ebtekar, Massoumeh

    2012-01-01

    Over 20.000 umblical cord blood transplantations (UCBT) have been carried out around the world. Indeed, UCBT represents an attractive source of donor hematopoietic stem cells (HSCs) and, offer interesting features (e.g., lower graft-versus-host disease) compared to bone marrow transplantation (BMT). Thereby, UCBT often represents the unique curative option against several blood diseases. Recent advances in the field of UCBT, consisted to develop strategies to expand umbilical stem cells and shorter the timing of their engraftment, subsequently enhancing their availability for enhanced efficacy of transplantation into indicated patients with malignant diseases (e.g., leukemia) or non-malignant diseases (e.g., thalassemia major). Several studies showed that the expansion and homing of UCBSCs depends on specific biological factors and cell types (e.g., cytokines, neuropeptides, co-culture with stromal cells). In this review, we extensively present the advantages and disadvantages of current hematopoietic stem cell transplantations (HSCTs), compared to UBCT. We further describe the importance of cord blood content and obstetric factors on cord blood selection, and report the recent approaches that can be undertook to improve cord blood stem cell expansion as well as engraftment. Eventually, we provide two majors examples underlining the importance of UCBT as a potential cure for blood diseases. PMID:23258957

  6. Cord blood transplants for SCID: better B-cell engraftment?

    PubMed

    Chan, Wan-Yin; Roberts, Robert Lloyd; Moore, Theodore B; Stiehm, E Richard

    2013-01-01

    Hematopoietic stem-cell transplantation is the treatment of choice for severe combined immunodeficiency (SCID). Despite successful T-cell engraftment in transplanted patients, B-cell function is not always achieved; up to 58% of patients require immunoglobulin therapy after receiving haploidentical transplants. We report 2 half-sibling males with X-linked γ-chain SCID treated with different sources of stem cells. Sibling 1 was transplanted with T-cell-depleted haploidentical maternal bone marrow and sibling 2 was transplanted with 7/8 human leukocyte antigen-matched unrelated umbilical cord blood. Both patients received pretransplant conditioning and posttransplant graft-versus-host-disease prophylaxis. B-cell engraftment and function was achieved in sibling 1 but not in sibling 2. This disparate result is consistent with a review of 19 other SCID children who received cord blood transplants. B-cell function, as indicated by no need for immunoglobulin therapy, was restored in 42% of patients given haploidentical transplants and in 68% of patients given matched unrelated donor transplants compared with 80% of patients given cord blood transplants. Cord blood is an alternative source of stem cells for transplantation in children with SCID and has a higher likelihood of B-cell reconstitution.

  7. Related cord blood banking for haematopoietic stem cell transplantation.

    PubMed

    Screnci, M; Murgi, E; Carmini, D; Piro, L; Cinelli, N; Laurenti, L; Iori, A P; Simone, F; Massari, S; Girelli, G

    2010-06-01

    The aims of this single centre study were to assess the feasibility of related cord blood collecting, the appropriateness of storage and the final suitability for transplantation. Since September 1994, 63 families were enrolled in this study. Families were eligible if they were caring for a patient with a disorder treatable by haematopoietic stem cell transplantation and were experiencing a pregnancy. A total of 72 cord blood units were collected and stored for 64 patients (both siblings and parents). We focussed on human leucocyte antigen (HLA) compatibility and cell content as critical requirements to unit's suitability for transplantation. HLA-typing was carried out for 34 donor-recipient couples and most units (72%) mismatched with the related patients. About 60% of collections had a minimum cell dose considered acceptable for transplantation. Only 21% of units had both compatibility degree and cell content suitable for transplantation. When applicable, information on the compatibility degree between the foetus and the patient should be obtained during pregnancy. Appropriateness of related cord blood banking for parents should be further investigated and cost-effective guidelines policies should be provided. Finally, as banking of related cord blood units is an important resource then, this public service should be supported and enhanced.

  8. Expansion of human cord blood hematopoietic stem cells for transplantation.

    PubMed

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  9. [Allogenic hematopoietic stem cell transplantation with unrelated cord blood: report of three cases from the Chilean cord blood bank].

    PubMed

    Barriga, Francisco; Wietstruck, Angélica; Rojas, Nicolás; Bertin, Pablo; Pizarro, Isabel; Carmona, Amanda; Guilof, Alejandro; Rojas, Iván; Oyarzún, Enrique

    2013-08-01

    Public cord blood banks are a source of hematopoietic stem cells for patients with hematological diseases who lack a family donor and need allogeneic transplantation. In June 2007 we started a cord blood bank with units donated in three maternity wards in Santiago, Chile. We report the first three transplants done with cord blood units form this bank. Cord blood units were obtained by intrauterine collection at delivery. They were depleted of plasma and red cells and frozen in liquid nitrogen. Tests for total nucleated cells, CD34 cell content, viral serology, bacterial cultures and HLA A, B and DRB1 were done. Six hundred cord blood units were stored by March 2012. Three patients received allogeneic transplant with cord blood from our bank, two with high risk lymphoblastic leukemia and one with severe congenital anemia. They received conditioning regimens according to their disease and usual supportive care for unrelated donor transplantation until full hematopoietic and immune reconstitution was achieved. The three patients had early engraftment of neutrophils and platelets. The child corrected his anemia and the leukemia patients remain in complete remission. The post-transplant course was complicated with Epstein Barr virus, cytomegalovirus and BK virus infection. Two patients are fully functional 24 and 33 months after transplant, the third is still receiving immunosuppression.

  10. Cord Blood Cells for Developmental Toxicology and Environmental Health

    PubMed Central

    Il’yasova, Dora; Kloc, Noreen; Kinev, Alexander

    2015-01-01

    The Tox21 program initiated a shift in toxicology toward in vitro testing with a focus on the biological mechanisms responsible for toxicological response. We discuss the applications of these initiatives to developmental toxicology. Specifically, we briefly review current approaches that are widely used in developmental toxicology to demonstrate the gap in relevance to human populations. An important aspect of human relevance is the wide variability of cellular responses to toxicants. We discuss how this gap can be addressed by using cells isolated from umbilical cord blood, an entirely non-invasive source of fetal/newborn cells. Extension of toxicological testing to collections of human fetal/newborn cells would be useful for better understanding the effect of toxicants on fetal development in human populations. By presenting this perspective, we aim to initiate a discussion about the use of cord blood donor-specific cells to capture the variability of cellular toxicological responses during this vulnerable stage of human development. PMID:26697419

  11. Challenges in umbilical cord blood stem cell banking for stem cell reviews and reports.

    PubMed

    Ballen, Karen

    2010-03-01

    Twenty years has passed since the first report of a successful cord blood transplant was reported in 1989 in a child with Fanconi's anemia. During these 20 years, the cord blood field has had dramatic growth, with over 400,000 cord blood units donated and stored worldwide for unrelated use. Approximately, 14,000 unrelated cord blood transplants have been performed to date for patients with hematologic malignancies and bone marrow disorders, and who do not have matched family or unrelated donors. In contrast, about 900,000 cord blood units have been stored privately for personal use, with about 100 autologous transplants performed. Twenty years ago, due to the low cell dose, cord blood transplants were only performed in children. Today, with the use of better banking techniques, reduced intensity transplants, and double cord blood transplantation, the majority of cord blood transplants are being performed in adults. In this chapter, we review the scientific basis for cord blood transplantation, and outcome data in both pediatric and adult transplantation. We will then focus on the recent concerns regarding private and public cord blood banking. Finally, we discuss the future of cord blood transplantation, and the exciting work beginning outside of oncology.

  12. Human umbilical cord blood cells and diabetes mellitus: recent advances.

    PubMed

    Reddi, Alluru S; Kothari, Neil; Kuppasani, Kishore; Ende, Norman

    2015-01-01

    Stem cell therapy for patients with diabetes is an area of great interest to both scientists and clinicians. Human umbilical cord blood cells (HUCBCs) are being increasingly used as a source of stem cells for cell-based therapy for diabetes because these cells can differentiate into pancreatic islet β-cells. Administration of HUCBCs has been shown to lower blood glucose levels in diabetic animal models. The use of autologous HUCBC transfusion in type 1 diabetic children has not shown any benefit. However, "Stem Cell Educator" therapy has shown promise in long term lowering of blood glucose levels in both type 1 and type 2 diabetic patients. In this review, we will briefly discuss recent advances in HUCBC therapy in the treatment of diabetes and some of its complications.

  13. Cord-Blood Banking

    MedlinePlus

    ... cord blood mainly because of the promise that stem cell research holds for the future. Most of us would have little use for stem cells now, but research into using them to treat diseases is ongoing — ...

  14. Nanofiber Expansion of Umbilical Cord Blood Hematopoietic Stem Cells

    PubMed Central

    Eskandari, F; Allahverdi, A; Nasiri, H; Azad, M; Kalantari, N; Soleimani, M; Zare-Zardini, H

    2015-01-01

    Background The aim of this study was the ex vivo expansion of Umbilical Cord Blood hematopoietic stem cells on biocompatible nanofiber scaffolds. Materials and Methods CD133+ hematopoietic stem cells were separated from umbilical cord blood using MidiMacs (positive selection) system by means of monocolonal antibody CD133 (microbeads); subsequently, flowcytometry method was done to assess the purity of separated cells. Isolated cells were cultured on plate (2 Dimensional) and fibronectin conjugated polyethersulfon nanofiber scaffold, simultaneously (3 Dimensional). Colony assay test was performed to show colonization ability of expanded cells. Results Cell count analysis revealed that expansion of hematopoietic stem cells in 2dimensional (2D) environment was greater than 3dimensional (3D) condition (p= 0.01). Assessment of stem cell- phenotype after expansions was performed by flowcytometric analysis which is showed that the maintenance of CD133 marker in expanded cells in 3 dimensional condition were higher than expanded cells in 2 dimensional condition (p=0.01). Moreover, colony assay test was performed before and after of expansion to show colonization ability of expanded cells both in 3D and 2D culture and results revealed more ability of 3D culture compared with 2D culture (p= 0.03). Conclusion The results of current study confirmed that umbilical cord blood CD133+ haematopoietic stem cells are able to expand on fibronectin conjugated polyethersulfon scaffold. These findings indicated that 3D is a proper and valuable cell culture system for hematopoietic stem cells expansion, compared to 2D in invitro situation. PMID:26985349

  15. Cord Blood Mononuclear Cells Have a Potential to Produce NK Cells Using IL2Rg Cytokines

    PubMed Central

    Khaziri, Nahid; Mohammadi, Momeneh; Aliyari, Zeinab; Soleimani Rad, Jafar; Tayefi Nasrabadi, Hamid; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: Although bone marrow represents the main site for NK cell development and also distinct thymic-dependentNK cell pathway was identified, the cytokines effect on the NK cell generation from cord blood is unclear. Studies were identified the role of cytokines in the regulation of bone marrow and thymic NK cells. Previous studies reported that IL15 are critical for bone marrow dependent and IL7 is important for thymic NK cells. It is remain unclear the cytokines influence on the expantion of NK cells in cord blood mononuclear cells. Methods: We evaluated cultured cord blood mononuclear cells suplememnted with combinations of cytokines using FACS in distinct time points. In this study, we presented the role of IL2, IL7 and IL15 as members of the common gamma receptor -chain (Il2rg) on the expansion NK cells from cord blood cells. Results: By investigating cord blood mononuclear cells in vitro , we demonstrated that IL2 and IL15 are important for expansion of NK cells. IL2 in comparision with IL15 has more influences in NK cell expansion. In contrast IL-7 is dispensable for NK cell generation in cord blood. Conclusion: Thus,IL-2Rg cytokines play complementary roles and are indispensable for homeostasis of NK cell development in cord blood. Probably these cytokines could help to use NK beneficials in engrafment of transplanted cells and Anti tumor activity of NK cells. PMID:27123412

  16. DNA methylation of cord blood cell types: Applications for mixed cell birth studies.

    PubMed

    Bakulski, Kelly M; Feinberg, Jason I; Andrews, Shan V; Yang, Jack; Brown, Shannon; L McKenney, Stephanie; Witter, Frank; Walston, Jeremy; Feinberg, Andrew P; Fallin, M Daniele

    2016-05-03

    Epigenome-wide association studies of disease widely use DNA methylation measured in blood as a surrogate tissue. Cell proportions can vary between people and confound associations of exposure or outcome. An adequate reference panel for estimating cell proportions from adult whole blood for DNA methylation studies is available, but an analogous cord blood cell reference panel is not yet available. Cord blood has unique cell types and the epigenetic signatures of standard cell types may not be consistent throughout the life course. Using magnetic bead sorting, we isolated cord blood cell types (nucleated red blood cells, granulocytes, monocytes, natural killer cells, B cells, CD4(+)T cells, and CD8(+)T cells) from 17 live births at Johns Hopkins Hospital. We confirmed enrichment of the cell types using fluorescence assisted cell sorting and ran DNA from the separated cell types on the Illumina Infinium HumanMethylation450 BeadChip array. After filtering, the final analysis was on 104 samples at 429,794 probes. We compared cell type specific signatures in cord to each other and methylation at 49.2% of CpG sites on the array differed by cell type (F-test P < 10(-8)). Differences between nucleated red blood cells and the remainder of the cell types were most pronounced (36.9% of CpG sites at P < 10(-8)) and 99.5% of these sites were hypomethylated relative to the other cell types. We also compared the mean-centered sorted cord profiles to the available adult reference panel and observed high correlation between the overlapping cell types for granulocytes and monocytes (both r=0.74), and poor correlation for CD8(+)T cells and NK cells (both r=0.08). We further provide an algorithm for estimating cell proportions in cord blood using the newly developed cord reference panel, which estimates biologically plausible cell proportions in whole cord blood samples.

  17. Mesenchymal Stem Cells in ex vivo Cord Blood Expansion

    PubMed Central

    Robinson, Simon N.; Simmons, Paul J.; Yang, Hong; Alousi, Amin M; de Lima, Marcos J.

    2013-01-01

    Umbilical cord blood (CB) is becoming an important source of haematopoietic support for transplant patients lacking human leukocyte antigen matched donors. The ethnic diversity, relative ease of collection, ready availability as cryopreserved units from CB banks, reduced incidence and severity of graft versus host disease and tolerance of higher degrees of HLA disparity between donor and recipient, are positive attributes when compared to bone marrow or cytokine-mobilized peripheral blood. However, CB transplantation is associated with significantly delayed neutrophil and platelet engraftment and an elevated risk of graft failure. These hurdles are thought to be due, at least in part, to low total nucleated cell and CD34+ cell doses transplanted. Here, current strategies directed at improving TNC and CD34+ cell doses at transplant are discussed, with particular attention paid to the use of a mesenchymal stem cell (MSC)/CB mononuclear cell ex vivo co-culture expansion system. PMID:21396596

  18. Low usage rate of banked sibling cord blood units in hematopoietic stem cell transplantation for children with hematological malignancies: implications for directed cord blood banking policies.

    PubMed

    Goussetis, Evgenios; Peristeri, Ioulia; Kitra, Vasiliki; Papassavas, Andreas C; Theodosaki, Maria; Petrakou, Eftichia; Spiropoulos, Antonia; Paisiou, Anna; Soldatou, Alexandra; Stavropoulos-Giokas, Catherine; Graphakos, Stelios

    2011-02-15

    Directed sibling cord blood banking is indicated in women delivering healthy babies who already have a sibling with a disease that is potentially treatable with an allogeneic cord blood transplant. We evaluated the effectiveness of a national directed cord blood banking program in sibling HLA-identical stem cell transplantation for hematological malignancies and the factors influencing the usage rate of the stored cord blood units. Fifty families were enrolled from which, 48 cord blood units were successfully collected and 2 collections failed due to damaged cord/placenta at delivery. Among enrolled families 4 children needed transplantation; however, only one was successfully transplanted using the collected cord blood unit containing 2×10(7) nucleated cells/kg in conjunction with a small volume of bone marrow from the same HLA-identical donor. Two children received grafts from matched unrelated donors because their sibling cord blood was HLA-haploidentical, while the fourth one received bone marrow from his HLA-identical brother, since cord blood could not be collected due to damaged cord/placenta at delivery. With a median follow-up of 6 years (range, 2-12) for the 9 remaining HLA-matched cord blood units, none from the prospective recipients needed transplantation. The low utilization rate of sibling cord blood in the setting of hematopoietic stem cell transplantation for pediatric hematological malignant diseases necessitates the development of directed cord blood banking programs that limit long-term storage for banked cord blood units with low probability of usage such as non-HLA-identical or identical to patients who are in long-term complete remission.

  19. Epigenetic reprogramming induces the expansion of cord blood stem cells

    PubMed Central

    Chaurasia, Pratima; Gajzer, David C.; Schaniel, Christoph; D’Souza, Sunita; Hoffman, Ronald

    2014-01-01

    Cord blood (CB) cells that express CD34 have extensive hematopoietic capacity and rapidly divide ex vivo in the presence of cytokine combinations; however, many of these CB CD34+ cells lose their marrow-repopulating potential. To overcome this decline in function, we treated dividing CB CD34+ cells ex vivo with several histone deacetylase inhibitors (HDACIs). Treatment of CB CD34+ cells with the most active HDACI, valproic acid (VPA), following an initial 16-hour cytokine priming, increased the number of multipotent cells (CD34+CD90+) generated; however, the degree of expansion was substantially greater in the presence of both VPA and cytokines for a full 7 days. Treated CD34+ cells were characterized based on the upregulation of pluripotency genes, increased aldehyde dehydrogenase activity, and enhanced expression of CD90, c-Kit (CD117), integrin α6 (CD49f), and CXCR4 (CD184). Furthermore, siRNA-mediated inhibition of pluripotency gene expression reduced the generation of CD34+CD90+ cells by 89%. Compared with CB CD34+ cells, VPA-treated CD34+ cells produced a greater number of SCID-repopulating cells and established multilineage hematopoiesis in primary and secondary immune–deficient recipient mice. These data indicate that dividing CB CD34+ cells can be epigenetically reprogrammed by treatment with VPA so as to generate greater numbers of functional CB stem cells for use as transplantation grafts. PMID:24762436

  20. Family cord blood banking for sickle cell disease: a twenty-year experience in two dedicated public cord blood banks.

    PubMed

    Rafii, Hanadi; Bernaudin, Françoise; Rouard, Helene; Vanneaux, Valérie; Ruggeri, Annalisa; Cavazzana, Marina; Gauthereau, Valerie; Stanislas, Aurélie; Benkerrou, Malika; De Montalembert, Mariane; Ferry, Christele; Girot, Robert; Arnaud, Cecile; Kamdem, Annie; Gour, Joelle; Touboul, Claudine; Cras, Audrey; Kuentz, Mathieu; Rieux, Claire; Volt, Fernanda; Cappelli, Barbara; Maio, Karina T; Paviglianiti, Annalisa; Kenzey, Chantal; Larghero, Jerome; Gluckman, Eliane

    2017-03-16

    Efforts to implement family cord blood banking have been developed in the past decades for siblings requiring stem cell transplantation for conditions such as sickle cell disease. However, public banks are faced with challenging decisions about the units to be stored, discarded, or used for other endeavors. We report here 20 years of experience in family cord blood banking for sickle cell disease in two dedicated public banks. Participants were pregnant women who had previous child diagnosed with homozygous sickle cell disease. Participation was voluntary and free of charge. All mothers underwent mandatory serologic screening. Cord blood units were collected in different hospitals, but processed and stored in two public banks. A total of 338 units were stored for 302 families. Median recipient's age was 6 years (11 months - 15 years). Median collected volume and total nucleated cell count were 91 ml (23 - 230) and 8.6 x108 (0.7 - 75 x108), respectively. Microbial contamination was observed in 3.5% (n=12), positive Hepatitis B serology in 25% (n=84) and homozygous sickle cell disease in 11% (n=37) of the collections. Forty-four units were HLA-identical to intended recipient, and 28 units were released for transplantation either alone (n=23) or in combination with the bone marrow from the same donor (n=5), reflecting a utilization rate of 8%. Engraftment rate was 96% with 100% survival. Family cord blood banking yields good quality units for sibling transplantation. More comprehensive banking based on close collaboration among banks, clinical and transplant teams is recommended for optimized utilization of these units.

  1. [Cord blood banks].

    PubMed

    Buljan Culej, Jasminka

    2007-12-01

    Cord blood is an excellent source of stem cells which are universal for all other cells of the whole body. They have the ability to develop in any of the body cells, depending on stimulation by different growth factors. The ease of sampling, cryopreservation, and above all successful engraftment make placental blood a possible alternative for bone marrow donation. The advantages of cord blood cells over bone marrow stem cells in allogeneic transplants include their young age and immature status, which reduce the severity of graft versus host reaction. However, the number of cells is much more limited than with bone marrow (about ten time less); therefore, for the time being, the procedure is not equivalent to marrow donation. Cord blood banks would increase HLA diversity, and they are therefore expected to solve two sets of immunogenetic problems: (1) since less stringent compatibility is needed, children with a rare HLA group could benefit from a graft when the donor is not perfectly matched; and (2) HLA types infrequently represented in registries may be represented more readily in placental blood banks; although they occur repeatedly in certain ethnic groups or populations, they are only rarely donated to volunteer registries, while these populations are also concerned in transplantation. Many countries in the world have recognized the significance of collecting and preserving cord blood stem cells and their ability to heal or at least improve life.

  2. [Cord blood banking].

    PubMed

    Cepulić, Branka Golubić; Bojanić, Ines; Mazić, Sanja

    2009-06-01

    Transplantation of cord blood stem cells is a new and rapidly developing area. It has been used as a treatment for many diseases such as hematologic malignancies, primary immune deficiencies and metabolic diseases. Recently, stem cells have been used in regenerative medicine, particularly in neurodegenerative and cardiovascular diseases. For these reasons interest has been growing in banking cord blood. To be able to find an acceptable donor for any recipient in need, it is necessary to have on stock a great diversity of cells with different genetic types from different populations. Networks of banks and registries have been created around the world in order to share and exchange transplants. Public banks organize collection for altruistic donor of cord blood for unrelated hematopoietic stem cell transplantation and for directed donation in families at risk. But there are increasing numbers of families that are requesting storage of cord blood for possible future therapeutic use in the family. Establishment of cord blood banks has raised a number of important scientific, legal, ethical and political issues, which are discussed in this paper.

  3. Cord blood CD4(+)CD25(+) regulatory T cells fail to inhibit cord blood NK cell functions due to insufficient production and expression of TGF-beta1.

    PubMed

    Xu, Liqing; Tanaka, Shigeki; Bonno, Motoki; Ido, Masaru; Kawai, Masatoshi; Yamamoto, Hatsumi; Komada, Yoshihiro

    2014-07-01

    Although CD4(+)CD25(+) Treg (Treg) cells are known to modulate NK cell functions, the modulation mechanism of these cells in cord blood has not been fully clarified. The purpose of this study was to clarify the mechanism whereby cord blood Treg cells modulate cord NK cells. By performing various cultures of purified NK cells with or without autologous Treg cells, diminished inhibitory effects of cord Treg cells towards cord NK cell functions, including activation, cytokine production, and cytotoxicity, were observed. We also observed lower secretion of sTGF-beta1 and lower expression of mTGF-beta1 by cord Treg cells than by adult Treg cells. These data revealed the capability of adult Treg cells to suppress rhIL-2-stimulated NK cell function by TGF-beta1, both membrane-bound and soluble types. The reduced inhibitory capabilities of cord Treg cells compared with adult Treg cells is thought to be due to insufficient expression of TGF-beta1.

  4. [Umbilical cord blood as a source of stem cells].

    PubMed

    Bojanić, Ines; Golubić Cepulić, Branka

    2006-06-01

    Umbilical cord blood (UCB) is a source of the rare but precious primitive hematopoietic stem cells (HSC) and progenitor cells that can reconstitute the hematopoietic system in patients with malignant and nonmalignant disorders treated with myeloablative therapy. UCB cells possess an enhanced capacity for progenitor cell proliferation and self-renewal in vitro. UCB is usually discarded, and it exists in almost limitless supply. The blood remaining in the delivered placenta is safely and easily collected and stored. The predominant collection procedure currently practiced involves a relatively simple venipuncture, followed by gravity drainage into a standard sterile anti-coagulant-filled blood bag, using a closed system, similar to the one utilized on whole blood collection. After aliquots have been removed for routine testing, the units are cryopreserved and stored in liquid nitrogen. UCB banks are being established throughout the world and UCB units are collected for allogeneic unrelated and related HSC transplantation. In unrelated cord blood banks donated UCB units are collected and stored for allogeneic use in patients who do not have an identified HLA matched relative. UCB banks report available units to national and international donor registries. The second model of UCB banking is referred to as family banking, where UCB is stored for the benefit of the donor or their family members. After more than one decade of clinical experience, it is currently accepted that UCB transplants, related and unrelated, are equivalent to or might compare favorably with bone marrow (BM) transplants, especially in children. Initial studies of long-term survival in children with both malignant and non-malignant hematologic disorders, who were transplanted with UCB from a sibling donor, demonstrated comparable or superior survival to children who received BM transplantation. One factor that limits the use of UCB transplantation in adult patients is the relatively limited number of

  5. Isolation of dendritic cells from umbilical cord blood using magnetic activated cell sorting or adherence.

    PubMed

    Bie, Yachun; Xu, Qiuxiang; Zhang, Zhenyu

    2015-07-01

    Dendritic cells (DCs) are a highly specialized type of antigen-presenting cell. The present study describes and compares two methods for preparing DCs from umbilical cord blood. The first method involves the isolation of DCs by magnetic activated cell sorting (MACS). This technique isolates CD34(+) cells from cord blood and induces the formation of DCs by the addition of cytokines, granulocyte macrophage colony-stimulating factor and interleukin-4. The second method involves the generation of large numbers of DCs from cord blood using an adherent method, which isolates umbilical cord blood mononuclear cells and induces DCs in the same conditions as those used in MACS. The DCs were harvested following 7 days of incubation and observed with an inverted microscope. The phenotype of the cells was then analyzed by flow cytometry. The results revealed that, subsequent to 7 days of incubation, the differentiated DCs obtained using the adherent method were more mature than those isolated using MACS. However, these cells were unable to be maintained in culture for more than 9-10 days. By contrast, the DCs derived from CD34(+) cells by MACS were phenotypically stable and could be maintained for up to 3 weeks in culture. Either method produced DCs from cord blood. However, the DCs isolated using the MACS method demonstrated higher homogeneity, yield and viability than those obtained using the adherent method. Due to the various compositions of the monocyte subsets isolated, isolation methods affect the phenotypes and functions of the resultant DCs.

  6. Cord Blood Endothelial Colony-Forming Cells from Newborns with Congenital Diaphragmatic Hernia

    PubMed Central

    Baker, Christopher D.; Black, Claudine P.; Ryan, Sharon L.; Balasubramaniam, Vivek; Abman, Steven H.

    2013-01-01

    Endothelial colony-forming cells (ECFC) are decreased in the cord blood of preterm infants with moderate-to-severe bronchopulmonary dysplasia (BPD). We quantified ECFC from infants with congenital diaphragmatic hernia (CDH), a neonatal disorder with severe lung hypoplasia. Unlike newborns who develop BPD, those with CDH had increased and highly-proliferative cord blood ECFC. PMID:23684109

  7. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord.

    PubMed

    Li, Yu-Qing; Chen, Paul; Jain, Vipan; Reilly, Raymond M; Wong, C Shun

    2004-02-01

    Using a rat spinal cord model, this study was designed to characterize radiation-induced vascular endothelial cell loss and its relationship to early blood-brain barrier disruption in the central nervous system. Adult rats were given a single dose of 0, 2, 8, 19.5, 22, 30 or 50 Gy to the cervical spinal cord. At various times up to 2 weeks after irradiation, the spinal cord was processed for histological and immunohistochemical analysis. Radiation-induced apoptosis was assessed by morphology and TdT-mediated dUTP nick end labeling combined with immunohistochemical markers for endothelial and glial cells. Image analysis was performed to determine endothelial cell and microvessel density using immunohistochemistry with endothelial markers, namely endothelial barrier antigen, glucose transporter isoform 1, laminin and zonula occludens 1. Blood-spinal cord barrier permeability was assessed using immunohistochemistry for albumin and (99m)Tc-diethylenetriamine pentaacetic acid as a vascular tracer. Endothelial cell proliferation was assessed using in vivo BrdU labeling. During the first 24 h after irradiation, apoptotic endothelial cells were observed in the rat spinal cord. The decrease in endothelial cell density at 24 h after irradiation was associated with an increase in albumin immunostaining around microvessels. The decrease in the number of endothelial cells persisted for 7 days and recovery of endothelial density was apparent by day 14. A similar pattern of blood-spinal cord barrier disruption and recovery of permeability was observed over the 2 weeks, and an increase in BrdU-labeled endothelial cells was seen at day 3. These results are consistent with an association between endothelial cell death and acute blood-spinal cord barrier disruption in the rat spinal cord after irradiation.

  8. Cord-Blood Engraftment with Ex Vivo Mesenchymal-Cell Coculture

    PubMed Central

    de Lima, Marcos; McNiece, Ian; Robinson, Simon N.; Munsell, Mark; Eapen, Mary; Horowitz, Mary; Alousi, Amin; Saliba, Rima; McMannis, John D.; Kaur, Indreshpal; Kebriaei, Partow; Parmar, Simrit; Popat, Uday; Hosing, Chitra; Champlin, Richard; Bollard, Catherine; Molldrem, Jeffrey J.; Jones, Roy B.; Nieto, Yago; Andersson, Borje S.; Shah, Nina; Oran, Betul; Cooper, Laurence J.N.; Worth, Laura; Qazilbash, Muzaffar H.; Korbling, Martin; Rondon, Gabriela; Ciurea, Stefan; Bosque, Doyle; Maewal, Ila; Simmons, Paul J.; Shpall, Elizabeth J.

    2013-01-01

    BACKGROUND Poor engraftment due to low cell doses restricts the usefulness of umbilical-cord-blood transplantation. We hypothesized that engraftment would be improved by transplanting cord blood that was expanded ex vivo with mesenchymal stromal cells. METHODS We studied engraftment results in 31 adults with hematologic cancers who received transplants of 2 cord-blood units, 1 of which contained cord blood that was expanded ex vivo in cocultures with allogeneic mesenchymal stromal cells. The results in these patients were compared with those in 80 historical controls who received 2 units of unmanipulated cord blood. RESULTS Coculture with mesenchymal stromal cells led to an expansion of total nucleated cells by a median factor of 12.2 and of CD34+ cells by a median factor of 30.1. With transplantation of 1 unit each of expanded and unmanipulated cord blood, patients received a median of 8.34×107 total nucleated cells per kilogram of body weight and 1.81×106 CD34+ cells per kilogram — doses higher than in our previous transplantations of 2 units of unmanipulated cord blood. In patients in whom engraftment occurred, the median time to neutrophil engraftment was 15 days in the recipients of expanded cord blood, as compared with 24 days in controls who received unmanipulated cord blood only (P<0.001); the median time to platelet engraftment was 42 days and 49 days, respectively (P = 0.03). On day 26, the cumulative incidence of neutrophil engraftment was 88% with expansion versus 53% without expansion (P<0.001); on day 60, the cumulative incidence of platelet engraftment was 71% and 31%, respectively (P<0.001). CONCLUSIONS Transplantation of cord-blood cells expanded with mesenchymal stromal cells appeared to be safe and effective. Expanded cord blood in combination with unmanipulated cord blood significantly improved engraftment, as compared with unmanipulated cord blood only. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT

  9. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    PubMed Central

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 106 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 106 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation. PMID:22183246

  10. Could Cord Blood Cell Therapy Reduce Preterm Brain Injury?

    PubMed Central

    Li, Jingang; McDonald, Courtney A.; Fahey, Michael C.; Jenkin, Graham; Miller, Suzanne L.

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications. PMID:25346720

  11. Rotavirus activates dendritic cells derived from umbilical cord blood monocytes.

    PubMed

    Rosales-Martinez, D; Gutierrez-Xicotencatl, L; Badillo-Godinez, O; Lopez-Guerrero, D; Santana-Calderon, A; Cortez-Gomez, R; Ramirez-Pliego, O; Esquivel-Guadarrama, F

    2016-10-01

    Rotavirus is the most common cause of acute infectious diarrhea in human neonates and infants. However, the studies aimed at dissecting the anti-virus immune response have been mainly performed in adults. Dendritic cells (DCs) play a crucial role in innate and acquired immune responses. Therefore, it is very important to determine the response of neonatal and infant DCs to rotavirus and to compare it to the response of adult DCs. Thus, we determined the response of monocyte-derived DCs from umbilical cord blood (UCB) and adult peripheral blood (PB) to rotavirus in vitro. It was found that the rotavirus and its genome, composed of segmented doubled stranded RNA (dsRNA), induced the activation of neonatal DCs, as these cells up-regulated the levels of CD40, CD86, MHC II, TLR-3 and TLR-4, the production of cytokines IL-6, IL-12/23p40, IL-10, TGF-β (but not of IL-12p70), and the message for TNF-α and IFN-β. This activation enabled the neonatal DCs to induce a strong proliferation of allogeneic CD4(+) T cells and the production of IFN-γ. Moreover, neonatal DCs could be infected by rotavirus and sustain its replication. Neonatal DCs had a similar response as adult DCs towards rotavirus and its genome. However, adult DCs had a biased pro-inflammatory response compared to neonatal DCs, which showed a biased regulatory profile, as they produced higher levels of IL-10 and TGF-β, and were less efficient in inducing a Th1 type response. So it can be concluded that rotavirus and its genome can induce the activation of neonatal DCs in spite of their tolerogenic bias.

  12. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    PubMed

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P < .0003). Comparison of CB T cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  13. Sibling cord blood donor program for hematopoietic cell transplantation: the 20-year experience in the Rome Cord Blood Bank.

    PubMed

    Screnci, Maria; Murgi, Emilia; Valle, Veronica; Tamburini, Anna; Pellegrini, Maria Grazia; Strano, Sabrina; Corona, Francesca; Ambrogi, Eleonora Barbacci; Girelli, Gabriella

    2016-03-01

    Umbilical cord blood (UCB) represents a source of hematopoietic stem cells for patients lacking a suitably matched and readily available related or unrelated stem cell donor. As UCB transplantation from compatible sibling provides good results in children therefore directed sibling UCB collection and banking is indicated in family who already have a child with a disease potentially treatable with an allogeneic hematopoietic stem cell transplantation. Particularly, related UCB collection is recommended when the patients urgently need a transplantation. To provide access to all patients in need, we developed a "Sibling cord blood donor program for hematopoietic cell transplantation". Here we report results of this project started 20years ago. To date, in this study a total of 194 families were enrolled, a total of 204 UCB samples were successfully collected and 15 pediatric patients have been transplanted. Recently, some authors have suggested novel role for UCB other than in the transplantation setting. Therefore, future studies in the immunotherapy and regenerative medicine areas could expand indication for sibling directed UCB collection.

  14. Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood.

    PubMed

    Hanley, Patrick J; Bollard, Catherine M; Brunstein, Claudio G

    2015-06-01

    Cord blood transplantation, an alternative to traditional stem cell transplants (bone marrow or peripheral blood stem cell transplantation), is an attractive option for patients lacking suitable stem cell transplant donors. Cord blood units have also proven to be a valuable donor source for the development of cellular therapeutics. Virus-specific T cells and regulatory T cells are two cord blood-derived products that have shown promise in early-phase clinical trials to prevent and/or treat viral infections and graft-versus-host disease, respectively. We describe how current strategies that use cord blood-derived regulatory T cells and virus-specific T cells have been developed to improve outcomes for cord blood transplant recipients.

  15. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

    PubMed

    Cutler, Corey; Multani, Pratik; Robbins, David; Kim, Haesook T; Le, Thuy; Hoggatt, Jonathan; Pelus, Louis M; Desponts, Caroline; Chen, Yi-Bin; Rezner, Betsy; Armand, Philippe; Koreth, John; Glotzbecker, Brett; Ho, Vincent T; Alyea, Edwin; Isom, Marlisa; Kao, Grace; Armant, Myriam; Silberstein, Leslie; Hu, Peirong; Soiffer, Robert J; Scadden, David T; Ritz, Jerome; Goessling, Wolfram; North, Trista E; Mendlein, John; Ballen, Karen; Zon, Leonard I; Antin, Joseph H; Shoemaker, Daniel D

    2013-10-24

    Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates, and early mortality. 16,16-Dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis, and we hypothesized that brief ex vivo modulation with dmPGE2 could improve patient outcomes by increasing the "effective dose" of HSCs. Molecular profiling approaches were used to determine the optimal ex vivo modulation conditions (temperature, time, concentration, and media) for use in the clinical setting. A phase 1 trial was performed to evaluate the safety and therapeutic potential of ex vivo modulation of a single UCB unit using dmPGE2 before reduced-intensity, double UCB transplantation. Results from this study demonstrated clear safety with durable, multilineage engraftment of dmPGE2-treated UCB units. We observed encouraging trends in efficacy, with accelerated neutrophil recovery (17.5 vs 21 days, P = .045), coupled with preferential, long-term engraftment of the dmPGE2-treated UCB unit in 10 of 12 treated participants.

  16. Cord blood banking.

    PubMed

    Warwick, Ruth; Armitage, Sue

    2004-12-01

    Cord blood (CB) is a unique product, rich in haemopoietic stem cells (HSC), that is currently used in the transplantation setting to restore haemopoiesis. It restores haemopoietic stem cell function in patients suffering from malignancies, bone marrow (BM) failure disorders and inherited metabolic and immunological disorders. Related and unrelated CB donations have been successfully transplanted in both the paediatric and adult settings. CB, previously considered a waste product, can be collected from both vaginal deliveries and caesarean sections, either in utero or ex utero, at no risk to the donor, processed to remove excess plasma and red cells, cryopreserved, tested, HLA-typed and stored to provide an 'off-the-shelf' product. CB has a lower risk of some important viral infections and a lower incidence and severity of acute and chronic graft versus host disease (GvHD) than BM. CB transplantation is under innovative development and international collaborative studies are investigating ways to improve transplant outcomes. Other uses for CB remain speculative and it is premature to speculate whether non-haemopoietic stem cells are present in cord blood in sufficient numbers for use against degenerative conditions, as is currently postulated by some commercial organisations. Cord blood banking in EU member countries is now regulated by an EU Directive, which provides a statutory basis for regulation safety to ensure efficacy. Compliance is required by 2006. It requires that all banking establishments are inspected and accredited by a Competent Authority. This includes public altruistic banking as well as directed banking activities.

  17. Can cord blood banks transform into induced pluripotent stem cell banks?

    PubMed

    Zhou, Hongyan; Rao, Mahendra S

    2015-06-01

    The discovery of induced pluripotent stem cells (iPSCs) and the rapid evolution of clinically compliant protocols to generate such lines from a variety of tissue sources has raised the possibility that personalized medicine may be achievable in the near future. Several strategies to deliver iPSCs for iPSC-derived cell-based therapy have been proposed: one such model has been the cell-banking model, using processes developed by the cord blood industry. The cord blood industry has evolved primarily as a banking model in which units of cord blood harvested from discarded placenta are stored either in a public or a private cord blood bank for future use. The consideration of a cord blood--like banking model has been further spurred by the realization that this population of cells is an ideal starting sample to generate pluripotent cells. Spurred by these technological advances, major efforts are underway to develop a current Good Manufacturing Practice--compliant protocol to generate iPSCs from cord blood and to develop a haplobanking strategy. In this article, we discuss the issues that may affect such an effort.

  18. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses

    PubMed Central

    Rieber, N; Gille, C; Köstlin, N; Schäfer, I; Spring, B; Ost, M; Spieles, H; Kugel, H A; Pfeiffer, M; Heininger, V; Alkhaled, M; Hector, A; Mays, L; Kormann, M; Zundel, S; Fuchs, J; Handgretinger, R; Poets, C F; Hartl, D

    2013-01-01

    Neonates show an impaired anti-microbial host defence, but the underlying immune mechanisms are not understood fully. Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell subset characterized by their capacity to suppress T cell immunity. In this study we demonstrate that a distinct MDSC subset with a neutrophilic/granulocytic phenotype (Gr-MDSCs) is highly increased in cord blood compared to peripheral blood of children and adults. Functionally, cord blood isolated Gr-MDSCs suppressed T cell proliferation efficiently as well as T helper type 1 (Th1), Th2 and Th17 cytokine secretion. Beyond T cells, cord blood Gr-MDSCs controlled natural killer (NK) cell cytotoxicity in a cell contact-dependent manner. These studies establish neutrophilic Gr-MDSCs as a novel immunosuppressive cell subset that controls innate (NK) and adaptive (T cell) immune responses in neonates. Increased MDSC activity in cord blood might serve as key fetomaternal immunosuppressive mechanism impairing neonatal host defence. Gr-MDSCs in cord blood might therefore represent a therapeutic target in neonatal infections. PMID:23701226

  19. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses.

    PubMed

    Rieber, N; Gille, C; Köstlin, N; Schäfer, I; Spring, B; Ost, M; Spieles, H; Kugel, H A; Pfeiffer, M; Heininger, V; Alkhaled, M; Hector, A; Mays, L; Kormann, M; Zundel, S; Fuchs, J; Handgretinger, R; Poets, C F; Hartl, D

    2013-10-01

    Neonates show an impaired anti-microbial host defence, but the underlying immune mechanisms are not understood fully. Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell subset characterized by their capacity to suppress T cell immunity. In this study we demonstrate that a distinct MDSC subset with a neutrophilic/granulocytic phenotype (Gr-MDSCs) is highly increased in cord blood compared to peripheral blood of children and adults. Functionally, cord blood isolated Gr-MDSCs suppressed T cell proliferation efficiently as well as T helper type 1 (Th1), Th2 and Th17 cytokine secretion. Beyond T cells, cord blood Gr-MDSCs controlled natural killer (NK) cell cytotoxicity in a cell contact-dependent manner. These studies establish neutrophilic Gr-MDSCs as a novel immunosuppressive cell subset that controls innate (NK) and adaptive (T cell) immune responses in neonates. Increased MDSC activity in cord blood might serve as key fetomaternal immunosuppressive mechanism impairing neonatal host defence. Gr-MDSCs in cord blood might therefore represent a therapeutic target in neonatal infections.

  20. Collaboration between hematopoietic stem cell donor registry and cord blood banks.

    PubMed

    Raffoux, C

    2010-10-01

    Despite the huge number of volunteer donors registered worldwide, only a mean of 50% of patients not having a family donor are transplanted with an unrelated donor. Since 1990, a network has been implemented among some European registries. With the help of the European Community, a more sophisticated network has been developed, the European Marrow Donor Information System (EMDIS). A new project underwent development by registries and the Bone Marrow Donor Worldwide: the EMDIS Cord Blood Registry. It will in the future permit to obtain after a search request, one report containing all of the best donors worldwide and best umbilic cord blood for each patient, taking into account possible double cord blood transplantations and other factors, such as number of nucleated cells, number of CD34+ cells, and methods of reduction. Only a strong collaboration between all hematopoietic stem cell registries and cord blood banks would allow a Registry to propose the best donor/cord blood unit for each patient in each country. Progress in the field of hematopoietic stem cell transplantation may be obtained by the parallel development of cord blood banks worldwide and bone marrow donor registries among countries that include minorities.

  1. Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells from Umbilical Cord Blood

    PubMed Central

    Sotnezova, E.V.; Andreeva, E.R.; Grigoriev, A.I.; Buravkova, L.B.

    2016-01-01

    Transplantation of umbilical cord blood cells is currently widely used in modern cell therapy. However, the limited number of hematopoietic stem and progenitor cells (HSPCs) and prolonged time of recovery after the transplantation are significant limitations in the use of cord blood. Ex vivo expansion with various cytokine combinations is one of the most common approaches for increasing the number of HSPCs from one cord blood unit. In addition, there are protocols that enable ex vivo amplification of cord blood cells based on native hematopoietic microenvironmental cues, including stromal components and the tissue-relevant oxygen level. The newest techniques for ex vivo expansion of HSPCs are based on data from the elucidation of the molecular mechanisms governing the hematopoietic niche function. Application of these methods has provided an improvement of several important clinical outcomes. Alternative methods of cord blood transplantation enhancement based on optimization of HPSC homing and engraftment in patient tissues have also been successful. The goal of the present review is to analyze recent methodological approaches to cord blood HSPC ex vivo amplification. PMID:27795840

  2. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus.

    PubMed

    He, Binbin; Li, Xia; Yu, Haibo; Zhou, Zhiguang

    2015-11-01

    Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM.

  3. [Knockdown of Puma protects cord blood CD34(+) cells against γ- irradiation].

    PubMed

    Zhao, Lei; Zhang, Hong-Yan; Pang, Ya-Kun; Gu, Hai-Hui; Xu, Jing; Yuan, Wei-Ping; Cheng, Tao

    2014-04-01

    Puma (P53 upregulated modulator of apoptosis) is a BCL-2 homology 3 (BH3)-only BCL-1 family member and a critical mediator of P53-dependent and -independent apoptosis. Puma plays an essential role in the apoptosis of hematopoietic stem cells exposed to irradiation without an increased risk of malignancies. This study was purposed to develop an effective lentiviral vector to target Puma in human hematopoietic cells and to investigate the effect of Puma gene knockdown on the biological function of human cord blood CD34(+) cells. SF-LV-shPuma-EGFP and control vectors were constructed, and packaged with the pSPAX2/pMD2.G packaging plasmids via 293T cells to produce pseudo-type lentiviruses. SF-LV-shPuma-EGFP or control lentiviruses were harvested within 72 hours after transfection and then were used to transduce human cord blood CD34(+) cells. GFP(+) transduced cells were sorted by flow cytometry (FCM) for subsequent studies. Semi-quantitative real time RT PCR, Western blot, FCM with Annexin V-PE/7-AAD double staining, Ki67 staining, colony forming cell assay (CFC), CCK-8 assay and BrdU incorporation were performed to determine the expression of Puma and its effect on the cord blood CD34(+) cells. The results showed that Puma was significantly knocked down in cord blood CD34(+) cells and the low expression of Puma conferred a radio-protective effect on the cord blood CD34(+) cells. This effect was achieved through reduced apoptosis and sustained quiescence after irradiation due to Puma knockdown. It is concluded that knockdown of puma gene in CD34(+) hematopoietic stem cells of human cord blood possesses the radioprotective effect, maintains the cells in silence targeting Puma in human hematopoietic cells may have a similar effect with that on mouse hematopoietic cells as previously shown, and our lentiviral targeting system for Puma provides a valuable tool for future translational studies with human cells.

  4. Efficiency of Umbilical Cord Blood Cells in Patients with Treatment-Resistant Depressions.

    PubMed

    Smulevich, A B; Dubnitskaya, E B; Voronova, E I; Morozova, Ya V; Radaev, S M

    2016-02-01

    We studied the efficacy of umbilical cord blood cells in the therapy of treatment-resistant depressive states in women. Concentrated umbilical cord blood cells were administered in a dose of 250 millions cells (4 injections at 1-week intervals). The control group received placebo. In both groups, reduction of depressive disorders and the decrease in hypothymia severity were observed. Infusions of cell concentrate contributed to delayed correction of treatment resistance and reduced the severity of depression to moderate. In the main group, significant, persistent, and long-term positive dynamics was observed in the cognitive sphere. The therapeutic potential of umbilical cord blood cell concentrate can be used to overcome treatment resistance formed in depressive patients.

  5. Differentiation of Donor-Derived Cells Into Microglia After Umbilical Cord Blood Stem Cell Transplantation

    PubMed Central

    Takahashi, Kazuya; Kakuda, Yumiko; Munemoto, Saori; Yamazaki, Hirohito; Nozaki, Ichiro; Yamada, Masahito

    2015-01-01

    Abstract Recent studies have indicated that microglia originate from immature progenitors in the yolk sac. After birth, microglial populations are maintained under normal conditions via self-renewal without the need to recruit monocyte-derived microglial precursors. Peripheral cell invasion of the brain parenchyma can only occur with disruption of the blood-brain barrier. Here, we report an autopsy case of an umbilical cord blood transplant recipient in whom cells derived from the donor blood differentiated into ramified microglia in the recipient brain parenchyma. Although the blood-brain barrier and glia limitans seemed to prevent invasion of these donor-derived cells, most of the invading donor-derived ramified cells were maintained in the cerebral cortex. This result suggests that invasion of donor-derived cells occurs through the pial membrane. PMID:26226134

  6. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice

    SciTech Connect

    Shima, Haruko; Takubo, Keiyo; Iwasaki, Hiroko; Yoshihara, Hiroki; Gomei, Yumiko; Hosokawa, Kentaro; Arai, Fumio; Takahashi, Takao; Suda, Toshio

    2009-01-16

    Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2R{gamma}{sup null} (NOG) mice. Hypoxic culture (1% O{sub 2}) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34{sup +}CD38{sup -} cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.

  7. Platelet and red blood cell utilization and transfusion independence in umbilical cord blood and allogeneic peripheral blood hematopoietic cell transplants.

    PubMed

    Solh, Melhem; Brunstein, Claudio; Morgan, Shanna; Weisdorf, Daniel

    2011-05-01

    Allogeneic hematopoietic cell transplantation (HCT) recipients have substantial transfusion requirements. Factors associated with increased transfusions and the extent of blood product use in umbilical cord blood (UCB) recipients are uncertain. We reviewed blood product use in 229 consecutive adult recipients of allogeneic HCT at the University of Minnesota: 147 with leukemia, 82 lymphoma or myeloma; 58% received unrelated UCB and 43% sibling donor peripheral blood stem cell (PBSC) grafts. Although neutrophil recovery was prompt (UCB median 17, range: 2-45 days, and PBSC 14, range: 3-34 days), only 135 of 229 (59% cumulative incidence) achieved red blood cell (RBC) independence and 157 (69%) achieved platelet independence by 6 months. Time to platelet independence was prolonged in UCB recipients (median UCB 41 versus PBSC 14 days) and in patients who had received a prior transplant (median 48 versus 32 days). Patients who received UCB grafts required more RBC through day 60 post-HCT (mean UCB 7.8 (95% confidence interval [CI] 6.7-8.9) versus PBSC 5.2 (3.7-6.7) transfusions, P = .04), and more platelet transfusions (mean 25.2 (95% CI 22.1-28.2) versus 12.9 (9.4-16.4), P < .01) compared to PBSC recipients. Patients receiving myeloablative (MA) conditioning required more RBC and platelet transfusions during the first 2 months post-HCT compared to reduced-intensity conditioning (RIC) (7.4 versus 6.2, P = .30 for RBC; 23.2 versus 17.5, P = .07 for platelets). Despite prompt neutrophil engraftment, UCB recipients had delayed platelet recovery as well as more prolonged and costly blood product requirements. Enhanced approaches to accelerate multilineage engraftment could limit the transfusion-associated morbidity and costs accompanying UCB allotransplantation.

  8. Effect of cord blood serum on ex vivo human limbal epithelial cell culture.

    PubMed

    Chakraborty, Anindita; Dutta, Jayanta; Das, Sumantra; Datta, Himadri

    2012-12-01

    Limbal cell transplantation is an efficacious procedure for rehabilitation of visual acuity in patients with severe ocular surface disorders. Cultivation of limbal epithelial stem cell with fetal bovine serum for transplantation has been a promising treatment for reconstructing the ocular surface in severe limbal stem cell deficiency caused by Steven Johnson syndrome, chemical or thermal injury. This technique of "cell therapy" has been accepted worldwide but the cost of cultivating the cells for transplantation is high. The objective of this study was to investigate the effect of cord blood serum in place of fetal bovine serum on the growth of human limbal epithelial cell culture. Our group has experimented with human cord blood serum which was obtained free of cost from willing donors. The use of human cord blood serum in place of fetal bovine serum for ex vivo culture of limbal stem cell has helped us in reducing the cost of culture. Fresh human limbal tissues from donor cadavers were cultured on intact and denuded amniotic membrane. Cells were proliferated in vitro with cell culture media containing human cord blood serum. Reverse transcription-polymerase chain reaction and immunofluorescence cytochemistry of cultured human limbal epithelial stem cell was done for characterization of the cells.

  9. Successful hematopoietic reconstitution with transplantation of erythrocyte-depleted allogeneic human umbilical cord blood cells in a child with leukemia.

    PubMed Central

    Pahwa, R N; Fleischer, A; Than, S; Good, R A

    1994-01-01

    Cord blood, a potent source of hematopoietic stem cells, has been shown to successfully reconstitute hematopoiesis following allogeneic transplantation in a variety of disorders. A major drawback of cord blood has been the risk of transfusion reactions in ABO blood group incompatibility and drastic reduction in the stem cell pool if the cord blood is manipulated to remove red cells prior to cryopreservation or after thawing. This report describes an erythrocyte depletion method employing 3% gelatin-induced erythrocyte sedimentation for the selective removal of red cells from cord blood. The red cell-depleted fraction was shown to be enriched in progenitor cells and in cells secreting hematopoietic cytokines interleukin 3, granulocyte/macrophage colony-stimulating factor, and interleukin 6; a major source for cytokines was from cord T cells. This preparative technique was employed to separate out red cells from cord blood of an infant delivered by cesarean section who had an 8-year-old sibling with leukemia. Histocompatibility testing of cord cells revealed complete matching with the patient. A cord cell transplant of cryopreserved and thawed cells consisting of 4 x 10(7) nucleated cells per kg was administered to the patient following myeloablative chemotherapy. The patient's quick hematologic recovery and 9-month disease-free period to date suggest that 3% gelatin separation of erythrocytes is a simple method that can be successfully used for transplanting cord cells for malignant/nonmalignant diseases. PMID:8183934

  10. Umbilical cord blood transplantation.

    PubMed

    Koo, Hong Hoe; Ahn, Hyo Seop

    2012-07-01

    Since the first umbilical cord blood transplantation (CBT) in 1998, cord blood (CB) has now become one of the most commonly used sources of hematopoietic stem cells for transplantation. CBT has advantages of easy procurement, no risk to donor, low risk of transmitting infections, immediate availability and immune tolerance allowing successful transplantation despite human leukocyte antigen disparity. Several studies have shown that the number of cells transplanted is the most important factor for engraftment in CBT, and it limits the wide use of CB in adult patients. New strategies for facilitating engraftment and reducing transplantation-related mortality are ongoing in the field of CBT and include the use of a reduced-intensity conditioning regimen, double-unit CBT, ex vivo expansion of CB, and co-transplantation of CB and mesenchymal stem cells. Recently, the results of two international studies with large sample sizes showed that CB is an acceptable alternative source of hematopoietic stem cells for adult recipients who lack human leukocyte antigen-matched adult donors. Along with the intensive researches, development in banking process of CB will amplify the use of CB and offer the chance for cure in more patients.

  11. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    PubMed

    Breitling, Lutz P; Fendel, Rolf; Mordmueller, Benjamin; Adegnika, Ayola A; Kremsner, Peter G; Luty, Adrian J F

    2006-10-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring of Gabonese mothers with different infection histories. Cord blood from newborns of mothers with malarial infection at delivery had significantly more mDC than that from nonexposed newborns (P = 0.028) but mDC and pDC HLA-DR expression was unrelated to maternal infection history. Independently of these findings, cord blood mDC and pDC numbers declined significantly as a function of increasing maternal age (P = 0.029 and P = 0.033, respectively). The inducible antigen-specific interleukin-10-producing regulatory-type T-cell population that we have previously detected in cord blood of newborns with prolonged in utero exposure to P. falciparum may directly reflect the altered DC numbers in such neonates, while the maintenance of cord blood DC HLA-DR expression contrasts with that of DC from P. falciparum malaria patients.

  12. Cord Blood Dendritic Cell Subsets in African Newborns Exposed to Plasmodium falciparum In Utero

    PubMed Central

    Breitling, Lutz P.; Fendel, Rolf; Mordmueller, Benjamin; Adegnika, Ayola A.; Kremsner, Peter G.; Luty, Adrian J. F.

    2006-01-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring of Gabonese mothers with different infection histories. Cord blood from newborns of mothers with malarial infection at delivery had significantly more mDC than that from nonexposed newborns (P = 0.028) but mDC and pDC HLA-DR expression was unrelated to maternal infection history. Independently of these findings, cord blood mDC and pDC numbers declined significantly as a function of increasing maternal age (P = 0.029 and P = 0.033, respectively). The inducible antigen-specific interleukin-10-producing regulatory-type T-cell population that we have previously detected in cord blood of newborns with prolonged in utero exposure to P. falciparum may directly reflect the altered DC numbers in such neonates, while the maintenance of cord blood DC HLA-DR expression contrasts with that of DC from P. falciparum malaria patients. PMID:16988249

  13. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells.

    PubMed

    Stecklum, Maria; Wulf-Goldenberg, Annika; Purfürst, Bettina; Siegert, Antje; Keil, Marlen; Eckert, Klaus; Fichtner, Iduna

    2015-02-01

    In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.

  14. Time related variations in stem cell harvesting of umbilical cord blood

    NASA Astrophysics Data System (ADS)

    Mazzoccoli, Gianluigi; Miscio, Giuseppe; Fontana, Andrea; Copetti, Massimiliano; Francavilla, Massimo; Bosi, Alberto; Perfetto, Federico; Valoriani, Alice; de Cata, Angelo; Santodirocco, Michele; Totaro, Angela; Rubino, Rosa; di Mauro, Lazzaro; Tarquini, Roberto

    2016-02-01

    Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction potential of UCB, including: gestational age, maternal parity, newborn sex and birth weight, placental weight, labor duration and mode of delivery. Few data exist regarding as to how time influences UCB collection and banking patterns. We retrospectively analyzed 17.936 cord blood donations collected from 1999 to 2011 from Tuscany and Apulia Cord Blood Banks. Results from generalized multivariable linear mixed models showed that CBV, TNC and CD34+ cell were associated with known obstetric and neonatal parameters and showed rhythmic patterns in different time domains and frequency ranges. The present findings confirm that volume, total nucleated cells and stem cells of the UCB donations are hallmarked by rhythmic patterns in different time domains and frequency ranges and suggest that temporal rhythms in addition to known obstetric and neonatal parameters influence CBV, TNC and CD34+ cell content in UBC units.

  15. Time related variations in stem cell harvesting of umbilical cord blood

    PubMed Central

    Mazzoccoli, Gianluigi; Miscio, Giuseppe; Fontana, Andrea; Copetti, Massimiliano; Francavilla, Massimo; Bosi, Alberto; Perfetto, Federico; Valoriani, Alice; De Cata, Angelo; Santodirocco, Michele; Totaro, Angela; Rubino, Rosa; di Mauro, Lazzaro; Tarquini, Roberto

    2016-01-01

    Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction potential of UCB, including: gestational age, maternal parity, newborn sex and birth weight, placental weight, labor duration and mode of delivery. Few data exist regarding as to how time influences UCB collection and banking patterns. We retrospectively analyzed 17.936 cord blood donations collected from 1999 to 2011 from Tuscany and Apulia Cord Blood Banks. Results from generalized multivariable linear mixed models showed that CBV, TNC and CD34+ cell were associated with known obstetric and neonatal parameters and showed rhythmic patterns in different time domains and frequency ranges. The present findings confirm that volume, total nucleated cells and stem cells of the UCB donations are hallmarked by rhythmic patterns in different time domains and frequency ranges and suggest that temporal rhythms in addition to known obstetric and neonatal parameters influence CBV, TNC and CD34+ cell content in UBC units. PMID:26906327

  16. Expansion of CD133+ Umbilical Cord Blood Derived Hematopoietic Stem Cells on a Biocompatible Microwells

    PubMed Central

    Soufizomorrod, Mina; Soleimani, Masoud; Hajifathali, Abbas; Mohammadi, Majid Mossahebi; Abroun, Saeed

    2013-01-01

    Umbilical cord Blood (UCB) as a source of Hematopoietic Stem/Progenitor cells (HSPCs) used for Umbilical cord blood transplantation (UCBT). The main obstacle in application of this source as an appropriate source of HSPCs is low volume of this product. So ex vivo expansion of these cells in a microenvironment which mimic body condition is important. In current study we designed biocompatible microwells in which collagene type I is coated by softlitography method. Our findings designated that in 3-Dimensional (3D) microenvironment CD133+ UCB derived HSC expanded significantly compared to 2-Dimensional (2D) microenvironment. PMID:24505514

  17. Human umbilical cord blood cells ameliorate Alzheimer's disease in transgenic mice.

    PubMed

    Ende, N; Chen, R; Ende-Harris, D

    2001-01-01

    Having had success in extending the life of mice with a transgene for amyotropic lateral sclerosis (SOD1) mice and Huntington's disease (Hdexon1), we administered megadoses of human umbilical cord blood mononuclear cells to mice with Alzheimer's disease. These mice have an over-expression of human Alzheimer amyloid precursor protein (APP), die early and develop a CNS disorder that includes neophobia. When given 110 x 10(6) human umbilical cord blood mononuclear cells, these mice (HuAPP 695.SWE) had considerable extension of life with a p value of 0.001 when compared to control animals.

  18. Platelet and Red Blood Cell Utilization and Transfusion Independence in Umbilical Cord Blood and Allogeneic Peripheral Blood Hematopoietic Cell Transplants

    PubMed Central

    Solh, Melhem; Brunstein, Claudio; Morgan, Shanna; Weisdorf, Daniel

    2010-01-01

    Allogeneic hematopoietic cell transplantation (HCT) recipients have substantial transfusion requirements. Factors associated with increased transfusions and the extent of blood product use in umbilical cord blood (UCB) recipients are uncertain. We reviewed blood product use in 229 consecutive adult recipients of allogeneic HCT at the University of Minnesota: 147 with leukemia, 82 lymphoma or myeloma; 58% received unrelated UCB and 43% sibling donor peripheral blood stem cell (PBSC) grafts. Although neutrophil recovery was prompt (UCB median 17, range 2–45 days, and PBSC 14, range 3–34 days), only 135 of 229 (59% cumulative incidence, CI) achieved RBC independence and 157 (69%) achieved platelet independence by 6 months. Time to platelet independence was prolonged in UCB recipients (median UCB 41 vs. PBSC 14 days) and in patients who had received a prior transplant (median 48 vs. 32 days). Patients who received UCB grafts required more RBC through day 60 post HCT (mean UCB 7.8 (95% CI 6.7–8.9) vs. PBSC 5.2 (3.7–6.7) transfusions, p=0.04), and more platelet transfusions (mean 25.2 (95% CI 22.1–28.2) vs. 12.9 (9.4–16.4), p<0.01) compared to PBSC recipients. Patient receiving myeloablative (MA) conditioning required more RBC and platelet transfusions during the first 2 months post HCT compared to reduced intensity conditioning (RIC) (7.4 vs. 6.2, p=0.3 for RBC; 23.2 vs 17.5, p=0.07 for platelets). Despite prompt neutrophil engraftment, UCB recipients had delayed platelet recovery as well as more prolonged and costly blood product requirements. Enhanced approaches to accelerate multilineage engraftment could limit the transfusion-associated morbidity and costs accompanying UCB allotransplantation. PMID:20813199

  19. Delayed cord clamping in red blood cell alloimmunization: safe, effective, and free?

    PubMed Central

    2016-01-01

    Hemolytic disease of the newborn (HDN), an alloimmune disorder due to maternal and fetal blood type incompatibility, is associated with fetal and neonatal complications related to red blood cell (RBC) hemolysis. After delivery, without placental clearance, neonatal hyperbilirubinemia may develop from ongoing maternal antibody-mediated RBC hemolysis. In cases refractory to intensive phototherapy treatment, exchange transfusions (ET) may be performed to prevent central nervous system damage by reducing circulating bilirubin levels and to replace antibody-coated red blood cells with antigen-negative RBCs. The risks and costs of treating HDN are significant, but appear to be decreased by delayed umbilical cord clamping at birth, a strategy that promotes placental transfusion to the newborn. Compared to immediate cord clamping (ICC), safe and beneficial short-term outcomes have been demonstrated in preterm and term neonates receiving delayed cord clamping (DCC), a practice that may potentially be effective in cases RBC alloimmunization. PMID:27186530

  20. Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood

    NASA Astrophysics Data System (ADS)

    Park, HyunJoo; Ahn, Taegyu; Kim, Kyoohyun; Lee, Sangyun; Kook, Song-yi; Lee, Dongheon; Suh, In Bum; Na, Sunghun; Park, YongKeun

    2015-11-01

    Red blood cells (RBCs) from the cord blood of newborn infants have distinctive functions in fetal and infant development. To systematically investigate the biophysical characteristics of individual cord RBCs in newborn infants, a comparative study was performed on RBCs from the cord blood of newborn infants and from adult mothers or nonpregnant women using optical holographic microtomography. Optical measurements of the distributions of the three-dimensional refractive indices and the dynamic membrane fluctuations of individual RBCs were used to investigate the morphological, biochemical, and mechanical properties of cord, maternal, and adult RBCs at the individual cell level. The volume and surface area of the cord RBCs were significantly larger than those of the RBCs from nonpregnant women, and the cord RBCs had more flattened shapes than that of the RBCs in adults. In addition, the hemoglobin (Hb) content in the cord RBCs from newborns was significantly higher. The Hb concentration in the cord RBCs was higher than that in the nonpregnant women or maternal RBCs, but they were within the physiological range of adults. Interestingly, the amplitudes of the dynamic membrane fluctuations in cord RBCs were comparable to those in nonpregnant women and maternal RBCs, suggesting that the deformability of cord RBCs is similar to that of healthy RBCs in adults.

  1. Globoid cell leukodystrophy (Krabbe disease): normal umbilical cord blood galactocerebrosidase activity and polymorphic mutations.

    PubMed

    Raghavan, S; Zeng, B; Torres, P A; Pastores, G M; Kolodny, E H; Kurtzberg, J; Krivit, W

    2005-01-01

    Globoid cell leukodystrophy is an inherited metabolic disorder of the central nervous system caused by deficiency of the lysosomal enzyme galactocerebrosidase. Haematopoietic stem cell transplantation is the only available effective treatment. The engraftment from normal donors provides competent cells able to correct the metabolic defect. Umbilical cord blood cells have proved to significantly decrease complications and improve engraftment rate compared to adult marrow cells in haematopoietic stem cell transplantation. Umbilical cord blood cells must be of sufficient activity to provide central nervous system recovery after engraftment is obtained. Galactocerebrosidase activity is known to be affected by two polymorphic alleles found at nucleotides 502 and 1637 of the cDNA for this gene. This enzyme activity and the polymorphic alleles noted above were analysed in 83 random samples of umbilical cord blood. The activity, assayed with the fluorogenic substrate 6-hexadecanoylamino-4-methylumbelliferyl-beta-galactopyranoside, in those with neither polymorphic allele was 4.6 +/- 1.7 units (nmol/h per mg protein). This optimal choice of cord blood was found in only 24% of specimens. Homozygotes for 1637T > C with activity of only 1.5 +/- 0.4 units represented 16% of the samples. Those heterozygous for 1637T > C with slightly better activity (2.3 +/- 0.7 units) represented 52% of the samples. Choice of umbilical cord blood for haematopoietic stem cell transplantation, therefore, requires consideration not only of cell quantity and HLA compatibility but also selection for normal alleles to obtain maximal enzymatic activity for central nervous system correction.

  2. Umbilical Cord Blood Circulating Progenitor Cells and Endothelial Colony-Forming Cells Are Decreased in Preeclampsia.

    PubMed

    Gumina, Diane L; Black, Claudine P; Balasubramaniam, Vivek; Winn, Virginia D; Baker, Christopher D

    2016-01-01

    Preeclampsia (PE) is a pregnancy-specific disease characterized by the new onset of hypertension and proteinuria. Mothers with PE are known to develop endothelial dysfunction, but its effect on infants has been understudied, as newborns are often asymptomatic. Recent studies indicate that infants born from preeclamptic pregnancies develop endothelial dysfunction including higher blood pressure during childhood and an increased risk of stroke later in life. We hypothesize that PE reduces the number and function of fetal angiogenic progenitor cells and may contribute to this increased risk. We quantified 2 distinct types of angiogenic progenitors, pro-angiogenic circulating progenitor cells (CPCs) and endothelial colony-forming cells (ECFCs), from the umbilical cord blood of preeclamptic pregnancies and normotensive controls. Pro-angiogenic and nonangiogenic CPCs were enumerated via flow cytometry and ECFCs by cell culture. Additionally, we studied the growth, migration, and tube formation of ECFCs from PE and gestational age-matched normotensive control pregnancies. We found that PE resulted in decreased cord blood pro-angiogenic CPCs and ECFCs. Nonangiogenic CPCs were also decreased. Preeclamptic ECFCs demonstrated decreased growth and migration but formed tube-like structures in vitro similar to controls. Our results suggest that the preeclamptic environment alters the number and function of angiogenic progenitor cells and may increase the risk of later vascular disease.

  3. Impaired function of regulatory T cells in cord blood of children of allergic mothers.

    PubMed

    Hrdý, J; Kocourková, I; Prokešová, L

    2012-10-01

    Allergy is one of the most common diseases with constantly increasing incidence. The identification of prognostic markers pointing to increased risk of allergy development is of importance. Cord blood represents a suitable source of cells for searching for such prognostic markers. In our previous work, we described the increased reactivity of cord blood cells of newborns of allergic mothers in comparison to newborns of healthy mothers, which raised the question of whether or not this was due to the impaired function of regulatory T cells (T(regs)) in high-risk children. Therefore, the proportion and functional properties of T(regs) in cord blood of children of healthy and allergic mothers were estimated by flow cytometry. The proportion of T(regs) [CD4(+)CD25(high)CD127(low) forkhead box protein 3 (FoxP3(+))] in cord blood of children of allergic mothers tends to be higher while, in contrast, the median of fluorescence intensity of FoxP3 was increased significantly in the healthy group. Intracellular presence of regulatory cytokines interleukin (IL)-10 and transforming growth factor (TGF)-beta was also higher in T(regs) of children of healthy mothers. Although we detected an increased proportion of T(regs) in cord blood of children of allergic mothers, the functional indicators (intracellular presence of regulatory cytokines IL-10 and TGF-beta, median of fluorescence intensity of FoxP3) of those T(regs) were lower in comparison to the healthy group. We can conclude that impaired function of T(regs) in cord blood of children of allergic mothers could be compensated partially by their increased number. Insufficient function of T(regs) could facilitate allergen sensitization in high-risk individuals after subsequent allergen encounter.

  4. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    PubMed

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34(+ )cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  5. Methods of ex vivo expansion of human cord blood cells: challenges, successes and clinical implications.

    PubMed

    Baron, Frédéric; Ruggeri, Annalisa; Nagler, Arnon

    2016-03-01

    More than 40,000 unrelated cord blood transplantations (UCBT) have been performed worldwide as treatment for patients with malignant or non-malignant life threatening hematologic disorders. However, low absolute numbers of hematopoietic stem and progenitor cells (HSPCs) within a single cord blood unit has remained a limiting factor for this transplantation modality, particularly in adult recipients. Further, because UCB contains low numbers of mostly naïve T cells, immune recovery after UCBT is slow, predisposing patients to severe infections. Other causes of UCBT failure has included graft-versus-host disease (GVHD) and relapse of the underlying disease. In this article, we first review the current landscape of cord blood engineering aimed at improving engraftment. This includes approaches of UCB-HSPCs expansion and methods aimed at improving UCB-HSCPs homing. We then discuss recent approaches of cord blood engineering developed to prevent infection [generation of multivirus-specific cytotoxic T cells (VSTs) from UCB], relapse [transduction of UCB-T cells with tumor-specific chimeric receptor antigens (CARs)] and GVHD (expansion of regulatory T cells from UCB). Although many of these techniques of UCB engineering remain currently technically challenging and expensive, they are likely to revolutionize the field of UCBT in the next decades.

  6. Artificial human tissues from cord and cord blood stem cells for multi-organ regenerative medicine: viable alternatives to animal in vitro toxicology.

    PubMed

    Jurga, Marcin; Forraz, Nico; McGuckin, Colin P

    2010-05-01

    New medicinal products and procedures must meet very strict safety criteria before being applied for use in humans. The laboratory procedures involved require the use of large numbers of animals each year. Furthermore, such investigations do not always give an accurate translation to the human setting. Here, we propose a viable alternative to animal testing, which uses novel technology featuring human cord and cord blood stem cells. With over 130 million children born each year, cord and cord blood remains the most widely available alternative to the use of animals or cadaveric human tissues for in vitro toxicology.

  7. Phenotypic and functional characterization of cytokine-induced killer cells derived from preterm and term infant cord blood.

    PubMed

    Zhang, Qian; Wang, Lili; Luo, Chenghan; Shi, Zanyang; Cheng, Xinru; Zhang, Zhen; Yang, Yi; Zhang, Yi

    2014-11-01

    Cord blood has gradually become an important source for hematopoietic stem cell transplantation (HSCT) in the human, particularly in pediatric patients. Adoptive cellular immunotherapy of patients with hematologic malignancies after umbilical cord blood transplant is crucial. Cytokine‑induced killer (CIK) cells derived from cord blood are a new type of antitumor immune effector cells in tumor prevention and treatment and have increasingly attracted the attention of researchers. On the other hand, it has been suggested that preterm infant cord blood retains an early differentiation phenotype suitable for immunotherapy. Therefore, we determined the phenotypic and functional characterization of CIK cells derived from preterm infant cord blood (PCB-CIK) compared with CIK cells from term infant cord blood (TCB-CIK). Twenty cord blood samples were collected and classified into two groups based on gestational age. Cord blood mononuclear cells (CBMCs) were isolated, cultured and induced to CIK cells in vitro. We used flow cytometry to detect cell surface markers, FlowJo software to analyze the proliferation profile and intracellular staining to test the secretion of cytokines. Finally, we evaluated the antitumor activity of CIK cells against K562 in vitro. Compared with TCB-CIK, PCB-CIK cells demonstrated faster proliferation and higher expression of activated cell surface markers. The secretion of IL-10 was lower in PCB-CIK cells while the expression of perforin and CD107a had no significant difference between the two cell groups. PCB-CIK cells exhibited a high proliferation rate while the cytotoxic activity had no difference between the PCB-CIK and TCB-CIK cells. Hence preterm infant cord blood may be a potential source for immunotherapy.

  8. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review

    PubMed Central

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-01-01

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field. PMID:27426082

  9. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    PubMed

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  10. Applications of human umbilical cord blood cells in central nervous system regeneration.

    PubMed

    Herranz, Antonio S; Gonzalo-Gobernado, Rafael; Reimers, Diana; Asensio, Maria J; Rodríguez-Serrano, Macarena; Bazán, Eulalia

    2010-03-01

    In recent decades, there has been considerable amount of information about embryonic stem cells (ES). The dilemma facing scientists interested in the development and use of human stem cells in replacement therapies is the source of these cells, i.e. the human embryo. There are many ethical and moral problems related to the use of these cells. Hematopoietic stem cells from umbilical cord blood have been proposed as an alternative source of embryonic stem cells. After exposure to different agents, these cells are able to express antigens of diverse cellular lineages, including the neural type. The In vitro manipulation of human umbilical cord blood (hUCB) cells has shown their stem capacity and plasticity. These cells are easily accessible, In vitro amplifiable, well tolerated by the host, and with more primitive molecular characteristics that give them great flexibility. Overall, these properties open a promising future for the use of hUCB in regenerative therapies for the Central Nervous System (CNS). This review will focus on the available literature concerning umbilical cord blood cells as a therapeutic tool for the treatment of neurodegenerative diseases.

  11. Key Immune Cell Cytokines Affects the Telomere Activity of Cord Blood Cells In vitro

    PubMed Central

    Brazvan, Balal; Farahzadi, Raheleh; Mohammadi, Seyede Momeneh; Montazer Saheb, Soheila; Shanehbandi, Dariush; Schmied, Laurent; Soleimani Rad, Jafar; Darabi, Masoud; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: Telomere is a nucleoprotein complex at the end of eukaryotic chromosomes and its length is regulated by telomerase. The number of DNA repeat sequence (TTAGGG)n is reduced with each cell division in differentiated cells. The aim of this study was to evaluate the effect of SCF (Stem Cell Factor), Flt3 (Fms- Like tyrosine kinase-3), Interleukin-2, 7 and 15 on telomere length and hTERT gene expression in mononuclear and umbilical cord blood stem cells (CD34+ cells) during development to lymphoid cells. Methods: The mononuclear cells were isolated from umbilical cord blood by Ficoll-Paque density gradient. Then cells were cultured for 21 days in the presence of different cytokines. Telomere length and hTERT gene expression were evaluated in freshly isolated cells, 7, 14 and 21 days of culture by real-time PCR. The same condition had been done for CD34+ cells but telomere length and hTERT gene expression were measured at initial and day 21 of the experiment. Results: Highest hTERT gene expression and maximum telomere length were measured at day14 of MNCs in the presence of IL-7 and IL-15. Also, there was a significant correlation between telomere length and telomerase gene expression in MNCs at 14 days in a combination of IL-7 and IL-15 (r = 0.998, p =0.04). In contrast, IL-2 showed no distinct effect on telomere length and hTERT gene expression in cells. Conclusion: Taken together, IL-7 and IL-15 increased telomere length and hTERT gene expression at 14 day of the experiment. In conclusion, it seems likely that cells maintain naïve phenotype due to prolonged exposure of IL-7 and IL-15. PMID:27478776

  12. Clinical utilization of cord blood over human health: experience of stem cell transplantation and cell therapy using cord blood in Korea

    PubMed Central

    2014-01-01

    Cord blood (CB) has been used as an important and ethical source for hematopoietic stem cell transplantation (SCT) as well as cell therapy by manufacturing mesenchymal stem cell, induced pleuripotential stem cell or just isolating mononuclear cell from CB. Recently, the application of cell-based therapy using CB has expanded its clinical utility, particularly, by using autologous CB in children with refractory diseases. For these purposes, CB has been stored worldwide since mid-1990. In this review, I would like to briefly present the historical development of clinical uses of CB in the fields of SCT and cell therapy, particularly to review the experiences in Korea. Furthermore, I would touch the recent banking status of CB. PMID:24778692

  13. DECREASED LEVEL OF CORD BLOOD CIRCULATING ENDOTHELIAL COLONY-FORMING CELLS IN PREECLAMPSIA

    PubMed Central

    Muñoz-Hernandez, Rocio; Miranda, Maria L.; Stiefel, Pablo; Lin, Ruei-Zeng; Praena-Fernández, Juan M.; Dominguez-Simeon, Maria J.; Villar, Jose; Moreno-Luna, Rafael; Melero-Martin, Juan M.

    2014-01-01

    Preeclampsia is a pregnancy-related disorder associated with increased cardiovascular risk for the offspring. Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that participate in the formation of vasculature during development. However, the effect of preeclampsia on fetal levels of ECFCs is largely unknown. In this study, we sought to determine whether cord blood ECFC abundance and function are altered in preeclampsia. We conducted a prospective cohort study that included women with normal (n=35) and preeclamptic (n=15) pregnancies. We measured ECFC levels in the umbilical cord blood of neonates and characterized ECFC phenotype, cloning-forming ability, proliferation and migration towards VEGF-A and FGF-2, in vitro formation of capillary-like structures, and in vivo vasculogenic ability in immunodeficient mice. We found that the level of cord blood ECFCs was statistically lower in preeclampsia than in control pregnancies (P = .04), a reduction that was independent of other obstetric factors. In addition, cord blood ECFCs from preeclamptic pregnancies required more time to emerge in culture than control ECFCs. However, once derived in culture, ECFC function was deemed normal and highly similar between preeclampsia and control, including the ability to form vascular networks in vivo. This study demonstrates that preeclampsia affects ECFC abundance in neonates. A reduced level of ECFCs during preeclamptic pregnancies may contribute to an increased risk of developing future cardiovascular events. PMID:24752434

  14. Decreased level of cord blood circulating endothelial colony-forming cells in preeclampsia.

    PubMed

    Muñoz-Hernandez, Rocio; Miranda, Maria L; Stiefel, Pablo; Lin, Ruei-Zeng; Praena-Fernández, Juan M; Dominguez-Simeon, Maria J; Villar, Jose; Moreno-Luna, Rafael; Melero-Martin, Juan M

    2014-07-01

    Preeclampsia is a pregnancy-related disorder associated with increased cardiovascular risk for the offspring. Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that participate in the formation of vasculature during development. However, the effect of preeclampsia on fetal levels of ECFCs is largely unknown. In this study, we sought to determine whether cord blood ECFC abundance and function are altered in preeclampsia. We conducted a prospective cohort study that included women with normal (n=35) and preeclamptic (n=15) pregnancies. We measured ECFC levels in the umbilical cord blood of neonates and characterized ECFC phenotype, cloning-forming ability, proliferation, and migration toward vascular endothelial growth factor-A and fibroblast growth factor-2, in vitro formation of capillary-like structures, and in vivo vasculogenic ability in immunodeficient mice. We found that the level of cord blood ECFCs was statistically lower in preeclampsia than in control pregnancies (P=0.04), a reduction that was independent of other obstetric factors. In addition, cord blood ECFCs from preeclamptic pregnancies required more time to emerge in culture than control ECFCs. However, once derived in culture, ECFC function was deemed normal and highly similar between preeclampsia and control, including the ability to form vascular networks in vivo. This study demonstrates that preeclampsia affects ECFC abundance in neonates. A reduced level of ECFCs during preeclamptic pregnancies may contribute to an increased risk of developing future cardiovascular events.

  15. Umbilical Cord Blood Natural Killer Cells, Their Characteristics, and Potential Clinical Applications

    PubMed Central

    Sarvaria, Anushruti; Jawdat, Dunia; Madrigal, J. Alejandro; Saudemont, Aurore

    2017-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system able to kill different targets such as cancer cells and virally infected cells without prior activation making then attractive candidates for cancer immunotherapy. Umbilical cord blood (UCB) has become a source of hematopoietic stem cells for transplantation but as we gain a better understanding of the characteristics of each immune cell that UCB contains, we will also be able to develop new cell therapies for cancer. In this review, we present what is currently known of the phenotype and functions of UCB NK cells and how these cells could be used in the future for cancer immunotherapy. PMID:28386260

  16. Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6.

    PubMed

    de Mara, Cristiane Sampaio; Duarte, A S S; Sartori-Cintra, A R; Luzo, A C M; Saad, S T O; Coimbra, I B

    2013-01-01

    Umbilical cord blood contains undifferentiated mesenchymal stem cells (MSCs) with chondrogenic potential that may be used for the repair of joint damage. The role of growth factors during the process of chondrogenesis is still not entirely understood. The objective of this study was to evaluate the formation of chondrocytes, cartilaginous matrix and type II collagen from human umbilical cord blood stem cells exposed to two different growth factors, BMP-6 and BMP-2, while being cultured as a micromass or a monolayer. Umbilical cord blood was obtained from full-term deliveries, and then, mononuclear cells were separated and cultured for expansion. Afterward, these cells were evaluated by flow cytometry using antibodies specific for MSCs and induced to chondrogenic differentiation in micromass and monolayer cultures supplemented with BMP-2 and BMP-6. Cellular phenotype was evaluated after 7, 14 and 21 days by RT-PCR and Western blot analysis to identify the type II collagen and aggrecan. The expanded cells displayed surface antigens characteristic of mesenchymal progenitor cells and were negative for hematopoietic differentiation antigens. Type II collagen and aggrecan mRNAs were expressed from day 14 in cells stimulated with BMP-2 or BMP-6. Type II collagen was demonstrated by Western blotting in both groups, and the greatest expression was observed 21 days after the cells were stimulated with BMP-2 cultured in micromass. BMP-2 in micromass culture was more efficient to induce the chondrogenesis.

  17. Effects of umbilical cord blood stem cells on healing factors for diabetic foot injuries.

    PubMed

    Çil, N; Oğuz, E O; Mete, E; Çetinkaya, A; Mete, G A

    2017-01-01

    The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.

  18. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood.

    PubMed

    Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E

    2012-08-01

    The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.

  19. Cord Blood Stem Cell Procurement in Minority Donors

    DTIC Science & Technology

    2009-03-01

    Acute Biphenotypic leukemia 0 1 Juvenile myelomonocytic leukemia 0 2 Myelodysplastic syndrome 0 1 Myeloma 1 0 Non-Hodgkin...arrived at the destination thawed and this unit could not be used clinically. 8 Acute lymphoid leukemia 3 5 Acute myeloid leukemia 2...information but there is one additional death due to relapse of acute lymphocytic leukemia in an adult patient who received a second cord

  20. Umbilical Cord Blood-An Untapped Resource: Strategies to Decrease Early Red Blood Cell Transfusions and Improve Neonatal Outcomes.

    PubMed

    Carroll, Patrick D

    2015-09-01

    Umbilical cord blood is a resource that is available to all neonates. Immediately after delivery of the fetus, cord blood can be used for the direct benefit of the premature infant. Delayed cord clamping and milking of the umbilical cord are 2 methods of transfusing additional fetal blood into the neonate after vaginal or cesarean delivery. Additionally, umbilical cord blood can be utilized for neonatal admission laboratory testing rather than direct neonatal phlebotomy. Together these strategies both increase initial neonatal total blood volume and limit immediate loss through phlebotomy.

  1. CD133(+) human umbilical cord blood stem cells enhance angiogenesis in experimental chronic hepatic fibrosis.

    PubMed

    Elkhafif, Nagwa; El Baz, Hanan; Hammam, Olfat; Hassan, Salwa; Salah, Faten; Mansour, Wafaa; Mansy, Soheir; Yehia, Hoda; Zaki, Ahmed; Magdy, Ranya

    2011-01-01

    The in vivo angiogenic potential of transplanted human umbilical cord blood (UCB) CD133(+) stem cells in experimental chronic hepatic fibrosis induced by murine schistosomiasis was studied. Enriched cord blood-derived CD133(+) cells were cultured in primary medium for 3 weeks. Twenty-two weeks post-Schistosomiasis infection in mice, after reaching the chronic hepatic fibrotic stage, transplantation of stem cells was performed and mice were sacrificed 3 weeks later. Histopathology and electron microscopy showed an increase in newly formed blood vessels and a decrease in the fibrosis known for this stage of the disease. By immunohistochemical analysis the newly formed blood vessels showed positive expression of the human-specific angiogenic markers CD31, CD34 and von Willebrand factor. Few hepatocyte-like polygonal cells showed positive expression of human vascular endothelial growth factor and inducible nitric oxide synthase. The transplanted CD133(+) human stem cells primarily enhanced hepatic angiogenesis and neovascularization and contributed to repair in a paracrine manner by creating a permissive environment that enabled proliferation and survival of damaged cells rather than by direct differentiation to hepatocytes. A dual advantage of CD133(+) cell therapy in hepatic disease is suggested based on its capability of hematopoietic and endothelial differentiation.

  2. [Comparison of human cord blood mesenchymal stem cell culture between using human umbilical cord plasma and using fetal bovine serum].

    PubMed

    Ding, Yan; Lu, Zhiyong; Yuan, Yahong; Wang, Xiaoli; Li, Dongsheng; Zeng, Yi

    2013-12-01

    To investigate whether human umbilical cord plasma (HUP) can be used to culture human cord blood mesenchymal stem cells (HUCMSCs), we collected 20 surplus HUP. After being treated with salting out and diasysis, the HUP were used to culture HUCMSCs as 10% volume, and compared with fetal bovine serum (FBS). Morphological characteristics, growth curve and reproductive activity of HUCMSCs cells were observed. The concentration of bFGF and noggin secreted by HUCMSCs cultured with HUP and FBS medium were detected by ELISA. It was found that compared to FBS, the morphology, reproductive activity and characteristic of HUCMSCs cell cultured with HUP were not distinctively different from FBS. The concentration of bFGF in HUP group was significantly higher than that of FBS group, and the concentration of noggin was also different in the two groups. So we concluded that HUP could be used to culture HUCMSCs for a long-time, and the HUP mediumcoild could be more suitable for the culture of human embryonic stem cell (hESC).

  3. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands

    PubMed Central

    Belay, Eyayu; Hayes, Brian J.; Blau, C. Anthony; Torok-Storb, Beverly

    2017-01-01

    Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS) that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP), intercellular adhesion molecule 4 (ICAM-4), CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions. PMID:28135323

  4. Cytokine expression in cord blood cells of children of healthy and allergic mothers.

    PubMed

    Hrdý, J; Zanvit, P; Novotná, O; Kocourková, I; Zižka, J; Prokešová, L

    2010-09-01

    To determine some early signs connected with the increased risk of future allergy development, gene expression and production of selected cytokines were tested in children of allergic mothers and compared with newborns of healthy mothers. Expression of IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13, IFN-γ, TNF-α, TGF-β and EGF was tested in cord blood cells using real-time PCR and production of these cytokines was evaluated in cord sera by ELISA. Gene expression of IL-2, IL-4, IL-8, IFN-γ, IL-1β, TNF-α and TGF-β was decreased and that of IL-10, IL-13 and EGF increased in children of allergic mothers in comparison with those of healthy mothers. Significant differences in sera of healthy and allergic groups were only in IL-10 and EGF. Different relationship among serum cytokine levels reflects the fact that the cytokines are not produced only by blood cells. Significantly decreased production of EGF in newborns of allergic mothers could negatively influence maturation of mucosal membranes of these children and support thus their easier allergization. Allergic phenotype pointing to the bias to T(H)2 response and to possibly impaired intestine maturation was apparent already on the level of cord blood and could serve as a predictive sign of increased allergy risk.

  5. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony–forming cells

    PubMed Central

    Vemula, Sasidhar; Meador, Jonathan Luke; Yoshimoto, Momoko; Ferkowicz, Michael J; Fett, Alexa; Gupta, Manav; Rapp, Brian M; Saadatzadeh, Mohammad Reza; Ginsberg, Michael; Elemento, Olivier; Lee, Younghee; Voytik-Harbin, Sherry L; Chung, Hyung Min; Hong, Ki Sung; Reid, Emma; O'Neill, Christina L; Medina, Reinhold J; Stitt, Alan W; Murphy, Michael P; Rafii, Shahin; Broxmeyer, Hal E; Yoder, Mervin C

    2015-01-01

    The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony–forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel–forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >108 ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells. PMID:25306246

  6. Umbilical cord blood as a new and promising source of unrelated-donor hematopoietic stem cells for transplantation.

    PubMed

    Newburger, P E; Quesenberry, P J

    1996-02-01

    A rapidly accelerating number of transplantations of hematopoietic stem cells from human umbilical cord blood have been performed for malignancies and for congenital disorders. Umbilical cord blood presents multiple advantages over bone marrow as a source of stem cells. Harvesting presents no donor risk or discomfort, the product carries less likelihood of infectious disease transmission, and collection can be targeted to include minority groups underrepresented in bone marrow donor registries. Furthermore, the interval from initiation of a search to the transplantation procedure has been much shorter than for bone marrow, and the lack of mature T lymphocytes in cord blood reduces the incidence and severity of graft-versus-host disease in transplant recipients. Potential problems under current investigations include whether cord blood provides a sufficient quantity of stem cells for adult recipients or an effective level of "graft-versus-leukemia" effect.

  7. Can cell proliferation of umbilical cord blood cells reflect environmental exposures?

    PubMed

    Novack, Lena; Manor, Esther; Gurevich, Elena; Yitshak-Sade, Maayan; Landau, Daniella; Sarov, Batia; Hershkovitz, Reli; Dukler, Doron; Vodonos, Tali; Karakis, Isabella

    2015-01-01

    Environmental hazards were shown to have an impact on cell proliferation (CP). We investigated CP of lymphocytes in umbilical cord blood in relation to prenatal environmental exposures in a sample of 346 Arab-Bedouin women giving birth in a local hospital. Information on subjects' addresses at pregnancy, potential household exposures and demographical status was collected in an interview during hospitalization. This population is usually featured by high rates of neonatal morbidity and multiple environmental exposures, originating from the local industrial park (IP), household hazards and frequent male smoking. A geometric mean CP ratio 2.17 (2.06; 2.29), and was high in women residing in a direction of prevailing winds from the local IP (p value = 0.094) and who gave birth during fall-winter season (p value = 0.024). Women complaining on disturbing exposure to noise had lower CP (p value = 0.015), compared to other women. CP was not indicative of neonatal morbidity. However, our findings suggest that CP of umbilical cord might be modified by environmental exposures. A long-term follow-up of the children is required to assess their developmental outcomes.

  8. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro

    PubMed Central

    Bader, Andreas Matthäus; Klose, Kristin; Bieback, Karen; Korinth, Dirk; Schneider, Maria; Seifert, Martina; Choi, Yeong-Hoon; Kurtz, Andreas; Falk, Volkmar; Stamm, Christof

    2015-01-01

    Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs) upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity) and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC) were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, “post-ischemic” cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic preconditioning

  9. Extensive proliferative capacity of single isolated CD34 human cord blood cells in suspension culture.

    PubMed

    Xiao, M; Broxmeyer, H E; Horie, M; Grigsby, S; Lu, L

    1994-01-01

    Nonadherent, low-density T-lymphocyte-depleted (NALT-) CD34 cells from normal human cord blood were assessed in suspension culture for the effects of recombinant cytokines on their proliferation, differentiation, and generation of myeloid progenitor cells. In this cell population, 82% of cells expressed c-kit protein as assessed by in situ hybridization, and their cloning efficiency was 85% when cells were plated at low cell numbers with combinations of growth factors. CD34 cells were sorted as 1, 5, or 10 cell(s) per well and also at 5000 cells per dish to initiate stromal-free suspension cultures in the presence of steel factor (SLF), interleukin (IL)-1 alpha, and IL-3. Forty-eight percent of the wells started with a single CD34 cell were positive for growth after 14 days, and the wells contained greater than 5 x 10(3) cells by 21-28 days. Progenitors were assayed weekly with cultures initiated with 1 or 5000 cells. While the fold expansion of nucleated cells was greater in cultures initiated with one cell per well (> 5000 compared to 791-fold expansion for 5000 cells), the fold expansion of progenitors was greater than 5000 cells were used to initiate cultures. Under optimal conditions, there was, respectively, a 160-, 164-, and 57-fold output of high proliferative potential colony-forming cells, granulocyte-macrophage colony-forming units, and erythroid burst-forming units/granulocyte erythroid macrophage megakaryocyte colony-forming units within 1-3 weeks for cultures initiated with 5000 CD34 cells compared with respective fold increases of 29, 16, and 1, for single-initiated cultures. These results demonstrate the expansion capacity of single CD34 cord blood cells and demonstrate that factors in addition to SLF, IL-1 alpha, and IL-3 are necessary for optimal expansion of progenitors from single isolated CD34 cells.

  10. Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells.

    PubMed

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    We studied the expression of different classes of surface molecules (CD13, CD29, CD40, CD44, CD54, CD71, CD73, CD80, CD86, CD90, CD105, CD106, CD146, HLA-I, and HLA-DR) in mesenchymal stromal cells from human umbilical cord and bone marrow during co-culturing with nucleated umbilical cord blood cells. Expression of the majority of surface markers in both types of mesenchymal stromal cells was stable and did not depend on the presence of the blood cells. Significant differences were found only for cell adhesion molecules CD54 (ICAM-1) and CD106 (VCAM-1) responsible for direct cell-cell contacts with leukocytes and only for bone marrow derived cells.

  11. Cell type specific DNA methylation in cord blood: A 450K-reference data set and cell count-based validation of estimated cell type composition.

    PubMed

    Gervin, Kristina; Page, Christian Magnus; Aass, Hans Christian D; Jansen, Michelle A; Fjeldstad, Heidi Elisabeth; Andreassen, Bettina Kulle; Duijts, Liesbeth; van Meurs, Joyce B; van Zelm, Menno C; Jaddoe, Vincent W; Nordeng, Hedvig; Knudsen, Gunn Peggy; Magnus, Per; Nystad, Wenche; Staff, Anne Cathrine; Felix, Janine F; Lyle, Robert

    2016-09-01

    Epigenome-wide association studies of prenatal exposure to different environmental factors are becoming increasingly common. These studies are usually performed in umbilical cord blood. Since blood comprises multiple cell types with specific DNA methylation patterns, confounding caused by cellular heterogeneity is a major concern. This can be adjusted for using reference data consisting of DNA methylation signatures in cell types isolated from blood. However, the most commonly used reference data set is based on blood samples from adult males and is not representative of the cell type composition in neonatal cord blood. The aim of this study was to generate a reference data set from cord blood to enable correct adjustment of the cell type composition in samples collected at birth. The purity of the isolated cell types was very high for all samples (>97.1%), and clustering analyses showed distinct grouping of the cell types according to hematopoietic lineage. We explored whether this cord blood and the adult peripheral blood reference data sets impact the estimation of cell type composition in cord blood samples from an independent birth cohort (MoBa, n = 1092). This revealed significant differences for all cell types. Importantly, comparison of the cell type estimates against matched cell counts both in the cord blood reference samples (n = 11) and in another independent birth cohort (Generation R, n = 195), demonstrated moderate to high correlation of the data. This is the first cord blood reference data set with a comprehensive examination of the downstream application of the data through validation of estimated cell types against matched cell counts.

  12. Persistence of Yellow Fever vaccine-induced antibodies after cord blood stem cell transplant

    PubMed Central

    Avelino-Silva, Vivian Iida; Freire, Marcos da Silva; Rocha, Vanderson; Rodrigues, Celso Arrais; Novis, Yana Sarkis; Sabino, Ester C.; Kallas, Esper Georges

    2016-01-01

    ABSTRACT We report the case of a cord blood haematopoietic stem cell transplant recipient who was vaccinated for Yellow Fever (YF) 7 days before initiating chemotherapy and had persistent YF antibodies more than 3 years after vaccination. Since the stem cell donor was never exposed to wild YF or to the YF vaccine, and our patient was not exposed to YF or revaccinated, this finding strongly suggests the persistence of recipient immunity. We briefly discuss potential consequences of incomplete elimination of recipient's leukocytes following existing haematopoietic cancer treatments. PMID:26618995

  13. Differential mechanisms of x-ray-induced cell death in human endothelial progenitor cells isolated from cord blood and adults.

    PubMed

    Mendonca, Marc S; Chin-Sinex, Helen; Dhaemers, Ryan; Mead, Laura E; Yoder, Merv C; Ingram, David A

    2011-08-01

    Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells that circulate at low concentration in human umbilical cord and adult peripheral blood and are largely resident in blood vessels. ECFCs not only appear to be critical for normal vascular homeostasis and repair but may also contribute to tumor angiogenesis and response to therapy. To begin to characterize the potential role of ECFCs during the treatment of tumors in children and adults with radiation, we characterized the X-ray sensitivity of cord and adult blood-derived ECFCs. We found both cord blood and adult ECFCs to be highly radiation sensitive (3 Gy resulted in >90% killing without induction of apoptosis). The X-ray survival curves suggested reduced potential for repair capacity, but X-ray fractionation studies demonstrated that all the ECFCs exhibited repair when the radiation was fractionated. Finally, the mechanisms of X-ray-induced cell death for cord blood and adult ECFCs were different at low and high dose. At low dose, all ECFCs appear to die by mitotic death/catastrophe. However, at high radiation doses (≥ 10 Gy) cord blood ECFCs underwent p53 stabilization and Bax-dependent apoptosis as well as p21-dependent G₁ and G₂/M cell cycle checkpoints. By contrast, after 10 Gy adult ECFCs undergo only large-scale radiation-induced senescence, which is a cellular phenotype linked to premature development of atherosclerosis and vasculopathies. These data demonstrate that the ECFC response to radiation is dose-dependent and developmentally regulated and may provide potential mechanistic insight into their role in tumor and normal tissue response after ionizing radiation treatment.

  14. [Stimulation of cell cultures recovery after cryopreservation by the cattle cord blood FRACTION (below 5 kDa) or Actovegin].

    PubMed

    Gulevskiĭ, A K; Trifonova, A V; Lavrik, A A

    2013-01-01

    The capacities of the cattle cord blood low-molecular fraction (below 5 kDa) and Actovegin (the vealer blood fraction (below 5 kDa)) for recovering functions of cell cultures after cryopreservation compared. Their influence proliferation of the flozen-thawed cell cultures, certain stages of their growth, cell attachment, rate of cell spreading, and mitotic regiment has been studied. Both the cord blood low-molecular fraction and Actovegin were shown to stimulate growth of the cell cultures after cryopreservation more efficiently at the concentration of 224 μg/ml. However, despite the stimulating effect discovered, their application did not bring proliferative indices on the 1st passage after cryopreservation to the values of the native culture. The effects of the cord blood low-molecular fraction and Actovegin on the human fibroblast culture were identical by the following parameters: cell attachment, rates of cell spreading and proliferation. In culture BHK-21 clone 13/04 the efficiency of Actovegin was low, while the cord blood low-molecular fraction has a conspicuous stimulating effect on its adhesion and proliferation. The investigations carried out can serve as a basis for the development of regenerative media containing the cattle cord blood low-molecular fraction (below 5 kDa) or Actovegin as active components at the concentration of 224 μg/ml with the purpose of fast recovery of culture prolifetative properties after cryopreservation.

  15. Family-directed umbilical cord blood banking

    PubMed Central

    Gluckman, Eliane; Ruggeri, Annalisa; Rocha, Vanderson; Baudoux, Etienne; Boo, Michael; Kurtzberg, Joanne; Welte, Kathy; Navarrete, Cristina; van Walraven, Suzanna M.

    2011-01-01

    Umbilical cord blood transplantation from HLA-identical siblings provides good results in children. These results support targeted efforts to bank family cord blood units that can be used for a sibling diagnosed with a disease which can be cured by allogeneic hematopoietic stem cell transplantation or for research that investigates the use of allogeneic or autologous cord blood cells. Over 500 patients transplanted with related cord blood units have been reported to the Eurocord registry with a 4-year overall survival of 91% for patients with non-malignant diseases and 56% for patients with malignant diseases. Main hematologic indications in children are leukemia, hemoglobinopathies or inherited hematologic, immunological or metabolic disorders. However, family-directed cord blood banking is not widely promoted; many cord blood units used in sibling transplantation have been obtained from private banks that do not meet the necessary criteria required to store these units. Marketing by private banks who predominantly store autologous cord blood units has created public confusion. There are very few current validated indications for autologous storage but some new indications might appear in the future. Little effort is devoted to provide unbiased information and to educate the public as to the distinction between the different types of banking, economic models and standards involved in such programs. In order to provide a better service for families in need, directed-family cord blood banking activities should be encouraged and closely monitored with common standards, and better information on current and future indications should be made available. PMID:21750089

  16. Family-directed umbilical cord blood banking.

    PubMed

    Gluckman, Eliane; Ruggeri, Annalisa; Rocha, Vanderson; Baudoux, Etienne; Boo, Michael; Kurtzberg, Joanne; Welte, Kathy; Navarrete, Cristina; van Walraven, Suzanna M

    2011-11-01

    Umbilical cord blood transplantation from HLA-identical siblings provides good results in children. These results support targeted efforts to bank family cord blood units that can be used for a sibling diagnosed with a disease which can be cured by allogeneic hematopoietic stem cell transplantation or for research that investigates the use of allogeneic or autologous cord blood cells. Over 500 patients transplanted with related cord blood units have been reported to the Eurocord registry with a 4-year overall survival of 91% for patients with non-malignant diseases and 56% for patients with malignant diseases. Main hematologic indications in children are leukemia, hemoglobinopathies or inherited hematologic, immunological or metabolic disorders. However, family-directed cord blood banking is not widely promoted; many cord blood units used in sibling transplantation have been obtained from private banks that do not meet the necessary criteria required to store these units. Marketing by private banks who predominantly store autologous cord blood units has created public confusion. There are very few current validated indications for autologous storage but some new indications might appear in the future. Little effort is devoted to provide unbiased information and to educate the public as to the distinction between the different types of banking, economic models and standards involved in such programs. In order to provide a better service for families in need, directed-family cord blood banking activities should be encouraged and closely monitored with common standards, and better information on current and future indications should be made available.

  17. Milestones in umbilical cord blood transplantation.

    PubMed

    Gluckman, Eliane; Ruggeri, Annalisa; Volt, Fernanda; Cunha, Renato; Boudjedir, Karim; Rocha, Vanderson

    2011-08-01

    Much has been learned about umbilical cord blood (UCB) since the first human cord blood transplant was performed back in 1988. Cord blood banks have been established worldwide for the collection, cryopreservation and distribution of UCB for allogeneic haematopoietic stem cell transplantation. UCB has now become one of the most commonly used sources of haematopoietic stem cells for allogeneic transplantation. Today, a global network of cord blood banks and transplant centres has been established with a large common inventory, allowing for more than 20000 transplants worldwide in children and adults with severe haematological diseases. Several studies have been published on UCB transplant, assessing risk factors such as cell dose and human leucocyte antigen mismatch. New strategies are ongoing to facilitate engraftment and reduce transplant-related mortality and include the use of reduced-intensity conditioning regimen, intra-bone injection of cord blood cells, double cord blood transplants or ex vivo expansion of cord blood cells. The absence of ethical concern and the unlimited supply of cells explain the increasing interest of using UCB for developing regenerative medicine.

  18. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients

    PubMed Central

    Delaney, Colleen; Ratajczak, Mariusz Z; Laughlin, Mary J

    2010-01-01

    Umbilical cord blood (UCB) has been used successfully as a source of hematopoietic stem cells (HSCs) for allogeneic transplantation in children and adults in the treatment of hematologic diseases. However, compared with marrow or mobilized peripheral blood stem cell grafts from adult donors, significant delays in the rates and kinetics of neutrophil and platelet engraftment are noted after UCB transplant. These differences relate in part to the reduced numbers of HSCs in UCB grafts. To improve the rates and kinetics of engraftment of UCB HSC, several strategies have been proposed, including ex vivo expansion of UCB HSCs, addition of third-party mesenchymal cells, intrabone delivery of HSCs, modulation of CD26 expression, and infusion of two UCB grafts. This article will focus on ex vivo expansion of UCB HSCs and strategies to enhance UCB homing as potential solutions to overcome the problem of low stem cell numbers in a UCB graft. PMID:20835351

  19. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine.

    PubMed

    Jaing, Tang-Her

    2014-01-01

    It is conservatively estimated that one in three individuals in the US might benefit from regenerative medicine therapy. However, the relation of embryonic stem cells (ESCs) to human blastocysts always stirs ethical, political, moral, and emotional debate over their use in research. Thus, for the reasonably foreseeable future, the march of regenerative medicine to the clinic will depend upon the development of non-ESC therapies. Current sources of non-ESCs easily available in large numbers can be found in the bone marrow, adipose tissue, and umbilical cord blood (UCB). UCB provides an immune-compatible source of stem cells for regenerative medicine. Owing to inconsistent results, it is certainly an important and clinically relevant question whether UCB will prove to be therapeutically effective. This review will show that UCB contains multiple populations of multipotent stem cells, capable of giving rise to hematopoietic, epithelial, endothelial, and neural tissues both in vitro and in vivo. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to influence or compromise the recipient immune system.

  20. Optimising cryopreservation protocols for haematopoietic progenitor cells: a methodological approach for umbilical cord blood.

    PubMed

    Hunt, Charles J; Pegg, David E; Armitage, Susan E

    2006-01-01

    Current cryopreservation protocols for haematopoietic cells have developed largely empirically and there is no consensus on an optimal method of preservation. These protocols, though providing sufficient cells to permit engraftment, can lead to cell loss of the order of 50 percent. In the context of umbilical cord blood such losses are unacceptable. Whilst an empirical approach can provide an acceptable level of recovery, the cryopreservation process can only be optimised by adopting a methodological approach. This paper provides an overview of just such an approach as illustrated by a study on CD34 cells from umbilical cord blood. It involves firstly the determination of membrane permeability parameters that can then be used to model safe addition and elution protocols for the chosen cryoprotectant, in this case dimethyl sulphoxide. This in turn permits cryoprotectant toxicity to be evaluated free from the confounding effect of osmotic damage caused by inappropriate addition and elution protocols. Finally, non-toxic concentrations of cryoprotectant may be investigated in a cooling rate study to provide an optimal cryopreservation protocol. Using the model, the effect on CD34 cells of current addition and elution protocols was also examined.

  1. Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry.

    PubMed

    Demange, Elise; Kassim, Yusra; Petit, Cyrille; Buquet, Catherine; Dulong, Virginie; Cerf, Didier Le; Buchonnet, Gérard; Vannier, Jean-Pierre

    2013-11-01

    Haematopoietic stem cells (HSCs) and haematopoietic progenitor cells (HPCs) grow in a specified niche in close association with the microenvironment, the so-called 'haematopoietic niche'. Scaffolds have been introduced to overcome the liquid culture limitations, mimicking the presence of the extracellular matrix (ECM). In the present study the hyaluronic acid scaffold, already developed in the laboratory, has been used for the first time to maintain long-term cultures of CD34⁺ haematopoietic cells obtained from human cord blood. One parameter investigated was the impact on ex vivo survival of CD34⁺ cord blood cells (CBCs) on the hyaluronic acid surface, immobilized with peptides containing the RGD motif. This peptide was conjugated by coating the hyaluronan hydrogel and cultured in serum-free liquid phase complemented with stem cell factor (SCF), a commonly indispensable cytokine for haematopoiesis. Our work demonstrated that these hyaluronan hydrogels were superior to traditional liquid cultures by maintaining and expanding the HPCs without the need for additional cytokines, and a colonization of 280-fold increment in the hydrogel compared with liquid culture after 28 days of ex vivo expansion.

  2. Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation.

    PubMed

    Popat, Uday; Mehta, Rohtesh S; Rezvani, Katayoun; Fox, Patricia; Kondo, Kayo; Marin, David; McNiece, Ian; Oran, Betul; Hosing, Chitra; Olson, Amanda; Parmar, Simrit; Shah, Nina; Andreeff, Michael; Kebriaei, Partow; Kaur, Indreshpal; Yvon, Eric; de Lima, Marcos; Cooper, Laurence J N; Tewari, Priti; Champlin, Richard E; Nieto, Yago; Andersson, Borje S; Alousi, Amin; Jones, Roy B; Qazilbash, Muzaffar H; Bashir, Qaiser; Ciurea, Stefan; Ahmed, Sairah; Anderlini, Paolo; Bosque, Doyle; Bollard, Catherine; Molldrem, Jeffrey J; Chen, Julianne; Rondon, Gabriela; Thomas, Michael; Miller, Leonard; Wolpe, Steve; Simmons, Paul; Robinson, Simon; Zweidler-McKay, Patrick A; Shpall, Elizabeth J

    2015-05-07

    Delayed engraftment is a major limitation of cord blood transplantation (CBT), due in part to a defect in the cord blood (CB) cells' ability to home to the bone marrow. Because this defect appears related to low levels of fucosylation of cell surface molecules that are responsible for binding to P- and E-selectins constitutively expressed by the marrow microvasculature, and thus for marrow homing, we conducted a first-in-humans clinical trial to correct this deficiency. Patients with high-risk hematologic malignancies received myeloablative therapy followed by transplantation with 2 CB units, one of which was treated ex vivo for 30 minutes with the enzyme fucosyltransferase-VI and guanosine diphosphate fucose to enhance the interaction of CD34(+) stem and early progenitor cells with microvessels. The results of enforced fucosylation for 22 patients enrolled in the trial were then compared with those for 31 historical controls who had undergone double unmanipulated CBT. The median time to neutrophil engraftment was 17 days (range, 12-34 days) compared with 26 days (range, 11-48 days) for controls (P = .0023). Platelet engraftment was also improved: median was 35 days (range, 18-100 days) compared with 45 days (range, 27-120 days) for controls (P = .0520). These findings support ex vivo fucosylation of multipotent CD34(+) CB cells as a clinically feasible means to improve engraftment efficiency in the double CBT setting. The trial is registered to www.clinicaltrials.gov as #NCT01471067.

  3. Umbilical cord blood transplantation: the first 25 years and beyond.

    PubMed

    Ballen, Karen K; Gluckman, Eliane; Broxmeyer, Hal E

    2013-07-25

    Umbilical cord blood is an alternative hematopoietic stem cell source for patients with hematologic diseases who can be cured by allogeneic hematopoietic cell transplantation. Initially, umbilical cord blood transplantation was limited to children, given the low cell dose infused. Both related and unrelated cord blood transplants have been performed with high rates of success for a variety of hematologic disorders and metabolic storage diseases in the pediatric setting. The results for adult umbilical cord blood transplantation have improved, with greater emphasis on cord blood units of sufficient cell dose and human leukocyte antigen match and with the use of double umbilical cord blood units and improved supportive care techniques. Cord blood expansion trials have recently shown improvement in time to engraftment. Umbilical cord blood is being compared with other graft sources in both retrospective and prospective trials. The growth of the field over the last 25 years and the plans for future exploration are discussed.

  4. Hepatitis B Virus Replication in CD34+ Hematopoietic Stem Cells From Umbilical Cord Blood.

    PubMed

    Huang, Yanxin; Yan, Qin; Fan, Rongshan; Song, Shupeng; Ren, Hong; Li, Yongguo; Lan, Yinghua

    2016-05-18

    BACKGROUND Hepatitis B virus (HBV) is a hepatotropic virus that can infect extrahepatic tissue. Whether hematopoietic stem cells (HSCs) can be infected by HBV and serve as a potential virus reservoir is still unknown. In this study, the susceptibility of CD34+ HSCs to HBV was investigated. MATERIAL AND METHODS Cord blood-derived CD34+ HSCs were exposed to HBV in vitro, and immunocytochemistry, transmission electron microscopy, and RT-PCR were used to identify viral-related proteins and specific viral genomic sequences. Then, CD34+ HSCs were challenged by different titers of HBV, and intracellular and supernatant HBV DNA, and hepatitis B surface antigen (HBsAg) levels, were examined. In addition, CD34+ peripheral blood stem cells (PBSCs) from chronic HBV carriers were isolated and cultured, and HBV DNA levels were measured. RESULTS HBV-infected CD34+ cells showed positive signals for HBsAg by DAB staining and TRITC staining, and HBV particles were identified. RT-PCR results showed that the 403 bp PCR products corresponding to the amplified hepatitis B S gene fragment were observed in CD34+ HSCs infected by HBV. In addition, supernatant and intracellular HBV DNA increased with the proliferation of CD34+ HSCs. Similar results were obtained from intracellular HBsAg quantification tests. In addition, HBV DNA levels both in cells and in supernatants of CD34+ PBSCs increased proportionally, and the increments of HBV DNA in the supernatants paralleled those found in cells. CONCLUSIONS HBV can replicate in CD34+ HSCs in cord blood or peripheral blood of chronic HBV carriers.

  5. Impact of umbilical cord blood-derived mesenchymal stem cells on cardiovascular research.

    PubMed

    Roura, Santiago; Pujal, Josep Maria; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2015-01-01

    Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB). In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs) on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit.

  6. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    PubMed Central

    Roura, Santiago; Pujal, Josep Maria; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2015-01-01

    Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB). In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs) on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit. PMID:25861654

  7. Prenatal Maternal Physical Activity and Stem Cells in Umbilical Cord Blood

    PubMed Central

    Onoyama, Sagano; Qiu, Li; Low, Hoi Pang; Chang, Chien-I; Strohsnitter, William C.; Norwitz, Errol R.; Lopresti, Mary; Edmiston, Kathryn; Lee, I-Min; Trichopoulos, Dimitrios; Lagiou, Pagona; Hsieh, Chung-Cheng

    2015-01-01

    Purpose Early life processes, through influence on fetal stem cells, affect postnatal and adult health outcomes. This study examines effects of physical activity before and during pregnancy on stem cell counts in umbilical cord blood. Methods We isolated mononuclear cells from umbilical cord blood samples from 373 singleton full-term pregnancies and quantified hematopoietic (CD34+, CD34+CD38-, CD34+c-kit+), endothelial (CD34+CD133+, CD34+CD133+VEGFR2+, CD34+VEGFR2+, and CD133+VEGFR2+), and putative breast (EpCAM+, EpCAM+CD49f+, EpCAM+CD49f+CD117+, CD49f+CD24+, CD24+CD29+, and CD24+CD29+CD49f+) stem/progenitor cell subpopulations by flow cytometry. Information on physical activities before and during pregnancy was obtained from questionnaire. Weekly energy expenditure was estimated based on the metabolic equivalent task (MET) values. Results Pre-pregnancy vigorous exercise was associated positively with levels of the endothelial CD34+CD133+, CD34+CD133+VEGFR2+, CD34+VEGFR2+, and CD133+VEGFR2+ progenitor cell populations (p=0.02, 0.01, 0.001, and 0.003, respectively); the positive associations were observed in samples from the first births and those from the second or later births. Pre-pregnancy moderate and light exercise and light exercise during the first trimester were not significantly associated with any stem/progenitor cell population. Light exercise during the second trimester was positively associated with CD34+VEGFR2+ endothelial progenitor cells (p=0.03). In addition, levels of the EpCAM+CD49f+ and CD49f+CD24+ breast stem cells were significantly lower among pregnant women who engaged in vigorous or moderate exercise during pregnancy (p=0.05 and 0.02, respectively). Conclusion Vigorous exercise before pregnancy increases endothelial progenitor cell numbers in umbilical cord blood and thus could potentially enhance the endothelial function and improve cardiovascular fitness in the offspring. Findings of a lower level of putative breast stem cell sub

  8. Cord blood stem cells: how to get them and what to do with them.

    PubMed

    Dracker, R A

    1996-04-01

    This article reviews the means of obtaining cells from the available reservoirs of cord blood, intended as sources of immature hematopoietic stem cells that ultimately could be useful for transplantation, gene therapy, and research. Various issues must be considered when collecting umbilical cord blood regardless of the method employed. One must regard the basic fetal-placental physiology and hemodynamic characteristics prior to and at the time of procurement. Additional concerns exist with the mother, not only at the time of collection but also prenatally, including informed consent, health history, and psychosocial issues. Collection methods may be characterized as either ex utero or in utero, employing either open or closed collections methods. Each of these variables presents limitations and offers specific advantages over the others. Once collected, the cells must be appropriately tested, processed, and prepared for cryopreservation if not used immediately, using good manufacturing practices and acceptable standards of operation. An ideal collection method has yet to be defined that fulfills the need for reliability, reproducibility, and ease of use.

  9. Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS

    PubMed Central

    Garbuzova-Davis, Svitlana; Rodrigues, Maria C. O.; Mirtyl, Santhia; Turner, Shanna; Mitha, Shazia; Sodhi, Jasmine; Suthakaran, Subatha; Eve, David J.; Sanberg, Cyndy D.; Kuzmin-Nichols, Nicole; Sanberg, Paul R.

    2012-01-01

    Background A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25×106 cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. Methodology/Principal Findings Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 106 or 2.5×106 cells from 13 weeks of age. A third, pre-symptomatic, group received 106 cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 106 cells pre-symptomatically or 2.5×106 cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. Conclusions/Significance These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies. PMID:22319620

  10. Maternal Body-Mass Index and Cord Blood Circulating Endothelial Colony-Forming Cells

    PubMed Central

    Lin, Ruei-Zeng; Miranda, Maria L.; Vallejo-Vaz, Antonio J.; Stiefel, Pablo; Praena-Fernández, Juan M.; Bernal-Bermejo, Jose; Jimenez-Jimenez, Luis M.; Villar, Jose; Melero-Martin, Juan M.

    2013-01-01

    Objective Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that are particularly abundant in umbilical cord blood. We sought to determine whether ECFC abundance in cord blood is associated with maternal body-mass index (BMI) in non-pathological pregnancies. Study design We measured the level of ECFCs in the cord blood of neonates (n=27) born from non-obese healthy mothers with non-pathological pregnancies and examined whether ECFC abundance correlated with maternal BMI. We also examined the effect of maternal BMI on ECFC phenotype and function using angiogenic and vasculogenic assays. Results We observed variation in ECFC abundance among subjects and found a positive correlation between pre-pregnancy maternal BMI and ECFC content (r=0.51, P=0.007), which was independent of other obstetric factors. Despite this variation, ECFC phenotype and functionality were deemed normal and highly similar between subjects with maternal BMI <25 kg/m2 and BMI between 25–30 kg/m2, including the ability to form vascular networks in vivo. Conclusions This study underlines the need to consider maternal BMI as a potential confounding factor for cord blood levels of ECFCs in future comparative studies between healthy and pathological pregnancies. Endothelial colony-forming cells (ECFCs) are a subset of progenitor cells that circulate in peripheral blood and can give rise to endothelial cells (1,2), contributing to the formation of new vasculature and the maintenance of vascular integrity (3–5). The mechanisms that regulate the abundance of these cells in vivo remain poorly understood. ECFCs are rare in adult peripheral blood (1,2,10). In contrast, there is an elevated number of these cells in fetal blood during the third trimester of pregnancy (11–13). Emerging evidence indicates that deleterious conditions during fetal life can impair ECFC content and function. For instance, offspring of diabetic mothers have been shown to have

  11. Assessment of Neuroprotective Properties of Melissa officinalis in Combination With Human Umbilical Cord Blood Stem Cells After Spinal Cord Injury

    PubMed Central

    Hosseini, Seyed Ruhollah; Joghataei, Mohammad Taghi; Hooshmandi, Mehdi; Sadraie, Seyed Homayoon; Yaghoobi, Kayvan; Mohammadi, Alireza

    2016-01-01

    Introduction The pathophysiology of spinal cord injury (SCI) has a classically bad prognosis. It has been demonstrated that human umbilical cord blood stem cells (hUCBSCs) and Melissa officinalis (MO) are useful for the prevention of neurological disease. Methods Thirty-six adult male rats were randomly divided into intact, sham, control (SCI), MO, hUCBSC, and MO-hUCBSC groups. Intraperitoneal injection of MO (150 mg/kg) was commenced 24 hr post-SCI and continued once a day for 14 days. Intraspinal grafting of hUCBSCs was commenced immediately in the next day. The motor and sensory functions of all animals were evaluated once a week after the commencement of SCI. Electromyography (EMG) was performed in the last day in order to measure the recruitment index. Immunohistochemistry, reverse transcription-polymerase chain reaction, and transmission electron microscopy evaluations were performed to determine the level of astrogliosis and myelination. Results The results revealed that motor function (MO-hUCBSC: 15 ± 0.3, SCI: 8.2 ± 0.37, p < .001), sensory function (MO-hUCBSC: 3.57 ± 0.19, SCI: 6.38 ± 0.23, p < .001), and EMG recruitment index (MO-hUCBSC: 3.71 ± 0.18, SCI: 1.6 ± 0.1, p < .001) were significantly improved in the MO-hUCBSC group compared with SCI group. Mean cavity area (MO-hUCBSC: 0.03 ± 0.03, SCI: 0.07 ± 0.004, p < .001) was reduced and loss of lower motor neurons (MO-hUCBSC: 7.6 ± 0.43, SCI: 3 ± 0.12, p < .001) and astrogliosis density (MO-hUCBSC: 3.1 ± 0.15, SCI: 6.25 ± 1.42, p < 0.001) in the ventral horn of spinal cord were prevented in MO-hUCBSC group compared with SCI group. Conclusion The results revealed that the combination of MO and hUCBSCs in comparison with the control group has neuroprotective effects in SCI. PMID:27815336

  12. Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells.

    PubMed

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    Optimal conditions for culturing of multipotent mesenchymal stromal cells in the presence of pooled umbilical cord blood serum were determined. It was found that umbilical cord blood serum in a concentration range of 1-10% effectively supported high viability and proliferative activity of cells with unaltered phenotype and preserved multilineage differentiation capacity. The proposed approach allows avoiding the use of xenogenic animal sera for culturing of multipotent mesenchymal stromal cells and creates prerequisites for designing and manufacturing safe cellular and/or acellular products for medical purposes.

  13. Validation of a DNA methylation reference panel for the estimation of nucleated cells types in cord blood.

    PubMed

    Cardenas, Andres; Allard, Catherine; Doyon, Myriam; Houseman, E Andres; Bakulski, Kelly M; Perron, Patrice; Bouchard, Luigi; Hivert, Marie-France

    2016-11-01

    Cord blood is widely used as surrogate tissue in epigenome-wide association studies of prenatal conditions. Cell type composition variation across samples can be an important confounder of epigenome-wide association studies in blood that constitute a mixture of cells. We evaluated a newly developed cord blood reference panel to impute cell type composition from DNA methylation levels, including nucleated red blood cells (nRBCs). We estimated cell type composition from 154 unique cord blood samples with available DNA methylation data as well as direct measurements of nucleated cell types. We observed high correlations between the estimated and measured composition for nRBCs (r = 0.92, R(2) = 0.85), lymphocytes (r = 0.77, R(2) = 0.58), and granulocytes (r = 0.72, R(2) = 0.52), and a moderate correlation for monocytes (r = 0.51, R(2) = 0.25) as well as relatively low root mean square errors from the residuals ranging from 1.4 to 5.4%. These results validate the use of the cord blood reference panel and highlight its utility and limitations for epidemiological studies.

  14. Validation of a DNA methylation reference panel for the estimation of nucleated cells types in cord blood

    PubMed Central

    Allard, Catherine; Doyon, Myriam; Houseman, E. Andres; Perron, Patrice; Bouchard, Luigi; Hivert, Marie-France

    2016-01-01

    ABSTRACT Cord blood is widely used as surrogate tissue in epigenome-wide association studies of prenatal conditions. Cell type composition variation across samples can be an important confounder of epigenome-wide association studies in blood that constitute a mixture of cells. We evaluated a newly developed cord blood reference panel to impute cell type composition from DNA methylation levels, including nucleated red blood cells (nRBCs). We estimated cell type composition from 154 unique cord blood samples with available DNA methylation data as well as direct measurements of nucleated cell types. We observed high correlations between the estimated and measured composition for nRBCs (r = 0.92, R2 = 0.85), lymphocytes (r = 0.77, R2 = 0.58), and granulocytes (r = 0.72, R2 = 0.52), and a moderate correlation for monocytes (r = 0.51, R2 = 0.25) as well as relatively low root mean square errors from the residuals ranging from 1.4 to 5.4%. These results validate the use of the cord blood reference panel and highlight its utility and limitations for epidemiological studies. PMID:27668573

  15. Putative Epimutagens in Maternal Peripheral and Cord Blood Samples Identified Using Human Induced Pluripotent Stem Cells

    PubMed Central

    Arai, Yoshikazu; Hayakawa, Koji; Arai, Daisuke; Ito, Rie; Iwasaki, Yusuke; Saito, Koichi; Akutsu, Kazuhiko; Takatori, Satoshi; Ishii, Rie; Hayashi, Rumiko; Izumi, Shun-Ichiro; Sugino, Norihiro; Kondo, Fumio; Horie, Masakazu; Nakazawa, Hiroyuki; Makino, Tsunehisa; Hirosawa, Mitsuko; Shiota, Kunio; Ohgane, Jun

    2015-01-01

    The regulation of transcription and genome stability by epigenetic systems are crucial for the proper development of mammalian embryos. Chemicals that disturb epigenetic systems are termed epimutagens. We previously performed chemical screening that focused on heterochromatin formation and DNA methylation status in mouse embryonic stem cells and identified five epimutagens: diethyl phosphate (DEP), mercury (Hg), cotinine, selenium (Se), and octachlorodipropyl ether (S-421). Here, we used human induced pluripotent stem cells (hiPSCs) to confirm the effects of 20 chemicals, including the five epimutagens, detected at low concentrations in maternal peripheral and cord blood samples. Of note, these individual chemicals did not exhibit epimutagenic activity in hiPSCs. However, because the fetal environment contains various chemicals, we evaluated the effects of combined exposure to chemicals (DEP, Hg, cotinine, Se, and S-421) on hiPSCs. The combined exposure caused a decrease in the number of heterochromatin signals and aberrant DNA methylation status at multiple gene loci in hiPSCs. The combined exposure also affected embryoid body formation and neural differentiation from hiPSCs. Therefore, DEP, Hg, cotinine, Se, and S-421 were defined as an “epimutagen combination” that is effective at low concentrations as detected in maternal peripheral and cord blood. PMID:26339649

  16. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure.

  17. Dynamic adhesion of umbilical cord blood endothelial progenitor cells under laminar shear stress.

    PubMed

    Angelos, Mathew G; Brown, Melissa A; Satterwhite, Lisa L; Levering, Vrad W; Shaked, Natan T; Truskey, George A

    2010-12-01

    Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α(5)β(1) integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α(5)β(1) with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress.

  18. Regulation and direction of umbilical cord blood mesenchymal stem cells to adopt neuronal fate.

    PubMed

    Wang, Lei; Lu, Ming

    2014-03-01

    Umbilical cord blood mesenchymal stem cells (UCB-MSCs) transplantation is becoming a promising and attractive cell-based treatment modality for repairing the damaged central nervous system due to its advantages of low immunogenicity, wide range of sources, and less ethical controversy. One of the limitations of this approach is that the proportion of neurons differentiated from UCB-MSCs still remains at low level. Thus, to induce UCB-MSCs to differentiate into neuron-like cells with a higher proportion is one of the key technologies of regenerative medicine and tissue engineering. Many induction protocols with remarkably higher differentiation rate to neurons have been reported. However, each protocol has its pros and cons and whether the neurons differentiated from UCB-MSCs under a certain protocol has normal nerve function remains controversial. Therefore, to guarantee the success of future clinical applications of UCB-MSCs, more investigations should be performed to improve the induction method and differentiation efficiency.

  19. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    SciTech Connect

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook; Kim, Sun Kyung; Jang, In Keun; Eom, Young-woo; Park, Joon Seong; Kim, Hugh C.; Song, Kye Yong; Park, Soon Cheol; Lim, Hwan Sub; Kim, Young Jin . E-mail: jin@lifecord.co.kr

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.

  20. Freeze-Drying of Mononuclear Cells Derived from Umbilical Cord Blood Followed by Colony Formation

    PubMed Central

    Natan, Dity; Nagler, Arnon; Arav, Amir

    2009-01-01

    Background We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. Methodology/Principal Findings We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs) derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34+-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%–91%. The total number of CD34+-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4×104±4.7, 3.49×104±6 and 6.31×104±12.27 cells, respectively, and 31±25.15, 47±45.8 and 23.44±13.3 colonies, respectively). Conclusions This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells. PMID:19381290

  1. Phenotypic and functional characteristics of active suppressor cells against IFN-gamma production in PHA-stimulated cord blood lymphocytes

    SciTech Connect

    Seki, H.; Taga, K.; Matsuda, A.; Uwadana, N.; Hasui, M.; Miyawaki, T.; Taniguchi, N.

    1986-11-15

    Cord blood mononuclear cells (MNC) were defective in their ability to produce interferon-gamma (IFN-gamma) on stimulation with phytohemagglutinin (PHA) or recombinant interleukin 2, whereas cord MNC could induce comparable amounts of IFN-gamma with adult controls on stimulation with a streptococcal preparation, OK-432. Moreover, irradiation of cord MNC with 1500 rad before PHA stimulation could restore the IFN-gamma production. Kinetic studies indicated that such augmentation of IFN-gamma production by irradiation was evident when cord MNC were irradiated before or by 12 hr of PHA-stimulated culture. But irradiation after 18 hr or more of PHA stimulation did not exert any significant augmentation on IFN-gamma production by cord MNC. It seemed most likely that the ability of IFN-gamma production is already mature at birth, but radiosensitive suppressor effectors on IFN-gamma production are activated within cord MNC at an early stage of PHA stimulation, resulting in poor IFN-gamma production by cord MNC. PHA-induced IFN-gamma production by OKT3+, OKT4+, and OKT8- cord cells were markedly enhanced by irradiation with 1,500 rad before the culture. Coculture experiments disclosed that cord OKT4+ cells, but not OKT4- cells, when prestimulated with PHA for 24 hr, exerted active suppression on PHA-induced IFN-gamma production by adult MNC in a dose-dependent manner. These results suggested that radiosensitive suppressor effectors on IFN-gamma production were induced within the OKT4+ T cell subset of cord MNC on PHA stimulation.

  2. Towards responsible cord blood banking models.

    PubMed

    Rebulla, P; Lecchi, L

    2011-04-01

    On 31 May 2010, 14 072 567 bone marrow/apheresis donors registered in 44 countries and 426 501 cord blood units banked in 26 countries for public use were available to treat candidates to haemopoietic stem cell transplant lacking a family related compatible donor. Despite these impressive numbers, additional efforts are required to ensure that all patients, including those from ethnic minorities, can promptly find a suitable donor. Governments, clinicians, scientists, patients and stakeholders should share the responsibility to develop haemopoietic stem cell donation and cord blood banking models able to fully match all patient needs. In this regard, current scientific evidence and prevalent opinions among expert clinicians support solidaristic cord blood donation for public use against the alternative option of commercial autologous cord blood storage.

  3. Umbilical cord blood stem cells as targets for genetic modification: new therapeutic approaches to somatic gene therapy.

    PubMed

    Williams, D A; Moritz, T

    1994-01-01

    Human umbilical cord blood is an abundant source of long term repopulating stem cells and therefore we investigated the utilization of these cells as targets for genetic manipulation directed towards human gene therapy. Using two different retroviral vectors, one which transfers the neomycin resistance gene and the other which transfers therapeutically relevant adenosine deaminase gene, we have demonstrated increased gene transfer efficiency into committed progenitor cells (CPCs) and long term culture-initiating cells (LTC-IC) derived from cord blood versus adult bone marrow. We further identified a chymotryptic fragment of the extracellular matrix molecule fibronectin (FN 30/35), to which primitive hematopoietic cells adhere. Gene transfer efficiency into hematopoietic cells adherent to FN 30/35 is significantly increased when compared to infection on bovine serum albumin-coated control plates. Utilization of this fragment allowed retroviral mediated gene transfer into cord blood derived CPCs and LTC-ICs with high efficiencies, similar to that observed after coculture of hematopoietic cells on virus producer cells. These data imply cord blood may be a promising source for efficient gene delivery to the human hematopoietic system, and the utilization of the FN 30/35 fibronectin molecule may provide a clinically applicable protocol to achieve this aim.

  4. Direct intracardiac injection of umbilical cord-derived stromal cells and umbilical cord blood-derived endothelial cells for the treatment of ischemic cardiomyopathy

    PubMed Central

    Capriglione, Luiz Guilherme A; Barchiki, Fabiane; Miyague, Lye; Jackowski, Danielle; Fracaro, Letícia; Schittini, Andressa V; Senegaglia, Alexandra C; Rebelatto, Carmen LK; Olandoski, Márcia; Correa, Alejandro; Brofman, Paulo RS

    2015-01-01

    The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC. PMID:25576340

  5. Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats

    PubMed Central

    Nakanishi, Keiko; Sato, Yoshiaki; Mizutani, Yuka; Ito, Miharu; Hirakawa, Akihiro; Higashi, Yujiro

    2017-01-01

    Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic–ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells. PMID:28281676

  6. TRGV and TRDV repertoire distribution and clonality of T cells from umbilical cord blood.

    PubMed

    Li, Yangqiu; Chen, Shaohua; Yang, Lijian; Li, Bo; Chan, John Yeuk-Hon; Cai, Dongqing

    2009-01-01

    Umbilical cord blood (CB) has been used as a valuable source of hematopoietic stem cells for allogeneic transplantation, specific CTL response and immunotherapy for decades. We previously analyzed the distribution and clonality of T-cell receptor alpha and beta variable region (TRAV) and (TRBV) of the subfamily T cell receptors in T cells from umbilical cord blood. Recent data indicated that gammadelta(+) T cells may play an important role in mediating the graft versus leukemia effect after stem cells transplantation and in anti-cancer response. In order to further characterize the repertoire of CB T-cells, the frequency of alphabeta(+) and gammadelta(+) T cells were examined in CB by FACS. The CDR3 size of 4 TRGV and 8 TRDV subfamily genes were analyzed in mononuclear cells (MCs) from 16 CB samples, using RT-PCR and genescan technique. To determine the expression level of TRGV subfamily genes, we performed quantitative analysis of TRGVI-III subfamilies by real-time PCR. Low percentage of CD3(+)TCRgammadelta(+) cells was observed in CB. The frequency of expression in TRGVI, TRGVII and TRGVIII in CBMCs was 93.75%, 81.25% and 56.25%, respectively. The mean value of the number of expressed TRDV subfamilies in CBMCs is higher than that from adult peripheral blood (PB) group. The frequently expressed members in CB were TRDV1 (100%), TRDV2 (93.75%), TRDV8 (93.75%) and TRDV3 (81.25%), respectively. The frequencies of TRDV5 and TRDV8 in CBMCs were significantly higher than those from PBMCs. Most of the PCR products of TRGV and TRDV subfamilies from 10 CB samples displayed polyclonal rearrangement pattern, whereas one or two PCR products from 6 CB samples showed oligoclonality or biclonality. In contrast, PCR products from 9 of 10 adult healthy controls contained at least an oligoclonal peak in different TRGV or TRDV subfamilies respectively. The pattern of TRGV subfamily expression level in CBMCs was TRGVI>TRGVIII>TRGVII, and in contrast, TRGVII>TRGVI>TRGVIII was found in

  7. Development of stem cells from umbilical cord blood and blood banking: "non-controversial" and "free of political and ethical debate"?

    PubMed

    Skene, Loane

    2012-03-01

    Opponents of human embryo research have understandably welcomed pluripotent stem cells being derived from body cells including cells from umbilical cords after childbirth. The cord would otherwise be discarded and embryos are not destroyed. However, there are other ethical, legal and political issues in cord blood collection, whether for the child's future use, or a public blood bank. Information and consent procedures may be misleading. Some parents have false hopes about potential outcomes. The right of access to stored blood and other benefits is sometimes uncertain for children and their families. Private stem cell repositories may compete with public ones. People may want to impose conditions on donation. Quality control may be an issue.

  8. A cord blood monocyte–derived cell therapy product accelerates brain remyelination

    PubMed Central

    Buntz, Susan; Scotland, Paula; Xu, Li; Noeldner, Pamela; Patel, Sachit; Wollish, Amy; Gunaratne, Aruni; Gentry, Tracy; Matsushima, Glenn K.; Kurtzberg, Joanne; Balber, Andrew E.

    2016-01-01

    Microglia and monocytes play important roles in regulating brain remyelination. We developed DUOC-01, a cell therapy product intended for treatment of demyelinating diseases, from banked human umbilical cord blood (CB) mononuclear cells. Immunodepletion and selection studies demonstrated that DUOC-01 cells are derived from CB CD14+ monocytes. We compared the ability of freshly isolated CB CD14+ monocytes and DUOC-01 cells to accelerate remyelination of the brains of NOD/SCID/IL2Rγnull mice following cuprizone feeding–mediated demyelination. The corpus callosum of mice intracranially injected with DUOC-01 showed enhanced myelination, a higher proportion of fully myelinated axons, decreased gliosis and cellular infiltration, and more proliferating oligodendrocyte lineage cells than those of mice receiving excipient. Uncultured CB CD14+ monocytes also accelerated remyelination, but to a significantly lesser extent than DUOC-01 cells. Microarray analysis, quantitative PCR studies, Western blotting, and flow cytometry demonstrated that expression of factors that promote remyelination including PDGF-AA, stem cell factor, IGF1, MMP9, MMP12, and triggering receptor expressed on myeloid cells 2 were upregulated in DUOC-01 compared to CB CD14+ monocytes. Collectively, our results show that DUOC-01 accelerates brain remyelination by multiple mechanisms and could be beneficial in treating demyelinating conditions. PMID:27699230

  9. Background and future considerations for human cord blood hematopoietic cell transplantation, including economic concerns.

    PubMed

    Broxmeyer, Hal E; Farag, Sherif

    2013-12-01

    Cord blood (CB) has been used since 1988 as a source of hematopoietic stem cells (HSCs) and progenitor cells for hematopoietic cell transplantation (HCT) to treat patients with malignant and nonmalignant disorders. CB has both advantages and disadvantages when compared with other tissue sources of HSCs such as bone marrow and mobilized peripheral blood, which are also being used in the setting of HCT. This short review focuses on some historical information, as well as current efforts that are being assessed to enhance the efficacy of CB HCT. Also of importance are the costs of CB, and the feasibility and economics of using such to be identified, and newly confirmed improvements worldwide for the greatest number of patients. In this context, simple methods that would not necessarily entail the need for selected cell-processing facilities to ex vivo expand or improve the CB graft's functional activity may be of interest, with one such possibility being the use of an orally active inhibitor of the enzyme dipeptidylpeptidase 4, alone or in combination with other new and innovative approaches for improving HSC engraftment and in vivo repopulating capability of CB.

  10. Human cord blood T-cell receptor alpha beta cell responses to protein antigens of Paracoccidioides brasiliensis yeast forms.

    PubMed Central

    Munk, M E; Kaufmann, S H

    1995-01-01

    Paracoccidioides brasiliensis causes a chronic granulomatous mycosis, prevalent in South America, and cell-mediated immunity represents the principal mode of protection against this fungal infection. We investigated the response of naive cord blood T cells to P. brasiliensis lysates. Our results show: (1) P. brasiliensis stimulates T-cell expansion, interleukin-2 (IL-2) production and differentiation into cytotoxic T cells; (2) T-cell stimulation depends on P. brasiliensis processing and major histocompatibility complex (MHC) class II expression; (3) the responsive T-cell population expresses alpha beta T-cell receptors (TCR) with different V beta gene products, CD4 and CD45RO; (4) the P. brasiliensis components involved in T-cell expansion primarily reside in a high molecular weight (100,000 MW) and a low molecular weight (< 1000 MW) protein fraction. These results indicate that protein antigens of P. brasiliensis stimulate cord blood CD4 alpha beta T cells, independent from in vivo presensitization, and thus question direct correlation of positive in vitro responses with protective immunity in vivo. PMID:7890308

  11. Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells.

    PubMed

    Ponce-Regalado, María Dolores; Ortuño-Sahagún, Daniel; Zarate, Carlos Beas; Gudiño-Cabrera, Graciela

    2012-06-01

    Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.

  12. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    PubMed Central

    Zhang, Zhong-jun; Li, Ya-jun; Liu, Xiao-guang; Huang, Feng-xiao; Liu, Tie-jun; Jiang, Dong-mei; Lv, Xue-man; Luo, Min

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. PMID:26330839

  13. Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Chiu, Brian; Z-M Wan, Jim; Abley, Doris; Akabutu, John

    2005-05-01

    Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity ( μg) may modulate the proliferation and differentiation. We investigated the application of μg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated μg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow-cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated μg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.

  14. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.

    PubMed

    Li, Xingfu; Duan, Li; Liang, Yujie; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2016-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  15. Umbilical cord blood transplantation for children with thalassemia and sickle cell disease.

    PubMed

    Ruggeri, Annalisa; Eapen, Mary; Scaravadou, Andromachi; Cairo, Mitchell S; Bhatia, Monica; Kurtzberg, Joanne; Wingard, John R; Fasth, Anders; Lo Nigro, Luca; Ayas, Mouhab; Purtill, Duncan; Boudjedir, Karim; Chaves, Wagnara; Walters, Mark C; Wagner, John; Gluckman, Eliane; Rocha, Vanderson

    2011-09-01

    We examined the efficacy of unrelated cord blood (CB) transplantation in children with thalassemia (n = 35) and sickle cell disease (n = 16), using data reported to 3 registries. Donor-recipient pairs were matched at HLA-A and -B (antigen level) and DRB1 (allele level) in 7 or HLA mismatched at 1 (n = 18), 2 (n = 25), or 3 loci (n = 1). Transplant conditioning was myeloablative (n = 39) or reduced intensity (n = 12). Neutrophil recovery with donor chimerism was documented in 24 patients; 11 patients developed grade II-IV acute graft-versus-host disease (aGVHD) and 10 patients, chronic GVHD (cGVHD). Overall survival (OS) and disease-free survival (DFS) were 62% and 21% for thalassemia and 94% and 50% for sickle cell disease (SCD), respectively. In multivariate analysis, engraftment rate (hazard ratio [HR] 2.2, P = .05) and DFS (HR 0.4, P = .01) were higher with cell dose >5 × 10(7)/kg. The 2-year probability of DFS was 45% in patients who received grafts with cell dose >5 × 10(7)/kg and 13% with lower cell dose. Primary graft failure was the predominant cause of treatment failure occurring in 20 patients with thalassemia and 7 patients with SCD. Primary graft failure was fatal in 5 patients with thalassemia. These results suggest that only CB units containing an expected infused cell dose >5 × 10(7)/kg should be considered for transplantation for hemoglobinopathy.

  16. Transplantation of human umbilical cord blood cells benefits an animal model of Sanfilippo syndrome type B.

    PubMed

    Garbuzova-Davis, Svitlana; Willing, Alison E; Desjarlais, Tammy; Davis Sanberg, Cyndy; Sanberg, Paul R

    2005-08-01

    Sanfilippo syndrome type B is caused by alpha-N-acetylglucosaminidase (Naglu) enzyme deficiency leading to an accumulation of undegraded heparan sulfate, a glycosaminoglycan (GAG). Cell therapy is a promising new treatment and human umbilical cord blood (hUCB) cell transplantation may be preferred for delivery of the missing enzyme. We investigated the ability of mononuclear hUCB cells administered into the lateral cerebral ventricle to ameliorate/prevent histopathological changes in mice modeling Sanfilippo syndrome type B. These are the first results supporting enzyme replacement by administered hUCB cells. In vivo, transplanted hUCB cells survived long-term (7 months), migrated into the parenchyma of the brain and peripheral organs, expressed neural antigens, and exhibited neuron and astrocyte-like morphology. Transplant benefits were also demonstrated by stable cytoarchitecture in the hippocampus and cerebellum, and by reduced GAGs in the livers of treated mutant mice. A hUCB cell transplant may be an effective therapeutic strategy for enzyme delivery in Sanfilippo syndrome type B.

  17. Estimation of the haematological toxicity of minor groove alkylators using tests on human cord blood cells.

    PubMed Central

    Ghielmini, M.; Bosshard, G.; Capolongo, L.; Geroni, M. C.; Pesenti, E.; Torri, V.; D'Incalci, M.; Cavalli, F.; Sessa, C.

    1997-01-01

    We evaluated the myelotoxicity and the anti-tumor potential of tallimustine, three of its analogues and carzelesin, with melphalan as reference substance. Tallimustine was tested by clonogenic assays on both human bone marrow (BM) and cord blood (hCB) cells, the other compounds on hCB only. The degree of inhibition of the haemopoietic progenitors GM-CFC, CFC-E and BFU-E was evaluated after exposure to different concentrations. The same schedules were tested on five tumour cell lines. We found that the dose-response curves for tallimustine on BM and hCB cells were similar. Carzelesin was shown to be the most potent of the substances tested and to be the one with the best in vitro therapeutic index; of the distamycin analogues, the one bearing an alpha-bromoacrylic group (FCE 25450) had the best index. For melphalan, tallimustine and carzelesin, the concentration inhibiting the growth of 70% of progenitor cells in vitro (ID70) was similar to the concentrations found in the serum of patients treated at the maximum tolerated dose (MTD). We conclude that hCB cells may be used instead of BM cells for in vitro myelotoxicity tests. Therapeutic indexes can be extrapolated from this model and could help in selecting the most promising analogue for further clinical development. The in vitro-active concentrations are similar to myelotoxic concentrations in patients, suggesting a predictive value for the assay. PMID:9062410

  18. Umbilical cord blood-derived mesenchymal stem cells: new therapeutic weapons for idiopathic dilated cardiomyopathy?

    PubMed

    Roura, Santiago; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2014-12-20

    Dilated cardiomyopathy is the most frequent etiology of non-ischemic heart failure. In a majority of cases the causal mechanism is unknown, giving rise to the term 'idiopathic' dilated cardiomyopathy (IDCM). Major pathological derangements include patchy interstitial fibrosis, degenerated cardiomyocytes, and dilatation of the cardiac chambers, but recent evidence suggests that disease progression may also have the signature of cardiac endothelial dysfunction. As we better understand the molecular basis of IDCM, novel therapeutic approaches, mainly gene transfer and cell-based therapies, are being explored. Cells with regenerative potential have been extensively tested in cardiac diseases of ischemic origin in both pre-clinical and clinical settings. However, whether cell therapy has any clinical value in IDCM patients is still being evaluated. This article is a concise summary of cell therapy studies for IDCM, with a focus on recent advances that highlight the vascular potential exhibited by umbilical cord blood-derived mesenchymal stem cells (UCBMSCs). We also provide an overview of cardiac vasculature as a key regulator of subjacent myocardial integrity and function, and discuss the potential mechanisms of UCBMSC amelioration of IDCM myocardium. Consideration of these issues shows that these cells are conceivably new therapeutic agents for this complex and elusive human disorder.

  19. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc

    PubMed Central

    Giorgetti, Alessandra; Marchetto, Maria C. N.; Yu, Diana; Fazzina, Raffaella; Mu, Yangling; Adamo, Antonio; Paramonov, Ida; Cardoso, Julio Castaño; Monasterio, Montserrat Barragan; Bardy, Cedric; Cassiani-Ingoni, Riccardo; Liu, Guang-Hui; Gage, Fred H.; Izpisua Belmonte, Juan Carlos

    2012-01-01

    The finding that certain somatic cells can be directly converted into cells of other lineages by the delivery of specific sets of transcription factors paves the way to novel therapeutic applications. Here we show that human cord blood (CB) CD133+ cells lose their hematopoietic signature and are converted into CB-induced neuronal-like cells (CB-iNCs) by the ectopic expression of the transcription factor Sox2, a process that is further augmented by the combination of Sox2 and c-Myc. Gene-expression analysis, immunophenotyping, and electrophysiological analysis show that CB-iNCs acquire a distinct neuronal phenotype characterized by the expression of multiple neuronal markers. CB-iNCs show the ability to fire action potentials after in vitro maturation as well as after in vivo transplantation into the mouse hippocampus. This system highlights the potential of CB cells and offers an alternative means to the study of cellular plasticity, possibly in the context of drug screening research and of future cell-replacement therapies. PMID:22814375

  20. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc.

    PubMed

    Giorgetti, Alessandra; Marchetto, Maria C N; Li, Mo; Yu, Diana; Fazzina, Raffaella; Mu, Yangling; Adamo, Antonio; Paramonov, Ida; Cardoso, Julio Castaño; Monasterio, Montserrat Barragan; Bardy, Cedric; Cassiani-Ingoni, Riccardo; Liu, Guang-Hui; Gage, Fred H; Izpisua Belmonte, Juan Carlos

    2012-07-31

    The finding that certain somatic cells can be directly converted into cells of other lineages by the delivery of specific sets of transcription factors paves the way to novel therapeutic applications. Here we show that human cord blood (CB) CD133(+) cells lose their hematopoietic signature and are converted into CB-induced neuronal-like cells (CB-iNCs) by the ectopic expression of the transcription factor Sox2, a process that is further augmented by the combination of Sox2 and c-Myc. Gene-expression analysis, immunophenotyping, and electrophysiological analysis show that CB-iNCs acquire a distinct neuronal phenotype characterized by the expression of multiple neuronal markers. CB-iNCs show the ability to fire action potentials after in vitro maturation as well as after in vivo transplantation into the mouse hippocampus. This system highlights the potential of CB cells and offers an alternative means to the study of cellular plasticity, possibly in the context of drug screening research and of future cell-replacement therapies.

  1. Trophic factor induction of human umbilical cord blood cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Kamath, Siddharth; Newcomb, Jennifer; Hudson, Jennifer; Garbuzova-Davis, Svitlana; Bickford, Paula; Davis-Sanberg, Cyndy; Sanberg, Paul; Zigova, Tanja; Willing, Alison

    2007-06-01

    The mononuclear fraction of human umbilical cord blood (HUCBmnf) is a mixed cell population that multiple research groups have shown contains cells that can express neural proteins. In these studies, we have examined the ability of the HUCBmnf to express neural antigens after in vitro exposure to defined media supplemented with a cocktail of growth and neurotrophic factors. It is our hypothesis that by treating the HUCBmnf with these developmentally-relevant factors, we can expand the population, enhance the expression of neural antigens and increase cell survival upon transplantation. Prior to growth factor treatment in culture, expression of stem cell antigens is greater in the non-adherent HUCBmnf cells compared to the adherent cells (p < 0.05). Furthermore, treatment of the non-adherent cells with growth factors, increases BrdU incorporation, especially after 14 days in vitro (DIV). In HUCBmnf-embryonic mouse striata co-culture, a small number of growth factor treated HUCBmnf cells were able to integrate into the growing neural network and express immature (nestin and TuJ1) and mature (GFAP and MAP2) neural markers. Treated HUCBmnf cells implanted in the subventricular zone predominantly expressed GFAP although some grafted HUCBmnf cells were MAP2 positive. While short-term treatment of HUCBmnf cells with growth and neurotrophic factors enhanced proliferative capacity in vitro and survival of the cells in vivo, the treatment regimen employed was not enough to ensure long-term survival of HUCBmnf-derived neurons necessary for cell replacement therapies for neurodegenerative diseases.

  2. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    PubMed Central

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  3. DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood.

    PubMed

    Kluth, Simone Maria; Buchheiser, Anja; Houben, Amelie Pia; Geyh, Stefanie; Krenz, Thomas; Radke, Teja Falk; Wiek, Constanze; Hanenberg, Helmut; Reinecke, Petra; Wernet, Peter; Kögler, Gesine

    2010-10-01

    In addition to hematopoietic stem cells, cord blood (CB) also contains different nonhematopoietic CD45-, CD34- adherent cell populations: cord blood mesenchymal stromal cells (CB MSC) that behave almost like MSC from bone marrow (BM MSC) and unrestricted somatic stem cells (USSC) that differentiate into cells of all 3 germ layers. Distinguishing between these populations is difficult due to overlapping features such as the immunophenotype or the osteogenic and chondrogenic differentiation pathway. Functional differences in the differentiation potential suggest different developmental stages or different cell populations. Here we demonstrate that the expression of genes and the differentiation toward the adipogenic lineage can discriminate between these 2 populations. USSC, including clonal-derived cells lacking adipogenic differentiation, strongly expressed δ-like 1/preadipocyte factor 1 (DLK-1/PREF1) correlating with high proliferative potential, while CB MSC were characterized by a strong differentiation toward adipocytes correlating with a weak or negative DLK-1/PREF1 expression. Constitutive overexpression of DLK-1/PREF1 in CB MSC resulted in a reduced adipogenic differentiation, whereas silencing of DLK-1 in USSC resulted in adipogenic differentiation.

  4. Association between ambient air pollution and proliferation of umbilical cord blood cells.

    PubMed

    Novack, L; Yitshak-Sade, M; Landau, D; Kloog, I; Sarov, B; Karakis, I

    2016-11-01

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012-March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM2.5 (particles<2.5µm in diameter) and PM10 (particles<10µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O3) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM2.5 one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM2.5 levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM10 levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings.

  5. Hematopoietic cell transplantation with cord blood for cure of HIV infections.

    PubMed

    Petz, Lawrence D; Redei, Istvan; Bryson, Yvonne; Regan, Donna; Kurtzberg, Joanne; Shpall, Elizabeth; Gutman, Jonathan; Querol, Sergio; Clark, Pamela; Tonai, Richard; Santos, Sarah; Bravo, Aide; Spellman, Stephen; Gragert, Loren; Rossi, John; Li, Shirley; Li, Haitang; Senitzer, David; Zaia, John; Rosenthal, Joseph; Forman, Stephen; Chow, Robert

    2013-03-01

    Hematopoietic cell transplantation (HCT) using CCR5-Δ32/Δ32 stem cells from an adult donor has resulted in the only known cure of human immunodeficiency virus (HIV) infection. However, it is not feasible to repeat this procedure except rarely because of the low incidence of the CCR5-Δ32 allele, the availability of only a small number of potential donors for most patients, and the need for a very close human leukocyte antigen (HLA) match between adult donors and recipients. In contrast, cord blood (CB) transplantations require significantly less stringent HLA matching. Therefore, our hypothesis is that cure of HIV infections by HCT can be accomplished much more readily using umbilical CB stem cells obtained from a modestly sized inventory of cryopreserved CCR5-Δ32/Δ32 CB units. To test this hypothesis, we developed a screening program for CB units and are developing an inventory of CCR5-Δ32/Δ32 cryopreserved units available for HCT. Three hundred such units are projected to provide for white pediatric patients a 73.6% probability of finding an adequately HLA matched unit with a cell dose of ≥2.5 × 10(7) total nucleated cells (TNCs)/kg and a 27.9% probability for white adults. With a cell dose of ≥1 × 10(7) TNCs/kg, the corresponding projected probabilities are 85.6% and 82.1%. The projected probabilities are lower for ethnic minorities. Impetus for using CB HCT was provided by a transplantation of an adult with acute myelogenous leukemia who was not HIV infected. The HCT was performed with a CCR5-Δ32/Δ32 CB unit, and posttransplantation in vitro studies indicated that the patient's peripheral blood mononuclear cells were resistant to HIV infection.

  6. Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation.

    PubMed

    Bari, Sudipto; Seah, Kevin Kwee Hong; Poon, Zhiyong; Cheung, Alice Man Sze; Fan, Xiubo; Ong, Shin-Yeu; Li, Shang; Koh, Liang Piu; Hwang, William Ying Khee

    2015-06-01

    The successful expansion of hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood (UCB) for transplantation could revolutionize clinical practice by improving transplantation-related outcomes and making available UCB units that have suboptimal cell doses for transplantation. New cytokine combinations appear able to promote HSPC growth with minimal differentiation into mature precursors and new agents, such as insulin-like growth factor-binding protein 2, are being used in clinical trials. Molecules that simulate the HSPC niche, such as Notch ligand, have also shown promise. Further improvements have been made with the use of mesenchymal stromal cells, which have made possible UCB expansion without a potentially deleterious prior CD34/CD133 cell selection step. Chemical molecules, such as copper chelators, nicotinamide, and aryl hydrocarbon antagonists, have shown excellent outcomes in clinical studies. The use of bioreactors could further add to HSPC studies in future. Drugs that could improve HSPC homing also appear to have potential in improving engraftment times in UCB transplantation. Technologies to expand HSPC from UCB and to enhance the homing of these cells appear to have attained the goal of accelerating hematopoietic recovery. Further discoveries and clinical studies are likely to make the goal of true HSPC expansion a reality for many applications in future.

  7. Engineering Robust and Functional Vascular Networks in Vivo with Human Adult and Cord Blood-Derived Progenitor Cells

    DTIC Science & Technology

    2008-12-01

    endothelial progenitor cells (EPCs) have the required proliferative and vasculogenic activity to create vascular networks in vivo. To test this...networks in vivo. To test this, EPCs isolated from human umbilical cord blood or from adult peripheral blood as described(Melero-Martin et al. 2007...hypothesized that abEPCs combined with bmMPCs at an optimized ratio would yield high density vascular networks. Therefore, we tested abEPCs + bmMPCs in

  8. Isolation of three important types of stem cells from the same samples of banked umbilical cord blood.

    PubMed

    Phuc, Pham Van; Ngoc, Vu Bich; Lam, Dang Hoang; Tam, Nguyen Thanh; Viet, Pham Quoc; Ngoc, Phan Kim

    2012-06-01

    It is known that umbilical cord blood (UCB) is a rich source of stem cells with practical and ethical advantages. Three important types of stem cells which can be harvested from umbilical cord blood and used in disease treatment are hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Since these stem cells have shown enormous potential in regenerative medicine, numerous umbilical cord blood banks have been established. In this study, we examined the ability of banked UCB collected to produce three types of stem cells from the same samples with characteristics of HSCs, MSCs and EPCs. We were able to obtain homogeneous plastic rapidly-adherent cells (with characteristics of MSCs), slowly-adherent (with characteristics of EPCs) and non-adherent cells (with characteristics of HSCs) from the mononuclear cell fractions of cryopreserved UCB. Using a protocol of 48 h supernatant transferring, we successfully isolated MSCs which expressed CD13, CD44 and CD90 while CD34, CD45 and CD133 negative, had typical fibroblast-like shape, and was able to differentiate into adipocytes; EPCs which were CD34, and CD90 positive, CD13, CD44, CD45 and CD133 negative, adherent with cobble-like shape; HSCs which formed colonies when cultured in MethoCult medium.

  9. HEMATOPOIETIC DIFFERENTIATION OF UMBILICAL CORD BLOOD-DERIVED VERY SMALL EMBRYONIC/EPIBLAST-LIKE STEM CELLS

    PubMed Central

    Ratajczak, Janina; Zuba-Surma, Ewa; Klich, Iza; Liu, Rui; Wysoczynski, Marcin; Greco, Nicholas; Kucia, Magda; Laughlin, Mary J.; Ratajczak, Mariusz Z

    2011-01-01

    A population of CD133+lin−CD45− very small embryonic-like stem cells (VSELs) has been purified by multiparameter sorting from umbilical cord blood (UCB). In order to speed up isolation of these cells, we employed anti-CD133-conjugated paramagnetic beads followed by staining with Aldefluor to detect aldehyde dehydrogenase (ALDH) activity; we subsequently sorted CD45−/GlyA−/CD133+/ALDHhigh and CD45−/GlyA−/CD133+/ALDHlow cells, which are enriched for VSELs, and CD45+/GlyA−/CD133+/ALDHhigh and CD45+/GlyA−/CD133+/ALDHlow cells, which are enriched for hematopoietic stem/progenitor cells (HSPCs). While freshly isolated CD45− VSELs did not grow hematopoietic colonies, the same cells, when activated/expanded over OP9 stromal support, acquired hematopoietic potential and grew colonies composed of CD45+ hematopoietic cells in methylcellulose cultures. We also observed that CD45−/GlyA−/CD133+/ALDHhigh VSELs grew colonies earlier than CD45−/GlyA−/CD133+/ALDHlow VSELs, which suggests that the latter cells need more time to acquire hematopoietic commitment. In support of this possibility, real-time PCR analysis confirmed that, while freshly isolated CD45−/GlyA−/CD133+/ALDHhigh VSELs express more hematopoietic transcripts (e.g., c-myb), CD45−/GlyA−/CD133+/ALDHlow VSELs exhibit higher levels of pluripotent stem cell markers (e.g., Oct-4). More importantly, hematopoietic cells derived from VSELs that were co-cultured over OP9 support were able to establish human lympho-hematopoietic chimerism in lethally irradiated NOD/SCID mice 4–6 weeks after transplantation. Overall, our data suggest that UCB-VSELs correspond to the most primitive population of HSPCs in UCB. PMID:21483440

  10. Influence of human myasthenia gravis thymus on the differentiation of human cord blood stem cells in SCID mice.

    PubMed

    Li, Qian Ru; Liu, Ping Ping; Xuan, Xiao Yan; Guan, Sha Sha; Du, Ying; Gao, Feng; Zhang, Qing Yong

    2014-02-01

    The normal thymus contributes to T lymphocytes differentiation and induction of tolerance to self-antigens. Myasthenia gravis (MG) is characterized by abnormal thymic hyperplasia. To assess the potential influence of MG-thymus on the differentiation of T lymphocytes differentiation, we used the MG-thymus transplanted severe combined immunodeficiency (SCID) mice model to evaluate the human cord blood stem cells differentiation. Thymus fragments from MG patient and human cord blood stem cells were transplanted into SCID mice successively. SCID mice were observed to develop sustained human T lymphocytes and a functional anti-tumor immune. The levels of various T cell subsets in SCID mice with MG-thymus were different from that of control group. Among that, the frequency of CD4(+)CD25(+) T cells was significant lower in SCID mice with MG-thymus. The deficiency of CD4(+)CD25(+) T cells seens to contribute to the pathogenesis of MG.

  11. Human Umbilical Cord Blood Cells Restore Brain Damage Induced Changes in Rat Somatosensory Cortex

    PubMed Central

    Geißler, Maren; Dinse, Hubert R.; Neuhoff, Sandra; Kreikemeier, Klaus; Meier, Carola

    2011-01-01

    Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury. PMID:21673795

  12. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    PubMed

    Geissler, Maren; Dinse, Hubert R; Neuhoff, Sandra; Kreikemeier, Klaus; Meier, Carola

    2011-01-01

    Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  13. Cord blood testing

    MedlinePlus

    ... carbon dioxide, and pH levels) Blood sugar level Blood type and Rh Complete blood count ( CBC ) Platelet count ... and this is the only time when this type of blood sample can be collected. You can also decide ...

  14. Fucosyltransferase VII improves the function of selectin ligands on cord blood hematopoietic stem cells.

    PubMed

    Wan, Xiang; Sato, Hidetaka; Miyaji, Hiromasa; McDaniel, J Michael; Wang, Yuesi; Kaneko, Etsuji; Gibson, BreeAnna; Mehta-D'Souza, Padmaja; Chen, Yiyuan; Dozmorov, Mikhail; Miller, Leonard P; Goodman, Jean; Sun, Zimin; Xia, Lijun

    2013-10-01

    Selectins and their carbohydrate ligands mediate the homing of hematopoietic stem/progenitor cells (HSPCs) to the bone marrow. We have previously shown that ex vivo fucosylation of selectin ligands on HSPCs by α1,3 fucosyltransferase VI (FUT6) leads to improved human cord blood (CB)-HSPC engraftment in non-obese diabetic (NOD)/severe combined immune deficient (SCID) mice. In the present study, we determined whether surface fucosylation with α1,3 fucosyltransferase VII (FUT7), which is primarily expressed by hematopoietic cells, improves the function of selectin ligands on CB-HSPCs in comparison with FUT6. A saturating amount of either FUT6 or FUT7, which generates comparable levels of expression of fucosylated epitopes on CB CD34(+) cells, was used for these experiments. In vitro, FUT7-treated CB CD34(+) cells exhibited greater binding to P- or E-selectin than that of FUT6-treated CB CD34(+) cells under static or physiological flow conditions. In vivo, FUT7 treatment, like FUT6, improved the early engraftment of CB CD34(+) cells in the bone marrow of sublethally irradiated NOD/SCID interleukin (IL)-2Rγ(null) (NSG) mice. FUT7 also exhibited marginally-yet statistically significant-increased engraftment at 4 and 6 weeks after transplantation. In addition, FUT7-treated CB CD34(+) cells exhibited increased homing to the bone marrow of irradiated NSG mice relative to sham-treated cells. These data indicate that FUT7 is effective at improving the function of selectin ligands on CB-HSPCs in vitro and enhancing early engraftment of treated CB-HSPCs in the bone marrow of recipients.

  15. Human Cord Blood-Derived CD133(+)/C-Kit(+)/Lin(-) Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells.

    PubMed

    Cardenas, Carlos; Kwon, Ja-Young; Maeng, Yong-Sun

    2016-01-01

    Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs or are a mixture of cell lineage-determined progenitors of MSCs or OECs. Here, using CD133(+)/C-kit(+)/Lin(-) mononuclear cells (CKL- cells) isolated from human umbilical cord blood using magnetic cell sorting, we characterized the potency of MNC differentiation. We first found that CKL- cells cultured with conditioned medium of OECs or MSCs differentiated into OECs or MSCs and this differentiation was also induced by cell-to-cell contact. When we cultured single CKL- cells on OEC- or MSC-conditioned medium, the cells differentiated morphologically and genetically into OEC- or MSC-like cells, respectively. Moreover, we confirmed that OECs or MSCs differentiated from CKL- cells had the ability to form capillary-like structures in Matrigel and differentiate into osteoblasts, chondrocytes, and adipocytes. Finally, using microarray analysis, we identified specific factors of OECs or MSCs that could potentially be involved in the differentiation fate of CKL- cells. Together, these results suggest that cord blood-derived CKL- cells possess at least bipotential differentiation capacity toward MSCs or OECs.

  16. Human Cord Blood-Derived CD133+/C-Kit+/Lin− Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells

    PubMed Central

    Cardenas, Carlos; Kwon, Ja-Young

    2016-01-01

    Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs or are a mixture of cell lineage-determined progenitors of MSCs or OECs. Here, using CD133+/C-kit+/Lin− mononuclear cells (CKL− cells) isolated from human umbilical cord blood using magnetic cell sorting, we characterized the potency of MNC differentiation. We first found that CKL− cells cultured with conditioned medium of OECs or MSCs differentiated into OECs or MSCs and this differentiation was also induced by cell-to-cell contact. When we cultured single CKL− cells on OEC- or MSC-conditioned medium, the cells differentiated morphologically and genetically into OEC- or MSC-like cells, respectively. Moreover, we confirmed that OECs or MSCs differentiated from CKL− cells had the ability to form capillary-like structures in Matrigel and differentiate into osteoblasts, chondrocytes, and adipocytes. Finally, using microarray analysis, we identified specific factors of OECs or MSCs that could potentially be involved in the differentiation fate of CKL− cells. Together, these results suggest that cord blood-derived CKL− cells possess at least bipotential differentiation capacity toward MSCs or OECs. PMID:28074098

  17. Association between maternal and fetal factors and quality of cord blood as a source of stem cells

    PubMed Central

    Nunes, Rodrigo Dias; Zandavalli, Flávia Maria

    2014-01-01

    Objectives To comparatively analyze maternal and fetal factors and quality markers of blood samples in a public umbilical cord blood bank. Method This is a cross-sectional descriptive study that revisited 458 records of donations from September 2009 to March 2013 at the Hemocentro de Santa Catarina. The means of markers were used to define cutoff points for the quality of cord blood. Results Most donations came from women with ages between 18 and 29 years (62.8%), gestational age ≥ 40 weeks (55.2%), vaginal delivery (51.3%), primiparous (41.4%), and with male newborns (54.4%) weighing between 3000 and 3499 g (41.8%). The volume of the donations ranged from 71.6 to 275.2 mL, the total nucleated cell count ranged from 4.77 × 108 to 31.0 × 108 cells and CD34+ cells ranged from 0.05 to 1.23%. There were statistically significant differences in the volume with respect to gestation age > 38 weeks (p-value = 0.001), cesarean section (p-value < 0.001) and birth weight > 3500 g (p-value < 0.001). The total nucleated cell count was positively affected by cesarean section (p-value = 0.022) and birth weight > 3500 g (p-value < 0.001). There was no statistically significant difference between the variables and the percentage of CD34+ cells. Conclusions Delivery route and birth weight influence the volume of cord blood and the total nucleated cell count. Gestational age influences only the volume of cord blood. PMID:25638766

  18. Mononuclear cells from the cord blood and granulocytecolony stimulating factor-mobilized peripheral blood: is there a potential for treatment of cerebral palsy?

    PubMed

    Koh, Hani; Hwang, Kyoujung; Lim, Hae-Young; Kim, Yong-Joo; Lee, Young-Ho

    2015-12-01

    To investigate a possible therapeutic mechanism of cell therapy in the field of cerebral palsy using granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells (mPBMCs), we compared the expression of inflammatory cytokines and neurotrophic factors in PBMCs and mPBMCs from children with cerebral palsy to those from healthy adult donors and to cord blood mononuclear cells donated from healthy newborns. No significant differences in expression of neurotrophic factors were found between PBMCs and mPBMCs. However, in cerebral palsy children, the expression of interleukin-6 was significantly increased in mPBMCs as compared to PBMCs, and the expression of interleukin-3 was significantly decreased in mPBMCs as compared to PBMCs. In healthy adults, the expression levels of both interleukin-1β and interleukin-6 were significantly increased in mPBMCs as compared to PBMCs. The expression of brain-derived neurotrophic factors in mPBMC from cerebral palsy children was significantly higher than that in the cord blood or mPBMCs from healthy adults. The expression of G-CSF in mPBMCs from cerebral palsy children was comparable to that in the cord blood but significantly higher than that in mPBMCs from healthy adults. Lower expression of pro-inflammatory cytokines (interleukin-1β, interleukin-3, and -6) and higher expression of anti-inflammatory cytokines (interleukin-8 and interleukin-9) were observed from the cord blood and mPBMCs from cerebral palsy children rather than from healthy adults. These findings indicate that mPBMCs from cerebral palsy and cord blood mononuclear cells from healthy newborns have the potential to become seed cells for treatment of cerebral palsy.

  19. Cord blood banking: a historical perspective.

    PubMed

    Navarrete, Cristina; Contreras, Marcela

    2009-10-01

    Umbilical cord blood (UCB) contains stem and progenitor cells capable of restoring haematopoietic and immunological function in vivo. UCB is currently used as an alternative source of haematopoietic stem cells for transplantation in patients suffering from haematological malignancies, bone marrow failures and inherited metabolic disorders. In order to facilitate transplantation, large repositories of frozen cord blood units (CBUs) from altruistic donations have been established in many parts of the world and to date there are more than 300,000 units stored worldwide. These products have been banked under stringent quality conditions, in order to ensure their safety and efficacy. The development and evolution of the policies and procedures currently in use in cord blood banking have been largely influenced by the clinical results of cord blood transplantation. This review aims to provide a historical overview of the various developments in the field of cord blood banking from its inception, highlighting the relevant aspects in their collection, banking and release that are known to influence the clinical outcome of these transplants.

  20. Sibling donor cord blood banking for children with sickle cell disease.

    PubMed

    Reed, W; Walters, M; Trachtenberg, E; Smith, R; Lubin, B H

    2001-01-01

    Although hematopoietic stem cell transplantation has curative potential for selected patients with sickle cell disease (SCD), most patients who are eligible for transplantation do not have a suitable donor. Cord blood (CB) from a sibling could provide an alternative stem cell source that, while not as well established as marrow, may offer certain advantages for selected families. These potential advantages include low risk to the infant donor, the possibility that mismatched CB units from sibling donors may be acceptable for transplantation, prompt availability of a stored CB unit for transplant, and decreased risk of clinically significant graft-versus-host disease. When families with SCD (or other transplant-treatable condition) conceive a sibling, no comprehensive research resource exists to assist the family in collecting the new infant's CB. With support from the National Heart Lung and Blood Institute, we are developing a noncommercial research-based CB Banking Program specifically for medically indicated sibling donations. In preliminary experience, we have collected CB from 52 SCD families across 19 states. Of these, 2 CB units have thus far been used for transplantation and 9 others are HLA-identical. We conclude that a CB bank focusing on sibling-donations may be feasible, but further study is required to determine whether such a bank can collect CB units of sufficient quantity and quality to support controlled trials of sibling CB transplantation. Families with a specific medical need, such as those already caring for a child with SCD, should consider collecting sibling CB as part of comprehensive care if the opportunity becomes available.

  1. Human cord blood mononuclear cell transplantation for the treatment of premature ovarian failure in nude mice

    PubMed Central

    Dang, Jianhong; Jin, Zhijun; Liu, Xiaojun; Hu, Dian; Wang, Zhifeng

    2015-01-01

    Objective: This study explored the potential of human cord blood mononuclear cell (HCMNC) transplantation as a treatment for premature ovarian failure (POF) in a nude mouse model. Methods: Female nude mice were randomly divided into three groups; a normal control group (n = 35), a POF group (POF plus vehicle, n = 35) and a POF plus cell transplantation group (HCMNCs were implanted into the ovaries, n = 35). HCMNCs were isolated by Ficoll density gradient centrifugation and labeled with BrdU. Four weeks after transplantation, the nude mice were sacrificed to determine serum levels of E2, FSH and LH as indicators of ovarian function, and the ovaries were examined both histologically and immunochemically. Results: The transplanted HCMNCs survived in the transplantation group and were detected by BrdU. In the transplantation group, serum levels of E2 significantly increased while serum levels of FSH and LH significantly decreased compared to the POF control group. Additionally, the transplantation group had a recovery in follicle number. Conclusion: HCMNCs can be successfully transplanted into the ovaries of nude mice and can improve ovarian function in POF. PMID:26064319

  2. Frozen Cord Blood Hematopoietic Stem Cells Differentiate into Higher Numbers of Functional Natural Killer Cells In Vitro than Mobilized Hematopoietic Stem Cells or Freshly Isolated Cord Blood Hematopoietic Stem Cells

    PubMed Central

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34+) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34+) and frozen PBCD34+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34+ cultures. NK cells generated from CBCD34+ and PBCD34+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34+ for the production of NK cells in vitro results in higher cell numbers than PBCD34+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC. PMID:24489840

  3. Intracellular Immunization of Human Fetal Cord Blood Stem/Progenitor Cells with a Ribozyme Against Human Immunodeficiency Virus Type 1

    NASA Astrophysics Data System (ADS)

    Yu, Mang; Leavitt, Mark C.; Maruyama, Midori; Yamada, Osamu; Young, Dennis; Ho, Anthony D.; Wong-Staal, Flossie

    1995-01-01

    Successful treatment of human immunodeficiency virus infection may ultimately require targeting of hematopoietic stem cells. Here we used retroviral vectors carrying the ribozyme gene to transduce CD34^+ cells from human fetal cord blood. Transduction and ribozyme expression had no apparent adverse effect on cell differentiation and/or proliferation. The macrophage-like cells, differentiated from the stem/progenitor cells in vitro, expressed the ribozyme gene and resisted infection by a macrophage tropic human immunodeficiency virus type 1. These results suggest the feasibility of stem cell gene therapy for human immunodeficiency virus-infected patients.

  4. Cell-Associated Interleukin-8 in Cord Blood of Term and Preterm Infants

    PubMed Central

    Dembinski, J.; Behrendt, D.; Heep, A.; Dorn, C.; Reinsberg, J.; Bartmann, P.

    2002-01-01

    To assess the effect of gestational age and labor on the interleukin-8 (IL-8) concentration in whole cord blood and serum, IL-8 levels were determined simultaneously in cord blood serum and lysate in 134 infants. Following the elimination of some of the samples due to exclusion criteria, the data for 99 uninfected infants (71 term and 28 preterm) and 9 infants with neonatal bacterial infection delivered either vaginally or by elective or emergency cesarean section were analyzed. The effects of labor and gestational age were tested by analysis of variance. IL-8 was not detectable in the serum of 25 infants, whereas IL-8 levels in whole blood were measurable in all of the samples. The median IL-8 conncentrations in whole cord blood lysate were 106 pg/ml (range, 20 to 415 pg/ml) in preterm infants and 176 pg/ml (range, 34 to 1,667 pg/ml) in term infants. In contrast to the IL-8 levels in serum, IL-8 levels in whole blood were reduced after ECS. Gestational age had no independent effect on the IL-8 concentrations in either serum or whole blood; these concentrations increased in infected infants after labor. We conclude that the neonatal proinflammatory response to labor stress was more evident in the concentrations of IL-8 in whole blood than in serum. The levels of IL-8 in whole-blood lysate reflect proinflammatory stimulation in neonates and may be a useful diagnostic tool for the early diagnosis of neonatal infection. PMID:11874870

  5. Long-term outcome of a successful cord blood stem cell transplant in mevalonate kinase deficiency.

    PubMed

    Giardino, Stefano; Lanino, Edoardo; Morreale, Giuseppe; Madeo, Annalisa; Di Rocco, Maja; Gattorno, Marco; Faraci, Maura

    2015-01-01

    Mevalonate kinase deficiency (MKD) is a rare autosomal recessive inborn error of metabolism with an autoinflammatory phenotype that may be expressed as a spectrum of disease phenotypes, from those with prevailing autoinflammatory syndrome and variable response to anti-inflammatory therapies, to mevalonic aciduria, which is associated with dysmorphic features, severe neurologic involvement, and the worst prognosis. We describe a boy, aged 2 years, 10 months, with severe phenotype of mevalonate kinase deficiency who underwent allogeneic hematopoietic stem cell transplantation (HSCT) from HLA-identical unrelated cord blood because his condition had failed to improve with antiinflammatory treatment as first-line therapy and an anticytokine drug as second-line therapy. The child had a sustained remission of febrile attacks and inflammation after transplant, and during a 5-year follow-up period, psychomotor and neurologic development were normal, without signs of underlying disease or late transplant-related effects. This case confirms that allogeneic HSCT is a safe and effective cure for patients affected by MKD in whom anticytokine drugs alone are insufficient for the management of autoinflammatory syndrome and for the unfavorable outcome of the disease.

  6. Dimethyl sulfoxide-induced toxicity in cord blood stem cell transplantation: report of three cases and review of the literature.

    PubMed

    Ruiz-Delgado, Guillermo J; Mancías-Guerra, Consuelo; Tamez-Gómez, Edna L; Rodríguez-Romo, Laura N; López-Otero, Avril; Hernández-Arizpe, Ana; Gómez-Almaguer, David; Ruiz-Argüelles, Guillermo J

    2009-01-01

    Umbilical cord blood transplantation using nonmyeloablative conditioning is currently considered by many as a valid potential alternative for any patient who requires an unrelated donor allograft and who is without a suitably matched and readily available volunteer. Dimethyl sulfoxide (DMSO) has been used for years as a cryoprotectant agent; it acts by penetrating the cell and binding water molecules and it has been described as harmless for the individual who receives it in limited amounts. In this paper, we describe 3 cases of DMSO-induced toxicities and briefly review the most common adverse reactions of the DMSO when used as a cryopreservation agent for the long-term storage of cord blood cells. Two of the 3 cases had a dismal prognosis. A brief review of the literature is presented.

  7. Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

    PubMed Central

    Lee, Min Ju; Yoon, Tae Gyoon; Kang, Moonkyu

    2017-01-01

    In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC–transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (p<0.05). However, cells positive for TIMP-2, an endogenous tissue inhibitor of MMP-2, were significantly increased in SNL and SNI models of hUCB-MSCs-grafted rats. Taken together, subcutaneous injection of hUCB-MSCs may have an antinociceptive effect via modulation of pain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor. PMID:28280408

  8. Cord blood chimerism and relapse after haplo-cord transplantation.

    PubMed

    van Besien, Koen; Koshy, Nebu; Gergis, Usama; Mayer, Sebastian; Cushing, Melissa; Rennert, Hannah; Reich-Slotky, Ronit; Mark, Tomer; Pearse, Roger; Rossi, Adriana; Phillips, Adrienne; Vasovic, Liljana; Ferrante, Rosanna; Hsu, Yen-Michael; Shore, Tsiporah

    2017-02-01

    Haplo-cord stem cell transplantation combines the infusion of CD34 selected hematopoietic progenitors from a haplo-identical donor with an umbilical cord blood (UCB) graft from an unrelated donor and allows faster count recovery, with low rates of disease recurrence and chronic graft-versus-host disease (GVHD). But the contribution of the umbilical cord blood graft to long-term transplant outcome remains unclear. We analyzed 39 recipients of haplo-cord transplants with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), engrafted and in remission at 2 months. Median age was 66 (18-72) and all had intermediate, high, or very-high risk disease. Less than 20% UCB chimerism in the CD33 lineage was associated with an increased rate of disease recurrence (54% versus 11% p < 0.0001) and decrease in one year progression-free (20% versus 55%, p = 0.004) and overall survival (30% versus 62%, p = 0.02). Less than 100% UCB chimerism in the CD3 lineage was associated with increase rate of disease recurrence (46% versus 12%, p = 0.007). Persistent haplo-chimerism in the CD3 lineage was associated with an increased rate of disease recurrence (40% versus 15%, p = 0.009) Chimerism did not predict for treatment related mortality. The cumulative incidence of acute GVHD by day 100 was 43%. The cumulative incidence of moderate/severe chronic GVHD was only 5%. Engraftment of the umbilical cord blood grafts provides powerful graft-versus-leukemia (GVL) effects which protect against disease recurrence and is associated with low risk of chronic GVHD. Engraftment of CD34 selected haplo-identical cells can lead to rapid development of circulating T-cells, but when these cells dominate, GVL-effects are limited and rates of disease recurrence are high.

  9. Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture.

    PubMed

    Orlandi, Alessia; Pagani, Francesca; Avitabile, Daniele; Bonanno, Giuseppina; Scambia, Giovanni; Vigna, Elisa; Grassi, Francesca; Eusebi, Fabrizio; Fucile, Sergio; Pesce, Maurizio; Capogrossi, Maurizio C

    2008-04-01

    Prior in vitro studies suggested that different types of hematopoietic stem cells may differentiate into cardiomyocytes. The present work examined whether human CD34(+) cells from the human umbilical cord blood (hUCB), cocultured with neonatal mouse cardiomyocytes, acquire the functional properties of myocardial cells and express human cardiac genes. hUCB CD34(+) cells were cocultured onto cardiomyocytes following an infection with a lentivirus-encoding enhanced green fluorescent protein (EGFP). After 7 days, mononucleated EGFP(+) cells were tested for their electrophysiological features by patch clamp and for cytosolic [Ca(2+)] ([Ca(2+)](i)) homeostasis by [Ca(2+)](i) imaging of X-rhod1-loaded cells. Human Nkx2.5 and GATA-4 expression was examined in cocultured cell populations by real-time RT-PCR. EGFP(+) cells were connected to surrounding cells by gap junctions, acquired electrophysiological properties similar to those of cardiomyocytes, and showed action potential-associated [Ca(2+)](i) transients. These cells also exhibited spontaneous sarcoplasmic reticulum [Ca(2+)](i) oscillations and the associated membrane potential depolarization. However, RT-PCR of both cell populations showed no upregulation of human-specific cardiac genes. In conclusion, under our experimental conditions, hUCB CD34(+) cells cocultured with murine cardiomyocytes formed cells that exhibited excitation-contraction coupling features similar to those of cardiomyocytes. However, the expression of human-specific cardiac genes was undetectable by RT-PCR.

  10. Cord Blood Transplantation: Can We Make it Better?

    PubMed Central

    Metheny, Leland; Caimi, Paolo; de Lima, Marcos

    2013-01-01

    Umbilical cord blood is an established source of hematopoietic stem cells for transplantation. It enjoys several advantages over bone marrow or peripheral blood, including increased tolerance for Human Leukocyte Antigen mismatches, decreased incidence of graft-versus-host disease, and easy availability. Unrelated cord blood does have limitations, however, especially in the treatment of adults. In the 24 years since the first umbilical cord blood transplant was performed, significant progress has been made, but delayed hematopoietic engraftment and increased treatment-related mortality remain obstacles to widespread use. Here we summarize the latest results of unrelated cord blood transplants, and review strategies under investigation to improve clinical outcomes. PMID:24062989

  11. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    PubMed Central

    Lv, Xue-man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-01-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  12. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    PubMed

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  13. Cord blood banking: what nurses and healthcare providers should know.

    PubMed

    Abdullah, Yasmin

    2011-01-01

    Although the use of embryonic stem cells to treat disease has caused much controversy, one type of stem cell treatment has slowly and steadily shown promise but has not engendered negative ethical media attention: the use of umbilical stem cells. Umbilical cord blood (UCB) contains stem cells that have already successfully treated a variety of diseases, including leukemias, lymphomas, hemoglobinopathies, immunodeficiencies, and disorders of metabolism; ongoing research continues to explore additional diseases for potential treatment. Cord blood can be stored in private banks or public banks. Private cord blood banks save cord blood for use by the family only, at a cost. Public cord blood banks accept donations and the cord blood is then used for the general public and/or research. A review of the literature finds that public banking is the preferred recommendation over private unless there is a known family member with a disease that can currently be treated with cord blood. This article discusses cord blood banking options as well as the ethical issues and barriers facing both healthcare providers and patients when dealing with cord blood banking.

  14. Cord blood banking and transplant in Europe. Eurocord.

    PubMed

    Gluckman, E; Rocha, V; Chastang, C

    1998-01-01

    The number of cord blood transplants has been increasing very quickly with more than 250 cases reported to Eurocord Registry and more than 500 patients transplanted via the New York Cord Blood Bank. Cord blood transplants have been performed either with related or unrelated cord blood. Several cord blood banks established a group called Netcord whose goal is the standardization of the procedures, the organization of internal audits for accreditation and qualification, and the communication and exchange by internet of donor search on an international basis. More than 15,000 units of frozen cord blood are currently available and this number is increasing rapidly worldwide. Analysis of the clinical results has shown that related cord blood transplants give better results than unrelated cord blood transplants. Factors associated with better survival in related and unrelated cord blood transplants were lower age, diagnosis, with better results in inborn errors and in good risk children with acute leukemia. A larger number of nucleated cells in the transplant and the recipient being negative for CMV serology were also favourable risk factors for survival. Engraftment was improved with higher numbers of cells and HLA identity. Graft versus Host disease was reduced when compared to transplants of adult allogeneic bone marrow or peripheral blood progenitor cells. HLA disparities did not influence GVH; the only factor associated with increased GVH was positive CMV serology in the recipient. This study shows that cord blood is an alternative source of hematopoietic stem cells for allogeneic transplantation in children and in some adults. HLA disparity is not a limiting factor but the number of cells infused is important; currently the use of a number of nucleated cells inferior to 1 x 10(7)/kg is not recommended. Several questions remain including the criteria of choice of the donor, the indications in children and in adults, the comparison of cord blood transplants to other

  15. An assessment of techniques suitable for the diagnosis of sickle-cell disease and haemoglobin C disease in cord blood samples

    PubMed Central

    Yawson, G. I.; Huntsman, R. G.; Metters, J. S.

    1970-01-01

    Agar gel, cellulose acetate, and starch gel electrophoresis are all capable of diagnosing sickle-cell anaemia, sickle-cell haemoglobin C disease, and haemoglobin C disease in cord blood samples. Of these three electrophoretic techniques, agar gel is the easiest to interpret. Paper electrophoresis can reliably and rapidly detect sickle haemoglobin and haemoglobin C in cord blood samples. Being incapable of differentiating foetal and normal adult haemoglobin, the value of paper electrophoresis is limited to an initial screening procedure. Images PMID:5476880

  16. Influence of IL-3 functional fragment on cord blood stem cell ex vivo expansion and differentiation

    PubMed Central

    Ren, Zhihua; Zhang, Yu; Zhang, Yanxi; Jiang, Wenhong; Dai, Wei; Ding, Xinxin

    2016-01-01

    Background Recombinant human interleukin-3 (rhIL-3) is a multiple hematopoietic growth factor, which enhances stem cell expansion and hematopoiesis regeneration in vitro and in vivo, when administrated in combination with other cytokines. However, the structure-function study of rhIL-3 remains rarely studied, so far. The purpose of this study was to recognize the short peptide with similar function as rhIL-3, and assess the hematopoietic efficacy in umbilical cord blood (UCB) stem cell culture as well. Methods Two novel monoclonal antibodies (mAb) (C1 and E1) were generated against rhIL-3 using hybridoma technique. Eleven short peptides were depicted and synthesized to overlap covering the full length sequence of rhIL-3. ELISA was employed to distinguish the antibody-binding peptide from the negative peptides. In addition, the multi-potential hematopoiesis capabilities of the positive peptides were evaluated by adding 25 ng/mL of each peptide to the culture medium of hematopoietic stem cells (HSCs) derived from UCB. Total nucleated cell number and the CD34+ cell number from each individual treatment group were calculated on day 7. Correlated antibodies at 0.5 or 2 molar fold to each peptide were also tested in the stem cell expansion experiment, to further confirm the bioactivity of the peptides. Results Two peptides were recognized by the novel generated antibodies, using ELISA. Peptide 3 and 8 exhibited comparable hematopoiesis potentials, with 25.01±0.14 fold, and 19.89±0.12 fold increase of total nucleated cell number on day 7, respectively, compared with the basal medium control (4.93±0.55 fold). These biological effects were neutralized by adding the corresponding mAb at a dose dependent manner. Conclusions Our results identified two specific regions of rhIL-3 responsible for HSC proliferation and differentiation, which were located from 28 to 49 amino acids (P3), and 107 to 127 amino acids (P8), respectively. The short peptide 3 and 8 might act

  17. Availability of cord blood extends allogeneic hematopoietic stem cell transplant access to racial and ethnic minorities.

    PubMed

    Barker, Juliet N; Byam, Courtney E; Kernan, Nancy A; Lee, Sinda S; Hawke, Rebecca M; Doshi, Kathleen A; Wells, Deborah S; Heller, Glenn; Papadopoulos, Esperanza B; Scaradavou, Andromachi; Young, James W; van den Brink, Marcel R M

    2010-11-01

    Allogeneic transplant access can be severely limited for patients of racial and ethnic minorities without suitable sibling donors. Whether cord blood (CB) transplantation can extend transplant access because of the reduced stringency of required HLA-match is not proven. We prospectively evaluated availability of unrelated donors (URD) and CB according to patient ancestry in 553 patients without suitable sibling donors. URDs had priority if adequate donors were available. Otherwise ≥4/6 HLA-matched CB grafts were chosen utilizing double units to augment graft dose. Patients had highly diverse ancestries including 35% non-Europeans. In 525 patients undergoing combined searches, 10/10 HLA-matched URDs were identified in 53% of those with European ancestry, but only 21% of patients with non-European origins (P < .001). However, the majority of both groups had 5-6/6 CB units. The 269 URD transplant recipients were predominantly European, with non-European patients accounting for only 23%. By contrast, 56% of CB transplant recipients had non-European ancestries (P < .001). Of 26 patients without any suitable stem cell source, 73% had non-European ancestries (P < .001). Their median weight was significantly higher than CB transplant recipients (P <.001), partially accounting for their lack of a CB graft. Availability of CB significantly extends allo-transplant access, especially in non-European patients, and has the greatest potential to provide a suitable stem cell source regardless of race or ethnicity. Minority patients in need of allografts, but without suitable matched sibling donors, should be referred for combined URD and CB searches to optimize transplant access.

  18. Cord blood transplantation in Japan.

    PubMed

    Uchida, Naoyuki

    2016-05-01

    Cord blood transplantation (CBT) has increasingly been used in Japan and the annual number of CBT now exceeds 1,200. The cumulative number of CBT reached 12,853 in 2015, accounting for almost 1/3 of total CBT performed worldwide. It is true that smaller body size and lower costs, as compared to western countries, have been advantages for Japanese people in using CB as graft alternative. In addition, several novel findings regarding serious issues following CBT have been obtained, which further enhanced the use of CB. First, several mechanisms of engraftment failure following CBT other than cell dose have been reported, such as the presence of donor-specific anti-HLA antibodies or the development of hemophagocytic syndrome. Second, unique profiles of infectious complications following CBT have been reported, such as higher incidences of early bacterial infections and HHV-6 encephalitis, as compared to those following bone marrow (BM)/peripheral blood (PB) transplants. Third, the incidence of disease relapse was comparable to those following BM/PB transplants. Novel pre-transplant conditioning regimens using intravenous busulfan have been investigated with promising results being obtained to date. A recent analysis of Japanese transplant registry data revealed similar survival following CBT to HLA-matched unrelated BM/PB transplants.

  19. Mesenchymal Stem Cells and Mononuclear Cells From Cord Blood: Cotransplantation Provides a Better Effect in Treating Myocardial Infarction

    PubMed Central

    Chen, Gecai; Yue, Aihuan; Yu, Hong; Ruan, Zhongbao; Yin, Yigang; Wang, Ruzhu; Ren, Yin

    2016-01-01

    The aim of this study was to evaluate the effect of cotransplanting mononuclear cells from cord blood (CB-MNCs) and mesenchymal stem cells (MSCs) as treatment for myocardial infarction (MI). Transplanting CD34+ cells or MSCs separately has been shown effective in treating MI, but the effect of cotransplanting CB-MNCs and MSCs is not clear. In this study, MSCs were separated by their adherence to the tissue culture. The morphology, immunophenotype, and multilineage potential of MSCs were analyzed. CB-MNCs were separated in lymphocyte separation medium 1.077. CD34+ cell count and viability were analyzed by flow cytometry. Infarcted male Sprague-Dawley rats in a specific-pathogen-free grade were divided into four treatment groups randomly: group I, saline; group II, CB-MNCs; group III, MSCs; and group IV, CB-MNCs plus MSCs. The saline, and CB-MNCs and/or MSCs were injected intramyocardially in infarcted rats. Their cardiac function was evaluated by echocardiography. The myocardial capillary density was analyzed by immunohistochemistry. Both cell types induced an improvement in the left ventricular cardiac function and increased tissue cell proliferation in myocardial tissue and neoangiogenesis. However, CB-MNCs plus MSCs were more effective in reducing the infarct size and preventing ventricular remodeling. Scar tissue was reduced significantly in the CB-MNCs plus MSCs group. MSCs facilitate engraftment of CD34+ cells and immunomodulation after allogeneic CD34+ cell transplantation. Cotransplanting MSCs and CB-MNCs might be more effective than transplanting MSCs or CB-MNCs separately for treating MI. This study contributes knowledge toward effective treatment strategies for MI. Significance This study assessed cotransplantation of hematopoietic stem cells (CD34+ cells) and mesenchymal stem cells (MSCs) for treatment of myocardial infarction (MI) in a rat model. The results demonstrate that MSCs and mononuclear cells from cord blood may have synergistic effects and

  20. Human Umbilical Cord Blood Mononuclear Cells in a Double-Hit Model of Bronchopulmonary Dysplasia in Neonatal Mice

    PubMed Central

    Mildau, Céline; Shen, Jie; Kasoha, Mariz; Laschke, Matthias W.; Roolfs, Torge; Schmiedl, Andreas; Tschernig, Thomas; Bieback, Karen; Gortner, Ludwig

    2013-01-01

    Background Bronchopulmonary dysplasia (BPD) presents a major threat of very preterm birth and treatment options are still limited. Stem cells from different sources have been used successfully in experimental BPD, induced by postnatal hyperoxia. Objectives We investigated the effect of umbilical cord blood mononuclear cells (MNCs) in a new double-hit mouse model of BPD. Methods For the double-hit, date mated mice were subjected to hypoxia and thereafter the offspring was exposed to hyperoxia. Human umbilical cord blood MNCs were given intraperitoneally by day P7. As outcome variables were defined: physical development (auxology), lung structure (histomorphometry), expression of markers for lung maturation and inflammation on mRNA and protein level. Pre- and postnatal normoxic pups and sham treated double-hit pups served as control groups. Results Compared to normoxic controls, sham treated double-hit animals showed impaired physical and lung development with reduced alveolarization and increased thickness of septa. Electron microscopy revealed reduced volume density of lamellar bodies. Pulmonary expression of mRNA for surfactant proteins B and C, Mtor and Crabp1 was reduced. Expression of Igf1 was increased. Treatment with umbilical cord blood MNCs normalized thickness of septa and mRNA expression of Mtor to levels of normoxic controls. Tgfb3 mRNA expression and pro-inflammatory IL-1β protein concentration were decreased. Conclusion The results of our study demonstrate the therapeutic potential of umbilical cord blood MNCs in a new double-hit model of BPD in newborn mice. We found improved lung structure and effects on molecular level. Further studies are needed to address the role of systemic administration of MNCs in experimental BPD. PMID:24069341

  1. In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer

    PubMed Central

    Veluchamy, John P.; Lopez-Lastra, Silvia; Spanholtz, Jan; Bohme, Fenna; Kok, Nina; Heideman, Daniëlle A. M.; Verheul, Henk M. W.; Di Santo, James P.; de Gruijl, Tanja D.; van der Vliet, Hans J.

    2017-01-01

    Therapeutic monoclonal antibodies against the epidermal growth factor receptor (EGFR) act by inhibiting EGFR downstream signaling and by eliciting a natural killer (NK) cell-mediated antitumor response. The IgG1 mAb cetuximab has been used for treatment of RASwt metastatic colorectal cancer (mCRC) patients, showing limited efficacy. In the present study, we address the potential of adoptive NK cell therapy to overcome these limitations investigating two allogeneic NK cell products, i.e., allogeneic activated peripheral blood NK cells (A-PBNK) and umbilical cord blood stem cell-derived NK cells (UCB-NK). While cetuximab monotherapy was not effective against EGFR− RASwt, EGFR+ RASmut, and EGFR+ BRAFmut cells, A-PBNK were able to initiate lysis of EGFR+ colon cancer cells irrespective of RAS or BRAF status. Cytotoxic effects of A-PBNK (but not UCB-NK) were further potentiated significantly by coating EGFR+ colon cancer cells with cetuximab. Of note, a significantly higher cytotoxicity was induced by UCB-NK in EGFR−RASwt (42 ± 8 versus 67 ± 7%), EGFR+ RASmut (20 ± 2 versus 37 ± 6%), and EGFR+ BRAFmut (23 ± 3 versus 43 ± 7%) colon cancer cells compared to A-PBNK and equaled the cytotoxic efficacy of the combination of A-PBNK and cetuximab. The antitumor efficacy of UCB-NK cells against cetuximab-resistant human EGFR+ RASmut colon cancer cells was further confirmed in an in vivo preclinical mouse model where UCB-NK showed enhanced antitumor cytotoxicity against colon cancer independent of EGFR and RAS status. As UCB-NK have been proven safe in a recently conducted phase I clinical trial in acute myeloid leukemia, a fast translation into clinical proof of concept for mCRC could be considered. PMID:28220124

  2. Business on hope: a case study on private cord blood stem cell banking.

    PubMed

    Kiatpongsan, Sorapop

    2008-04-01

    Traditionally, medical practice has been recognized as one of the professional practices with high honors. The interaction between physicians and patients is to provide health care services without the profit orientation. In modernized economy and in today's world of business, the relationship between doctors and patients has been dramatically changed. This transformation is very obvious in the private sector. Health care providers sell their services. Patients have been approached as customers. Decisions to make an investment on new medical technologies or new services would accompany with careful consideration on cost-benefit ratio, on marketing and also on short and long term return of the investment. However most of the medical services available in the past were focusing on the "real" and "tangible" products. This means that the patients or the customers would obtain diagnosis, treatment, palliation or prevention for the fees they paid. They can at least obtain and can feel some direct or indirect health benefits from the services. With the advancement of science and technology, there is recently a new model of business that sells only the hope for future use. Private cord blood stem cell banking is a good example for this business model. Actually, business on hope is not the brand new business model. Insurance is a well-known classical prototype of business on hope. However, when this kind of business model is applied for medical services, there should be some precautions and also intervention including an oversight system from the government sector to make sure that all the information delivered to the clients and family is accurate and unbiased. From the public policy perspective, this business of hope should be appropriately regulated to preserve consumer rights while promoting the advancement of science and technology through sustainable business development.

  3. Family directed umbilical cord blood banking for acute leukemia: usage rate in hematopoietic stem cell transplantation.

    PubMed

    Screnci, M; Murgi, E; Tamburini, A; Pecci, M R; Ballatore, G; Cusanno, A; Valle, V; Luciani, P; Corona, F; Girelli, G

    2015-04-01

    Family-directed umbilical cord blood (UCB) collection and banking is indicated in women delivering healthy babies who already have a member of their own family with a disease potentially treatable with an allogeneic hematopoietic stem cell (HSCs) transplantation (HSCT). The rapid availability of UCB is an important issue in HSCs procurement particularly for recipients with acute leukemia who urgently need HSCT. The aims of this study were to assess the usage rate of family UCB collections directed to patients with acute leukemia and to investigate the factors influencing the usage rate. A total of 113 families were enrolled, 118 UCB units were successfully collected and one collection failed due to emergency occurred during delivery. Among these, 7 collections were required for children who were in urgent need of a transplant: three HLA-matched units were successfully transplanted, respectively after 2, 5 and 6 months from collection; three collections resulted HLA-mismatched, while HLA-typing is pending for one unit. The remaining collections were mostly required for potential future use, among these units only one was transplanted in a HLA compatible sibling after 3 years and 4 months from collection. After a median time of storage of 8.5 years (range 0.1-20 years) a total of 4/118 (3.4 %) collection has been transplanted. During this time interval, considering only patients who have had the need of a transplant, the main factor influencing low utilization rate of UCB collections was due to HLA disparity, indeed among typed UCB unit mostly (77 %) resulted HLA mismatched with the intended recipient.

  4. Multiorgan engraftment and differentiation of human cord blood CD34+Lin− cells in goats assessed by gene expression profiling

    PubMed Central

    Zeng, Fanyi; Chen, Mei-jue; Baldwin, Don A.; Gong, Zhi-juan; Yan, Jing-bin; Qian, Hui; Wang, Juan; Jiang, Xiaoyan; Ren, Zhao-rui; Sun, Deming; Huang, Shu-zhen

    2006-01-01

    To investigate multitissue engraftment of human primitive hematopoietic cells and their differentiation in goats, human CD34+Lin− cord blood cells transduced with a GFP vector were transplanted into fetal goats at 45–55 days of gestation. GFP+ cells were detected in hematopoietic and nonhematopoietic organs including blood, bone marrow, spleen, liver, kidney, muscle, lung, and heart of the recipient goats (1.2–36% of all cells examined). We identified human β2 microglobulin-positive cells in multiple tissues. GFP+ cells sorted from the perfused liver of a transplant goat showed human insulin-like growth factor 1 gene sequences, indicating that the engrafted GFP+ cells were of human origin. A substantial fraction of cells engrafted in goat livers expressed the human hepatocyte-specific antigen, proliferating cell nuclear antigen, albumin, hepatocyte nuclear factor, and GFP. DNA content analysis showed no evidence for cellular fusion. Long-term engraftment of GFP+ cells could be detected in the blood of goats for up to 2 yr. Microarray analysis indicated that human genes from a variety of functional categories were expressed in chimeric livers and blood. The human/goat xenotransplant model provides a unique system to study the kinetics of hematopoietic stem cell engraftment, gene expression, and possible stem cell plasticity under noninjured conditions. PMID:16682618

  5. Modified salting-out method for DNA isolation from newborn cord blood nucleated cells.

    PubMed

    Noguera, N I; Tallano, C E; Bragós, I M; Milani, A C

    2000-01-01

    The present work describes modification of a widely used salting-out procedure to rapidly extract DNA suitable for PCR, using the ARMS method to amplify a target sequence in the beta-globin gene. The salting-out DNA extraction procedure did not completely remove or decrease the presence of inhibitors to PCR in a considerable number of cord blood samples. By introducing a simple phenol/chloroform step, before ethanol precipitation of the nucleic acid, to certain samples, we were able to eliminate or substantially reduce the presence of inhibitors to PCR without having to re-extract the samples.

  6. Human Cord Blood Stem Cells Generate Human Cytokeratin 18-Negative Hepatocyte-Like Cells in Injured Mouse Liver

    PubMed Central

    Sharma, Amar Deep; Cantz, Tobias; Richter, Rudolf; Eckert, Klaus; Henschler, Reinhard; Wilkens, Ludwig; Jochheim-Richter, Andrea; Arseniev, Lubomir; Ott, Michael

    2005-01-01

    Differentiation of adult bone marrow (BM) cells into nonhematopoietic cells is a rare phenomenon. Several reports, however, suggest that human umbilical cord blood (hUCB)-derived cells give rise to hepatocytes after transplantation into nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Therefore, we analyzed the hepatic differentiation potential of hUCB cells and compared the frequency of newly formed hepatocyte-like cells in the livers of recipient NOD-SCID mice after transplantation of hUCB versus murine BM cells. Mononuclear cell preparations of hUCB cells or murine BM from enhanced green fluorescent protein transgenic or wild-type mice were transplanted into sublethally irradiated NOD-SCID mice. Liver regeneration was induced by carbon tetrachloride injury with and without sub-sequent hepatocyte growth factor treatment. By immunohistochemistry and reverse transcriptasepolymerase chain reaction, we detected clusters of hepatocyte-like cells in the livers of hUCB-transplanted mice. These cells expressed human albumin and Hep Par 1 but mouse CK18, suggesting the formation of chimeric hepatocyte-like cells. Native fluorescence microscopy and double immunofluorescence failed to detect single hepatocytes derived from transplanted enhanced green fluorescent protein-transgenic mouse BM. Fluorescent in situ hybridization rarely revealed donor-derived hepatocyte-like cells after cross-gender mouse BM transplantation. Thus, hUCB cells have differentiation capabilities different from murine BM cells after transplantation into NOD-SCID mice, demonstrating the importance of further testing before hUCB cells can be used therapeutically. PMID:16049339

  7. [Influence of different gelatin concentration and lymphocyte isolation liquid on primary culture of umbilical cord blood derived adhesive cells].

    PubMed

    Zhang, Cheng; Chen, Xing-Hua; Zhang, Xi; Gao, Lei; Kong, Pei-Yan; Liu, Hong; Liang, Xue; Peng, Xian-Gui; Wang, Qing-Yu

    2008-12-01

    In order to study the influence of different gelatin concentrations, and lymphocyte isolation liquid on primary culture of umbilical cord blood-derived adhesive cells (hCBACs), the red blood cells of umbilical cord blood was separated by 3% and 6 % gelatin for detecting the effectiveness of sedimentation, then the adhesion rate at 48 hours, the day of initial expansion and the rate of culture success were detected for hCBACs cultured with CD34(+) cells after the mononuclear cells were separated by 6% gelatin followed by Ficoll and Percoll, and the morphological characteristics and growth status were observed by invert microscopy. Cytochemistry stain for nonspecific esterase stain (NSE), peroxidase (POX), periodic acid Schiff reaction (PAS) and alkali phosphatase (ALP) and immunocytochemistry labeling for CD31, CD45, CD68 and fibronectin (Fn) were detected. The results showed that 6 % gelatin was better than that 3% gelatin for red blood sedimentation. The Percoll was predominant over Ficoll in adhesion rate at 48 hours, the day of initial expansion, the time of initial formation of adhesive cell colony units, the time of maximal numbers of adhesive cell colony units, the the cell fusion time and ratio of culture success. 60% fibroblast-liked cells, 36% macrophage liked cells and 4% small-round cells were observed in cells isolated by both isolated methods. The cytochemistry stain for NSE, POX, PAS and ALP was similar in two groups, the difference was not statistically significant between these two groups. The immunocytochemistry labeling for CD31, CD45, CD68 and Fn was also similar in both groups and the difference was also not statistically significant between these two groups. It is concluded that the combination of 6% gelatin with Percoll is an ideal separation method for primary culture of hCBACs, which provides basic information for clinical application.

  8. Distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in canines after intracerebroventricular injection.

    PubMed

    Park, Sang Eon; Jung, Na-Yeon; Lee, Na Kyung; Lee, Jeongmin; Hyung, Brian; Myeong, Su Hyeon; Kim, Hyeong Seop; Suh, Yeon-Lim; Lee, Jung-Il; Cho, Kyung Rae; Kim, Do Hyung; Choi, Soo Jin; Chang, Jong Wook; Na, Duk L

    2016-11-01

    In this study, we investigated the distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered via intracerebroventricular (ICV) injection in a canine model. Ten beagles (11-13 kg per beagle) each received an injection of 1 × 10(6) cells into the right lateral ventricle and were sacrificed 7 days after administration. Based on immunohistochemical analysis, hUCB-MSCs were observed in the brain parenchyma, especially along the lateral ventricular walls. Detected as far as 3.5 mm from the cortical surface, these cells migrated from the lateral ventricle toward the cortex. We also observed hUCB-MSCs in the hippocampus and the cervical spinal cord. According to real-time polymerase chain reaction results, most of the hUCB-MSCs were found distributed in the brain and the cervical spinal cord but not in the lungs, heart, kidneys, spleen, and liver. ICV administered hUCB-MSCs also enhanced the endogenous neural stem cell population in the subventricular zone. These results highlighted the ICV delivery route as an optimal route to be performed in stem cell-based clinical therapies for neurodegenerative diseases.

  9. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants?

    PubMed Central

    Beksac, Meral

    2016-01-01

    As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow–mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation. PMID:26793711

  10. Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy.

    PubMed

    Ren, Huaijuan; Sang, Yunxia; Zhang, Fengli; Liu, Zhaoqing; Qi, Nianmin; Chen, Yantian

    2016-01-01

    Although mesenchymal stem cells (MSCs) based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC), dental pulp (DP), and menstrual blood (MB) are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.

  11. Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines.

    PubMed

    Rungsiwiwut, Ruttachuk; Ingrungruanglert, Praewphan; Numchaisrika, Pranee; Virutamasen, Pramuan; Phermthai, Tatsanee; Pruksananonda, Kamthorn

    2016-01-01

    Although human pluripotent stem cells (hPSCs) can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS) prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS) showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs) prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS) displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system.

  12. [Quality Control in Umbilical Cord Blood Bank

    PubMed

    Zhou, Sheng-Li; Song, Dao-Gang; Shen, Bai-Jun; Pan, Jie

    2001-03-01

    Recent clinical reports have demonstrated that the use of umbilical cord blood (UCB) opened a new source of stem cell for hematopoietic stem cell transplantation, leading to the development of cord blood banks world-wide. Prior to the large scale construction of UCB banks, quality control must be performed for health care providers and manufactures. With increasingly stringent regulatory requirement in blood industry, quality control is playing an important role in the operation of blood centers and stem cell laboratories. Reviewed the lectures in the biology of UCB and UCB banks published in recent years, our experiences were discussed in setting up Shandong blood bank to define process variables associated with the collection of UCB, to determine and optimize the procedures and materials used, to ascertain how UCB can be processed in clean room as mononucleated cell preparations, and to analyze using of long-term storage of UCB in research and clinic in the future. Our conclusions are: (1) the establishment of UCB banks for use in transplantation appears to be easy, effective and particularly suitable approach in China under cGMP conditions; (2) the procedures for volume reduction by closed and semi-automated blood processing system, SSP HLA typing, biocode and local computer net, microbiological tests and the 50 ml cryobags for storage constitute a cost efficient system for large-scale UCB banking; (3) the average of 60 ml UCB collection may contain sufficent marrow repopulating cells for children and most of adult recipients; and (4) hematopoietic stem and progenitor cells in cord blood have a more potent proliferative ability than those derived from bone marrow in cell expansion potentials.

  13. Successful Cord Blood Stem Cell Transplantation for an Adult Case of Chronic Active Epstein-Barr Virus Infection

    PubMed Central

    Saburi, Masuho; Ogata, Masao; Satou, Takako; Yoshida, Natsumi; Nagamatsu, Kentaro; Nashimoto, Yuko; Moroga, Yui; Takano, Kuniko; Kohno, Kazuhiro; Shirao, Kuniaki

    2016-01-01

    A 41-year-old man was referred to our hospital for treatment of anaplastic lymphoma kinase (ALK)-negative anaplastic large cell lymphoma. Chronic active Epstein-Barr virus (CAEBV) was diagnosed based on the findings of elevated EBV antibody titers and positive EBV-DNA in the peripheral blood, and cord blood stem cell transplantation (CBT) was performed. The EBV-DNA levels in the blood fell below the limit of detection. His lymphoma relapsed on Day 165 with the appearance of eruptions, which disappeared after the withdrawal of tacrolimus. One year after transplantation, there were no signs of recurrence. This encouraging result suggests that CBT should be considered for adult cases of CAEBV with aggressive clinical manifestations. PMID:27904117

  14. Cord-Blood Banking

    MedlinePlus

    ... lymphoma , aplastic anemia , severe sickle cell disease , and severe combined immunodeficiency . There are two types of banks that store ... For Kids For Parents MORE ON THIS TOPIC Severe Combined Immunodeficiency Birthing Centers and Hospital Maternity Services A Guide ...

  15. Establishing a public umbilical cord blood stem cell bank for South Africa: an enquiry into public acceptability.

    PubMed

    Meissner-Roloff, Madelein; Pepper, Michael S

    2013-12-01

    South Africa (SA) faces a large unmet need for bone marrow (BM) transplantation, which could be alleviated in part by establishing a public umbilical cord blood stem cell bank (UCB SCB). Umbilical cord blood is an increasingly utilised source of hematopoietic stem cells for BM transplantation in addition to BM or mobilized peripheral blood stem cells. Establishing a public UCB SCB would therefore be a positive step towards improving the quality of health care in SA by providing for an important unmet need. This study takes the form of an enquiry into the acceptability of establishing a public bank through an interview with and questionnaire completed by mothers-to-be in the antenatal clinic of a large public hospital in SA. Initial results are positive, with 85 % of the participants in favour of establishing a public UCB SCB in SA. This initial probe will serve as a model for a more comprehensive national enquiry into public support and acceptability in different clinics, hospitals and provinces in SA.

  16. Ex vivo nanofiber expansion and genetic modification of human cord blood-derived progenitor/stem cells enhances vasculogenesis.

    PubMed

    Das, Hiranmoy; Abdulhameed, Nasreen; Joseph, Matthew; Sakthivel, Ramasamy; Mao, Hai-Quan; Pompili, Vincent J

    2009-01-01

    The stem cell therapy for treating ischemic diseases is promising; however, the limited availability and compromised quality of progenitor cells in aged and diseased patients limit its therapeutic use. Here we report a nanofiber-based ex vivo stem cell expansion technology and proangiogenic growth factors overexpression of human umbilical cord blood (UCB)-derived progenitor cells to enhance angiogenic potential of therapeutic stem cells. The progenitor cells were expanded approximately 225-fold on nanofiber-based serum-free ex vivo expansion culture technique without inducing differentiation. The expanded cells express high levels of stem cell homing receptor, CXCR4, and adhesion molecule, LFA-1. The nanofiber-expanded stem cells uptake AcLDL effectively, and migrate efficiently in an in vitro transmigration assay. These expanded cells can also differentiate into endothelial and smooth muscle cells in vitro. In a NOD/SCID mouse hind limb vascular injury model, nanofiber-expanded cells were more effective in blood flow restoration and this effect was further augmented by VEGF(164) and PDGF-BB, growth factor overexpression. The data indicate that nanofiber-based ex vivo expansion technology can provide an essential number of therapeutic stem cells. Additionally, proangiogenic growth factors overexpression in progenitor cells can potentially improve autologous or allogeneic stem cell therapy for ischemic diseases.

  17. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  18. In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer.

    PubMed

    Veluchamy, John P; Lopez-Lastra, Silvia; Spanholtz, Jan; Bohme, Fenna; Kok, Nina; Heideman, Daniëlle A M; Verheul, Henk M W; Di Santo, James P; de Gruijl, Tanja D; van der Vliet, Hans J

    2017-01-01

    Therapeutic monoclonal antibodies against the epidermal growth factor receptor (EGFR) act by inhibiting EGFR downstream signaling and by eliciting a natural killer (NK) cell-mediated antitumor response. The IgG1 mAb cetuximab has been used for treatment of RAS(wt) metastatic colorectal cancer (mCRC) patients, showing limited efficacy. In the present study, we address the potential of adoptive NK cell therapy to overcome these limitations investigating two allogeneic NK cell products, i.e., allogeneic activated peripheral blood NK cells (A-PBNK) and umbilical cord blood stem cell-derived NK cells (UCB-NK). While cetuximab monotherapy was not effective against EGFR(-) RAS(wt), EGFR(+) RAS(mut), and EGFR(+) BRAF(mut) cells, A-PBNK were able to initiate lysis of EGFR(+) colon cancer cells irrespective of RAS or BRAF status. Cytotoxic effects of A-PBNK (but not UCB-NK) were further potentiated significantly by coating EGFR(+) colon cancer cells with cetuximab. Of note, a significantly higher cytotoxicity was induced by UCB-NK in EGFR(-)RAS(wt) (42 ± 8 versus 67 ± 7%), EGFR(+) RAS(mut) (20 ± 2 versus 37 ± 6%), and EGFR(+) BRAF(mut) (23 ± 3 versus 43 ± 7%) colon cancer cells compared to A-PBNK and equaled the cytotoxic efficacy of the combination of A-PBNK and cetuximab. The antitumor efficacy of UCB-NK cells against cetuximab-resistant human EGFR(+) RAS(mut) colon cancer cells was further confirmed in an in vivo preclinical mouse model where UCB-NK showed enhanced antitumor cytotoxicity against colon cancer independent of EGFR and RAS status. As UCB-NK have been proven safe in a recently conducted phase I clinical trial in acute myeloid leukemia, a fast translation into clinical proof of concept for mCRC could be considered.

  19. Cord blood banking activity in Iran National Cord Blood Bank: a two years experience.

    PubMed

    Jamali, Mostafa; Atarodi, Kamran; Nakhlestani, Mozhdeh; Abolghasemi, Hasan; Sadegh, Hosein; Faranoosh, Mohammad; Golzade, Khadije; Fadai, Razieh; Niknam, Fereshte; Zarif, Mahin Nikougoftar

    2014-02-01

    Today umbilical cord blood (UCB) has known as a commonly used source of hematopoietic stem cells for allogeneic transplantation and many cord blood banks have been established around the world for collection and cryopreservation of cord blood units. Herein, we describe our experience at Iran National Cord Blood Bank (INCBB) during 2 years of activity. From November 2010 to 2012, UCBs were collected from 5 hospitals in Tehran. All the collection, processing, testing, cryopreservation and storage procedures were done according to standard operation procedures. Total nucleated cells (TNC) count, viability test, CD34+ cell count, colony forming unit (CFU) assay, screening tests and HLA typing were done on all banked units. Within 3770 collected units, only 32.9% fulfilled banking criteria. The mean volume of units was 105.2 ml and after volume reduction the mean of TNC, viability, CD34+ cells and CFUs was 10.76×10(8), 95.2%, 2.99×10(6) and 7.1×10(5), respectively. One unit was transplanted at Dec 2012 to a 5-year old patient with five of six HLA compatibilities. In our country banking of UCB is new and high rate of hematopoietic stem cell transplants needs expanding CB banks capacity to find more matching units, optimization of methods and sharing experiences to improve biological characterization of units.

  20. Clinical-scale expansion of CD34(+) cord blood cells amplifies committed progenitors and rapid scid repopulation cells.

    PubMed

    Casamayor-Genescà, Alba; Pla, Arnau; Oliver-Vila, Irene; Pujals-Fonts, Noèlia; Marín-Gallén, Sílvia; Caminal, Marta; Pujol-Autonell, Irma; Carrascal, Jorge; Vives-Pi, Marta; Garcia, Joan; Vives, Joaquim

    2017-03-25

    Umbilical cord blood (UCB) transplantation is associated with long periods of aplastic anaemia. This undesirable situation is due to the low cell dose available per unit of UCB and the immaturity of its progenitors. To overcome this, we present a cell culture strategy aimed at the expansion of the CD34(+) population and the generation of granulocyte lineage-committed progenitors. Two culture products were produced after either 6 or 14days of in vitro expansion, and their characteristics compared to non-expanded UCB CD34(+) controls in terms of phenotype, colony-forming activity and multilineage repopulation potential in NOD-scid IL2Rγ(null) mice. Both expanded cell products maintained rapid SCID repopulation activity similar to the non-expanded control, but 14-day cultured cells showed impaired long term SCID repopulation activity. The process was successfully scaled up to clinically relevant doses of 89×10(6) CD34(+) cells committed to the granulocytic lineage and 3.9×10(9) neutrophil precursors in different maturation stages. Cell yields and biological properties presented by the cell product obtained after 14days in culture were superior and therefore this is proposed as the preferred production setup in a new type of dual transplant strategy to reduce aplastic periods, producing a transient repopulation before the definitive engraftment of the non-cultured UCB unit. Importantly, human telomerase reverse transcriptase activity was undetectable, c-myc expression levels were low and no genetic abnormalities were found, as determined by G-banding karyotype, further confirming the safety of the expanded product.

  1. Intercellular cytosolic transfer correlates with mesenchymal stromal cell rescue of umbilical cord blood cell viability during ex vivo expansion

    PubMed Central

    Chu, Pat P. Y.; Bari, Sudipto; Fan, Xiubo; Gay, Florence P. H.; Ang, Justina M. L.; Chiu, Gigi N. C.; Lim, Sai K.; Hwang, William Y. K.

    2012-01-01

    Background aims. Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. Methods. In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). Results. Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P<0.01). This was associated with significant enhancement of mitochondrial membrane potential (P<0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P< 0.0001). Conclusions. Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture. PMID:22775077

  2. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma.

    PubMed

    Shah, Nina; Li, Li; McCarty, Jessica; Kaur, Indreshpal; Yvon, Eric; Shaim, Hila; Muftuoglu, Muharrem; Liu, Enli; Orlowski, Robert Z; Cooper, Laurence; Lee, Dean; Parmar, Simrit; Cao, Kai; Sobieiski, Catherine; Saliba, Rima; Hosing, Chitra; Ahmed, Sairah; Nieto, Yago; Bashir, Qaiser; Patel, Krina; Bollard, Catherine; Qazilbash, Muzaffar; Champlin, Richard; Rezvani, Katy; Shpall, Elizabeth J

    2017-03-14

    Multiple myeloma (MM) is a disease with known immune dysregulation. Natural killer (NK) cells have shown preclinical activity in MM. We conducted a first-in-human study of umbilical cord blood-derived (CB) NK cells for MM patients undergoing high dose chemotherapy and autologous haematopoietic stem cell transplantation (auto-HCT). Patients received lenalidomide (10 mg) on days -8 to -2, melphalan 200 mg/m(2) on day -7, CB-NK cells on day -5 and auto-HCT on day 0. Twelve patients were enrolled, three on each of four CB-NK cell dose levels: 5 × 10(6) , 1 × 10(7) , 5 × 10(7) and 1 × 10(8) CB-NK cells/kg. Ten patients had either high-risk chromosomal changes or a history of relapsed/progressed disease. There were no infusional toxicities and no graft-versus-host disease. One patient failed to engraft due to poor autologous graft quality and was rescued with a back-up autologous graft. Overall, 10 patients achieved at least a very good partial response as their best response, including eight with near complete response or better. With a median follow-up of 21 months, four patients have progressed or relapsed, two of whom have died. CB-NK cells were detected in vivo in six patients, with an activated phenotype (NKG2D(+) /NKp30(+) ). These data warrant further development of this novel cellular therapy.

  3. The expression of pluripotency genes and neuronal markers after neurodifferentiation in fibroblasts co-cultured with human umbilical cord blood mononuclear cells.

    PubMed

    Marinowic, D R; Domingues, M F; Machado, D C; DaCosta, J C

    2015-01-01

    Human umbilical cord blood is an attractive source of stem cells; however, it has a heterogeneous cell population with few mesenchymal stem cells. Cell reprogramming induced by different methodologies can confer pluripotency to differentiated adult cells. The objective of this study was to evaluate the reprogramming of fibroblasts and their subsequent neural differentiation after co-culture with umbilical cord blood mononuclear cells. Cells were obtained from four human umbilical cords. The mononuclear cells were cultured for 7 d and subsequently co-cultured with mouse fibroblast NIH-3T3 cells for 6 d. The pluripotency of the cells was evaluated by RT-PCR using primers specific for pluripotency marker genes. The pluripotency was also confirmed by adipogenic and osteogenic differentiation. Neural differentiation of the reprogrammed cells was evaluated by immunofluorescence. All co-cultured cells showed adipogenic and osteogenic differentiation capacity. After co-cultivation, cells expressed the pluripotency gene KLF4. Statistically significant differences in cell area, diameter, optical density, and fractal dimension were observed by confocal microscopy in the neurally differentiated cells. Contact in the form of co-cultivation of fibroblasts with umbilical cord blood mononuclear fraction for 6 d promoted the reprogramming of these cells, allowing the later induction of neural differentiation.

  4. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE.

    PubMed

    Rafieemehr, Hassan; Kheyrandish, Maryam; Soleimani, Masoud

    2015-12-01

    Multiple Sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC) derived neural progenitor cell (MDNPC) in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE) was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides) in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6) as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E) staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases.

  5. Human bone marrow and umbilical cord blood cells generate CD4+ and CD8+ single-positive T cells in murine fetal thymus organ culture.

    PubMed Central

    Yeoman, H; Gress, R E; Bare, C V; Leary, A G; Boyse, E A; Bard, J; Shultz, L D; Harris, D T; DeLuca, D

    1993-01-01

    Murine fetal thymus lobes isolated from both normal and scid/scid mice can be colonized by donor cells from either human bone marrow or human umbilical cord blood in vitro. Subsequent organ culture results in a transient production of a few CD4+ CD8+ (double-positive) cells and then the accumulation of CD4+ or CD8+ (single-positive) T cells. A significant number of immature T-cell intermediates (e.g., CD8low, CD3-/low cells) were present in early organ cultures, suggesting that these were progenitors of the mature CD3+/high single-positive T cells that dominated late cultures. Depletion of mature T cells from the donor-cell populations did not affect their ability to colonize thymus lobes. However, colonization depended on the presence of CD7+ progenitor T cells. Limiting dilution experiments using mature T-cell populations (human peripheral blood leukocytes, human bone marrow cells, and human umbilical cord blood cells) suggested that thymic organ culture supports the growth of progenitor T cells but does not support the growth of mature human T cells. Each of these donor populations produced single-positive populations with different CD4/CD8 ratios, suggesting that precursor cells from different sources differ qualitatively in their capacity to differentiate into T cells. Images Fig. 1 PMID:7902570

  6. [Extracellular HMGB1 promotes the migration of cord Blood CD34⁺ cells via SDF-1/CXCR-4 axis].

    PubMed

    Yang, Lu-Lu; Sun, Zi-Min; Liu, Xin; Zhu, Xiao-Yu; Wang, Xing-Bing; Wang, Jian

    2014-10-01

    This study was aimed to investigate the effect of high mobility group box1(HMGB1) and/or stromal cell derived factor-1(SDF-1) on the migration of cord blood CD34⁺ cells, and to explore whether HMGB1 promotes cord blood CD34⁺ cell migration via SDF-1/CXCR4 axis. Cord blood mononuclear cells were isolated by Ficoll-Paque density centrifugation, CD34⁺ cells were collected by a positive immunoselection procedure (CD34 MicroBeads) according to the manufacturer's instructions, the purity of the isolated CD34⁺ cells was detected by flow cytometry. In vitro chemotaxis assays were performed using Transwell cell chambers to detect cells migration. 1 × 10⁵ cells/well cord blood CD34⁺ cells were added into the upper chambers. Different concentrations of HMGB1 and/or SDF-1 (0, 10, 25, 50, 100, 200 ng/ml) were used to detect the optimal concentrations of HMGB1 and/or SDF-1 for inducing migration of cord blood CD34⁺ cells. Freshly isolated cord blood CD34⁺ cells express CXCR4 (SDF-1 receptor), and HMGB1 receptor TLR-2,TLR-4 and RAGE. To explore which receptors were required for the synergy of HGMB1 and/or SDF-1 on cells migration, the anti-SDF-1, anti-CXCR4 and anti-RAGE antibodies were used to detect the effect of HGMB1 alone or with SDF-1 on cord blood CD34⁺ cells migration. The results showed that the purity of CD34⁺ cells isolated from cord blood mononuclear cells by magnetic cell sorting was 97.40 ± 1.26%, the 25 ng/ml SDF-1 did not induce migration of cord blood CD34⁺ cells, whereas the optimal migration was observed at 100 ng/ml. HMGB1 alone did not induce migration up to 100 ng/ml. The dose test found that the the best synergistic concentrations for cells migration were 100 ng/ml HMGB1 combined with 50 ng/ml SDF-1. The blocking test showed that both the anti-SDF-1 (4 µg/ml) and anti-CXCR4 (5 µg/ml) antibodies could block cell migration induced by HMGB1 or combined with SDF-1, but the cord blood CD34⁺ cells in the presence of anti-RAGE, anti

  7. Identification of Lymphomyeloid Primitive Progenitor Cells in Fresh Human Cord Blood and in the Marrow of Nonobese Diabetic–Severe Combined Immunodeficient (NOD-SCID) Mice Transplanted with Human CD34+ Cord Blood Cells

    PubMed Central

    Robin, Catherine; Pflumio, Françoise; Vainchenker, William; Coulombel, Laure

    1999-01-01

    Transplantation of genetically marked donor cells in mice have unambiguously identified individual clones with full differentiative potential in all lymphoid and myeloid pathways. Such evidence has been lacking in humans because of limitations inherent to clonal stem cell assays. In this work, we used single cell cultures to show that human cord blood (CB) contains totipotent CD34+ cells capable of T, B, natural killer, and granulocytic cell differentiation. Single CD34+ CD19−Thy1+ (or CD38−) cells from fresh CB were first induced to proliferate and their progeny separately studied in mouse fetal thymic organotypic cultures (FTOCs) and cocultures on murine stromal feeder layers. 10% of the clones individually analyzed produced CD19+, CD56+, and CD15+ cells in stromal cocultures and CD4+CD8+ T cells in FTOCs, identifying totipotent progenitor cells. Furthermore, we showed that totipotent clones with similar lymphomyeloid potential are detected in the bone marrow of nonobese diabetic severe combined immunodeficient (NOD-SCID) mice transplanted 4 mo earlier with human CB CD34+ cells. These results provide the first direct demonstration that human CB contains totipotent lymphomyeloid progenitors and transplantable CD34+ cells with the ability to reconstitute, in the marrow of recipient mice, the hierarchy of hematopoietic compartments, including a compartment of functional totipotent cells. These experimental approaches can now be exploited to analyze mechanisms controlling the decisions of such primitive human progenitors and to design conditions for their ampification that can be helpful for therapeutic purposes. PMID:10330439

  8. Maternal transplantation of human umbilical cord blood cells provides prenatal therapy in Sanfilippo type B mouse model.

    PubMed

    Garbuzova-Davis, Svitlana; Gografe, Sylvia J; Sanberg, Cyndy Davis; Willing, Alison E; Saporta, Samuel; Cameron, Don F; Desjarlais, Tammy; Daily, Jennifer; Kuzmin-Nichols, Nicole; Chamizo, Wilfredo; Klasko, Stephen K; Sanberg, Paul R

    2006-03-01

    Numerous data support passage of maternal cells into the fetus during pregnancy in both human and animal models. However, functional benefits of maternal microchimerism in utero are unknown. The current study attempted to take advantage of this route for prenatal delivery of alpha-N-acetylglucosaminidase (Naglu) enzyme into the enzyme-deficient mouse model of Sanfilippo syndrome type B (MPS III B). Enzymatically sufficient mononuclear cells from human umbilical cord blood (MNC hUCB) were intravenously administered into heterozygote females modeling MPS III B on the 5th day of pregnancy during blastocyst implantation. The major findings were 1) administered MNC hUCB cells transmigrated and diffused into the embryos (E12.5); 2) some transmigrated cells expressed CD34 and CD117 antigens; 3) transmigrated cells were found in both the maternal and embryonic parts of placentas; 4) transmigrated cells corrected Naglu enzyme activity in all embryos; 5) administered MNC hUCB cells were extensively distributed in the organs and the blood of heterozygote mothers at one week after transplantation. Results indicate that prenatal delivery of Naglu enzyme by MNC hUCB cell administration into mothers of enzyme-deficient embryos is possible and may present a significant opportunity for new biotechnologies to treat many inherited disorders.

  9. Isolation of Functional Human Endothelial Cells from Small Volumes of Umbilical Cord Blood

    PubMed Central

    Do Kang, Sa; Carlon, Tim A.; Jantzen, Alexandra E.; Lin, Fu-Hsiung; Ley, Melissa M.; Allen, Jason D.; Stabler, Thomas V.; Haley, N. Rebecca; Truskey, George A.; Achneck, Hardean E.

    2013-01-01

    Endothelial cells (ECs) isolated from endothelial progenitor cells in blood have great potential as a therapeutic tool to promote vasculogenesis and angiogenesis and treat cardiovascular diseases. However, current methods to isolate ECs are limited by a low yield with few colonies appearing during isolation. In order to utilize blood-derived ECs for therapeutic applications, a simple method is needed that can produce a high yield of ECs from small volumes of blood without the addition of animal-derived products. For the first time, we show that human endothelial cells can be isolated without the prior separation of blood components through the technique of diluted whole blood incubation (DWBI) utilizing commercially available human serum. We isolated ECs from small volumes of blood (~ 10 ml) via DWBI and characterized them with flow cytometry, immunohistochemistry, and uptake of DiI-labeled acetylated low density lipoprotein (DiI-Ac-LDL). These ECs are functional as demonstrated by their ability to form tubular networks in Matrigel, adhere and align with flow under physiological fluid shear stress, and produce increased nitric oxide under fluid flow. An average of 7.0 ± 2.5 EC colonies that passed all functional tests described above were obtained per 10 ml of blood as compared to only 0.3 ± 0.1 colonies with the traditional method based on density centrifugation. The time until first colony appearance was 8.3 ± 1.2 days for ECs isolated with the DWBI method and 12 ± 1.4 days for ECs isolated with the traditional isolation method. A simplified method, such as DWBI, in combination with advances in isolation yield could enable the use of blood-derived ECs in clinical practice. PMID:23604849

  10. Heterogeneous expression of HLA-G1, -G2, -G5, -G6, and -G7 in myeloid and plasmacytoid dendritic cells isolated from umbilical cord blood.

    PubMed

    Román, Angela; Rodríguez, Miriam; Herraiz, Miguel A; Jordá, Julia; Cervera, Isabel; Peñaloza, Jorge; Vidart, Jose A; Martinez-Laso, Jorge

    2009-02-01

    Human leukocyte antigen (HLA)-G is a human nonclassic major histocompatibility complex (MHC) molecule characterized by a limited polymorphism and a low, restricted cell surface expression. HLA-G is constitutively expressed on trophoblasts, fetal endothelial, and epithelial cells, conferring alloimmune protection during pregnancy. HLA-G is also expressed in some malignancies and on macrophages and dendritic cells (DC) in tumoral and inflammatory diseases. Because DC constitute an important component in the immune response and umbilical cord blood has a different immune behavior than peripheral blood, the HLA-G protein profile and mRNA expression were investigated on the different DC subsets present in cord blood. Surface and intracellular expression have been reported on DC and HLA-G1, -G2, -G5, -G6, and -G7 transcripts were present. Different levels of soluble HLA-G were obtained from serum and correlated with gene expression. These data are in contrast with the data previously described for adult peripheral blood, where a limited pattern of HLA-G transcripts was reported; only in the maturation process were more isoforms present. These results demonstrate that DC from cord blood have a different behavior than DC in peripheral blood and could be in accordance with the results obtained in cord blood transplantation, where a lesser effect of graft-versus-host disease exists than in bone marrow transplantation.

  11. A Novel Molecular and Functional Stemness Signature Assessing Human Cord Blood-Derived Endothelial Progenitor Cell Immaturity

    PubMed Central

    Pascaud, Juliette; Driancourt, Catherine; Boyer-Di-Ponio, Julie; Uzan, Georges

    2016-01-01

    Endothelial Colony Forming Cells (ECFCs), a distinct population of Endothelial Progenitor Cells (EPCs) progeny, display phenotypic and functional characteristics of endothelial cells while retaining features of stem/progenitor cells. Cord blood-derived ECFCs (CB-ECFCs) have a high clonogenic and proliferative potentials and they can acquire different endothelial phenotypes, this requiring some plasticity. These properties provide angiogenic and vascular repair capabilities to CB-ECFCs for ischemic cell therapies. However, the degree of immaturity retained by EPCs is still confused and poorly defined. Consequently, to better characterize CB-ECFC stemness, we quantified their clonogenic potential and demonstrated that they were reprogrammed into induced pluripotent stem cells (iPSCs) more efficiently and rapidly than adult endothelial cells. Moreover, we analyzed the transcriptional profile of a broad gene panel known to be related to stem cells. We showed that, unlike mature endothelial cells, CB-ECFCs expressed genes involved in the maintenance of embryonic stem cell properties such as DNMT3B, GDF3 or SOX2. Thus, these results provide further evidence and tools to appreciate EPC-derived cell stemness. Moreover this novel stem cell transcriptional signature of ECFCs could help better characterizing and ranging EPCs according to their immaturity profile. PMID:27043207

  12. Enhanced cytotoxic function of natural killer and CD3+CD56+ cells in cord blood after culture.

    PubMed

    Tomchuck, Suzanne L; Leung, Wing H; Dallas, Mari H

    2015-01-01

    Rate of immune reconstitution directly correlates with the number of hematopoietic stem cells infused and is particularly delayed in patients undergoing cord blood (CB) transplantation (CBT). Methods to increase the number of CB natural killer (NK) cells have the potential to improve immune reconstitution after CBT. NK cells are the first lymphocyte population to recover after hematopoietic stem cells transplantation and are central to preventing early relapse and infection. CB NK cells are low in number and are known to be incomplete in maturation and require activation for effective function. Here, we report a clinically relevant ex vivo expansion method that increases the number of activated CB NK cells. We report a multilog increase in NK cell number when CB mononuclear cells are cocultured with IL-2 and IL-15. Furthermore, NK cells expressing activating receptors and adhesion molecules responsible for cytotoxicity increased throughout culture, whereas inhibitory receptor expression remained low. Additionally, cytotoxic function against various malignancies was significantly enhanced in cultured NK cells but not CD3(+)CD56(+) cells. These data suggest that ex vivo expansion and activation of CB NK cells is a clinically feasible and relevant approach to prevent early infection and relapse after CBT.

  13. microRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4+ T cells

    PubMed Central

    Weitzel, R. Patrick; Lesniewski, Mathew L.; Haviernik, Peter; Kadereit, Suzanne; Leahy, Patrick; Greco, Nicholas J.

    2009-01-01

    The reduced expression of nuclear factor of activated T cells-1 (NFAT1) protein in umbilical cord blood (UCB)–derived CD4+ T cells and the corresponding reduction in inflammatory cytokine secretion after stimulation in part underlies their phenotypic differences from adult blood (AB) CD4+ T cells. This muted response may contribute to the lower incidence and severity of high-grade acute graft-versus-host disease (aGVHD) exhibited by UCB grafts. Here we provide evidence that a specific microRNA, miR-184, inhibits NFAT1 protein expression elicited by UCB CD4+ T cells. Endogenous expression of miR-184 in UCB is 58.4-fold higher compared with AB CD4+ T cells, and miR-184 blocks production of NFAT1 protein through its complementary target sequence on the NFATc2 mRNA without transcript degradation. Furthermore, its negative effects on NFAT1 protein and downstream interleukin-2 (IL-2) transcription are reversed through antisense blocking in UCB and can be replicated via exogenous transfection of precursor miR-184 into AB CD4+ T cells. Our findings reveal a previously uncharacterized role for miR-184 in UCB CD4+ T cells and a novel function for microRNA in the early adaptive immune response. PMID:19286996

  14. Monocytes are Essential for the Neuroprotective Effect of Human Cord Blood Cells Following Middle Cerebral Artery Occlusion in Rat

    PubMed Central

    Womble, T. A.; Green, S.; Shahaduzzaman, M.; Grieco, J.; Sanberg, P. R.; Pennypacker, K. R.; Willing, A. E.

    2014-01-01

    Systemic administration of human umbilical cord blood (HUCB) mononuclear cells (MNC) following middle cerebral artery occlusion (MCAO) in the rat reduces infarct size and, more importantly, restores motor function. The HUCB cell preparation is composed of immature T-cells, B-cells, monocytes and stem cells. In this study we examined whether the beneficial effects of HUCB injection were attributable to one of these cell types. Male Sprague Dawley rats underwent permanent MCAO followed 48 hours later by intravenous administration of HUCB MNC preparations depleted of either CD14+ monocytes, CD133+ stem cells, CD2+ T-cells or CD19+ B cells. Motor function was measured prior to MCAO and 30 days post-stroke. When CD14+ monocytes were depleted from the HUCB MNC, activity and motor asymmetry were similar to the MCAO only treated animals. Monocyte depletion prevented HUCB cell treatment from reducing infarct size while monocyte enrichment was sufficient to reduce infarct size. Administration of monocyte-depleted HUCB cells did not suppress Iba1 labeling of microglia in the infarcted area relative to treatment with the whole HUCB preparation. These data demonstrate that the HUCB monocytes provide the majority of the efficacy in reducing infarct volume and promoting functional recovery. PMID:24472845

  15. Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis

    PubMed Central

    Ishige-Wada, Mika; Kwon, Sang-Mo; Eguchi, Masamichi; Hozumi, Katsuto; Iwaguro, Hideki; Matsumoto, Taro; Fukuda, Noboru; Mugishima, Hideo; Masuda, Haruchika; Asahara, Takayuki

    2016-01-01

    Notch signaling is involved in cell fate decisions during murine vascular development and hematopoiesis in the microenvironment of bone marrow. To investigate the close relationship between hematopoietic stem cells and human endothelial progenitor cells (EPCs) in the bone marrow niche, we examined the effects of Notch signals [Jagged-1 and Delta-like ligand (Dll)-1] on the proliferation and differentiation of human CD133+ cell-derived EPCs. We established stromal systems using HESS-5 murine bone marrow cells transfected with human Jagged-1 (hJagged-1) or human Dll-1 (hDll-1). CD133+ cord blood cells were co-cultured with the stromal cells for 7 days, and then their proliferation, differentiation, and EPC colony formation was evaluated. We found that hJagged-1 induced the proliferation and differentiation of CD133+ cord blood EPCs. In contrast, hDll-1 had little effect. CD133+ cells stimulated by hJagged-1 differentiated into CD31+/KDR+ cells, expressed vascular endothelial growth factor-A, and showed enhanced EPC colony formation compared with CD133+ cells stimulated by hDll-1. To evaluate the angiogenic properties of hJagged-1- and hDll-1-stimulated EPCs in vivo, we transplanted these cells into the ischemic hindlimbs of nude mice. Transplantation of EPCs stimulated by hJagged-1, but not hDll-1, increased regional blood flow and capillary density in ischemic hindlimb muscles. This is the first study to show that human Notch signaling influences EPC proliferation and differentiation in the bone marrow microenvironment. Human Jagged-1 induced the proliferation and differentiation of CD133+ cord blood progenitors compared with hDll-1. Thus, hJagged-1 signaling in the bone marrow niche may be used to expand EPCs for therapeutic angiogenesis. PMID:27846321

  16. Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro.

    PubMed

    Peters, Erica B; Liu, Betty; Christoforou, Nicolas; West, Jennifer L; Truskey, George A

    2015-10-01

    Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p < 0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications.

  17. Cord blood natural killer cells expressing a dominant negative TGF-β receptor: Implications for adoptive immunotherapy for glioblastoma.

    PubMed

    Yvon, Eric S; Burga, Rachel; Powell, Allison; Cruz, Conrad R; Fernandes, Rohan; Barese, Cecilia; Nguyen, Tuongvan; Abdel-Baki, Mohamed S; Bollard, Catherine M

    2017-03-01

    Cord blood (CB) natural killer (NK) cells are promising effector cells for tumor immunotherapy but are currently limited by immune-suppressive cytokines in the tumor microenvironment, such as transforming growth factor (TGF-β). We observed that TGF-β inhibits expression of activating receptors such as NKG2D and DNAM1 and decreases killing activity against glioblastoma tumor cells through inhibition of perforin secretion. To overcome the detrimental effects of TGF-β, we engrafted a dominant negative TGF-β receptor II (DNRII) on CB-derived NK cells by retroviral transduction and evaluated their ability to kill glioblastoma cells in the presence of TGF-β. After manufacture using Good Manufacturing Practice-compliant methodologies and transduction with DNRII, CB-derived DNRII-transduced NK cells expanded to clinically relevant numbers and retained both their killing ability and their secretion of interferon-γ upon activation. More important, these cells maintained both perforin expression and NKG2D/DNMA1 expression in the presence of TGF-β allowing for recognition and killing of glioblastoma tumor cells. Hence, NK cells expressing a DNRII should have a functional advantage over unmodified NK cells in the presence of TGF-β-secreting tumors and may be an important therapeutic approach for patients with cancer.

  18. Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro

    PubMed Central

    Jazedje, Tatiana; Secco, Mariane; Vieira, Natássia M; Zucconi, Eder; Gollop, Thomaz R; Vainzof, Mariz; Zatz, Mayana

    2009-01-01

    The dystrophin gene, located at Xp21, codifies dystrophin, which is part of a protein complex responsible for the membrane stability of muscle cells. Its absence on muscle causes Duchenne Muscular Dystrophy (DMD), a severe disorder, while a defect of muscle dystrophin causes Becker Muscular Dystrophy (DMB), a milder disease. The replacement of the defective muscle through stem cells transplantation is a possible future treatment for these patients. Our objective was to analyze the potential of CD34+ stem cells from umbilical cord blood to differentiate in muscle cells and express dystrophin, in vitro. Protein expression was analyzed by Immunofluorescence, Western Blotting (WB) and Reverse Transcriptase – Polymerase Chain Reaction (RT-PCR). CD34+ stem cells and myoblasts from a DMD affected patient started to fuse with muscle cells immediately after co-cultures establishment. Differentiation in mature myotubes was observed after 15 days and dystrophin-positive regions were detected through Immunofluorescence analysis. However, WB or RT-PCR analysis did not detect the presence of normal dystrophin in co-cultures of CD34+ and DMD or DMB affected patients' muscle cells. In contrast, some CD34+ stem cells differentiated in dystrophin producers' muscle cells, what was observed by WB, reinforcing that this progenitor cell has the potential to originate muscle dystrophin in vitro, and not just in vivo like reported before. PMID:19144182

  19. Promoting Effects of Heparin on ex vivo Expansion of Megakaryocytopoiesis from Human Cord Blood CD34+ Cells

    PubMed Central

    Maurer, Anne-Marie; Gezer, Altay

    2013-01-01

    Summary Introduction Transfusion of ex vivo expanded megakaryocytes (MKs) has been proposed to sustain platelet recovery after cord blood (CB) hematopoietic stem cell transplantation. In this study, we investigated the effects of heparin on ex vivo colony forming unit-megakaryocytes (CFU-MKs) and MKs expansion from CB CD34+ cells. Methods CB CD34+ cells were stimulated by a combination of thrombopoietin (TPO), stem cell factor (SCF), Flt3-Ligand (FL), IL-6, and IL-11 supplemented with autologous serum and heparin during 14 days. Expanded cells were analyzed by flow cytometry and cultured in a CFU-MK assay. Results Compared to control cultures, the 5-factor combination with heparin induced significantly (p ≤ 0.05) higher numbers of: CFU-MKs and CD41+ cells on days 7 and 14; CD41+ cells displaying hyperploidy levels (≥8N) on day 14; platelets on day 14. The culture-derived platelets were activated upon collagen stimulation. Conclusion Heparin can significantly enhance the stimulating effects of a combination of TPO, SCF, FL, IL-6, and IL-11 supplemented with autologous serum on CFU-MK, MK, and platelet production from CB CD34+ cells. This expansion system could represent a promising method to generate CFU-MKs and MKs cells for transfusion to sustain platelet reconstitution following CB transplantation. PMID:24273488

  20. Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice.

    PubMed

    Cheung, Alice M S; Nguyen, Long V; Carles, Annaick; Beer, Philip; Miller, Paul H; Knapp, David J H F; Dhillon, Kiran; Hirst, Martin; Eaves, Connie J

    2013-10-31

    Human cord blood (CB) offers an attractive source of cells for clinical transplants because of its rich content of cells with sustained repopulating ability in spite of an apparent deficiency of cells with rapid reconstituting ability. Nevertheless, the clonal dynamics of nonlimiting CB transplants remain poorly understood. To begin to address this question, we exposed CD34+ CB cells to a library of barcoded lentiviruses and used massively parallel sequencing to quantify the clonal distributions of lymphoid and myeloid cells subsequently detected in sequential marrow aspirates obtained from 2 primary NOD/SCID-IL2Rγ(-/-) mice, each transplanted with ∼10(5) of these cells, and for another 6 months in 2 secondary recipients. Of the 196 clones identified, 68 were detected at 4 weeks posttransplant and were often lympho-myeloid. The rest were detected later, after variable periods up to 13 months posttransplant, but with generally increasing stability throughout time, and they included clones in which different lineages were detected. However, definitive evidence of individual cells capable of generating T-, B-, and myeloid cells, for over a year, and self-renewal of this potential was also obtained. These findings highlight the caveats and utility of this model to analyze human hematopoietic stem cell control in vivo.

  1. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells.

    PubMed

    Butler, Jason M; Gars, Eric J; James, Daylon J; Nolan, Daniel J; Scandura, Joseph M; Rafii, Shahin

    2012-08-09

    Transplantation of ex vivo expanded human umbilical cord blood cells (hCB) only partially enhances the hematopoietic recovery after myelosuppressive therapy. Incubation of hCB with optimal combinations of cytokines and niche cells, such as endothelial cells (ECs), could augment the efficiency of hCB expansion. We have devised an approach to cultivate primary human ECs (hECs) in serum-free culture conditions. We demonstrate that coculture of CD34(+) hCB in direct cellular contact with hECs and minimal concentrations of thrombopoietin/Kit-ligand/Flt3-ligand resulted in a 400-fold expansion of total hematopoietic cells, 150-fold expansion of CD45(+)CD34(+) progenitor cells, and 23-fold expansion of CD45(+) Lin(-)CD34(hi+)CD45RA(-)CD49f(+) stem and progenitor cells over a 12-day period. Compared with cytokines alone, coculture of hCB with hECs permitted greater expansion of cells capable of multilineage engraftment and serial transplantation, hallmarks of long-term repopulating hematopoietic stem cells. Therefore, hECs establish a cellular platform for expansion of hematopoietic stem and progenitor cells and treatment of hematologic disorders.

  2. Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice

    PubMed Central

    Cheung, Alice M. S.; Nguyen, Long V.; Carles, Annaick; Beer, Philip; Miller, Paul H.; Knapp, David J. H. F.; Dhillon, Kiran; Hirst, Martin

    2013-01-01

    Human cord blood (CB) offers an attractive source of cells for clinical transplants because of its rich content of cells with sustained repopulating ability in spite of an apparent deficiency of cells with rapid reconstituting ability. Nevertheless, the clonal dynamics of nonlimiting CB transplants remain poorly understood. To begin to address this question, we exposed CD34+ CB cells to a library of barcoded lentiviruses and used massively parallel sequencing to quantify the clonal distributions of lymphoid and myeloid cells subsequently detected in sequential marrow aspirates obtained from 2 primary NOD/SCID-IL2Rγ−/− mice, each transplanted with ∼105 of these cells, and for another 6 months in 2 secondary recipients. Of the 196 clones identified, 68 were detected at 4 weeks posttransplant and were often lympho-myeloid. The rest were detected later, after variable periods up to 13 months posttransplant, but with generally increasing stability throughout time, and they included clones in which different lineages were detected. However, definitive evidence of individual cells capable of generating T-, B-, and myeloid cells, for over a year, and self-renewal of this potential was also obtained. These findings highlight the caveats and utility of this model to analyze human hematopoietic stem cell control in vivo. PMID:24030380

  3. Intra-osseous Co-transplantation of CD34-selected Umbilical Cord Blood and Mesenchymal Stromal Cells

    PubMed Central

    Metheny, Leland; Eid, Saada; Lingas, Karen; Reese, Jane; Meyerson, Howard; Tong, Alexander; de Lima, Marcos; Huang, Alex Y

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to support the growth and differentiation of hematopoietic stem cells (HSC). We hypothesized that intra-osseous (IO) co-transplantation of MSC and umbilical cord blood (UCB) may be effective in improving early HSC engraftment, as IO transplantation has been demonstrated to enhance UCB engraftment in NOD SCID-gamma (NSG) mice. Following non-lethal irradiation (300rads), 6 groups of NSG mice were studied: 1) intravenous (IV) UCB CD34+ cells, 2) IV UCB CD34+ cells and MSC, 3) IO UCB CD34+ cells, 4) IO UCB CD34+ cells and IO MSC, 5) IO UCB CD34+ cells and IV MSC, and 6) IV UCB CD34+ and IO MSC. Analysis of human-derived CD45+, CD3+, and CD19+ cells 6 weeks following transplant revealed the highest level of engraftment in the IO UCB plus IO MSC cohort. Bone marrow analysis of human CD13 and CD14 markers revealed no significant difference between cohorts. We observed that IO MSC and UCB co-transplantation led to superior engraftment of CD45+, CD3+ and CD19+ lineage cells in the bone marrow at 6 weeks as compared with the IV UCB cohort controls. Our data suggests that IO co-transplantation of MSC and UCB facilitates human HSC engraftment in NSG mice. PMID:27882356

  4. Extensive Ex Vivo Expansion of Functional Human Erythroid Precursors Established From Umbilical Cord Blood Cells by Defined Factors

    PubMed Central

    Huang, Xiaosong; Shah, Siddharth; Wang, Jing; Ye, Zhaohui; Dowey, Sarah N; Tsang, Kit Man; Mendelsohn, Laurel G; Kato, Gregory J; Kickler, Thomas S; Cheng, Linzhao

    2014-01-01

    There is a constant shortage of red blood cells (RBCs) from sufficiently matched donors for patients who need chronic transfusion. Ex vivo expansion and maturation of human erythroid precursors (erythroblasts) from the patients or optimally matched donors could represent a potential solution. Proliferating erythroblasts can be expanded from umbilical cord blood mononuclear cells (CB MNCs) ex vivo for 106–107-fold (in ~50 days) before proliferation arrest and reaching sufficient number for broad application. Here, we report that ectopic expression of three genetic factors (Sox2, c-Myc, and an shRNA against TP53 gene) associated with iPSC derivation enables CB-derived erythroblasts to undergo extended expansion (~1068-fold in ~12 months) in a serum-free culture condition without change of cell identity or function. These expanding erythroblasts maintain immature erythroblast phenotypes and morphology, a normal diploid karyotype and dependence on a specific combination of growth factors for proliferation throughout expansion period. When being switched to a terminal differentiation condition, these immortalized erythroblasts gradually exit cell cycle, decrease cell size, accumulate hemoglobin, condense nuclei and eventually give rise to enucleated hemoglobin-containing erythrocytes that can bind and release oxygen. Our result may ultimately lead to an alternative approach to generate unlimited numbers of RBCs for personalized transfusion medicine. PMID:24002691

  5. Changes in Cell Composition of Umbilical Cord Blood and Functional Activity of Hematopoietic Stem Cells during Cryogenic Storage and Repeated Freezing/Thawing Cycles.

    PubMed

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2016-02-01

    We analyzed changes in cell composition of umbilical cord blood and functional activity of hematopoietic stem cells during cryogenic storage and after repeated freezing/thawing cycles. It was found that repeated freezing/thawing cycles performed according to the optimal programmable freezing protocol did not significantly affect viability and functional activity of hematopoietic stem cells. When fast freezing program was used, the cells completely lost their capacity to form colonies in semisolid medium, despite high viability parameters in the test with 7-AAD.

  6. Pharmacological preconditioning for short-term ex vivo expansion of human umbilical cord blood hematopoietic stem cells by filgrastim

    PubMed Central

    Grigoriadis, Nikolaos G; Grigoriadis, Ioannis G; Markoula, Sofia; Paschopoulos, Minas; Zikopoulos, Konstantinos; Apostolakopoulos, Panagiotis Gr; Vizirianakis, Ioannis S; Georgiou, Ioannis

    2016-01-01

    Although umbilical cord blood (UCB) hematopoietic stem cell transplantation (UCBT) has emerged as a promising haematological reconstitution therapy for leukemias and other related disorders, the insufficient UCB stem cell dosage still hinders better clinical outcomes. Previous research efforts, by focusing on ex vivo UCB expansion capabilities have sought to benefit from well-known mechanisms of self-renewal characteristics of UCB stem cells. However, the long-term (> 21 days) in vitro culture period and the low neutrophil recovery significantly reduce the transplantability of such ex vivo expanded UCB stem cells. To overcome the latter hurdles in this study, a post-thaw, short-term ex vivo expansion methodology of UCB mononuclear (UCB-MN) and CD34+ cells has been established. Notably, such effort was achieved through pharmacological preconditioned of UCB cultures by filgrastim agent already used in the clinical setting. In crucial cell populations implicated in the promotion of functional engraftment, the progression of free survival rates (PFS), a marked increase of 6.65 to 9.34 fold for UCB-MN and 35 to 49 fold for CD34+ cells has been noticed. Overall, these results indicate that transplantation of pharmacologically-preconditioned ex vivo expansion of UCB stem and progenitor cells keep high promise upon transplantation to enhance therapeutic potential in everyday clinical practice. PMID:27335700

  7. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and...

  8. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and...

  9. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and...

  10. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and...

  11. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and...

  12. Placental/umbilical cord blood transplantation.

    PubMed

    Sirchia, G; Rebulla, P

    1999-08-01

    In this article we summarize the clinical outcome of unrelated placental/umbilical cord blood (CB) transplantation, discuss the biological characteristics of CB hematopoietic progenitor/stem cells (HPC) and balance the relative advantages and disadvantages of this therapy as compared with transplantation of other HPC sources. Moreover, we discuss CB banking programs at local, national and international levels. The data reported by the investigators of the New York Placental/Umbilical Cord Blood Program and of the Eurocord group indicate that the clinical outcome of allogeneic unrelated CB transplantation is significantly related to cell dose, being more effective in children than in adults, and is highly dependent on disease stage at transplantation. Furthermore, both studies show lower graft-versus-host disease (GvHD) frequency and severity and prolonged time intervals for platelet engraftment as compared to those of bone marrow and mobilized peripheral blood recipients. Although the data from the New York Placental/Umbilical Cord Blood Program seem to support a negative effect of HLA differences, the latter were not significantly associated with survival in the Eurocord series. Additional observations are therefore necessary to collect conclusive evidence in this regard. Currently available data show that CB contains a higher proportion of primitive HPC and that CB-HPC possess higher proliferation and expansion potentials as compared to adult bone marrow. Furthermore, there is some evidence indicating that CB-HPC are more adequate than HPC from other sources for genetic manipulation and gene therapy. Despite the significant advances in the knowledge of the biology and in the clinical use of CB, a number of problems remain unsolved, including the standardization of banking procedures and unit quality and the development of suitable protocols for transplantation of adult patients.

  13. Development of a xeno-free autologous culture system for endothelial progenitor cells derived from human umbilical cord blood.

    PubMed

    Moon, Sung-Hwan; Kim, Sun-Mi; Park, Soon-Jung; Kim, Hojin; Bae, Daekyeong; Choi, Yong-Soo; Chung, Hyung-Min

    2013-01-01

    Despite promising preclinical outcomes in animal models, a number of challenges remain for human clinical use. In particular, expanding a large number of endothelial progenitor cells (EPCs) in vitro in the absence of animal-derived products is the most critical hurdle remaining to be overcome to ensure the safety and efficiency of human therapy. To develop in vitro culture conditions for EPCs derived from human cord blood (hCB-EPCs), we isolated extracts (UCE) and collagen (UC-collagen) from umbilical cord tissue to replace their animal-derived counterparts. UC-collagen and UCE efficiently supported the attachment and proliferation of hCB-EPCs in a manner comparable to that of animal-derived collagen in the conventional culture system. Our developed autologous culture system maintained the typical characteristics of hCB-EPCs, as represented by the expression of EPC-associated surface markers. In addition, the therapeutic potential of hCB-EPCs was confirmed when the transplantation of hCB-EPCs cultured in this autologous culture system promoted limb salvage in a mouse model of hindlimb ischemia and was shown to contribute to attenuating muscle degeneration and fibrosis. We suggest that the umbilical cord represents a source for autologous biomaterials for the in vitro culture of hCB-EPCs. The main characteristics and therapeutic potential of hCB-EPCs were not compromised in developed autologous culture system. The absence of animal-derived products in our newly developed in vitro culture removes concerns associated with secondary contamination. Thus, we hope that this culture system accelerates the realization of therapeutic applications of autologous hCB-EPCs for human vascular diseases.

  14. Umbilical cord cell banking-implications for the future

    SciTech Connect

    Gunning, Jennifer . E-mail: gunning@cf.ac.uk

    2005-09-01

    The first successful cord cell transplant to a sibling with Fanconi's anaemia took place 15 years ago. This proven utility of cord blood led to the establishment of cord blood banks both private and public and there are now nearly 100 cord blood banks worldwide. It is estimated that over 200,000 cord blood units (CBU) are held by the private sector and over 160,000 CBU are registered with the largest public cord blood registry. There is a tension between private cord blood banks, which store CBU for autologous or family use, and public banks, which store CBU for unrelated use and the ethics of private cord blood storage has been questioned. But more general ethical questions also arise regarding ownership, consent, confidentiality, costs and quality standards and patenting. In looking at these ethical issues one also needs to look at potential future use of cord blood stem cells. Up until now cord cells have principally been used in the treatment of paediatric blood and immune disorders. Improvements in cell expansion technology will make CBU more appropriate also for treating adults with such disorders. However, it has also been demonstrated that cord blood stem cells have the capacity to differentiate into other types of cells, neuronal, bone, epithelial and muscle which would have a future role to play in cell therapy and regenerative medicine.

  15. Umbilical cord cell banking--implications for the future.

    PubMed

    Gunning, Jennifer

    2005-09-01

    The first successful cord cell transplant to a sibling with Fanconi's anaemia took place 15 years ago. This proven utility of cord blood led to the establishment of cord blood banks both private and public and there are now nearly 100 cord blood banks worldwide. It is estimated that over 200,000 cord blood units (CBU) are held by the private sector and over 160,000 CBU are registered with the largest public cord blood registry. There is a tension between private cord blood banks, which store CBU for autologous or family use, and public banks, which store CBU for unrelated use and the ethics of private cord blood storage has been questioned. But more general ethical questions also arise regarding ownership, consent, confidentiality, costs and quality standards and patenting. In looking at these ethical issues one also needs to look at potential future use of cord blood stem cells. Up until now cord cells have principally been used in the treatment of paediatric blood and immune disorders. Improvements in cell expansion technology will make CBU more appropriate also for treating adults with such disorders. However, it has also been demonstrated that cord blood stem cells have the capacity to differentiate into other types of cells, neuronal, bone, epithelial and muscle which would have a future role to play in cell therapy and regenerative medicine.

  16. Effect of Cord Blood Processing on Transplant Outcomes after Single Myeloablative Umbilical Cord Blood Transplantation

    PubMed Central

    Ballen, Karen K.; Logan, Brent R.; Laughlin, Mary J.; He, Wensheng; Ambruso, Daniel R.; Armitage, Susan E.; Beddard, Rachel L.; Bhatla, Deepika; Hwang, William Y.K.; Kiss, Joseph E.; Koegler, Gesine; Kurtzberg, Joanne; Nagler, Arnon; Oh, David; Petz, Lawrence D.; Price, Thomas H.; Quinones, Ralph R.; Ratanatharathorn, Voravit; Rizzo, J. Douglas; Sazama, Kathleen; Scaradavou, Andromachi; Schuster, Michael W.; Sender, Leonard S.; Shpall, Elizabeth J.; Spellman, Stephen R.; Sutton, Millicent; Weitekamp, Lee Ann; Wingard, John R.; Eapen, Mary

    2015-01-01

    Variations in cord blood manufacturing and administration are common, and the optimal practice, not known. We compared processing and banking practices at 16 public cord blood banks (CBB) in the United States, and assessed transplant outcomes on 530 single umbilical cord blood (UCB) myeloablative transplantations for hematologic malignancies, facilitated by these banks. UCB banking practices were separated into three mutually exclusive groups based on whether processing was automated or manual; units were plasma and red blood cell reduced or buffy coat production method or plasma reduced. Compared to the automated processing system for units, the day-28 neutrophil recovery was significantly lower after transplantation of units that were manually processed and plasma reduced (red cell replete) (odds ratio [OR] 0.19 p=0.001) or plasma and red cell reduced (OR 0.54, p=0.05). Day-100 survival did not differ by CBB. However, day-100 survival was better with units that were thawed with the dextran-albumin wash method compared to the “no wash” or “dilution only” techniques (OR 1.82, p=0.04). In conclusion, CBB processing has no significant effect on early (day 100) survival despite differences in kinetics of neutrophil recovery. PMID:25543094

  17. Cell-Based Regenerative Strategies for Treatment of Diabetic Skin Wounds, a Comparative Study between Human Umbilical Cord Blood-Mononuclear Cells and Calves' Blood Haemodialysate

    PubMed Central

    El-Mesallamy, Hala O.; Diab, Mohamed R.; Hamdy, Nadia M.; Dardir, Sarah M.

    2014-01-01

    Background Diabetes-related foot problems are bound to increase. However, medical therapies for wound care are limited; therefore, the need for development of new treatment modalities to improve wound healing in diabetic patients is essential and constitutes an emerging field of investigation. Methods Animals were randomly divided into 8 groups (I–VIII) (32 rats/group), all were streptozotocin (STZ)-induced diabetics except groups III and VIII were non-diabetic controls. The study comprised two experiments; the first included 3 groups. Group I injected with mononuclear cells (MNCs) derived from human umbilical cord blood (HUCB), group II a diabetic control group (PBS i.v). The second experiment included 5 groups, groups IV, V, and VI received topical HUCB-haemodialysate (HD), calves' blood HD, and solcoseryl, respectively. Group VII was the diabetic control group (topical saline). Standard circular wounds were created on the back of rats. A sample of each type of HD was analyzed using the high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) system. Wound area measurement and photography were carried out every 4 days. Plasma glucose, catalase (CAT), malondialdehyde (MDA), nitric oxide (NO) and platelets count were assessed. Wound samples were excised for hydroxyproline (HP) and histopathological study. Results Treatment with HUCB MNCs or HUCB-HD resulted in wound contraction, increased CAT, NO, platelets count, body weights, and HP content, and decreased MDA and glucose. Conclusion Systemic administration of HUCB MNCs and topical application of the newly prepared HUCB-HD or calves' blood HD significantly accelerated the rate of diabetic wound healing and would open the possibility of their future use in regenerative medicine. PMID:24643010

  18. CD45 tyrosine phosphatase inhibits erythroid differentiation of umbilical cord blood CD34+ cells associated with selective inactivation of Lyn.

    PubMed

    Harashima, Akira; Suzuki, Motoyuki; Okochi, Ayumi; Yamamoto, Mayuko; Matsuo, Yoshinobu; Motoda, Ryuichi; Yoshioka, Tamotsu; Orita, Kunzo

    2002-12-15

    CD45 is a membrane-associated tyrosine phosphatase that dephosphorylates Src family kinases and Janus kinases (JAKs). To clarify the role of CD45 in hematopoietic differentiation, we examined the effects of anti-CD45 monoclonal antibody NU-L(PAN) on the proliferation and differentiation of umbilical cord blood CD34(+) cells. NU-L(PAN) showed a prominent inhibition of the proliferation of CD34(+) cells induced by the mouse bone marrow stromal cell line MS-5 or erythropoietin (EPO). However, NU-L(PAN) did not affect the proliferation induced by interleukin 3. NU-L(PAN) also inhibited MS-5-induced or EPO-induced erythroid differentiation of CD34(+) cells. The cells stimulated with EPO in the presence of NU-L(PAN) morphologically showed differentiation arrest at the stage of basophilic erythroblasts after 11 days of culture, whereas the cells treated with EPO without NU-L(PAN) differentiated into mature red blood cells. The Src family kinase Lyn and JAK2 were phosphorylated when erythroblasts obtained after 4 days of culture of CD34(+) cells in the presence of EPO were restimulated with EPO. Overnight NU-L(PAN) treatment before addition of EPO reduced the phosphorylation of Lyn but not that of JAK2. Simultaneously, the enhancement of Lyn kinase activity after restimulation with EPO was reduced by NU-L(PAN) treatment. These results indicate selective inactivation of Lyn by CD45 activated with NU-L(PAN) and could partly explain the inhibitory mechanism on erythropoiesis exhibited by EPO. These findings suggest that CD45 may play a pivotal role in erythropoiesis.

  19. Plasma Derived From Human Umbilical Cord Blood Modulates Mitogen-Induced Proliferation of Mononuclear Cells Isolated From the Peripheral Blood of ALS Patients.

    PubMed

    Eve, David J; Ehrhart, Jared; Zesiewicz, Theresa; Jahan, Israt; Kuzmin-Nichols, Nicole; Sanberg, Cyndy Davis; Gooch, Clifton; Sanberg, Paul R; Garbuzova-Davis, Svitlana

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration of motor neurons in the spinal cord and brain. This disease clinically manifests as gradual muscular weakness and atrophy leading to paralysis and death by respiratory failure. While multiple interdependent factors may contribute to the pathogenesis of ALS, increasing evidence shows the possible presence of autoimmune mechanisms that promote disease progression. The potential use of plasma derived from human umbilical cord blood (hUCB) as a therapeutic tool is currently in its infancy. The hUCB plasma is rich in cytokines and growth factors that are required for growth and survival of cells during hematopoiesis. In this study, we investigated the effects of hUCB plasma on the mitogen-induced proliferation of mononuclear cells (MNCs) isolated from the peripheral blood of ALS patients and apoptotic activity by detection of caspase 3/7 expression of the isolated MNCs in vitro. Three distinct responses to phytohemagglutinin (PHA)-induced proliferation of MNCs were observed, which were independent of age, disease duration, and the ALS rating scale: Group I responded normally to PHA, Group II showed no response to PHA, while Group III showed a hyperactive response to PHA. hUCB plasma attenuated the hyperactive response (Group III) and potentiated the normal response in Group I ALS patients, but did not alter that of the nonresponders to PHA (Group II). The elevated activity of caspase 3/7 observed in the MNCs from ALS patients was significantly reduced by hUCB plasma treatment. Thus, study results showing different cell responses to mitogen suggest alteration in lymphocyte functionality in ALS patients that may be a sign of immune deficiency in the nonresponders and autoimmunity alterations in the hyperactive responders. The ability of hUCB plasma to modulate the mitogen cell response and reduce caspase activity suggests that the use of hUCB plasma alone, or with

  20. Hypoxia/hypercapnia-induced adaptation maintains functional capacity of cord blood stem and progenitor cells at 4°C.

    PubMed

    Vlaski, Marija; Negroni, Luc; Kovacevic-Filipovic, Milica; Guibert, Christelle; Brunet de la Grange, Philippe; Rossignol, Rodrigue; Chevaleyre, Jean; Duchez, Pascale; Lafarge, Xavier; Praloran, Vincent; Schmitter, Jean-Marie; Ivanovic, Zoran

    2014-12-01

    We analyzed the effect of exposure to hypoxic/hypercapnic (HH) gas mixture (5% O2 /9% CO2 ) on the maintenance of functional cord blood CD34(+) hematopoietic stem and progenitor cells in severe hypothermia (4°C) employing the physiological and proteomic approaches. Ten-day exposure to HH maintained the Day 0 (D-0) level of hematopoietic stem cells as detected in vivo on the basis of hematopoietic repopulation of immunodeficient mice-short-term scid repopulating cells (SRC). Conversely, in the atmospheric air (20% O2 /0.05% CO2 ), usual condition used for cell storage at 4°C, stem cell activity was significantly decreased. Also, HH doubled the survival of CD34(+) cells and committed progenitors (CFCs) with respect to the atmospheric air (60% vs. 30%, respectively). Improved cell maintenance in HH was associated with higher proportion of aldehyde dehydrogenase (ALDH) positive cells. Cell-protective effects are associated with an improved maintenance of the plasma and mitochondrial membrane potential and with a conversion to the glycolytic energetic state. We also showed that HH decreased apoptosis, despite a sustained ROS production and a drop of ATP amount per viable cell. The proteomic study revealed that the global protein content was better preserved in HH. This analysis identified: (i) proteins sensitive or insensitive to hypothermia irrespective of the gas phase, and (ii) proteins related to the HH cell-protective effect. Among them are some protein families known to be implicated in the prolonged survival of hibernating animals in hypothermia. These findings suggest a way to optimize short-term cell conservation without freezing.

  1. Regulation of human umbilical cord blood-derived multi-potent stem cells by autogenic osteoclast-based niche-like structure

    SciTech Connect

    Sun, Bo; Jeong, Yun-Hyeok; Jung, Ji-Won; Seo, Kwangwon; Lee, Yong-Soon ||; Kang, Kyung-Sun ||. E-mail: kangpub@snu.ac.kr

    2007-05-25

    Stem cell niches provide the micro-environment for the development of stem cells. Under our culturing regimen, a kind of osteoclast-centralized structure supports the proliferation of MSCs, derived from human cord blood, once they reside on osteoclasts. MSCs in this structure expressed Oct4 which is a marker of embryonic stem cells. Floating daughter cells of MSCs colony showed abilities to differentiate into osteocyte, adipocyte, and neuronal progenitor cells. Compared with the easy senescence of MSCs without this niche-like structure in vitro, these results suggested that osteoclasts might play an important role the development and maintenance of Umbilical cord blood (UCB)-derived MSCs and might provide a means to expand UCB-MSCs in vitro, more easily, through a stem cell niche-like structure.

  2. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial.

    PubMed

    de Lima, M; McMannis, J; Gee, A; Komanduri, K; Couriel, D; Andersson, B S; Hosing, C; Khouri, I; Jones, R; Champlin, R; Karandish, S; Sadeghi, T; Peled, T; Grynspan, F; Daniely, Y; Nagler, A; Shpall, E J

    2008-05-01

    The copper chelator tetraethylenepentamine (TEPA; StemEx) was shown to attenuate the differentiation of ex vivo cultured hematopoietic cells resulting in preferential expansion of early progenitors. A phase I/II trial was performed to test the feasibility and safety of transplantation of CD133+ cord blood (CB) hematopoietic progenitors cultured in media containing stem cell factor, FLT-3 ligand, interleukin-6, thrombopoietin and TEPA. Ten patients with advanced hematological malignancies were transplanted with a CB unit originally frozen in two fractions. The smaller fraction was cultured ex vivo for 21 days and transplanted 24 h after infusion of the larger unmanipulated fraction. All but two units contained <2 x 10(7) total nucleated cells (TNCs) per kilogram pre-expansion. All donor-recipient pairs were mismatched for one or two HLA loci. Nine patients were beyond first remission; median age and weight were 21 years and 68.5 kg. The average TNCs fold expansion was 219 (range, 2-620). Mean increase of CD34+ cell count was 6 (over the CD34+ cell content in the entire unit). Despite the low TNCs per kilogram infused (median=1.8 x 10(7)/kg), nine patients engrafted. Median time to neutrophil and platelet engraftment was 30 (range, 16-46) and 48 (range, 35-105) days. There were no cases of grades 3-4 acute graft-versus-host disease (GVHD) and 100-day survival was 90%. This strategy is feasible.

  3. Evaluation of volume and total nucleated cell count as cord blood selection parameters: a receiver operating characteristic curve modeling approach.

    PubMed

    Jaime-Pérez, José C; Monreal-Robles, Roberto; Rodríguez-Romo, Laura N; Mancías-Guerra, Consuelo; Herrera-Garza, José Luís; Gómez-Almaguer, David

    2011-11-01

    The objective of the study was to evaluate the current standard practice of using volume and total nucleated cell (TNC) count for the selection of cord blood (CB) units for cryopreservation and further transplantation. Data on 794 CB units whose CD34+ cell content was determined by flow cytometry were analyzed by using a receiver operating characteristic (ROC) curve model to validate the performance of volume and TNC count for the selection of CB units with grafting purposes. The TNC count was the best parameter to identify CB units having 2 × 10(6) or more CD34+ cells, with an area under the ROC curve of 0.828 (95% confidence interval, 0.800-0.856; P < .01) and an efficiency of 75.4%. Combination of parameters (TNC/mononuclear cells [MNCs], efficiency 74.7%; TNC/volume, efficiency 68.9%; and volume/MNCs, efficiency 68.3%) did not lead to improvement in CB selection. All CB units having a TNC count of 8 × 10(8) or more had the required CD34+ cell dose for patients weighing 10 kg or less.

  4. Effects of Intravenous Administration of Human Umbilical Cord Blood Stem Cells in 3-Acetylpyridine-Lesioned Rats

    PubMed Central

    Calatrava-Ferreras, Lucía; Gonzalo-Gobernado, Rafael; Herranz, Antonio S.; Reimers, Diana; Montero Vega, Teresa; Jiménez-Escrig, Adriano; Richart López, Luis Alberto; Bazán, Eulalia

    2012-01-01

    Cerebellar ataxias include a heterogeneous group of infrequent diseases characterized by lack of motor coordination caused by disturbances in the cerebellum and its associated circuits. Current therapies are based on the use of drugs that correct some of the molecular processes involved in their pathogenesis. Although these treatments yielded promising results, there is not yet an effective therapy for these diseases. Cell replacement strategies using human umbilical cord blood mononuclear cells (HuUCBMCs) have emerged as a promising approach for restoration of function in neurodegenerative diseases. The aim of this work was to investigate the potential therapeutic activity of HuUCBMCs in the 3-acetylpyridine (3-AP) rat model of cerebellar ataxia. Intravenous administered HuUCBMCs reached the cerebellum and brain stem of 3-AP ataxic rats. Grafted cells reduced 3-AP-induced neuronal loss promoted the activation of microglia in the brain stem, and prevented the overexpression of GFAP elicited by 3-AP in the cerebellum. In addition, HuUCBMCs upregulated the expression of proteins that are critical for cell survival, such as phospho-Akt and Bcl-2, in the cerebellum and brain stem of 3-AP ataxic rats. As all these effects were accompanied by a temporal but significant improvement in motor coordination, HuUCBMCs grafts can be considered as an effective cell replacement therapy for cerebellar disorders. PMID:23150735

  5. Concise Review: Umbilical Cord Blood Transplantation: Past, Present, and Future

    PubMed Central

    Munoz, Javier; Rezvani, Katayoun; Hosing, Chitra; Bollard, Catherine M.; Oran, Betul; Olson, Amanda; Popat, Uday; Molldrem, Jeffrey; McNiece, Ian K.; Shpall, Elizabeth J.

    2014-01-01

    Allogeneic hematopoietic stem cell transplantation is an important treatment option for fit patients with poor-risk hematological malignancies; nevertheless, the lack of available fully matched donors limits the extent of its use. Umbilical cord blood has emerged as an effective alternate source of hematopoietic stem cell support. Transplantation with cord blood allows for faster availability of frozen sample and avoids invasive procedures for donors. In addition, this procedure has demonstrated reduced relapse rates and similar overall survival when compared with unrelated allogeneic hematopoietic stem cell transplantation. The limited dose of CD34-positive stem cells available with single-unit cord transplantation has been addressed by the development of double-unit cord transplantation. In combination with improved conditioning regimens, double-unit cord transplantation has allowed for the treatment of larger children, as well as adult patients with hematological malignancies. Current excitement in the field revolves around the development of safer techniques to improve homing, engraftment, and immune reconstitution after cord blood transplantation. Here the authors review the past, present, and future of cord transplantation. PMID:25378655

  6. Comparison of transplant outcomes from matched sibling bone marrow or peripheral blood stem cell and unrelated cord blood in patients 50 years or older.

    PubMed

    Konuma, Takaaki; Tsukada, Nobuhiro; Kanda, Junya; Uchida, Naoyuki; Ohno, Yuju; Miyakoshi, Shigesaburo; Kanamori, Heiwa; Hidaka, Michihiro; Sakura, Toru; Onizuka, Makoto; Kobayashi, Naoki; Sawa, Masashi; Eto, Tetsuya; Matsuhashi, Yoshiko; Kato, Koji; Ichinohe, Tatsuo; Atsuta, Yoshiko; Miyamura, Koichi

    2016-05-01

    Older recipient and donor age were associated with higher incidences of severe graft-versus-host disease (GVHD) and mortality after allogeneic hematopoietic stem cell transplantation from matched sibling donors (MSDs) and matched unrelated donors. Since a lower incidence of severe GVHD is advantageous in unrelated cord blood transplantation (CBT), a higher incidence of GVHD using older MSDs could be overcome using cord blood for older patients. We retrospectively analyzed Japanese registration data of 2,091 patients with acute myeloid leukemia, acute lymphoblastic leukemia (ALL), and myelodysplastic syndrome aged 50 years or older who underwent MSD bone marrow transplantation (BMT) (n = 319), MSD peripheral blood stem cell transplantation (PBSCT) (n = 462), or unrelated CBT (n = 1,310) between 2007 and 2012. Median age of MSD was 56 (range, 38-74) years. Compared with CBT, the risk of developing extensive chronic GVHD was higher after BMT (hazard ratio [HR], 2.00; P = 0.001) or PBSCT (HR, 2.38; P < 0.001), and transplant-related mortality was lower after BMT (HR, 0.61; P < 0.001) or PBSCT (HR, 0.63; P < 0.001). Relapse rates were not significant difference between three groups. Although overall mortality was lower after BMT (HR, 0.67; P < 0.001) or PBSCT (HR, 0.75; P = 0.002) compared with CBT, the rates of a composite endpoint of GVHD-free, relapse-free survival (GRFS) were not significant difference between three groups. These data showed that MSDs remain the best donor source for older patients, but CBT led to similar GRFS to BMT and PBSCT.

  7. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    SciTech Connect

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae; Chang, Jong Wook; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Kim, Jae-Sung; Jeon, Hong Bae

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  8. Expressed antibody repertoires in human cord blood cells: 454 sequencing and IMGT/HighV-QUEST analysis of germline gene usage, junctional diversity, and somatic mutations.

    PubMed

    Prabakaran, Ponraj; Chen, Weizao; Singarayan, Maria G; Stewart, Claudia C; Streaker, Emily; Feng, Yang; Dimitrov, Dimiter S

    2012-05-01

    Human cord blood cell-derived IgM antibodies are important for the neonate immune responses and construction of germline-based immunoglobulin libraries. Several previous studies of a relatively small number of sequences found that they exhibit restrictions in the usage of germline genes and in the diversity of the variable heavy chain complementarity determining region 3 compared to adults. To further characterize such restrictions on a larger scale and to compare the early B-cell diversity to adult IgM repertoires, we performed 454 sequencing and IMGT/HighV-QUEST analysis of cord blood IG libraries from two babies and determined germline gene usage, V-D-J rearrangement, VHCDR3 diversity, and somatic mutations to characterize human neonate repertoire. Most of the germline subgroups were identified with frequencies comparable to those present in the adult IgM repertoire except for the IGHV1-2 gene that was preferentially expressed in the cord blood cells. The gene usage diversity contributed to 1,430 unique IGH V-D-J rearrangement patterns while the exonuclease trimming and N region addition at the V-D-J junctions along with gene diversity created a wide range of VHCDR3 with different lengths and sequence variability. We observed a lower degree of somatic mutations in the CDR and framework regions of antibodies from cord blood cells compared to adults. These results provide insights into the characteristics of human cord blood antibody repertoires, which have gene usage diversity and VHCDR3 lengths similar to that of the adult IgM repertoire but differ significantly in some of the gene usages, V-D-J rearrangements, junctional diversity, and somatic mutations.

  9. Percutaneous umbilical cord blood sampling - slideshow

    MedlinePlus

    ... htm Percutaneous umbilical cord blood sampling - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  10. First Autologous Cell Therapy of Cerebral Palsy Caused by Hypoxic-Ischemic Brain Damage in a Child after Cardiac Arrest—Individual Treatment with Cord Blood

    PubMed Central

    Jensen, A.; Hamelmann, E.

    2013-01-01

    Each year, thousands of children incur brain damage that results in lifelong sequelae. Therefore, based on experimental evidence, we explored the therapeutic potential of human cord blood, known to contain stem cells, to examine the functional neuroregeneration in a child with cerebral palsy after cardiac arrest. The boy, whose cord blood was stored at birth, was 2.5 years old and normally developed when global ischemic brain damage occurred resulting in a persistent vegetative state. Nine weeks later, he received autologous cord blood (91.7 mL, cryopreserved, 5.75 × 10e8 mononuclear cells) intravenously. Active rehabilitation (physio- and ergotherapy) was provided daily, follow-up at 2, 5, 12, 24, 30, and 40 months. At 2-months follow-up the boy's motor control improved, spastic paresis was largely reduced, and eyesight was recovered, as did the electroencephalogram. He smiled when played with, was able to sit and to speak simple words. At 40 months, independent eating, walking in gait trainer, crawling, and moving from prone position to free sitting were possible, and there was significantly improved receptive and expressive speech competence (four-word sentences, 200 words). This remarkable functional neuroregeneration is difficult to explain by intense active rehabilitation alone and suggests that autologous cord blood transplantation may be an additional and causative treatment of pediatric cerebral palsy after brain damage. PMID:23762741

  11. Efficient Generation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood in Stroma-Free Liquid Culture

    PubMed Central

    van den Broek, Maries; Nuvolone, Mario; Dannenmann, Stefanie; Stieger, Bruno; Rapold, Reto; Konrad, Daniel; Rubin, Arnold; Bertino, Joseph R.; Aguzzi, Adriano; Heikenwalder, Mathias; Knuth, Alexander K.

    2010-01-01

    Background Haematopoiesis is sustained by haematopoietic (HSC) and mesenchymal stem cells (MSC). HSC are the precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The generation of MSC from umbilical cord blood (UCB) is possible, but with low and unpredictable success. Here we describe a novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC. Methods and Findings UCB-derived mononuclear cells (MNC) or selected CD34+ cells were grown in liquid culture in the presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7) which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB units (5 MNC-derived and 3 CD34+ selected cells). Expanded MSC displayed a fibroblast-like morphology, expressed several stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin) but were negative for haematopoietic cell markers (CD45, CD34 and CD14). MSC stemness phenotype and their differentiation capacity in vitro before and after high dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin+, CD133+ and >95% were positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture passages. Further, we generated MSC from peripheral blood (PB) MNC of 8 healthy volunteers. In all cases, the resulting MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies. Conclusions This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB enabling so far unmet therapeutic

  12. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  13. High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34(3+) hematopoietic stem/progenitor cells from human umbilical cord blood

    PubMed Central

    1993-01-01

    Umbilical cord blood is rich in hematopoietic stem and progenitor cells and has recently been used successfully in the clinic as an alternative source of engrafting and marrow repopulating cells. With the likelihood that cord blood stem/progenitor cells will be used for gene therapy to correct genetic disorders, we evaluated if a TK-neo gene could be directly transduced in a stable manner into single isolated subsets of purified immature hematopoietic cells that demonstrate self-renewed ability as estimated by colony replating capacity. Sorted CD34(3+) cells from cord blood were prestimulated with erythropoietin (Epo), steel factor (SLF), interleukin (IL)-3, and granulocyte-macrophage colony stimulating factor (GM-CSF) and transduced with the gene in two ways. CD34(3+) cells were incubated with retroviral-containing supernatant from TK-neo vector-producing cells, washed, and plated directly or resorted as CD34(3+) cells into single wells containing a single cell or 10 cells. Alternatively, CD34(3+) cells were sorted as a single cell/well and then incubated with viral supernatant. These cells were cultured with Epo, SLF, IL-3, and GM-CSF +/- G418. The TK-neo gene was introduced at very high efficiency into low numbers of or isolated single purified CD34(3+) immature hematopoietic cells without stromal cells as a source of virus or accessory cells. Proviral integration was detected in primary G418-resistant(R) colonies derived from single immature hematopoietic cells, and in cells from replated colonies derived from G418R-colony forming unit-granulocyte erythroid macrophage megakaryocyte (CFU-GEMM) and -high proliferative potential colony forming cells (HPP-CFC). This demonstrates stable expression of the transduced gene into single purified stem/progenitor cells with replating capacity, results that should be applicable for future clinical studies that may utilize selected subsets of stem/progenitor cells for gene therapy. PMID:7504056

  14. Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering

    PubMed Central

    Gómez-Leduc, Tangni; Hervieu, Magalie; Legendre, Florence; Bouyoucef, Mouloud; Gruchy, Nicolas; Poulain, Laurent; de Vienne, Claire; Herlicoviez, Michel; Demoor, Magali; Galéra, Philippe

    2016-01-01

    Umbilical cord blood (UCB) is a promising alternative source of mesenchymal stem cells (MSCs), because UCB-MSCs are abundant and harvesting them is a painless non-invasive procedure. Potential clinical applications of UCB-MSCs have been identified, but their ability for chondrogenic differentiation has not yet been fully evaluated. The aim of our work was to characterize and determine the chondrogenic differentiation potential of human UCB-MSCs (hUCB-MSCs) for cartilage tissue engineering using an approach combining 3D culture in type I/III collagen sponges and chondrogenic factors. Our results showed that UCB-MSCs have a high proliferative capacity. These cells differentiated easily into an osteoblast lineage but not into an adipocyte lineage. Furthermore, BMP-2 and TGF-β1 potentiated chondrogenic differentiation, as revealed by a strong increase in mature chondrocyte-specific mRNA (COL2A1, COL2B, ACAN) and protein (type II collagen) markers. Although growth factors increased the transcription of hypertrophic chondrocyte markers such as COL10A1 and MMP13, the cells present in the neo-tissue maintained their phenotype and did not progress to terminal differentiation and mineralization of the extracellular matrix after subcutaneous implantation in nude mice. Our study demonstrates that our culture model has efficient chondrogenic differentiation, and that hUCB-MSCs can be a reliable source for cartilage tissue engineering. PMID:27604951

  15. Collecting and analyzing cord blood gases.

    PubMed

    Riley, R J; Johnson, J W

    1993-03-01

    The analysis of cord blood respiratory gases and acid-base values is an important adjunct for determining the extent and cause of fetal acidosis at delivery. Although the quality and reliability of the blood gas instruments have improved dramatically, constant vigilance still is required and mandated to ensure accurate and precise results. Failure to control the many sampling and analysis variables that affect cord blood gas results will limit their usefulness. Most preanalytic problems become a minor concern when the blood gas analyses are done within a few minutes after obtaining the sample. Comparison of data among centers requires, not only that reference ranges be stated, but also that various corrections or factors that were used to adjust the results be described. Perhaps, a consensus could be reached to establish the optimal method of collection and the best methods for analyzing and reporting the results from cord blood gas and acid-base studies.

  16. [Anti-mouse CD122 antibody promotes the hematopoietic repopulating capacity of cord blood CD34⁺ cells in NOD/SCID mice].

    PubMed

    Sheng, Men-Yao; Shi, Hui; Xing, Wen; Wang, Wen-Jun; Si, Xiao-Hui; Bai, Jie; Yuan, Wei-Ping; Zhou, Yuan; Yang, Feng-Chun

    2014-12-01

    The study was aimed to investigate the effect of anti-mouse CD122 antibody on the hematopoietic repopulating capacity of cord blood CD34⁺ cells in a humanized murine model-non obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. After sublethal irradiation with γ-ray, NOD/SCID mice were intraperitoneally injected with 200 µg mouse isotype control antibody or anti-mouse CD122 antibody. Human cord blood CD34⁺ cells or phosphate-buffered saline (PBS) were injected via the tail vein at 6-8 hours later. Cohort of the mice injected with anti-mice CD122 antibody or control antibody alone were sacrificed at different time point (at week 2, 3, and 4 weeks) after the injection, and the percentage of NK cells in the peripheral blood was analyzed by flow cytometry. To evaluate the effect of anti-mouse CD122 antibody on the repopulating capacity of cord blood CD34⁺ cells in the recipient mice, phenotype analysis was performed in the bone marrow at 6 and 8 weeks after the transplantation. The results showed that the proportion of NK cells in the peripheral blood were (4.6 ± 0.6)% and (5.7 ± 1.7)% at week 2 and 3 after anti-CD122 antibody injection respectively,which decreased by 60%, compared with the mice injected with isotype control antibody. After 6 and 8 weeks of cord blood CD34⁺ cell transplantation,the percentage of human CD45⁺ in the bone marrow of the recipient mice treated with anti-mice CD122 antibody was (63.0 ± 12.2)% and (53.2 ± 16.3)%,respectively,which were dramatically higher than that in the mice treated with isotype control antibody (7.7 ± 3.6)% and (6.1 ± 2.4)%. Moreover,at 8 weeks after transplantation,human CD34⁺ cells appeared significantly in the recipients treated with anti-CD122 antibody. It is concluded that the anti-mouse CD122 antibody enhances the hematopoietic repopulating capacity of cord blood CD34⁺ cells in the NOD/SCID mice through decreasing the proportion of NK cells.

  17. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect.

    PubMed

    Brunstein, Claudio G; Miller, Jeffrey S; McKenna, David H; Hippen, Keli L; DeFor, Todd E; Sumstad, Darin; Curtsinger, Julie; Verneris, Michael R; MacMillan, Margaret L; Levine, Bruce L; Riley, James L; June, Carl H; Le, Chap; Weisdorf, Daniel J; McGlave, Philip B; Blazar, Bruce R; Wagner, John E

    2016-02-25

    We studied the safety and clinical outcomes of patients treated with umbilical cord blood (UCB)-derived regulatory T cells (Tregs) that expanded in cultures stimulated with K562 cells modified to express the high-affinity Fc receptor (CD64) and CD86, the natural ligand of CD28 (KT64/86). Eleven patients were treated with Treg doses from 3-100 × 10(6) Treg/kg. The median proportion of CD4(+)FoxP3(+)CD127(-) in the infused product was 87% (range, 78%-95%), and we observed no dose-limiting infusional adverse events. Clinical outcomes were compared with contemporary controls (n = 22) who received the same conditioning regimen with sirolimus and mycophenolate mofetil immune suppression. The incidence of grade II-IV acute graft-versus-host disease (GVHD) at 100 days was 9% (95% confidence interval [CI], 0-25) vs 45% (95% CI, 24-67) in controls (P = .05). Chronic GVHD at 1 year was zero in Tregs and 14% in controls. Hematopoietic recovery and chimerism, cumulative density of infections, nonrelapse mortality, relapse, and disease-free survival were similar in the Treg recipients and controls. KT64/86-expanded UCB Tregs were safe and resulted in low risk of acute GVHD.

  18. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics.

    PubMed

    Brunstein, Claudio G; Miller, Jeffrey S; Cao, Qing; McKenna, David H; Hippen, Keli L; Curtsinger, Julie; Defor, Todd; Levine, Bruce L; June, Carl H; Rubinstein, Pablo; McGlave, Philip B; Blazar, Bruce R; Wagner, John E

    2011-01-20

    Acute graft-versus-host disease (aGVHD) is associated with high risk of morbidity and mortality and is a common complication after double umbilical cord blood (UCB) transplantation. To reduce these risks, we established a method of CD4(+)CD25(+)FoxP3(+) T regulatory cell (Treg) enrichment from cryopreserved UCB followed by a 18 (+) 1-day expansion culture including anti-CD3/anti-CD28 antibody-coated beads and recombinant human interleukin-2. In a "first-in-human" clinical trial, we evaluated the safety profile of UCB Treg in 23 patients. Patients received a dose of 0.1-30 × 10(5)UCB Treg/kg after double UCB transplantation. The targeted Treg dose was achieved in 74% of cultures, with all products being suppressive in vitro (median 86% suppression at a 1:4 ratio). No infusional toxicities were observed. After infusion, UCB Treg could be detected for 14 days, with the greatest proportion of circulating CD4(+)CD127(-)FoxP3(+) cells observed on day (+)2. Compared with identically treated 108 historical controls without Treg, there was a reduced incidence of grade II-IV aGVHD (43% vs 61%, P = .05) with no deleterious effect on risks of infection, relapse, or early mortality. These results set the stage for a definitive study of UCB Treg to determine its potency in preventing allogeneic aGVHD. This study is registered at http://www.clinicaltrials.gov as NCT00602693.

  19. Umbilical cord blood for autologous transfusion in the early postnatal ontogeny: analysis of cell composition and viability during long-term culturing.

    PubMed

    Romanov, Yu A; Balashova, E E; Bystrykh, O A; Titkov, K V; Dugina, T N; Kabaeva, N V; Fedorova, T A; Rogachevskii, O V; Degtyarev, D N; Sukhikh, G T

    2015-02-01

    Changes in cell composition and viability as well as the content and functional activity of hemopoietic progenitor cells were analyzed during long-term (up to 1 month at 4°C) storage of human umbilical cord blood cells. No significant quantitative changes in erythrocytes were found during this period. The total content and viability of leukocytes changed, which resulted in the prevalence of mononuclear cells (lymphocytes and monocytes). Analysis of functional activity of hemopoietic stem cells in semisolid culture revealed a decrease in the relative content of CFU during the first week of storage [corrected] and inability of cells to colony formation after 2 weeks.

  20. Generation of functional, antigen-specific CD8+ human T cells from cord blood stem cells using exogenous Notch and tetramer-TCR signaling.

    PubMed

    Fernandez, Irina; Ooi, Tracy P; Roy, Krishnendu

    2014-01-01

    In vitro differentiation of mouse and human stem cells into early T cells has been successfully demonstrated using artificial Notch signaling systems. However, generation of mature, antigen-specific, functional T cells, directly from human stem cells has remained elusive, except when using stromal coculture of stem cells retrovirally transfected with antigen-specific T cell receptors (TCRs). Here we show that human umbilical cord blood (UCB)-derived CD34+CD38-/low hematopoietic stem cells can be successfully differentiated into functional, antigen-specific cytotoxic CD8+ T cells without direct stromal coculture or retroviral TCR transfection. Surface-immobilized Notch ligands (DLL1) and stromal cell conditioned medium successfully induced the development of CD1a+CD7+ and CD4+CD8+ early T cells. These cells, upon continued culture with cytomegalovirus (CMV) or influenza-A virus M1 (GIL) epitope-loaded human leukocyte antigen (HLA)-A*0201 tetramers, resulted in the generation of a polyclonal population of CMV-specific or GIL-specific CD8+ T cells, respectively. Upon further activation with antigen-loaded target cells, these antigen-specific, stem cell-derived T cells exhibited cytolytic functionality, specifically CD107a surface mobilization, interferon gamma (IFNg) production, and Granzyme B secretion. Such scalable, in vitro generation of functional, antigen-specific T cells from human stem cells could eventually provide a readily available cell source for adoptive transfer immunotherapies and also allow better understanding of human T cell development.

  1. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood.

    PubMed

    Haddad, Rima; Guardiola, Philippe; Izac, Brigitte; Thibault, Christelle; Radich, Jerry; Delezoide, Anne-Lise; Baillou, Claude; Lemoine, François M; Gluckman, Jean Claude; Pflumio, Françoise; Canque, Bruno

    2004-12-15

    The early stages of human lymphopoiesis are poorly characterized. Here, we compared the lymphoid potential of a novel umbilical cord blood CD34(+)CD45RA(hi)CD7(+) hematopoietic progenitor cell (HPC) population with that of CD34(+)CD45RA(hi)Lin(-)CD10(+) HPCs, previously proposed as candidate common lymphoid progenitors. Limiting-dilution and clonal analysis, fetal thymic organ cultures, and culture onto Notch ligand Delta-like-1-expressing OP9 cells, showed that although CD34(+)CD45RA(hi)CD7(+) HPCs could generate cells of the 3 lymphoid lineages, their potential was skewed toward the T/natural killer (T/NK) lineages. In contrast, CD34(+)CD45RA(hi)Lin(-)CD10(+) HPCs predominantly exhibited a B-cell potential. Gene expression profiling with DNA microarrays confirmed that CD34(+)CD45RA(hi)CD7(+) HPCs selectively expressed T-lymphoid and NK lineage-committed genes while retaining expression of genes affiliated to the granulomonocytic lineage, whereas CD34(+)CD45RA(hi)Lin(-)CD10(+) HPCs displayed a typical pro-B-cell transcription profile and essentially lacked genes unrelated to the B lineage. In addition, both populations could be generated in vitro from CD34(+)CD45RA(int)CD7(-) and CD34(+)CD45RA(hi)Lin(-) HPCs with mixed lymphomyeloid potential, from which they emerged independently with different growth/differentiation factor requirements. These findings indicate that CD34(+)CD45RA(hi)CD7(+) and CD34(+)CD45RA(hi)Lin(-)CD10(+) HPCs correspond to multipotent early lymphoid progenitors polarized toward either the T/NK or B lineage, respectively.

  2. Novel red cell indices indicating reduced availability of iron are associated with high erythropoietin concentration and low ph level in the venous cord blood of newborns.

    PubMed

    Ervasti, Mari; Sankilampi, Ulla; Heinonen, Seppo; Punnonen, Kari

    2008-08-01

    There is evidence that an elevated erythropoietin (EPO) concentration is associated with signs of iron deficient erythropoiesis. The aim of this study was to evaluate the iron status by means of novel cellular indices and serum iron markers and to determine whether these are associated with EPO and pH in the venous cord blood of 193 full-term newborns. There were positive correlations between EPO and the percentage of hypochromic red blood cells (%HYPOm) and reticulocytes (%HYPOr) [r = 0.45 (p < 0.001) and r = 0.56 (p < 0.001), respectively]. %HYPOm and %HYPOr also had negative correlations with pH [r = -0.53 (p = 0.001) and r = -0.46 (p = 0.001), respectively]. Newborns who had low pH (pH < or =7.15, n = 16) had significantly higher %HYPOm, %HYPOr, and serum transferrin receptor and transferrin concentrations in their cord blood than newborns with normal pH. Thus, in newborn cord blood, the higher number of red cells and reticulocytes with lower Hb content may have impaired the oxygen carrying capacity that has been a trigger for EPO production. Furthermore, signs of lower hemoglobinization of red cells are associated with low umbilical vein pH in the newborns, indicating an increased risk of birth asphyxia.

  3. [Cord blood: from bench to bedside].

    PubMed

    Bron, Dominique; De Bruyn, Cécile; Balasse, H; Ley, P; De Hemptinne, D; von Lennep, E; Homans, C; Marckowicz, E; Mathieu, P; Deleuse, M-D; Francotte, J; Thomas, D; Dorval, C; Dejeneffe, M; Andrien, M; Delforge, A

    2008-03-01

    Since 1974, umbilical cord blood (CB) has been shown to contain haematopoietic stem cells similar to stem cells from the bone marrow. In 1988, E. Gluckman and her colleagues performed - successfully - the first familial CB transplantation and cured a 5 years old child suffering from Fanconi's anemia. Rapidly, CB banks were organised throughout in the world and thanks to this novel source of haematopoietic stem cells, we can now find a donor for 75 % of the patients requiring a "bone marrow" transplantation. The major benefit of CB as a source of hematopoietic stem cells is its easy access. CB also allows a more significant degree of HLA incompatibility and thus offers an opportunity of transplantation to ethnic minorities for whom no HLA identical donors are available. However, several studies have shown that the number of cells harvested in a CB was closely correlated with the engraftment post transplantation and today, a minimum of 3.7 x 10(7) mononucleated cells/kg is recommended. This required amount of cells is not always reached due to the small volume often harvested from a CB. Therefore, to apply CB transplantations to adults, different approaches are currently being investigated : coinfusion of haploidentical cells, mesenchymal cells, a second CB, or the addition of CB expanded ex-vivo. Among these approaches, double CB transplantation seems nowadays the most promising alternative and ongoing studies should soon inform us whether the duration of aplasia will be improved.

  4. Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats.

    PubMed

    Hill, Andrew J; Zwart, Isabel; Tam, Henry H; Chan, Jane; Navarrete, Cristina; Jen, Ling-Sun; Navarrete, Roberto

    2009-04-01

    This study investigated the ability of mesenchymal stem cells (MSCs) derived from full-term human umbilical cord blood to survive, integrate and differentiate after intravitreal grafting to the degenerating neonatal rat retina following intracranial optic tract lesion. MSCs survived for 1 week in the absence of immunosuppression. When host animals were treated with cyclosporin A and dexamethasone to suppress inflammatory and immune responses, donor cells survived for at least 3 weeks, and were able to spread and cover the entire vitreal surface of the host retina. However, MSCs did not significantly integrate into or migrate through the retina. They also maintained their human antigenicity, and no indication of neural differentiation was observed in retinas where retinal ganglion cells either underwent severe degeneration or were lost. These results have provided the first in vivo evidence that MSCs derived from human umbilical cord blood can survive for a significant period of time when the host rat response is suppressed even for a short period. These results, together with the observation of a lack of neuronal differentiation and integration of MSCs after intravitreal grafting, has raised an important question as to the potential use of MSCs for neural repair through the replacement of lost neurons in the mammalian retina and central nervous system.

  5. Evaluation of Potential Ionizing Irradiation Protectors and Mitigators Using Clonogenic Survival of Human Umbilical Cord Blood Hematopoietic Progenitor Cells

    PubMed Central

    Goff, Julie P.; Shields, Donna S.; Wang, Hong; Skoda, Erin M.; Sprachman, Melissa M.; Wipf, Peter; Garapati, Venkata Krishna; Atkinson, Jeffrey; London, Barry; Lazo, John S.; Kagan, Valerian; Epperly, Michael W.; Greenberger, Joel S.

    2013-01-01

    We evaluated the use of colony formation (CFU-GM, BFU-E, and CFU-GEMM) by human umbilical cord blood (CB) hematopoietic progenitor cells for testing novel small molecule ionizing irradiation protectors and mitigators. Each of 11 compounds was added before (protection) or after (mitigation) ionizing irradiation including: GS-nitroxides (JP4-039 and XJB-5-131), the bifunctional sulfoxide MMS-350, the phosphoinositol-3-kinase inhibitor (LY294002), TPP-imidazole fatty acid, (TPP-IOA), the nitric oxide synthase inhibitor (MCF-201-89), the p53/mdm2/mdm4 inhibitor (BEB55), methoxamine, isoproterenol, propanolol, and the ATP sensitive potassium channel blocker (glyburide). The drugs XJB-5-131, JP4-039, and MMS-350 were radiation protectors for CFU-GM. JP4-039 was also a radiation protector for CFU-GEMM. The drugs, XJB-5-131, JP4-039, and MMS-350 were radiation mitigators for BFU-E, MMS-350 and JP4-039 were mitigators for CFU-GM, and MMS350 was a mitigator for CFU-GEMM. In contrast, other drugs that were effective in murine assays: TTP-IOA, LY294002, MCF201-89, BEB55, propranolol, isoproterenol, methoxamine, and glyburide showed no significant protection or mitigation in human CB assays. These data support testing of new candidate clinical radiation protectors and mitigators using human CB clonogenic assays early in the drug discovery process, reducing the need for animal experiments. PMID:23933481

  6. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation.

    PubMed

    Zhang, Cheng Cheng; Kaba, Megan; Iizuka, Satoru; Huynh, HoangDinh; Lodish, Harvey F

    2008-04-01

    Hematopoietic stem cells (HSCs) are the basis of bone marrow transplantation and are attractive target cells for hematopoietic gene therapy, but these important clinical applications have been severely hampered by difficulties in ex vivo expansion of HSCs. In particular, the use of cord blood for adult transplantation is greatly limited by the number of HSCs. Previously we identified angiopoietin-like proteins and IGF-binding protein 2 (IGFBP2) as new hormones that, together with other factors, can expand mouse bone marrow HSCs in culture. Here, we measure the activity of multipotent human severe combined immunodeficient (SCID)-repopulating cells (SRCs) by transplantation into the nonobese diabetic SCID (NOD/SCID) mice; secondary transplantation was performed to evaluate the self-renewal potential of SRCs. A serum-free medium containing SCF, TPO, and FGF-1 or Flt3-L cannot significantly support expansion of the SRCs present in human cord blood CD133+ cells. Addition of either angiopoietin-like 5 or IGF-binding protein 2 to the cultures led to a sizable expansion of HSC numbers, as assayed by NOD/SCID transplantation. A serum-free culture containing SCF, TPO, FGF-1, angiopoietin-like 5, and IGFBP2 supports an approximately 20-fold net expansion of repopulating human cord blood HSCs, a number potentially applicable to several clinical processes including HSC transplantation.

  7. Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells.

    PubMed

    Yang, Shu; Sun, Hai-Mei; Yan, Ji-Hong; Xue, Hong; Wu, Bo; Dong, Fang; Li, Wen-Shuai; Ji, Feng-Qing; Zhou, De-Shan

    2013-07-01

    Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron-like cells from hUCB-MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB-MSCs with k252a, the Trk receptor inhibitor of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron-like cells was significantly decreased compared with ACM-treated hUCB-MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron-like cell differentiation compared with control. The transplantation of ACM-induced hUCB-MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron-like cells. In conclusion, we propose that hUCB-MSCs are a good source of DA neuron-like cells and that ACM is a potential inducer to obtain DA neuron-like cells from hUCB-MSCs in vitro for an ethical and legal cell therapy for PD.

  8. A Pilot Study to Evaluate the Co-Infusion of Ex Vivo Expanded Cord Blood Cells With an Unmanipulated Cord Blood Unit in Patients Undergoing Cord Blood Transplant for Hematologic Malignancies

    ClinicalTrials.gov

    2015-02-10

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma

  9. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells

    PubMed Central

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    Background The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer’s disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. Methodology/Principle findings CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Conclusions/Significance Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability. PMID:27780236

  10. Preclinical characterization of DUOC-01, a cell therapy product derived from banked umbilical cord blood for use as an adjuvant to umbilical cord blood transplantation for treatment of inherited metabolic diseases

    PubMed Central

    KURTZBERG, JOANNE; BUNTZ, SUSAN; GENTRY, TRACY; NOELDNER, PAMELA; OZAMIZ, APRIL; RUSCHE, BENJAMIN; STORMS, ROBERT W.; WOLLISH, AMY; WENGER, DAVID A.; BALBER, ANDREW E.

    2016-01-01

    Background aims Cord blood (CB) transplantation slows neurodegeneration during certain inherited metabolic diseases. However, the number of donor cells in the brain of patients does not appear to be sufficient to provide benefit until several months after transplant. We developed the cell product DUOC-01 to provide therapeutic effects in the early post-transplant period. Methods DUOC-01 cultures initiated from banked CB units were characterized by use of time-lapse photomicroscopy during the 21-day manufacturing process. Antigen expression was measured by means of flow cytometry and immunocytochemistry; transcripts for cytokines and enzymes by quantitative real-time polymerase chain reaction; activities of lysosomal enzymes by direct biochemical analysis; alloreactivity of DUOC-01 and of peripheral blood (PB) mononuclear cells (MNC) to DUOC-01 by mixed lymphocyte culture methods; and cytokine secretion by Bioplex assays. Results DUOC-01 cultures contained highly active, attached, motile, slowly proliferating cells that expressed common (cluster of differentiation [CD]11b, CD14 and Iba1), M1 type (CD16, inducible nitric oxide synthase), and M2-type (CD163, CD206) macrophage or microglia markers. Activities of 11 disease-relevant lysosomal enzymes in DUOC-01 products were similar to those of normal PB cells. All DUOC-01 products secreted interleukin (IL)-6 and IL-10. Accumulation of transforming growth factor-β, IL-1β, interferon-γ and TNF-α in supernatants was variable. IL-12, IL-2, IL-4, IL-5 and IL-13 were not detected at significant concentrations. Galactocerebrosidase, transforming growth factor-β and IL-10 transcripts were specifically enriched in DUOC-01 relative to CB cells. PB MNCs proliferated and released cytokines in response to DUOC-01. DUOC-01 did not proliferate in response to mismatched MNC. Conclusions DUOC-01 has potential as an adjunctive cell therapy to myeloablative CB transplant for treatment of inherited metabolic diseases. PMID:25770677

  11. Cord blood transplants supported by co-infusion of mobilized hematopoietic stem cells from a third-party donor.

    PubMed

    Bautista, G; Cabrera, J R; Regidor, C; Forés, R; García-Marco, J A; Ojeda, E; Sanjuán, I; Ruiz, E; Krsnik, I; Navarro, B; Gil, S; Magro, E; de Laiglesia, A; Gonzalo-Daganzo, R; Martín-Donaire, T; Rico, M; Millán, I; Fernández, M N

    2009-03-01

    This open label clinical study provides updated evaluation of the strategy of single unit cord blood transplants (CBTs) with co-infusion of third-party donor (TPD) mobilized hematopoietic stem cells (MHSC). Fifty-five adults with high-risk hematological malignancies, median age 34 years (16-60 years) and weight 70 kg (43-95 kg), received CBTs (median 2.39 x 10(7) total nucleated cell (TNC) per kg and 0.11 x 10(6) CD34+ per kg) and TPD-MHSC (median 2.4 x 10(6) CD34+ per kg and 3.2 x 10(3) CD3+ per kg). Median time to ANC and to CB-ANC >0.5 x 10(9)/l as well as to full CB-chimerism was 10, 21 and 44 days, with maximum cumulative incidences (MCI) of 0.96, 0.95 and 0.91. Median time to unsupported platelets >20 x 10(9)/l was 32 days (MCI 0.78). MCI for grades I-IV and III-IV acute GVHD (aGVHD) were 0.62 and 0.11; 12 of 41 patients (29%) who are at risk developed chronic GVHD, becoming severely extensive in three patients. Relapses occurred in seven patients (MCI=0.17). The main causes of morbi-mortality were post-engraftment infections. CMV reactivations were the most frequent, their incidence declining after the fourth month. Five-year overall survival and disease-free survival (Kaplan-Meier) were 56 % and 47% (63% and 54% for patients cell content and 0-3 HLA mismatches is feasible as a first choice option for adult patients who lack a readily available adequate adult donor.

  12. Pilot social feasibility study for the establishment of a public human umbilical cord blood stem cell bank in South Africa.

    PubMed

    Meissner-Roloff, Madelein; Young, Wendy; Rangaka, Isabella; Lombaard, Hennie; Dhai, Ames; Tsotsi, Norma; Pepper, Michael S

    2012-12-01

    There is a large unmet need in South Africa for bone marrow transplantation. Umbilical cord blood (UCB) is an important source of stem cells for the treatment of haematological and non-haematological diseases. Access to the two existing private umbilical cord blood stem cell banks (UCB SCBs) in South Africa is limited to individuals that can afford it, which further aggravates the ever increasing divide between families from different socio-economic classes. The problem is compounded by a severe global shortage of genetically compatible samples, representative of the South African demographics. Establishing a public human UCB SCB in South Africa would provide more South Africans with access to previously unavailable treatment in the form of affordable, genetically compatible stem cells for bone marrow transplantation. A public UCB SCB has many facets to consider, one of which is public preparedness and support for the bank. This was assessed in a social feasibility pilot study which is reported here. In addition to the findings of this social feasibility study, other important considerations for establishing a public human UCB SCB in SA include; (a) testing the samples for HIV and other infectious diseases (required for compliance with international regulatory standards); (b) flow cytometric analysis for enumeration of CD34+ UCB stem cells; (c) mapping of HLA genotypes/alleles; and (d) a study of the economic feasibility of this endeavour.The social feasibility study was conducted to gauge public preparedness and support for a public SCB through patient interviews and questionnaires. The process was dynamic due to its novel nature for interviewers and interviewees alike. Many obstacles were met and dealt with which lead to the compilation of results discussed here in the form of a pilot social feasibility study.In the South African context, we are faced with unique and rich challenges relating to cultural and religious differences that are further augmented by

  13. Umbilical cord blood lead levels in California

    SciTech Connect

    Satin, K.P.; Neutra, R.R.; Guirguis, G.; Flessel, P. )

    1991-05-01

    During the fall of 1984, we conducted a survey of umbilical cord blood lead levels of 723 live births that occurred at 5 hospitals located in 5 cities in California. Historical ambient air lead levels were used as a qualitative surrogate of air and dust exposure. The area-specific cord blood means (all means {approximately} 5 micrograms/dl), medians, deciles, and distributions did not vary among locations. The California distributions included means that were lower than the 6.6 micrograms/dl reported in Needleman et al.'s Boston study in 1979. Indeed, the entire California distribution was shifted to the left of the Boston study distribution, even though 3% of the California cord lead levels exceeded 10 micrograms/dl--the level above which Needleman et al. have documented psychoneurological effects in children during the first few years of life. Fourteen percent of premature babies had cord blood lead levels above 10 micrograms/dl. The association between prematurity (i.e., less than 260 d gestation) and elevated (greater than 5 micrograms/dl) cord blood lead was observed in all hospitals and yielded a relative risk of 2.9 (95% CI: .9, 9.2) and a population attributable risk of 47%. Further research is needed to confirm this association and to explore the roles of endogenous and exogenous sources of lead exposure to the mothers who give birth to premature infants.

  14. Cord blood banking in London: the first 1000 collections.

    PubMed

    Armitage, S; Warwick, R; Fehily, D; Navarrete, C; Contreras, M

    1999-07-01

    The London Cord Blood Bank was established with the aim of collecting, processing and storing 10000 unrelated stem cell donations for the significant number of children in the UK requiring transplantation, for whom a matched unrelated bone marrow donor cannot be found. Collection is performed at two hospitals by dedicated cord blood bank staff after delivery of the placenta. Mothers are interviewed regarding medical, ethnic and behavioural history by nurse counsellors and sign a detailed consent form. Donations are returned to the bank for processing. Volume reduction is undertaken by a simple, closed, semi-automated blood processing system, with excellent recovery of progenitor cells. Units are cryopreserved and stored in the vapour phase of liquid nitrogen. Blood samples from mothers and cord blood donations are tested for the UK mandatory red cell and microbiology markers for blood donors. Donations are typed for HLA-A, B and DR at medium resolution (antigen split) level using sequence-specific oligonucleotide probing and sequence-specific priming techniques. The selection of collection hospitals on the basis of ethnic mix has proven effective, with 41.5% of donations derived from non-European caucasoid donors. Bacterial contamination of collections has been dramatically reduced by implementation of improved umbilical cord decontamination protocols.

  15. Ethical considerations in umbilical cord blood banking.

    PubMed

    Fox, Nathan S; Chervenak, Frank A; McCullough, Laurence B

    2008-01-01

    Pregnant patients have the option at delivery of having their cord blood collected and stored for future use. At many hospitals, they have the option of donating their cord blood to the public banking system for future use by anyone who is an appropriate match (public banking). Patients also have the option of having their cord blood stored for a fee with a commercial/private company for future use within their family (private banking). Currently, private banking is not recommended by major obstetric and pediatric professional organizations. We applied current evidence of the risks and benefits of private and public cord blood banking and accepted ethical principles to answer the following two related questions: 1) Do obstetricians have an ethical obligation to comply with a request for private banking? and 2) Do obstetricians have an ethical obligation to routinely offer private banking to women who do not request it? The only situation where there is a known benefit to private banking is when public banking is not available and the patient currently has an affected family member who may benefit from cord blood therapy. We conclude that when presented with a request for private banking, obstetricians have an ethical obligation to explain the lack of proven benefit of this procedure. If the patient still requests private banking, it would be appropriate to comply, because there is minimal or no risk to the procedure. However, obstetricians are not ethically obligated to offer private banking, even when public banking is not available, except in the limited circumstance when the patient currently has an affected family member who may benefit from cord blood therapy.

  16. T-Regulatory Cell and CD3 Depleted Double Umbilical Cord Blood Transplantation in Hematologic Malignancies

    ClinicalTrials.gov

    2014-03-04

    Hematologic Malignancy; Acute Myeloid Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia in Blast Crisis; Anemia, Refractory, With Excess of Blasts; Chronic Myeloproliferative Disease; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Lymphoma; Large Cell Non-Hodgkin's Lymphoma; Lymphoblastic Lymphoma; Burkitt's Lymphoma; High Grade Non-Hodgkin's Lymphoma

  17. Donor Umbilical Cord Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2015-12-18

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Burkitt Lymphoma; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult

  18. Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells)

    PubMed Central

    Perucca, Simone; Di Palma, Andrea; Piccaluga, Pier Paolo; Gemelli, Claudia; Zoratti, Elisa; Bassi, Giulio; Giacopuzzi, Edoardo; Lojacono, Andrea; Borsani, Giuseppe; Tagliafico, Enrico; Scupoli, Maria Teresa; Bernardi, Simona; Zanaglio, Camilla; Cattina, Federica; Cancelli, Valeria; Malagola, Michele; Krampera, Mauro; Marini, Mirella; Almici, Camillo; Ferrari, Sergio; Russo, Domenico

    2017-01-01

    A human bone marrow-derived mesenchymal stromal cell (MSCs) and cord blood-derived CD34+ stem cell co-culture system was set up in order to evaluate the proliferative and differentiative effects induced by MSCs on CD34+ stem cells, and the reciprocal influences on gene expression profiles. After 10 days of co-culture, non-adherent (SN-fraction) and adherent (AD-fraction) CD34+ stem cells were collected and analysed separately. In the presence of MSCs, a significant increase in CD34+ cell number was observed (fold increase = 14.68), mostly in the SN-fraction (fold increase = 13.20). This was combined with a significant increase in CD34+ cell differentiation towards the BFU-E colonies and with a decrease in the CFU-GM. These observations were confirmed by microarray analysis. Through gene set enrichment analysis (GSEA), we noted a significant enrichment in genes involved in heme metabolism (e.g. LAMP2, CLCN3, BMP2K), mitotic spindle formation and proliferation (e.g. PALLD, SOS1, CCNA1) and TGF-beta signalling (e.g. ID1) and a down-modulation of genes participating in myeloid and lymphoid differentiation (e.g. PCGF2) in the co-cultured CD34+ stem cells. On the other hand, a significant enrichment in genes involved in oxygen-level response (e.g. TNFAIP3, SLC2A3, KLF6) and angiogenesis (e.g. VEGFA, IGF1, ID1) was found in the co-cultured MSCs. Taken together, our results suggest that MSCs can exert a priming effect on CD34+ stem cells, regulating their proliferation and erythroid differentiation. In turn, CD34+ stem cells seem to be able to polarise the BM-niche towards the vascular compartment by modulating molecular pathways related to hypoxia and angiogenesis. PMID:28231331

  19. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    SciTech Connect

    Guseva, Daria; Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V.; Palotás, András; Islamov, Rustem R.

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  20. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis

    PubMed Central

    Shin, Tae-Hoon; Kim, Hyung-Sik; Kang, Tae-Wook; Lee, Byung-Chul; Lee, Hwa-Yong; Kim, Yoon-Jin; Shin, Ji-Hee; Seo, Yoojin; Won Choi, Soon; Lee, Seunghee; Shin, Kichul; Seo, Kwang-Won; Kang, Kyung-Sun

    2016-01-01

    Rheumatoid arthritis (RA) is a long-lasting intractable autoimmune disorder, which has become a substantial public health problem. Despite widespread use of biologic drugs, there have been uncertainties in efficacy and long-term safety. Mesenchymal stem cells (MSCs) have been suggested as a promising alternative for the treatment of RA because of their immunomodulatory properties. However, the precise mechanisms of MSCs on RA-related immune cells are not fully elucidated. The aim of this study was to investigate the therapeutic potential of human umbilical cord blood-derived MSCs (hUCB-MSCs) as a new therapeutic strategy for patients with RA and to explore the mechanisms underlying hUCB-MSC-mediated immunomodulation. Mice with collagen-induced arthritis (CIA) were administered with hUCB-MSCs after the onset of disease, and therapeutic efficacy was assessed. Systemic delivery of hUCB-MSCs significantly ameliorated the severity of CIA to a similar extent observed in the etanercept-treated group. hUCB-MSCs exerted this therapeutic effect by regulating macrophage function. To verify the regulatory effects of hUCB-MSCs on macrophages, macrophages were co-cultured with hUCB-MSCs. The tumor necrosis factor (TNF)-α-mediated activation of cyclooxygenase-2 and TNF-stimulated gene/protein 6 in hUCB-MSCs polarized naive macrophages toward an M2 phenotype. In addition, hUCB-MSCs down-regulated the activation of nucleotide-binding domain and leucine-rich repeat pyrin 3 inflammasome via a paracrine loop of interleukin-1β signaling. These immune-balancing effects of hUCB-MSCs were reproducible in co-culture experiments using peripheral blood mononuclear cells from patients with active RA. hUCB-MSCs can simultaneously regulate multiple cytokine pathways in response to pro-inflammatory cytokines elevated in RA microenvironment, suggesting that treatment with hUCB-MSCs could be an attractive candidate for patients with treatment-refractory RA. PMID:28005072

  1. In vitro generation of functional dendritic cells from human umbilical cord blood CD34+ cells by a 2-step culture method.

    PubMed

    Ryu, Kyung Ha; Cho, Su Jin; Jung, Yoon Jae; Seoh, Ju Young; Kie, Jeong Hae; Koh, Sang Hyeok; Kang, Hyoung Jin; Ahn, Hyo Seop; Shin, Hee Young

    2004-10-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells in terms of initiating primary T-cell-dependent immune responses. We devised a 2-step culture method for obtaining sufficient numbers of functional DCs from umbilical cord blood (CB) CD34+ cells. In the first step, CB CD34+ cells were expanded by stimulation with early-acting cytokines such as stem cell factor (SCF), flt3 ligand (FL), and thrombopoietin (TPO) to amplify the hematopoietic progenitor cells. In the second step, granulocyte-macrophage colony-stimulating factor and interleukin 4 were added, and incubation was continued for another 5 days to induce differentiation of the expanded cells into DCs. During the first step of culturing with TPO, SCF, and FL, the total numbers of nucleated cells gradually increased, peaking at 4 weeks (245.3-fold). During the second step, expression of CD1a, CD83, and CD86 increased. Electron microscopic findings showed that these cells had cytosolic expansion to form dendrites and major histocompatibility complex class II compartments, which are characteristic of DCs. Functional analyses revealed that these cells had phagocytic activity and were capable of stimulating allogeneic T-cells in vitro.

  2. Umbilical cord blood donation: public or private?

    PubMed

    Ballen, K K; Verter, F; Kurtzberg, J

    2015-10-01

    Umbilical cord blood (UCB) is a graft source for patients with malignant or genetic diseases who can be cured by allogeneic hematopoietic cell transplantation (HCT), but who do not have an appropriately HLA-matched family or volunteer unrelated adult donor. Starting in the 1990s, unrelated UCB banks were established, accepting donations from term deliveries and storing UCB units for public use. An estimated 730 000 UCB units have been donated and stored to date and ~35 000 UCB transplants have been performed worldwide. Over the past 20 years, private and family banks have grown rapidly, storing ~4 million UCB units for a particular patient or family, usually charging an up-front and yearly storage fee; therefore, these banks are able to be financially sustainable without releasing UCB units. Private banks are not obligated to fulfill the same regulatory requirements of the public banks. The public banks have released ~30 times more UCB units for therapy. Some countries have transitioned to an integrated banking model, a hybrid of public and family banking. Today, pregnant women, their families, obstetrical providers and pediatricians are faced with multiple choices about the disposition of their newborn's cord blood. In this commentary, we review the progress of UCB banking technology; we also analyze the current data on pediatric and adult unrelated UCB, including the recent expansion of interest in transplantation for hemoglobinopathies, and discuss emerging studies on the use of autologous UCB for neurologic diseases and regenerative medicine. We will review worldwide approaches to UCB banking, ethical considerations, criteria for public and family banking, integrated banking ideas and future strategies for UCB banking.

  3. Cord Blood Banking Standards: Autologous Versus Altruistic.

    PubMed

    Armitage, Sue

    2015-01-01

    Cord blood (CB) is either donated to public CB banks for use by any patient worldwide for whom it is a match or stored in a private bank for potential autologous or family use. It is a unique cell product that has potential for treating life-threatening diseases. The majority of CB products used today are for hematopoietic stem cell transplantation and are accessed from public banks. CB is still evolving as a hematopoietic stem cell source, developing as a source for cellular immunotherapy products, such as natural killer, dendritic, and T-cells, and fast emerging as a non-hematopoietic stem cell source in the field of regenerative medicine. This review explores the regulations, standards, and accreditation schemes that are currently available nationally and internationally for public and private CB banking. Currently, most of private banking is under regulated as compared to public banking. Regulations and standards were initially developed to address the public arena. Early responses from the medical field regarding private CB banking was that at the present time, because of insufficient scientific data to support autologous banking and given the difficulty of making an accurate estimate of the need for autologous transplantation, private storage of CB as "biological insurance" should be discouraged (1, 2, 3). To ensure success and the true realization of the full potential of CB, whether for autologous or allogeneic use, it is essential that each and every product provided for current and future treatments meets high-quality, international standards.

  4. Engineering angiogenesis following spinal cord injury: A coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier

    PubMed Central

    Rauch, Millicent Ford; Hynes, Sara Royce; Bertram, James; Redmond, Andrew; Robinson, Rebecca; Williams, Cicely; Xu, Hao; Madri, Joseph A.; Lavik, Erin B.

    2009-01-01

    Angiogenesis precedes recovery following spinal cord injury (SCI), and its extent correlates with neural regeneration suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model. We sought to test whether a similar coculture would lead to formation of stable functional vessels in the spinal cord following injury. We created microvascular networks in a biodegradable two component implant system and tested the ability of the coculture or controls (lesion control, implant alone, implant plus ECs, or implant plus NPCs) to promote angiogenesis in a rat hemisection model of spinal cord injury. The coculture implant led to a four fold increase in functional vessels compared to the lesion control, implant alone, or implant plus NPCs groups and a 2 fold increase in functional vessels over the implant plus ECs group. Furthermore, half of the vessels in the coculture implant exhibited positive staining for the endothelial barrier antigen, a marker for formation of the blood spinal cord barrier (BSB). No other groups showed positive staining for the BSB in the injury epicenter. This work provides a novel method to induce angiogenesis following SCI and a foundation for studying its role in repair. PMID:19120441

  5. Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size.

    PubMed

    Henning, Robert J; Burgos, Jose D; Vasko, Mark; Alvarado, Felipe; Sanberg, Cyndy D; Sanberg, Paul R; Morgan, Michael B

    2007-01-01

    There is no consensus regarding the optimal dose of stem cells or the optimal route of administration for the treatment of acute myocardial infarction. Bone marrow cells, containing hematopoietic and mesenchymal stem cells, in doses of 0.5 x 10(6) to >30 x 10(6) have been directly injected into the myocardium or into coronary arteries or infused intravenously in subjects with myocardial infarctions to reduce infarct size and improve heart function. Therefore, we determined the specific effects of different doses of human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic and mesenchymal stem cells, on infarct size. In order to determine the optimal technique for stem cell administration, HUCBC were injected directly into the myocardium (IM), or into the LV cavity with the ascending aorta transiently clamped to facilitate coronary artery perfusion (IA), or injected intravenously (IV) in rats 1-2 h after the left anterior coronary artery was permanently ligated. Immune suppressive therapy was not given to any rat. One month later, the infarct size in control rat hearts treated with only Isolyte averaged 23.7 +/- 1.7% of the LV muscle area. Intramyocardial injection of HUCBC reduced the infarct size by 71% with 0.5 x 10(6) HUCBC and by 93% with 4 x 10(6) HUCBC in comparison with the controls (p < 0.001). Intracoronary injection reduced the infarction size by 47% with 0.5 x 10(6) HUCBC and by 80% with 4 x 10(6) HUCBC (p < 0.001), and IV HUCBC reduced infarct size by 51% with 0.5 x 10(6) and by 75-77% with 16-32 million HUCBC (p < 0.001) in comparison with control hearts. With 4 x 10(6) HUCBC, infarction size was 65% smaller with IM HUCBC than with IA HUCBC and 78% smaller than with IV HUCBC (p < 0.05). Nevertheless, IM, IA, and IV HUCBC all produced significant reductions in infarct size in comparison with Isolyte-treated infarcted hearts without requirements for host immune suppression. The present experiments demonstrate that the optimal dose

  6. Umbilical cord blood-derived dendritic cells infected by adenovirus for SP17 expression induce antigen-specific cytotoxic T cells against NSCLC cells.

    PubMed

    Liu, Yang; Tian, Xin; Jiang, Shenyi; Ren, Xuemei; Liu, Fengjie; Yang, Jichun; Chen, Yanling; Jiang, Youhong

    2015-01-01

    Sperm protein 17 (SP17), a cancer/testis antigen, is expressed by non-small cell lung cancer (NSCLC). This study examined whether dendritic cells (DC) from human umbilical cord blood (UCB) could be induced for SP17 expression and induce antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) against NSCLC in vitro. We generated recombinant adenovirus of Ad-SP17 and control Ad-null. Infection with Ad-SP17, but not control, induced higher levels of SP17 expression in UCB-derived DC-Ad-SP17. Infection with Ad-SP17 significantly increased the frequency of CD80(+), CD83(+), CD86(+), and HLA-DR(+) DC that produced higher levels of IL-12, but lower IL-10. Co-culture of DC-Ad-SP17 with autologous UCB lymphocytes induced high frequency of IFNγ(+) CD8(+) CTLs, which had selective cytotoxicity against SP17(+) lung cancer CRL-5922 cells in a HLA-I restrictive manner. Thus, UCB-derived DC modulated for SP17 expression induced antigen-specific anti-tumor immunity against SP17(+) NSCLC, and SP17 may be a valuable target for development of immunotherapy against SP17(+) NSCLC.

  7. Private cord blood banking: current use and clinical future.

    PubMed

    Hollands, Peter; McCauley, Catherina

    2009-09-01

    International private umbilical cord blood banking has expanded rapidly in recent years since the first cord blood transplant which was 20 years ago. Private companies offer parents the opportunity to store umbilical cord blood for the possible future use by their child or other family members. The private cord blood industry has been criticised by a number of professional bodies including the EU Ethics Committee, the Royal College of Obstetrics and Gynaecology, the Royal College of Midwives and the US College of Paediatrics. This review presents the arguments from the opponents of private cord blood banking, and then makes the case for private cord banking based on the latest scientific and clinical evidence.

  8. Prognostic Value of the Hematopoietic Cell Transplantation Comorbidity Index for Patients Undergoing Reduced-Intensity Conditioning Cord Blood Transplantation.

    PubMed

    Salit, Rachel B; Oliver, David C; Delaney, Colleen; Sorror, Mohamed L; Milano, Filippo

    2017-04-01

    The Hematopoietic Cell Transplantation Comorbidity Index (HCT-CI) has been validated as a tool for evaluating the risk of treatment-related mortality (TRM) in HLA-matched sibling and matched unrelated donor bone marrow and peripheral blood stem cell transplantation patients. However, the role of the HCT-CI after cord blood transplantation (CBT) has not been fully investigated. In this analysis, we sought to evaluate the predictive value of the HCT-CI in patients undergoing reduced-intensity conditioning (RIC) CBT. Between 2006 and 2013, HCT-CI scores were prospectively tabulated for patients with hematologic malignancies sequentially enrolled on multicenter RIC CBT studies coordinated by the Fred Hutchinson Cancer Research Center: 151 patients with acute myeloid leukemia/myelodysplastic syndrome (n = 101), chronic myeloid leukemia (n = 3), acute lymphocytic leukemia (n = 24), non-Hodgkin lymphoma (n = 8), Hodgkin lymphoma (n = 3), and other hematologic malignancies (n = 12) underwent RIC CBT and were included. Two patients received a single CBT and the remaining 149 received a double CBT. All patients received cyclosporine and mycophenolate mofetil for graft-versus-host disease prophylaxis. Median HCT-CI for the whole group was 3 (range, 0 to 8). Using the HCT-CI categories of low (0), intermediate (1 or 2), and high risk (>3), there was no significant difference in TRM between the 3 groups. However, when the patients were divided into 2 groups, HCT-CI ≤ 3 or > 3, the incidence of TRM at 3 years after transplantation was 26% (95% confidence interval [CI], 17 to 36) in the HCT-CI ≤ 3 group versus 50% (95% CI, 30 to 67) in the HCT-CI > 3 group (P = .01). Overall survival for patients with HCT-CI ≤ 3 was 40% (95% CI, 27 to 51) versus 29% in patients with HCT-CI >3 (95% CI, 12 to 48) (P = .08). Our study demonstrates that HCT-CI score > 3 is associated with an increased risk of TRM at 3 years after

  9. Autologous cord blood transplantation for metastatic neuroblastoma.

    PubMed

    Ning, Botao; Cheuk, Daniel Ka-Leung; Chiang, Alan Kwok-Shing; Lee, Pamela Pui-Wah; Ha, Shau-Yin; Chan, Godfrey Chi-Fung

    2016-03-01

    Auto-SCT is a common approach for metastatic neuroblastoma with the intention to rescue hematopoiesis after megadose chemotherapy. PBSC or BM is the usual stem cell source for auto-SCT. Auto-CBT for neuroblastoma has very rarely been performed. Currently, case reports are available for two patients only. We performed 13 auto-SCTs for high-risk neuroblastoma from 2007 to 2013, including four cases of metastatic neuroblastoma aged 11-64 months treated with auto-CBT. All four patients had partial or CR to upfront treatments before auto-CBT. Nucleated cell dose and CD34+ cell dose infused were 2.8-8.7 × 10(7) /kg and 0.36-3.9 × 10(5) /kg, respectively. Post-thawed viability was 57-76%. Neutrophil engraftment (>0.5 × 10(9) /L) occurred at 15-33 days, while platelet engraftment occurred at 31-43 days (>20 × 10(9) /L) and 33-65 days (>50 × 10(9) /L) post-transplant, respectively. There was no severe acute or chronic complication. Three patients survived for 1.9-7.7 yr without evidence of recurrence. One patient relapsed at 16 months post-transplant and died of progressive disease. Cord blood may be a feasible alternative stem cell source for auto-SCT in patients with stage 4 neuroblastoma, and outcomes may be improved compared to autologous PBSC or BM transplants.

  10. Umbilical cord blood transplantation: pros, cons and beyond.

    PubMed

    Stanevsky, Anfisa; Goldstein, Gal; Nagler, Arnon

    2009-09-01

    Large body of clinical and scientific data has been generated since the first cord blood transplantation (CBT) was performed in 1989. Superior immune plasticity of CB grafts, that allows for less stringent HLA matching, is especially valuable in the face of a persistently growing need for unrelated donor (UD) transplants. Limited cell dose remains the main setback of CBT, particularly in adult population. New strategies, such as transplantation with two cord blood units or using non-myeloablative conditioning, have remarkably expanded the availability of CB transplants in adults with hematological malignancies. Clinical trials with in vitro expanded CB-derived stem cells are under way. Currently cord blood is considered a second best choice after matched bone marrow. However, results of recent international studies indicate that in particular clinical settings, such as in children with leukemia, CB may become a frontline hematopoietic stem cell (HSC) source for transplantation. Recent advances in understanding the unique biology of cord blood will further expand indications for its use in different settings, including those beyond hematopoietic stem cells transplantation (HSCT).

  11. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia.

    PubMed

    Pegram, H J; Purdon, T J; van Leeuwen, D G; Curran, K J; Giralt, S A; Barker, J N; Brentjens, R J

    2015-02-01

    Disease relapse or progression is a major cause of death following umbilical cord blood (UCB) transplantation (UCBT) in patients with high-risk, relapsed or refractory acute lymphoblastic leukemia (ALL). Adoptive transfer of donor-derived T cells modified to express a tumor-targeted chimeric antigen receptor (CAR) may eradicate persistent disease after transplantation. Such therapy has not been available to UCBT recipients, however, due to the low numbers of available UCB T cells and the limited capacity for ex vivo expansion of cytolytic cells. We have developed a novel strategy to expand UCB T cells to clinically relevant numbers in the context of exogenous cytokines. UCB-derived T cells cultured with interleukin (IL)-12 and IL-15 generated >150-fold expansion with a unique central memory/effector phenotype. Moreover, UCB T cells were modified to both express the CD19-specific CAR, 1928z, and secrete IL-12. 1928z/IL-12 UCB T cells retained a central memory-effector phenotype and had increased antitumor efficacy in vitro. Furthermore, adoptive transfer of 1928z/IL-12 UCB T cells resulted in significantly enhanced survival of CD19(+) tumor-bearing SCID-Beige mice. Clinical translation of CAR-modified UCB T cells could augment the graft-versus-leukemia effect after UCBT and thus further improve disease-free survival of transplant patients with B-cell ALL.

  12. Evaluation of TCR Vbeta subfamily T cell expansion in NOD/SCID mice transplanted with human cord blood hematopoietic stem cells.

    PubMed

    Lin, Chen; Chen, Shaohua; Yang, Lijian; Tan, Yubo; Bai, Xue; Li, Yangqiu

    2007-08-01

    Examination of the T cell receptor (TCR) gene repertoire is important in the analysis of the immune status of models, because clonal expansion of T cells permits the identification of specific antigen responses of T cells. Little is known about T-cell immunity in the humanized NOD/SCID mouse model. TCR Vbeta repertoire usage and clonality were analyzed to investigate the distribution and clonal expansion of TCR Vbeta subfamily T cells in NOD/SCID mice transplanted with human cord blood (CB) hematopoietic stem cells. The NOD/SCID mice were sublethally irradiated ((60)Co, 300cGy) to eliminate residual innate immunity in the host. The experimental mice were transplanted intravenously with CB CD34(+) cells sorted by MACS. After 6 weeks, RNA was obtained from peripheral blood, bone marrow and thymus of the study animals. The gene expression and clonality of the TCR Vbeta repertoire were determined by RT-PCR and GeneScan techniques. A restricted range of TCR Vbeta usage was exhibited in the bone marrow of mice, which included TCR Vbeta 1, 2, 9, 13 and 19. Further, oligoclonal expression of some TCR Vbeta subfamilies (Vbeta9, 13, 19) was identified by GeneScan technique. To investigate the reason for oligoclonal expansion of the TCR Vbeta subfamily T cells from CB in mouse models, the T-cell culture with tissue-antigen of NOD/SCID mouse was performed in vitro. The cells from peripheral blood mononuclear cells and bone marrow, spleen, thymus in NOD/SCID mice were frozen and thawed, and used as tissue-antigen. CB mononuclear cells were separately cultured with the component from those murine cells for 15-20 days. Oligoclonal expression or oligoclonal trend of some TCR Vbeta subfamilies (Vbeta10, 11 and Vbeta2, 15, 16, 19) was detected in T cells after stimulation with tissue-antigen of NOD/SCID mouse. Interestingly, a similar clonal expansion of the TCR Vbeta11 subfamily was found in T cells cultured with peripheral blood, bone marrow and spleen respectively. The TCR Vbeta

  13. Cadmium content of umbilical cord blood

    SciTech Connect

    Rabinowitz, M.; Finch, H.

    1984-06-01

    Cadmium was measured in the umbilical cord blood at birth from 94 healthy babies. Samples were dried and ashed at low temperatures with an oxygen plasma prior to atomic absorption spectrometry. The concentration of cadmium ranged from 0.003 to 0.210 ..mu..g/dl, with a mean of 0.045 +/- 0.063 (SD). Blood lead, maternal smoking, and proximity of residence to automobile traffic were not statistically related to cadmium levels.

  14. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    PubMed Central

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E.; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells. PMID:25861626

  15. [Epstein-Barr virus-related B-cell lymphoma of the skin which developed early after cord blood transplantation for angioimmunoblastic T-cell lymphoma].

    PubMed

    Tajika, Kenji; Tamai, Hayato; Mizuki, Taro; Nakayama, Kazutaka; Yamaguchi, Hiroki; Dan, Kazuo

    2010-02-01

    We report here a rare case of EBV-related post-transplantation lymphoproliferative disorder (PTLD) localized to the skin. The patient was a 64-year-old man diagnosed with angioimmunoblastic T cell lymphoma (AITL). He underwent cord blood transplantation with a reduced intensity conditioning regimen during partial remission after chemotherapy. On day 70 after transplantation, subcutaneous tumors developed near the left scapula and in the left upper arm. Pathological examination of the skin tumor revealed that this tumor was composed of diffuse large centroblast-like cells, the majority of which were CD20 positive, CD 79a positive, CD30 positive and Epstein-Barr virus (EBV) latency-associated RNA (EBER) positive, and EBV-DNA was also detected in tumor cells. At that time, real-time polymerase chain reaction documented no evidence of the EBV genome in his blood. Chimerism analysis revealed that the tumor cells were derived from donor cells, which led to the diagnosis of EBV-related PTLD. For treatment, in addition to decreasing the dose of tacrolimus, we administered rituximab and local irradiation to skin lesions, which led to disappearance of the tumors followed by continued complete remission.

  16. Low oxygen tension favored expansion and hematopoietic reconstitution of CD34(+) CD38(-) cells expanded from human cord blood-derived CD34(+) Cells.

    PubMed

    Wang, Ziyan; Du, Zheng; Cai, Haibo; Ye, Zhaoyang; Fan, Jinli; Tan, Wen-Song

    2016-07-01

    Oxygen tension is an important factor that regulates hematopoietic stem cells (HSCs) in both in vivo hematopoietic microenvironment and ex vivo culture system. Although the effect of oxygen tension on ex vivo expansion of HSCs was extensively studied, there were no clear descriptions on physiological function and gene expression analysis of HSCs under different oxygen tensions. In this study, the effects of oxygen tension on ex vivo expansion characteristics of human umbilical cord blood (UCB)-derived CD34(+) cells are evaluated. Moreover, the physiological function of expanded CD34(+) cells was assessed by secondary expansion ability ex vivo and hematopoietic reconstitution ability in vivo. Also, genetic profiling was applied to analyze the expression of genes related to cell function. It was found that low oxygen tension favored expansion of CD34(+) CD38(-) cells. Additionally, CD34(+) cells expanded under low oxygen tension showed better secondary expansion ability and reconstitution ability than those under atmospheric oxygen concentration. Finally, the genetic profiling of CD34(+) CD38(-) cells cultured under low oxygen tension was more akin to freshly isolated cells. These results collectively demonstrate that low oxygen tension was able to better maintain both self-renewal and hematopoietic reconstitution potential and may lay an experimental basis for clinical transplantation of HSCs.

  17. Selective growth of human mast cells induced by Steel factor, IL-6, and prostaglandin E2 from cord blood mononuclear cells.

    PubMed

    Saito, H; Ebisawa, M; Tachimoto, H; Shichijo, M; Fukagawa, K; Matsumoto, K; Iikura, Y; Awaji, T; Tsujimoto, G; Yanagida, M; Uzumaki, H; Takahashi, G; Tsuji, K; Nakahata, T

    1996-07-01

    To establish the method for generating a large number of mature human mast cells, we cultured cord blood mononuclear cells (CBMC) in several conditions in the presence of Steel factor (SF). Among several cytokines tested, IL-6 enhanced SF-dependent mast cell growth from purified CD34+ cells for more than 8 wk in culture. When CBMC were cultured instead of CD34+ cells, IL-6 enhanced the mast cell development in the presence but not in the absence of PGE2. PGE2 enhanced the SF- and IL-6-dependent development of mast cells from CBMC probably by blocking granulocyte-macrophage CSF (GM-CSF) secretion from accessory cells, because 1) PGE2, or anti-GM-CSF enhanced the mast cell development induced by SF and IL-6 from CBMC, but not from CD34+ cells; 2) GM-CSF inhibited the enhancing effect of IL-6 on the mast cell development from CD34+ cells; and 3) PGE2 inhibited GM-CSF secretion from CBMC. The mast cells cultured in the presence of SF, IL-6, and PGE2 for >10 wk were 99% pure, and seemed to be functionally mature, because 1) they contained 5.62 micrograms of histamine and 3.46 micrograms of tryptase per 10(6) cells; and 2) when sensitized with human IgE and then challenged with anti-human IgE, the cells released a variety of mediators such as histamine, and an increase in intracellular Ca2+ was found in advance of the activation of membrane movement by using a confocal laser-scanning microscope. Electron-microscopic analysis revealed that some of the cultured mast cells are morphologically mature since they filled with scroll granules and contained crystal granules.

  18. Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion

    PubMed Central

    Mukhamedshina, Yana O.; Garanina, Ekaterina E.; Masgutova, Galina A.; Galieva, Luisa R.; Sanatova, Elvira R.; Chelyshev, Yurii A.; Rizvanov, Albert A.

    2016-01-01

    Objective and Methods This study investigated the potential for protective effects of human umbilical cord blood mononuclear cells (UCB-MCs) genetically modified with the VEGF and GNDF genes on contusion spinal cord injury (SCI) in rats. An adenoviral vector was constructed for targeted delivery of VEGF and GDNF to UCB-MCs. Using a rat contusion SCI model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo. Results Transplantation of UCB-MCs transduced with adenoviral vectors expressing VEGF and GDNF at the site of SCI induced tissue sparing, behavioral recovery and axonal regeneration comparing to the other constructs tested. The adenovirus encoding VEGF and GDNF for transduction of UCB-MCs was shown to be an effective and stable vehicle for these cells in vivo following the transplantation into the contused spinal cord. Conclusion Our results show that a gene delivery using UCB-MCs-expressing VEGF and GNDF genes improved both structural and functional parameters after SCI. Further histological and behavioral studies, especially at later time points, in animals with SCI after transplantation of genetically modified UCB-MCs (overexpressing VEGF and GDNF genes) will provide additional insight into therapeutic potential of such cells. PMID:27003408

  19. Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration.

    PubMed

    Montemurro, Tiziana; Viganò, Mariele; Ragni, Enrico; Barilani, Mario; Parazzi, Valentina; Boldrin, Valentina; Lavazza, Cristiana; Montelatici, Elisa; Banfi, Federica; Lauri, Eleonora; Giovanelli, Silvia; Baccarin, Marco; Guerneri, Silvana; Giordano, Rosaria; Lazzari, Lorenza

    2016-01-01

    In a recent work, our group showed the existence of two distinct mesenchymal stem cell (MSC) subsets within human umbilical cord blood. One less proliferative and short-living (SL-CBMSC), the other with higher growth rate and long-living (LL-CBMSC), and therefore better suited for regenerative medicine applications. We examined whether LL-CBMSC possess peculiar paracrine properties able to affect angiogenesis or inflammatory processes. It was shown for the first time that pro-angiogenic, proliferation-stimulating and tissue repairing factors were released at high level not only as soluble cytokines, but also as mRNA precursors embedded in membrane vesicles. The combination of this primary (proteic factors interacting with surface receptors) and delayed (mRNA transferred and translated via vesicle fusion and cargo release) interaction in endothelial target cells resulted in strong blood vessel induction with the development of capillary-like structures. In addition, LL-CBMSC dynamically modulated their release of pro-angiogenic and anti-inflammatory factors in an in vitro model of damage. In conclusion, LL-CBMSC synthesize and secrete multiple factors that may be attuned in response to the status of the target cell, a crucial requisite when paracrine mechanisms are needed at onset of tissue regeneration.

  20. Comparison of the efficacy of cord blood mononuclear cells (MNCs) and CD34+ cells for the treatment of neonatal mice with cerebral palsy.

    PubMed

    Li, Xiaoxia; Shang, Qing; Zhang, Lifan

    2014-12-01

    To compare the efficacy of cord blood mononuclear cells (MNCs) and CD34+ cells for the treatment of neonatal mice models with cerebral palsy (CP). CP model in neonatal mice was established by the ligation of carotid artery. Mice were randomly designated into MNCs group, CD34+ group, model group and control group (30 mice per group). MNCs and CD34+ cells were isolated from human umbilical cord blood. MNCs were transplanted into mice in the MNCs group and CD34+ cells into mice in the CD34+ group through the jugular vein, respectively. The body weight, histopathology, apoptosis-related gene expression, learning and memory, and motor function of mice in the four groups were compared. Compared with control group, the body weight of mice in model group was significantly lower (P < 0.05). In addition, the right hemisphere was significantly liquefied and voids were found in model mice, in which degeneration and necrosis were found by HE staining. Real-time quantitative fluorescent PCR showed elevated levels of apoptosis-related gene expression and learning and memory function, and motor function were significantly decreased (P < 0.05) in model mice. In the MNCs group and CD34+ group, the weight of mice was significantly increased compared with the model group (P < 0.05). Moreover, neither liquefaction and voids in the hemispheres of mice were found in these two groups, nor degeneration and necrosis of cell. Meanwhile, levels of apoptosis-related gene expression were significantly lower than that of the model group (P < 0.05). Compared with the MNCs group, the expression of apoptotic gene TNF-α and CD40 was significantly lower (P < 0.05). Learning and memory function, and motor function of mice in the MNCs group and CD34+ group were significantly improved than the model group (P < 0.05), and the CD34+ group produced greater improvement than the MNCs group (P < 0.05). MNCs and CD34+ cells can reduce the degree of injury in the neonatal mice with CP. In addition, treatment

  1. Increased Proportion of Hematopoietic Stem and Progenitor Cell Population in Cord Blood of Neonates Born to Mothers with Gestational Diabetes Mellitus.

    PubMed

    Hadarits, Orsolya; Zóka, András; Barna, Gábor; Al-Aissa, Zahra; Rosta, Klára; Rigó, János; Kautzky-Willer, Alexandra; Somogyi, Anikó; Firneisz, Gábor

    2016-01-01

    We assessed the hematopoietic stem and progenitor cell (HSPC) population in the cord blood of neonates born to mothers with gestational diabetes mellitus (GDM) in a hypothesis generating pilot study, due to that, neonatal polycythemia may be the consequence of GDM pregnancy. Forty-five pregnant women with GDM (last trimester mean HbA1C = 33.9 mmol/mol) and 42 (nondiabetic) control pregnant women were enrolled after their routine 75 g oral glucose tolerance test (OGTT) between the 24th and 28th gestational week (with expected differences in their mean routine clinical characteristics: plasma glucose at OGTT: 0' = 5.07 vs. 4.62 mM, 120' = 8.9 vs. 5.76 mM, age = 35.07 vs. 31.66 years, prepregnancy body mass index = 27.9 vs. 23.9 kg/m(2), GDM vs. control, respectively) on a voluntary basis after signing the informed consent. EDTA-treated cord blood samples were analyzed by flow cytometry and the software Kaluza1.2 using CD45 and CD34-specific fluorescent antibodies to identify the HSPC population (CD34(+) cells within the CD45(dim) blast gate). The proportion of CD34(+)CD45(dim) HSPCs among the nucleated cells was significantly (P < 0.05, statistical power = 60.8%) higher in the cord blood samples of neonates born to mothers with GDM (median 0.38%) compared to neonates born to nondiabetic mothers (median 0.32%) and according to treatment types (P < 0.05) median: control 0.32%, GDM-diet only 0.37%, GDM-on insulin 0.45%; control versus GDM on insulin (P < 0.05). The increased proportion of circulating CD34(+)CD45(dim) cells in the cord blood may possibly be related to altered fetal stem cell mobilization in GDM pregnancy, yet these results should be interpreted only as preliminary due to the small sample sizes.

  2. Good practices in collecting umbilical cord and placental blood 1

    PubMed Central

    Lopes, Lauren Auer; Bernardino, Elizabeth; Crozeta, Karla; Guimarães, Paulo Ricardo Bittencourt

    2016-01-01

    Abstract Objective: to identify the factors related to the quality of umbilical cord and placental blood specimens, and define best practices for their collection in a government bank of umbilical cord and placental blood. Method: this was a descriptive study, quantitative approach, performed at a government umbilical cord and placental blood bank, in two steps: 1) verification of the obstetric, neonatal and operational factors, using a specific tool for gathering data as non-participant observers; 2) definition of best practices by grouping non-conformities observed before, during and after blood collection. The data was analyzed using descriptive statistics and the following statistical software: Statistica(r) and R(r). Results: while there was a correlation with obstetrical and neonatal factors, there was a larger correlation with operational factors, resulting in the need to adjust the professional practices of the nursing staff and obstetrical team involved in collecting this type of blood. Based on these non-conformities we defined best practices for nurses before, during and after blood collection. Conclusion: the best practices defined in this study are an important management tool for the work of nurses in obtaining blood specimens of high cell quality. PMID:27556876

  3. [Alpha fetoprotein in umbilical cord blood].

    PubMed

    Guibaud, S; Bonnet, M; Thoulon, J M; Dorche, J; Dumont, M

    1975-02-08

    Quantitative measurement of alpha-foetoprotein was made on the cord blood of 158 new-born of gestational age ranging between 15 and 43 weeks. The technique used was that of simple radial immunodiffusion of Mancini which made possible the exact measurement of A.F.P. in all the specimens apart from 3. The correlation coefficient between the A.F.P. level in cord blood and gestational age is significant (r equals 0,85 for a risk p equals 0,001). However, the degree of difference at a given point in pregnancy and the difference in levels found in certain cases of twin pregnancies, suggest that factors other than gestational age (certain complications of pregnancy, for example) may influence foetal A,F.P.

  4. Thymic function recovery after unrelated donor cord blood or T-cell depleted HLA-haploidentical stem cell transplantation correlates with leukemia relapse.

    PubMed

    Clave, Emmanuel; Lisini, Daniela; Douay, Corinne; Giorgiani, Giovanna; Busson, Marc; Zecca, Marco; Moretta, Francesca; Acquafredda, Gloria; Brescia, Letizia P; Locatelli, Franco; Toubert, Antoine

    2013-01-01

    Use of alternative donors/sources of hematopoietic stem cells (HSC), such as cord blood (CB) or HLA-haploidentical (Haplo)-related donors, is associated with a significant delay in immune reconstitution after transplantation. Long-term T-cell immune reconstitution largely relies on the generation of new T cells in the recipient thymus, which can be evaluated through signal joint (sj) and beta T-cell-Receptor Excision Circles (TREC) quantification. We studied two groups of 33 and 24 children receiving, respectively, HSC Transplantation (HSCT) from an HLA-haploidentical family donor or an unrelated CB donor, for both malignant (46) and non-malignant disorders (11). Relative and absolute sj and beta-TREC values indicated comparable thymic function reconstitution at 3 and 6 months after the allograft in both groups. Compared to children with non-malignant disorders, those with hematological malignancies had significantly lower pre-transplantation TREC counts. Patients who relapsed after HSCT had a significantly less efficient thymic function both before and 6 months after HSCT with especially low beta-TREC values, this finding suggesting an impact of early intra-thymic T-cell differentiation on the occurrence of leukemia relapse.

  5. Potential uses of cord blood in cardiac surgery.

    PubMed

    Mosca, Ralph S

    2012-01-01

    Despite advances in the fields of prevention, medical intervention and surgical therapy, cardiovascular disease remains a major public healthcare issue. A promising area of research is the potential application of regenerative therapies with pluripotential stem cells to reduce the burden of heart disease and its sequelae. Umbilical cord blood, a rich source of multiple populations of nonembryonic stem cells, will be a valuable resource and has the potential to advance therapeutic options for patients with acquired and congenital heart disease.

  6. Toxoplasmosis in cord blood transplantation recipients.

    PubMed

    Bautista, G; Ramos, A; Forés, R; Regidor, C; Ruiz, E; de Laiglesia, A; Navarro, B; Bravo, J; Portero, F; Sanjuan, I; Fernández, M N; Cabrera, R

    2012-10-01

    Toxoplasmosis is a devastating opportunistic infection that can affect immunocompromised patients such as cord blood transplantation (CBT) recipients. The clinical characteristics of 4 toxoplasmosis CBT patients treated at our institution are reviewed, together with 5 cases collected from the literature. The rate of toxoplasmosis in our hospital was 6% in CBT recipients and 0.2% in other types of allogeneic hematopoietic stem cell transplantation (P < 0.001). Five patients (56%) presented disseminated toxoplasmosis and 4 patients (44%) had localized infection in the central nervous system. In 5 of the 9 patients considered (56%), cytomegalovirus viral replication had been detected before the clinical onset of toxoplasmosis. Seven patients (78%) had previously developed graft-versus-host disease. All patients who exhibited disseminated disease died due to Toxoplasma infection. Pre-transplant serology was positive in 1 patient, negative in 3 patients, and not performed in another. Only 1 of these 5 patients with disseminated disease had received Toxoplasma prophylaxis with cotrimoxazole. It could be concluded that mortality in CBT patients with disseminated toxoplasmosis is unacceptably high. The negative results of serology in the majority of these cases, and its unspecific clinical presentation, makes diagnosis exceedingly difficult. Better diagnostic tests and prophylaxis strategy are needed in CBT recipients.

  7. Human lung-derived mature mast cells cultured alone or with mouse 3T3 fibroblasts maintain an ultrastructural phenotype different from that of human mast cells that develop from human cord blood cells cultured with 3T3 fibroblasts.

    PubMed Central

    Dvorak, A. M.; Furitsu, T.; Estrella, P.; Ishizaka, T.

    1991-01-01

    Culture systems designed to maintain or develop human mast cells have proved difficult, yet these systems would provide valuable resources for future investigations of human mast cell biology. Cocultures of either isolated mature human lung mast cells (Levi-Schaffer et al., J Immunol 1987, 139:494-500) or human cord blood mononuclear cells (Furitsu, Proc Natl Acad Sci USA 1989, 86:10039-10043) with 3T3 embryonic mouse skin fibroblasts have implicated fibroblasts as an important factor in the successful maintenance and development of human mast cells in vitro. The authors cultured isolated, mature human lung mast cells either with or without 3T3 cells for 1 month and examined their ultrastructural phenotype. Mast cell viability in each circumstance was equivalent, but mast cell yield was improved in the presence of 3T3 cells. The ultrastructural phenotype was identical in both culture systems. Mast cells were shown to maintain the phenotype of their in vivo lung counterparts (ie, scroll granules predominanted, and numerous lipid bodies were present). This ultrastructural phenotype differs from that of mast cells that develop in cocultures of human cord blood cells and 3T3 cells, where developing mast cells with crystalline granules and few lipid bodies prevail, a phenotype much like that of human skin mast cells in vivo (Furitsu, Proc Natl Acad Sci USA 1989, 86:10039-10043). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1750506

  8. Mesenchymal stem cells promote a primitive phenotype CD34+c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion.

    PubMed

    Rodríguez-Pardo, Viviana M; Vernot, Jean Paul

    2013-03-01

    The purpose of this study was to evaluate the influence of bone marrow-mesenchymal stem cells (BM-MSC) and exogenously added cytokines on the proliferation, primitive cell subpopulation maintenance (including the c-kit+ marker) and clonogenic capacity of hematopoietic stem cells (HSC). BM-MSC were collected from volunteer donors, isolated and characterized. Umbilical cord blood (UCB) samples were collected from healthy full-term deliveries. UCB-CD34+ cells were cultured in the presence or absence of BM-MSC and/or cytokines for 3 and 7 days. CD34+ cell proliferation was evaluated using the CSFE method and cell phenotype was determined by CD34, c-kit, CD33, CD38, HLA-DR, cyCD22 and cyCD3 detection. Cell clonogenic ability was also assessed. Exogenously added SCF, TPO and FLT3L increased CD34+ cell proliferation in the presence or absence of BM-MSC, but with concomitant cell differentiation. Without any added cytokines, BM-MSC are able to increase the percentage of primitive progenitors as evaluated by c-kit expression and CFU-GEMM increase. Interestingly, this latter effect was dependent on both cell-cell interactions and secreted factors. A 7-day co-culture period will be optimal for obtaining an increased primitive HSC level. Including c-kit as a marker for primitive phenotype evaluation has shown the relevance of BM-MSC and their secreted factors on UCB-HSC stemness function. This effect could be dissociated from that of the addition of exogenous cytokines, which induced cellular differentiation instead.

  9. Extracellular O-Linked N-Acetylglucosamine Is Enriched in Stem Cells Derived from Human Umbilical Cord Blood

    PubMed Central

    Hirvonen, Tia; Ritamo, Ilja; Natunen, Suvi; Tuimala, Jarno; Laitinen, Saara; Anderson, Heidi; Nystedt, Johanna; Räbinä, Jarkko; Valmu, Leena

    2014-01-01

    Abstract Stem cells have a unique ability to self-renew and differentiate into diverse cell types. Currently, stem cells from various sources are being explored as a promising new treatment for a variety of human diseases. A diverse set of functional and phenotypical markers are used in the characterization of specific therapeutic stem cell populations. The glycans on the stem cell surface respond rapidly to alterations in cellular state and signaling and are therefore ideal for identifying even minor changes in cell populations. Many stem cell markers are based on cell surface glycan epitopes including the widely used markers SSEA-3, SSEA-4, Tra 1-60, and Tra 1-81. We have now discovered by mRNA analysis that a novel glycosyltranferase, epidermal growth factor (EGF) domain-specific O-linked GlcNAc transferase (EOGT), is highly expressed in stem cells. EOGT is responsible for adding O-linked N-acetylglucosamine (O-GlcNAc) to folded EGF domains on extracellular proteins, such as those on the Notch receptors. We were able to show by immunological assays that human umbilical cord blood–derived mesenchymal stromal cells display O-GlcNAc, the product of EOGT, and that O-GlcNAc is further elongated with galactose to form O-linked N-acetyllactosamine. We suggest that these novel glycans are involved in the fine tuning of Notch receptor signaling pathways in stem cells. PMID:24804163

  10. Human Adipose-Tissue Derived Stromal Cells in Combination with Hypoxia Effectively Support Ex Vivo Expansion of Cord Blood Haematopoietic Progenitors

    PubMed Central

    Andreeva, Elena R.; Buravkov, Sergey V.; Romanov, Yury A.; Buravkova, Ludmila B.

    2015-01-01

    The optimisation of haematopoietic stem and progenitor cell expansion is on demand in modern cell therapy. In this work, haematopoietic stem/progenitor cells (HSPCs) have been selected from unmanipulated cord blood mononuclear cells (cbMNCs) due to adhesion to human adipose-tissue derived stromal cells (ASCs) under standard (20%) and tissue-related (5%) oxygen. ASCs efficiently maintained viability and supported further HSPC expansion at 20% and 5% O2. During co-culture with ASCs, a new floating population of differently committed HSPCs (HSPCs-1) grew. This suspension was enriched with СD34+ cells up to 6 (20% O2) and 8 (5% O2) times. Functional analysis of HSPCs-1 revealed cobble-stone area forming cells (CAFCs) and lineage-restricted colony-forming cells (CFCs). The number of CFCs was 1.6 times higher at tissue-related O2, than in standard cultivation (20% O2). This increase was related to a rise in the number of multipotent precursors - BFU-E, CFU-GEMM and CFU-GM. These changes were at least partly ensured by the increased concentration of MCP-1 and IL-8 at 5% O2. In summary, our data demonstrated that human ASCs enables the selection of functionally active HSPCs from unfractionated cbMNCs, the further expansion of which without exogenous cytokines provides enrichment with CD34+ cells. ASCs efficiently support the viability and proliferation of cord blood haematopoietic progenitors of different commitment at standard and tissue-related O2 levels at the expense of direct and paracrine cell-to-cell interactions. PMID:25919031

  11. Cord Blood Transplantation for Multiple Myeloma: A Study from the Multiple Myeloma Working Group of the Japan Society for Hematopoietic Cell Transplantation.

    PubMed

    Kawamura, Koji; Takamatsu, Hiroyuki; Ikeda, Takashi; Komatsu, Tsunehiko; Aotsuka, Nobuyuki; Amano, Itsuto; Yamamoto, Go; Watanabe, Kentaro; Ohno, Yuju; Matsue, Kosei; Kouzai, Yasuji; Tsukada, Nobuhiro; Ishiyama, Ken; Anzai, Naoyuki; Kato, Koji; Suzuki, Ritsuro; Sunami, Kazutaka; Kanda, Yoshinobu

    2015-07-01

    Cord blood has been investigated as an alternative source for hematopoietic stem cell transplantation, but information about its use for multiple myeloma is limited. The purpose of this study was to evaluate the feasibility of cord blood transplantation (CBT) for patients with multiple myeloma. Eighty-six patients with multiple myeloma who underwent a first CBT between 2001 and 2011 were included in this retrospective study. Sixty-two of them had received other types of stem cell transplantation before CBT. The cumulative incidences of neutrophil engraftment at day 50, grade II to IV acute graft-versus-host disease (GVHD), and chronic GVHD were 81.4%, 39.0%, and 19.5%, respectively. The incidence of nonrelapse mortality at 2 years was 39.0%, but it was only 6.2% in patients who underwent planned tandem autologous/reduced-intensity conditioning CBT (auto/RIC-CBT). Progression-free survival (PFS) and overall survival (OS) at 6 years were 13.0% and 15.2%, respectively. Less than a partial response before CBT and lack of prior transplantation were independent significant adverse factors for PFS, whereas the presence of prior transplantation and planned tandem transplantation were associated with better OS. OS at 6 years in patients who underwent auto/RIC-CBT was 45.9%. In addition, the development of chronic GVHD was associated with superior PFS. In conclusion, we demonstrated that cord blood is feasible as an alternative graft source for myeloma patients. Although CBT provided long-term survival for a fraction of patients, optimal use of this graft requires further clinical studies.

  12. Institutional Knots: A Comparative Analysis of Cord Blood Policy in Canada and the United States.

    PubMed

    Denburg, Avram

    2016-02-01

    Umbilical cord blood is a rich source of blood stem cells, which are of critical clinical importance in the treatment of a variety of malignant and genetic conditions requiring stem cell transplantation. Many countries have established national public cord blood banks; such banks often coexist with a panoply of private options for cord blood banking. Until recently, Canada was the only G8 country without a national cord blood bank. This differs markedly from the United States, which years ago established a national cord blood bank policy and inventory. This article investigates potential reasons for this discrepancy through a comparative analysis of the evolution of programs and policies on national cord blood banking in Canada and the United States. My analysis suggests that cross-national discrepancies in policy on public cord blood banking were determined primarily by institutional factors, principal among them formal governmental structure and the legacy of past policies. Institutional entrepreneurialism in the health sector played a constitutive role in the earlier evolution of national cord blood policy in the United States as compared to Canada.

  13. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation

    PubMed Central

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Simeon, Vittorio; Calice, Giovanni; Raimondo, Stefania; Podestà, Marina; Santodirocco, Michele; Di Mauro, Lazzaro; La Rocca, Francesco; Caivano, Antonella; Morano, Annalisa; Frassoni, Francesco; Cilloni, Daniela

    2016-01-01

    Hematopoietic stem cells (HSC), including umbilical cord blood CD34+ stem cells (UCB-CD34+), are used for the treatment of several diseases. Although different studies suggest that bone marrow mesenchymal stem cells (BM-MSC) support hematopoiesis, the exact mechanism remains unclear. Recently, extracellular vesicles (EVs) have been described as a novel avenue of cell communication, which may mediate BM-MSC effect on HSC. In this work, we studied the interaction between UCB-CD34+ cells and BM-MSC derived EVs. First, by sequencing EV derived miRNAs and piRNAs we found that EVs contain RNAs able to influence UCB-CD34+ cell fate. Accordingly, a gene expression profile of UCB-CD34+ cells treated with EVs, identified about 100 down-regulated genes among those targeted by EV-derived miRNAs and piRNAs (e.g. miR-27b/MPL, miR-21/ANXA1, miR-181/EGR2), indicating that EV content was able to modify gene expression profile of receiving cells. Moreover, we demonstrated that UCB-CD34+ cells, exposed to EVs, significantly changed different biological functions, becoming more viable and less differentiated. UCB-CD34+ gene expression profile also identified 103 up-regulated genes, most of them codifying for chemokines, cytokines and their receptors, involved in chemotaxis of different BM cells, an essential function of hematopoietic reconstitution. Finally, the exposure of UCB-CD34+ cells to EVs caused an increased expression CXCR4, paralleled by an in vivo augmented migration from peripheral blood to BM niche in NSG mice. This study demonstrates the existence of a powerful cross talk between BM-MSC and UCB-CD34+ cells, mediated by EVs, providing new insight in the biology of cord blood transplantation. PMID:26760763

  14. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation.

    PubMed

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Simeon, Vittorio; Calice, Giovanni; Raimondo, Stefania; Podestà, Marina; Santodirocco, Michele; Di Mauro, Lazzaro; La Rocca, Francesco; Caivano, Antonella; Morano, Annalisa; Frassoni, Francesco; Cilloni, Daniela; Del Vecchio, Luigi; Musto, Pellegrino

    2016-02-09

    Hematopoietic stem cells (HSC), including umbilical cord blood CD34+ stem cells (UCB-CD34+), are used for the treatment of several diseases. Although different studies suggest that bone marrow mesenchymal stem cells (BM-MSC) support hematopoiesis, the exact mechanism remains unclear. Recently, extracellular vesicles (EVs) have been described as a novel avenue of cell communication, which may mediate BM-MSC effect on HSC. In this work, we studied the interaction between UCB-CD34+ cells and BM-MSC derived EVs. First, by sequencing EV derived miRNAs and piRNAs we found that EVs contain RNAs able to influence UCB-CD34+ cell fate. Accordingly, a gene expression profile of UCB-CD34+ cells treated with EVs, identified about 100 down-regulated genes among those targeted by EV-derived miRNAs and piRNAs (e.g. miR-27b/MPL, miR-21/ANXA1, miR-181/EGR2), indicating that EV content was able to modify gene expression profile of receiving cells. Moreover, we demonstrated that UCB-CD34+ cells, exposed to EVs, significantly changed different biological functions, becoming more viable and less differentiated. UCB-CD34+ gene expression profile also identified 103 up-regulated genes, most of them codifying for chemokines, cytokines and their receptors, involved in chemotaxis of different BM cells, an essential function of hematopoietic reconstitution. Finally, the exposure of UCB-CD34+ cells to EVs caused an increased expression CXCR4, paralleled by an in vivo augmented migration from peripheral blood to BM niche in NSG mice. This study demonstrates the existence of a powerful cross talk between BM-MSC and UCB-CD34+ cells, mediated by EVs, providing new insight in the biology of cord blood transplantation.

  15. Concise Review: Ex Vivo Expansion of Cord Blood-Derived Hematopoietic Stem and Progenitor Cells: Basic Principles, Experimental Approaches, and Impact in Regenerative Medicine

    PubMed Central

    Flores-Guzmán, Patricia; Fernández-Sánchez, Verónica

    2013-01-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine. PMID:24101670

  16. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine.

    PubMed

    Flores-Guzmán, Patricia; Fernández-Sánchez, Verónica; Mayani, Hector

    2013-11-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine.

  17. Characterization of the Highly Prevalent Regulatory CD24(hi)CD38(hi) B-Cell Population in Human Cord Blood.

    PubMed

    Esteve-Solé, Ana; Teixidó, Irene; Deyà-Martínez, Angela; Yagüe, Jordi; Plaza-Martín, Ana M; Juan, Manel; Alsina, Laia

    2017-01-01

    The newborn's immune system must transition from a sterile haploidentical uterus to the world full of antigens. Regulatory B-cells (Breg; broadly defined as CD19(+)CD24(hi)CD38(hi)) are tolerance promoters in the adult immune system. They can inhibit IFN-γ and IL-17 production by T-cells and are essential in different conditions, including pregnancy. Breg have still not been well characterized in umbilical cord blood, where we hypothesize that they are pivotal in the achievement of tolerance. We studied CD19(+)CD24(hi)CD38(hi) Breg in healthy umbilical cord blood (hUCB) compared to healthy peripheral adult blood (hAPB). Total numbers of Breg were increased in hUCB compared to hAPB (34.39 vs. 9.49%; p = 0.0002), especially in the marginal zone-like B-cell subset, in which the most marked difference could be observed between hUCB and hAPB (60.80 vs. 4.94%; p = 0.1). CD24(hi)CD38(hi) subset in hUCB produced IL-10 and inhibited T-cell IFN-γ [1.63 vs. 0.95 stimulation ratio (SR); p = 0.004] and IL-4 (1.63 vs. 1.44 SR; p = 0.39) production. Phenotypically, hUCB Breg cells presented IgM(hi)IgD(hi)CD5(+)CD10(+)CD27(-) markers, similar to those described in hAPB Breg cells, but they showed increased IgM concentration and decreased expression of CD22 and CD73 markers. Our work characterized the frequency, phenotype, and function of Breg in hUCB, which may contribute to understanding of immune tolerance during pregnancy, paving the way to a new approach to immune-related diseases in the fetus and the newborn.

  18. Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

    PubMed Central

    Roura, Santiago; Soler-Botija, Carolina; Bagó, Juli R.; Llucià-Valldeperas, Aida; Férnandez, Marco A.; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Blanco, Jerónimo

    2015-01-01

    Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound. Significance Ischemic heart failure (HF) is the end stage of many cardiovascular diseases, including myocardial infarction. The only definitive treatment for HF is cardiac transplant, which is hampered by limited number of heart donors and graft rejection. In recent times, cellular cardiomyoplasty has been expected to repair infarcted myocardium by implantation of different sources of stem or progenitor cells. However, low cell survival and myocardial implantation rates have motivated the emergence of novel approaches with the objective of generating graftable cell-based implants. Here, the potential

  19. Biological characteristics and effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rats.

    PubMed

    Qu, Zhiguo; Guo, Libin; Fang, Guojun; Cui, Zhenghong; Guo, Shengnan; Liu, Ying

    2012-06-01

    We evaluated the biological characteristics/effect of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rat tibia nonunion. SD rats (142) were randomly divided into four groups: fracture group (positive control); nonunion group (negative control); hUC-MSCs grafting with blood plasma group; and hUC-MSCs grafting with saline group. Rats were administered tetracycline (30 mg/kg) and calcein blue (5 mg/kg) 8 days before killing. The animals were killed under deep anesthesia at 4 and 8 weeks post fracture for radiological evaluation and histological/immunohistological studies. The hUC-MSCs grafting with blood plasma group was similar to fracture group: the fracture line blurred in 4 weeks and disappeared in 8 weeks postoperatively. Histological/immunohistological studies showed that hUC-MSCs were of low immunogenicity which merged in rat bone tissue, differentiated into osteogenic lineages, and completed the healing of nonunion. After stem cell transplantation, regardless of whether plasma or saline was used, new multi-center bone formation was observed; fracture site density was better in stem cell grafting with blood plasma group. We, therefore, concluded that the biological characteristics of hUC-MSCs-treated nonunion were different from the standard fracture healing process, and the proliferative and localization capacity of hUC-MSCs might benefit from the use of blood plasma.

  20. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    SciTech Connect

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang; Cui, Guang-Hui; Wang, Xin-Hua; Chen, Xi-Gu . E-mail: xiguchen1516@yahoo.com.cn

    2007-06-15

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.

  1. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection.

    PubMed

    Van Pham, Phuc; Thi-My Nguyen, Phuoc; Thai-Quynh Nguyen, Anh; Minh Pham, Vuong; Nguyen-Tu Bui, Anh; Thi-Tung Dang, Loan; Gia Nguyen, Khue; Kim Phan, Ngoc

    2014-06-01

    Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment.

  2. Transplantation of ex vivo expanded cord blood.

    PubMed

    Shpall, Elizabeth J; Quinones, Ralph; Giller, Roger; Zeng, Chan; Baron, Anna E; Jones, Roy B; Bearman, Scott I; Nieto, Yago; Freed, Brian; Madinger, Nancy; Hogan, Christopher J; Slat-Vasquez, Vicki; Russell, Peggy; Blunk, Betsy; Schissel, Deborah; Hild, Elaine; Malcolm, Janet; Ward, William; McNiece, Ian K

    2002-01-01

    Umbilical cord blood (CB) from unrelated donors is increasingly used to restore hematopoiesis after myeloablative therapy. CB transplants are associated with higher rates of delayed and failed engraftment than are bone marrow transplants, particularly for adult patients. We studied the ex vivo expansion of CB in an attempt to improve time to engraftment and reduce the graft failure rate in the recipients. In this feasibility study, 37 patients (25 adults, 12 children) with hematologic malignancies (n = 34) or breast cancer (n = 3) received high-dose therapy followed by unrelated allogeneic CB transplantation. A fraction of each patient's CB allograft was CD34-selected and cultured ex vivo for 10 days prior to transplantation in defined media with stem cell factor, granulocyte colony-stimulating factor, and megakaryocyte growth and differentiation factor. The remainder of the CB graft was infused without further manipulation. Two sequential cohorts of patients were accrued to the study. The first cohort had 40% and the second cohort had 60% of their CB graft expanded. Patients received a median of 0.99 x 10(7) total nucleated cells (expanded plus unexpanded) per kilogram. The median time to engraftment of neutrophils was 28 days (range, 15-49 days) and of platelets was 106 days (range, 38-345 days). All evaluable patients who were followed for 28 days or longer achieved engraftment of neutrophils. Grade III/IV acute GVHD was documented in 40% and extensive chronic GVHD in 63% of patients. At a median follow-up of 30 months, 13 (35%) of 37 of patients survived. This study demonstrates that the CD34 selection and ex vivo expansion of CB prior to transplantation of CB is feasible. Additional accrual will be required to assess the clinical efficacy of expanded CB progenitors.

  3. Cotransplantation of human umbilical cord-derived mesenchymal stem cells and umbilical cord blood-derived CD34⁺ cells in a rabbit model of myocardial infarction.

    PubMed

    Li, Tong; Ma, Qunxing; Ning, Meng; Zhao, Yue; Hou, Yuelong

    2014-02-01

    The objective of the study is to investigate the effect of hypoxic preconditioning on the immunomodulatory properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and the effect of cotransplantation of hUC-MSCs and human umbilical cord blood (hUCB)-derived CD34(+) cells in a rabbit model of myocardial infarction. hUC-MSCs with or without hypoxic preconditioning by cobalt chloride were plated in a 24-well plate, and then cocultured with hUCB-CD34(+) cells and PBMCs for 96 h at 37 °C in a 5% CO₂ incubator. For the negative control, hUC-MSCs were omitted. The groups were divided as follows: A1 = HP-MSCs + hUCB-CD34(+) cells + PBMC, A2 = hUC-MSCs + hUCB-CD34(+) cells + PBMC, Negative Control = hUCB-CD34(+) cells + PBMC. Culture supernatants of each group were collected, and the IL-10 and IFN-γ levels were measured by ELISA. A rabbit model of MI was established using a modified Fujita method. The animals were then randomized into three groups and received intramyocardial injections of 0.4 ml of PBS alone (n = 8, PBS group), hUC-MSCs in PBS (n = 8, hUC-MSCs group), or hUC-MSCs + CD34(+) cells in PBS (n = 8, Cotrans group), at four points in the infarct border zone. Echocardiography was performed at baseline, 4 weeks after MI induction, and 4 weeks after cell transplantation, respectively. Stem cell differentiation and neovascularization in the infracted area were characterized for the presence of cardiac Troponin I (cTnI) and CD31 by immunohistochemical staining, and the extent of myocardial fibrosis was evaluated by hematoxylin and eosin (H&E) and Masson's trichrome. IFN-γ was 27.00 ± 1.11, 14.20 ± 0.81, and 7.22 ± 0.14 pg/ml, and IL-10 was 31.68 ± 3.08, 61.42 ± 1.08, and 85.85 ± 1.80 pg/ml for the Control, A1 and A2 groups, respectively, which indicated that hUCB-CD34(+) cells induced immune reaction of peripheral blood mononuclear cells, whereas both hUC-MSCs and HP-MSCs showed an immunosuppressive effect, which, however, was attenuated

  4. Capability of human umbilical cord blood progenitor-derived endothelial cells to form an efficient lining on a polyester vascular graft in vitro.

    PubMed

    Bérard, Xavier; Rémy-Zolghadri, Murielle; Bourget, Chantal; Turner, Neill; Bareille, Reine; Daculsi, Richard; Bordenave, Laurence

    2009-05-01

    One of the goals of vascular tissue engineering is to create functional conduits for small-diameter bypass grafting. The present biocompatibility study was undertaken to check the ability of cord blood progenitor-derived endothelial cells (PDECs) to take the place of endothelial cells in vascular tissue engineering. After isolation, culture and characterization of endothelial progenitor cells, the following parameters were explored, with a commercial knitted polyester prosthesis (Polymaille C, Laboratoires Pérouse, France) impregnated with collagen: cell adhesion and proliferation, colonization, cell retention on exposure to flow, and the ability of PDECs to be regulated by arterial shear stress via mRNA levels. PDECs were able to adhere to commercial collagen-coated vascular grafts in serum-free conditions, and were maintained but did not proliferate when seeded at 2.0 x 10(5) cm(-2). Cellularized conduits were analyzed by histology and histochemical staining, demonstrating collagen impregnation and the endothelial characteristics of the colonizing cells. Thirty-six hours after cell seeding the grafts were maintained for 6 h of either static conditions (controls) or application of pulsatile laminar shear stress, which restored the integrity of the monolayer. Finally, quantitative real-time RT-PCR analysis performed at 4 and 8 h from cells lining grafts showed that MMP1 mRNA only was increased at 4h whereas vWF, VE-cadherin and KDR were not significantly modified at 4 and 8 h. Our results show that human cord blood PDECs are capable of forming an efficient lining and to withstand shear stress.

  5. US Public Cord Blood Banking Practices: Recruitment, Donation, and the Timing of Consent

    PubMed Central

    Broder, Sherri; Ponsaran, Roselle; Goldenberg, Aaron

    2012-01-01

    BACKGROUND Cord blood has moved rapidly from an experimental stem cell source to an accepted and important source of hematopoietic stem cells. There has been no comprehensive assessment of US public cord blood banking practices since the Institute of Medicine study in 2005. STUDY DESIGN AND METHODS Of 34 US public cord blood banks identified, 16 participated in our qualitative survey of public cord blood banking practices. Participants took part in in-depth telephone interviews in which they were asked structured and open-ended questions regarding recruitment, donation, and the informed consent process at these banks. RESULTS 13 of 16 participants reported a variably high percentage of women who consented to public cord blood donation. 15 banks offered donor registration at the time of hospital admission for labor and delivery. 7 obtained full informed consent and medical history during early labor and 8 conducted some form of phased consent and/or phased medical screening and history. 9 participants identified initial selection of the collection site location as the chief mode by which they recruited minority donors. CONCLUSION Since 2005, more public banks offer cord blood donor registration at the time of admission for labor and delivery. That, and the targeted location of cord blood collection sites, are the main methods used to increase access to donation and HLA diversity of banked units. Currently, the ability to collect and process donations, rather than donor willingness, is the major barrier to public cord blood banking. PMID:22803637

  6. Obstetricians and their role in cord blood banking: promoting a public model.

    PubMed

    Herlihy, Mary M; Delpapa, Ellen H

    2013-04-01

    Umbilical cord blood, the blood remaining in the umbilical cord at birth, can be collected at birth and be a source of stem cells for a patient in need of a bone marrow transplant. Obstetricians and other health care practitioners are recognized as a patient's primary source for medical information affecting the mother and her neonate and frequently are asked to provide education and guidance regarding options of private and public cord blood banking. As the use of cord blood continues to grow in medicine and research uncovers more potential for cord blood, cord blood banking has become an important resource. The Stem Cell Therapeutic and Research Act has provided funding to expand public banking initiatives in the United States and to create a more ethnically diverse inventory of units. Private storage is not advocated unless there is an identified need in the family such that banked cord blood would offer a benefit. A recent report outlined the challenges of increasing participation and inventory, particularly among minority groups. Obstetricians and other health care practitioners should have a primary role in efforts to increase awareness of umbilical cord blood donation and be involved in initiatives to expand current public banking activities.

  7. Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line

    PubMed Central

    2012-01-01

    Background Accumulating evidence indicates that in utero exposure to arsenic is associated with congenital defects and long-term disease consequences including cancers. Recent studies suggest that arsenic carcinogenesis results from epigenetic changes, particularly in DNA methylation. This study aimed to investigate DNA methylation changes as a result of arsenic exposure in utero and in vitro. Methods For the exposure in utero study, a total of seventy-one newborns (fifty-five arsenic-exposed and sixteen unexposed newborns) were recruited. Arsenic concentrations in the drinking water were measured, and exposure in newborns was assessed by measurement of arsenic concentrations in cord blood, nails and hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the in vitro study, human lymphoblasts were treated with arsenite at 0-100 μM for two, four and eight hours (short-term) and at 0, 0.5 and 1.0 μM for eight-weeks period (long-term). DNA methylation was analyzed in cord blood lymphocytes and lymphoblasts treated with arsenite in vitro. Global DNA methylation was determined as LINE-1 methylation using combined bisulfite restriction analysis (COBRA) and total 5-methyldeoxycytidine (5MedC) content which was determined by HPLC-MS/MS. Methylation of p53 was determined at the promoter region using methylation-specific restriction endonuclease digestion with MspI and HpaII. Results Results showed that arsenic-exposed newborns had significantly higher levels of arsenic in cord blood, fingernails, toenails and hair than those of the unexposed subjects and a slight increase in promoter methylation of p53 in cord blood lymphocytes which significantly correlated with arsenic accumulation in nails (p < 0.05) was observed, while LINE-1 methylation was unchanged. Short-term in vitro arsenite treatment in lymphoblastoid cells clearly demonstrated a significant global hypomethylation, determined as reduction in LINE-1 methylation and total 5-MedC content, and p53

  8. Placental-derived and expanded mesenchymal stromal cells (PLX-I) to enhance the engraftment of hematopoietic stem cells derived from umbilical cord blood.

    PubMed

    Prather, William R; Toren, Amir; Meiron, Moran

    2008-08-01

    For the past 40 years, bone marrow transplantation (BMT) has become standard therapy to re-establish marrow function in patients with damaged or defective bone marrow. A human leukocyte antigen-matched sibling is the donor of choice for patients needing transplantation of allogeneic hematopoietic stem cells (HSCs). As most patients do not have an acceptable matched, related donor, the National Marrow Donor Program has been established to match volunteer bone marrow donors with potential recipients who require BMT. Although transplantation of HSCs from an unrelated donor can be an effective therapy for a variety of malignant and non-malignant diseases, it remains complicated because of treatment-related morbidity and mortality, which has led to the investigation of alternative sources of HSCs such as umbilical cord blood (UCB). This review highlights the advantages and disadvantages of UCB and recent developments that address its disadvantages. This includes the use of a placenta-expanded mesenchymal stromal cell product (PLX-I) being developed by Pluristem Therapeutics, Inc. and our opinion about the potential of this product.

  9. Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord.

    PubMed

    Madigan, Nicolas N; Chen, Bingkun K; Knight, Andrew M; Rooney, Gemma E; Sweeney, Eva; Kinnavane, Lisa; Yaszemski, Michael J; Dockery, Peter; O'Brien, Timothy; McMahon, Siobhan S; Windebank, Anthony J

    2014-11-01

    The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF(+)) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF(+) scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels

  10. Comparison of Cellular Architecture, Axonal Growth, and Blood Vessel Formation Through Cell-Loaded Polymer Scaffolds in the Transected Rat Spinal Cord

    PubMed Central

    Madigan, Nicolas N.; Chen, Bingkun K.; Knight, Andrew M.; Rooney, Gemma E.; Sweeney, Eva; Kinnavane, Lisa; Yaszemski, Michael J.; Dockery, Peter; O'Brien, Timothy; McMahon, Siobhan S.

    2014-01-01

    The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF+) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF+ scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels significantly

  11. Antibodies binding granulocyte-macrophage colony stimulating factor produced by cord blood-derived B cell lines immortalized by Epstein-Barr virus in vitro.

    PubMed

    Revoltella, R P; Laricchia Robbio, L; Liberati, A M; Reato, G; Foa, R; Funaro, A; Vinante, F; Pizzolo, G

    2000-09-15

    We detected natural antibodies (auto-Abs) binding human granulocyte-macrophage colony stimulating factor (GM-CSF) in umbilical cord blood (CB) (23 of 94 samples screened) and peripheral blood of women at the end of pregnancy (6 of 42 samples tested). To demonstrate that Abs detected in CB were produced by the fetus, CB mononuclear cells were infected with Epstein-Barr virus in vitro. Ten cell lines producing constitutively anti-recombinant human GM-CSF (rhGM-CSF) Abs were isolated and characterized. These cells displayed a male karyotype, an early activated B cell phenotype, coexpressed surface IgM and IgD, and secreted only IgM with prevailing lambda clonal restriction. Specific cell surface binding of biotinylated rhGM-CSF and high-level anti-rhGM-CSF IgM Ab production were typical features of early cell cultures. In late cell passages the frequency of more undifferentiated B cells increased. Serum Abs of either maternal or fetal origin or Abs produced in culture did not affect the granulocyte and macrophage colony stimulating activity of rhGM-CSF from bone marrow progenitors in soft agar, suggesting that the Abs produced were nonneutralizing.

  12. Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates.

    PubMed

    Schmidt, Manfred; Carbonaro, Denise A; Speckmann, Carsten; Wissler, Manuela; Bohnsack, John; Elder, Melissa; Aronow, Bruce J; Nolta, Jan A; Kohn, Donald B; von Kalle, Christof

    2003-04-01

    A clinical trial of retroviral-mediated transfer of the adenosine deaminase (ADA) gene into umbilical cord blood CD34(+) cells was started in 1993. ADA-containing peripheral blood mononuclear cells (PBMCs) have persisted in patients from this trial, with T lymphocytes showing the highest prevalence of gene marking. To gain a greater understanding of the nature and number of the transduced cells that were engrafted, we used linear amplification-mediated PCR (LAM-PCR) to identify clonal vector proviral integrants. In one patient, a single vector integrant was predominant in T lymphocytes at a stable level over most of the eight-year time span analyzed and was also detected in some myeloid samples. T-cell clones with the predominant integrant, isolated after eight years, showed multiple patterns of T-cell receptor (TCR) gene rearrangement, indicating that a single pre-thymic stem or progenitor cell served as the source of the majority of the gene-marked cells over an extended period of time. It is important to distinguish the stable pattern of monoclonal gene marking that we observed here from the progressive increase of a T-cell clone with monoclonal gene marking that results from leukemic transformation, as observed in two subjects in a clinical trial of gene therapy for X-linked severe combined immunodeficiency (SCID).

  13. Gene expression profiles of cryopreserved CD34{sup +} human umbilical cord blood cells are related to their bone marrow reconstitution abilities in mouse xenografts

    SciTech Connect

    Sudo, Kazuhiro; Yasuda, Jun; Nakamura, Yukio

    2010-07-09

    Human umbilical cord blood (UCB) cells are an alternative source of hematopoietic stem cells for treatment of leukemia and other diseases. It is very difficult to assess the quality of UCB cells in the clinical situation. Here, we sought to assess the quality of UCB cells by transplantation to immunodeficient mice. Cryopreserved CD34{sup +} UCB cells from twelve different human donors were transplanted into sublethally irradiated NOD/shi-scid Jic mice. In parallel, the gene expression profiles of the UCB cells were determined from oligonucleotide microarrays. UCB cells from three donors failed to establish an engraftment in the host mice, while the other nine succeeded to various extents. Gene expression profiling indicated that 71 genes, including HOXB4, C/EBP-{beta}, and ETS2, were specifically overexpressed and 23 genes were suppressed more than 2-fold in the successful UCB cells compared to those that failed. Functional annotation revealed that cell growth and cell cycle regulators were more abundant in the successful UCB cells. Our results suggest that hematopoietic ability may vary among cryopreserved UCB cells and that this ability can be distinguished by profiling expression of certain sets of genes.

  14. Retention of stemness and vasculogenic potential of human umbilical cord blood stem cells after repeated expansions on PES-nanofiber matrices

    PubMed Central

    Joseph, Matthew; Das, Manjusri; Kanji, Suman; Lu, Jingwei; Aggarwal, Reeva; Chakraborty, Debanjan; Sarkar, Chandrani; Yu, Hongmei; Mao, Hai-Quan; Basu, Sujit; Pompili, Vincent J.; Das, Hiranmoy

    2014-01-01

    Despite recent advances in cardiovascular medicine, ischemic diseases remain a major cause of morbidity and mortality. Although stem cell-based therapies for the treatment of ischemic diseases show great promise, limited availability of biologically functional stem cells mired the application of stem cell-based therapies. Previously, we reported a PES-nanofiber based ex vivo stem cell expansion technology, which supports expansion of human umbilical cord blood (UCB)-derived CD133+/CD34+ progenitor cells ~225 fold. Herein, we show that using similar technology and subsequent re-expansion methods, we can achieve ~5 million-fold yields within 24 days of the initial seeding. Interestingly, stem cell phenotype was preserved during the course of the multiple expansions. The high level of the stem cell homing receptor, CXCR4 was expressed in the primary expansion cells, and was maintained throughout the course of re-expansions. In addition, re-expanded cells preserved their multi-potential differential capabilities in vitro such as, endothelial and smooth muscle lineages. Moreover, biological functionality of the re-expanded cells was preserved and was confirmed by a murine hind limb ischemia model for revascularization. These cells could also be genetically modified for enhanced vasculogenesis. Immunohistochemical evidences support enhanced expression of angiogenic factors responsible for this enhanced neovascularization. These data further confirms that nanofiber-based ex-vivo expansion technology can generate sufficient numbers of biologically functional stem cells for potential clinical applications. PMID:25002260

  15. First Autologous Cord Blood Therapy for Pediatric Ischemic Stroke and Cerebral Palsy Caused by Cephalic Molding during Birth: Individual Treatment with Mononuclear Cells

    PubMed Central

    Hamelmann, E.

    2016-01-01

    Intracranial laceration due to traumatic birth injury is an extremely rare event affecting approximately one newborn per a population of 4.5 million. However, depending on the mode of injury, the resulting brain damage may lead to lifelong sequelae, for example, cerebral palsy for which there is no cure at present. Here we report a rare case of neonatal arterial ischemic stroke and cerebral palsy caused by fetal traumatic molding and parietal depression of the head during delivery caused by functional cephalopelvic disproportion due to a “long pelvis.” This patient was treated by autologous cord blood mononuclear cells (45.8 mL, cryopreserved, TNC 2.53 × 10e8) with a remarkable recovery. Active rehabilitation was provided weekly. Follow-up examinations were at 3, 18, 34, and 57 months. Generous use of neonatal head MRI in case of molding, craniofacial deformity, and a sentinel event during parturition is advocated to enhance diagnosis of neonatal brain damage as a basis for fast and potentially causative treatment modalities including autologous cord blood transplantation in a timely manner. PMID:27239361

  16. Cord blood Lin(-)CD45(-) embryonic-like stem cells are a heterogeneous population that lack self-renewal capacity.

    PubMed

    Alvarez-Gonzalez, Cesar; Duggleby, Richard; Vagaska, Barbora; Querol, Sergio; Gomez, Susana G; Ferretti, Patrizia; Madrigal, Alejandro

    2013-01-01

    Human umbilical cord blood (hUCB) has been proposed to contain not only haematopoietic stem cells, but also a rare pluripotent embryonic-like stem cell (ELSc) population that is negative for hematopoietic markers (Lin(-)CD45(-)) and expresses markers typical of pluripotent cells. The aim of this work was to isolate, characterise and expand this ELSc fraction from hUCB, as it may provide a valuable cell source for regenerative medicine applications. We found that we could indeed isolate a Lin(-)CD45(-) population of small cells (3-10 µm diameter) with a high nucleus to cytoplasm ratio that expressed the stem cell markers CD34 and CXCR4. However, in contrast to some previous reports, this fraction was not positive for CD133. Furthermore, although these cells expressed transcripts typical of pluripotent cells, such as SOX2, OCT3/4, and NANOG, they were not able to proliferate in any of the culture media known to support stem cell growth that we tested. Further analysis of the Lin(-)CD45(-) population by flow cytometry showed the presence of a Lin(-)CD45(-)Nestin(+) population that were also positive for CD34 (20%) but negative for CXCR4. These data suggest that the Lin(-)CD45(-) stem cell fraction present in the cord blood represents a small heterogeneous population with phenotypic characteristics of stem cells, including a Lin(-)CD45(-)Nestin(+) population not previously described. This study also suggests that heterogeneity within the Lin(-)CD45(-) cell fraction is the likely explanation for differences in the hUCB cell populations described by different groups that were isolated using different methods. These populations have been widely called "embryonic-like stem cell" on the basis of their phenotypical similarity to embryonic stem cells. However, the fact they do not seem to be able to self-renew casts some doubt on their identity, and warns against defining them as "embryonic-like stem cell" at this stage.

  17. The hollow fiber bioreactor as a stroma-supported, serum-free ex vivo expansion platform for human umbilical cord blood cells.

    PubMed

    Xue, Cao; Kwek, Kenneth Y C; Chan, Jerry K Y; Chen, Qingfeng; Lim, Mayasari

    2014-07-01

    The bone marrow microenvironment plays an integral role in the regulation of hematopoiesis. Residing stromal cells and the extracellular matrix in the bone marrow microenvironment provide biological signals that control hematopoietic stem cell (HSC) function. In this study, we developed a bio-mimetic co-culture platform using the hollow fiber bioreactor (HFBR) for ex vivo expansion of HSCs. We evaluated the efficacy of such a platform in comparison to standard cultures performed on tissue culture polystyrene (TCP), using a human stromal cell line (HS-5) as stromal support, co-cultured with lineage-depleted human cord blood cells in serum-free medium supplemented with a cytokine cocktail. Our results showed that the performance of the HFBR in supporting total cell and CD34(+) progenitor cell expansion was comparable to that of cultures on TCP. Cells harvested from the HFBR had a higher clonogenic ability. The performance of ex vivo-expanded cells from the HFBR in hematopoietic reconstitution in humanized mice was comparable to that of the TCP control. Scanning electron microscopy revealed that stroma cell growth inside the HFBR created a three-dimensional cell matrix architecture. These findings demonstrate the feasibility of utilizing the HFBR for creating a complex cell matrix architecture, which may provide good in vitro mimicry of the bone marrow, supporting large-scale expansion of HSCs.

  18. In Vivo T Cell Depletion with Myeloablative Regimens on Outcomes after Cord Blood Transplantation for Acute Lymphoblastic Leukemia in Children.

    PubMed

    Ponce, Doris M; Eapen, Mary; Sparapani, Rodney; O'Brien, Tracey A; Chan, Ka Wah; Chen, Junfang; Craddock, John; Schultz, Kirk R; Wagner, John E; Perales, Miguel-Angel; Barker, Juliet N

    2015-12-01

    The inclusion of antithymocyte globulin (ATG) in cord blood transplantation is controversial. We evaluated outcomes according to ATG inclusion in 297 children and adolescents with acute lymphoblastic leukemia (ALL) who received myeloablative total body irradiation-based conditioning and either single-unit (74%) or double-unit (26%) grafts. Ninety-two patients (31%) received ATG and 205 (69%) did not. ATG recipients were more likely to be cytomegalovirus seronegative. The incidences of day 100 grades II to IV acute graft-versus-host disease (GVHD; 30% versus 54%, P = .0002) and chronic GVHD (22% versus 43%, P = .0008) were lower with ATG compared with non-ATG regimens. However, day 100 grades III to IV acute GVHD was comparable (11% versus 17%, P = .15). The 3-year incidences of transplant-related mortality (16% versus 17%, P = .98), relapse (17% versus 27%, P = .12), and leukemia-free survival (66% versus 55%, P = .23) in ATG and non-ATG recipients were similar. There were no differences in viral reactivation between treatment groups (60% versus 58%, P = .83). Therefore, the data suggest that incorporation of ATG with myeloablative conditioning regimens may be useful in reducing the risk of acute and chronic GVHD without any deleterious effect on transplant-related mortality, relapse, or leukemia-free survival in children and adolescents with ALL.

  19. Bloodstream infection after umbilical cord blood transplantation using reduced-intensity stem cell transplantation for adult patients.

    PubMed

    Narimatsu, Hiroto; Matsumura, Tomoko; Kami, Masahiro; Miyakoshi, Shigesaburo; Kusumi, Eiji; Takagi, Shinsuke; Miura, Yuji; Kato, Daisuke; Inokuchi, Chiho; Myojo, Tomohiro; Kishi, Yukiko; Murashige, Naoko; Yuji, Koichiro; Masuoka, Kazuhiro; Yoneyama, Akiko; Wake, Atsushi; Morinaga, Shinichi; Kanda, Yoshinobu; Taniguchi, Shuichi

    2005-06-01

    Bloodstream infection (BSI) is a significant problem after cord blood transplantation (CBT). However, little information has been reported on BSI after reduced-intensity CBT (RI-CBT). We retrospectively reviewed the medical records of 102 patients. The median age of the patients was 55 years (range, 17-79 years). Preparative regimens comprised fludarabine 125 to 150 mg/m 2 , melphalan 80 to 140 mg/m 2 , or busulfan 8 mg/kg and total body irradiation 2 to 8 Gy. Prophylaxis against graft-versus-host disease comprised cyclosporin or tacrolimus. BSI developed within 100 days of RI-CBT in 32 patients. The cumulative incidence of BSI was 25% at day 30 and 32% at day 100. The median onset was day 15 (range, 1-98 days). Causative organisms included Pseudomonas aeruginosa (n = 12), Staphylococcus epidermidis (n = 11), Staphylococcus aureus (n = 6), Enterococcus faecium (n = 4), Enterococcus faecalis (n = 4), Stenotrophomonas maltophilia (n = 4), and others (n = 7). Of the 32 patients with BSI, 25 (84%) died within 100 days after RI-CBT. BSI was the direct cause of death in 8 patients (25%). Univariate analysis failed to identify any significant risk factors. BSI clearly represents a significant and fatal complication after RI-CBT. Further studies are warranted to determine clinical characteristics, identify patients at high risk of BSI, and establish therapeutic strategies.

  20. Donor Derived Second Hematologic Malignancies after Cord Blood Transplantation

    PubMed Central

    Ballen, Karen K; Cutler, Corey; Yeap, Beow Y; McAfee, Steven L; Dey, Bimalangshu R; Attar, Eyal C; Chen, Yi-Bin; Haspel, Richard L; Liney, Deborah; Koreth, John; Ho, Vincent; Alyea, Edwin P; Soiffer, Robert J; Spitzer, Thomas R; Antin, Joseph H

    2010-01-01

    Double umbilical cord blood transplantation with a reduced intensity regimen is an effective strategy for adult patients without matched donors. However, the risk of second cancers is not yet established. Ninety-eight adults with hematologic malignancies received a double umbilical cord blood transplant. Seventy patients received the reduced intensity regimen of fludarabine 30 mg/m2/day × 6 days, melphalan 100 mg/m2/day × 1 day, and rabbit antithymocyte globulin 1.5 mg/kg/day × 4 days, and 28 patients received an ablative total body radiation containing conditioning regimen. Sixty-three patients received sirolimus-based graft versus host disease prophylaxis and 35 patients received non-sirolimus based graft versus host disease prophylaxis. Median age was 48 (range 19-67) years. Eighteen patients developed a second malignancy at a median of 134 days after transplant. Sixteen patients had lymphoma and two patients had myelodysplasia/myeloproliferative disorder. Sixteen of these second cancers (both MDS/MPD and fourteen of the lymphomas) were donor derived; the origin of the others was not determined. GVHD prophylaxis, HLA matching, primary disease, age, total nucleated cell dose, and CD34+ cell dose were not associated with a higher rate of second malignancy. Second myeloid malignancies of donor origin occur after double umbilical cord blood transplantation, suggesting that a search for donor origin should be performed in all patients with suspected relapse. PMID:20178854

  1. Umbilical cord blood graft enhancement strategies: has the time come to move these into the clinic?

    PubMed

    Norkin, M; Lazarus, H M; Wingard, J R

    2013-07-01

    Umbilical cord blood (UCB) is an attractive stem cell graft option for patients who need allogeneic hematopoietic stem cell support, but lack a suitable HLA-matched donor. However, the limited number of hematopoietic progenitor cells in a single cord blood unit can lead to an increased risk of graft failure, delayed hematological recovery and prolonged immunosuppression, particularly in adult patients. Several strategies to overcome these potential limitations are being evaluated. In this review, we discuss promising ex vivo manipulations to enhance cord blood engraftment capacity such as culture of UCB cells with stimulatory cytokines and growth factors, mesenchymal cells, Notch ligand, copper chelators, prostaglandins, complement components, nicotinamide and CD26/DPPIV inhibitors. All these approaches are now in early clinical trials. However, despite the fact that several cord blood enhancement strategies have resulted in increased numbers of progenitor cells and faster neutrophil recovery, the ability of these techniques to significantly shorten engraftment time and permit the use of cord units with low numbers of total nucleated cells, or accomplish reliable engraftment with a single cord, have yet to be convincingly demonstrated. The ultimate clinical value of ex vivo cord blood expansion or manipulation has not been defined yet, and the current data do not permit predicting which technology will prove to be the optimal strategy. Nevertheless, expectations remain high that eventually ex vivo enhancement will be able to improve clinical outcomes and significantly extend the applicability of UCB transplantation.

  2. Human Cord Blood Stem Cell-Modulated Regulatory T Lymphocytes Reverse the Autoimmune-Caused Type 1 Diabetes in Nonobese Diabetic (NOD) Mice

    PubMed Central

    Zhao, Yong; Lin, Brian; Darflinger, Robert; Zhang, Yongkang; Holterman, Mark J.; Skidgel, Randal A.

    2009-01-01

    Background The deficit of pancreatic islet β cells caused by autoimmune destruction is a crucial issue in type 1 diabetes (T1D). It is essential to fundamentally control the autoimmunity for treatment of T1D. Regulatory T cells (Tregs) play a pivotal role in maintaining self-tolerance through their inhibitory impact on autoreactive effector T cells. An abnormality of Tregs is associated with initiation of progression of T1D. Methodology/Principal Findings Here, we report that treatment of established autoimmune-caused diabetes in NOD mice with purified autologous CD4+CD62L+ Tregs co-cultured with human cord blood stem cells (CB-SC) can eliminate hyperglycemia, promote islet β-cell regeneration to increase β-cell mass and insulin production, and reconstitute islet architecture. Correspondingly, treatment with CB-SC-modulated CD4+CD62L+ Tregs (mCD4CD62L Tregs) resulted in a marked reduction of insulitis, restored Th1/Th2 cytokine balance in blood, and induced apoptosis of infiltrated leukocytes in pancreatic islets. Conclusions/Significance These data demonstrate that treatment with mCD4CD62L Tregs can reverse overt diabetes, providing a novel strategy for the treatment of type 1 diabetes as well as other autoimmune diseases. PMID:19156219

  3. NK cell effector functions in a Chédiak-Higashi patient undergoing cord blood transplantation: Effects of in vitro treatment with IL-2.

    PubMed

    Cifaldi, Loredana; Pinto, Rita Maria; Rana, Ippolita; Caniglia, Maurizio; Angioni, Adriano; Petrocchi, Stefano; Cancrini, Caterina; Cursi, Laura; Palumbo, Giuseppe; Zingoni, Alessandra; Gismondi, Angela; Rossi, Paolo; Santoni, Angela; Cerboni, Cristina

    2016-12-01

    NK cell cytotoxicity in Chédiak-Higashi syndrome (CHS) is strongly impaired as lytic granules are not released upon NK-target cell contact, contributing to several defects typical of this severe immunodeficiency. Correction of NK cell defects in CHS should improve the outcome of hematopoietic stem-cell transplantation, proposed as therapy. We investigated NK cell functions in a CHS patient before and after cord-blood transplantation, and the ability of in vitro IL-2 treatment to restore them. Before the transplant, the strong defect in NK cell-mediated natural and antibody-dependent cytotoxicity, as well as in IFN-γ production, could be restored up to normal levels by in vitro IL-2 treatment. This cytokine also caused the appearance of smaller lysosomal granules and their orientation towards the NK-target cell contact area, thus suggesting that IL-2 had a more general capacity to restore NK cell effector functions. Moreover after the transplant, although the successful engraftment, NK cell cytotoxicity resulted still partially impaired at one year, almost normal at ten years and, anyhow, fully recovered by in vitro IL-2 treatment. Taken together, our results indicate that IL-2 had a wide capacity to restore NK cell effector functions, being able to reverse the altered cytotoxic activity, lytic granule pattern, and cytokine production observed in the CHS patient.

  4. CKbeta8-1 alters expression of cyclin E in colony forming units-granulocyte macrophage (CFU-GM) lineage from human cord blood CD34+ cells.

    PubMed

    Noh, Eui Kyu; Ra, Jae Sun; Lee, Seong Ae; Kwon, Byoung S; Han, In Seob

    2005-12-31

    A C6 beta-chemokine, CKbeta8-1, suppressed the colony formation of CD34+ cells of human cord blood (CB). Molecular mechanisms involved in CKbeta8-1-medicated suppression of colony formation of CD34+ cells are not known. To address this issue, the level of various G1/S cell cycle regulating proteins in CKbeta8-1-treated CD34+ cells were compared with those in untreated CD34+ cells. CKbeta8-1 did not significantly alter the expression of the G1/S cycle regulation proteins (cyclin D1, D3, and E), CDK inhibitor (p27and Rb), and other cell proliferation regulation protein (p53) in CB CD34+ cells. Here we describe an in vitro system in which CB CD34+ cells were committed to a multipotent progenitor lineage of colony forming units-granulocyte/macrophage (CFU-GM) by a simple combination of recombinant human (rh) GM-CSF and rhIL-3. In this culture system, we found that cyclin E protein appeared later and disappeared faster in the CKbeta8-1-treated cells than in the control cells during CFU-GM lineage development. These findings suggested that cyclin E may play a role in suppressing the colony formation of CFU-GM by CKbeta8-1.

  5. Age, Sex, and Religious Beliefs Impact the Attitude towards Cord Blood Banking.

    PubMed

    Sundell, Inger Birgitta; Setzer, Teddi J

    2015-01-01

    In this study, a self-administered questionnaire was used to assess opinions about stem cell research and cord blood banking. Three attitudes were examined: willingness to accept cord blood banking, willingness to accept embryonic stem cell research, and religious belief system. A total of 90 Wayne State University students enrolled in the study in response to an invitation posted on a web page for the university. Sex distribution among study participants was 79 females and eight males; three declined to state their sex. Support for cord blood banking was high (> 70%) among students. Students over the age of 25 years of age were more (85%) positive than students 18 to 24 years old (57%). They prefered a public cord blood bank over a private cord blood bank. Atheist/agnostic or spiritual/not religious students (> 90%), Catholic students (78%) and Christian students (58%) support cord blood banking. Age, sex and religion seems influence the student's attitude towards stem cell research and cord blood banking.

  6. DNA Methylation Patterns in Cord Blood of Neonates Across Gestational Age

    PubMed Central

    Braid, Susan M.; Okrah, Kwame; Shetty, Amol; Corrada Bravo, Hector

    2017-01-01

    Background A statistical methodology is available to estimate the proportion of cell types (cellular heterogeneity) in adult whole blood specimens used in epigenome-wide association studies (EWAS). However, there is no methodology to estimate the proportion of cell types in umbilical cord blood (also a heterogeneous tissue) used in EWAS. Objectives The objectives of this study were to determine whether differences in DNA methylation (DNAm) patterns in umbilical cord blood are the result of blood cell type proportion changes that typically occur across gestational age and to demonstrate the effect of cell type proportion confounding by comparing preterm infants exposed and not exposed to antenatal steroids. Methods We obtained DNAm profiles of cord blood using the Illumina HumanMethylation27k BeadChip array for 385 neonates from the Boston Birth Cohort. We estimated cell type proportions for six cell types using the deconvolution method developed by Houseman et al. (2012). Results The cell type proportion estimates segregated into two groups that were significantly different by gestational age, indicating that gestational age was associated with cell type proportion. Among infants exposed to antenatal steroids, the number of differentially methylated CpGs dropped from 127 to 1 after controlling for cell type proportion. Discussion EWAS utilizing cord blood are confounded by cell type proportion. Careful study design including correction for cell type proportion and interpretation of results of EWAS using cord blood are critical. PMID:28125511

  7. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.

    PubMed

    Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo

    2016-05-18

    The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.

  8. Optimizing Donor Selection for Public Cord Blood Banking: Influence of Maternal, Infant and Collection Characteristics on Cord Blood Unit Quality

    PubMed Central

    Page, Kristin M.; Mendizabal, Adam; Betz-Stablein, Brigid; Wease, Stephen; Shoulars, Kevin; Gentry, Tracy; Prasad, Vinod K.; Sun, Jessica; Carter, Shelly; Balber, Andrew E.; Kurtzberg, Joanne

    2013-01-01

    Background Banked unrelated donor umbilical cord blood (CB) has improved access to hematopoietic stem cell transplantation for patients without a suitably matched donor. In a resource-limited environment, ensuring that the public inventory is enriched with high-quality cord blood units (CBUs) addressing the needs of a diverse group of patients is a priority. Identification of donor characteristics correlating with higher CBU quality could guide operational strategies to increase the yield of banked high-quality CBUs. Methods Characteristics of 5267 CBUs donated to the Carolinas Cord Blood Bank, a public bank participating in the National Cord Blood Inventory, were retrospectively analyzed. Eligible CBUs, collected by trained personnel, were processed using standard procedures. Routine quality and potency metrics [post-processing total nucleated cell count (post-TNCC), CD34+, colony-forming units (CFUs)] were correlated with maternal, infant, and collection characteristics. Results High-quality CBUs were defined as those with higher post-TNCC (>1.25×109), and CD34+ + CFU in the upper quartile. Factors associated with higher CD34+ or CFU content included a shorter interval from collection to processing (<10 hours), younger gestational age (34–37 weeks; CD34++CFU) Caucasian race, higher birth weight (>3500grams) and larger collection volumes (>80ml). Conclusions We describe characteristics identifying high-quality CBUs, which can be used to inform strategies for CBU collection for public banks. Efforts should be made to prioritize collections from larger babies born before 38 weeks of gestation. CBUs should be rapidly transported to the processing laboratory. The lower quality of CBUs from non-Caucasian donors highlights the challenges of building a racially diverse public CB inventory. PMID:23711284

  9. Differential effects of tumour necrosis factor-α and interleukin-12 on isopentenyl pyrophosphate-stimulated interferon-γ production by cord blood Vγ9 T cells

    PubMed Central

    Alberto, Eduardo Jose Campos; Shimojo, Naoki; Aoyagi, Masahiko; Kohno, Yoichi

    2009-01-01

    Lower numbers of Vγ9Vδ2 T cells in cord blood (CB) than in adult peripheral blood (PB), as well as their impaired ability to produce interferon-γ (IFN-γ) in response to stimulation, are associated with functional deficiency in the immune system in newborns. In this study, we stimulated CB Vγ9 T cells with their T-cell receptor-specific ligand, isopentenyl pyrophosphate (IPP), plus exogenous costimulatory cytokines such as interleukin-2 (IL-2), IL-12 and tumour necrosis factor-α (TNF-α), which are known to play important roles in the activation of PB γδ T cells. Our data show that CB Vγ9 T cells are able to produce IFN-γ at levels comparable to PB Vγ9 T cells by the addition of TNF-α in the presence of IPP and IL-2; however, under the same culture conditions, IL-12 does not efficiently activate CB Vγ9 T cells to produce IFN-γ. The frequency of TNF-α receptor II-positive Vγ9T cells and the expression levels of TNF-α receptor II are similar in CB and PB; in contrast, the frequency of IL-12 receptor βI (IL-12RβI)-positive Vγ9T cells and expression levels of IL-12RβI are significantly lower in CB than PB. TNF-α but not IL-12 increases the expression of IL-2Rβ on CB Vγ9 T cells. These results provide new insights into the role of TNF-α in the activation of CB Vγ9 T cells. PMID:19019091

  10. Dominant unit CD34+ cell dose predicts engraftment after double-unit cord blood transplantation and is influenced by bank practice.

    PubMed

    Purtill, Duncan; Smith, Katherine; Devlin, Sean; Meagher, Richard; Tonon, Joann; Lubin, Marissa; Ponce, Doris M; Giralt, Sergio; Kernan, Nancy A; Scaradavou, Andromachi; Stevens, Cladd E; Barker, Juliet N

    2014-11-06

    We investigated the unit characteristics associated with engraftment after double-unit cord blood (CB) transplantation (dCBT) and whether these could be reliably identified during unit selection. Cumulative incidence of neutrophil engraftment in 129 myeloablative dCBT recipients was 95% (95% confidence interval: 90-98%). When precryopreservation characteristics were analyzed, the dominant unit CD34(+) cell dose was the only characteristic independently associated with engraftment (hazard ratio, 1.43; P = .002). When postthaw characteristics were also included, only dominant unit infused viable CD34(+) cell dose independently predicted engraftment (hazard ratio, 1.95; P < .001). We then examined the determinants of infused viable CD34(+) cell dose (precryopreservation count, postthaw recovery, and postthaw viability) in 402 units thawed at our center. This revealed close correlation between precryopreservation and postthaw CD34(+) cell counts (r(2) = 0.73). Median CD34(+) cell recovery was 101%, although it ranged from 12% to 1480%. Notably, units from non-Netcord Foundation for the Accreditation of Cellular Therapy (Netcord-FACT)-accredited banks were more likely to have low recovery (P < .001). Furthermore, although median postthaw CD34(+) cell viability was 92%, 33 (8%) units had <75% viable CD34(+) cells. Units from non-Netcord-FACT-accredited banks and units with cryovolumes other than 24.5 to 26.0 mL were more likely to have poor postthaw viability. Precryopreservation CD34(+) cell dose and banking practices should be incorporated into CB unit selection.

  11. Human Umbilical Cord Blood for Transplantation Therapy in Myocardial Infarction

    PubMed Central

    Acosta, Sandra A; Franzese, Nick; Staples, Meaghan; Weinbren, Nathan L.; Babilonia, Monica; Patel, Jason; Merchant, Neil; Simancas, Alejandra Jacotte; Slakter, Adam; Caputo, Mathew; Patel, Milan; Franyuti, Giorgio; Franzblau, Max H.; Suarez, Lyanne; Gonzales-Portillo, Chiara; Diamandis, Theo; Shinozuka, Kazutaka; Tajiri, Naoki; Sanberg, Paul R.; Kaneko, Yuji; Miller, Leslie W.; Borlongan, Cesar V.

    2013-01-01

    Cell-based therapy is a promising therapy for myocardial infarction. Endogenous repair of the heart muscle after myocardial infarction is a challenge because adult cardiomyocytes have a limited capacity to proliferate and replace damaged cells. Pre-clinical and clinical evidence has shown that cell based therapy may promote revascularization and replacement of damaged myocytes after myocardial infarction. Adult stem cells can be harvested from different sources including bone marrow, skeletal myoblast, and human umbilical cord blood cells. The use of these cells for the repair of myocardial infarction presents various advantages over other sources of stem cells. Among these are easy harvesting, unlimited differentiation capability, and robust angiogenic potential. In this review, we discuss the milestone findings and the most recent evidence demonstrating the therapeutic efficacy and safety of the transplantation of human umbilical cord blood cells as a stand-alone therapy or in combination with gene therapy, highlighting the importance of optimizing the timing, dose and delivery methods, and a better understanding of the mechanisms of action that will guide the clinical entry of this innovative treatment for ischemic disorders, specifically myocardial infarction. PMID:24307973

  12. Human Umbilical Cord Blood for Transplantation Therapy in Myocardial Infarction.

    PubMed

    Acosta, Sandra A; Franzese, Nick; Staples, Meaghan; Weinbren, Nathan L; Babilonia, Monica; Patel, Jason; Merchant, Neil; Simancas, Alejandra Jacotte; Slakter, Adam; Caputo, Mathew; Patel, Milan; Franyuti, Giorgio; Franzblau, Max H; Suarez, Lyanne; Gonzales-Portillo, Chiara; Diamandis, Theo; Shinozuka, Kazutaka; Tajiri, Naoki; Sanberg, Paul R; Kaneko, Yuji; Miller, Leslie W; Borlongan, Cesar V

    2013-07-01

    Cell-based therapy is a promising therapy for myocardial infarction. Endogenous repair of the heart muscle after myocardial infarction is a challenge because adult cardiomyocytes have a limited capacity to proliferate and replace damaged cells. Pre-clinical and clinical evidence has shown that cell based therapy may promote revascularization and replacement of damaged myocytes after myocardial infarction. Adult stem cells can be harvested from different sources including bone marrow, skeletal myoblast, and human umbilical cord blood cells. The use of these cells for the repair of myocardial infarction presents various advantages over other sources of stem cells. Among these are easy harvesting, unlimited differentiation capability, and robust angiogenic potential. In this review, we discuss the milestone findings and the most recent evidence demonstrating the therapeutic efficacy and safety of the transplantation of human umbilical cord blood cells as a stand-alone therapy or in combination with gene therapy, highlighting the importance of optimizing the timing, dose and delivery methods, and a better understanding of the mechanisms of action that will guide the clinical entry of this innovative treatment for ischemic disorders, specifically myocardial infarction.

  13. Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential

    PubMed Central

    Pievani, Alice; Scagliotti, Valeria; Russo, Francesca Maria; Azario, Isabella; Rambaldi, Benedetta; Sacchetti, Benedetto; Marzorati, Simona; Erba, Eugenio; Giudici, Giovanni; Riminucci, Mara; Biondi, Andrea; Vergani, Patrizia; Serafini, Marta

    2014-01-01

    Background aims Cord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated. Methods MSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan. Results We were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan. Conclusions Our results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering. PMID:24794181

  14. Human Umbilical Cord Blood CD34-Positive Cells as Predictors of the Incidence and Short-Term Outcome of Neonatal Hypoxic-Ischemic Encephalopathy: A Pilot Study

    PubMed Central

    Nasr Eldin, Mohamed Hassan; Amer, Hanaa A.; Abdelhamid, Adel E.; El Houssinie, Moustafa; Ibrahim, Abir

    2017-01-01

    Background and Purpose Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of neurological handicap in developing countries. Human umbilical cord blood (hUCB) CD34-positive (CD34+) stem cells exhibit the potential for neural repair. We tested the hypothesis that hUCB CD34+ stem cells and other cell types [leukocytes and nucleated red blood cells (NRBCs)] that are up-regulated during the acute stage of perinatal asphyxia (PA) could play a role in the early prediction of the occurrence, severity, and mortality of HIE. Methods This case-control pilot study investigated consecutive neonates exposed to PA. The hUCB CD34+ cell count in mononuclear layers was assayed using a flow cytometer. Twenty full-term neonates with PA and 25 healthy neonates were enrolled in the study. Results The absolute CD34+ cell count (p=0.02) and the relative CD34+ cell count (CD34+%) (p<0.001) in hUCB were higher in the HIE patients (n=20) than the healthy controls. The hUCB absolute CD34+ cell count (p=0.04), CD34+% (p<0.01), and Hobel risk scores (p=0.04) were higher in patients with moderate-to-severe HIE (n=9) than in those with mild HIE (n=11). The absolute CD34+ cell count was strongly correlated with CD34+% (p<0.001), Hobel risk score (p=0.04), total leukocyte count (TLC) (p<0.001), and NRBC count (p=0.01). CD34+% was correlated with TLC (p=0.02). Conclusions hUCB CD34+ cells can be used to predict the occurrence, severity, and mortality of neonatal HIE after PA. PMID:28079317

  15. Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34+ Transplants

    PubMed Central

    van der Garde, Mark; van Pel, Melissa; Millán Rivero, Jose Eduardo; de Graaf-Dijkstra, Alice; Slot, Manon C.; Kleinveld, Yoshiko; Watt, Suzanne M.; Roelofs, Helene

    2015-01-01

    Cotransplantation of CD34+ hematopoietic stem and progenitor cells (HSPCs) with mesenchymal stromal cells (MSCs) enhances HSPC engraftment. For these applications, MSCs are mostly obtained from bone marrow (BM). However, MSCs can also be isolated from the Wharton's jelly (WJ) of the human umbilical cord. This source, regarded to be a waste product, enables a relatively low-cost MSC acquisition without any burden to the donor. In this study, we evaluated the ability of WJ MSCs to enhance HSPC engraftment. First, we compared cultured human WJ MSCs with human BM-derived MSCs (BM MSCs) for in vitro marker expression, immunomodulatory capacity, and differentiation into three mesenchymal lineages. Although we confirmed that WJ MSCs have a more restricted differentiation capacity, both WJ MSCs and BM MSCs expressed similar levels of surface markers and exhibited similar immune inhibitory capacities. Most importantly, cotransplantation of either WJ MSCs or BM MSCs with CB CD34+ cells into NOD SCID mice showed similar enhanced recovery of human platelets and CD45+ cells in the peripheral blood and a 3-fold higher engraftment in the BM, blood, and spleen 6 weeks after transplantation when compared to transplantation of CD34+ cells alone. Upon coincubation, both MSC sources increased the expression of adhesion molecules on CD34+ cells, although stromal cell-derived factor-1 (SDF-1)-induced migration of CD34+ cells remained unaltered. Interestingly, there was an increase in CFU-GEMM when CB CD34+ cells were cultured on monolayers of WJ MSCs in the presence of exogenous thrombopoietin, and an increase in BFU-E when BM MSCs replaced WJ MSCs in such cultures. Our results suggest that WJ MSC is likely to be a practical alternative for BM MSC to enhance CB CD34+ cell engraftment. PMID:26414086

  16. Two-Dimensional Polymer-Based Cultures Expand Cord Blood-Derived Hematopoietic Stem Cells and Support Engraftment of NSG Mice

    PubMed Central

    Schneider, Rebekka Kramann; Wagner, Wolfgang; Jahnen-Dechent, Willi; Labude, Norina; Bovi, Manfred; Piroth, Daniela; Knüchel, Ruth; Hieronymus, Thomas; Müller, Albrecht M.; Zenke, Martin; Neuss, Sabine

    2013-01-01

    Currently, ex vivo expansion of hematopoietic stem cells (HSC) is still insufficient. Traditional approaches for HSC expansion include the use of stromal cultures, growth factors, and/or bioreactors. Biomaterial-based strategies provide new perspectives. We focus on identifying promising two-dimensional (2D) polymer candidates for HSC expansion. After a 7-day culture period with cytokine supplementation, 2D fibrin, poly(D,L-lactic-co-glycolic acid; Resomer® RG503), and Poly(ɛ-caprolactone; PCL) substrates supported expansion of cord blood (CB)-derived CD34+ cells ex vivo. Fibrin cultures achieved the highest proliferation rates (>8700-fold increase of total nuclear cells, p<0.001), high total colony-forming units (3.6-fold increase, p<0.001), and highest engraftment in NSG mice (7.69-fold more donor cells compared with tissue culture polysterene, p<0.001). In addition, the presence of multiple human hematopoietic lineages such as myeloid (CD13+), erythroid (GypC+), and lymphoid (CD20+/CD56+) in murine transplant recipients confirmed the multilineage engraftment potential of fibrin-based cultures. Filopodia development in fibrin-expanded cells was a further indicator for superior cell adhesion capacities. We propose application of fibrin, Resomer® RG503, and PCL for future strategies of CB-CD34+ cell expansion. Suitable polymers for HSC expansion might also be appropriate for future drug discovery applications or for studies aimed to develop hematological therapies. PMID:22712684

  17. The role of PKCζ in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil.

    PubMed

    Harb, Hani; Irvine, James; Amarasekera, Manori; Hii, Charles S; Kesper, Dörthe A; Ma, Yuefang; D'Vaz, Nina; Renz, Harald; Potaczek, Daniel P; Prescott, Susan L; Ferrante, Antonio

    2017-02-03

    While immunodeficiency of immaturity of the neonate has been considered important as the basis for unusual susceptibility to infection, it has also been recognized that the ability to progress from an immature Th2 cytokine predominance to a Th1 profile has relevance in determining whether children will develop allergy, providing an opportunity for epigenetic regulation through environmental pressures. However, this notion remains relatively unexplored. Here we present evidence that there are two major control points to explain the immunodeficiency in cord blood (CB) T-cells, a deficiency in interleukin-12 (IL-12) producing and IL-10 overproducing accessory cells, leading to a decreased interferon-γ (IFNγ) synthesis, and the other an intrinsic defect in T-cell protein kinase C zeta (PKCζ) expression. Importantly was the finding that human CB T-cells rendered deficient in PKCζ, by shRNA knockdown, develop into low tumour necrosis factor-α (TNF α) and IFNγ but increased IL-13 producing cells. Interestingly, we found that the increase in PKCζ levels in CB T-cells caused by prenatal supplementation with fish oil correlated with modifications of histone acetylation at the PKCζ gene (PRKCZ) promoter level. The data demonstrate that PKCζ expression regulates the maturation of neonatal T-cells into specific functional phenotypes and that environmental influences may work via PKCζ to regulate these phenotypes and disease susceptibility.

  18. Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation.

    PubMed

    Naujoks, Christian; Langenbach, Fabian; Berr, Karin; Depprich, Rita; Kübler, Norbert; Meyer, Ulrich; Handschel, Jörg; Kögler, Gesine

    2011-01-01

    Modern cell-based bone reconstruction therapies offer new therapeutic opportunities and tissue engineering represents a more biological-oriented approach to heal bone defects of the skeleton. Human unrestricted somatic stem cells (USSCs) derived form umbilical cord blood offer new promising aspects e.g., can differentiate into osteogenetic cells. Furthermore these cells have fewer ethical and legal restrictions compared to embryonic stem cells (ESCs). The purpose of this study was to evaluate the compatibility of osteogenic pre-differentiated USSCs with various biomaterials and to address the question, whether biomaterials influence the process of differentiation of the USSCs. After osteogenic differentiation with DAG USSCs were cultivated with various biomaterials. To asses the biocompatibility of USSCs the attachment and the proliferation of the cells on the biomaterial were measured by a CyQUANT(®) assay, the morphology was analyzed by scanning electron microscopy and the influence of the gene expression was analyzed by real time PCR. Our results provide evidence that insoluble collagenous bone matrix followed by β-tricalciumphosphate is highly suitable for bone tissue engineering regarding cell attachment and proliferation. The gene expression analysis indicates that biomaterials influence the gene expression of USSCs. These results are in concordance with our previous study with ESCs.

  19. Characterization of the Highly Prevalent Regulatory CD24hiCD38hi B-Cell Population in Human Cord Blood

    PubMed Central

    Esteve-Solé, Ana; Teixidó, Irene; Deyà-Martínez, Angela; Yagüe, Jordi; Plaza-Martín, Ana M.; Juan, Manel; Alsina, Laia

    2017-01-01

    The newborn’s immune system must transition from a sterile haploidentical uterus to the world full of antigens. Regulatory B-cells (Breg; broadly defined as CD19+CD24hiCD38hi) are tolerance promoters in the adult immune system. They can inhibit IFN-γ and IL-17 production by T-cells and are essential in different conditions, including pregnancy. Breg have still not been well characterized in umbilical cord blood, where we hypothesize that they are pivotal in the achievement of tolerance. We studied CD19+CD24hiCD38hi Breg in healthy umbilical cord blood (hUCB) compared to healthy peripheral adult blood (hAPB). Total numbers of Breg were increased in hUCB compared to hAPB (34.39 vs. 9.49%; p = 0.0002), especially in the marginal zone-like B-cell subset, in which the most marked difference could be observed between hUCB and hAPB (60.80 vs. 4.94%; p = 0.1). CD24hiCD38hi subset in hUCB produced IL-10 and inhibited T-cell IFN-γ [1.63 vs. 0.95 stimulation ratio (SR); p = 0.004] and IL-4 (1.63 vs. 1.44 SR; p = 0.39) production. Phenotypically, hUCB Breg cells presented IgMhiIgDhiCD5+CD10+CD27− markers, similar to those described in hAPB Breg cells, but they showed increased IgM concentration and decreased expression of CD22 and CD73 markers. Our work characterized the frequency, phenotype, and function of Breg in hUCB, which may contribute to understanding of immune tolerance during pregnancy, paving the way to a new approach to immune-related diseases in the fetus and the newborn. PMID:28326080

  20. Regeneration of Full-Thickness Rotator Cuff Tendon Tear After Ultrasound-Guided Injection With Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Rabbit Model

    PubMed Central

    Park, Gi-Young; Lee, Sang Chul

    2015-01-01

    Rotator cuff tendon tear is one of the most common causes of chronic shoulder pain and disability. In this study, we investigated the therapeutic effects of ultrasound-guided human umbilical cord blood (UCB)-derived mesenchymal stem cell (MSC) injection to regenerate a full-thickness subscapularis tendon tear in a rabbit model by evaluating the gross morphology and histology of the injected tendon and motion analysis of the rabbit’s activity. At 4 weeks after ultrasound-guided UCB-derived MSC injection, 7 of the 10 full-thickness subscapularis tendon tears were only partial-thickness tears, and 3 remained full-thickness tendon tears. The tendon tear size and walking capacity at 4 weeks after UCB-derived MSC injection under ultrasound guidance were significantly improved compared with the same parameters immediately after tendon tear. UCB-derived MSC injection under ultrasound guidance without surgical repair or bioscaffold resulted in the partial healing of full-thickness rotator cuff tendon tears in a rabbit model. Histology revealed that UCB-derived MSCs induced regeneration of rotator cuff tendon tear and that the regenerated tissue was predominantly composed of type I collagens. In this study, ultrasound-guided injection of human UCB-derived MSCs contributed to regeneration of the full-thickness rotator cuff tendon tear without surgical repair. The results demonstrate the effectiveness of local injection of MSCs into the rotator cuff tendon. Significance The results of this study suggest that ultrasound-guided umbilical cord blood-derived mesenchymal stem cell injection may be a useful conservative treatment for full-thickness rotator cuff tendon tear repair. PMID:26371340

  1. Impaired blood-brain/spinal cord barrier in ALS patients.

    PubMed

    Garbuzova-Davis, Svitlana; Hernandez-Ontiveros, Diana G; Rodrigues, Maria C O; Haller, Edward; Frisina-Deyo, Aric; Mirtyl, Santhia; Sallot, Sebastian; Saporta, Samuel; Borlongan, Cesario V; Sanberg, Paul R

    2012-08-21

    Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets.

  2. Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells

    PubMed Central

    Choi, Soon Won; Kim, Jae-Jun; Seo, Min-Soo; Park, Sang-Bum; Shin, Tae-Hoon; Shin, Ji-Hee; Seo, Yoojin; Kim, Hyung-Sik

    2017-01-01

    Retinal pigment epithelium (RPE) is a major component of the eye. This highly specialized cell type facilitates maintenance of the visual system. Because RPE loss induces an irreversible visual impairment, RPE generation techniques have recently been investigated as a potential therapeutic approach to RPE degeneration. The microRNA-based technique is a new strategy for producing RPE cells from adult stem cell sources. Previously, we identified that antisense microRNA-410 (anti-miR-410) induces RPE differentiation from amniotic epithelial stem cells. In this study, we investigated RPE differentiation from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via anti-miR-410 treatment. We identified miR-410 as a RPE-relevant microRNA in UCB-MSCs from among 21 putative human RPE-depleted microRNAs. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including MITF, LRAT, RPE65, Bestrophin, and EMMPRIN. The RPE-induced cells were able to phagocytize microbeads. Results of our microRNA-based strategy demonstrated proof-of-principle for RPE differentiation in UCB-MSCs by using anti-miR-410 treatment without the use of additional factors or exogenous transduction. PMID:27297412

  3. Human Umbilical Cord Blood-Derived CD34+ Cells Reverse Osteoporosis in NOD/SCID Mice by Altering Osteoblastic and Osteoclastic Activities

    PubMed Central

    Aggarwal, Reeva; Lu, Jingwei; Kanji, Suman; Joseph, Matthew; Das, Manjusri; Noble, Garrett J.; McMichael, Brooke K.; Agarwal, Sudha; Hart, Richard T.; Sun, Zongyang; Lee, Beth S.; Rosol, Thomas J.; Jackson, Rebecca; Mao, Hai-Quan; Pompili, Vincent J.; Das, Hiranmoy

    2012-01-01

    Background Osteoporosis is a bone disorder associated with loss of bone mineral density and micro architecture. A balance of osteoblasts and osteoclasts activities maintains bone homeostasis. Increased bone loss due to increased osteoclast and decreased osteoblast activities is considered as an underlying cause of osteoporosis. Methods and Findings The cures for osteoporosis are limited, consequently the potential of CD34+ cell therapies is currently being considered. We developed a nanofiber-based expansion technology to obtain adequate numbers of CD34+ cells isolated from human umbilical cord blood, for therapeutic applications. Herein, we show that CD34+ cells could be differentiated into osteoblastic lineage, in vitro. Systemically delivered CD34+ cells home to the bone marrow and significantly improve bone deposition, bone mineral density and bone micro-architecture in osteoporotic mice. The elevated levels of osteocalcin, IL-10, GM-CSF, and decreased levels of MCP-1 in serum parallel the improvements in bone micro-architecture. Furthermore, CD34+ cells improved osteoblast activity and concurrently impaired osteoclast differentiation, maturation and functionality. Conclusions These findings demonstrate a novel approach utilizing nanofiber-expanded CD34+ cells as a therapeutic application for the treatment of osteoporosis. PMID:22724005

  4. Improving Engraftment and Immune Reconstitution in Umbilical Cord Blood Transplantation

    PubMed Central

    Danby, Robert; Rocha, Vanderson

    2014-01-01

    Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSC) for allogeneic transplantation when HLA-matched sibling and unrelated donors (MUD) are unavailable. Although the overall survival results for UCB transplantation are comparable to the results with MUD, UCB transplants are associated with slow engraftment, delayed immune reconstitution, and increased opportunistic infections. While this may be a consequence of the lower cell dose in UCB grafts, it also reflects the relative immaturity of cord blood. Furthermore, limited cell numbers and the non-availability of donor lymphocyte infusions currently prevent the use of post-transplant cellular immunotherapy to boost donor-derived immunity to treat infections, mixed chimerism, and disease relapse. To further develop UCB transplantation, many strategies to enhance engraftment and immune reconstitution are currently under investigation. This review summarizes our current understanding of engraftment and immune recovery following UCB transplantation and why this differs from allogeneic transplants using other sources of HSC. It also provides a comprehensive overview of promising techniques being used to improve myeloid and lymphoid recovery, including expansion, homing, and delivery of UCB HSC; combined use of UCB with third-party donors; isolation and expansion of natural killer cells, pathogen-specific T cells, and regulatory T cells; methods to protect and/or improve thymopoiesis. As many of these strategies are now in clinical trials, it is anticipated that UCB transplantation will continue to advance, further expanding our understanding of UCB biology and HSC transplantation. PMID:24605111

  5. Improved engraftment of human cord blood stem cells in NOD/LtSz-scid/scid mice after irradiation or multiple-day injections into unirradiated recipients.

    PubMed

    Lowry, P A; Shultz, L D; Greiner, D L; Hesselton, R M; Kittler, E L; Tiarks, C Y; Rao, S S; Reilly, J; Leif, J H; Ramshaw, H; Stewart, F M; Quesenberry, P J

    1996-02-01

    Human lymphoematopoietic stem cells engraft in irradiated immunodeficient mice that are homozygous for the severe combined immunodeficiency (scid) mutation. Engraftment levels in C.B-17-scid/scid mice, however, have been low and transient, decreasing the utility of this model for investigation of the development potential and function of human stem cells. In the present study, we have used NOD/LtSz-scid/scid mice as recipients and human cord blood as a source of donor stem cells. Our results demonstrate that NOD/LtSz-scid/scid mice support approximately fivefold higher levels of human stem cell marrow engraftment than do C.B-17-scid/scid mice. Human CD34+ cells are present in the marrow of recipient mice, and the engrafted cells readily peripheralize to the circulation of the host. Terminal differentiation of the stem and progenitor cells into mature progeny is limited. Using a multiple-day injection protocol developed in mice, which allows engraftment of stem cells between congenic mice in the absence of irradiation preconditioning, we observed high levels of human cell engraftment in unirradiated NOD/LtSz-scid/scid recipients after three or five consecutive-day injections. These results demonstrate that NOD/LtSz-scid/scid mice support high levels of human stem cell engraftment and that xenogeneic lymphohematopoietic stem cells can engraft in unirradiated hosts without the need for ablative reconditioning. This model will be useful for the in vivo investigation of human stem cells and for the preclinical analysis of human stem cells for transplantation.

  6. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury.

    PubMed

    Chung, Sokjoong; Rho, Seungsoo; Kim, Gijin; Kim, So-Ra; Baek, Kwang-Hyun; Kang, Myungseo; Lew, Helen

    2016-05-01

    The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underlying mechanisms responsible for optic nerve injury, such as inflammation and/or ischemia, are required. In the present study, a rat model of optic nerve crush (ONC) injury was established in order to examine the effects of transplanting human chorionic plate-derived MSCs (CP‑MSCs) isolated from the placenta, as well as human UCB mononuclear cells (CB-MNCs) on compressed rat optic nerves. Expression markers for inflammation, apoptosis, and optic nerve regeneration were analyzed, as well as the axon survival rate by direct counting. Increased axon survival rates were observed following the injection of CB‑MNCs at at 1 week post-transplantation compared with the controls. The levels of growth-associated protein-43 (GAP‑43) were increased after the injection of CB‑MNCs or CP‑MSCs compared with the controls, and the expression levels of hypoxia-inducible factor-1α (HIF-1α) were also significantly increased following the injection of CB-MNCs or CP-MSCs. ERM-like protein (ERMN) and SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2) were found to be expressed in the optic nerves of the CP‑MSC-injected rats with ONC injury. The findings of our study suggest that the administration of CB‑MNCs or CP‑MSCs may promote axon survival through systemic concomitant mechanisms involving GAP‑43 and HIF‑1α. Taken together, these findings provide further understanding of the mechanisms repsonsible for optic nerve injury and may aid in the development of novel cell

  7. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury

    PubMed Central

    CHUNG, SOKJOONG; RHO, SEUNGSOO; KIM, GIJIN; KIM, SO-RA; BAEK, KWANG-HYUN; KANG, MYUNGSEO; LEW, HELEN

    2016-01-01

    The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underlying mechanisms responsible for optic nerve injury, such as inflammation and/or ischemia, are required. In the present study, a rat model of optic nerve crush (ONC) injury was established in order to examine the effects of transplanting human chorionic plate-derived MSCs (CP-MSCs) isolated from the placenta, as well as human UCB mononuclear cells (CB-MNCs) on compressed rat optic nerves. Expression markers for inflammation, apoptosis, and optic nerve regeneration were analyzed, as well as the axon survival rate by direct counting. Increased axon survival rates were observed following the injection of CB-MNCs at at 1 week post-transplantation compared with the controls. The levels of growth-associated protein-43 (GAP-43) were increased after the injection of CB-MNCs or CP-MSCs compared with the controls, and the expression levels of hypoxia-inducible factor-1α (HIF-1α) were also significantly increased following the injection of CB-MNCs or CP-MSCs. ERM-like protein (ERMN) and SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2) were found to be expressed in the optic nerves of the CP-MSC-injected rats with ONC injury. The findings of our study suggest that the administration of CB-MNCs or CP-MSCs may promote axon survival through systemic concomitant mechanisms involving GAP-43 and HIF-1α. Taken together, these findings provide further understanding of the mechanisms repsonsible for optic nerve injury and may aid in the development of novel cell-based therapeutic strategies with

  8. Targeted Genome Engineering to Control VEGF Expression in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells: Potential Implications for the Treatment of Myocardial Infarction.

    PubMed

    Cho, Hyun-Min; Kim, Pyung-Hwan; Chang, Hyun-Kyung; Shen, Yi-Ming; Bonsra, Kwaku; Kang, Byung-Jae; Yum, Soo-Young; Kim, Joo-Hyun; Lee, So-Yeong; Choi, Min-Cheol; Kim, Hyongbum Henry; Jang, Goo; Cho, Je-Yoel

    2017-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) exhibit potency for the regeneration of infarcted hearts. Vascular endothelial growth factor (VEGF) is capable of inducing angiogenesis and can boost stem cell-based therapeutic effects. However, high levels of VEGF can cause abnormal blood vessel growth and hemangiomas. Thus, a controllable system to induce therapeutic levels of VEGF is required for cell therapy. We generated an inducible VEGF-secreting stem cell (VEGF/hUCB-MSC) that controls the expression of VEGF and tested the therapeutic efficacy in rat myocardial infarction (MI) model to apply functional stem cells to MI. To introduce the inducible VEGF gene cassette into a safe harbor site of the hUCB-MSC chromosome, the transcription activator-like effector nucleases system was used. After confirming the integration of the cassette into the locus, VEGF secretion in physiological concentration from VEGF/hUCB-MSCs after doxycycline (Dox) induction was proved in conditioned media. VEGF secretion was detected in mice implanted with VEGF/hUCB-MSCs grown via a cell sheet system. Vessel formation was induced in mice transplanted with Matrigel containing VEGF/hUCB-MSCs treated with Dox. Moreover, seeding of the VEGF/hUCB-MSCs onto the cardiac patch significantly improved the left ventricle ejection fraction and fractional shortening in a rat MI model upon VEGF induction. Induced VEGF/hUCB-MSC patches significantly decreased the MI size and fibrosis and increased muscle thickness, suggesting improved survival of cardiomyocytes and protection from MI damage. These results suggest that our inducible VEGF-secreting stem cell system is an effective therapeutic approach for the treatment of MI. Stem Cells Translational Medicine 2017;6:1040-1051.

  9. Cord blood banks collect units with different HLA alleles and haplotypes to volunteer donor banks: a comparative report from Swiss Blood stem cells.

    PubMed

    Meyer-Monard, S; Passweg, J; Troeger, C; Eberhard, H-P; Roosnek, E; de Faveri, G Nicoloso; Chalandon, Y; Rovo, A; Kindler, V; Irion, O; Holzgreve, W; Gratwohl, A; Müller, C; Tichelli, A; Tiercy, J-M

    2009-05-01

    Allogeneic haematopoietic SCT is a standard therapy for many patients with haematological diseases. A major aim of public umbilical cord blood (UCB) banking is to establish an inventory with a large HLA diversity. Few studies have compared HLA diversity between UCB banks and volunteer unrelated donor (VUD) registries and examined whether UCB banks indeed collect more units with rare alleles and haplotypes. This study compares HLA-A/B/DRB1 allele frequencies and inferred A/B/DRB1-haplotypes in 1602 UCB units and 3093 VUD from two centres in distinct recruitment areas in Switzerland. The results show that the frequencies of HLA-DRB1 alleles as well as of the HLA-A/B/DRB1 haplotypes differ between UCB and VUD. Ten DRB1 alleles occurred at a 2- to 12-fold higher relative frequency in UCB than in VUD and 27 rare alleles were identified in UCB. Out of these 27 alleles, 15 were absent in the entire VUD data set of the national registry. This difference in allele frequencies was found only by intermediate/high-resolution typing. Targeted recruitment of UCB units from non-Caucasian donors could further increase HLA allele and haplotype diversity of available donors. Intermediate or high-resolution DNA typing is essential to identify rare alleles or allele groups.

  10. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  11. Increased Maternal and Cord Blood Betatrophin in Gestational Diabetes

    PubMed Central

    Wawrusiewicz-Kurylonek, Natalia; Telejko, Beata; Kuzmicki, Mariusz; Sobota, Angelika; Lipinska, Danuta; Pliszka, Justyna; Raczkowska, Beata; Kuc, Pawel; Urban, Remigiusz; Szamatowicz, Jacek; Kretowski, Adam; Laudanski, Piotr; Gorska, Maria

    2015-01-01

    Aim The aim of the study was to compare maternal and cord blood levels of betatrophin – a new peptide potentially controlling beta cell growth - as well as in its mRNA expression in subcutaneous adipose tissue, visceral adipose tissue and placental tissue obtained from pregnant women with normal glucose tolerance (NGT) and gestational diabetes (GDM). Methods Serum betatrophin and irisin concentrations were measured by ELISA in 93 patients with GDM and 97 women with NGT between 24 and 28 week of gestation. Additionally, maternal and cord blood betatrophin and irisin, as well as their genes (C19orf80 and Fndc5) expression were evaluated in 20 patients with GDM and 20 women with NGT at term. Results In both groups, serum betatrophin concentrations were significantly higher in the patients with GDM than in the controls (1.91 [1.40-2.60] ng/ml vs 1.63 [1.21-2.22] ng/ml, p=0.03 and 3.45 [2.77-6.53] ng/ml vs 2.78 [2.16-3.65] ng/ml, p=0.03, respectively). Cord blood betatrophin levels were also higher in the GDM than in the NGT group (20.43 [12.97-28.80] ng/ml vs 15.06 [10.11-21.36] ng/ml, p=0.03). In both groups betatrophin concentrations in arterial cord blood were significantly higher than in maternal serum (p=0.0001). Serum irisin levels were significantly lower in the patients with GDM (1679 [1308-2171] ng/ml) than in the healthy women between 24 and 28 week of pregnancy (1880 [1519-2312] ng/ml, p=0.03). Both C19orf80 and Fndc5 mRNA expression in fat and placental tissue did not differ significantly between the groups studied. Conclusions Our results suggest that an increase in maternal and cord blood betatrophin might be a compensatory mechanism for enhanced insulin demand in GDM. PMID:26115519

  12. Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells.

    PubMed

    Shi, Qizhen; Kuether, Erin L; Chen, Yingyu; Schroeder, Jocelyn A; Fahs, Scot A; Montgomery, Robert R

    2014-01-16

    Our previous studies have demonstrated that platelet FVIII (2bF8) gene therapy can improve hemostasis in hemophilia A mice, even in the presence of inhibitory antibodies, but none of our studies has targeted human cells. Here, we evaluated the feasibility for lentivirus (LV)-mediated human platelet gene therapy of hemophilia A. Human platelet FVIII expression was introduced by 2bF8LV-mediated transduction of human cord blood (hCB) CD34(+) cells followed by xenotransplantation into immunocompromised NSG mice or NSG mice in an FVIII(null) background (NSGF8KO). Platelet FVIII was detected in all recipients that received 2bF8LV-transduced hCB cells as long as human platelet chimerism persisted. All NSGF8KO recipients (n = 7) that received 2bF8LV-transduced hCB cells survived tail clipping if animals had greater than 2% of platelets derived from 2bF8LV-transduced hCB cells, whereas 5 of 7 survived when human platelets were 0.3% to 2%. Whole blood clotting time analysis confirmed that hemostasis was improved in NSGF8KO mice that received 2bF8LV-transduced hCB cells. We demonstrate, for the first time, the feasibility of 2bF8LV gene delivery to human hematopoietic stem cells to introduce FVIII expression in human platelets and that human platelet-derived FVIII can improve hemostasis in hemophilia A.

  13. Lead exposure induces changes in 5-hydroxymethylcytosine clusters in CpG islands in human embryonic stem cells and umbilical cord blood.

    PubMed

    Sen, Arko; Cingolani, Pablo; Senut, Marie-Claude; Land, Susan; Mercado-Garcia, Adriana; Tellez-Rojo, Martha M; Baccarelli, Andrea A; Wright, Robert O; Ruden, Douglas M

    2015-01-01

    Prenatal exposure to neurotoxicants such as lead (Pb) may cause stable changes in the DNA methylation (5mC) profile of the fetal genome. However, few studies have examined its effect on the DNA de-methylation pathway, specifically the dynamic changes of the 5-hydroxymethylcytosine (5hmC) profile. Therefore, in this study, we investigate the relationship between Pb exposure and 5mC and 5hmC modifications during early development. To study the changes in the 5hmC profile, we use a novel modification of the Infinium™ HumanMethylation450 assay (Illumina, Inc.), which we named HMeDIP-450K assay, in an in vitro human embryonic stem cell model of Pb exposure. We model Pb exposure-associated 5hmC changes as clusters of correlated, adjacent CpG sites, which are co-responding to Pb. We further extend our study to look at Pb-dependent changes in high density 5hmC regions in umbilical cord blood DNA from 48 mother-infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohort. For our study, we randomly selected umbilical cord blood from 24 male and 24 female children from the 1st and 4th quartiles of Pb levels. Our data show that Pb-associated changes in the 5hmC and 5mC profiles can be divided into sex-dependent and sex-independent categories. Interestingly, differential 5mC sites are better markers of Pb-associated sex-dependent changes compared to differential 5hmC sites. In this study we identified several 5hmC and 5mC genomic loci, which we believe might have some potential as early biomarkers of prenatal Pb exposure.

  14. The intra-bone marrow injection of cord blood cells extends the possibility of transplantation to the majority of patients with malignant hematopoietic diseases.

    PubMed

    Frassoni, Francesco; Varaldo, Riccardo; Gualandi, Francesca; Bacigalupo, Andrea; Sambuceti, GianMario; Sacchi, Nicoletta; Podestà, Marina

    2010-06-01

    Cord blood transplant (CBT) in adult patients is scarcely utilized because of the risk of graft failure or very delayed platelet recovery. To improve the capacity and the speed to engraft, we have developed an intra-bone (IB) cord blood transplant technique. 75 patients with hematological malignancies, categorized by disease phase as early (18%), intermediate (20%) and advanced (62%), were transplanted. The median cell dose (TNC) infused was: 2.6 (1.35-5.4)×10(7)/kg; the HLA disparity was: 12 cases=5/6, 62 cases=4/6 and 1 case=3/6 matched antigens. 72/75 patients engrafted (96%); median day of recovery of neutrophils (PMN) >500×10(9)/L and platelets (PLT) >20 000×10(9)/L was: 23 (14-44) and 35 (16-70) days respectively. The outcomes at 2 years according to Kaplan-Meier are: OS=46%±5; RI=18%±2; NRM=39%±5. Acute GVHD incidence/severity was: grade 0-I=64%, II=14%, III-IV=0%. The incidence of Chronic GVHD was globally low but in 3 cases was very severe. Intra-bone CBT is associated with high rate of engraftment, early and robust platelet recovery, low incidence of acute GVHD. A very promising aspect is that the relapse rate is low considering the advanced phase of the disease in two/thirds of patients. A suitable CBU was found for nearly every patient searching for a CBU. Therefore, IB CBT extends the possibility to transplant any patient for whom this approach represents the sole possibility of long-term survival.

  15. Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons.

    PubMed

    Li, Xiaohong; Li, Heng; Bi, Jianfen; Chen, Yana; Jain, Sumit; Zhao, Yong

    2012-03-02

    Parkinson's disease (PD) results from the chronic degeneration of dopaminergic neurons. A replacement for these neurons has the potential to provide a clinical cure and/or lasting treatment for symptoms of the disease. Human cord blood-derived multipotent stem cells (CB-SCs) display embryonic stem cell characteristics, including multi-potential differentiation. To explore their therapeutic potential in PD, we examined whether CB-SCs could be induced to differentiate into dopamine neurons in the presence of all-trans retinoic acid (ATRA). Prior to treatment, CB-SCs expressed mRNA and protein for the key dopaminergic transcription factors Nurr1, Wnt1, and En1. Following treatment with 10 μM ATRA for 12 days, CB-SCs displayed elongated neuronal-like morphologies. Immunocytochemistry revealed that 48 ± 11% of ATRA-treated cells were positive for tyrosine hydroxylase (TH), and 36 ± 9% of cells were positive for dopamine transporter (DAT). In contrast, control CB-SCs (culture medium only) expressed only background levels of TH and DAT. Finally, ATRA-treated CB-SCs challenged with potassium released increased levels of dopamine compared to control. These data demonstrate that ATRA induces differentiation of CB-SCs into dopaminergic neurons. This finding may lead to the development of an alternative approach to stem cell therapy for Parkinson's disease.

  16. Unrelated donor cord blood transplantation for children with severe sickle cell disease: results of one cohort from the phase II study from the Blood and Marrow Transplant Clinical Trials Network (BMT CTN).

    PubMed

    Kamani, Naynesh R; Walters, Mark C; Carter, Shelly; Aquino, Victor; Brochstein, Joel A; Chaudhury, Sonali; Eapen, Mary; Freed, Brian M; Grimley, Michael; Levine, John E; Logan, Brent; Moore, Theodore; Panepinto, Julie; Parikh, Suhag; Pulsipher, Michael A; Sande, Jane; Schultz, Kirk R; Spellman, Stephen; Shenoy, Shalini

    2012-08-01

    The Sickle Cell Unrelated Donor Transplant Trial (SCURT trial) of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) is a phase II study of the toxicity and efficacy of unrelated donor hematopoietic cell transplantation in children with severe sickle cell disease (SCD) using a reduced-intensity conditioning regimen. Here we report the results for the cord blood cohort of this trial. Eight children with severe SCD underwent unrelated donor cord blood transplantation (CBT) following alemtuzumab, fludarabine, and melphalan. Cyclosporine or tacrolimus and mycophenolate mofetil were administered for graft-versus-host disease (GVHD) prophylaxis. Donor/recipient HLA match status was 6 of 6 (n = 1) or 5 of 6 (n = 7), based on low/intermediate-resolution molecular typing at HLA -A, -B, and high-resolution typing at -DRB1. Median recipient age was 13.7 years (range: 7.4-16.2 years), and median weight was 35.0 kg (range: 25.2-90.2 kg). The median pre-cryopreservation total nucleated cell dose was 6.4 × 10(7) /kg (range: 3.1-7.6), and the median postthaw infused CD34 cell dose was 1.5 × 10(5) /kg (range: 0.2-2.3). All patients achieved neutrophil recovery (absolute neutrophil count >500/mm(3)) by day 33 (median: 22 days). Three patients who engrafted had 100% donor cells by day 100, which was sustained, and 5 patients had autologous hematopoietic recovery. Six of 8 patients had a platelet recovery to >50,000/mm(3) by day 100. Two patients developed grade II acute GVHD. Of these, 1 developed extensive chronic GVHD and died of respiratory failure 14 months posttransplantation. With a median follow-up of 1.8 years (range: 1-2.6), 7 patients are alive with a 1-year survival of 100%, and 3 of 8 are alive without graft failure or disease recurrence. Based upon the high incidence of graft rejection after unrelated donor CBT, enrollment onto the cord blood arm of the SCURT trial was suspended. However, because this reduced-intensity regimen has demonstrated a

  17. [Ethical aspects of human embryonic stem cell use and commercial umbilical cord blood stem cell banking. Ethical reflections on the occasion of the regulation of the European Council and Parliament on advanced therapy medicinal products].

    PubMed

    Virt, G

    2010-01-01

    The regulation of the European Council and Parliament on advanced therapy medicinal products also includes therapies with human embryonic stem cells. The use of these stem cells is controversially and heavily discussed. Contrary to the use of adult stem cells, medical and ethical problems concerning the use of human embryonic stem cells persists, because this use is based on the destruction of human life at the very beginning. The regulation foresees, therefore, subsidiarity within the European Member States. Although there are no ethical problems in principle with the use of stem cells from the umbilical cord blood, there are social ethical doubts with the banking of these stem cells for autologous use without any currently foreseeable medical advantage by commercial blood banks. Also in this case subsidiarity is valid.

  18. Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model

    PubMed Central

    Ha, Chul-Won; Chung, Jun-Young; Park, Yong-Geun

    2015-01-01

    The cartilage regeneration potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with a hyaluronic acid (HA) hydrogel composite has shown remarkable results in rat and rabbit models. The purpose of the present study was to confirm the consistent regenerative potential in a pig model using three different cell lines. A full-thickness chondral injury was intentionally created in the trochlear groove of each knee in 6 minipigs. Three weeks later, an osteochondral defect, 5 mm wide by 10 mm deep, was created, followed by an 8-mm-wide and 5-mm-deep reaming. A mixture (1.5 ml) of hUCB-MSCs (0.5 × 107 cells per milliliter) and 4% HA hydrogel composite was then transplanted into the defect on the right knee. Each cell line was used in two minipigs. The osteochondral defect created in the same manner on the left knee was untreated to act as the control. At 12 weeks postoperatively, the pigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. The cellular characteristics (e.g., cellular proliferation and chondrogenic differentiation capacity) of the hUCB-MSCs influenced the degree of cartilage regeneration potential. This evidence of consistent cartilage regeneration using composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. Significance To date, several studies have investigated the chondrogenic potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs); however, the preclinical studies are still limited in numbers with various results. In parallel, in the past several years, the cartilage regeneration potential of hUCB-MSCs with a hyaluronic acid (HA) hydrogel composite have been investigated and remarkable results in rat and rabbit models have been

  19. Effect on Multipotency and Phenotypic Transition of Unrestricted Somatic Stem Cells from Human Umbilical Cord Blood after Treatment with Epigenetic Agents

    PubMed Central

    2016-01-01

    The epigenetic mechanism of DNA methylation is of central importance for cellular differentiation processes. Unrestricted somatic stem cells (USSCs) from human umbilical cord blood, which have a broad differentiation spectrum, reside in an uncommitted epigenetic state with partial methylation of the regulatory region of the gene coding for the pluripotency master regulator OCT4. Thus we hypothesized that further opening of this “poised” epigenetic state could broaden the differentiation potential of USSCs. Here we document that USSCs drastically change their phenotype after treatment by a new elaborated cultivation protocol which utilizes the DNA hypomethylating compound 5′-aza-2-deoxycytidine (5-Aza-CdR) and the histone deacetylase inhibitor trichostatin A (TSA). This treatment leads to a new stable, spheroid-forming cell type which we have named SpheUSSC. These cells can be stably propagated over at least 150 cell divisions, express OCT4, retain the potential to undergo osteogenic differentiation, and have additionally acquired the ability to uniformly differentiate into adipocytes, unlike the source USSC population. Here we describe our treatment protocol and provide evidence that it induces a dedifferentiation step and concomitantly the acquisition of an extended differentiation capability of the new SpheUSSC type. PMID:26788071

  20. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation in Hearts with Post-Infarct LV Remodeling

    PubMed Central

    Chen, Yong; Ye, Lei; Zhong, Jia; Li, Xin; Yan, Chen; Chandler, Margaret P.; Calvin, Steve; Xiao, Feng; Negia, Mesfin; Low, Walter C.; Zhang, Jianyi; Yu, Xin

    2015-01-01

    Cellular therapy for myocardial repair has been one of the most intensely investigated interventional strategies for acute myocardium infarction. Although the therapeutic potential of stem cells has been demonstrated in various studies, the underlying mechanisms for such improvement are poorly understood. In the present study, we investigated the long-term effects of stem cell therapy on both myocardial fiber organization and regional contractile function using a rat model of post-infarct remodeling. Human non-hematopoietic umbilical cord blood stem cells (nh-UCBSCs) were administered via tail vein to rats 2 days after infarct surgery. Animals were maintained without immunosuppressive therapy. In vivo and ex vivo MR imaging was performed on infarct hearts ten months after cell transplantation. Compared to the age-matched rats exposed to the identical surgery, both global and regional cardiac function of the nh-UCBSC-treated hearts, such as ejection fraction, ventricular strain and torsion, were significantly improved. More importantly, the treated hearts exhibited preserved fiber orientation and water diffusivities that were similar to those in sham-operated control hearts. These data provide the first evidence that nh-UCBSC treatment may prevent/delay untoward structural remodeling in post-infarct hearts, which supports the improved LV function observed in vivo in the absence of immunosuppression, suggesting a beneficial paracrine effect that occurred with the cellular therapy. PMID:24332083

  1. Human cord blood-derived unrestricted somatic stem cells promote wound healing and have therapeutic potential for patients with recessive dystrophic epidermolysis bullosa.

    PubMed

    Liao, Yanling; Itoh, Munenari; Yang, Albert; Zhu, Hongwen; Roberts, Samantha; Highet, Alexandra M; Latshaw, Shaun; Mitchell, Kelly; van de Ven, Carmella; Christiano, Angela; Cairo, Mitchell S

    2014-03-01

    Human umbilical cord blood (CB)-derived unrestricted somatic stem cells (USSCs) have previously been demonstrated to have a broad differentiation potential and regenerative beneficial effects when administered in animal models of multiple degenerative diseases. Here we demonstrated that USSCs could be induced to express genes that hallmark keratinocyte differentiation. We also demonstrated that USSCs express type VII collagen (C7), a protein that is absent or defective in patients with an inherited skin disease, recessive dystrophic epidermolysis bullosa (RDEB). In mice with full-thickness excisional wounds, a single intradermal injection of USSCs at a 1-cm distance to the wound edge resulted in significantly accelerated wound healing. USSC-treated wounds displayed a higher density of CD31(+) cells, and the wounds healed with a significant increase in skin appendages. These beneficial effects were demonstrated without apparent differentiation of the injected USSCs into keratinocytes or endothelial cells. In vivo bioluminescent imaging (BLI) revealed specific migration of USSCs modified with a luciferase reporter gene, from a distant intradermal injection site to the wound, as well as following systemic injection of USSCs. These data suggest that CB-derived USSCs could significantly contribute to wound repair and be potentially used in cell therapy for patients with RDEB.

  2. Developing Educational Resources to Advance Umbilical Cord Blood Banking and Research: A Canadian Perspective.

    PubMed

    Pereira Beak, Carla; Chargé, Sophie B; Isasi, Rosario; Knoppers, Bartha M

    2015-05-01

    In 2013 Canadian Blood Services (CBS) launched the National Public Cord Blood Bank (NPCBB), a program to collect, process, test, and store cord blood units donated for use in transplantation. A key component of the creation of the NPCBB is the establishment of a program that enables cord blood not suitable for banking or transplantation to be used for biomedical research purposes. Along with the development of processes and policies to manage the NPCBB and the cord blood research program, CBS-in collaboration with researchers from the Stem Cell Network-have also developed educational tools to provide relevant information for target audiences to aid implementation and operation. We describe here one of these tools, the REB Primer on Research and Cord Blood Donation (the Primer), which highlights key ethical and legal considerations and identifies Canadian documents that are relevant to the use of cord blood in biomedical research. The Primer also introduces the NPCBB and describes the systems CBS is implementing to address ethical issues. The Primer is intended to assist research ethics boards in evaluating the ethical acceptability of research protocols, to facilitate harmonized decision-making by providing a common reference, and to highlight the role of research ethics boards in governance frameworks. With the Primer we hope to illustrate how the development of such educational tools can facilitate the ethical implementation and governance of programs related to stem cell research in Canada and abroad.

  3. Proteins in the cell wall and membrane of Cryptococcus neoformans stimulate lymphocytes from both adults and fetal cord blood to proliferate.

    PubMed Central

    Mody, C H; Sims, K L; Wood, C J; Syme, R M; Spurrell, J C; Sexton, M M

    1996-01-01

    Cryptococcus neoformans is an encapsulated yeast that infects patients who have defective cell-mediated immunity, including AIDS, but rarely infects individuals who have intact cell-mediated immunity. Studies of the immune response to C. neoformans have been hampered by a paucity of defined T-lymphocyte antigens, and hence, the understanding of the T-cell response is incomplete. The goal of this study was to separate C. neoformans into its component parts, determine whether those components stimulate lymphocyte proliferation, perform preliminary characterization of the proteins, and establish the potential mechanism of lymphocyte proliferation. The lymphocyte response to fungal culture medium, whole organisms, disrupted organisms, and the yeast intracellular fraction or cell wall and membrane was studied by determining thymidine incorporation and by determining the number of lymphocytes at various times after stimulation. The cell wall and membrane of C. neoformans stimulated lymphocyte proliferation, while the intracellular fraction and culture filtrate did not. The optimal response occurred on day 7 of incubation, with 4 x 10(5) peripheral blood mononuclear cells per well and with 13 microg of cryptococcal protein per ml. The number of lymphocytes increased with time in culture, indicating that thymidine incorporation was accompanied by proliferation. Proteinase K treatment of the cell wall and membrane abrogated lymphocyte proliferation, indicating that the molecule was a protein. [35S]methionine labeling, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fluorography were performed to analyze the proteins contained in the cell wall and membrane, intracellular fraction, and culture filtrate. At least 18 discrete bands were resolved from the cell wall and membrane. Since a large percentage of healthy adults responded to the cryptococcal cell wall and membrane, a mitogenic effect was investigated by testing proliferation of fetal cord blood

  4. Application of affinity aqueous two-phase systems for the fractionation of CD133(+) stem cells from human umbilical cord blood.

    PubMed

    González-González, Mirna; Rito-Palomares, Marco

    2015-03-01

    In a further attempt to establish a novel stem cell primary recovery strategy, the use of aqueous two-phase systems (ATPS) complemented with the use of antibodies (known as immunoaffinity ATPS) is explored in this work. This type of liquid-liquid extraction systems exploits antigen-antibody affinity and represents a novel and selective approach for the purification of stem cells. The proposed bioengineering strategies include the implementation of traditional [polyethylene glycol (PEG), dextran (DEX) and ficoll] and novel (Ucon) immunoaffinity ATPS to prove the viability of cluster of differentiation 133 (CD133(+) ) stem cells from human umbilical cord blood. Furthermore, the addition of the antibody is implemented to identify conditions under which contaminants and stem cells of interest concentrate in opposite phases. The objective of this work is to establish the initial basis for the development of a novel and scalable purification bioprocess for the selective recovery of CD133(+) stem cells employing immunoaffinity ATPS. The reported methodology allows a partitioning of 62% CD133(+) stem cells to the top phase of the ficoll 400,000-DEX 70,000 immunoaffinity ATPS. In PEG 8,000-DEX 500,000 and Ucon-DEX 75,000 systems, no difference was observed when compared with the conventional ATPS (without antibody addition), as the CD133 antibody does not have preference for the desired clean top phase. In all experiments, cell viability was at least 98% after ATPS recovery. This research highlights the challenges that must be addressed to allow the potential establishment of a separation process using immunoaffinity ATPS for the recovery and purification of stem cells.

  5. Cytomegalovirus upregulates expression of CCR5 in central memory cord blood mononuclear cells, which may facilitate in utero HIV type 1 transmission.

    PubMed

    Johnson, Erica L; Howard, Chanie L; Thurman, Joy; Pontiff, Kyle; Johnson, Elan S; Chakraborty, Rana

    2015-01-15

    Administration of combination antiretroviral therapy to human immunodeficiency virus type 1 (HIV-1)-infected pregnant women significantly reduces vertical transmission. In contrast, maternal co-opportunistic infection with primary or reactivated cytomegalovirus (CMV) or other pathogens may facilitate in utero transmission of HIV-1 by activation of cord blood mononuclear cells (CBMCs). Here we examine the targets and mechanisms that affect fetal susceptibility to HIV-1 in utero. Using flow cytometry, we demonstrate that the fraction of CD4(+)CD45RO(+) and CD4(+)CCR5(+) CBMCs is minimal, which may account for the low level of in utero HIV-1 transmission. Unstimulated CD4(+) CBMCs that lack CCR5/CD45RO showed reduced levels of HIV-1 infection. However, upon in vitro stimulation with CMV, CBMCs undergo increased proliferation to upregulate the fraction of T central memory cells and expression of CCR5, which enhances susceptibility to HIV-1 infection in vitro. These data suggest that activation induced by CMV in vivo may alter CCR5 expression in CD4(+) T central memory cells to promote in utero transmission of HIV-1.

  6. Evidence for immunological priming and increased frequency of CD4+ CD25+ cord blood T cells in children born to mothers with type 1 diabetes.

    PubMed

    Holm, B C; Svensson, J; Akesson, C; Arvastsson, J; Ljungberg, J; Lynch, K; Ivarsson, S-A; Lernmark, A; Cilio, C M

    2006-12-01

    Maternal transmission of islet autoantibodies to children born to mothers with type 1 diabetes (T1D) has been shown to protect from autoantibodies and diabetes development later in life. However, the factors conferring disease protection are poorly understood. The aim of this study was to evaluate comparatively proinflammatory cytokines, autoantibodies and lymphocyte subsets in cord blood (CB) of children born to mothers with either T1D (n = 13), gestational diabetes (GDM) (n = 32) or healthy mothers (n = 81) in relation to transplacental passage of autoantibodies. The results are consistent with early priming of the fetal immune system only in children born to mothers with T1D. Levels of interleukin (IL)-1beta (P = 0.022), tumour necrosis factor (TNF)-alpha (P = 0.002) and IL-8 (P = 0.0012), as well as the frequency of CD4(+) CD25(+) T cells (P < 0.01) were significantly increased, and the increased levels correlated positively with anti-GAD65 autoantibody (GADA) levels. Moreover, CD4(+) CD25(+) T cells of children born to T1D mothers exhibited a more pronounced memory phenotype with increased CCR4 expression and down-regulation of CD62L. These data suggest that early activation of the fetal immune system as a consequence of maternal autoimmunity and transplacental passage of GADA may influence the generation and expansion of fetal regulatory T cells. This might induce an early antigen-specific immunological tolerance that could protect against T1D later in life.

  7. Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer's disease transgenic mouse after a single intravenous injection.

    PubMed

    Park, Sang Eon; Lee, Na Kyung; Lee, Jeongmin; Hwang, Jung Won; Choi, Soo Jin; Hwang, Hyeri; Hyung, Brian; Chang, Jong Wook; Na, Duk L

    2016-03-02

    The aim of this study was to track the migration of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered through a single intravenous injection and to observe the consequential therapeutic effects in a transgenic Alzheimer's disease mouse model. Ten-month-old APP/PS1 mice received a total injection of 1×10 cells through the lateral tail vein and were killed 1, 4, and 7 days after administration. On the basis of immunohistochemical analysis, hUCB-MSCs were not detected in the brain at any of the time points. Instead, most of the injected mesenchymal stem cells were found to be distributed in the lung, heart, and liver. In terms of the molecular effects, statistically significant differences in the amyloid β protein, neprilysin, and SOX2 levels were not observed among the groups. On the basis of the results from this study, we suggest that single intravenously administered hUCB-MSCs are not delivered to the brain and also do not have a significant influence on Alzheimer's disease pathology.

  8. Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice.

    PubMed

    Darlington, Donna; Deng, Juan; Giunta, Brian; Hou, Huayan; Sanberg, Cyndy D; Kuzmin-Nichols, Nicole; Zhou, Hua-Dong; Mori, Takashi; Ehrhart, Jared; Sanberg, Paul R; Tan, Jun

    2013-02-01

    Alzheimer's disease (AD) is the most common progressive age-related dementia in the elderly and the fourth major cause of disability and mortality in that population. The disease is pathologically characterized by deposition of β-amyloid plaques neurofibrillary tangles in the brain. Current strategies for the treatment of AD are symptomatic only. As such, they are less than efficacious in terms of significantly slowing or halting the underlying pathophysiological progression of the disease. Modulation by cell therapy may be new promising disease-modifying therapy. Recently, we showed reduction in amyloid-β (Aβ) levels/β-amyloid plaques and associated astrocytosis following low-dose infusions of mononuclear human umbilical cord blood cells (HUCBCs). Our current study extended our previous findings by examining cognition via (1) the rotarod test, (2) a 2-day version of the radial-arm water maze test, and (3) a subsequent observation in an open pool platform test to characterize the effects of monthly peripheral HUCBC infusion (1×10(6) cells/μL) into the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) from 6 to 12 months of age. We show that HUCBC therapy correlates with decreased (1) cognitive impairment, (2) Aβ levels/β-amyloid plaques, (3) amyloidogenic APP processing, and (4) reactive microgliosis after a treatment of 6 or 10 months. As such, this report lays the groundwork for an HUCBC therapy as potentially novel alternative to oppose AD at the disease-modifying level.

  9. Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells.

    PubMed

    Pflumio, F; Izac, B; Katz, A; Shultz, L D; Vainchenker, W; Coulombel, L

    1996-11-15

    In an attempt to understand better the regulation of stem cell function in chimeric immunodeficient mice transplanted with human cells, and the filiation between progenitor cells identified in vitro and in vivo, we assessed the different compartments of hematopoietic progenitors found in the marrow of CB17-severe combined immunodeficiency (SCID) mice (34 mice, 9 experiments) after intravenous injection of 2 to 3 x 10(7) cord blood mononuclear cells. On average 6.3 +/- 4 x 10(5) human cells were detected per four long bones 4 to 6 weeks after the transplant predominantly represented by granulomonocytic (CD11b+) and B lymphoid (CD19+) cells. Twenty five percent of these human cells expressed the CD34 antigen, of which 90% coexpressed the CD38 antigen and 50% the CD19 antigen. Functional assessment of progenitor cells (both clonogenic and long-term culture-initiating cells [LTC-IC]) was performed after human CD34+ cells and CD34+/CD38- cells have been sorted from chimeric CB17-SCID marrow 3 to 10 weeks after intravenous (IV) injection of human cells. The frequency of both colony-forming cells and LTC-IC was low (4% and 0.4%, respectively in the CD34+ fraction) when compared with the frequencies of cells with similar function in CD34+ cells from the starting cord blood mononuclear cells (26% +/- 7% and 7.2% +/- 5%, respectively). More surprisingly, the frequency of LTC-IC was also low in the human CD34+ CD38- fraction sorted from chimeric mice. This observation might be partly accounted for by the expansion of the CD34+ CD19+ B-cell precursor compartment. Despite their decreased frequency and absolute numbers, the differentiation capability of these LTC-IC, assessed by their clonogenic progeny output after 5 weeks in coculture with murine stromal cells was intact when compared with that of input LTC-IC. Furthermore the ratio between clonogenic progenitor cells and LTC-IC was similar in severe combined immunodeficiency (SCID) mice studied 4 weeks after transplant and in

  10. Response to Intravenous Allogeneic Equine Cord Blood-Derived Mesenchymal Stromal Cells Administered from Chilled or Frozen State in Serum and Protein-Free Media

    PubMed Central

    Williams, Lynn B.; Co, Carmon; Koenig, Judith B.; Tse, Crystal; Lindsay, Emily; Koch, Thomas G.

    2016-01-01

    Equine mesenchymal stromal cells (MSC) are commonly transported, chilled or frozen, to veterinary clinics. These MSC must remain viable and minimally affected by culture, transport, or injection processes. The safety of two carrier solutions developed for optimal viability and excipient use were evaluated in ponies, with and without allogeneic cord blood-derived (CB) MSC. We hypothesized that neither the carrier solutions nor CB-MSC would elicit measurable changes in clinical, hematological, or biochemical parameters. In nine ponies (study 1), a bolus of HypoThermosol® FRS (HTS-FRS), CryoStor® CS10 (CS10), or saline was injected IV (n = 3/treatment). Study 2, following a 1-week washout period, 5 × 107 pooled allogeneic CB-MSCs were administered IV in HTS-FRS following 24 h simulated chilled transport. Study 3, following another 1-week washout period 5 × 107 pooled allogeneic CB-MSCs were administered IV in CS10 immediately after thawing. Nine ponies received CB-MSCs in study 2 and 3, and three ponies received the cell carrier media without cells. CB-MSCs were pooled in equal numbers from five unrelated donors. In all studies, ponies were monitored with physical examination, and blood collection for 7 days following injection. CD4 and CD8 lymphocyte populations were also evaluated in each blood sample. In all three studies, physical exam, complete blood cell count, serum biochemistry, and coagulation panel did not deviate from established normal ranges. Proportions of CD4+ and CD8+ lymphocytes increased at 168 h postinjection in CB-MSC treatment groups regardless of the carrier solution. Decreases in CD4+/CD8+ double positive populations were observed at 24 and 72 h in CB-MSC-treated animals. There was no difference in viability between CB-MSCs suspended in HTS-FRS and CS10. HTS-FRS and CS10 used for low volume excipient injection of MSC suspensions were not associated with short-term adverse reactions. HTS-FRS and CS10 both adequately

  11. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.

    PubMed

    Markov, Vladimir; Kusumi, Kenro; Tadesse, Mahlet G; William, Dilusha A; Hall, Dorian M; Lounev, Vitali; Carlton, Arlene; Leonard, Jay; Cohen, Rick I; Rappaport, Eric F; Saitta, Biagio

    2007-02-01

    Phenotypic heterogeneity has been observed among mesenchymal stem/stromal cell (MSC) populations, but specific genes associated with this variability have not been defined. To study this question, we analyzed two distinct isogenic MSC populations isolated from umbilical cord blood (UCB1 and UCB2). The use of isogenic populations eliminated differences contributed by genetic background. We characterized these UCB MSCs for cell morphology, growth kinetics, immunophenotype, and potential for differentiation. UCB1 displayed faster growth kinetics, higher population doublings, and increased adipogenic lineage differentiation compared to UCB2. However, osteogenic differentiation was stronger for the UCB2 population. To identify MSC-specific genes and developmental genes associated with observed phenotypic differences, we performed expression analysis using Affymetrix microarrays and compared them to bone marrow (BM) MSCs. We compared UCB1, UCB2, and BM and identified distinct gene expression patterns. Selected clusters were analyzed demonstrating that genes of multiple developmental pathways, such as transforming growth factor-beta (TGF-beta) and wnt genes, and markers of early embryonic stages and mesodermal differentiation displayed significant differences among the MSC populations. In undifferentiated UCB1 cells, multiple genes were significantly up-regulated (p < 0.0001): peroxisome proliferation activated receptor gamma (PPARG), which correlated with adipogenic differentiation capacities, hepatocyte growth factor (HGF), and stromal-derived factor 1 (SDF1/CXCL12), which could both potentially contribute to the higher growth kinetics observed in UCB1 cells. Overall, the results confirmed the presence of two distinct isogenic UCB-derived cell populations, identified gene profiles useful to distinguish MSC types with different lineage differentiation potentials, and helped clarify the heterogeneity observed in these cells.

  12. A novel procedure to improve functional preservation of hematopoietic stem and progenitor cells in cord blood stored at +4°c before cryopreservation.

    PubMed

    Chevaleyre, Jean; Rodriguez, Laura; Duchez, Pascale; Plainfossé, Marie; Dazey, Bernard; Lapostolle, Véronique; Vlaski, Marija; Brunet de la Grange, Philippe; Delorme, Bruno; Ivanovic, Zoran

    2014-08-01

    During storage and transportation of collected cord blood units (CBUs) to the bank prior to their processing and cryopreservation, it is imperative to preserve the functional capacities of a relatively small amount of cells of interest (stem and progenitor cells) which are critical for graft potency. To improve CBU storage efficiency, we conceived an approach based on the following two principles: (1) to provide a better nutritive and biochemical environment to stem and progenitor cells in CB and (2) to prevent the hyperoxygenation of these cells transferred from a low- (1.1%-4% O2 in the CB) to a high-oxygen (20%-21% O2 in atmosphere) concentration. Our hypothesis is confirmed by the functional assessment of stem cell (hematopoietic reconstitution capacity in immunodeficient mice-scid repopulating cell assay) and committed progenitor activities (capacity of in vitro colony formation and of ex vivo expansion) after the storage period with our medium (HP02) in gas-impermeable bags. This storage procedure maintains the full functional capacity of a CBU graft for 3 days with respect to day 0. Further, using this procedure, a graft stored 3 days at +4°C exhibits better functional capacities than one currently used in routine storage (CBUs stored at +4°C for 1 day in gas-permeable bags and without medium). We provided the proof of principle of our approach, developed a clinical-scale kit and performed a preclinical assay demonstrating the feasibility and efficiency of our CBU preservation protocol through all steps of preparation (volume reduction, freezing, and thawing).

  13. The Protective Effect of Human Umbilical Cord Blood CD34+ Cells and Estradiol against Focal Cerebral Ischemia in Female Ovariectomized Rat: Cerebral MR Imaging and Immunohistochemical Study

    PubMed Central

    Liang, Ching-Chung; Liu, Ho-Ling; Chang, Shuenn-Dhy; Chen, Sheng-Hsien; Lee, Tsong-Hai

    2016-01-01

    Human umbilical cord blood derived CD34+ stem cells are reported to mediate therapeutic effects in stroke animal models. Estrogen was known to protect against ischemic injury. The present study wished to investigate whether the protective effect of CD34+ cells against ischemic injury can be reinforced with complemental estradiol treatment in female ovariectomized rat and its possible mechanism. Experiment 1 was to determine the best optimal timing of CD34+ cell treatment for the neuroprotective effect after 60-min middle cerebral artery occlusion (MCAO). Experiment 2 was to evaluate the adjuvant effect of 17β-estradiol on CD34+ cell neuroprotection after MCAO. Experiment 1 showed intravenous infusion with CD34+ cells before MCAO (pre-treatment) caused less infarction size than those infused after MCAO (post-treatment) on 7T magnetic resonance T2-weighted images. Experiment 2 revealed infarction size was most significantly reduced after CD34+ + estradiol pre-treatment. When compared with no treatment group, CD34+ + estradiol pre-treatment showed significantly less ADC reduction at 2 h and 2 d, less CBF reduction at 2 h and less hyperperfusion at 2 d. The immunoreactivity of c-Fos, c-Jun and GFAP was attenuated, and BDNF showed significant recovery from 2 h to 2 d after MCAO, especially after CD34+ + estradiol pre-treatment. The present study suggests pre-treatment with CD34+ cells with complemental estradiol can be most protective against ischemic injury, which may act through stabilization of cerebral hemodynamics and normalization of the expressions of immediate early genes and BDNF. PMID:26760774

  14. Safety and feasibility for pediatric cardiac regeneration using epicardial delivery of autologous umbilical cord blood-derived mononuclear cells established in a porcine model system.

    PubMed

    Cantero Peral, Susana; Burkhart, Harold M; Oommen, Saji; Yamada, Satsuki; Nyberg, Scott L; Li, Xing; O'Leary, Patrick W; Terzic, Andre; Cannon, Bryan C; Nelson, Timothy J

    2015-02-01

    Congenital heart diseases (CHDs) requiring surgical palliation mandate new treatment strategies to optimize long-term outcomes. Despite the mounting evidence of cardiac regeneration, there are no long-term safety studies of autologous cell-based transplantation in the pediatric setting. We aimed to establish a porcine pipeline to evaluate the feasibility and long-term safety of autologous umbilical cord blood mononuclear cells (UCB-MNCs) transplanted into the right ventricle (RV) of juvenile porcine hearts. Piglets were born by caesarean section to enable UCB collection. Upon meeting release criteria, 12 animals were randomized in a double-blinded fashion prior to surgical delivery of test article (n=6) or placebo (n=6). The UCB-MNC (3×10(6) cells per kilogram) or control (dimethyl sulfoxide, 10%) products were injected intramyocardially into the RV under direct visualization. The cohorts were monitored for 3 months after product delivery with assessments of cardiac performance, rhythm, and serial cardiac biochemical markers, followed by terminal necropsy. No mortalities were associated with intramyocardial delivery of UCB-MNCs or placebo. Two animals from the placebo group developed local skin infection after surgery that responded to antibiotic treatment. Electrophysiological assessments revealed no arrhythmias in either group throughout the 3-month study. Two animals in the cell-therapy group had transient, subclinical dysrhythmia in the perioperative period, likely because of an exaggerated response to anesthesia. Overall, this study demonstrated that autologous UCB-MNCs can be safely collected and surgically delivered in a pediatric setting. The safety profile establishes the foundation for cell-based therapy directed at the RV of juvenile hearts and aims to accelerate cell-based therapies toward clinical trials for CHD.

  15. Post-Thaw Non-Cultured and Post-Thaw Cultured Equine Cord Blood Mesenchymal Stromal Cells Equally Suppress Lymphocyte Proliferation In Vitro

    PubMed Central

    Williams, Lynn B.; Tessier, Laurence; Koenig, Judith B.; Koch, Thomas G.

    2014-01-01

    Multipotent mesenchymal stromal cells (MSC) are receiving increased attention for their non-progenitor immunomodulatory potential. Cryopreservation is commonly used for long-term storage of MSC. Post-thaw MSC proliferation is associated with a lag-phase in vitro. How this lag-phase affect MSC immunomodulatory properties is unknown. We hypothesized that in vitro there is no difference in lymphocyte suppression potential between quick-thawed cryopreserved equine cord blood (CB) MSC immediately included in mixed lymphocyte reaction (MLR) and same MSC allowed post-thaw culture time prior to inclusion in MLR. Cryopreserved CB-MSC from five unrelated foals were compared using two-way MLR. For each of the five unrelated MSC cultures, paired MLR assays of MSC allowed five days of post-thaw culture and MSC included in MLR assay immediately post-thawing were evaluated. We report no difference in the suppression of lymphocyte proliferation by CB-MSC that had undergone post-thaw culture and MSC not cultured post-thaw (p<0.0001). Also, there was no inter-donor variability between the lymphocyte suppressive properties of MSC harvested from the five different donors (p = 0.13). These findings suggest that cryopreserved CB-MSC may have clinical utility immediately upon thawing. One implication hereof is the possibility of using cryopreserved CB-MSC at third party locations without the need for cell culture equipment or competencies. PMID:25438145

  16. Rescue of the mucocutaneous manifestations by human cord blood derived nonhematopoietic stem cells in a mouse model of recessive dystrophic epidermolysis bullosa.

    PubMed

    Liao, Yanling; Ivanova, Larisa; Zhu, Hongwen; Yahr, Ashlin; Ayello, Janet; van de Ven, Carmella; Rashad, Ahmed; Uitto, Jouni; Christiano, Angela M; Cairo, Mitchell S

    2015-06-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin blistering disease caused by mutations in COL7A1-encoding type VII collagen (C7). Currently, there is no curative therapy for patients with RDEB. Our previous studies demonstrated that human umbilical cord blood (HUCB) derived unrestricted somatic stem cells (USSCs) express C7 and facilitate wound healing in a murine wounding model. The primary objective of this study is to investigate the therapeutic functions of USSCs in the C7 null (Col7a1(-/-) ) C57BL6/J mice, a murine model of RDEB. We demonstrated that intrahepatic administration of USSCs significantly improved the blistering phenotype and enhanced the life span in the recipients. The injected USSCs trafficked to the sites of blistering and were incorporated in short-term in the recipients' skin and gastrointestinal tract. Consistent with an overall histological improvement in the epidermal-dermal adherence following USSC treatment, the expression of C7 at the basement membrane zone was detected and the previously disorganized integrin α6 distribution was normalized. We also demonstrated that USSCs treatment induced an infiltration of macrophages with a regenerative "M2" phenotype. Our data suggest that HUCB-derived USSCs improved the RDEB phenotype through multiple mechanisms. This study has warranted future clinical investigation of USSCs as a novel and universal allogeneic stem cell donor source in selected patients with RDEB.

  17. A low effective dose of interleukin-7 is sufficient to maintain cord blood T cells alive without potentiating allo-immune responses.

    PubMed

    Pascal, Laurent; Hivert, Bénédicte; Trauet, Jacques; Deberranger, Eva; Dessaint, Jean-Paul; Yakoub-Agha, Ibrahim; Labalette, Myriam

    2015-04-01

    Slow reconstitution of T cell immunity remains a critical issue after umbilical cord blood (CB) transplantation. Although this may be a consequence of the low cell dose, it may also reflect the propensity of naïve T cells, which predominate in CB, to undergo apoptotic cell death. Exogenous interleukin 7 (IL-7) can prevent apoptosis of naïve T cells, but at high concentrations, IL-7 may also expand alloreactive T cells, thereby aggravating the risk of graft-versus-host disease. We evaluated the survival of CB T cells from 34 healthy full-term pregnancies, and we found wide interdonor variation, from 17.4% to 79.7%, of CB T cells that were still alive after being rested for 4 days in culture medium without cytokine supplementation. The viability of CB T cells was negatively correlated to infant birth weight (Spearman's ρ = .376; P = .031) and positively correlated to venous CB pH (ρ = .397; P = .027); both associations were confirmed by multivariate analysis (P = .023 and P = .005, respectively). A low supplemental concentration (100 pg/mL) of recombinant human IL-7 was sufficient to maintain the viability of cryopreserved/thawed CB T cells, with most (>80%) cells remaining in a quiescent state and without significant changes in their CD4/CD8 ratio and the proportion of CD4(+) CD31(+) PTK7(+) recent thymic emigrants. IL-7 at 100 pg/mL did not lead to any significant enhancement of the alloreactive response of CB T cells, as evaluated by proliferation rates (thymidine incorporation and carboxyfluorescein diacetate succinimidyl ester dilution) and interferon-gamma production (ELISPOT). This effective concentration of IL-7 is far lower than that obtained in vivo after pharmacological administration of the cytokine. This study suggests that administration of lower doses of recombinant human IL-7 than used in previous clinical trials may be sufficient to sustain the viability of infused CB T cells and, thus, help to accelerate naïve T cell reconstitution without

  18. Breakdown of Blood-Brain and Blood-Spinal Cord Barriers During Acute Methamphetamine Intoxication: Role of Brain Temperature.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2016-01-01

    Methamphetamine (METH) is a powerful and often-abused stimulant with potent addictive and neurotoxic properties. While it is generally believed that structural brain damage induced by METH results from oxidative stress, in this work we present data suggesting robust disrupti