DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, L; Braunstein, S; Chiu, J
2016-06-15
Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive anmore » EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.« less
Farace, Paolo; Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco
2014-01-06
Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step-and-shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose < 45 Gy to spinal cord and < 50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5 ± 2.2 Gy and 36.7 ± 14.0 Gy), without significant changes on the other OARs. A marked difference (-15.9 ± 1.9 Gy and -10.1 ± 5.7 Gy) was obtained at the expense of a small difference (-1.3% ± 0.9%) from initial PTV195% coverage (96.6% ± 0.9%). Similar difference (-15.7 ± 2.2 Gy and -10.2 ± 6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (-0.3% ± 0.3% from the initial 98.3% ± 0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer.
Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco
2014-01-01
Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step‐and‐shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose <45 Gy to spinal cord and <50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5±2.2 Gy and 36.7±14.0 Gy), without significant changes on the other OARs. A marked difference (−15.9±1.9 Gy and −10.1±5.7 Gy) was obtained at the expense of a small difference (−1.3%±0.9%) from initial PTV195% coverage (96.6%±0.9%). Similar difference (−15.7±2.2 Gy and −10.2±6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (−0.3%±0.3% from the initial 98.3%±0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer. PACS number: 87.55.D PMID:24423836
Overcoming the Practical Barriers to Spinal Cord Cell Transplantation for ALS
2012-10-01
ABSTRACT: This grant will provide critical data on tolerance and toxicity of cell dosing and numbers of permissible spinal cord injections. Rigorous...Surgical Technique) will provide critical data on tolerance and toxicity of cell dosing and numbers of permissible spinal cord injections. Aim 2 (Graft...connected to a rigid needle of the same gauge as the floating cannula one – Figure 7) using the maximum volume/number of injections could result in
Spinal Cord Tolerance to Single-Fraction Partial-Volume Irradiation: A Swine Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medin, Paul M., E-mail: Paul.medin@utsouthwestern.ed; Foster, Ryan D.; Kogel, Albert J. van der
2011-01-01
Purpose: To determine the spinal cord tolerance to single-fraction, partial-volume irradiation in swine. Methods and Materials: A 5-cm-long cervical segment was irradiated in 38-47-week-old Yucatan minipigs using a dedicated, image-guided radiosurgery linear accelerator. The radiation was delivered to a cylindrical volume approximately 5 cm in length and 2 cm in diameter that was positioned lateral to the cervical spinal cord, resulting in a dose distribution with the 90%, 50%, and 10% isodose lines traversing the ipsilateral, central, and contralateral spinal cord, respectively. The dose was prescribed to the 90% isodose line. A total of 26 pigs were stratified into eightmore » dose groups of 12-47 Gy. The mean maximum spinal cord dose was 16.9 {+-} 0.1, 18.9 {+-} 0.1, 21.0 {+-} 0.1, 23.0 {+-} 0.2, and 25.3 {+-} 0.3 Gy in the 16-, 18-, 20-, 22-, and 24-Gy dose groups, respectively. The mean percentage of spinal cord volumes receiving {>=}10 Gy for the same groups were 43% {+-} 3%, 48% {+-} 4%, 51% {+-} 2%, 57% {+-} 2%, and 59% {+-} 4%. The study endpoint was motor neurologic deficit determined by a change in gait during a 1-year follow-up period. Results: A steep dose-response curve was observed with a median effective dose for the maximum dose point of 20.0 Gy (95% confidence interval, 18.3-21.7). Excellent agreement was observed between the occurrence of neurologic change and the presence of histologic change. All the minipigs with motor deficits showed some degree of demyelination and focal white matter necrosis on the irradiated side, with relative sparing of the gray matter. The histologic findings were unremarkable in the minipigs with normal neurologic status. Conclusions: Our results have indicated that for a dose distribution with a steep lateral gradient, the pigs had a lower median effective dose for paralysis than has been observed in rats and more closely resembles that for rats, mice, and guinea pigs receiving uniform spinal cord irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chin-Cheng; Lee, Chen-Chiao, E-mail: joelee168@hotmail.co; Mah, Dennis
Because of the dose limit for critical structures such as brainstem and spinal cord, administering a dose of 60 Gy to patients with recurrent head and neck cancer is challenging for those who received a previous dose of 60-70 Gy. Specifically, previously irradiated head and neck patients may have received doses close to the tolerance limit to their brainstem and spinal cord. In this study, a reproducible intensity-modulated radiation therapy (IMRT) treatment design is presented to spare the doses to brainstem and spinal cord, with no compromise of prescribed dose delivery. Between July and November 2008, 7 patients with previouslymore » irradiated, recurrent head and neck cancers were treated with IMRT. The jaws of each field were set fixed with the goal of shielding the brainstem and spinal cord at the sacrifice of partial coverage of the planning target volume (PTV) from any particular beam orientation. Beam geometry was arranged to have sufficient coverage of the PTV and ensure that the constraints of spinal cord <10 Gy and brainstem <15 Gy were met. The mean maximum dose to the brainstem was 12.1 Gy (range 6.1-17.3 Gy), and the corresponding mean maximum dose to spinal cord was 10.4 Gy (range 8.2-14.1 Gy). For most cases, 97% of the PTV volume was fully covered by the 95% isodose volume. We found empirically that if the angle of cervical spine curvature (Cobb's angle) was less than {approx}30{sup o}, patients could be treated by 18 fields. Six patients met these criteria and were treated in 25 minutes per fraction. One patient exceeded a 30{sup o} Cobb's angle and was treated by 31 fields in 45 minutes per fraction. We have demonstrated a new technique for retreatment of head and neck cancers. The angle of cervical spine curvature plays an important role in the efficiency and effectiveness of our approach.« less
Spinal Cord Tolerance to Reirradiation With Single-Fraction Radiosurgery: A Swine Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medin, Paul M., E-mail: Paul.medin@utsouthwestern.edu; Foster, Ryan D.; Kogel, Albert J. van der
2012-07-01
Purpose: This study was performed to determine swine spinal cord tolerance to single-fraction, partial-volume irradiation 1 year after receiving uniform irradiation to 30 Gy in 10 fractions. Methods and Materials: A 10-cm length of spinal cord (C3-T1) was uniformly irradiated to 30 Gy in 10 consecutive fractions and reirradiated 1 year later with a single radiosurgery dose centered within the previously irradiated segment. Radiosurgery was delivered to a cylindrical volume approximately 5 cm in length and 2 cm in diameter, which was positioned laterally to the cervical spinal cord, resulting in a dose distribution with the 90%, 50%, and 10%more » isodose lines traversing the ipsilateral, central, and contralateral spinal cord, respectively. Twenty-three pigs were stratified into six dose groups with mean maximum spinal cord doses of 14.9 {+-} 0.1 Gy (n = 2), 17.1 {+-} 0.3 Gy (n = 3), 19.0 {+-} 0.1 Gy (n = 5), 21.2 {+-} 0.1 Gy (n = 5), 23.4 {+-} 0.2 Gy (n = 5), and 25.4 {+-} 0.4 Gy (n = 3). The mean percentage of spinal cord volumes receiving {>=}10 Gy for the same groups were 34% {+-} 1%, 40% {+-} 1%, 46% {+-} 3%, 52% {+-} 1%, 56 {+-} 3%, and 57% {+-} 1%. The study endpoint was motor neurologic deficit as determined by a change in gait during a 1- year follow-up period. Results: A steep dose-response curve was observed with a 50% incidence of paralysis (ED{sub 50}) for the maximum point dose of 19.7 Gy (95% confidence interval, 17.4-21.4). With two exceptions, histology was unremarkable in animals with normal neurologic status, while all animals with motor deficits showed some degree of demyelination and focal white matter necrosis on the irradiated side, with relative sparing of gray matter. Histologic comparison with a companion study of de novo irradiated animals revealed that retreatment responders had more extensive tissue damage, including infarction of gray matter, only at prescription doses >20 Gy. Conclusion: Pigs receiving spinal radiosurgery 1 year after receiving 30 Gy in 10 fractions were not at significantly higher risk of developing motor deficits than pigs that received radiosurgery alone.« less
Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, Stephen L.; Ramsey, Chester R.; Scaperoth, Daniel D.
Introduction: Patients with vertebral metastasis that receive radiation therapy are typically treated to the spinal cord tolerance dose. As such, it is difficult to successfully deliver a second course of radiation therapy for patients with overlapping treatment volumes. In this study, an image-guided helical tomotherapy system was evaluated for the retreatment of previously irradiated vertebral metastasis. Methods and Materials: Helical tomotherapy dose gradients and maximum cord doses were measured in a cylindrical phantom for geometric test cases with separations between the planning target volume (PTV) and the spinal cord organ at risk (OAR) of 2 mm, 4 mm, 6 mm,more » 8 mm, and 10 mm. Megavoltage computed tomography (CT) images were examined for their ability to localize spinal anatomy for positioning purposes by repeat imaging of the cervical spine in an anthropomorphic phantom. In addition to the phantom studies, 8 patients with cord compressions that had received previous radiation therapy were retreated to a mean dose of 28 Gy using conventional fractionation. Results and Discussion: Megavoltage CT images were capable of positioning an anthropomorphic phantom to within {+-}1.2 mm (2{sigma}) superior-inferiorly and within {+-}0.6 mm (2{sigma}) anterior-posteriorly and laterally. Dose gradients of 10% per mm were measured in phantom while PTV uniformity indices of less than 11% were maintained. The calculated maximum cord dose was 25% of the prescribed dose for a 10-mm PTV-to-OAR separation and 71% of the prescribed dose for a PTV-to-OAR separation of 2 mm. Eight patients total have been treated without radiation-induced myelopathy or any other adverse effects from treatment. Conclusions: A technique has been evaluated for the retreatment of vertebral metastasis using image-guided helical tomotherapy. Phantom and patient studies indicated that a tomotherapy system is capable of delivering dose gradients of 10% per mm and positioning the patient within 1.2 mm without the use of special stereotactic immobilization.« less
Lhermitte Sign After Chemo-IMRT of Head-and-Neck Cancer: Incidence, Doses, and Potential Mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, Daniel; Vineberg, Karen; Feng, Felix
2012-08-01
Purpose: We have observed a higher rate of Lhermitte sign (LS) after chemo-intensity-modulated radiotherapy (IMRT) of head-and-neck cancer than the published rates after conventional radiotherapy. We hypothesized that the inhomogeneous spinal cord dose distributions produced by IMRT caused a 'bath-and-shower' effect, characterized by low doses in the vicinity of high doses, reducing spinal cord tolerance. Methods and Materials: Seventy-three patients with squamous cell carcinoma of the oropharynx participated in a prospective study of IMRT concurrent with weekly carboplatin and paclitaxel. Of these, 15 (21%) reported LS during at least 2 consecutive follow-up visits. Mean dose, maximum dose, and partial volumemore » and absolute volume (in milliliters) of spinal cord receiving specified doses ({>=}10 Gy, {>=}20 Gy, {>=}30 Gy, and {>=}40 Gy), as well as the pattern of dose distributions at the 'anatomic' spinal cord (from the base of the skull to the aortic arch) and 'plan-related' spinal cord (from the top through the bottom of the planning target volumes), were compared between LS patients and 34 non-LS patients. Results: LS patients had significantly higher spinal cord mean doses, V{sub 30}, V{sub 40}, and absolute volumes receiving 30 Gy or more and 40 Gy or more compared with the non-LS patients (p < 0.05). The strongest predictors of LS were higher V{sub 40} and higher cord volumes receiving 40 Gy or more (p {<=} 0.007). There was no evidence of larger spinal cord volumes receiving low doses in the vicinity of higher doses (bath-and-shower effect) in LS compared with non-LS patients. Conclusions: Greater mean dose, V{sub 30}, V{sub 40}, and cord volumes receiving 30 Gy or more and 40 Gy or more characterized LS compared with non-LS patients. Bath-and-shower effects could not be validated in this study as a potential contributor to LS. The higher-than-expected rates of LS may be because of the specific concurrent chemotherapy agents or more accurate identification of LS in the setting of a prospective study.« less
Direct plan comparison of RapidArc and CyberKnife for spine stereotactic body radiation therapy
NASA Astrophysics Data System (ADS)
Choi, Young Eun; Kwak, Jungwon; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Cho, Byungchul
2015-07-01
We compared the treatment planning performance of RapidArc (RA) vs. CyberKnife (CK) for spinal stereotactic body radiation therapy (SBRT). Ten patients with spinal lesions who had been treated with CK were re-planned with RA, which consisted of two complete arcs. Computed tomography (CT) and volumetric dose data of CK, generated using the Multiplan (Accuray) treatment planning system (TPS) and the Ray-trace algorithm, were imported to Varian Eclipse TPS in Dicom format, and the data were compared with the RA plan by using an analytical anisotropic algorithm (AAA) dose calculation. The optimized dose priorities for both the CK and the RA plans were similar for all patients. The highest priority was to provide enough dose coverage to the planned target volume (PTV) while limiting the maximum dose to the spinal cord. Plan quality was evaluated with respect to PTV coverage, conformity index (CI), high-dose spillage, intermediate-dose spillage (R50% and D2cm), and maximum dose to the spinal cord, which are criteria recommended by the RTOG 0631 spine and 0915 lung SBRT protocols. The mean CI' SD values of the PTV were 1.11' 0.03 and 1.17' 0.10 for RA and CK ( p = 0.02), respectively. On average, the maximum dose delivered to the spinal cord in CK plans was approximately 11.6% higher than that in RA plans, and this difference was statistically significant ( p < 0.001). High-dose spillages were 0.86% and 2.26% for RA and CK ( p = 0.203), respectively. Intermediate-dose spillage characterized by D2cm was lower for RA than for CK; however, R50% was not statistically different. Even though both systems can create highly conformal volumetric dose distributions, the current study shows that RA demonstrates lower high- and intermediate-dose spillages than CK. Therefore, RA plans for spinal SBRT may be superior to CK plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chera, Bhishamjit S.; Amdur, Robert J., E-mail: amdurr@shands.ufl.ed; Morris, Christopher G.
2010-08-01
Purpose: To compare radiation doses to carotid arteries among various radiotherapy techniques for treatment of early-stage squamous cell carcinoma (SCC) of the true vocal cords. Methods and Materials: Five patients were simulated using computed tomography (CT). Clinical and planning target volumes (PTV) were created for bilateral and unilateral stage T1 vocal cord cancers. Planning risk volumes for the carotid arteries and spinal cord were delineated. For each patient, three treatment plans were designed for bilateral and unilateral target volumes: opposed laterals (LATS), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT), for a total of 30 plans. More than 95% ofmore » the PTV received the prescription dose (63Gy at 2.25 Gy per treatment). Results: Carotid dose was lowest with IMRT. With a bilateral vocal cord target, the median carotid dose was 10Gy with IMRT vs. 25 Gy with 3DCRT and 38 Gy with LATS (p < 0.05); with a unilateral target, the median carotid dose was 4 Gy with IMRT vs. 19 Gy with 3DCRT and 39 Gy with LATS (p < 0.05). The dosimetric tradeoff with IMRT is a small area of high dose in the PTV. The worst heterogeneity results were at a maximum point dose of 80 Gy (127%) in a unilateral target that was close to the carotid. Conclusions: There is no question that IMRT can reduce the dose to the carotid arteries in patients with early-stage vocal cord cancer. The question is whether the potential advantage of reducing the carotid dose outweighs the risk of tumor recurrence due to contouring errors and organ motion and the risk of complications from dose heterogeneity.« less
2013-01-01
Background Recent trials in Bangladesh, Nepal, and Pakistan have shown that chlorhexidine is an effective antiseptic for umbilical cord care compared to existing community-based cord care practices. Because of the aggregate reduction in neonatal mortality in these trials, interest is high in introducing a 7.1% chlorhexidine digluconate liquid or gel that delivers 4% chlorhexidine for umbilical cord care in Bangladesh and elsewhere. Methods In 2010, we conducted a household survey applying a contingent valuation method with 1717 eligible couples (pregnant women or women with a first child younger than 6 months old, and their husbands) in the rural subdistricts of Abhoynagar and Mirsarai in Bangladesh to assess their willingness to pay for three types of umbilical cord care products at different price points. Each respondent was asked about willingness to pay prefixed prices for any one of three 7.1% chlorhexidine digluconate products: 1) a single-dose liquid, 2) a multi-dose liquid, or 3) a gel formulation. Each also reported the maximum price they were independently willing to pay for their selected product. We compared participant willingness-to-pay responses to the prefixed prices with their independently reported maximum prices for each type of the product separately. The comparison identified to what extent the respondents’ positive responses to the prefixed prices matched their independently reported maximum prices. Results This cross matching revealed that willingness to pay the prefixed prices was 41% for the single-dose liquid, 33% for the multi-dose liquid, and 31% for the gel formulation. Although the majority of the respondents were unwilling to pay the prefixed prices, all were willing to pay some amount and reported they could borrow money if necessary. Subsequent analysis of responses to the multi-dose liquid showed borrowing money would not be required if the unit price was Bangladeshi taka 15–25. Conclusions A unit price of Bangladeshi taka 15–25 (US$0.21–0.35) for multi-dose 7.1% chlorhexidine digluconate liquid would be affordable to the primary target population in Bangladesh. Although a large market demand could be generated if the product were available at this price point, subsidization may be required to achieve optimal coverage, especially among poorer families. PMID:24139384
Coffey, Patricia S; Metzler, Mutsumi; Islam, Ziaul; Koehlmoos, Tracey P
2013-10-18
Recent trials in Bangladesh, Nepal, and Pakistan have shown that chlorhexidine is an effective antiseptic for umbilical cord care compared to existing community-based cord care practices. Because of the aggregate reduction in neonatal mortality in these trials, interest is high in introducing a 7.1% chlorhexidine digluconate liquid or gel that delivers 4% chlorhexidine for umbilical cord care in Bangladesh and elsewhere. In 2010, we conducted a household survey applying a contingent valuation method with 1717 eligible couples (pregnant women or women with a first child younger than 6 months old, and their husbands) in the rural subdistricts of Abhoynagar and Mirsarai in Bangladesh to assess their willingness to pay for three types of umbilical cord care products at different price points. Each respondent was asked about willingness to pay prefixed prices for any one of three 7.1% chlorhexidine digluconate products: 1) a single-dose liquid, 2) a multi-dose liquid, or 3) a gel formulation. Each also reported the maximum price they were independently willing to pay for their selected product. We compared participant willingness-to-pay responses to the prefixed prices with their independently reported maximum prices for each type of the product separately. The comparison identified to what extent the respondents' positive responses to the prefixed prices matched their independently reported maximum prices. This cross matching revealed that willingness to pay the prefixed prices was 41% for the single-dose liquid, 33% for the multi-dose liquid, and 31% for the gel formulation. Although the majority of the respondents were unwilling to pay the prefixed prices, all were willing to pay some amount and reported they could borrow money if necessary. Subsequent analysis of responses to the multi-dose liquid showed borrowing money would not be required if the unit price was Bangladeshi taka 15-25. A unit price of Bangladeshi taka 15-25 (US$0.21-0.35) for multi-dose 7.1% chlorhexidine digluconate liquid would be affordable to the primary target population in Bangladesh. Although a large market demand could be generated if the product were available at this price point, subsidization may be required to achieve optimal coverage, especially among poorer families.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chau, Ricky; Teo, Peter; Kam, Michael
The aim of this study is to evaluate the deficiencies in target coverage and organ protection of 2-dimensional radiation therapy (2DRT) in the treatment of advanced T-stage (T3-4) nasopharyngeal carcinoma (NPC), and assess the extent of improvement that could be achieved with intensity modulated radiation therapy (IMRT), with special reference to of the dose to the planning organ-at-risk volume (PRV) of the brainstem and spinal cord. A dosimetric study was performed on 10 patients with advanced T-stage (T3-4 and N0-2) NPC. Computer tomography (CT) images of 2.5-mm slice thickness of the head and neck were acquired with the patient immobilizedmore » in semi-extended-head position. A 2D plan based on Ho's technique, and an IMRT plan based on a 7-coplanar portals arrangement, were established for each patient. 2DRT was planned with the field borders and shielding drawn on the simulator radiograph with reference to bony landmarks, digitized, and entered into a planning computer for reconstruction of the 3D dose distribution. The 2DRT and IMRT treatment plans were evaluated and compared with respect to the dose-volume histograms (DVHs) of the targets and the organs-at-risk (OARs), tumor control probability (TCP), and normal tissue complication probabilities (NTCPs). With IMRT, the dose coverage of the target was superior to that of 2DRT. The mean minimum dose of the GTV and PTV were increased from 33.7 Gy (2DRT) to 62.6 Gy (IMRT), and 11.9 Gy (2DRT) to 47.8 Gy (IMRT), respectively. The D{sub 95} of the GTV and PTV were also increased from 57.1 Gy (2DRT) to 67 Gy (IMRT), and 45 Gy (2DRT) to 63.6 Gy (IMRT), respectively. The TCP was substantially increased to 78.5% in IMRT. Better protection of the critical normal organs was also achieved with IMRT. The mean maximum dose delivered to the brainstem and spinal cord were reduced significantly from 61.8 Gy (2DRT) to 52.8 Gy (IMRT) and 56 Gy (2DRT) to 43.6 Gy (IMRT), respectively, which were within the conventional dose limits of 54 Gy for brainstem and of 45 Gy for spinal cord. The mean maximum doses deposited on the PRV of the brainstem and spinal cord were 60.7 Gy and 51.6 Gy respectively, which were above the conventional dose limits. For the chiasm, the mean dose maximum and the dose to 5% of its volume were reduced from 64.3 Gy (2DRT) to 53.7 Gy (IMRT) and from 62.8 Gy (2DRT) to 48.7 Gy (IMRT), respectively, and the corresponding NTCP was reduced from 18.4% to 2.1%. For the temporal lobes, the mean dose to 10% of its volume (about 4.6 cc) was reduced from 63.8 Gy (2DRT) to 55.4 Gy (IMRT) and the NTCP was decreased from 11.7% to 3.4%. The therapeutic ratio for T3-4 NPC tumors can be significantly improved with IMRT treatment technique due to improvement both in target coverage and the sparing of the critical normal organ. Although the maximum doses delivered to the brainstem and spinal cord in IMRT can be kept at or below their conventional dose limits, the maximum doses deposited on the PRV often exceed these limits due to the close proximity between the target and OARs. In other words, ideal dosimetric considerations cannot be fulfilled in IMRT planning for T3-4 NPC tumors. A compromise of the maximal dose limit to the PRV of the brainstem and spinal cord would need be accepted if dose coverage to the targets is not to be unacceptably compromised. Dosimetric comparison with 2DRT plans show that these dose limits to PRV were also frequently exceeded in 2DRT plans for locally advanced NPC. A dedicated retrospective study on the incidence of clinical injury to neurological organs in a large series of patients with T3-4 NPC treated by 2DRT may provide useful reference data in exploring how far the PRV dose constraints may be relaxed, to maximize the target coverage without compromising the normal organ function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Tian, Z; Gu, X
Purpose: To investigate the dosimetric benefit of adaptive re-planning for lung stereotactic body radiotherapy(SBRT). Methods: Five lung cancer patients with SBRT treatment were retrospectively investigated. Our in-house supercomputing online re-planning environment (SCORE) was used to realize the re-planning process. First a deformable image registration was carried out to transfer contours from treatment planning CT to each treatment CBCT. Then an automatic re-planning using original plan DVH guided fluence-map optimization is performed to get a new plan for the up-to-date patient geometry. We compared the re-optimized plan to the original plan projected on the up-to-date patient geometry in critical dosimetric parameters,more » such as PTV coverage, spinal cord maximum and volumetric constraint dose, esophagus maximum and volumetric constraint dose. Results: The average volume of PTV covered by prescription dose for all patients was improved by 7.56% after the adaptive re-planning. The volume of the spinal cord receiving 14.5Gy and 23Gy (V14.5, V23) decreased by 1.48% and 0.68%, respectively. For the esophagus, the volume receiving 19.5Gy (V19.5) reduced by 1.37%. Meanwhile, the maximum dose dropped off by 2.87% for spinal cord and 4.80% for esophagus. Conclusion: Our experimental results demonstrate that adaptive re-planning for lung SBRT has the potential to minimize the dosimetric effect of inter-fraction deformation and thus improve target coverage while reducing the risk of toxicity to nearby normal tissues.« less
A case study of IMRT planning (Plan B) subsequent to a previously treated IMRT plan (Plan A)
NASA Astrophysics Data System (ADS)
Cao, F.; Leong, C.; Schroeder, J.; Lee, B.
2014-03-01
Background and purpose: Treatment of the contralateral neck after previous ipsilateral intensity modulated radiation therapy (IMRT) for head and neck cancer is a challenging problem. We have developed a technique that limits the cumulative dose to the spinal cord and brainstem while maximizing coverage of a planning target volume (PTV) in the contralateral neck. Our case involves a patient with right tonsil carcinoma who was given ipsilateral IMRT with 70Gy in 35 fractions (Plan A). A left neck recurrence was detected 14 months later. The patient underwent a neck dissection followed by postoperative left neck radiation to a dose of 66 Gy in 33 fractions (Plan B). Materials and Methods: The spinal cord-brainstem margin (SCBM) was defined as the spinal cord and brainstem with a 1.0 cm margin. Plan A was recalculated on the postoperative CT scan but the fluence outside of SCBM was deleted. A further modification of Plan A resulted in a base plan that was summed with Plan B to evaluate the cumulative dose received by the spinal cord and brainstem. Plan B alone was used to evaluate for coverage of the contralateral neck PTV. Results: The maximum cumulative doses to the spinal cord with 0.5cm margin and brainstem with 0.5cm margin were 51.96 Gy and 45.60 Gy respectively. For Plan B, 100% of the prescribed dose covered 95% of PTVb1. Conclusion: The use of a modified ipsilateral IMRT plan as a base plan is an effective way to limit the cumulative dose to the spinal cord and brainstem while enabling coverage of a PTV in the contralateral neck.
Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawadzka, Anna, E-mail: a.zawadzka@zfm.coi.pl; Nesteruk, Marta; Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich
The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared formore » 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, Damodar, E-mail: damodar.pokhrel@uky.edu; Sood, Sumit; McClinton, Christopher
To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planningmore » target volumes (PTV) were between 14.4 and 230.1 cc (median = 38.0 cc). Prescription dose was 16 Gy in 1 fraction with 6 MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV-1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D{sub 0.03} {sub cc}, D{sub 0.35} {sub cc}), partial spinal cord (D{sub 10%}), esophagus (D{sub 0.03} {sub cc} and D{sub 5} {sub cc}), heart (D{sub 0.03} {sub cc} and D{sub 15} {sub cc}), and lung (V{sub 5}, V{sub 10}, and maximum dose to 1000 cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2 mm and 3%/3 mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and homogenous coverage of the vertebral PTV with mean HI, conformality index, conformation number, and R{sub 50%} values of 0.13 ± 0.03 (range: 0.09 to 0.18), 1.03 ± 0.04 (range: 0.98 to 1.09), 0.81 ± 0.06 (range: 0.72 to 0.89), and 4.2 ± 0.94 (range: 2.7 to 5.4), respectively. All 10 patients met protocol guidelines with maximum dose to spinal cord (average: 8.83 ± 1.9 Gy, range: 5.9 to 10.9 Gy); dose to 0.35 cc of spinal cord (average: 7.62 ± 1.7 Gy, range: 5.4 to 9.6 Gy); and dose to 10% of partial spinal cord (average 6.31 ± 1.5 Gy, range: 3.5 to 8.5 Gy) less than 14, 10, and 10 Gy, respectively. For all 10 patients, the maximum dose to esophagus (average: 9.41 ± 4.3 Gy, range: 1.5 to 14.9 Gy) and dose to 5 cc of esophagus (average: 7.43 ± 3.8 Gy, range: 1.1 to 11.8 Gy) were kept less than protocol requirements 16 Gy and 11.9 Gy, respectively. In a similar manner, all 10 patients met protocol compliance criteria with maximum dose to heart (average: 4.62 ± 3.5 Gy, range: 1.3 to 10.2 Gy) and dose to 15 cc of heart (average: 2.23 ± 1.8 Gy, range: 0.3 to 5.6 Gy) less than 22 and 16 Gy, respectively. The dose to the lung was retained much lower than protocol guidelines for all 10 patients. The total number of monitor units was, on average, 6919 ± 1187. The average beam-on time was 11.5 ± 2.0 minutes. The VMAT plans demonstrated dose delivery accuracy of 95.8 ± 0.7%, on average, for clinical gamma passing rate with 2%/2 mm criteria and 98.3 ± 0.8%, on average, with 3%/3 mm criteria. All VMAT-SBRS plans were considered clinically acceptable per RTOG 0631 dosimetric compliance criteria. VMAT planning provided highly conformal and homogenous dose distributions for the lower-dose vertebral PTV and the spinal cord as well as organs-at-risk such as esophagus, heart, and lung. Higher QA pass rates and shorter beam-on time suggest that VMAT-SBRS is a clinically feasible, fast, and effective treatment option for patients with thoracic vertebral metastases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benhabib, S; Cardan, R; Huang, M
Purpose: To assess dose calculated by the 3DVH software (Sun Nuclear Systems, Melbourne, FL) against TLD measurements and treatment planning system calculations in anthropomorphic phantoms. Methods: The IROC Houston (RPC) head and neck (HN) and lung phantoms were scanned and plans were generated using Eclipse (Varian Medical Systems, Milpitas, CA) following IROC Houston procedures. For the H and N phantom, 6 MV VMAT and 9-field dynamic MLC (DMLC) plans were created. For the lung phantom 6 MV VMAT and 15 MV 9-field dynamic MLC (DMLC) plans were created. The plans were delivered to the phantoms and to an ArcCHECK (Sunmore » Nuclear Systems, Melbourne, FL). The head and neck phantom contained 8 TLDs located at PTV1 (4), PTV2 (2), and OAR Cord (2). The lung phantom contained 4 TLDs, 2 in the PTV, 1 in the cord, and 1 in the heart. Daily outputs were recorded before each measurement for correction. 3DVH dose reconstruction software was used to project the calculated dose to patient anatomy. Results: For the HN phantom, the maximum difference between 3DVH and TLDs was -3.4% and between 3DVH and Eclipse was 1.2%. For the lung plan the maximum difference between 3DVH and TLDs was 4.3%, except for the spinal cord for which 3DVH overestimated the TLD dose by 12%. The maximum difference between 3DVH and Eclipse was 0.3%. 3DVH agreed well with Eclipse because the dose reconstruction algorithm uses the diode measurements to perturb the dose calculated by the treatment planning system; therefore, if there is a problem in the modeling or heterogeneity correction, it will be carried through to 3DVH. Conclusion: 3DVH agreed well with Eclipse and TLD measurements. Comparison of 3DVH with film measurements is ongoing. Work supported by PHS grant CA10953 and CA81647 (NCI, DHHS)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Ruan, Dan; Lee, Steve P.
2015-03-15
Purpose: To develop a practical workflow for retrospectively analyzing target and normal tissue dose–volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. Methods and Materials: A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose–volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB-IMRT) or RAPIDARC (TB-RAPIDARC), or Siemens Oncor (Siemens-IMRT, Siemens). A MATLAB-based dose–volume extraction and analysis tool was developed to export dosimetric endpoints for eachmore » patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Results: Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB-IMRT, TB-RAPIDARC, and Siemens-IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose–volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator–based IMRT and RAPIDARC plans. Conclusion: Patient registry–based processes allowed easy and systematic dosimetric assessment of treatment plan quality and consistency. Our analysis revealed the dependence of certain dosimetric endpoints on the treatment techniques. Technique-specific refinement of planning goals may lead to improvement in plan consistency and plan quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnelli, A; Smith, A; Chao, S
2016-06-15
Purpose: Spinal stereotactic body radiotherapy (SBRT) involves highly conformal dose distributions and steep dose gradients due to the proximity of the spinal cord to the treatment volume. To achieve the planning goals while limiting the spinal cord dose, patients are setup using kV cone-beam CT (kV-CBCT) with 6 degree corrections. The kV-CBCT registration with the reference CT is dependent on a user selected region of interest (ROI). The objective of this work is to determine the dosimetric impact of ROI selection. Methods: Twenty patients were selected for this study. For each patient, the kV-CBCT was registered to the reference CTmore » using three ROIs including: 1) the external body, 2) a large anatomic region, and 3) a small region focused in the target volume. Following each registration, the aligned CBCTs and contours were input to the treatment planning system for dose evaluation. The minimum dose, dose to 99% and 90% of the tumor volume (D99%, D90%), dose to 0.03cc and the dose to 10% of the spinal cord subvolume (V10Gy) were compared to the planned values. Results: The average deviations in the tumor minimum dose were 2.68%±1.7%, 4.6%±4.0%, 14.82%±9.9% for small, large and the external ROIs, respectively. The average deviations in tumor D99% were 1.15%±0.7%, 3.18%±1.7%, 10.0%±6.6%, respectively. The average deviations in tumor D90% were 1.00%±0.96%, 1.14%±1.05%, 3.19%±4.77% respectively. The average deviations in the maximum dose to the spinal cord were 2.80%±2.56%, 7.58%±8.28%, 13.35%±13.14%, respectively. The average deviation in V10Gy to the spinal cord were 1.69%±0.88%, 1.98%±2.79%, 2.71%±5.63%. Conclusion: When using automated registration algorithms for CBCT-Reference alignment, a small target-focused ROI results in the least dosimetric deviation from the plan. It is recommended to focus narrowly on the target volume to keep the spinal cord dose below tolerance.« less
Identifying risk factors for L'Hermitte's sign after IMRT for head and neck cancer.
Laidley, Hannah M; Noble, David J; Barnett, Gill C; Forman, Julia R; Bates, Amy M; Benson, Richard J; Jefferies, Sarah J; Jena, Rajesh; Burnet, Neil G
2018-05-04
L'Hermitte's sign (LS) after chemoradiotherapy for head and neck cancer appears related to higher spinal cord doses. IMRT plans limit spinal cord dose, but the incidence of LS remains high. One hundred seventeen patients treated with TomoTherapy™ between 2008 and 2015 prospectively completed a side-effect questionnaire (VoxTox Trial Registration: UK CRN ID 13716). Baseline patient and treatment data were collected. Radiotherapy plans were analysed; mean and maximum spinal cord dose and volumes receiving 10, 20, 30 and 40 Gy were recorded. Dose variation across the cord was examined. These data were included in a logistic regression model. Forty two patients (35.9%) reported LS symptoms. Concurrent weekly cisplatin did not increase LS risk (p = 0.70, OR = 1.23 {95% CI 0.51-2.34}). Of 13 diabetic participants (9 taking metformin), only 1 developed LS (p = 0.025, OR = 0.13 {95% CI 0.051-3.27}). A refined binary logistic regression model showed that patients receiving unilateral radiation (p = 0.019, OR = 2.06 {95% CI 0.15-0.84}) were more likely to develop LS. Higher V 40Gy (p = 0.047, OR = 1.06 {95% CI 1.00-1.12}), and younger age (mean age 56.6 vs 59.7, p = 0.060, OR = 0.96 {95% CI 0.92-1.00}) were associated with elevated risk of LS, with borderline significance. In this cohort, concomitant cisplatin did not increase risk, and LS incidence was lower in diabetic patients. Patient age and dose gradients across the spinal cord may be important factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirlik, G; D’Souza, W; Zhang, H
2016-06-15
Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates treatment plans with deliverable apertures using column generation. Methods: We demonstrate our method with 10 locally advanced head-and-neck cancer cases retrospectively. In our MCO formulation, we defined an objective function for each structure in the treatment volume. This resulted in 9 objective functions, including 3 distinct objectives for primary target volume, high-risk and low-risk target volumes, 5 objectives for each of the organs-at-risk (OARs) (two parotid glands, spinal cord, brain stem and oral cavity), and one for the non-target non-OAR normal tissue. Conditional value-at-risk (CVaR) constraints were utilizedmore » to ensure at least certain fraction of the target volumes receiving the prescription doses. To directly generate deliverable plans, column generation algorithm was embedded within our MCO approach for aperture shape generation. Final dose distributions for all plans were generated using a Monte Carlo kernel-superposition dose calculation. We compared the MCO plans with the clinical plans, which were created by clinicians. Results: At least 95% target coverage was achieved by both MCO plans and clinical plans. However, the average conformity indices of clinical plans and the MCO plans were 1.95 and 1.35, respectively (31% reduction, p<0.01). Compared to the conventional clinical plan, the proposed MCO method achieved average reductions in left parotid mean dose of 5% (p=0.06), right parotid mean dose of 18% (p<0.01), oral cavity mean dose of 21% (p=0.03), spinal cord maximum dose of 20% (p<0.01), brain stem maximum dose of 61% (p<0.01), and normal tissue maximum dose of 5% (p<0.01), respectively. Conclusion: We demonstrated that the proposed MCO method was able to obtain deliverable IMRT treatment plans while achieving significant improvements in dosimetric plan quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnelli, A; Xia, P
2015-06-15
Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, amore » large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, N; Young, L; Parvathaneni, U
Purpose: The presence of high density dental amalgam in patient CT image data sets causes dose calculation errors for head and neck (HN) treatment planning. This study assesses and compares dosimetric variations in IMRT and VMAT treatment plans due to dental artifacts. Methods: Sixteen HN patients with similar treatment sites (oropharynx), tumor volume and extensive dental artifacts were divided into two groups: IMRT (n=8, 6 to 9 beams) and VMAT (n=8, 2 arcs with 352° rotation). All cases were planned with the Pinnacle 9.2 treatment planning software using the collapsed cone convolution superposition algorithm and a range of prescription dosemore » from 60 to 72Gy. Two different treatment plans were produced, each based on one of two image sets: (a)uncorrected; (b)dental artifacts density overridden (set to 1.0g/cm{sup 3}). Differences between the two treatment plans for each of the IMRT and VMAT techniques were quantified by the following dosimetric parameters: maximum point dose, maximum spinal cord and brainstem dose, mean left and right parotid dose, and PTV coverage (V95%Rx). Average differences generated for these dosimetric parameters were compared between IMRT and VMAT plans. Results: The average absolute dose differences (plan a minus plan b) for the VMAT and IMRT techniques, respectively, caused by dental artifacts were: 2.2±3.3cGy vs. 37.6±57.5cGy (maximum point dose, P=0.15); 1.2±0.9cGy vs. 7.9±6.7cGy (maximum spinal cord dose, P=0.026); 2.2±2.4cGy vs. 12.1±13.0cGy (maximum brainstem dose, P=0.077); 0.9±1.1cGy vs. 4.1±3.5cGy (mean left parotid dose, P=0.038); 0.9±0.8cGy vs. 7.8±11.9cGy (mean right parotid dose, P=0.136); 0.021%±0.014% vs. 0.803%±1.44% (PTV coverage, P=0.17). Conclusion: For the HN plans studied, dental artifacts demonstrated a greater dose calculation error for IMRT plans compared to VMAT plans. Rotational arcs appear on the average to compensate dose calculation errors induced by dental artifacts. Thus, compared to VMAT, density overrides for dental artifacts are more important when planning IMRT of HN.« less
Validation of a Preclinical Spinal Safety Model: Effects of Intrathecal Morphine in the Neonatal Rat
Westin, B. David; Walker, Suellen M.; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L.
2010-01-01
Background Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long term function following intrathecal morphine in the neonatal rat. Methods Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P)3, 10 and 21. The relationship between injectate volume and segmental spread was assessed post mortem and by in-vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 minutes following intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis and glial response were evaluated 1 and 7 days following P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Results Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally-mediated analgesia at all ages with lower dose requirements in younger pups. High dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. Conclusions The therapeutic ratio for intrathecal morphine (toxic dose / antinociceptive dose) was at least 300 at P3, and at least 20 at P21 (latter doses limited by side effects). This data provides relative efficacy and safety data for comparison with other analgesic preparations and contributes supporting evidence for the validity of this preclinical neonatal safety model. PMID:20526189
Westin, B David; Walker, Suellen M; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L
2010-07-01
Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long-term function after intrathecal morphine in the neonatal rat. Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P) 3, 10, and 21. The relationship between injectate volume and segmental spread was assessed postmortem and by in vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 min after intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis, and glial response were evaluated 1 and 7 days after P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally mediated analgesia at all ages with lower dose requirements in younger pups. High-dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. The therapeutic ratio for intrathecal morphine (toxic dose/antinociceptive dose) was at least 300 at P3 and at least 20 at P21 (latter doses limited by side effects). These data provide relative efficacy and safety for comparison with other analgesic preparations and contribute supporting evidence for the validity of this preclinical neonatal safety model.
Mori, Shinichiro; Karube, Masataka; Yasuda, Shigeo; Yamamoto, Naoyoshi; Tsuji, Hiroshi; Kamada, Tadashi
2017-06-01
To explore the trade-off between dose assessment and imaging dose in respiratory gating with radiographic fluoroscopic imaging, we evaluated the relationship between dose assessment and fluoroscopic imaging dose in various gating windows, retrospectively. Four-dimensional (4D) CT images acquired for 10 patients with lung and liver tumours were used for 4D treatment planning for scanned carbon ion beam. Imaging dose from two oblique directions was calculated by the number of images multiplied by the air kerma per image. Necessary beam-on time was calculated from the treatment log file. Accumulated dose distribution was calculated. The gating window was defined as tumour position not respiratory phase and changed from 0-100% duty cycle on 4DCT. These metrics were individually evaluated for every case. For lung cases, sufficient dose conformation was achieved in respective gating windows [D 95 -clinical target volume (CTV) > 99%]. V 20 -lung values for 50%- and 30%-duty cycles were 2.5% and 6.0% of that for 100%-duty cycle. Maximum doses (cord/oesophagus) for 30%-duty cycle decreased 6.8%/7.4% to those for 100%-duty cycle. For liver cases, V 10 -liver values for 50%- and 30%-duty cycles were 9.4% and 12.8% of those for 100%-duty cycle, respectively. Maximum doses (cord/oesophagus) for 50%- and 30%-duty cycles also decreased 17.2%/19.3% and 24.6%/29.8% to those for 100%-duty cycle, respectively. Total imaging doses increased 43.5% and 115.8% for 50%- and 30%-duty cycles to that for the 100%-duty cycle. When normal tissue doses are below the tolerance level, the gating window should be expanded to minimize imaging dose and treatment time. Advances in knowledge: The skin dose from imaging might not be counterbalanced to the OAR dose; however, imaging dose is a particularly important factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakabe, D; Ohno, T; Araki, F
Purpose: The purpose of this study was to evaluate the combined organ dose of digital subtraction angiography (DSA) and computed tomography (CT) using a Monte Carlo (MC) simulation on the abdominal intervention. Methods: The organ doses for DSA and CT were obtained with MC simulation and actual measurements using fluorescent-glass dosimeters at 7 abdominal portions in an Alderson-Rando phantom. DSA was performed from three directions: posterior anterior (PA), right anterior oblique (RAO), and left anterior oblique (LAO). The organ dose with MC simulation was compared with actual radiation dose measurements. Calculations for the MC simulation were carried out with themore » GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. Finally, the combined organ dose for DSA and CT was calculated from the MC simulation using the X-ray conditions of a patient with a diagnosis of hepatocellular carcinoma. Results: For DSA from the PA direction, the organ doses for the actual measurements and MC simulation were 2.2 and 2.4 mGy/100 mAs at the liver, respectively, and 3.0 and 3.1 mGy/100 mAs at the spinal cord, while for CT, the organ doses were 15.2 and 15.1 mGy/100 mAs at the liver, and 14.6 and 13.5 mGy/100 mAs at the spinal cord. The maximum difference in organ dose between the actual measurements and the MC simulation was 11.0% of the spleen at PA, 8.2% of the spinal cord at RAO, and 6.1% of left kidney at LAO with DSA and 9.3% of the stomach with CT. The combined organ dose (4 DSAs and 6 CT scans) with the use of actual patient conditions was found to be 197.4 mGy for the liver and 205.1 mGy for the spinal cord. Conclusion: Our method makes it possible to accurately assess the organ dose to patients for abdominal intervention with combined DSA and CT.« less
Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Poonam, E-mail: yadav@humonc.wisc.edu; Department of Medical Physics, University of Wisconsin, Madison, WI; University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI
2013-10-01
Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison ofmore » target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Tian, Z; Gu, X
2014-06-15
Purpose: We studied dosimetric effects of inter-fraction deformation in lung stereotactic body radiotherapy (SBRT), in order to investigate the necessity of adaptive re-planning for lung SBRT treatments. Methods: Six lung cancer patients with different treatment fractions were retrospectively investigated. All the patients were immobilized and localized with a stereotactic body frame and were treated under cone-beam CT (CBCT) image guidance at each fraction. We calculated the actual delivered dose of the treatment plan using the up-to-date patient geometry of each fraction, and compared the dose with the intended plan dose to investigate the dosimetric effects of the inter-fraction deformation. Deformablemore » registration was carried out between the treatment planning CT and the CBCT of each fraction to obtain deformed planning CT for more accurate dose calculations of the delivered dose. The extent of the inter-fraction deformation was also evaluated by calculating the dice similarity coefficient between the delineated structures on the planning CT and those on the deformed planning CT. Results: The average dice coefficients for PTV, spinal cord, esophagus were 0.87, 0.83 and 0.69, respectively. The volume of PTV covered by prescription dose was decreased by 23.78% on average for all fractions and all patients. For spinal cord and esophagus, the volumes covered by the constraint dose were increased by 4.57% and 3.83%. The maximum dose was also increased by 4.11% for spinal cord and 4.29% for esophagus. Conclusion: Due to inter-fraction deformation, large deterioration was found in both PTV coverage and OAR sparing, which demonstrated the needs for adaptive re-planning of lung SBRT cases to improve target coverage while reducing radiation dose to nearby normal tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, X; Penagaricano, J; Paudel, N
2015-06-15
Purpose: To study the potential of improving esophageal sparing for stereotactic body radiation therapy (SBRT) lung cancer patients by using biological optimization (BO) compared to conventional dose-volume based optimization (DVO) in treatment planning. Methods: Three NSCLC patients (PTV (62.3cc, 65.1cc, and 125.1cc) adjacent to the heart) previously treated with SBRT were re-planned using Varian Eclipse TPS (V11) using DVO and BO. The prescription dose was 60 Gy in 5 fractions normalized to 95% of the PTV volume. Plans were evaluated by comparing esophageal maximum doses, PTV heterogeneity (HI= D5%/D95%), and Paddick’s conformity (CI) indices. Quality of the plans was assessedmore » by clinically-used IMRT QA procedures. Results: By using BO, the maximum dose to the esophagus was decreased 1384 cGy (34.6%), 502 cGy (16.5%) and 532 cGy (16.2%) in patient 1, 2 and 3 respectively. The maximum doses to spinal cord and the doses to 1000 cc and 1500 cc of normal lung were comparable in both plans. The mean doses (Dmean-hrt) and doses to 15cc of the heart (V15-hrt) were comparable for patient 1 and 2. However for patient 3, with the largest PTV, Dmean-hrt and V15-hrt increased by 62.2 cGy (18.3%) and 549.9 cGy (24.9%) respectively for the BO plans. The mean target HI of BO plans (1.13) was inferior to the DVO plans (1.07). The same trend was also observed for mean CI in BO plans (0.77) versus DVO plans (0.83). The QA pass rates (3%, 3mm) were comparable for both plans. Conclusion: This study demonstrated that the use of biological models in treatment planning optimization can substantially improve esophageal sparing without compromising spinal cord and normal lung doses. However, for the large PTV case (125.1cc) we studied here, Dmean-hrt and V15-hrt increased substantially. The target HI and CI were inferior in the BO plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, V; Tran, A; Nguyen, D
Purpose: To demonstrate significant organ-at-risk (OAR) sparing achievable with 4π non-coplanar radiotherapy on spine SBRT and SRS patients. Methods: Twenty-five stereotactic spine cases previously treated with VMAT (n = 23) or IMRT (n = 2) were included in this study. A computer-aided-design model of a Linac with a 3D-scanned human surface was utilized to determine the feasible beam space throughout the 4π steradian and beam specific source-to-target-distances (STD) required for collision avoidance. 4π radiotherapy plans integrating beam orientation and fluence map optimization were then created using a column-generation algorithm. Twenty optimal beams were selected for each case. To evaluate themore » tradeoff between dosimetric benefit and treatment complexity, 4π plans including only isocentrically deliverable beams were also created. Beam angles of all standard and isocentric 4π plans were imported into Eclipse to recalculate the dose using the same calculation engine as the clinical plans for unbiased comparison. OAR and PTV dose statistics for the clinical, standard-4π, and isocentric-4π plans were compared. Results: Comparing standard-4π to clinical plans, particularly significant average percent reduction in the [mean, maximum] dose of the cord and esophagus of [41%, 21.7%], and [38.7%, 36.4%] was observed, along with global decrease in all other OAR dose statistics. The average cord volume receiving more than 50% prescription dose was substantially decreased by 76%. In addition, improved PTV coverage was demonstrated with a maximum dose reduction of 0.93% and 1.66% increase in homogeneity index (D95/D5). All isocentric-4π plans achieved dosimetric performance equivalent to that of the standard-4π plans with higher delivery complexity. Conclusion: 4π radiotherapy significantly improves stereotactic spine treatment dosimetry. With the substantial OAR dose sparing, PTV dose escalation is considerably safer. Isocentric-4π is sufficient to achieve the dosimetric gain. The successful implementation of 4π using an FDA approved planning system paves the way for a prospective clinical trial. Varian Medical Systems, NIH R43CA183390 and R01CA188300, NSF graduate research fellowship DGE-1144087.« less
Miao, Junjie; Yan, Hui; Tian, Yuan; Ma, Pan; Liu, Zhiqiang; Li, Minghui; Ren, Wenting; Chen, Jiayun; Zhang, Ye; Dai, Jianrong
2017-11-01
It is important to minimize lung dose during intensity-modulated radiation therapy (IMRT) of nonsmall cell lung cancer (NSCLC). In this study, an approach was proposed to reduce lung dose by relaxing the constraint of target dose homogeneity during treatment planning of IMRT. Ten NSCLC patients with lung tumor on the right side were selected. The total dose for planning target volume (PTV) was 60 Gy (2 Gy/fraction). For each patient, two IMRT plans with six beams were created in Pinnacle treatment planning system. The dose homogeneity of target was controlled by constraints on the maximum and uniform doses of target volume. One IMRT plan was made with homogeneous target dose (the resulting target dose was within 95%-107% of the prescribed dose), while another IMRT plan was made with inhomogeneous target dose (the resulting target dose was more than 95% of the prescribed dose). During plan optimization, the dose of cord and heart in two types of IMRT plans were kept nearly the same. The doses of lungs, PTV and organs at risk (OARs) between two types of IMRT plans were compared and analyzed quantitatively. For all patients, the lung dose was decreased in the IMRT plans with inhomogeneous target dose. On average, the mean dose, V5, V20, and V30 of lung were reduced by 1.4 Gy, 4.8%, 3.7%, and 1.7%, respectively, and the dose to normal tissue was also reduced. These reductions in DVH values were all statistically significant (P < 0.05). There were no significant differences between the two IMRT plans on V25, V30, V40, V50 and mean dose for heart. The maximum doses of cords in two type IMRT plans were nearly the same. IMRT plans with inhomogeneous target dose could protect lungs better and may be considered as a choice for treating NSCLC. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Fujimura, Morihiro; Izumimoto, Naoki; Kanie, Sayoko; Kobayashi, Ryosuke; Yoshikawa, Satoru; Momen, Shinobu; Hirakata, Mikito; Komagata, Toshikazu; Okanishi, Satoshi; Iwata, Masashi; Hashimoto, Tadatoshi; Doi, Takayuki; Yoshimura, Naoki; Kawai, Koji
2017-04-01
To clarify the mechanism of inhibitory action of TRK-130 (Naltalimide), a unique µ-opioid receptor partial agonist, on the micturition reflex. The effect of TRK-130 on isovolumetric rhythmic bladder contractions (RBCs) was examined in guinea pigs, the effect of which was clarified by co-treatment with naloxone or in spinal cord transection. The effect of TRK-130 on urodynamic parameters was also observed in guinea pigs. In addition, the effect of TRK-130 on bladder contraction induced by peripheral stimulation of the pelvic nerve was investigated in rats. TRK-130 (0.001-0.01 mg/kg, iv) dose-dependently inhibited RBCs, which was dose-dependently antagonized by naloxone; however, the antagonism susceptibility was different from morphine (1 mg/kg, iv). The minimum effective dose (0.003 mg/kg) of TRK-130 remained similar in spinal cord-transected animals. TRK-130 (0.0025 mg/kg, iv) increased bladder capacity without changing the voiding efficiency, maximum flow rate, and intravesical pressure at the maximum flow rate, whereas oxybutynin (1 mg/kg, iv) increased the bladder capacity but affected the other parameters. TRK-130 (0.005 mg/kg, iv) did not produce significant changes on the bladder contractions induced by peripheral stimulation of the pelvic nerve, while oxybutynin (1 mg/kg, iv) significantly suppressed the bladder contractions. These results suggest that TRK-130 enhances the bladder storage function by modulating the afferent limb of the micturition reflex through µ-opioid receptors in the spinal cord. TRK-130 could be a more effective and safer therapeutic agent with a different fashion from antimuscarinics and conventional opioids for overactive bladder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camingue, Pamela; Christian, Rochelle; Ng, Davin
The purpose of this study was to compare 4 different external beam radiation therapy treatment techniques for the treatment of T1-2, N0, M0 glottic cancers: traditional lateral beams with wedges (3D), 5-field intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and proton therapy. Treatment plans in each technique were created for 10 patients using consistent planning parameters. The photon treatment plans were optimized using Philips Pinnacle{sub 3} v.9 and the IMRT and VMAT plans used the Direct Machine Parameter Optimization algorithm. The proton treatment plans were optimized using Varian Eclipse Proton v.8.9. The prescription used for each plan wasmore » 63 Gy in 28 fractions. The contours for spinal cord, right carotid artery, left carotid artery, and normal tissue were created with respect to the patient's bony anatomy so that proper comparisons of doses could be made with respect to volume. An example of the different isodose distributions will be shown. The data collection for comparison purposes includes: clinical treatment volume coverage, dose to spinal cord, dose to carotid arteries, and dose to normal tissue. Data comparisons will be displayed graphically showing the maximum, mean, median, and ranges of doses.« less
Effect of gamma irradiation on the properties of tyre cords
NASA Astrophysics Data System (ADS)
Aytaç, Ayşe; Şen, Murat; Deniz, Veli; Güven, Olgun
2007-12-01
Gamma irradiation of high tenacity Nylon 6.6 (Ny 66) and polyester (PET) tyre cords was investigated. The untreated and treated tyre cords with different twist levels were irradiated at different dose rates in air. The effects of irradiation on both Ny 66 and PET cords were not found to be depending on the twist levels of the cords. The changes in the mechanical and thermal properties with absorbed dose at two different dose rates were measured. The mechanical properties were observed to deteriorate with increasing dose for Ny 66 cords, whereas remained almost unchanged for PET cords both in greige and dipped forms. Hot shrinkage value for the greige Ny 66 cords was found to be improved, i.e. decreased. This decrease was much lower for greige PET than Ny 66 cords. It is concluded that PET cord has higher radiation resistance than Ny 66 cord and the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design if pre-vulcanization with high energy radiation is to be applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, M; Lee, V; Leung, R
Purpose: Investigating the relative sensitivity of Monte Carlo (MC) and Pencil Beam (PB) dose calculation algorithms to low-Z (titanium) metallic artifacts is important for accurate and consistent dose reporting in post¬operative spinal RS. Methods: Sensitivity analysis of MC and PB dose calculation algorithms on the Monaco v.3.3 treatment planning system (Elekta CMS, Maryland Heights, MO, USA) was performed using CT images reconstructed without (plain) and with Orthopedic Metal Artifact Reduction (OMAR; Philips Healthcare system, Cleveland, OH, USA). 6MV and 10MV volumetric-modulated arc (VMAT) RS plans were obtained for MC and PB on the plain and OMAR images (MC-plain/OMAR and PB-plain/OMAR).more » Results: Maximum differences in dose to 0.2cc (D0.2cc) of spinal cord and cord +2mm for 6MV and 10MV VMAT plans were 0.1Gy between MC-OMAR and MC-plain, and between PB-OMAR and PB-plain. Planning target volume (PTV) dose coverage changed by 0.1±0.7% and 0.2±0.3% for 6MV and 10MV from MC-OMAR to MC-plain, and by 0.1±0.1% for both 6MV and 10 MV from PB-OMAR to PB-plain, respectively. In no case for both MC and PB the D0.2cc to spinal cord was found to exceed the planned tolerance changing from OMAR to plain CT in dose calculations. Conclusion: Dosimetric impacts of metallic artifacts caused by low-Z metallic spinal hardware (mainly titanium alloy) are not clinically important in VMAT-based spine RS, without significant dependence on dose calculation methods (MC and PB) and photon energy ≥ 6MV. There is no need to use one algorithm instead of the other to reduce uncertainty for dose reporting. The dose calculation method that should be used in spine RS shall be consistent with the usual clinical practice.« less
Limitations of the planning organ at risk volume (PRV) concept.
Stroom, Joep C; Heijmen, Ben J M
2006-09-01
Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M(T) = 2 Sigma + 0.7 sigma, with Sigma and sigma standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). For critical organs with a maximum dose (D(max)) constraint, we calculated margins such that D(max) in the PRV is equal to the motion averaged D(max) in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. For the 20 spinal cords considered, the average margin recipe found was: M(R) = 1.6 Sigma + 0.2 sigma with variations for systematic and random errors of 1.2 Sigma to 1.8 Sigma and -0.2 sigma to 0.6 sigma, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D(max). For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, H; Zhao, L; Prabhu, K
2015-06-15
Purpose This study compares the dosimetric parameters in treatment of unresectable hepatocellular carcinoma between intensity modulated proton therapy (IMPT) and intensity modulated x-ray radiation therapy (IMRT). Methods and Materials: We studied four patients treated at our institution. All patients were simulated supine with 4D-CT using a GE light speed simulator with a maximum slice thickness of 3mm. The average CT and an internal target volume to account for respiration motion were used for planning. Both IMRT and IMPT plans were created using Elekta’s CMSXiO treatment planning system (TPS). The prescription dose was 58.05 CGE in 15 fractions. The IMRT plansmore » had five beams with combination of co-planar and non-co-planar. The IMPT plans had 2 to 3 beams. Dose comparison was performed based on the averaged results of the four patients. Results The mean dose and V95% to PTV were 58.24CGE, 98.57% for IMPT, versus 57.34CGE and 96.68% for IMRT, respectively. The V10, V20, V30 and mean dose of the normal liver for IMPT were 23.10%, 18.61%, 13.75% and 9.78 CGE; and 47.19%, 37.55%, 22.73% and 17.12CGE for IMRT. The spinal cord didn’t receive any dose in IMPT technique, but received a maximum of 18.77CGE for IMRT. The IMPT gave lower maximum dose to the stomach as compared to IMRT (19.26 vs 26.35CGE). V14 for left and right kidney was 0% and 2.32% for IMPT and 3.89% and 29.54% for IMRT. The mean dose, V35, V40 and V45 for small bowl were similar in both techniques, 0.74CGE, 6.27cc, 4.85cc and 3.53 cc for IMPT, 3.47CGE, 9.73cc, 7.61cc 5.35cc for IMRT. Conclusion Based on this study, IMPT plans gave less dose to the critical structures such as normal liver, kidney, stomach and spinal cord as compared to IMRT plans, potentially leading to less toxicity and providing better quality of life for patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, SP; Moore, JA; Hui, X
Purpose: Database dose predictions and a commercial autoplanning engine both improve treatment plan quality in different but complimentary ways. The combination of these planning techniques is hypothesized to further improve plan quality. Methods: Four treatment plans were generated for each of 10 head and neck (HN) and 10 prostate cancer patients, including Plan-A: traditional IMRT optimization using clinically relevant default objectives; Plan-B: traditional IMRT optimization using database dose predictions; Plan-C: autoplanning using default objectives; and Plan-D: autoplanning using database dose predictions. One optimization was used for each planning method. Dose distributions were normalized to 95% of the planning target volumemore » (prostate: 8000 cGy; HN: 7000 cGy). Objectives used in plan optimization and analysis were the larynx (25%, 50%, 90%), left and right parotid glands (50%, 85%), spinal cord (0%, 50%), rectum and bladder (0%, 20%, 50%, 80%), and left and right femoral heads (0%, 70%). Results: All objectives except larynx 25% and 50% resulted in statistically significant differences between plans (Friedman’s χ{sup 2} ≥ 11.2; p ≤ 0.011). Maximum dose to the rectum (Plans A-D: 8328, 8395, 8489, 8537 cGy) and bladder (Plans A-D: 8403, 8448, 8527, 8569 cGy) were significantly increased. All other significant differences reflected a decrease in dose. Plans B-D were significantly different from Plan-A for 3, 17, and 19 objectives, respectively. Plans C-D were also significantly different from Plan-B for 8 and 13 objectives, respectively. In one case (cord 50%), Plan-D provided significantly lower dose than plan C (p = 0.003). Conclusion: Combining database dose predictions with a commercial autoplanning engine resulted in significant plan quality differences for the greatest number of objectives. This translated to plan quality improvements in most cases, although special care may be needed for maximum dose constraints. Further evaluation is warranted in a larger cohort across HN, prostate, and other treatment sites. This work is supported by Philips Radiation Oncology Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matney, Jason; Park, Peter C.; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable imagemore » registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential dosimetric error caused by breathing motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoush, A; Djemil, T; Subedi, L
2014-06-01
Purpose: To study the dosimetric impact of MLC leaf width in patients treated with Volumetric Modulated Arc Therapy (VMAT) for spine Stereotactic Body radiation Therapy (SBRT). Methods: Twelve spine SBRT patients were retrospectively selected for this study. The patients were treated with IMRT following the RTOG-0631 of spine metastasis. The prescription dose was 16 Gy in one fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the cord receiving < 10 Gy (V10) were set as dose constraints. For purpose of this study, three dual arc VMAT plansmore » were created for each patient using three different MLC leaf widths: 2.5 mm, 4mm, and 5mm. The compliance to RTOG 0631, conformal index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. Results: The average V16 of the target was 91.91±1.36%, 93.73±2.38%, and 92.25±2.49% for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively (p=0.39). Accordingly, the average CI was 1.36±0.39, 1.36±0.34, and 1.41±0.3 (0.96), respectively. The average DGI was 0.24 ± 0.05, 0.22 ± 0.05, and 0.23 ± 0.04, respectively (p=0.86). The average spinal cord maximum dose was 12.10 ± 0.88 Gy, 12.52 ± 1.15 Gy, and 12.05 ± 1.12 (p=0.75) and V10 was 2.69 ± 1.71 cc, 5.43 ± 2.16 cc, and 3.71 ± 2.34 cc (p=0.15) for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively. According, the average number of MUs was 4255 ± 431 MU, 5049 ± 1036 MU, and 4231 ± 580 MU respectively (p=0.17). Conclusion: The use of 2.5 mm, 4 mm, and 5 mm MLCs achieved similar VMAT plan quality as recommended by RTOG-0631. The dosimetric parameters were also comparable for the three MLCs.« less
Organ dose measurement using Optically Stimulated Luminescence Detector (OSLD) during CT examination
NASA Astrophysics Data System (ADS)
Yusuf, Muhammad; Alothmany, Nazeeh; Abdulrahman Kinsara, Abdulraheem
2017-10-01
This study provides detailed information regarding the imaging doses to patient radiosensitive organs from a kilovoltage computed tomography (CT) scan procedure using OSLD. The study reports discrepancies between the measured dose and the calculated dose from the ImPACT scan, as well as a comparison with the dose from a chest X-ray radiography procedure. OSLDs were inserted in several organs, including the brain, eyes, thyroid, lung, heart, spinal cord, breast, spleen, stomach, liver and ovaries, of the RANDO phantom. Standard clinical scanning protocols were used for each individual site, including the brain, thyroid, lung, breast, stomach, liver and ovaries. The measured absorbed doses were then compared with the simulated dose obtained from the ImPACT scan. Additionally, the equivalent doses for each organ were calculated and compared with the dose from a chest X-ray radiography procedure. Absorbed organ doses measured by OSLD in the RANDO phantom of up to 17 mGy depend on the organ scanned and the scanning protocols used. A maximum 9.82% difference was observed between the target organ dose measured by OSLD and the results from the ImPACT scan. The maximum equivalent organ dose measured during this experiment was equal to 99.899 times the equivalent dose from a chest X-ray radiography procedure. The discrepancies between the measured dose with the OSLD and the calculated dose from the ImPACT scan were within 10%. This report recommends the use of OSLD for measuring the absorbed organ dose during CT examination.
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
NASA Astrophysics Data System (ADS)
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoush, Ahmad, E-mail: aamoush@augusta.edu; Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195; Long, Huang
This work aimed to study the dosimetric effect of multileaf collimator (MLC) leaf widths in treatment plans for patients receiving volumetric modulated arc therapy (VMAT) for spine stereotactic body radiation therapy (SBRT). Thirteen patients treated with spine SBRT were retrospectively selected for this study. The patients were treated following the protocol of the Radiation Therapy Oncology Group 0631 (RTOG 0631) for spine metastasis. The prescription dose was 16 Gy in 1 fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the spinal cord receiving < 10 Gy (V10) were the acceptable tolerance doses. For themore » purpose of this study, 2 dual-arc VMAT plans were created for each patient using 3 different MLC leaf widths: 2.5 mm, 4 mm, and 5 mm. The compliance with the RTOG 0631 protocol, conformity index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. The average V16Gy of the targets was 91.8 ± 1.2%, 92.2 ± 2.1%, and 91.7 ± 2.3% for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively (p = 0.78). Accordingly, the average CI was 1.45 ± 0.4, 1.47 ± 0.29, and 1.47 ± 0.31 (p = 0.98), respectively. The average DGI was 0.22 ± 0.04, 0.20 ± 0.06, and 0.22 ± 0.05, respectively (p = 0.77). The average maximum dose to the spinal cord was 12.45 ± 1.0 Gy, 12.80 ± 1.0 Gy, and 12.48 ± 1.1 (p = 0.62) and V10% of the spinal cord was 3.6 ± 2.1%, 5.6 ± 2.8%, and 5.5 ± 3.0% (p = 0.11) for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively. Accordingly, the average number of MUs was 4341 ± 500 MU, 5019 ± 834 MU, and 4606 ± 691 MU, respectively (p = 0.053). The use of 2.5-mm, 4-mm, and 5-mm MLCs achieved similar VMAT plan quality as recommended by the RTOG 0631. The dosimetric parameters were also comparable for the 3 MLCs. In general, any of these leaf widths can be used for spine SBRT using VMAT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medin, Paul M., E-mail: Paul.medin@utsouthwestern.ed; Boike, Thomas P.
Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat hasmore » demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.« less
Intraluminal radiation for esophageal cancer: a Howard University technique.
Moorthy, C R; Nibhanupudy, J R; Ashayeri, E; Goldson, A L; Espinoza, M C; Nidiry, J J; Warner, O G; Roux, V J
1982-03-01
The objective of radiotherapeutic management in esophageal cancer is to accomplish maximum tumor sterilization with minimal normal tissue damage. This sincere effort is most often countered by the differential in tumor dose response vs normal tissue tolerance. Intraluminal isotope radiation, with its inherent advantage of rapid dose falloff, spares the lungs, the spinal cord, and other vital structures, yet yields adequately high doses to esophageal tumor. Though in existence since the turn of the century, the method of intracavitary radium bougie application dropped out of favor due to technical difficulties imposed by the size of the radium source and radiation exposure to the personnel involved. The authors describe a simple "iridium 192 afterloading intraluminal technique" that eliminates technical problems and reduces radiation exposure considerably.
NASA Astrophysics Data System (ADS)
Nguyen, T. T. C.; Nguyen, B. T.; Mai, N. V.
2018-03-01
In this work, we made the comparison between IMRT plan and IMPT plan for a head and neck case. We used Prowess Panther to perform IMRT plan and LAP- CERR for IMPT plan. The result showed that IMPT plan had better coverage than IMRT plan. In the IMRT plan, normal structures received higher dose with higher volume. Especially, the maximum dose of spinal cord is 31.5 Gy (RBE) using IMRT technique compared to 13.5 Gy (RBE) using IMPT technique. These results showed that IMPT is beneficial for head and neck cancer compared to IMRT technique.
Kalderon, N; Xu, S; Koutcher, J A; Fuks, Z
2001-06-22
Previous studies suggest that motor recovery does not occur after spinal cord injury because reactive glia abort the natural repair processes. A permanent wound gap is left in the cord and the brain-cord circuitry consequently remains broken. Single-dose x-irradiation destroys reactive glia at the damage site in transected adult rat spinal cord. The wound then heals naturally, and a partially functional brain-cord circuitry is reconstructed. Timing is crucial; cell ablation is beneficial only within the third week after injury. Data presented here point to the possibility of translating these observations into a clinical therapy for preventing the paralysis following spinal cord injury in the human. The lesion site (at low thoracic level) in severed adult rat spinal cord was treated daily, over the third week postinjury, with protocols of fractionated radiation similar to those for treating human spinal cord tumors. This resulted, as with the single-dose protocol, in wound healing and restoration of some hindquarter motor function; in addition, the beneficial outcome was augmented. Of the restored hindlimb motor functions, weight-support and posture in stance was the only obvious one. Recovery of this motor function was partial to substantial and its incidence was 100% instead of about 50% obtained with the single-dose treatment. None of the hindlimbs, however, regained frequent stepping or any weight-bearing locomotion. These data indicate that the therapeutic outcome may be further augmented by tuning the radiation parameters within the critical time-window after injury. These data also indicate that dose-fractionation is an effective strategy and better than the single-dose treatment for targeting of reactive cells that abort the natural repair, suggesting that radiation therapy could be developed into a therapeutic procedure for repairing injured spinal cord.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, G; Guo, Y; Yin, Y
Purpose: To study the contour and dosimetric feature of organs at risk (OARs) applying magnetic resonance imaging (MRI) images in intensity modulated radiation therapy (IMRT) of nasopharyngeal carcinoma (NPC) compared to computed tomography (CT) images. Methods: 35 NPC patients was selected into this trail. CT simulation with non-contrast and contrast enhanced scan, MRI simulation with non-contrast and contrast enhanced T1, T2 and diffusion weighted imaging were achieved sequentially. And the OARs were contoured on the CT and MRI images after rigid registration respectively. 9 beams IMRT plan with equal division angle were designed for every patients, and the prescription dosemore » for tumor target was set as 72Gy (2.4Gy/ fration). The boundary display, volume and dose-volume indices of each organ were compared between on MRI and CT images. Results: Compared to CT, MRI showed clearer boundary of brainstem, spinal cord, the deep lobe of Parotid gland and the optical nerve in canal. MRI images increase the volume of lens, optical nerve, while reducing the volume of eye slightly, and the maximum dose of lens, the mean dose of eyes and optical raised in different percentage, while there was no statistical differences were found. The left and right parotid volume on MRI increased by 7.07%, 8.13%, and the mean dose raised by 14.95% (4.01Gy), 18.76% (4.95Gy) with statistical significant difference (p<0.05). The brainstem volume reduced by 9.33% (p<0.05), and the dose of 0.1cm3 volume (D0.1cm3) reduced by mean 8.46% (4.32Gy), and D0.1cm3 of spinal cord increased by 1.5Gy on MRI. Conclusion: It is credible to evaluate the radiation dose of lens, eye and the spinal cord, while it should be necessary to evaluate the dose of brainstem, parotid and the optical nerve applying MRI images sometime, it will be more meaningful for these organs with high risk of radiation injury.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokharel, S; Rana, S
Purpose: purpose of this study is to evaluate the effect of grid size in Eclipse AcurosXB dose calculation algorithm for SBRT lung. Methods: Five cases of SBRT lung previously treated have been chosen for present study. Four of the plans were 5 fields conventional IMRT and one was Rapid Arc plan. All five cases have been calculated with five grid sizes (1, 1.5, 2, 2.5 and 3mm) available for AXB algorithm with same plan normalization. Dosimetric indices relevant to SBRT along with MUs and time have been recorded for different grid sizes. The maximum difference was calculated as a percentagemore » of mean of all five values. All the plans were IMRT QAed with portal dosimetry. Results: The maximum difference of MUs was within 2%. The time increased was as high as 7 times from highest 3mm to lowest 1mm grid size. The largest difference of PTV minimum, maximum and mean dose were 7.7%, 1.5% and 1.6% respectively. The highest D2-Max difference was 6.1%. The highest difference in ipsilateral lung mean, V5Gy, V10Gy and V20Gy were 2.6%, 2.4%, 1.9% and 3.8% respectively. The maximum difference of heart, cord and esophagus dose were 6.5%, 7.8% and 4.02% respectively. The IMRT Gamma passing rate at 2%/2mm remains within 1.5% with at least 98% points passing with all grid sizes. Conclusion: This work indicates the lowest grid size of 1mm available in AXB is not necessarily required for accurate dose calculation. The IMRT passing rate was insignificant or not observed with the reduction of grid size less than 2mm. Although the maximum percentage difference of some of the dosimetric indices appear large, most of them are clinically insignificant in absolute dose values. So we conclude that 2mm grid size calculation is best compromise in light of dose calculation accuracy and time it takes to calculate dose.« less
Harata, Naoki; Yoshida, Katsuya; Oota, Sayako; Fujii, Hayahiko; Isogai, Jun; Yoshimura, Ryoichi
2016-01-01
We retrospectively investigated changes of (18)F-fluorodeocyglucose ((18)F-FDG) uptake in the spinal cord, inside and outside the radiation fields, in patients with esophageal cancer before and after conventional dose radiotherapy. A total of 17 consecutive patients with esophageal cancer (16 males, one female; age 50-83 years, mean 67.0 years), who underwent conventional dose radiotherapy and (18)F-FDG PET/CT before and 5.1 months (range 1.6-8.6 months) after the radiotherapy, were retrospectively evaluated. Sixteen patients had esophageal cancer and one patient had esophageal metastasis from thyroid cancer. Mean standardized uptake values (SUVmean) of the cervical, thoracic (inside and outside the radiation fields) and lumbar spinal cord were measured. SUVmean of the thoracic spinal cord inside the radiation field was decreased significantly after radiotherapy compared to those before radiotherapy (p < 0.001). SUVmean of the cervical spinal cord showed the same trend but it was not statistically significant (p = 0.051). SUVmean of the thoracic spinal cord outside the radiation field and the lumbar spinal cord did not differ significantly before and after the radiotherapy (p = 0.146 and p = 0.701, respectively). The results suggest that glucose metabolism of the spinal cord is decreased in esophageal cancer patients after conventional dose radiotherapy.
Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik
2017-05-01
To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Spine Radiosurgery: A Dosimetric Analysis in 124 Patients Who Received 18 Gy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schipani, Stefano; Wen, Winston; Jin, Jain-Yue
2012-12-01
Purpose: To define the safely tolerated doses to organs at risk (OARs) adjacent to the target volume (TV) of spine radiosurgery (SRS) with 18-Gy in a single fraction. Methods and Materials: A total of 124 patient cases with 165 spine metastases were reviewed. An 18-Gy single-fraction regimen was prescribed to the 90% isodose line encompassing the TV. A constraint of 10 Gy to 10% of the spinal cord outlined 6 mm above and below the TV was used. Dosimetric data to OARs were analyzed. Results: A total of 124 patients (100%) were followed-up, and median follow-up time was 7 monthsmore » (1-50 months). Symptoms and local control were achieved in 114 patients (92%). Acute Radiation Therapy Oncology Group (RTOG) grade 1 oral mucositis occurred in 11 of 11 (100%) patients at risk for oropharyngeal toxicity after cervical spine treatment. There were no RTOG grade 2-4 acute or late complications. Median TV was 43.2 cc (5.3-175.4 cc) and 90% of the TV received median dose of 19 Gy (17-19.8 Gy). Median (range) of spinal cord maximum dose (Dmax), dose to spinal cord 0.35 cc (Dsc0.35), and cord volume receiving 10 Gy (Vsc10) were 13.8 Gy (5.4-21 Gy), 8.9 Gy (2.6-11.4 Gy) and 0.33 cc (0-1.6 cc), respectively. Other OARs were evaluated when in proximity to the TV. Esophagus (n=58), trachea (n=28), oropharynx (n=11), and kidneys (n=34) received median (range) V10 and V15 of 3.1 cc (0-5.8 cc) and 1.2 cc (0-2.9 cc), 2.8 cc (0-4.9 cc), and 0.8 cc (0-2.1 cc), 3.4 cc (0-6.2 cc) and 1.6 cc (0-3.2 cc), 0.3 cc (0-0.8 cc) and 0.08 cc (0-0.1 cc), respectively. Conclusions: Cord Dmax of 14 Gy and D0.35 of 10 Gy are safe dose constraints for 18-Gy single-fraction SRS. Esophagus V10 of 3 cc and V15 of 1 cc, trachea V10 of 3 cc, and V15 of 1 cc, oropharynx V10 of 3.5 cc and V15 of 1.5 cc, kidney V10 of 0.3 cc, and V15 of 0.1 cc are planning guidelines when these OARs are in proximity to the TV.« less
Wang, Hesheng; Chandarana, Hersh; Block, Kai Tobias; Vahle, Thomas; Fenchel, Matthias; Das, Indra J
2017-06-26
Interest in MR-only treatment planning for radiation therapy is growing rapidly with the emergence of integrated MRI/linear accelerator technology. The purpose of this study was to evaluate the feasibility of using synthetic CT images generated from conventional Dixon-based MRI scans for radiation treatment planning of lung cancer. Eleven patients who underwent whole-body PET/MR imaging following a PET/CT exam were randomly selected from an ongoing prospective IRB-approved study. Attenuation maps derived from the Dixon MR Images and atlas-based method was used to create CT data (synCT). Treatment planning for radiation treatment of lung cancer was optimized on the synCT and subsequently copied to the registered CT (planCT) for dose calculation. Planning target volumes (PTVs) with three sizes and four different locations in the lung were planned for irradiation. The dose-volume metrics comparison and 3D gamma analysis were performed to assess agreement between the synCT and CT calculated dose distributions. Mean differences between PTV doses on synCT and CT across all the plans were -0.1% ± 0.4%, 0.1% ± 0.5%, and 0.4% ± 0.5% for D95, D98 and D100, respectively. Difference in dose between the two datasets for organs at risk (OARs) had average differences of -0.14 ± 0.07 Gy, 0.0% ± 0.1%, and -0.1% ± 0.2% for maximum spinal cord, lung V20, and heart V40 respectively. In patient groups based on tumor size and location, no significant differences were observed in the PTV and OARs dose-volume metrics (p > 0.05), except for the maximum spinal-cord dose when the target volumes were located at the lung apex (p = 0.001). Gamma analysis revealed a pass rate of 99.3% ± 1.1% for 2%/2 mm (dose difference/distance to agreement) acceptance criteria in every plan. The synCT generated from Dixon-based MRI allows for dose calculation of comparable accuracy to the standard CT for lung cancer treatment planning. The dosimetric agreement between synCT and CT calculated doses warrants further development of a MR-only workflow for radiotherapy of lung cancer.
IMRT for Image-Guided Single Vocal Cord Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl; Astreinidou, Eleftheria; Boer, Hans C.J. de
2012-02-01
Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRTmore » plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.« less
Nguyen, Nam P; Krafft, Shane P; Vinh-Hung, Vincent; Vos, Paul; Almeida, Fabio; Jang, Siyoung; Ceizyk, Misty; Desai, Anand; Davis, Rick; Hamilton, Russ; Modarresifar, Homayoun; Abraham, Dave; Smith-Raymond, Lexie
2011-12-01
To compare the effectiveness of tomotherapy and three-dimensional (3D) conformal radiotherapy to spare normal critical structures (spinal cord, lungs, and ventricles) from excessive radiation in patients with distal esophageal cancers. A retrospective dosimetric study of nine patients who had advanced gastro-esophageal (GE) junction cancer (7) or thoracic esophageal cancer (2) extending into the distal esophagus. Two plans were created for each of the patients. A three-dimensional plan was constructed with either three (anteroposterior, right posterior oblique, and left posterior oblique) or four (right anterior oblique, left anterior oblique, right posterior oblique, and left posterior oblique) fields. The second plan was for tomotherapy. Doses were 45 Gy to the PTV with an integrated boost of 5 Gy for tomotherapy. Mean lung dose was respectively 7.4 and 11.8 Gy (p=0.004) for tomotherapy and 3D plans. Corresponding values were 12.4 and 18.3 Gy (p=0.006) for cardiac ventricles. Maximum spinal cord dose was respectively 31.3 and 37.4 Gy (p < 0.007) for tomotherapy and 3D plans. Homogeneity index was two for both groups. Compared to 3D conformal radiotherapy, tomotherapy decreased significantly the amount of normal tissue irradiated and may reduce treatment toxicity for possible dose escalation in future prospective studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosawa, T; Moriya, S; Sato, M
2015-06-15
Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebe, A.; Leveling, A.; Lu, T.
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances frommore » those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanAntwerp, April E.; Raymond, Sarah M., E-mail: raymons9@ccf.org; Addington, Mark C.
2011-10-01
The aim of this study was to evaluate radiation dose for organs at risk (OAR) within the cranium, thorax, and pelvis from megavoltage cone-beam computed tomography (MV-CBCT). Using a clinical treatment planning system, CBCT doses were calculated from 60 patient datasets using 27.4 x 27.4 cm{sup 2} field size and 200{sup o} arc length. The body mass indices (BMIs) for these patients range from 17.2-48.4 kg/m{sup 2}. A total of 60 CBCT plans were created and calculated with heterogeneity corrections, with monitor units (MU) that varied from 8, 4, and 2 MU per plan. The isocenters of these plans weremore » placed at defined anatomical structures. The maximum dose, dose to the isocenter, and mean dose to the selected critical organs were analyzed. The study found that maximum and isocenter doses were weakly associated with BMI, but linearly associated with the total MU. Average maximum/isocenter doses in the cranium were 10.0 ({+-} 0.18)/7.0 ({+-} 0.08) cGy, 5.0 ({+-} 0.09)/3.5 ({+-} 0.05) cGy, and 2.5 ({+-} .04)/1.8 ({+-} 0.05) cGy for 8, 4, and 2 MU, respectively. Similar trends but slightly larger maximum/isocenter doses were found in the thoracic and pelvic regions. For the cranial region, the average mean doses with a total of 8 MU to the eye, lens, and brain were 9.7 ({+-} 0.12) cGy, 9.1 ({+-} 0.16) cGy, and 7.2 ({+-} 0.10) cGy, respectively. For the thoracic region, the average mean doses to the lung, heart, and spinal cord were 6.6 ({+-} 0.05) cGy, 6.9 ({+-} 1.2) cGy, and 4.7 ({+-} 0.8) cGy, respectively. For the pelvic region, the average mean dose to the femoral heads was 6.4 ({+-} 1.1) cGy. The MV-CBCT doses were linearly associated with the total MU but weakly dependent on patients' BMIs. Daily MV-CBCT has a cumulative effect on the total body dose and critical organs, which should be carefully considered for clinical impacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui
With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as wellmore » as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2015-06-15
Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using amore » constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M; Yu, N; Joshi, N
Purpose: To dosimetrically evaluate the importance of timely reviewing daily CBCTs for patients with head and neck cancer. Methods: After each fraction daily cone-beam CT (CBCT) for head and neck patients are reviewed by physicians prior to next treatment. Physician rejected image registrations of CBCT were identified and analyzed for 17 patients. These CBCT images were rigidly fused with planning CT images and the contours from the planning CT were transferred to CBCTs. Because of limited extension in the superior-inferior dimension contours with partial volumes in CBCTs were discarded. The treatment isocenter was placed by applying the clinically recorded shiftsmore » to the volume isocenter of the CBCT. Dose was recalculated at the shifted isocenter using a homogeneous dose calculation algorithm. Dosimetrically relevant changes defined as greater than 5% deviation from the clinically accepted plans but with homogeneous dose calculation were evaluated for the high dose (HD), intermediate dose (ID), and low dose (LD) CTVs, spinal cord, larynx, oropharynx, parotids, and submandibular glands. Results: Among seventeen rejected CBCTS, HD-CTVs, ID-CTVs, and LD-CTVs were completely included in the CBCTs for 17, 1, and 15 patients, respectively. The prescription doses to the HD-CTV, ID-CTV, and LD-CTV were received by < 95% of the CTV volumes in 5/17, 1/1, and 5/15 patients respectively. For the spinal cord, the maximum doses (D0.03cc) were increased > 5% in 13 of 17 patients. For the oropharynx, larynx, parotid, and submandibular glands, the mean dose of these organs at risk was increased > 5% in 7/17, 8/12, 11/16 and 6/16 patients, respectively. Conclusion: Timely review daily CBCTs for head and neck patients under daily CBCT guidance is important, and uncorrected setup errors can translate to dosimetrically relevant dose increases in organsat- risk and dose decreases in the clinical target volumes.« less
Efficacy of a Single Dose of Basic Fibroblast Growth Factor: Clinical Observation for 1 Year.
Suzuki, Hirotaka; Makiyama, Kiyoshi; Hirai, Ryoji; Matsuzaki, Hiroumi; Furusaka, Toru; Oshima, Takeshi
2016-11-01
Basic fibroblast growth factor promotes wound healing by accelerating healthy granulation and epithelialization. However, the duration of the effects of a single intracordal injection of basic fibroblast growth factor has not been established, and administration intervals and timing have yet to be standardized. Here, we administered a single injection to patients with insufficient glottic closure and conducted follow-up examinations with high-speed digital imaging to determine the duration of the treatment response. Case series. For treatment, 20 µg/mL recombinant human basic fibroblast growth factor was injected into two vocal cords. The following examinations were performed before the procedure and at 3-month intervals for 12 months starting at 1 month postinjection: Grade, Roughness, Breathiness, Asthenia, and Strain (GRBAS) scale assessment, maximum phonation time, acoustic analysis, high-speed digital imaging, glottal wave analysis, and kymographic analysis. Postinjection, the GRBAS scale score decreased, and the maximum phonation time was prolonged. In addition, the mean minimum glottal area and mean minimum glottal distance decreased. These changes were significant at 12 months postinjection compared with preinjection. However, there were no significant changes in the vibrations of the vocal cord margins. The intracordal injection of basic fibroblast growth factor improved insufficient glottic closure without reducing the vibrations of the vocal cord margins. This effect remained evident at 12 months postinjection. A single injection can be expected to yield a sufficient and persistent long-term effect. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Zhang, Xiaodong; Zhao, Kuai-Le; Guerrero, Thomas M.; McGuire, Sean E.; Yaremko, Brian; Komaki, Ritsuko; Cox, James D.; Hui, Zhouguang; Li, Yupeng; Newhauser, Wayne D.; Mohan, Radhe; Liao, Zhongxing
2008-01-01
Purpose To compare three-dimensional (3D) and 4D computed tomography (CT)– based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. Materials and Methods IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Results Compared with IMRT, median lung volumes exposed to 5,10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%,5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%,8.4%,5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index CI=1.99) and greater irradiation of the heart (heart-V40=41.8%) compared with the IMRT plan(CI=1.55, heart-V40=35.7%) or the three-beam proton plan (CI=1.46, heart-V40=27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas-filling. Conclusions Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses. PMID:18722278
Zhang, Xiaodong; Zhao, Kuai-le; Guerrero, Thomas M; McGuire, Sean E; Yaremko, Brian; Komaki, Ritsuko; Cox, James D; Hui, Zhouguang; Li, Yupeng; Newhauser, Wayne D; Mohan, Radhe; Liao, Zhongxing
2008-09-01
To compare three-dimensional (3D) and four-dimensional (4D) computed tomography (CT)-based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. The IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Compared with IMRT, median lung volumes exposed to 5, 10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%, 5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%, 8.4%, 5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index [CI], 1.99) and greater irradiation of the heart (heart-V40, 41.8%) compared with the IMRT plan(CI, 1.55, heart-V40, 35.7%) or the three-beam proton plan (CI, 1.46, heart-V40, 27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas filling. Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses.
Eve, David J; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V; Garbuzova-Davis, Svitlana
2018-02-13
Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 + (hBM34 + ) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34 + cells (5 × 10 4 , 5 × 10 5 or 1 × 10 6 ) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls' Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34 + cells. The study results provide translational outcomes supporting transplantation of hBM34 + cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients.
Topologically preserving straightening of spinal cord MRI.
De Leener, Benjamin; Mangeat, Gabriel; Dupont, Sara; Martin, Allan R; Callot, Virginie; Stikov, Nikola; Fehlings, Michael G; Cohen-Adad, Julien
2017-10-01
To propose a robust and accurate method for straightening magnetic resonance (MR) images of the spinal cord, based on spinal cord segmentation, that preserves spinal cord topology and that works for any MRI contrast, in a context of spinal cord template-based analysis. The spinal cord curvature was computed using an iterative Non-Uniform Rational B-Spline (NURBS) approximation. Forward and inverse deformation fields for straightening were computed by solving analytically the straightening equations for each image voxel. Computational speed-up was accomplished by solving all voxel equation systems as one single system. Straightening accuracy (mean and maximum distance from straight line), computational time, and robustness to spinal cord length was evaluated using the proposed and the standard straightening method (label-based spline deformation) on 3T T 2 - and T 1 -weighted images from 57 healthy subjects and 33 patients with spinal cord compression due to degenerative cervical myelopathy (DCM). The proposed algorithm was more accurate, more robust, and faster than the standard method (mean distance = 0.80 vs. 0.83 mm, maximum distance = 1.49 vs. 1.78 mm, time = 71 vs. 174 sec for the healthy population and mean distance = 0.65 vs. 0.68 mm, maximum distance = 1.28 vs. 1.55 mm, time = 32 vs. 60 sec for the DCM population). A novel image straightening method that enables template-based analysis of quantitative spinal cord MRI data is introduced. This algorithm works for any MRI contrast and was validated on healthy and patient populations. The presented method is implemented in the Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1209-1219. © 2017 International Society for Magnetic Resonance in Medicine.
[Mason's lacing cord. Potential danger of severe open ocular injuries].
Tost, F; Großjohann, R; Schikorr, W; Tesch, R; Ekkernkamp, A; Lange, J; Langner, S; Bockholdt, B; Frank, M
2014-02-01
Introduction of new working equipment or the modification of established working routines could induce new trauma mechanisms. In all of theses cases ophthalmologists are not only responsible for ocular treatment they also have to act as assessors. This might include legal aspects, e.g. to validate the circumstances of an accident. We present a new trauma mechanism caused by a mason's lacing cord which was fixed with nails. In addition to two case studies we collected experimental data (maximum tension and maximum elongation of various mason's lacing cords) about the triggering event using standard test conditions. A tensile force of 96.2 N was needed to achieve maximum elongation of mason's lacing cords. With a cord length of 5 m, an elongation of 0.09 m was enough to cause penetrating injuries (for 10 m cord length the critical elongation was 0.13 m). Under these conditions a nail could be accelerated to a velocity of 18 m/s. This may lead to open eyeball injuries with severe visual loss. Nails fixed to elastic mason's lacing cords are potential risk factors for occupational ocular injuries and severe loss of vision. Caution labels should be attached to the work equipment and proper eye protection should be used to prevent severe occupational ocular injuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Lee, P; Jiang, S
2015-06-15
Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknifemore » plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.« less
SU-F-T-437: 3 Field VMAT Technique for Irradiation of Large Pelvic Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stakhursky, V
2016-06-15
Purpose: VMAT treatment planning for large pelvic volume irradiation could be suboptimal due to inability of Varian linac to split MLC carriage during VMAT delivery for fields larger than 14.5cm in X direction (direction of leaf motion). We compare the dosimetry between 3 VMAT planning techniques, two 2-arc field techniques and a 3-arc field technique: a) two small in X direction (less than 14.5cm) arc fields, complementing each other to cover the whole lateral extent of target during gantry rotation, b) two large arc fields, each covering the targets completely during the rotation, c) a 3 field technique with 2more » small in X direction arcs and 1 large field covering whole target. Methods: 5 GYN cancer patients were selected to evaluate the 3 VMAT planning techniques. Treatment plans were generated using Varian Eclipse (ver. 11) TPS. Dose painting technique was used to deliver 5300 cGy to primary target and 4500 cGy to pelvic/abdominal node target. All the plans were normalized so that the prescription dose of 5300 cGy covered 95% of primary target volume. PTV and critical structures DVH curves were compared to evaluate all 3 planning techniques. Results: The dosimetric differences between the two 2-arc techniques were minor. The small field 2-arc technique showed a colder hot spot (0.4% averaged), while variations in maximum doses to critical structures were statistically nonsignificant (under 1.3%). In comparison, the 3-field technique demonstrated a colder hot spot (1.1% less, 105.8% averaged), and better sparing of critical structures. The maximum doses to larger bowel, small bowel and gluteal fold were 3% less, cord/cauda sparing was 4.2% better, and bladder maximum dose was 4.6% less. The differences in maximum doses to stomach and rectum were statistically nonsignificant. Conclusion: 3-arc VMAT technique for large field irradiation of pelvis demonstrates dosimetric advantages compared to 2-arc VMAT techniques.« less
Pathology of radiation injury to the canine spinal cord.
Powers, B E; Beck, E R; Gillette, E L; Gould, D H; LeCouter, R A
1992-01-01
The histopathologic response of the canine spinal cord to fractionated doses of radiation was investigated. Forty-two dogs received 0, 44, 52, 60, or 68 Gy in 4 Gy fractions to the thoracic spinal cord. Dogs were evaluated for neurologic signs and were observed for 1 or 2 years after irradiation. Six major lesion types were observed; five in the irradiated spinal cord and one in irradiated dorsal root ganglia. The three most severe spinal cord lesions were white matter necrosis, massive hemorrhage, and segmental parenchymal atrophy which had an ED50 of 56.9 Gy (51.3-63.3 Gy 95% CI) in 4 Gy fractions. These lesions were consistently associated with abnormal neurologic signs. Radiation damage to the vasculature was the most likely cause of these three lesions. The two less severe spinal cord lesions were focal fiber loss, which had an ED50 of 49.5 Gy (44.8-53.6 Gy 95% CI) in 4 gy fractions and scattered white matter vacuolation that occurred at all doses. These less severe lesions were not consistently associated with neurologic signs and indicated the presence of residual damage that may occur after lower doses of radiation. Radiation damage to glial cells, axons, and/or vasculature were possible causes of these lesions. In the irradiated dorsal root ganglia, affected sensory neurons contained large intracytoplasmic vacuoles, and there was loss of neurons and satellite cells. Such alterations could affect sensory function. The dog is a good model for spinal cord irradiation studies as tolerance doses for lesions causing clinical signs are close to the estimated tolerance doses for humans, and studies involving volume and long-term observation can be done.
NASA Astrophysics Data System (ADS)
Pour, Noushin Hassan; Farajollahi, Alireza; Jamali, Masoud; Zeinali, Ahad; Jangjou, Amir Ghasemi
2018-03-01
Introduction: Due to the effect of radiation on both the tumor and the surrounding normal tissues, the side effects of radiation in normal tissues are expected. One of the important complications in the head and neck radiotherapy is the doses reached to the larynx and spinal cord of patients with non-laryngeal head and neck tumors. Materials and Methods: In this study, CT scan images of 25 patients with non-laryngeal tumors including; lymph nodes, tongue, oropharynx and nasopharynx were used. A three-field and a four-field treatment planning with and without laryngeal shield in 3D CRT technique were planned for each patient. Subsequently, the values of Dmin, Dmean, Dmax and Dose Volume Histogram from the treatment planning system and NTCP values of spinal cord and larynx were calculated with BIOPLAN and MATLAB software for all patients. Results: Statistical results showed that mean values of doses of larynx in both three and four-field methods were significantly different between with and without shield groups. Comparison of absorbed dose didn't show any difference between the three and four field methods (P>0.05). Using Shield, just the mean and minimum doses of spinal cord decreased in both three and four fields. The NTCP of the spinal cord and larynx by three and four-field methods with shield in the LKB and EUD models significantly are less than that of the three and four fields without shields, and in the four-field method NTCP of larynx is less than three radiation field. Conclusion: The results of this study indicate that there is no significant difference in doses reached to larynx and spinal cord between the treatments techniques, but laryngeal shield reduce dose and NTCP values in larynx considerably.
Targeting L-Selectin to Improve Neurologic and Urologic Function After Spinal Cord Injury
2015-10-01
demonstrated locomotor recovery in mice receiving 40mg/kg DFA up to 3 hours following spinal cord injury -We demonstrated improved locomotor recovery...health, as evaluated by body weight -We identified no added locomotor recovery due to multiple, successive doses of DFA. Moreover, additional doses...bladder function Significance: We have identified robust locomotor recovery in both mild and severe spinal cord injured mice that received DFA up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B-T; Lu, J-Y
Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures weremore » transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogson, E; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW; Ingham Institute for Applied Medical Research, Sydney, NSW
Purpose: To quantify the impact of differing magnitudes of simulated linear accelerator errors on the dose to the target volume and organs at risk for nasopharynx VMAT. Methods: Ten nasopharynx cancer patients were retrospectively replanned twice with one full arc VMAT by two institutions. Treatment uncertainties (gantry angle and collimator in degrees, MLC field size and MLC shifts in mm) were introduced into these plans at increments of 5,2,1,−1,−2 and −5. This was completed using an in-house Python script within Pinnacle3 and analysed using 3DVH and MatLab. The mean and maximum dose were calculated for the Planning Target Volume (PTV1),more » parotids, brainstem, and spinal cord and then compared to the original baseline plan. The D1cc was also calculated for the spinal cord and brainstem. Patient average results were compared across institutions. Results: Introduced gantry angle errors had the smallest effect of dose, no tolerances were exceeded for one institution, and the second institutions VMAT plans were only exceeded for gantry angle of ±5° affecting different sided parotids by 14–18%. PTV1, brainstem and spinal cord tolerances were exceeded for collimator angles of ±5 degrees, MLC shifts and MLC field sizes of ±1 and beyond, at the first institution. At the second institution, sensitivity to errors was marginally higher for some errors including the collimator error producing doses exceeding tolerances above ±2 degrees, and marginally lower with tolerances exceeded above MLC shifts of ±2. The largest differences occur with MLC field sizes, with both institutions reporting exceeded tolerances, for all introduced errors (±1 and beyond). Conclusion: The plan robustness for VMAT nasopharynx plans has been demonstrated. Gantry errors have the least impact on patient doses, however MLC field sizes exceed tolerances even with relatively low introduced errors and also produce the largest errors. This was consistent across both departments. The authors acknowledge funding support from the NSW Cancer Council.« less
SU-F-T-585: A Novel Phantom for Dosimetric Validation of SBRT for Spinal Lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papanikolaou, KN; Ha, C; Kirby, N
2016-06-15
Purpose: SBRT is proving to be a very efficacious treatment modality for an increasing number of indications, including spine lesions. We have developed a novel phantom to serve as an end-to-end QA tool for either patient specific QA or commissioning QA of SBRT for spine lesions. Methods: In this feasibility study, we have selected a patient with a single metastatic lesion in the L5 vertebral body. The patient’s CT simulation scan was used to develop a VMAT treatment plan delivering 18Gy to at least 90% of the target volume, following the guidelines of RTOG 0631. The treatment plan was developedmore » with the Pinnacle planning system using the adaptive convolution superposition calculation mode. The approved plan was re-calculated using the Monaco planning system. We performed a pseudo-in-vivo study whereby we manufactured two copies of a phantom to the exact shape and anatomy of the patient. The phantom was made from the CT images of the patient using a 3D printer with sub-millimeter accuracy. One phantom was filled with a gel dosimeter and the other was made with two ion chamber inserts to allow us to obtain point dose measurements in the target’s center and the spinal cord. Results: The prescribed dose of 18Gy was planned for the target while keeping the maximum spinal cord dose to less than 14Gy in 0.03cc of the cord. The VMAT plan was delivered to both the gel dosimeter filed phantom and the phantom with the ion chambers. The 3D gel dosimetry revealed a very good agreement between the monte carlo and measured point and volumetric dose. Conclusion: A patient like phantom was developed and validated for use as an end-to-end tool of dose verification for SBRT of spine lesions. We found that gel dosimetry is ideally suited to assess positional and dosimetric accuracy in 3D. RTsafe provided the phantoms and the gel dosimeter used for this study.« less
Pokhrel, Damodar; Badkul, Rajeev; Jiang, Hongyu; Kumar, Pravesh; Wang, Fen
2015-01-08
For stereotactic ablative body radiotherapy (SABR) in lung cancer patients, Radiation Therapy Oncology Group (RTOG) protocols currently require radiation dose to be calculated using tissue heterogeneity corrections. Dosimetric criteria of RTOG 0813 were established based on the results obtained from non-Monte Carlo (MC) algorithms, such as superposition/convolutions. Clinically, MC-based algorithms are now routinely used for lung SABR dose calculations. It is essential to confirm that MC calculations in lung SABR meet RTOG guidelines. This report evaluates iPlan MC plans for SABR in lung cancer patients using dose-volume histogram normalization per current RTOG 0813 compliance criteria. Eighteen Stage I-II non-small cell lung cancer (NSCLC) patients with centrally located tumors, who underwent MC-based lung SABR with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (BrainLAB iPlan version 4.1.2), were analyzed. Total dose of 60 Gy in 5 fractions was delivered to planning target volume (PTV) with at least V100% = 95%. Internal target volumes (ITVs) were delineated on maximum intensity projection (MIP) images of 4D CT scans. PTV (ITV + 5 mm margin) volumes ranged from 10.0 to 99.9 cc (mean = 36.8 ± 20.7 cc). Organs at risk (OARs) were delineated on average images of 4D CT scans. Optimal clinical MC SABR plans were generated using a combination of non-coplanar conformal arcs and beams for the Novalis-TX consisting of high definition multileaf collimators (MLCs) and 6 MV-SRS (1000 MU/min) mode. All plans were evaluated using the RTOG 0813 high and intermediate dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2 cm), and percent of normal lung receiving 20 Gy (V20) or more. Other organs-at-risk (OARs) doses were tabulated, including the volume of normal lung receiving 5 Gy (V5), maximum cord dose, dose to < 15 cc of heart, and dose to <5 cc of esophagus. Only six out of 18 patients met all RTOG 0813 compliance criteria. Eight of 18 patients had minor deviations in R100%, four in R50%, and nine in D2 cm. However, only one patient had minor deviation in V20. All other OARs doses, such as maximum cord dose, dose to < 15 cc of heart, and dose to < 5 cc of esophagus, were satisfactory for RTOG criteria, except for one patient, for whom the dose to < 15 cc of heart was higher than RTOG guidelines. The preliminary results for our limited iPlan XVMC dose calculations indicate that the majority (i.e., 2/3) of our patients had minor deviations in the dosimetric guidelines set by RTOG 0813 protocol in one way or another. When using an exclusive highly sophisticated XVMC algorithm, the RTOG 0813 dosimetric compliance criteria such as R100% and D2 cm may need to be revisited. Based on our limited number of patient datasets, in general, about 6% for R100% and 9% for D2 cm corrections could be applied to pass the RTOG 0813 compliance criteria in most of those patients. More patient plans need to be evaluated to make recommendation for R50%. No adjustment is necessary for OAR dose tolerances, including normal lung V20. In order to establish new MC specific dose parameters, further investigation with a large cohort of patients including central, as well as peripheral lung tumors, is anticipated and strongly recommended.
Spinal cord protection during radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coia, L.; Chu, J.; Larsen, R.
1986-09-01
Treating intrathoracic malignancies to high doses, particularly those of lung and esophagus, requires limiting the radiation dose delivered to the spinal cord. Several factors are important in determining the cord dose. These are: The distance from the block or collimator edge to the cord, the variation of dose with distance from the block or collimator edge and, the expected variation of this distance for clinical set-up from day-to-day. When treating with an oblique beam, the position of the cord may be difficult to identify. A technique for localizing the spinal cord on a simulator film at an arbitrary gantry anglemore » is presented. The technique requires determination of distances from the central axis of the beam to the medial aspect of the pedicle and posterior vertebral body. These can readily be obtained from measurements on orthogonal, AP/PA and lateral isocentric simulator radiographs. A mathematical transformation is applied to determine the corresponding cord locations on the oblique radiographs for any arbitrary gantry angle. The accuracy of cord localization was within 2-3 mm with a precision of 2 mm for five physicians who used this technique. The beam edge characteristics for 60Co, 6 MV, and 10 MV teletherapy unit were measured for various depths and field sizes. For the 6 and 10 MV units, the beam penumbra is nearly independent of the field size, depth and field defining devices (inner and outer collimator jaws, trimmer bars, and shielding blocks). Because the beam penumbra is dependent on the design of the linear accelerator, its measurement should be made individually for each linear accelerator. Our preliminary data on patient positioning uncertainty did not exceed the 6-8 mm limit documented in the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yao; Chen, Josephine; Leary, Celeste I.
Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40 Gy, followed by a full-cord block to 50 Gy, and (3) split-field IMRT with a full-cord block to 50 Gy. Patients were planned using each of these 3 techniques.more » To facilitate comparison, extended-field plans were normalized to deliver 50 Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D{sub 95}). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4 Gy, and the mean thyroid dose was 28.6 ± 2.4 Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1 Gy) at the cost of a moderate reduction in target coverage (D{sub 95} 41.4 ± 14 Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7 Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1 Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8 Gy) but resulted in a significant reduction in target coverage (D{sub 95} 34.4 ± 15 Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20 Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.« less
Generalizable Class Solutions for Treatment Planning of Spinal Stereotactic Body Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weksberg, David C.; Palmer, Matthew B.; Vu, Khoi N.
2012-11-01
Purpose: Spinal stereotactic body radiation therapy (SBRT) continues to emerge as an effective therapeutic approach to spinal metastases; however, treatment planning and delivery remain resource intensive at many centers, which may hamper efficient implementation in clinical practice. We sought to develop a generalizable class solution approach for spinal SBRT treatment planning that would allow confidence that a given plan provides optimal target coverage, reduce integral dose, and maximize planning efficiency. Methods and Materials: We examined 91 patients treated with spinal SBRT at our institution. Treatment plans were categorized by lesion location, clinical target volume (CTV) configuration, and dose fractionation scheme,more » and then analyzed to determine the technically achievable dose gradient. A radial cord expansion was subtracted from the CTV to yield a planning CTV (pCTV) construct for plan evaluation. We reviewed the treatment plans with respect to target coverage, dose gradient, integral dose, conformality, and maximum cord dose to select the best plans and develop a set of class solutions. Results: The class solution technique generated plans that maintained target coverage and improved conformality (1.2-fold increase in the 95% van't Riet Conformation Number describing the conformality of a reference dose to the target) while reducing normal tissue integral dose (1.3-fold decrease in the volume receiving 4 Gy (V{sub 4Gy}) and machine output (19% monitor unit (MU) reduction). In trials of planning efficiency, the class solution technique reduced treatment planning time by 30% to 60% and MUs required by {approx}20%: an effect independent of prior planning experience. Conclusions: We have developed a set of class solutions for spinal SBRT that incorporate a pCTV metric for plan evaluation while yielding dosimetrically superior treatment plans with increased planning efficiency. Our technique thus allows for efficient, reproducible, and high-quality spinal SBRT treatment planning.« less
Volumetric modulated arc therapy vs. c-IMRT for the treatment of upper thoracic esophageal cancer.
Zhang, Wu-Zhe; Zhai, Tian-Tian; Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen
2015-01-01
To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT.
2014-01-01
Background Calcium channel blockers such as conotoxins have shown a great potential to reduce brain and spinal cord injury. MVIIC neuroprotective effects analyzed in in vitro models of brain and spinal cord ischemia suggest a potential role of this toxin in preventing injury after spinal cord trauma. However, previous clinical studies with MVIIC demonstrated that clinical side effects might limit the usefulness of this drug and there is no research on its systemic effects. Therefore, the present study aimed to investigate the potential toxic effects of MVIIC on organs and to evaluate clinical and blood profiles of rats submitted to spinal cord injury and treated with this marine toxin. Rats were treated with placebo or MVIIC (at doses of 15, 30, 60 or 120 pmol) intralesionally following spinal cord injury. Seven days after the toxin administration, kidney, brain, lung, heart, liver, adrenal, muscles, pancreas, spleen, stomach, and intestine were histopathologically investigated. In addition, blood samples collected from the rats were tested for any hematologic or biochemical changes. Results The clinical, hematologic and biochemical evaluation revealed no significant abnormalities in all groups, even in high doses. There was no significant alteration in organs, except for degenerative changes in kidneys at a dose of 120 pmol. Conclusions These findings suggest that MVIIC at 15, 30 and 60 pmol are safe for intralesional administration after spinal cord injury and could be further investigated in relation to its neuroprotective effects. However, 120 pmol doses of MVIIC may provoke adverse effects on kidney tissue. PMID:24739121
Use Dose Bricks Concept to Implement Nasopharyngeal Carcinoma Treatment Planning
Wu, Jia-Ming; Yu, Tsan-Jung; Yeh, Shyh-An; Chao, Pei-Ju; Huang, Chih-Jou
2014-01-01
Purpose. A “dose bricks” concept has been used to implement nasopharyngeal carcinoma treatment plan; this method specializes particularly in the case with bell shape nasopharyngeal carcinoma case. Materials and Methods. Five noncoplanar fields were used to accomplish the dose bricks technique treatment plan. These five fields include (a) right superior anterior oblique (RSAO), (b) left superior anterior oblique (LSAO), (c) right anterior oblique (RAO), (d) left anterior oblique (LAO), and (e) superior inferior vertex (SIV). Nondivergence collimator central axis planes were used to create different abutting field edge while normal organs were blocked by multileaf collimators in this technique. Results. The resulting 92% isodose curves encompassed the CTV, while maximum dose was about 115%. Approximately 50% volume of parotid glands obtained 10–15% of total dose and 50% volume of brain obtained less than 20% of total dose. Spinal cord receives only 5% from the scatter dose. Conclusions. Compared with IMRT, the expenditure of planning time and costing, “dose bricks” may after all be accepted as an optional implementation in nasopharyngeal carcinoma conformal treatment plan; furthermore, this method also fits the need of other nonhead and neck lesions if organ sparing and noncoplanar technique can be executed. PMID:24967395
Fu, Guang; Wu, Juan; Cong, Huiling; Zha, Lihua; Li, Dong; Ju, Yanhe; Chen, Guoqing; Xiong, Zhongsheng; Liao, Limin
2015-12-19
To evaluate the efficacy of Botulinum-A toxin injection into bladder to treat neurogenic incontinence in patients with spinal cord injury and compare effectiveness of two different doses (200 U and 300 U). Between January 2009 and October 2014, A total of 60 adult patients with spinal cord injury above the sacral (mean age, 32 years; male 56, female 4) were selected in Beijing Bo'ai Hospital of China Rehabilitation Research Center. All the patients kept voiding diary and underwent urodynamic examination before operation. All the patients were allocated with a random number table into 200 U Botulinum-A toxin injection group or 300 U group (both n=30). In the 200 U group, 200 U of Botulinum-A toxin were dissolved in 10 ml of normal saline, which was injected into 20 different sites (0.5 ml for each site) of bladder wall, including 10 outside the bladder trigone and the remaining 10 inside trigone. In the 300 U group, 300 U of Botulinum-A toxin were dissolved in 15 ml of normal saline, which was injected into 30 different sites (0.5 ml for each site) in bladder outside of the bladder trigone using a flexible cystoscopic needle. The evaluation of the effects and follow-up included voiding diary, urodynamic testing and observation of adverse and toxic effects. At baseline, mean urinary incontinence frequencies were (15.2±3.2) episodes/day and (16.2±2.9) episodes/day in 200 U and 300 U group, which reduced to (2.9±1.2) episodes/day and (2.5±1.4) episodes/day, respectively in week 4 (P<0.05). However, continence rate was not significantly different between the two dose groups [63% (19/30) vs 70% (21/30), P>0.05]. The effect of botulinum-A toxin started to be observed from the 1(st) posttreatment week on average. Obvious improvements in maximum cystometric capacity, end-filling maximum detrusor pressure, and bladder compliance were observed at week 4 as shown by urodynamics (all P<0.05), but with no significant difference between the 200 U and 300 U groups. In the follow-up period of (6.3±1.2) months, no toxic or adverse effects were observed after injection in the two groups. The regimen of Botulinum-A toxin 200 U injection involving trigone of the bladder can achieve a short-term effect comparable with that of the standard 300 U injection excluding trigone. It may be an effective and safe treatment for neurogenic incontinence in spinal cord injury patients.
On the interplay effects with proton scanning beams in stage III lung cancer.
Li, Yupeng; Kardar, Laleh; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong
2014-02-01
To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Despite the presence of interplay effect, the delivered dose may be reliably estimated using the 4D composite dose. In general the interplay effect may not be a primary concern with IMPT for lung cancers for the authors' institution. The described interplay analysis tool may be used to provide additional confidence in treatment delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrington, J; Price, M; Brindle, J
Purpose: To evaluate the equivalence of spine SBRT treatment plans created in Eclipse for the TrueBeam STx (Varian Medical System, Palo Alto, CA) compared to plans using CyberKnife and MultiPlan (Accuray, Sunnyvale, CA). Methods: CT data and contours for 23 spine SBRT patients previously treated using CyberKnife (CK) were exported from MultiPlan treatment planning system into Eclipse where they were planned using static IMRT 6MV coplanar beams. Plans were created according to the original prescription dose and fractionation schedule while limiting spinal dose according to the RTOG 0631 protocol and maintaining target coverage comparable to the original CK plans. Plansmore » were evaluated using new conformity index (nCI), homogeneity index (HI), dose-volume histogram data, number of MU, and estimated treatment time. To ensure all Eclipse plans were deliverable, standard clinical IMRT QA was performed. The plan results were matched with their complimentary CK plans for paired statistical analysis. Results: Plans generated in Eclipse demonstrated statistically significant (p<0.01) improvements compared to complimentary CK plans in median values of maximum spinal cord dose (17.39 vs. 18.12 Gy), RTOG spinal cord constraint dose (14.50 vs. 16.93 Gy), nCI (1.28 vs. 1.54), HI (1.13 vs. 1.27), MU (3918 vs. 36416), and estimated treatment time (8 vs. 48 min). All Eclipse generated plans passed our clinically used protocols for IMRT QA. Conclusion: CK spine SBRT replanned utilizing Eclipse for LINAC delivery demonstrated dosimetric advantages. We propose improvements in plan quality metrics reviewed in this study may be attributed to dynamic MLCs that facilitate treatment of complicated geometries as well as posterior beams ideal for centrally located and/or posterior targets afforded by gantry-based RT delivery.« less
TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Kim, H; Park, J
2014-06-15
Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of originalmore » contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of normal tissues than the translational correction.« less
Leung, Daniel T.; Henning, Paul A.; Wagner, Emily C.; Blasig, Audrey; Wald, Anna; Sacks, Stephen L.; Corey, Lawrence; Money, Deborah M.
2009-01-01
Objective: Acyclovir therapy in late pregnancy among women with recurrent genital herpes is effective in decreasing genital lesion frequency and subclinical viral shedding rates at delivery, thereby decreasing the need for caesarean delivery. Despite good adherence and increased dosing schedules, breakthrough lesions and viral shedding are still observed in some women at or near delivery. Anecdotal data suggests that low levels of HSV replication at delivery may result in transmission to the neonate. Therefore, defining optimal acyclovir dosing during labor and delivery is warranted. Our objectives were to determine actual acyclovir levels at delivery, and explore associations between acyclovir levels, duration of labour and time since last acyclovir dose. Methods: Twenty-seven patients were prescribed oral acyclovir 400 mg three times daily from 36 weeks gestation. Cord blood (venous and arterial) and maternal venous blood samples were collected at delivery, and acyclovir levels measured using capillary electrophoresis. Correlations between duration of labour and time since last acyclovir dose with acyclovir blood levels were calculated. Results: Acyclovir levels were below the published mean steady-state trough value (180 ng/ml) in 52% of venous cord, 55% of arterial cord, and 36% of maternal samples. There was a significant inverse correlation between time since last dose and venous cord (rs19=−0.57, p<0.015), arterial cord (rs16=−0.63, p<0.01), and maternal acyclovir levels (r10=−0.69, p<0.03). Conclusions: Oral dosing of acyclovir in late pregnancy may result in insufficient levels at delivery to prevent viral shedding. Alternative approaches should evaluate dosing through labor, perhaps intravenously, and its effect on viral shedding. PMID:20085679
Stern, Alan H
2005-02-01
In 2001, the U.S. Environmental Protection Agency (EPA) adopted a revised reference dose (RfD) for methyl mercury (MeHg) of 0.1 microg/kg/day. The RfD is based on neurologic developmental effects measured in children associated with exposure in utero to MeHg from the maternal diet. The RfD derivation proceeded from a point of departure based on measured concentration of mercury in fetal cord blood (micrograms per liter). The RfD, however, is a maternal dose (micrograms per kilogram per day). Reconstruction of the maternal dose corresponding to this cord blood concentration, including the variability around this estimate, is a critical step in the RfD derivation. The dose reconstruction employed by the U.S. EPA using the one-compartment pharmacokinetic model contains two areas of significant uncertainty: It does not directly account for the influence of the ratio of cord blood: maternal blood Hg concentration, and it does not resolve uncertainty regarding the most appropriate central tendency estimates for pregnancy and third-trimester-specific model parameters. A probabilistic reassessment of this dose reconstruction was undertaken to address these areas of uncertainty and generally to reconsider the specification of model input parameters. On the basis of a thorough review of the literature and recalculation of the one-compartment model including sensitivity analyses, I estimated that the 95th and 99th percentiles (i.e., the lower 5th and 1st percentiles) of the maternal intake dose corresponding to a fetal cord blood Hg concentration of 58 microg/L are 0.3 and 0.2 microg/kg/day, respectively. For the 99th percentile, this is half the value previously estimated by the U.S. EPA.
NASA Astrophysics Data System (ADS)
Piao, Daqing; Sypniewski, Lara A.; Bartels, Kenneth E.
2017-02-01
Photobiomodulation (PBM) has been used successfully for the treatment of nervous system and has been demonstrated in the rodent model. In contrast, the percutaneous use of PBM to treat spinal cord of companion animals is expected to be challenging due to the significant attenuation of light energy as it travels through the thick and heterogeneous layers of tissue and bone to reach the level of the spinal cord. This pilot study was performed on a cadaverous dog to determine if the recommended bio-stimulatory treatment dose can be delivered to the spinal canal via percutaneous application of a clinically acceptable surface dose. The dose reaching the spinal canal after percutaneous application was measured at 980nm by using a miniature photo-diode sensor with a dose-response sensitivity of 1V per 1mW/cm2 dose and a 2mm spherical isotropic fiber-optical diffusor probe. The two sensors were embedded in different longitudinal positions along the dorsal portion of the spinal canal just below the soft tissues and vertebral processes in a 40lbs cadaverous dog. The spinal cord was then accessed via a hemilaminectomy. Once embedded in the target tissue, 1W-10 W surface irradiation was applied. At the T12/13 and T13/L1 intervertebral disc positions, photo-diode sensors detected the intra-spinal dose above the noise floor at the 10W surface dose. A narrow treatment window for percutaneous PBM in large dog may exist only for the shallowest segment of the spinal cord, which may be important to avoid potential collateral photothermal effects. Works for simultaneous multi-site intra-spinal measurements are on-going.
Sharma, Hari S; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Ozkizilcik, Asya; Tian, Z Ryan; Nozari, Ala; Sharma, Aruna
2017-01-01
The possibility that histamine influences the spinal cord pathophysiology following trauma through specific receptor-mediated upregulation of neuronal nitric oxide synthase (nNOS) was examined in a rat model. A focal spinal cord injury (SCI) was inflicted by a longitudinal incision into the right dorsal horn of the T10-11 segments. The animals were allowed to survive 5h. The SCI significantly induced breakdown of the blood-spinal cord barrier to protein tracers, reduced the spinal cord blood flow at 5h, and increased the edema formation and massive upregulation of nNOS expression. Pretreatment with histamine H1 receptor antagonist mepyramine (1mg, 5mg, and 10mg/kg, i.p., 30min before injury) failed to attenuate nNOS expression and spinal cord pathology following SCI. On the other hand, blockade of histamine H2 receptors with cimetidine or ranitidine (1mg, 5mg, or 10mg/kg) significantly reduced these early pathophysiological events and attenuated nNOS expression in a dose-dependent manner. Interestingly, TiO 2 -naowire delivery of cimetidine or ranitidine (5mg doses) exerted superior neuroprotective effects on SCI-induced nNOS expression and cord pathology. It appears that effects of ranitidine were far superior than cimetidine at identical doses in SCI. On the other hand, pretreatment with histamine H3 receptor agonist α-methylhistamine (1mg, 2mg, or 5mg/kg, i.p.) that inhibits histamine synthesis and release in the central nervous system thwarted the spinal cord pathophysiology and nNOS expression when used in lower doses. Interestingly, histamine H3 receptor antagonist thioperamide (1mg, 2mg, or 5mg/kg, i.p.) exacerbated nNOS expression and cord pathology after SCI. These novel observations suggest that blockade of histamine H2 receptors or stimulation of histamine H3 receptors attenuates nNOS expression and induces neuroprotection in SCI. Taken together, our results are the first to demonstrate that histamine-induced pathophysiology of SCI is mediated via nNOS expression involving specific histamine receptors. © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, J; Held, M; Morin, O
2015-06-15
Purpose: To investigate the sensitivity of traditional gamma-index-based fluence measurements for patient-specific measurements in VMAT delivered spine SBRT. Methods: The ten most recent cases for spine SBRT were selected. All cases were planned with Eclipse RapidArc for a TrueBeam STx. The delivery was verified using a point dose measurement with a Pinpoint 3D micro-ion chamber in a Standard Imaging Stereotactic Dose Verification Phantom. Two points were selected for each case, one within the target in a low dose-gradient region and one in the spinal cord. Measurements were localized using on-board CBCT. Cumulative and separate arc measurements were acquired with themore » ArcCheck and assessed using the SNC patient software with a 3%/3mm and 2%/2mm gamma analysis with global normalization and a 10% dose threshold. Correlations between data were determined using the Pearson Product-Moment Correlation. Results: For our cohort of patients, the measured doses were higher than calculated ranging from 2.2%–9.7% for the target and 1.0%–8.2% for the spinal cord. There was strong correlation between 3%/3mm and 2%/2mm passing rates (r=0.91). Moderate correlation was found between target and cord dose with a weak fit (r=0.67, R-Square=0.45). The cumulative ArcCheck measurements showed poor correlation with the measured point doses for both the target and cord (r=0.20, r=0.35). If the arcs are assessed separately with an acceptance criteria applied to the minimum passing rate between all arcs, a moderate negative correlation was found for the target and cord (r=−0.48, r= −0.71). The case with the highest dose difference (9.7%) received a passing rate of 97.2% for the cumulative arcs and 87.8% for the minimum with separate arcs. Conclusion: Our data suggest that traditional passing criteria using ArcCheck with cumulative measurements do not correlate well with dose errors. Separate arc analysis shows better correlation but may still miss large dose errors. Point dose verifications are recommended.« less
Dose conformation to the spine during palliative treatments using dynamic wedges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com; Herndon, R. Craig; Kaczor, Joseph G.
2013-07-01
Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination ofmore » wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, H; Zhang, H
Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekici, Kemal, E-mail: drkemal06@hotmail.com; Pepele, Eda K.; Yaprak, Bahaddin
2016-01-01
Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT,more » and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D{sub max} of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.« less
NASA Astrophysics Data System (ADS)
Wang, Tianyuan; Ishihara, Takeaki; Kono, Atsushi; Yoshida, Naoki; Akasaka, Hiroaki; Mukumoto, Naritoshi; Yada, Ryuichi; Ejima, Yasuo; Yoshida, Kenji; Miyawaki, Daisuke; Kakutani, Kenichiro; Nishida, Kotaro; Negi, Noriyuki; Minami, Toshiaki; Aoyama, Yuuichi; Takahashi, Satoru; Sasaki, Ryohei
2017-08-01
The objective of the present study was the determination of the potential dosimetric benefits of using metal-artefact-suppressed dual-energy computed tomography (DECT) images for cases involving pedicle screw implants in spinal sites. A heterogeneous spinal phantom was designed for the investigation of the dosimetric effect of the pedicle-screw-related artefacts. The dosimetric comparisons were first performed using a conventional two-directional opposed (AP-PA) plan, and then a volumetric modulated arc therapy (VMAT) plan, which are both used for the treatment of spinal metastases in our institution. The results of Acuros® XB dose-to-medium (Dm) and dose-to-water (Dw) calculations using different imaging options were compared with experimental measurements including the chamber and film dosimetries in the spinal phantom. A dual-energy composition image with a weight factor of -0.2 and a dual-energy monochromatic image (DEMI) with an energy level of 180 keV were found to have superior abilities for artefact suppression. The Dm calculations revealed greater dosimetric effects of the pedicle screw-related artefacts compared to the Dw calculations. The results of conventional single-energy computed tomography showed that, although the pedicle screws were made from low-Z titanium alloy, the metal artefacts still have dosimetric effects, namely, an average (maximum) Dm error of 4.4% (5.6%) inside the spinal cord for a complex VMAT treatment plan. Our findings indicate that metal-artefact suppression using the proposed DECT (DEMI) approach is promising for improving the dosimetric accuracy near the implants and inside the spinal cord (average (maximum) Dm error of 1.1% (2.0%)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntosh, Alyson; Shoushtari, Asal N.; Benedict, Stanley H.
Purpose: Voluntary deep inhalation breath hold (VDIBH) reduces heart dose during left breast irradiation. We present results of the first study performed to quantify reproducibility of breath hold using bony anatomy, heart position, and heart dose for VDIBH patients at treatment table. Methods and Materials: Data from 10 left breast cancer patients undergoing VDIBH whole-breast irradiation were analyzed. Two computed tomography (CT) scans, free breathing (FB) and VDIBH, were acquired to compare dose to critical structures. Pretreatment weekly kV orthogonal images and tangential ports were acquired. The displacement difference from spinal cord to sternum across the isocenter between coregistered planningmore » Digitally Reconstructed Radiographs (DRRs) and kV imaging of bony thorax is a measure of breath hold reproducibility. The difference between bony coregistration and heart coregistration was the measured heart shift if the patient is aligned to bony anatomy. Results: Percentage of dose reductions from FB to VDIBH: mean heart dose (48%, SD 19%, p = 0.002), mean LAD dose (43%, SD 19%, p = 0.008), and maximum left anterior descending (LAD) dose (60%, SD 22%, p = 0.008). Average breath hold reproducibility using bony anatomy across the isocenter along the anteroposterior (AP) plane from planning to treatment is 1 (range, 0-3; SD, 1) mm. Average heart shifts with respect to bony anatomy between different breath holds are 2 {+-} 3 mm inferior, 1 {+-} 2 mm right, and 1 {+-} 3 mm posterior. Percentage dose changes from planning to delivery: mean heart dose (7%, SD 6%); mean LAD dose, ((9%, SD 7%)S, and maximum LAD dose, (11%, SD 11%) SD 11%, p = 0.008). Conclusion: We observed excellent three-dimensional bony registration between planning and pretreatment imaging. Reduced delivered dose to heart and LAD is maintained throughout VDIBH treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, H; Brindle, J; Hepel, J
2015-06-15
Purpose: To analyze and evaluate dose distribution between Ray Tracing (RT) and Monte Carlo (MC) algorithms of 0.5% uncertainty on a critical structure of spinal cord and gross target volume and planning target volume. Methods: Twenty four spinal tumor patients were treated with stereotactic body radiotherapy (SBRT) by CyberKnife in 2013 and 2014. The MC algorithm with 0.5% of uncertainty is used to recalculate the dose distribution for the treatment plan of the patients using the same beams, beam directions, and monitor units (MUs). Results: The prescription doses are uniformly larger for MC plans than RT except one case. Upmore » to a factor of 1.19 for 0.25cc threshold volume and 1.14 for 1.2cc threshold volume of dose differences are observed for the spinal cord. Conclusion: The MC recalculated dose distributions are larger than the original MC calculations for the spinal tumor cases. Based on the accuracy of the MC calculations, more radiation dose might be delivered to the tumor targets and spinal cords with the increase prescription dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badkul, R; Nicolai, W; Pokhrel, D
Purpose: To compare the impact of Pencil Beam(PB) and Anisotropic Analytic Algorithm(AAA) dose calculation algorithms on OARs and planning target volume (PTV) in thoracic spine stereotactic body radiation therapy (SBRT). Methods: Ten Spine SBRT patients were planned on Brainlab iPlan system using hybrid plan consisting of 1–2 non-coplanar conformal-dynamic arcs and few IMRT beams treated on NovalisTx with 6MV photon. Dose prescription varied from 20Gy to 30Gy in 5 fractions depending on the situation of the patient. PB plans were retrospectively recalculated using the Varian Eclipse with AAA algorithm using same MUs, MLC pattern and grid size(3mm).Differences in dose volumemore » parameters for PTV, spinal cord, lung, and esophagus were analyzed and compared for PB and AAA algorithms. OAR constrains were followed per RTOG-0631. Results: Since patients were treated using PB calculation, we compared all the AAA DVH values with respect to PB plan values as standard, although AAA predicts the dose more accurately than PB. PTV(min), PTV(Max), PTV(mean), PTV(D99%), PTV(D90%) were overestimated with AAA calculation on average by 3.5%, 1.84%, 0.95%, 3.98% and 1.55% respectively as compared to PB. All lung DVH parameters were underestimated with AAA algorithm mean deviation of lung V20, V10, V5, and 1000cc were 42.81%,19.83%, 18.79%, and 18.35% respectively. AAA overestimated Cord(0.35cc) by mean of 17.3%; cord (0.03cc) by 12.19% and cord(max) by 10.5% as compared to PB. Esophagus max dose were overestimated by 4.4% and 5cc by 3.26% for AAA algorithm as compared to PB. Conclusion: AAA overestimated the PTV dose values by up to 4%.The lung DVH had the greatest underestimation of dose by AAA versus PB. Spinal cord dose was overestimated by AAA versus PB. Given the critical importance of accuracy of OAR and PTV dose calculation for SBRT spine, more accurate algorithms and validation of calculated doses in phantom models are indicated.« less
The radiation dosimetry of intrathecally administered radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stabin, M.G.; Evans, J.F.
The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energymore » deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.« less
van Besien, Koen; Hari, Parameswaran; Zhang, Mei-Jie; Liu, Hong-Tao; Stock, Wendy; Godley, Lucy; Odenike, Olatoyosi; Larson, Richard; Bishop, Michael; Wickrema, Amittha; Gergis, Usama; Mayer, Sebastian; Shore, Tsiporah; Tsai, Stephanie; Rhodes, Joanna; Cushing, Melissa M.; Korman, Sandra; Artz, Andrew
2016-01-01
Umbilical cord blood stem cell transplants are commonly used in adults lacking HLA-identical donors. Delays in hematopoietic recovery contribute to mortality and morbidity. To hasten recovery, we used co-infusion of progenitor cells from a partially matched related donor and from an umbilical cord blood graft (haplo-cord transplant). Here we compared the outcomes of haplo-cord and double-cord transplants. A total of 97 adults underwent reduced intensity conditioning followed by haplo-cord transplant and 193 patients received reduced intensity conditioning followed by double umbilical cord blood transplantation. Patients in the haplo-cord group were more often from minority groups and had more advanced malignancy. Haplo-cord recipients received fludarabine-melphalan-anti-thymocyte globulin. Double umbilical cord blood recipients received fludarabine-cyclophosphamide and low-dose total body irradiation. In a multivariate analysis, haplo-cord had faster neutrophil (HR=1.42, P=0.007) and platelet (HR=2.54, P<0.0001) recovery, lower risk of grade II–IV acute graft-versus-host disease (HR=0.26, P<0.0001) and chronic graft-versus-host disease (HR=0.06, P<0.0001). Haplo-cord was associated with decreased risk of relapse (HR 0.48, P=0.001). Graft-versus-host disease-free, relapse-free survival was superior with haplo-cord (HR 0.63, P=0.002) but not overall survival (HR=0.97, P=0.85). Haplo-cord transplantation using fludarabine-melphalan-thymoglobulin conditioning hastens hematopoietic recovery with a lower risk of relapse relative to double umbilical cord blood transplantation using the commonly used fludarabine-cyclophosphamide-low-dose total body irradiation conditioning. Graft-versus-host disease-free and relapse-free survival is significantly improved. Haplo-cord is a readily available graft source that improves outcomes and access to transplant for those lacking HLA-matched donors. Trials registered at clinicaltrials.gov identifiers 00943800 and 01810588. PMID:26869630
Jing, Hua-fang; Liao, Li-min; Fu, Guang; Wu, Juan; Ju, Yan-he; Chen, Guo-qing
2014-08-18
To evaluate the related factors of upper urinary tract deterioration in spinal cord injured patients. Medical records of spinal cord injured patients from Jan.2002 to Sep.2009 were retrospectively reviewed. All the patients were divided into the upper urinary tract deterioration group and non-deterioration group according to the diagnostic criteria. Indexes such as demographic characteristic (gender, age), spinal cord injury information (cause, level, completeness), statuses of urinary tract system (bladder management, urine routine, urine culture, ultrasound, serum creatinine, fever caused by urinary tract infection) and urodynamics information(bladder compliance, bladder stability, bladder sensation, detrusor sphincter dyssynergia, detrusor leak point pressure, maximum cystometric capacity, relative safe bladder capacity, maximum flow rate, maximum urethra closure pressure) were compared between the two groups.Then Logistic regression analysis were performed. There was significantly difference between the two groups in spinal cord injury level(χ(2) = 8.840, P = 0.031),bladder management(χ(2) = 11.362, P = 0.045), urinary rutine(χ(2) = 17.983, P = 0.000), fever caused by urinary tract infection(χ(2)= 64.472, P = 0.000), bladder compliance(χ(2) = 6.531, P = 0.011), bladder sensation(χ(2) = 11.505, P = 0.009), maximum cystometric capacity(t = 2.209, P = 0.043), and detrusor-sphincter dyssynergia(χ(2) = 4.247, P = 0.039). The multiple-factor non-conditional Logistic regression analysis showed that bladder management (OR = 1.114, P = 0.006), fever caused by urinary tract infection(OR = 1.018,P = 0.000), bladder compliance (OR = 1.588, P = 0.040) and detrusor-sphincter dyssynergia(OR = 1.023, P = 0.034) were the key factors of upper urinary tract deterioration in spinal cord injured patients. Urinary tract infection, lower bladder compliance, detrusor-sphincter dyssynergia and unreasonable bladder management are the risk factors of upper urinary tract deterioration in spinal cord injured patients.
[Dosimetric comparison of non-small cell lung cancer treatment with multi fields dynamic-MLC IMRT].
Hao, Longying; Wang, Delin; Cao, Yujuan; Du, Fang; Cao, Feng; Liu, Chengwei
2015-05-19
We compared the dosimetric differences between the target and surrounding tissues/organs of the 5-field and 7,9-field (Hereinafter referred to as F5, F7, F9) treatment plan in non-small cell lung cancer (NSCLC) by the dynamic intensity-modulated radiotherapy (dIMRT), to provide reference for clinical application. Using Varian planning system (Eclipse 7.3), we randomly selected 30 cases of patients who received dIMRT to study, all patients were 5, 7, 9 fixed field dynamics intensity-modulated radiotherapy plans to meet the target prescription requirements (95% dose curve enveloping 100% of the PTV), by comparing dose-volume histogram DVH evaluation, and the maximum dose D(max), the minimum dose D(min), and the mean dose D(mean), and conformal index CI of PTV,organs at risk of spinal cord the maximum dose D(max), lung V(5), V(10), V(20), V(30), heart V(30) and esophageal V(50), V(60) of F5,F7 and F9 dIMRT plans,and compare the mu of the three treatment programs. The D(max), D(min) and D(mean) values of F5's PTV are (7 203 ± 128), (5 493 ± 331), (6 900 ± 138) cGy respectively; the D(max), D(min) and D(mean) values of F7's PTV are (7 304 ± 96), (5 526 ± 296), (6 976 ± 130) cGy respectively; and the D(max), D(min) and D(mean) values of F9's PTV are (7 356 ± 54), (5 578 ± 287), (7 019 ± 56) cGy respectively. The data shows that while we increased the numbers of fields, the isodose line surrounding the target area would also promote slightly. The conformity index CI of target became better with the increase of radiation fields. The whole lung V(5) and V(10) slightly became larger with increase of fields and the V(20) showed no significant difference in three models, V(30) of double lungs slightly decreased with the increase of fields. The above date was statistically meaningless (P > 0.05). With the increase of fields esophagus V(50) were reduced by 3% and 5% respectively, V(60) of the esophagus were reduced by 6% and 11%, the average dose reduced by 5% and 10% and spinal cord D(max) decreased by 9% and 13%. In the F7 and F9, heart V5 were lower than F5 plan by 11%, 19%. The mu of them were increased with the increase of radiation fields, Treatment time of F7 and F9 plan were longer by 15% and 25%. Through comparing the three fixed dIMRT plans, we could draw a conclusion that the three multi-field intensity-modulated radiotherapy in non-small cell lung cancer can meet the clinical target volume dose requirements. If the treatment is required to protect the patient's spinal cord, esophagus and heart, we can choose 7 or 9 fields. While other ordinary patients should be treated with 5 fields plan, to shorten the treatment time and improve the biological effects of lesions, and lower mu of plans to avoid unnecessary irradiation of normal tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.
2015-04-01
This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less
Refractory orthostatic hypotension in a patient with a spinal cord injury: Treatment with droxidopa.
Canosa-Hermida, Eva; Mondelo-García, Cristina; Ferreiro-Velasco, María Elena; Salvador-de la Barrera, Sebastián; Montoto-Marqués, Antonio; Rodríguez-Sotillo, Antonio; Vizoso-Hermida, José Ramón
2018-01-01
Orthostatic hypotension (OH) is a common complication in patients with a spinal cord injury, mainly affecting complete injuries above neurological level T6. It is generally more severe during the acute phase but can remain symptomatic for several years. A 65-year-old male with a grade ASIA A post-traumatic cervical spinal cord injury, at neurological level C4, presenting with symptomatic refractory OH. Increased blood pressure (BP) levels and an overall clinical improvement was observed after administering an increasing dose of droxidopa. Treatment was started at a dose of 100 mg twice daily (bid), one to be taken upon rising in the morning and another one in the afternoon, at least three hours before bedtime. According to the patient's symptomatic response, each individual dose was increased by 100 mg at 48-hour intervals. Both increased mean BP levels and a subjective symptomatic improvement were evidenced at a dose of 300 mg bid. Treatment with droxidopa increases BP levels and improves symptoms related to refractory OH using all physical and pharmacological measures available. It could therefore constitute an effective alternative treatment for OH in patients with a spinal cord injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chengqiang, L; Yin, Y; Chen, L
Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans.more » Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrycushko, B; Medin, P
Purpose: The incidence of peripheral neuropathy has risen with increased utilization of SAbR. There is no consensus regarding the dose-tolerance of the peripheral nervous system. In 2015, we commenced an investigation to test the hypotheses that single-session irradiation to the pig spinal nerves exhibit a similar dose-tolerance as that of the spinal cord and that a dose-length effect exists. This work evaluates the direct application of small animal NTCP models to both large animal spinal cord and preliminary peripheral nerve data. Methods: To date, 16 of 25 Yucatan minipigs have received single-session SAbR to a 1.5cm length and 4 ofmore » 25 have received irradiation to a 0.5cm length of left-sided C6-C8 spinal nerves. Toxicity related gait change has been observed in 13 animals (9 from the long length group and 4 from the short). This preliminary data is overlaid on several dose-response models which have been fit to rodent spinal cord tolerance experiments. Model parameters define a toxicity profile between a completely serial or parallel behaving organ. Adequacy of model application, including how length effects are handled, to published minipig spinal cord dose-response data and to preliminary peripheral nerve response data was evaluated through residual analysis. Results: No rodent-derived dose-response models were directly applicable to all pig data for the different lengths irradiated. Several models fit the long-length irradiated spinal cord data well, with the more serial-like models fitting best. Preliminary data on the short-length irradiation suggests no length effect exists, disproving our hypothesis. Conclusion: Direct application of small-animal NTCP models to pig data suggests dose-length effect predictions from small animal data may not translate clinically. However, the small animal models used have not considered dose heterogeneity and it is expected that including the low-to-mid dose levels in the penumbral region will improve this match. This work was funded by the Cancer Prevention Research Institute of Texas (CPRIT).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinkham, D.W.; Shultz, D.; Loo, B.W.
Purpose: The advent of electromagnetic navigation bronchoscopy has enabled minimally invasive access to peripheral lung tumors previously inaccessible by optical bronchoscopes. As an adjunct to Stereotactic Ablative Radiosurgery (SABR), implantation of HDR catheters can provide focal treatments for multiple metastases and sites of retreatments. The authors evaluate a procedure to deliver ablative doses via Electromagnetically-Guided HDR (EMG-HDR) to lung metastases, quantify the resulting dosimetry, and assess its role in the comprehensive treatment of lung cancer. Methods: A retrospective study was conducted on ten patients, who, from 2009 to 2011, received a hypo-fractionated SABR regimen with 6MV VMAT to lesions inmore » various lobes ranging from 1.5 to 20 cc in volume. A CT visible pathway was delineated for EM guided placement of an HDR applicator (catheter) and dwell times were optimized to ensure at least 98% prescription dose coverage of the GTV. Normal tissue doses were calculated using inhomogeneity corrections via a grid-based Boltzmann solver (Acuros-BV-1.5.0). Results: With EMG-HDR, an average of 83% (+/−9% standard deviation) of each patient’s GTV received over 200% of the prescription dose, as compared to SABR where the patients received an average maximum dose of 125% (+/−5%). EMG-HDR enabled a 59% (+/−12%) decrease in the aorta maximum dose, a 63% (+/−26%) decrease in the spinal cord max dose, and 57% (+/−23%) and 70% (+/−17%) decreases in the volume of the body receiving over 50% and 25% of the prescription dose, respectively. Conclusion: EMG-HDR enables delivery of higher ablative doses to the GTV, while concurrently reducing surrounding normal tissue doses. The single catheter approach shown here is limited to targets smaller than 20 cc. As such, the technique enables ablation of small lesions and a potentially safe and effective retreatment option in situations where external beam utility is limited by normal tissue constraints.« less
On the interplay effects with proton scanning beams in stage III lung cancer
Li, Yupeng; Kardar, Laleh; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y.; Liao, Li; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.; Lim, Gino; Zhang, Xiaodong
2014-01-01
Purpose: To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Methods: Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Results: Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Conclusions: Despite the presence of interplay effect, the delivered dose may be reliably estimated using the 4D composite dose. In general the interplay effect may not be a primary concern with IMPT for lung cancers for the authors' institution. The described interplay analysis tool may be used to provide additional confidence in treatment delivery. PMID:24506612
'Full dose' reirradiation of human cervical spinal cord.
Ryu, S; Gorty, S; Kazee, A M; Bogart, J; Hahn, S S; Dalal, P S; Chung, C T; Sagerman, R H
2000-02-01
With the progress of modern multimodality cancer treatment, retreatment of late recurrences or second tumors became more commonly encountered in management of patients with cancer. Spinal cord retreatment with radiation is a common problem in this regard. Because radiation myelopathy may result in functional deficits, many oncologists are concerned about radiation-induced myelopathy when retreating tumors located within or immediately adjacent to the previous radiation portal. The treatment decision is complicated because it requires a pertinent assessment of prognostic factors with and without reirradiation, radiobiologic estimation of recovery of occult spinal cord damage from the previous treatment, as well as interactions because of multimodality treatment. Recent studies regarding reirradiation of spinal cord in animals using limb paralysis as an endpoint have shown substantial and almost complete recovery of spinal cord injury after a sufficient time after the initial radiotherapy. We report a case of "full" dose reirradiation of the entire cervical spinal cord in a patient who has not developed clinically detectable radiation-induced myelopathy on long-term follow-up of 17 years after the first radiotherapy and 5 years after the second radiotherapy.
Volumetric Modulated Arc Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer
Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen
2015-01-01
Objective To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. PMID:25815477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W; Wu, L; Lu, J
2015-06-15
Purpose: To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods: CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (planning target volume 64, PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results:more » All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion: The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2. however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. This work was sponsored by Shantou University Medical College Clinical Research Enhancement Initiative(NO.201424)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel
2016-10-01
Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number of monitor units (MU) per beam at the optimization stage, and thereby limiting beam modulation complexity. The VMAT arcs that were optimized with MU limitation had higher QA pass rates as well as higher modulation complexity scores (less complexity), lower modulation indices (less modulation), lower MU per beam, larger beam segments, and fewer small apertures than the VMAT arcs that were optimized without MU limitation. It is recommended that VMAT treatments for vertebral volumes, where the PTV abuts or surrounds the spinal cord, should be optimized with MU limitation. IMRT treatments may be preferable to the VMAT treatments, for dosimetry and deliverability reasons, but may be inappropriate for some patients because of their increased treatment delivery time.« less
Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M
2011-12-01
Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.
Anderson, N.; Lawford, C.; Khoo, V.; Rolfo, M.; Joon, D. Lim; Wada, M.
2011-01-01
Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50 Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry. PMID:22066597
Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki
2016-07-01
The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbiero, Sara; Specialty School in Medical Physics, University of Pisa, Pisa; Rink, Alexandra
2016-01-01
Purpose: To report on single-fraction stereotactic body radiotherapy (RT) (SBRT) with flattening filter (FF)–free (FFF) volumetric modulated arc therapy (VMAT) for lung cancer and to compare dosimetric results with VMAT with FF. Methods and materials: Overall, 25 patients were treated with 6-MV FFF VMAT (Varian TrueBeam STx LINAC) to a prescribed dose of 24 Gy in a single fraction. Treatment plans were recreated using FF VMAT. Dose-volume indices, monitor units (MU), and treatment times were compared between FFF and FF VMAT techniques. Results: Dose constraints to PTV, spinal cord, and lungs were reached in FFF and FF plans. In FFFmore » plans, average conformity index was 1.13 (95% CI: 1.07 to1.38). Maximum doses to spinal cord, heart, esophagus, and trachea were 2.9 Gy (95% CI: 0.4 to 6.7 Gy), 0.8 Gy (95% CI: 0 to 3.6 Gy), 3.3 Gy (95% CI: 0.02 to 13.9 Gy), and 1.5 Gy (95% CI: 0 to 4.9 Gy), respectively. Average V7 Gy, V7.4 Gy, and mean dose to the healthy lung were 126.5 cc (95% CI: 41.3 to 248.9 cc), 107.3 cc (95% CI: 18.7 to 232.8 cc), and 1.1 Gy (95% CI: 0.3 to 2.2 Gy), respectively. No statistically significant differences were found in dosimetric results and MU between FF and FFF treatments. Treatment time was reduced by an average factor of 2.31 (95% CI: 2.15 to 2.43) from FF treatments to FFF, and the difference was statistically significant. Conclusions: FFF VMAT for lung SBRT provides equivalent dosimetric results to the target and organs at risk as FF VMAT while significantly reducing treatment time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddard, L; Brodin, P; Mani, K
Purpose: SBRT allows the delivery of high dose radiation treatments to localized tumors while minimizing dose to surrounding tissues. Due to the large doses delivered, accurate contouring of organs at risk is essential. In this study, differences between the true spinal cord as seen using MRI and CT myelogram (CTM) have been assessed in patients with spinal metastases treated using SBRT. Methods: Ten patients were identified that have both a CTM and a MRI. Using rigid registration tools, the MRI was fused to the CTM. The thecal sac and true cord were contoured using each imaging modality. Images were exportedmore » and analyzed for similarity by computing the Dice similarity coefficient and the modified Hausdorff distance (greatest distance from a point in one set to the closest point in the other set). Results: The Dice coefficient was calculated for the thecal sac (0.81 ±0.06) and true cord (0.63 ±0.13). These two measures are correlated; however, some points show a low true cord overlap despite a high overlap for the thecal sac. The Hausdorff distance for structure comparisons was also calculated. For thecal sac structures, the average value, 1.6mm (±1.1), indicates good overlap. For true cord comparison, the average value, 0.3mm (±0.16), indicates very good overlap. The minimum Hausdorff distance between the true cord and thecal sac was on average 1.6mm (±0.9) Conclusion: The true cord position as seen in MRI and CTM is fairly constant, although care should be taken as large differences can be seen in individual patients. Avoidning the true cord in spine SBRT is critical, so the ability to visualize the true cord before performing SBRT to the vertebrae is essential. Here, CT myelogram appears an excellent, robust option, that can be obtained the day of treatment planning and is unaffected by uncertainties in image fusion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Kean Fatt, E-mail: hokeanfatt@hotmail.com; Marchant, Tom; Moore, Chris
2012-03-01
Purpose: Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment. Methods and materials: Ten patients with locally advanced oropharyngeal cancer were treated with contralateral parotid-sparing IMRT concurrently with platinum-based chemotherapy. Mean doses of 65 Gy and 54 Gy were delivered to clinical target volume (CTV)1 and CTV2, respectively, in 30 daily fractions. CBCT wasmore » prospectively acquired weekly. Each CBCT was coregistered with the planned isocenter. The spinal cord, brainstem, parotids, larynx, and oral cavity were outlined on each CBCT. Dose distributions were recalculated on the CBCT after correcting the gray scale to provide accurate Hounsfield calibration, using the original IMRT plan configuration. Results: Planned contralateral parotid mean doses were not significantly different to those delivered during treatment (p > 0.1). Ipsilateral and contralateral parotids showed a mean reduction in volume of 29.7% and 28.4%, respectively. There was no significant difference between planned and delivered maximum dose to the brainstem (p = 0.6) or spinal cord (p = 0.2), mean dose to larynx (p = 0.5) and oral cavity (p = 0.8). End-of-treatment mean weight loss was 7.5 kg (8.8% of baseline weight). Despite a {>=}10% weight loss in 5 patients, there was no significant dosimetric change affecting the contralateral parotid and neural structures. Conclusions: Although patient weight loss and parotid volume shrinkage was observed, overall, there was no significant excess dose to the organs at risk. No replanning was felt necessary for this patient cohort, but a larger patient sample will be investigated to further confirm these results. Nevertheless, kilovoltage CBCT is a valuable tool for patient setup verification and monitoring of dosimetric variation during radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Badkul, R
2015-06-15
Purpose: To investigate the feasibility of using RapidArc (RA) treatment planning to reduce irradiation volume of normal lung and other organs at risk (OARs) in the treatment of inoperable non-small-cell lung cancer (NSCLC) patients. Methods: A retrospective treatment planning and delivery study was performed to compare target coverage and the volumes of the normal lung, spinal cord, heart and esophagus on 4D-CT scan above their dose tolerances delivered by RA vs. IMRT for ten inoperable NSCLC patients (Stage I-IIIB). RA plans consisted of either one-full or two-partial co-planar arcs used to treat 95% of the planning target volume (PTV) withmore » 6MV beam to a prescription of 66Gy in 33 fractions. IMRT plans were generated using 5–7 co-planar fields with 6MV beam. PTV coverage, dose-volume histograms, homogeneity/conformity indices (CI), total number of monitor units(MUs), beam-on time and delivery accuracy were compared between the two treatment plans. Results: Similar target coverage was obtained between the two techniques. RA (CI=1.02) provided more conformal plans without loss of homogeneity compared to IMRT plans (CI=1.12). Compared to IMRT, RA achieved a significant median dose reduction in V10 (3%), V20 (8%), and mean lung dose (3%) on average, respectively. On average, V5 was comparable between the two treatment plans. RA reduced mean esophagus (6%), mean heart (18%), and maximum spinal cord dose (7%), on average, respectively. Total number of MUs and beam-on time were each reduced almost by a factor of 2 when compared to IMRT-patient comfort, reduced intra-fraction-motion and leakage dose. The average IMRT and RA QA pass rate was about 98% for both types of plans for 3%/3mm criterion. Conclusion: Compared to IMRT plans, RA provided not only comparable target coverage, but also improved conformity, treatment time, and significant reduction in irradiation of OARs. This may potentially allow for target dose escalation without increase in normal tissue toxicity.« less
Wu, Chen-Ta; Motegi, Atsushi; Motegi, Kana; Hotta, Kenji; Kohno, Ryosuke; Tachibana, Hidenobu; Kumagai, Motoki; Nakamura, Naoki; Hojo, Hidehiro; Niho, Seiji; Goto, Koichi; Akimoto, Tetsuo
2016-08-10
To assess the feasibility of proton beam therapy for the patients with locally advanced non-small lung cancer. The dosimetry was analyzed retrospectively to calculate the doses to organs at risk, such as the lung, heart, esophagus and spinal cord. A dosimetric comparison between proton beam therapy and dummy photon radiotherapy (three-dimensional conformal radiotherapy) plans was performed. Dummy intensity-modulated radiotherapy plans were also generated for the patients for whom curative three-dimensional conformal radiotherapy plans could not be generated. Overall, 33 patients with stage III non-small cell lung cancer were treated with proton beam therapy between December 2011 and August 2014. The median age of the eligible patients was 67 years (range: 44-87 years). All the patients were treated with chemotherapy consisting of cisplatin/vinorelbine or carboplatin. The median prescribed dose was 60 GyE (range: 60-66 GyE). The mean normal lung V20 GyE was 23.6% (range: 14.9-32%), and the mean normal lung dose was 11.9 GyE (range: 6.0-19 GyE). The mean esophageal V50 GyE was 25.5% (range: 0.01-63.6%), the mean heart V40 GyE was 13.4% (range: 1.4-29.3%) and the mean maximum spinal cord dose was 40.7 GyE (range: 22.9-48 GyE). Based on dummy three-dimensional conformal radiotherapy planning, 12 patients were regarded as not being suitable for radical thoracic three-dimensional conformal radiotherapy. All the dose parameters of proton beam therapy, except for the esophageal dose, were lower than those for the dummy three-dimensional conformal radiotherapy plans. In comparison to the intensity-modulated radiotherapy plan, proton beam therapy also achieved dose reduction in the normal lung. None of the patients experienced grade 4 or worse non-hematological toxicities. Proton beam therapy for patients with stage III non-small cell lung cancer was feasible and was superior to three-dimensional conformal radiotherapy for several dosimetric parameters. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dilmanian, F. Avraham; McDonald, III, John W.
2007-12-04
A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.
Dilmanian, F. Avraham; McDonald, III, John W.
2007-01-02
A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, T; Howe, J; Spalding, A
Purpose: Occipital neuralgia is a condition wherein pain is transmitted by the occipital nerves. Non-invasive therapies generally alleviate symptoms; however, persistent or recurring pain may require invasive procedures. Repeated invasive procedures upon failure are considered higher risk and are often contraindicated due to compounding inherent risk. SRS has not been explored as a treatment option largely due to the extracranial nature of the target (as opposed to the similar, more established trigeminal neuralgia), but advances in linear-accelerator frameless-based SRS now present an opportunity to evaluate the novel potential of this modality for this application. Methods: Patient presented with severe occipitalmore » pain following decompression and fusion of the cervical vertebrae with prior intervention attempted via radiofrequency ablation yielding temporary pain cessation. A 0.6 mm slice spacing CT was obtained for treatment planning, and a cervical spine oriented 1.0 mm slice spacing CT myelogram was obtained for the purpose of defining the targeted C2 occipital dorsal root ganglion (to receive 80 Gy to the isocenter) and spinal cord. Results: The spinal cord was most proximally 12.0 mm from the isocenter receiving a maximum dose of 3.36 Gy, and doses to 0.35 and 1.2 cc of 1.84 Gy and 0.79 Gy, respectively. The brain maximum dose was 2.29 Gy. The treatment was successfully performed with a NovalisTX (Varian) equipped with ExacTrac stereoscopic x-ray image guidance (BrainLAB). Treatment time was 59 minutes for 18,323 MUs. Imaging was performed prior to each arc delivery resulting in twenty-one imaging sessions (twelve requiring positional corrections with the remaining verified within tolerance). The average deviation magnitude requiring a positional or rotational correction was 0.96±0.25 mm, 0.8±0.41° while the average deviation magnitude deemed within tolerance was 0.41±0.12 mm, 0.57±0.28°. Conclusion: Linear accelerator-based frameless radiosurgery provides an accurate, non-invasive alternative for treating occipital neuralgia where an invasive procedure is contraindicated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teoh, May, E-mail: m.teoh@nhs.net; Beveridge, Sabeena; Wood, Katie
2013-04-01
Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gymore » in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically acceptable plans and achieved planning objectives for target volumes. Dose conformity was significantly better in the RapidArc plans, with lower CI{sub Paddick} scores in both primary (PTV1) and elective (PTV2) planning target volumes (largest difference in PTV1 at DL3; 0.81 ± 0.03 [RapidArc] vs. 0.77 ± 0.07 [IMRT], p = 0.04). Maximum dose constraints for spinal cord and brainstem were not exceeded in both RapidArc and IMRT plans, but mean doses were higher with RapidArc (by 2.7 ± 1 Gy for spinal cord and 1.9 ± 1 Gy for brainstem). Contralateral parotid mean dose was lower with RapidArc, which was statistically significant at DL1 (29.0 vs. 29.9 Gy, p = 0.01) and DL2 (29.3 vs. 30.3 Gy, p = 0.03). MU were reduced by 39.8–49.2% with RapidArc (largest difference at DL3, 641 ± 94 vs. 1261 ± 118, p < 0.01). {sup 18}F-FDG-PET–guided focal dose escalation in oropharyngeal cancer is feasible with RapidArc. Compared with conventional fixed-field IMRT, RapidArc can achieve better dose conformity, improve contralateral parotid sparing, and uses fewer MU.« less
Late effects of radiation on the lumbar spinal cord of guinea pigs: Re-treatment tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, K.A.; Withers, H.R.; Chiang, Chi-Shiun
Using a guinea pig model of lumbar myelopathy, various factors affecting the tolerance of spinal cord to irradiation were assessed: (a) extent of initial injury; (b) time interval between priming and test doses; and (c) animal age at the time of initial radiation treatment. A 3 cm section of lumbar spinal cord of guinea pigs was irradiated with fractionated doses of 4.5 Gy gamma rays given as 9 fractions per week. Guinea pigs were primed with 9 x 4.5 Gy in 7 days which is 60% of the ED[sub 50] for a continuous course of treatment. After 28 or 40more » weeks, animal were retreated with 6-14 fractions of 4.5 Gy. Animals were observed for 2 years following the priming dose and both the incidence and latency of myelopathy recorded. Young adult guinea pigs (8 wk old) showed both a decreased radiation tolerance and latency compared to old individuals (40 wk old). At 28 or 40 wk after 9 x 4.5 Gy, only about 8% of the initial injury was remembered in young adult guinea pigs. The amount of residual injury was dependent on the initial damage as a proportion of the tolerance dose. The spinal cord shows a greater capacity for long-term recovery than generally appreciated and re-treatment doses clinically prescribed may be lower than necessary. 8 refs., 3 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Goddard, L.; Bodner, W.; Brodin, N. P.; Garg, M.; Lee, A.; Mani, K.; Tomé, W. A.
2017-01-01
Metastases of the spinal column are common amongst cancer patients with approximately 18,000 new cases in North America each year that require urgent treatment. Historically radiation therapy doses have been limited due to the proximity of the spinal cord. However as image guidance and localization techniques have improved it has become possible to deliver higher radiation doses to the tumour whilst sparing the spinal cord. This paper presents some of the techniques undertaken at our center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; Han, E; Liang, X
Purpose: Three-dimensional conformal therapy remains a valid and widely used modality for pancreatic radiotherapy treatment. It usually meets dose constraints on critical structures. However, careful positioning of collimation jaws can reduce dose to the critical structures. Here we investigate the dosimetric effect of jaw position in MLC-based 3-D conformal treatment planning on critical structures. Methods: We retrospectively selected seven pancreatic cancer patients treated with 3-D conformal radiotherapy. We started with treatment plans (Varian Truebeam LINAC, Eclipse TPS, AAA, 18MV) having both x and y jaws aligned with the farthest extent of the block outline (8mm around PTV). Then we subsequentlymore » moved either both x-jaws or all x and y jaws outwards upto 3 cm in 1 cm increments and investigated their effect on average and maximum dose to neighboring critical structures keeping the same coverage to treatment volume. Results: Lateral displacement of both x-jaws by 1cm each increased kidney and spleen mean dose by as much as 1.7% and 1.3% respectively and superior inferior displacement increased liver, right kidney, stomach and spleen dose by as much as 2.1%, 2%, 5.2% and 1.6% respectively. Displacement of all x and y-jaws away by 1cm increased the mean dose to liver, right kidney, left kidney, bowels, cord, stomach and spleen by as much as 4.9%, 5.9%, 2.1%, 2.8%, 7.4%, 10.4% and 4.2% respectively. Percentage increase in mean dose due to 2 and 3cm jaw displacement increased almost linearly with the displaced distance. Changes in maximum dose were much smaller (mostly negligible) than the changes in mean dose. Conclusion: Collimation jaw position affects dose mostly to critical structures adjacent to it. Though treatment plans with MLCs conforming the block margin usually meet dose constraints to critical structures, keeping jaws all the way in, to the edge of the block reduces dose to the critical structures during radiation treatment.« less
A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms
Zhang, Da; Li, Xinhua; Gao, Yiming; Xu, X. George; Liu, Bob
2013-01-01
Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future. Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations. Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated relatively small variations, with the maximum COV around 11.4%. This might be attributed to the angular mA modulation, the placement of the dosimeters, the chest cavity of the scanned region, and the size of the phantom. Doses to the spinal cord were consistently lower than those to other soft tissues. Conclusions: The method is suited for acquiring densely sampled organ dose maps, and can be used for studying dose distributions relevant to subject size, organ location, and clinical CT protocols. PMID:23927332
A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms.
Zhang, Da; Li, Xinhua; Gao, Yiming; Xu, X George; Liu, Bob
2013-08-01
To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters "nanoDots" and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method--a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future. A standard ATOM phantom has densely located holes (in 3×3 cm or 1.5×1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations. Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated relatively small variations, with the maximum COV around 11.4%. This might be attributed to the angular mA modulation, the placement of the dosimeters, the chest cavity of the scanned region, and the size of the phantom. Doses to the spinal cord were consistently lower than those to other soft tissues. The method is suited for acquiring densely sampled organ dose maps, and can be used for studying dose distributions relevant to subject size, organ location, and clinical CT protocols.
A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Da; Li, Xinhua; Liu, Bob
Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified themore » conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated relatively small variations, with the maximum COV around 11.4%. This might be attributed to the angular mA modulation, the placement of the dosimeters, the chest cavity of the scanned region, and the size of the phantom. Doses to the spinal cord were consistently lower than those to other soft tissues.Conclusions: The method is suited for acquiring densely sampled organ dose maps, and can be used for studying dose distributions relevant to subject size, organ location, and clinical CT protocols.« less
Kubo, Nobuteru; Saitoh, Jun-Ichi; Shimada, Hirofumi; Shirai, Katsuyuki; Kawamura, Hidemasa; Ohno, Tatsuya; Nakano, Takashi
2016-09-01
The present study compared the dose-volume histograms of patients with Stage IIIA non-small cell lung cancer (NSCLC) treated with carbon ion radiotherapy with those of patients treated with X-ray radiotherapy. Patients with Stage IIIA NSCLC (n = 10 patients for each approach) were enrolled. Both radiotherapy plans were calculated with the same targets and organs at risk on the same CT. The treatment plan for the prophylactic lymph node and primary tumor (PTV1) delivered 40 Gy for X-ray radiotherapy and 40 Gy (relative biological effectiveness; RBE) for carbon ion radiotherapy. The total doses for the primary tumor and clinically positive lymph nodes (PTV2) were 60 Gy for X-ray radiotherapy and 60 Gy (RBE) for carbon ion radiotherapy. The homogeneity indexes for PTV1 and PTV2 were superior for carbon ion radiotherapy in comparison with X-ray radiotherapy (PTV1, 0.57 vs 0.65, P = 0.009; PTV2, 0.07 vs 0.16, P = 0.005). The normal lung mean dose, V5, V10 and V20 for carbon ion radiotherapy were 7.7 Gy (RBE), 21.4%, 19.7% and 17.0%, respectively, whereas the corresponding doses for X-ray radiotherapy were 11.9 Gy, 34.9%, 26.6% and 20.8%, respectively. Maximum spinal cord dose, esophageal maximum dose and V50, and bone V10, V30 and V50 were lower with carbon ion radiotherapy than with X-ray radiotherapy. The present study indicates that carbon ion radiotherapy provides a more homogeneous target dose and a lower dose to organs at risk than X-ray radiotherapy for Stage IIIA non-small cell lung cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, R; Chisela, W
2015-06-15
Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of themore » day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matney, J; Lian, J; Chera, B
2015-06-15
Introduction: Geometric uncertainties in daily patient setup can lead to variations in the planned dose, especially when using highly conformal techniques such as helical Tomotherapy. To account for the potential effect of geometric uncertainty, our clinical practice is to expand critical structures by 3mm expansion into planning risk volumes (PRV). The PRV concept assumes the spatial dose cloud is insensitive to patient positioning. However, no tools currently exist to determine if a Tomotherapy plan is robust to the effects of daily setup variation. We objectively quantified the impact of geometric uncertainties on the 3D doses to critical normal tissues duringmore » helical Tomotherapy. Methods: Using a Matlab-based program created and validated by Accuray (Madison, WI), the planned Tomotherapy delivery sinogram recalculated dose on shifted CT datasets. Ten head and neck patients were selected for analysis. To simulate setup uncertainty, the patient anatomy was shifted ±3mm in the longitudinal, lateral and vertical axes. For each potential shift, the recalculated doses to various critical normal tissues were compared to the doses delivered to the PRV in the original plan Results: 18 shifted scenarios created from Tomotherapy plans for three patients with head and neck cancers were analyzed. For all simulated setup errors, the maximum doses to the brainstem, spinal cord, parotids and cochlea were no greater than 0.6Gy of the respective original PRV maximum. Despite 3mm setup shifts, the minimum dose delivered to 95% of the CTVs and PTVs were always within 0.4Gy of the original plan. Conclusions: For head and neck sites treated with Tomotherapy, the use of a 3mm PRV expansion provide a reasonable estimate of the dosimetric effects of 3mm setup uncertainties. Similarly, target coverage appears minimally effected by a 3mm setup uncertainty. Data from a larger number of patients will be presented. Future work will include other anatomical sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Li, Guangjun; Zhang, Yingjie
2013-01-01
To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less
Chen, Huixiao; Winey, Brian A; Daartz, Juliane; Oh, Kevin S; Shin, John H; Gierga, David P
2015-01-01
To evaluate plan quality and delivery efficiency gains of volumetric modulated arc therapy (VMAT) versus a multicriteria optimization-based intensity modulated radiation therapy (MCO-IMRT) for stereotactic radiosurgery of spinal metastases. MCO-IMRT plans (RayStation V2.5; RaySearch Laboratories, Stockholm, Sweden) of 10 spinal radiosurgery cases using 7-9 beams were developed for clinical delivery, and patients were replanned using VMAT with partial arcs. The prescribed dose was 18 Gy, and target coverage was maximized such that the maximum dose to the planning organ-at-risk volume (PRV) of the spinal cord was 10 or 12 Gy. Dose-volume histogram (DVH) constraints from the clinically acceptable MCO-IMRT plans were utilized for VMAT optimization. Plan quality and delivery efficiency with and without collimator rotation for MCO-IMRT and VMAT were compared and analyzed based upon DVH, planning target volume coverage, homogeneity index, conformity number, cord PRV sparing, total monitor units (MU), and delivery time. The VMAT plans were capable of matching most DVH constraints from the MCO-IMRT plans. The ranges of MU were 4808-7193 for MCO-IMRT without collimator rotation, 3509-5907 for MCO-IMRT with collimator rotation, 4444-7309 for VMAT without collimator rotation, and 3277-5643 for VMAT with collimator of 90 degrees. The MU for the VMAT plans were similar to their corresponding MCO-IMRT plans, depending upon the complexity of the target and PRV geometries, but had a larger range. The delivery times of the MCO-IMRT and VMAT plans, both with collimator rotation, were 18.3 ± 2.5 minutes and 14.2 ± 2.0 minutes, respectively (P < .05). The MCO-IMRT and VMAT can create clinically acceptable plans for spinal radiosurgery. The MU for MCO-IMRT and VMAT can be reduced significantly by utilizing a collimator rotation following the orientation of the spinal cord. Plan quality for VMAT is similar to MCO-IMRT, with similar MU for both modalities. Delivery times can be reduced by nominally 25% with VMAT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui
2017-06-01
Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.
Safety and efficacy of stereotactic radiosurgery for tumors of the spine.
Benzil, Deborah L; Saboori, Mehran; Mogilner, Alon Y; Rocchio, Ronald; Moorthy, Chitti R
2004-11-01
The extension of stereotactic radiosurgery treatment of tumors of the spine has the potential to benefit many patients. As in the early days of cranial stereotactic radiosurgery, however, dose-related efficacy and toxicity are not well understood. The authors report their initial experience with stereotactic radiosurgery of the spine with attention to dose, efficacy, and toxicity. All patients who underwent stereotactic radiosurgery of the spine were treated using the Novalis unit at Westchester Medical Center between December 2001 and January 2004 are included in a database consisting of demographics on disease, dose, outcome, and complications. A total of 31 patients (12 men, 19 women; mean age 61 years, median age 63 years) received treatment for 35 tumors. Tumor types included 26 metastases (12 lung, nine breast, five other) and nine primary tumors (four intradural, five extradural). Thoracic tumors were most common (17 metastases and four primary) followed by lumbar tumors (four metastases and four primary). Lesions were treated to the 85 to 90% isodose line with spinal cord doses being less than 50%. The dose per fraction and total dose were selected on the basis of previous treatment (particularly radiation exposure), size of lesion, and proximity to critical structures. Rapid and significant pain relief was achieved after stereotactic radiosurgery in 32 of 34 treated tumors. In patients treated for metastases, pain was relieved within 72 hours and remained reduced 3 months later. Pain relief was achieved with a single dose as low as 500 cGy. Spinal cord isodoses were less than 50% in all patients except those with intradural tumors (mean single dose to spinal cord 268 cGy and mean total dose to spinal cord 689 cGy). Two patients experienced transient radiculitis (both with a biological equivalent dose (BED) > 60 Gy). One patient who suffered multiple recurrences of a conus ependymoma had permanent neurological deterioration after initial improvement. Pathological evaluation of this lesion at surgery revealed radiation necrosis with some residual/recurrent tumor. No patient experienced other organ toxicity. Stereotactic radiosurgery of the spine is safe at the doses used and provides effective pain relief. In this study, BEDs greater than 60 Gy were associated with an increased risk of radiculitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucci, T.J.; Parker, R.M.; Gosnell, P.A.
1992-05-01
A dose rangefinding study, a delayed neuropathy study, and a neurotoxic esterase study, were performed in White Leghorn chickens using the organophosphate ester Soman. The hens used for the Rangefinding study were dosed once orally with 500, 250, 100, 50, 25, or 0 microns g/Kg GD, on Day 1. They were pretreated and protected daily through Day 7 with atropine. Surviving hens were euthanized with sodium pentobarbital on Day 21. The maximum tolerated dose (MTD) to be used in the Delayed Neuropathy Study was chosen based upon the rangefinding data. Fifty hens were assigned to a Single Dose Delayed Neuropathymore » study. Groups of ten hens were given 14.2 (MTD), 7.1 (MTD/2), 3.5 (MTD/4), 0 (negative control) microns/Kg GD or 51 0 mg/Kg tri-ortho-cresyl phosphate (TOCP) (positive control). Rangefinding study. They were evaluated for signs of neurologic toxicity/ataxia. Necropsy examination was performed on all animals. Sections of cerebellum, medulla, spinal cord (cervical, thoracic, and lumbar), both sciatic nerves and their tibial branch were examined microscopically.... Delayed neuropathy; Agents; Soman; Chickens.« less
Ahmed, Irfan; DeMarco, Marylou; Stevens, Craig W; Fulp, William J; Dilling, Thomas J
2011-01-01
Classic teaching states that treatment of limited-stage small cell lung cancer (L-SCLC) requires large treatment fields covering the entire mediastinum. However, a trend in modern thoracic radiotherapy is toward more conformal fields, employing positron emission tomography/computed tomography (PET/CT) scans to determine the gross tumor volume (GTV). This analysis evaluates the dosimetric results when using selective nodal irradiation (SNI) to treat a patient with L-SCLC, quantitatively comparing the results to standard Intergroup treatment fields. Sixteen consecutive patients with L-SCLC and central mediastinal disease who also underwent pretherapy PET/CT scans were studied in this analysis. For each patient, we created SNI treatment volumes, based on the PET/CT-based criteria for malignancy. We also created 2 ENI plans, the first without heterogeneity corrections, as per the Intergroup 0096 study (ENI(off)) and the second with heterogeneity corrections while maintaining constant the number of MUs delivered between these latter 2 plans (ENI(on)). Nodal stations were contoured using published guidelines, then placed into 4 "bins" (treated nodes, 1 echelon away, >1 echelon away within the mediastinum, contralateral hilar/supraclavicular). These were aggregated across the patients in the study. Dose to these nodal bins and to tumor/normal structures were compared among these plans using pairwise t-tests. The ENI(on) plans demonstrated a statistically significant degradation in dose coverage compared with the ENI(off) plans. ENI and SNI both created a dose gradient to the lymph nodes across the mediastinum. Overall, the gradient was larger for the SNI plans, although the maximum dose to the "1 echelon away" nodes was not statistically different. Coverage of the GTV and planning target volume (PTV) were improved with SNI, while simultaneously reducing esophageal and spinal cord dose though at the expense of modestly reduced dose to anatomically distant lymph nodes within the mediastinum. The ENI(on) plans demonstrate that intergroup-style treatments, as actually delivered, had statistically reduced coverage to the mediastinum and tumor volumes than was reported. Furthermore, SNI leads to improved tumor coverage and reduced esophageal/spinal cord dose, which suggests the possibility of dose escalation using SNI. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Gordon, Andrea L; Lopatko, Olga V; Somogyi, Andrew A; Foster, David J R; White, Jason M
2010-01-01
AIMS The aim of this study was to compare the transfer of buprenorphine and methadone between maternal and cord blood in women under chronic dosing conditions and to determine if differences exist in the transfer of the two methadone enantiomers. METHODS Maternal and cord blood samples were collected at delivery from women maintained on methadone (35, 25–140 mg day−1) (median; range) or buprenorphine (6.00, 2–20 mg day−1) during pregnancy. Plasma concentration ratios are presented as an indicator of foetal exposure relative to the mother. RESULTS Methadone was quantified in all samples, with cord : maternal plasma methadone concentration ratios (n = 15 mother-infant pairs) being significantly higher (P < 0.0001; mean difference (MD) 0.07; 95% confidence interval (CI) 0.048, 0.092) for the active (R)-methadone enantiomer (0.41; 0.19, 0.56) (median; range) compared with (S)-methadone (0.36; 0.15, 0.53). (R)- : (S)-methadone concentration ratios were also significantly higher (P < 0.0001; MD 0.24 95% CI 0.300, 0.180) for cord (1.40; 0.95, 1.67) compared with maternal plasma (1.16; 0.81, 1.38). Half the infant buprenorphine samples were below the assay lower limit of quantification (LLOQ) (0.125 ng ml−1). The latter was four-fold lower than the LLOQ for methadone (0.50 ng ml−1). The cord : maternal plasma buprenorphine concentration ratio (n = 9 mother-infant pairs) was 0.35; 0.14, 0.47 and for norbuprenorphine 0.49; 0.24, 0.91. CONCLUSIONS The transfer of the individual methadone enantiomers to the foetal circulation is stereoselective. Infants born to buprenorphine maintained women are not exposed to a greater proportion of the maternal dose compared with methadone and may be exposed to relatively less of the maternal dose compared with infants born to women maintained on methadone during pregnancy. PMID:21175445
Eekers, Daniëlle B P; Roelofs, Erik; Jelen, Urszula; Kirk, Maura; Granzier, Marlies; Ammazzalorso, Filippo; Ahn, Peter H; Janssens, Geert O R J; Hoebers, Frank J P; Friedmann, Tobias; Solberg, Timothy; Walsh, Sean; Troost, Esther G C; Kaanders, Johannes H A M; Lambin, Philippe
2016-12-01
In this multicentric in silico trial we compared photon, proton, and carbon-ion radiotherapy plans for re-irradiation of patients with squamous cell carcinoma of the head and neck (HNSCC) regarding dose to tumour and doses to surrounding organs at risk (OARs). Twenty-five HNSCC patients with a second new or recurrent cancer after previous irradiation (70Gy) were included. Intensity-modulated proton therapy (IMPT) and ion therapy (IMIT) re-irradiation plans to a second subsequent dose of 70Gy were compared to photon therapy delivered with volumetric modulated arc therapy (VMAT). When comparing IMIT and IMPT to VMAT, the mean dose to all investigated 22 OARs was significantly reduced for IMIT and to 15 out of 22 OARs (68%) using IMPT. The maximum dose to 2% volume (D 2 ) of the brainstem and spinal cord were significantly reduced using IMPT and IMIT compared to VMAT. The data are available on www.cancerdata.org. In this ROCOCO in silico trial, a reduction in mean dose to OARs was achieved using particle therapy compared to photons in the re-irradiation of HNSCC. There was a dosimetric benefit favouring carbon-ions above proton therapy. These dose reductions may potentially translate into lower severe complication rates related to the re-irradiation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Brain protection by methylprednisolone in rats with spinal cord injury.
Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung
2009-07-01
Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, R; Ding, C; Jiang, S
Purpose Spine SRS/SAbR treatment plans typically require very steep dose gradients to meet spinal cord constraints and it is crucial that the dose distribution be accurate. However, these plans are typically calculated on helical free-breathing CT scans, which often contain motion artifacts. While the spine itself doesn’t exhibit very much intra-fraction motion, tissues around the spine, particularly the liver, do move with respiration. We investigated the dosimetric effect of liver motion on dose distributions calculated on helical free-breathing CT scans for spine SAbR delivered to the T and L spine. Methods We took 5 spine SAbR plans and used densitymore » overrides to simulate an average reconstruction CT image set, which would more closely represent the patient anatomy during treatment. The value used for the density override was 0.66 g/cc. All patients were planned using our standard beam arrangement, which consists of 13 coplanar step and shoot IMRT beams. The original plan was recalculated with the same MU on the “average” scan and target coverage and spinal cord dose were compared to the original plan. Results The average changes in minimum PTV dose, PTV coverage, max cord dose and volume of cord receiving 10 Gy were 0.6%, 0.8%, 0.3% and 4.4% (0.012 cc), respectively. Conclusion SAbR spine plans are surprisingly robust relative to surrounding organ motion due to respiration. Motion artifacts in helical planning CT scans do not cause clinically significant differences when these plans are re-calculated on pseudo-average CT reconstructions. This is likely due to the beam arrangement used because only three beams pass through the liver and only one beam passes completely through the density override. The effect of the respiratory motion on VMAT plans for spine SAbR is being evaluated.« less
Kovalenko, Olga A; Azzam, Edouard I; Ende, Norman
2013-11-01
The purpose of this study was to evaluate the window of time and dose of human umbilical-cord-blood (HUCB) mononucleated cells necessary for successful treatment of radiation injury in mice. Female A/J mice (27-30 weeks old) were exposed to an absorbed dose of 9-10 Gy of (137)Cs γ-rays delivered acutely to the whole body. They were treated either with 1 × 10(8) or 2 × 10(8) HUCB mononucleated cells at 24-52 h after the irradiation. The antibiotic Levaquin was applied 4 h postirradiation. The increased dose of cord-blood cells resulted in enhanced survival. The enhancement of survival in animals that received 2 × 10(8) HUCB mononucleated cells relative to irradiated but untreated animals was highly significant (P < 0.01). Compared with earlier studies, the increased dose of HUCB mononucleated cells, coupled with early use of an antibiotic, extended the window of time for effective treatment of severe radiation injury from 4 to 24-52 h after exposure.
NASA Astrophysics Data System (ADS)
Boudreau, C.; Heath, E.; Seuntjens, J.; Ballivy, O.; Parker, W.
2005-03-01
The PEREGRINE Monte Carlo dose-calculation system (North American Scientific, Cranberry Township, PA) is the first commercially available Monte Carlo dose-calculation code intended specifically for intensity modulated radiotherapy (IMRT) treatment planning and quality assurance. In order to assess the impact of Monte Carlo based dose calculations for IMRT clinical cases, dose distributions for 11 head and neck patients were evaluated using both PEREGRINE and the CORVUS (North American Scientific, Cranberry Township, PA) finite size pencil beam (FSPB) algorithm with equivalent path-length (EPL) inhomogeneity correction. For the target volumes, PEREGRINE calculations predict, on average, a less than 2% difference in the calculated mean and maximum doses to the gross tumour volume (GTV) and clinical target volume (CTV). An average 16% ± 4% and 12% ± 2% reduction in the volume covered by the prescription isodose line was observed for the GTV and CTV, respectively. Overall, no significant differences were noted in the doses to the mandible and spinal cord. For the parotid glands, PEREGRINE predicted a 6% ± 1% increase in the volume of tissue receiving a dose greater than 25 Gy and an increase of 4% ± 1% in the mean dose. Similar results were noted for the brainstem where PEREGRINE predicted a 6% ± 2% increase in the mean dose. The observed differences between the PEREGRINE and CORVUS calculated dose distributions are attributed to secondary electron fluence perturbations, which are not modelled by the EPL correction, issues of organ outlining, particularly in the vicinity of air cavities, and differences in dose reporting (dose to water versus dose to tissue type).
NASA Astrophysics Data System (ADS)
Adamus-Górka, Magdalena; Mavroidis, Panayiotis; Brahme, Anders; Lind, Bengt K.
2008-11-01
Radiobiological models for estimating normal tissue complication probability (NTCP) are increasingly used in order to quantify or optimize the clinical outcome of radiation therapy. A good NTCP model should fulfill at least the following two requirements: (a) it should predict the sigmoid shape of the corresponding dose-response curve and (b) it should accurately describe the probability of a specified response for arbitrary non-uniform dose delivery for a given endpoint as accurately as possible, i.e. predict the volume dependence. In recent studies of the volume effect of a rat spinal cord after irradiation with narrow and broad proton beams the authors claim that none of the existing NTCP models is able to describe their results. Published experimental data have been used here to try to quantify the change in the effective dose (D50) causing 50% response for different field sizes. The present study was initiated to describe the induction of white matter necrosis in a rat spinal cord after irradiation with narrow proton beams in terms of the mean dose to the effective volume of the functional subunit (FSU). The physically delivered dose distribution was convolved with a function describing the effective size or, more accurately, the sensitivity distribution of the FSU to obtain the effective mean dose deposited in it. This procedure allows the determination of the mean D50 value of the FSUs of a certain size which is of interest for example if the cell nucleus of the oligodendrocyte is the sensitive target. Using the least-squares method to compare the effective doses for different sizes of the functional subunits with the experimental data the best fit was obtained with a length of about 9 mm. For the non-uniform dose distributions an effective FSU length of 8 mm gave the optimal fit with the probit dose-response model. The method could also be used to interpret the so-called bath and shower experiments where the heterogeneous dose delivery was used in the convolution process. The assumption of an effective FSU size is consistent with most of the effects seen when different portions of the rat spinal cord are irradiated to different doses. The effective FSU length from these experiments is about 8.5 ± 0.5 mm. This length could be interpreted as an effective size of the functional subunits in a rat spinal cord, where multiple myelin sheaths are connected by a single oligodendrocyte and repair is limited by the range of oligodendrocyte progenitor cell diffusion. It was even possible to suggest a more likely than uniform effective FSU sensitivity distribution from the experimental data.
Helke, C J; Phillips, E T; O'Neill, J T
1987-11-01
Regional CNS and peripheral hemodynamic effects of the intrathecal (i.t.) administration of a substance P receptor agonist, [pGlu5,MePhe8,MeGly9]-substance P5-11 ([DiMe]-SP), were studied in anesthetized rats with the radioactive microsphere technique. It was previously shown that [DiMe]-SP caused a sympathetically mediated increase in mean arterial pressure (MAP) by an action within the spinal cord. In this study, [DiMe]-SP (5 and 33 nmol, i.t.) increased MAP. The 5 nmol dose increased resistance in cutaneous, renal, splanchnic, and adrenal vascular beds but decreased resistance, and increased blood flow in some skeletal muscle beds. Total peripheral resistance was unchanged. The 33 nmol dose increased resistance in each peripheral vascular bed analyzed and increased total peripheral resistance. Whereas each dose increased heart rate, stroke volume and cardiac output were unchanged with the 5 nmol dose and were reduced with the 33 nmol dose. Neither dose of [DiMe]-SP significantly altered regional brain or spinal cord blood flows. These data show that the i.t. administration of the SP agonist, [DiMe]-SP, increased vascular tone to most peripheral vascular beds whereas the low dose caused a vasodilation of skeletal muscle. These effects are consistent with the notion of a dose-related activation of SP receptors in the spinal cord affecting sympathetic outflow to the adrenals and to the vasculature.
Fry, L J; Querol, S; Gomez, S G; McArdle, S; Rees, R; Madrigal, J A
2015-08-01
Advantages of using cord blood (CB) over other sources of haematopoietic progenitor cells, such as bone marrow, include the ability to cryopreserve and bank the samples until requested for a transplant. Cryopreservation requires the addition of a cryoprotectant to prevent the formation of intracellular ice during freezing. Dimethyl sulphoxide (DMSO) is commonly used at a concentration of 10% (v/v); however, there is evidence to suggest this chemical is toxic to cells as well as to patients after infusion. The toxic effects of DMSO were assessed through cell viability and in vitro functional assays in fresh and post-thaw CB samples before determining the maximum exposure time and optimal concentration for cryopreservation. A dose-dependent toxicity of DMSO was observed in fresh samples with 40% removing all viable and functional haematopoietic progenitor cells (HPC). In fresh and post-thaw analysis, minimal toxic effect was observed when cryopreservation was delayed for up to 1 h after 10% DMSO addition. After thawing, DMSO washout was superior to dilution or unmanipulated when maintained for long periods (advantage observed 1 h after thawing). Finally, the optimum concentration for cryopreserving CB was found to be 7.5 to 10% with detrimental effects observed outside of this range. These results support the use of 7.5-10% as the optimal DMSO concentration and the maximum exposure time should be limited to <1 h prior to freezing and 30 min post-thaw. © 2015 International Society of Blood Transfusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Ornelas-Couto, M; Bossart, E; Elsayyad, N
Purpose: To determine the sensitivity of dose-mass-histogram (DMH) due to anatomical changes of head-and-neck squamous cell carcinoma (HNSCC) radiotherapy (RT). Methods: Eight patients undergoing RT treatment for HNSCC were scanned during the third and sixth week of RT. These second (CT2) and third (CT3) CTs were co-registered to the planning CT (CT1). Contours were propagated via deformable registration from CT1 and doses were re-calculated. DMHs were extracted for each CT set. DMH sensitivity was assessed by dose-mass indices (DMIs), which represent the dose delivered to a certain mass of and anatomical structure. DMIs included: dose to 98%, 95% and 2%more » of the target masses (PTV1, PTV2, and PTV3) and organs-at-risk (OARs): cord DMI2%, brainstem DMI2%, left- and right-parotid DMI2% and DMI50%, and mandible DMI2%. A two-tailed paired t-test was used to compare changes to DMIs in CT2 and CT3 with respect to CT1 (CT2/CT1 and CT3/CT1). Results: Changes to DMHs were found for all OARs and PTVs, but they were significant only for the PTVs. Maximum dose to PTVs increased significantly for CT2/CT1 in all three PTVs, but CT3/CT1 changes were only significantly different for PTV1 and PTV2. Dose coverage to the three PTVs was also significantly different, DMI98% was lower for both CT2/CT1 and CT3/CT1. DMI95% was significantly lower for PTV1 for CT2/CT1, PTV2 for CT2/CT1 and CT3/CT1, and PTV3 for CT3/CT1. Conclusion: Changes in anatomy significantly change dose-mass coverage for the planning targets, making it necessary to re-plan in order to maintain the therapeutic goals. Maximum dose to the PTVs increase significantly as RT progresses, which may not be problematic as long as the high dose remains in the gross tumor volume. Doses to OARs were minimally affected and the differences were not significant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S; Kim, D; Kim, T
2015-06-15
Purpose: End-of-exhale (EOE) phase is generally preferred for gating window because tumor position is more reproducible. However, other gating windows might be more appropriate for dose distribution perspective. In this pilot study, we proposed to utilize overlap volume histogram (OVH) to search optimized gating window and demonstrated its feasibility. Methods: We acquired 4DCT of 10 phases for 3 lung patients (2 with a target at right middle lobe and 1 at right upper lobe). After structures were defined in every phase, the OVH of each OAR was generated to quantify the three dimensional spatial relationship between the PTV and OARsmore » (bronchus, esophagus, heart and cord etc.) at each phase. OVH tells the overlap volume of an OAR according to outward distance from the PTV. Relative overlap volume at 20 mm outward distance from the PTV (ROV-20) was also defined as a metric for measuring overlap volume and obtained. For dose calculation, 3D CRT plans were made for all phases under the same beam angles and objectives (e.g., 95% of the PTV coverage with at least 100% of the prescription dose of 50 Gy). The gating window phase was ranked according to ROV-20, and the relationship between the OVH and dose distribution at each phase was evaluated by comparing the maximum dose, mean dose, and equivalent uniform dose of OAR. Results: OVHs showed noticeable difference from phase to phase, implying it is possible to find optimal phases for gating window. For 2 out of 3 patients (both with a target at RML), maximum dose, mean dose, and EUD increased as ROV-20 increased. Conclusion: It is demonstrated that optimal phases (in dose distribution perspective) for gating window could exist and OVH can be a useful tool for determining such phases without performing dose optimization calculations in all phases. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2012-007883) through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Amy T.Y., E-mail: changty@ha.org.hk; Hung, Albert W.M.; Cheung, Fion W.K.
Purpose: Intensity modulated radiation therapy (IMRT) is widely used to achieve a highly conformal dose and improve treatment outcome. However, plan quality and planning time are institute and planner dependent, and no standardized tool exists to recognize an optimal plan. RapidPlan, a knowledge-based algorithm, can generate constraints to assist optimization and produce high-quality IMRT plans. This report evaluated the quality and efficiency of using RapidPlan in nasopharyngeal carcinoma (NPC) IMRT planning. Methods and Materials: RapidPlan was configured using 79 radical IMRT plans for NPC; 20 consecutive NPC patients indicated for radical radiation therapy between October 2014 and May 2015 weremore » then recruited to assess its performance. The ability of RapidPlan to produce acceptable plans was evaluated. For plans that could not achieve clinical acceptance, manual touch-up was performed. The IMRT plans produced without RapidPlan (manual plans) and with RapidPlan (RP-2 plans, including those with manual touch-up) were compared in terms of dosimetric quality and planning efficiency. Results: RapidPlan by itself could produce clinically acceptable plans for 9 of the 20 patients; manual touch-up increased the number of acceptable plans (RP-2 plans) to 19. The target dose coverage and conformity were very similar. No difference was found in the maximum dose to the brainstem and optic chiasm. RP-2 plans delivered a higher maximum dose to the spinal cord (46.4 Gy vs 43.9 Gy, P=.002) but a lower dose to the parotid (mean dose to right parotid, 37.3 Gy vs 45.4 Gy; left, 34.4 Gy vs 43.1 Gy; P<.001) and the right cochlea (mean dose, 48.6 Gy vs 52.6 Gy; P=.02). The total planning time for RP-2 plans was significantly less than that for manual plans (64 minutes vs 295 minutes, P<.001). Conclusions: This study shows that RapidPlan can significantly improve planning efficiency and produce quality IMRT plans for NPC patients.« less
Experimental studies on the tensile properties of human umbilical cords.
Tantius, Britta; Rothschild, Markus A; Valter, Markus; Michael, Joern; Banaschak, Sibylle
2014-03-01
When tried in court, mothers accused of neonaticide may claim that the umbilical cord just broke during birth and the newborn child bled to death accordingly. To evaluate the possibility of a breakage of the umbilical cord is the goal of this work. Therefore 25 umbilical cords from neonates of both sexes born at term were stretched using an electrically operated material testing machine and the energy necessary to break them was measured. This experimental set-up equals a static strain, not a dynamic one. The maximum force endured (F max) ranged from 37.24 N to 150.04 N. The average force endured was 79.87 N with a standard deviation of 27.39. The elongation at break varied from 13.24% to a maximum of 119.93%. We found no relationship between the force endured and any of the following parameters: birth weight, pH of the venous umbilical blood, diameter of cord, free length under testing, duration of pregnancy or the mother's age. We performed a literature research and tried to define the circumstances in which a break is more likely to occur, these being malformations, entanglement or disease, e.g. inflammation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
TU-C-17A-05: Dose Domain Optimization of MLC Leaf Patterns for Highly Complicated 4Ï€ IMRT Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D; Yu, V; Ruan, D
Purpose: Highly conformal non-coplanar 4π radiotherapy plans typically require more than 20 intensity-modulated fields to deliver. A novel method to calculate multileaf collimator (MLC) leaf patterns is introduced to maximize delivery efficiency, accuracy and plan quality. Methods: 4 GBM patients, with a prescription dose of 59.4 Gy or 60 Gy, were evaluated using the 4π algorithm using 20 beams. The MLC calculation utilized a least square minimization of the dose distribution, with an anisotropic total variation regularization term to encourage piecewise continuity in the fluence maps. Transforming the fluence to the dose domain required multiplying the fluence with a sparsemore » matrix. Exploiting this property made it feasible to solve the problem using CVX, a MATLAB-based convex modeling framework. The fluence was stratified into even step sizes, and the MLC segments, limited to 300, were calculated. The patients studied were replanned using Eclipse with the same beam angles. Results: Compared to the original 4π plan, the stratified 4π plan increased the maximum/mean dose for, in Gy, by 1.0/0.0 (brainstem), 0.5/0.2 (chiasm), 0.0/0.0 (spinal cord), 1.9/0.3 (L eye), 0.7/0.2 (R eye), 0.4/0.4 (L lens), 0.3/0.3 (R lens), 1.0/0.8 (L Optical Nerve), 0.5/0.3 (R Optical Nerve), 0.3/0.2 (L Cochlea), 0.1/0.1 (R Cochlea), 4.6/0.2 (brain), 2.4/0.1 (brain-PTV), 5.1/0.9 (PTV). Compared to Eclipse, which generated an average of 607 segments, the stratified plan reduced (−) or increased (+) the maximum/mean dose, in Gy, by −10.2/−4.1 (brainstem), −10.5/−8.9 (chiasm), +0.0/−0.1 (spinal cord), −4.9/−3.4 (L eye), −4.1/−2.5 (R eye), −2.8/−2.7 (L lens), −2.1/−1.9 (R lens), −7.6/−6.5 (L Optical Nerve), −8.9/−6.1 (R Optical Nerve), −1.3/−1.9 (L Cochlea), −1.8/−1.8 (R Cochlea), +1.7/−2.1 (brain), +3.2/−2.6 (brain-PTV), +1.8/+0.3 Gy (PTV. The stratified plan was also more homogeneous in the PTV. Conclusion: This novel solver can transform complicated fluence maps into significantly fewer deliverable MLC segments than the commercial system while achieving superior dosimetry. Funding support partially contributed by Varian.« less
Chin Snyder, Karen; Kim, Jinkoo; Reding, Anne; Fraser, Corey; Gordon, James; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J
2016-11-08
The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model's ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans gener-ated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0 ± 1.6 Gy compared to clinical plans, p = 0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy ± 0.8Gy, p = 0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2 ± 0.4Gy, p = 0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2 ± 2.2Gy, p = 0.01) and GI (0.2 ± 0.4, p = 0.01) for the nine-field plans relative to KBPs planned with custom beam angles. A knowledge-based model for lung SBRT consisting of multiple treatment modalities and lesion loca-tions produced comparable plan quality to clinical plans. With proper training and validation, a robust KBM can be created that encompasses both IMRT and VMAT techniques, as well as different lesion locations. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; Schnell, E; Herman, T
Purpose: To determine from retrospective study the most appropriate technique for targeting small borderline operable pancreatic cancer surrounding blood vessels by evaluating the dosimetry and normal tissue sparing achievable using Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT). Methods: Treatment plans from ten patients who have undergone treatment with a prescribed dose of 4950 cGy, at 275 cGy per fraction, were analyzed. All plans were replanned using Eclipse TPS (Varian Medical Systems, Palo Alto, CA) with complementary VMAT or IMRT techniques to obtain paired data sets for comparison. The coverage to at least 95% of the plannedmore » target volume (PTV) was normalized to receive 100% of the prescription dose. The normal tissue constraints followed the quantitative analysis of normal tissue effects in the clinic (QUANTEC) guidelines and the organs at risks (OARs) were liver, kidneys, spinal cord and bowel. The plan evaluation was based on conformity index (CI), homogeneity index (HI), uniformity index (UI), DVH parameters, and student’s-t statistics (2 tails). Results: The VMAT technique delivered less maximum dose to the right kidney, left kidney, total kidney, liver, spinal cord, and bowel by 9.3%, 5.9%, 6.7%, 3.9%, 15.1%, 3.9%, and 4.3%, respectively. The averaged V15 for the total kidney was 10.21% for IMRT and 7.29% for VMAT. The averaged V20 for the bowel was 19.89% for IMRT and 14.06% for VMAT. On average, the CI for IMRT was 1.20 and 1.16 for VMAT (p = 0.20). The HI was 0.08 for both techniques (p = 0.91) and UI was 1.05 and 1.06 for IMRT and VMAT respectively (p = 0.59). Conclusion: Both techniques achieve adequate PTV coverage. Although VMAT techniques show better normal tissue sparing from excessive dose, no significant differences were observed. Slight discrepancies may rise from different versions of calculation algorithms.« less
Gao, Min; Li, Qilin; Ning, Zhonghua; Gu, Wendong; Huang, Jin; Mu, Jinming; Pei, Honglei
2016-01-01
To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4Gy in 28 fractions, and PTV1 was prescribed to 60Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage. The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Min; Li, Qilin; Ning, Zhonghua
2016-07-01
To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4 Gy in 28 fractions, and PTV1 was prescribed to 60 Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage.more » The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans.« less
Xin-Ye, Ni; Ren, Lei; Yan, Hui; Yin, Fang-Fang
2016-12-01
This study aimed to detect the sensitivity of Delt 4 on ordinary field multileaf collimator misalignments, system misalignments, random misalignments, and misalignments caused by gravity of the multileaf collimator in stereotactic body radiation therapy. (1) Two field sizes, including 2.00 cm (X) × 6.00 cm (Y) and 7.00 cm (X) × 6.00 cm (Y), were set. The leaves of X1 and X2 in the multileaf collimator were simultaneously opened. (2) Three cases of stereotactic body radiation therapy of spinal tumor were used. The dose of the planning target volume was 1800 cGy with 3 fractions. The 4 types to be simulated included (1) the leaves of X1 and X2 in the multileaf collimator were simultaneously opened, (2) only X1 of the multileaf collimator and the unilateral leaf were opened, (3) the leaves of X1 and X2 in the multileaf collimator were randomly opened, and (4) gravity effect was simulated. The leaves of X1 and X2 in the multileaf collimator shifted to the same direction. The difference between the corresponding 3-dimensional dose distribution measured by Delt 4 and the dose distribution in the original plan made in the treatment planning system was analyzed with γ index criteria of 3.0 mm/3.0%, 2.5 mm/2.5%, 2.0 mm/2.0%, 2.5 mm/1.5%, and 1.0 mm/1.0%. (1) In the field size of 2.00 cm (X) × 6.00 cm (Y), the γ pass rate of the original was 100% with 2.5 mm/2.5% as the statistical standard. The pass rate decreased to 95.9% and 89.4% when the X1 and X2 directions of the multileaf collimator were opened within 0.3 and 0.5 mm, respectively. In the field size of 7.00 (X) cm × 6.00 (Y) cm with 1.5 mm/1.5% as the statistical standard, the pass rate of the original was 96.5%. After X1 and X2 of the multileaf collimator were opened within 0.3 mm, the pass rate decreased to lower than 95%. The pass rate was higher than 90% within the 3 mm opening. (2) For spinal tumor, the change in the planning target volume V 18 under various modes calculated using treatment planning system was within 1%. However, the maximum dose deviation of the spinal cord was high. In the spinal cord with a gravity of -0.25 mm, the maximum dose deviation minimally changed and increased by 6.8% than that of the original. In the largest opening of 1.00 mm, the deviation increased by 47.7% than that of the original. Moreover, the pass rate of the original determined through Delt 4 was 100% with 3 mm/3% as the statistical standard. The pass rate was 97.5% in the 0.25 mm opening and higher than 95% in the 0.5 mm opening A, 0.25 mm opening A, whole gravity series, and 0.20 mm random opening. Moreover, the pass rate was higher than 90% with 2.0 mm/2.0% as the statistical standard in the original and in the 0.25 mm gravity. The difference in the pass rates was not statistically significant among the -0.25 mm gravity, 0.25 mm opening A, 0.20 mm random opening, and original as calculated using SPSS 11.0 software with P > .05. Different analysis standards of Delt 4 were analyzed in different field sizes to improve the detection sensitivity of the multileaf collimator position on the basis of 90% throughout rate. In stereotactic body radiation therapy of spinal tumor, the 2.0 mm/2.0% standard can reveal the dosimetric differences caused by the minor multileaf collimator position compared with the 3.0 mm/3.0% statistical standard. However, some position derivations of the misalignments that caused high dose amount to the spinal cord cannot be detected. However, some misalignments were not detected when a large number of multileaf collimator were administered into the spinal cord. © The Author(s) 2015.
Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR.
Choi, Chang Heon; Park, So-Yeon; Kim, Jung-In; Kim, Jin Ho; Kim, Kyubo; Carlson, Joel; Park, Jong Min
2017-02-01
To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) plans for spine stereotactic ablative radiotherapy (SABR). A total of 20 patients with spine metastasis were retrospectively selected. For each patient, a tri-Co-60 IMRT plan and a volumetric-modulated arc therapy (VMAT) plan were generated. The spinal cords were defined based on MR images for the tri-Co-60 IMRT, while isotropic 1-mm margins were added to the spinal cords for the VMAT plans. The VMAT plans were generated with 10-MV flattening filter-free photon beams of TrueBeam STx ™ (Varian Medical Systems, Palo Alto, CA), while the tri-Co-60 IMRT plans were generated with the ViewRay ™ system (ViewRay inc., Cleveland, OH). The initial prescription dose was 18 Gy (1 fraction). If the tolerance dose of the spinal cord was not met, the prescription dose was reduced until the spinal cord tolerance dose was satisfied. The mean dose to the target volumes, conformity index and homogeneity index of the VMAT and tri-Co-60 IMRT were 17.8 ± 0.8 vs 13.7 ± 3.9 Gy, 0.85 ± 0.20 vs 1.58 ± 1.29 and 0.09 ± 0.04 vs 0.24 ± 0.19, respectively. The integral doses and beam-on times were 16,570 ± 1768 vs 22,087 ± 2.986 Gy cm 3 and 3.95 ± 1.13 vs 48.82 ± 10.44 min, respectively. The tri-Co-60 IMRT seems inappropriate for spine SABR compared with VMAT. Advances in knowledge: For spine SABR, the tri-Co-60 IMRT is inappropriate owing to the large penumbra, large leaf width and low dose rate of the ViewRay system.
Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR
Choi, Chang Heon; Park, So-Yeon; Kim, Jung-in; Kim, Jin Ho; Kim, Kyubo; Carlson, Joel
2017-01-01
Objective: To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) plans for spine stereotactic ablative radiotherapy (SABR). Methods: A total of 20 patients with spine metastasis were retrospectively selected. For each patient, a tri-Co-60 IMRT plan and a volumetric-modulated arc therapy (VMAT) plan were generated. The spinal cords were defined based on MR images for the tri-Co-60 IMRT, while isotropic 1-mm margins were added to the spinal cords for the VMAT plans. The VMAT plans were generated with 10-MV flattening filter-free photon beams of TrueBeam STx™ (Varian Medical Systems, Palo Alto, CA), while the tri-Co-60 IMRT plans were generated with the ViewRay™ system (ViewRay inc., Cleveland, OH). The initial prescription dose was 18 Gy (1 fraction). If the tolerance dose of the spinal cord was not met, the prescription dose was reduced until the spinal cord tolerance dose was satisfied. Results: The mean dose to the target volumes, conformity index and homogeneity index of the VMAT and tri-Co-60 IMRT were 17.8 ± 0.8 vs 13.7 ± 3.9 Gy, 0.85 ± 0.20 vs 1.58 ± 1.29 and 0.09 ± 0.04 vs 0.24 ± 0.19, respectively. The integral doses and beam-on times were 16,570 ± 1768 vs 22,087 ± 2.986 Gy cm3 and 3.95 ± 1.13 vs 48.82 ± 10.44 min, respectively. Conclusion: The tri-Co-60 IMRT seems inappropriate for spine SABR compared with VMAT. Advances in knowledge: For spine SABR, the tri-Co-60 IMRT is inappropriate owing to the large penumbra, large leaf width and low dose rate of the ViewRay system. PMID:27781486
Denti, Paolo; Martinson, Neil; Cohn, Silvia; Mashabela, Fildah; Hoffmann, Jennifer; Msandiwa, Reginah; Castel, Sandra; Wiesner, Lubbe; Chaisson, Richard E.; McIlleron, Helen
2015-01-01
Effective treatment of tuberculosis during pregnancy is essential for preventing maternal and fetal mortality, but little is known about the effects of pregnancy on the disposition of antituberculosis drugs. We explored the effects of pregnancy on the pharmacokinetics of rifampin, the key sterilizing drug in tuberculosis treatment, in Tshepiso, a prospective cohort study involving pregnant HIV-infected women with or without tuberculosis in Soweto, South Africa. Participants receiving standard first-line tuberculosis treatment underwent sparse sampling for rifampin at 37 weeks' gestation or delivery and then postpartum. Cord blood was collected when possible. A population pharmacokinetic model was developed to investigate the effects of pregnancy on rifampin pharmacokinetics. Among the 48 participants, median age and weight were 28 years and 67 kg, respectively. A one-compartment model with first-order elimination, transit compartment absorption, and allometric scaling described the data well. Pregnancy reduced rifampin clearance by 14%. The median (interquartile range) model-estimated rifampin area under the concentration-time curve over 24 h (AUC0–24) during pregnancy or intrapartum was 40.8 h · mg/liter (27.1 to 54.2 h · mg/liter) compared to 37.4 h · mg/liter (26.8 to 50.3 h · mg/liter) postpartum. The maximum concentrations were similar during pregnancy and postpartum. Rifampin was detectable in 36% (8/22) of cord blood samples, and 88% (42/48) of the women had successful treatment outcomes. There was one case of perinatal tuberculosis. In conclusion, rifampin clearance is modestly reduced during the last trimester of pregnancy. Exposures are only slightly increased, so dose adjustment during pregnancy is not needed. Rifampin was detected in cord blood samples when delivery occurred soon after dosing. The consequences of exposure to this potent inducer of metabolizing enzymes among HIV-exposed infants are unclear. PMID:26643345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vikraman, S; Ramu, M; Karrthick, Kp
Purpose: The purpose of this study was to validate the advent of COMPASS 3D dosimetry as a routine pre treatment verification tool with commercially available CMS Monaco and Oncentra Masterplan planning system. Methods: Twenty esophagus patients were selected for this study. All these patients underwent radical VMAT treatment in Elekta Linac and plans were generated in Monaco v5.0 with MonteCarlo(MC) dose calculation algorithm. COMPASS 3D dosimetry comprises an advanced dose calculation algorithm of collapsed cone convolution(CCC). To validate CCC algorithm in COMPASS, The DICOM RT Plans generated using Monaco MC algorithm were transferred to Oncentra Masterplan v4.3 TPS. Only finalmore » dose calculations were performed using CCC algorithm with out optimization in Masterplan planning system. It is proven that MC algorithm is an accurate algorithm and obvious that there will be a difference with MC and CCC algorithms. Hence CCC in COMPASS should be validated with other commercially available CCC algorithm. To use the CCC as pretreatment verification tool with reference to MC generated treatment plans, CCC in OMP and CCC in COMPASS were validated using dose volume based indices such as D98, D95 for target volumes and OAR doses. Results: The point doses for open beams were observed <1% with reference to Monaco MC algorithms. Comparisons of CCC(OMP) Vs CCC(COMPASS) showed a mean difference of 1.82%±1.12SD and 1.65%±0.67SD for D98 and D95 respectively for Target coverage. Maximum point dose of −2.15%±0.60SD difference was observed in target volume. The mean lung dose of −2.68%±1.67SD was noticed between OMP and COMPASS. The maximum point doses for spinal cord were −1.82%±0.287SD. Conclusion: In this study, the accuracy of CCC algorithm in COMPASS 3D dosimetry was validated by compared with CCC algorithm in OMP TPS. Dose calculation in COMPASS is feasible within < 2% in comparison with commercially available TPS algorithms.« less
Stereotactic body radiotherapy reirradiation for recurrent epidural spinal metastases.
Mahadevan, Anand; Floyd, Scott; Wong, Eric; Jeyapalan, Suriya; Groff, Michael; Kasper, Ekkehard
2011-12-01
When patients show progression after conventional fractionated radiation for spine metastasis, further radiation and surgery may not be options. Stereotactic body radiotherapy (SBRT) has been successfully used in treatment of the spine and may be applicable in these cases. We report the use of SBRT for 60 consecutive patients (81 lesions) who had radiological progressive spine metastasis with epidural involvement after previous radiation for spine metastasis. SBRT was used with fiducial and vertebral anatomy-based targeting. The radiation dose was prescribed based on the extent of spinal canal involvement; the dose was 8 Gy×3=24 Gy when the tumor did not touch the spinal cord and 5 to 6 Gyx5=25 to 30 Gy when the tumor abutted the cord. The cord surface received up to the prescription dose with no hot spots in the cord. The median overall survival was 11 months, and the median progression-free survival was 9 months. Overall, 93% of patients had stable or improved disease while 7% of patients showed disease progression; 65% of patients had pain relief. There was no significant toxicity other than fatigue. SBRT is feasible and appears to be an effective treatment modality for reirradiation after conventional palliative radiation fails for spine metastasis patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Yamada, Yoshiya; Lovelock, D Michael; Yenice, Kamil M; Bilsky, Mark H; Hunt, Margaret A; Zatcky, Joan; Leibel, Steven A
2005-05-01
The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never irradiated patients, respectively. More than 90% of patients experienced palliation from pain, weakness, or paresthesia; 75% and 81% of secondary and primary lesions, respectively, exhibited local control at the time of last follow-up. No cases of radiation-induced myelopathy or radiculopathy have thus far been encountered. Precision stereotactic and image-guided paraspinal IMRT allows the delivery of high doses of radiation in multiple fractions to tumors within close proximity to the spinal cord while respecting cord tolerance. Although preliminary, the clinical results are encouraging.
Effect of atelectasis changes on tissue mass and dose during lung radiotherapy.
Guy, Christopher L; Weiss, Elisabeth; Jan, Nuzhat; Reshko, Leonid B; Christensen, Gary E; Hugo, Geoffrey D
2016-11-01
To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose. Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated. Atelectatic lobes experienced mean (stdev) mass changes of -2.8% (36.6%), -24.4% (33.0%), and -9.2% (17.5%) and density changes of -66.0% (6.4%), -25.6% (13.6%), and -17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord D max , esophagus D mean , and lungs D mean were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina alignments, respectively. Investigation of GTV coverage showed mean (stdev) changes in V Rx , D max , and D min of -5.5% (13.5%), 2.5% (4.2%), and 0.8% (8.9%), respectively, for bone alignment with similar results for carina alignment. Resolution of atelectasis caused mass and density decreases, on average, and introduced substantial changes in normal tissue dose metrics in a subset of the patient cohort.
Effect of atelectasis changes on tissue mass and dose during lung radiotherapy
Guy, Christopher L.; Weiss, Elisabeth; Jan, Nuzhat; Reshko, Leonid B.; Christensen, Gary E.; Hugo, Geoffrey D.
2016-01-01
Purpose: To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose. Methods: Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated. Results: Atelectatic lobes experienced mean (stdev) mass changes of −2.8% (36.6%), −24.4% (33.0%), and −9.2% (17.5%) and density changes of −66.0% (6.4%), −25.6% (13.6%), and −17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord Dmax, esophagus Dmean, and lungs Dmean were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina alignments, respectively. Investigation of GTV coverage showed mean (stdev) changes in VRx, Dmax, and Dmin of −5.5% (13.5%), 2.5% (4.2%), and 0.8% (8.9%), respectively, for bone alignment with similar results for carina alignment. Conclusions: Resolution of atelectasis caused mass and density decreases, on average, and introduced substantial changes in normal tissue dose metrics in a subset of the patient cohort. PMID:27806593
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynampati, D; Scripes, P Godoy; Kuo, H
2015-06-15
Purpose: To evaluate dosimetric differences between superposition beam model (AAA) and determinant photon transport solver (AXB) in lung SBRT and Cranial SRS dose computations. Methods: Ten Cranial SRS and ten Lung SBRT plans using Varian, AAA -11.0 were re-planned using Acuros -XB-11.0 with fixed MU. 6MV photon Beam model with HD120-MLC used for dose calculations. Four non-coplanar conformal arcs used to deliver 21Gy or 18Gy to SRS targets (0.4 to 6.2cc). 54Gy (3Fractions) or 50Gy (5Fractions) was planned for SBRT targets (7.3 to 13.9cc) using two VAMT non-coplanar arcs. Plan comparison parameters were dose to 1% PTV volume (D1), dosemore » to 99% PTV volume( D99), Target mean (Dmean), Conformity index (ratio of prescription isodose volume to PTV), Homogeneity Index [ (D2%-D98%)/Dmean] and R50 (ratio of 50% of prescription isodose volume to PTV). OAR parameters were Brain volume receiving 12Gy dose (V12Gy) and maximum dose (D0.03) to Brainstem for SRS. For lung SBRT, maximum dose to Heart and Cord, Mean lung dose (MLD) and volume of lung receiving 20Gy (V20Gy) were computed. PTV parameters compared by percentage difference between AXB and AAA parameters. OAR parameters and HI compared by absolute difference between two calculations. For analysis, paired t-test performed over the parameters. Results: Compared to AAA, AXB SRS plans have on average 3.2% lower D99, 6.5% lower CI and 3cc less Brain-V12. However, AXB SBRT plans have higher D1, R50 and Dmean by 3.15%, 1.63% and 2.5%. For SRS and SBRT, AXB plans have average HI 2 % and 4.4% higher than AAA plans. In both techniques, all other parameters vary within 1% or 1Gy. In both sets only two parameters have P>0.05. Conclusion: Even though t-test results signify difference between AXB and AAA plans, dose differences in dose estimations by both algorithms are clinically insignificant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, W.T.; Siebers, J.V.
Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanarmore » Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing significant variations in OAR doses including mean dose reductions >5 Gy. Clinical implementation will facilitate patient-specific decision making based on achievable dosimetry as opposed to accept/reject models based on population derived objectives.« less
Encaoua, J; Abgral, R; Leleu, C; El Kabbaj, O; Caradec, P; Bourhis, D; Pradier, O; Schick, U
2017-06-01
To study the impact on radiotherapy planning of an automatically segmented target volume delineation based on ( 18 F)-fluorodeoxy-D-glucose (FDG)-hybrid positron emission tomography-computed tomography (PET-CT) compared to a manually delineation based on computed tomography (CT) in oesophageal carcinoma patients. Fifty-eight patients diagnosed with oesophageal cancer between September 2009 and November 2014 were included. The majority had squamous cell carcinoma (84.5 %), and advanced stage (37.9 % were stade IIIA) and 44.8 % had middle oesophageal lesion. Gross tumour volumes were retrospectively defined based either manually on CT or automatically on coregistered PET/CT images using three different threshold methods: standard-uptake value (SUV) of 2.5, 40 % of maximum intensity and signal-to-background ratio. Target volumes were compared in length, volume and using the index of conformality. Radiotherapy plans to the dose of 50Gy and 66Gy using intensity-modulated radiotherapy were generated and compared for both data sets. Planification target volume coverage and doses delivered to organs at risk (heart, lung and spinal cord) were compared. The gross tumour volume based manually on CT was significantly longer than that automatically based on signal-to-background ratio (6.4cm versus 5.3cm; P<0.008). Doses to the lungs (V20, D mean ), heart (V40), and spinal cord (D max ) were significantly lower on plans using the PTV SBR . The PTV SBR coverage was statistically better than the PTV CT coverage on both plans. (50Gy: P<0.0004 and 66Gy: P<0.0006). The automatic PET segmentation algorithm based on the signal-to-background ratio method for the delineation of oesophageal tumours is interesting, and results in better target volume coverage and decreased dose to organs at risk. This may allow dose escalation up to 66Gy to the gross tumour volume. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Sandler, Evan B; Roach, Kathryn E; Field-Fote, Edelle C
2017-05-15
Outcomes of training are thought to be related to the amount of training (training dose). Although various approaches to locomotor training have been used to improve walking function in persons with spinal cord injury (SCI), little is known about the relationship between dose of locomotor training and walking outcomes. This secondary analysis aimed to identify the relationship between training dose and improvement in walking distance and speed associated with locomotor training in participants with chronic motor-incomplete spinal cord injury (MISCI). We compared the dose-response relationships associated with each of four different locomotor training approaches. Participants were randomized to either: treadmill-based training with manual assistance (TM = 17), treadmill-based training with stimulation (TS = 18), overground training with stimulation (OG = 15), and treadmill-based training with locomotor robotic device assistance (LR = 14). Subjects trained 5 days/week for 12 weeks, with a target of 60 training sessions. The distance-dose and time-dose were calculated based on the total distance and total time, respectively, participants engaged in walking over all sessions combined. Primary outcome measures included walking distance (traversed in 2 min) and walking speed (over 10 m). Only OG training showed a good correlation between distance-dose and change in walking distance and speed walked over ground (r = 0.61, p = 0.02; r = 0.62, p = 0.01). None of the treadmill-based training approaches were associated with significant correlations between training dose and improvement of functional walking outcome. The findings suggest that greater distance achieved over the course of OG training is associated with better walking outcomes in the studied population. Further investigation to identify the essential elements that determine outcomes would be valuable for guiding rehabilitation.
Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H
2009-02-01
Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.
Martini, Irene; Di Domenico, Enea Gino; Scala, Roberta; Caruso, Francesca; Ferreri, Carla; Ubaldi, Filippo M; Lenzi, Andrea; Valensise, Herbert
2014-05-10
Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, the concentration of cells in cord blood units is limited and this may represent the main restriction to their therapeutic clinical use. The percentage of metabolically active stem cells provides a measure of the viability of cells in an UCB sample. It follows that an active cellular metabolism causes a proliferation in stem cells, offering an opportunity to increase the cellular concentration. A high cell dose is essential when transplanting cord stem cells, guaranteeing, in the receiving patient, a successful outcome.This study is designed to evaluate the impact of docosahexaenoic acid (DHA) supplementation in pregnant women, in order to increase the quantity and viability of the cells in UCB samples. The metabolic demand of DHA increases in the course of pregnancy and reaches maximum absorption during the third trimester of pregnancy. According to these observations, this trial will be divided into two different experimental groups: in the first group, participants will be enrolled from the 20th week of estimated stage of gestation, before the maximum absorption of DHA; while in the second group, enrolment will start from the 28th week of estimated stage of gestation, when the DHA request is higher. Participants in the trial will be divided and randomly assigned to the placebo group or to the experimental group. Each participant will receive a complete set of capsules of either placebo (250 mg of olive oil) or DHA (250 mg), to take one a day from the 20th or from the 28th week, up to the 40th week of estimated gestational age. Samples of venous blood will be taken from all participants before taking placebo or DHA, at the 20th or at the 28th week, and at the 37th to 38th week of pregnancy to monitor the level of DHA. Cell number and cellular viability will be evaluated by flow cytometry within 48 hours of the UCB sample collection. International Standard Randomised Controlled Trial Number Register: ISRCTN58396079. Registration date: 8 October 2013.
[Experimental study on the impact of photodynamic therapy on the normal vocal cord injury].
Liu, Haiyan; Huang, Yongwang; Wang, Shanshan; Li, Yingxin; Yin, Huijuan; Gao, Xiaowei
2015-12-01
To investigate the reactive characteristics of normal vocal cord tissues to photodynamic therapy (PDT) and the damage effects of different concentration of photosensitizer and different light on normal rabbit vocal cord. Making the preliminary research of PDT in clinical treatment of chronic inflammation of the vocal cords and precancerous lesions. Twenty-five healthy Japanese big ear experimental rabbits were randomly divided into 5 groups: low work rate low dose group A (100 mW, 10%5-ALA), high work rate low dose group B (200 mW, 10%5-ALA), high work rate high dose group C (200 mW, 20%5-ALA), low work rate high dose group D (100 mW, 20%5-ALA) and normal control group E. The issue damage and wound recovery were observed in 1 d, 3 d, 7 d, 14 d, 28 d after intervention. A severe inflammation reaction was observed in group A, B, C, D after intervened with PDT compared to normal group. The reaction of group A was lighter, and the reaction of group C was the most serious. The content of collagenous fiber, hyaluronic acid and fibronectin in vocal fold lamina layer was significantly higher than that in normal group (P<0.05). Different degrees of fiber proliferation were observed in all groups. The content of each component of vocal fold lamina layer tended to be normal slightly higher level in 28 d. Observation by electron microscope showed that there were no significant differences in A, B, C, D, E in 28 d after intervention. Recoverable damage repair process can be detected in rabbit vocal after intervened with PDT, which began in 7 d and basically completed in 28 d. In a certain concentration (10%-20%) and dose range (100-200 mW). The higher of photodynamic dose, the more serious of the damage. And the damage was basically reversible.
Pieretti, Stefano; Ranjan, Amalendu P; Di Giannuario, Amalia; Mukerjee, Anindita; Marzoli, Francesca; Di Giovannandrea, Rita; Vishwanatha, Jamboor K
2017-10-01
Given the poor bioavailability of curcumin, its antinociceptive effects are produced after chronic intravenous administration of high doses, while poly (d,l-lactide-co-glycolide)-loaded vesicles (PLGA) can improve drug delivery. This paper investigates the antinociceptive effects of curcumin-loaded PLGA nanovesicles (PLGA-CUR) administered via intravenous (i.v.) or intrathecal (i.t.) routes at low and high doses. The following models of pain were used: formalin test, zymosan-induced hyperalgesia and sciatic nerve ligation inducing neuropathic allodynia and hyperalgesia. PLGA-CUR administered intravenously was able to reduce the response to nociceptive stimuli in the formalin test and hyperalgesia induced by zymosan. Curcumin, instead, was inactive. Low-dose i.t. administration of PLGA-CUR significantly reduced allodynia produced by sciatic nerve ligation, whereas low doses of curcumin did not change the response to nociceptive stimuli. Long-lasting antinociceptive effects were observed when high doses of PLGA-CUR were administered intrathecally. At high doses, i.t. administration of curcumin only exerted rapid and transient antinociceptive effects. Measurement of cytokine and BDNF in the spinal cord of neuropathic mice demonstrate that the antinociceptive effects of PLGA-CUR depend on the reduction in cytokine release and BDNF in the spinal cord. The results demonstrate the effectiveness of PLGA-CUR and suggest that PLGA-CUR nanoformulation might be a new potential drug in the treatment of pain. Copyright © 2017 Elsevier B.V. All rights reserved.
Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Jun, E-mail: jun.deng@yale.edu; Chen Zhe; Roberts, Kenneth B.
Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes,more » liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.« less
Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank
2011-05-01
To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT. Copyright © 2011 Elsevier Inc. All rights reserved.
Jankowska, Petra J; Kong, Christine; Burke, Kevin; Harrington, Kevin J; Nutting, Christopher
2007-10-01
High dose irradiation of the posterior cervical lymph nodes usually employs applied electron fields to treat the target volume and maintain the spinal cord dose within tolerance. In the light of recent advances in elective lymph node localisation we investigated optimization of field shape and electron energy to treat this target volume. In this study, three sequential hypotheses were tested. Firstly, that customization of the electron fields based on the nodal PTV outlined gives better PTV coverage than conventional field delineation. Using the consensus guidelines, customization of the electron field shape was compared to conventional fields based on bony landmarks. Secondly, that selection of electron energy using DVHs for spinal cord and PTV improves the minimum dose to PTV. Electron dose-volume histograms (DVHs) for the PTV, spinal cord and para-vertebral muscles, were generated using the Monte Carlo electron algorithm. These DVHs were used to compare standard vs optimized electron energy calculations. Finally, that combination of field customization and electron energy optimization improves both the minimum and mean doses to PTV compared with current standard practice. Customized electron beam shaping based on the consensus guidelines led to fewer geographical misses than standard field shaping. Customized electron energy calculation led to higher minimum doses to the PTV. Overall, the customization of field shape and energy resulted in an improved mean dose to the PTV (92% vs 83% p=0.02) and a 27% improvement in the minimum dose delivered to the PTV (45% vs 18% p=0.0009). Optimization of electron field shape and beam energy based on current consensus guidelines led to significant improvement in PTV coverage and may reduce recurrence rates.
Comparing Treatment Plan in All Locations of Esophageal Cancer
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-01-01
Abstract The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations. This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle3 with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume. In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques. IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted. PMID:25929910
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-05-01
The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations.This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume.In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques.IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted.
Fatigue of cord-rubber composites for tires
NASA Astrophysics Data System (ADS)
Song, Jaehoon
Fatigue behaviors of cord-rubber composite materials forming the belt region of radial pneumatic tires have been characterized to assess their dependence on stress, strain and temperature history as well as materials composition and construction . Using actual tires, it was found that interply shear strain is one of the crucial parameters for damage assessment from the result that higher levels of interply shear strain of actual tires reduce the fatigue lifetime. Estimated at various levels of load amplitude were the fatigue life, the extent and rate of resultant strain increase ("dynamic creep"), cyclic strains at failure, and specimen temperature. The interply shear strain of 2-ply 'tire belt' composite laminate under circumferential tension was affected by twisting of specimen due to tension-bending coupling. However, a critical level of interply shear strain, which governs the gross failure of composite laminate due to the delamination, appeared to be independent of different lay-up of 2-ply vs. symmetric 4-ply configuration. Reflecting their matrix-dominated failure modes such as cord-matrix debonding and delamination, composite laminates with different cord reinforcements showed the same S-N relationship as long as they were constructed with the same rubber matrix, the same cord angle, similar cord volume, and the same ply lay-up. Because of much lower values of single cycle strength (in terms of gross fracture load per unit width), the composite laminates with larger cord angle and the 2-ply laminates exhibited exponentially shorter fatigue lifetime, at a given stress amplitude, than the composite laminates with smaller cord angle and 4-ply symmetric laminates, respectively. The increase of interply rubber thickness lengthens their fatigue lifetime at an intermediate level of stress amplitude. However, the increase in the fatigue lifetime of the composite laminate becomes less noticeable at very low stress amplitude. Even with small compressive cyclic stresses, the fatigue life of belt composites is predominantly influenced by the magnitude of maximum stress. Maximum cyclic strain of composite laminates at failure, which measures the total strain accumulation for gross failure, was independent of stress amplitude and close to the level of static failure strain. For all composite laminates under study, a linear correlation could be established between the temperature rise rate and dynamic creep rate which was, in turn, inversely proportional to the fatigue lifetime. Using the acoustic emission (AE) initiation stress value, better prediction of fatigue life was available for the fiber-reinforced composites having fatigue limit. The accumulation rate of AE activities during cyclic loading was linearly proportional to the maximum applied load and to the inverse of the fatigue life of cord-rubber composite laminates. Finally, a modified fatigue modulus model based on combination of power-law and logarithmic relation was proposed to predict the fatigue lifetime profile of cord-rubber composite laminates.
Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials.
Glass, Jonathan D; Hertzberg, Vicki S; Boulis, Nicholas M; Riley, Jonathan; Federici, Thais; Polak, Meraida; Bordeau, Jane; Fournier, Christina; Johe, Karl; Hazel, Tom; Cudkowicz, Merit; Atassi, Nazem; Borges, Lawrence F; Rutkove, Seward B; Duell, Jayna; Patil, Parag G; Goutman, Stephen A; Feldman, Eva L
2016-07-26
To test the safety of spinal cord transplantation of human stem cells in patients with amyotrophic lateral sclerosis (ALS) with escalating doses and expansion of the trial to multiple clinical centers. This open-label trial included 15 participants at 3 academic centers divided into 5 treatment groups receiving increasing doses of stem cells by increasing numbers of cells/injection and increasing numbers of injections. All participants received bilateral injections into the cervical spinal cord (C3-C5). The final group received injections into both the lumbar (L2-L4) and cervical cord through 2 separate surgical procedures. Participants were assessed for adverse events and progression of disease, as measured by the ALS Functional Rating Scale-Revised, forced vital capacity, and quantitative measures of strength. Statistical analysis focused on the slopes of decline of these phase 2 trial participants alone or in combination with the phase 1 participants (previously reported), comparing these groups to 3 separate historical control groups. Adverse events were mostly related to transient pain associated with surgery and to side effects of immunosuppressant medications. There was one incident of acute postoperative deterioration in neurologic function and another incident of a central pain syndrome. We could not discern differences in surgical outcomes between surgeons. Comparisons of the slopes of decline with the 3 separate historical control groups showed no differences in mean rates of progression. Intraspinal transplantation of human spinal cord-derived neural stem cells can be safely accomplished at high doses, including successive lumbar and cervical procedures. The procedure can be expanded safely to multiple surgical centers. This study provides Class IV evidence that for patients with ALS, spinal cord transplantation of human stem cells can be safely accomplished and does not accelerate the progression of the disease. This study lacks the precision to exclude important benefit or safety issues. © 2016 American Academy of Neurology.
Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L
2016-05-01
Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as shown in (a). Furthermore, the alterations in local spinal blood flow could be significantly alleviated with low dose estrogen therapy. This therapy led to the preservation of the structural integrity of the spinal cord (b), which in turn led to the improved functional recovery as shown (c). © 2016 International Society for Neurochemistry.
SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Altinok, A; Kucukmorkoc, E
2014-06-01
Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of themore » planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is superior to 7 field IMRT technique in terms of both spinal cord sparing and better conformity and gradient indexes.« less
SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, T; Araki, F
Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms.more » Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.« less
Cao, Xia; Fang, Le; Cui, Chuan-yu; Gao, Shi; Wang, Tian-wei
2018-01-01
Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy. PMID:29623940
The dosimetric impact of implants on the spinal cord dose during stereotactic body radiotherapy.
Yazici, Gozde; Sari, Sezin Yuce; Yedekci, Fazli Yagiz; Yucekul, Altug; Birgi, Sumerya Duru; Demirkiran, Gokhan; Gultekin, Melis; Hurmuz, Pervin; Yazici, Muharrem; Ozyigit, Gokhan; Cengiz, Mustafa
2016-05-25
The effects of spinal implants on dose distribution have been studied for conformal treatment plans. However, the dosimetric impact of spinal implants in stereotactic body radiotherapy (SBRT) treatments has not been studied in spatial orientation. In this study we evaluated the effect of spinal implants placed in sawbone vertebra models implanted as in vivo instrumentations. Four different spinal implant reconstruction techniques were performed using the standard sawbone lumbar vertebrae model; 1. L2-L4 posterior instrumentation without anterior column reconstruction (PI); 2. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (AIAC); 3. L2-L4 posterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (PIAC); 4. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with chest tubes filled with bone cement (AIABc). The target was defined as the spinous process and lamina of the lumbar (L) 3 vertebra. A thermoluminescent dosimeter (TLD, LiF:Mg,Ti) was located on the measurement point anterior to the spinal cord. The prescription dose was 8 Gy and the treatment was administered in a single fraction using a CyberKnife® (Accuray Inc., Sunnyvale, CA, USA). We performed two different treatment plans. In Plan A beam interaction with the rod was not limited. In plan B the rod was considered a structure of avoidance, and interaction between the rod and beam was prevented. TLD measurements were compared with the point dose calculated by the treatment planning system (TPS). In plan A, the difference between TLD measurement and the dose calculated by the TPS was 1.7 %, 2.8 %, and 2.7 % for the sawbone with no implant, PI, and PIAC models, respectively. For the AIAC model the TLD dose was 13.8 % higher than the TPS dose; the difference was 18.6 % for the AIABc model. In plan B for the AIAC and AIABc models, TLD measurement was 2.5 % and 0.9 % higher than the dose calculated by the TPS, respectively. Spinal implants may be present in the treatment field in patients scheduled to undergo SBRT. For the types of implants studied herein anterior rod instrumentation resulted in an increase in the spinal cord dose, whereas use of a titanium cage had a minimal effect on dose distribution. While planning SBRT in patients with spinal reconstructions, avoidance of the rod and preventing interaction between the rod and beam might be the optimal solution for preventing unexpectedly high spinal cord doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pina-crespo, J.C.; Dalo, N.L.
1992-01-01
The effect of low doses of urethane on three phases of spinal seizures evoked by sudden cooling (SSSC) of toad isolated spinal cord was studied. In control toads, SSSC began with a latency of 91[plus minus]3 sec exhibiting brief tremors, followed by clonic muscle contractions and finally reaching a tonic contraction. The latency of onset of seizures was significantly enhanced. The tonic phase was markedly abolished in toads pretreated intralymphaticaly with 0.15 g/kg of urethane. Tremors were the only phase observed in 55% of toads that received doses of 0.2 g/kg, and a total blockage of seizures was seen aftermore » doses of 0.25 g/kg of urethane in 50% of the preparations. A possible depressant effect of urethane on transmission mediated by excitatory amino acids is suggested.« less
NASA Astrophysics Data System (ADS)
Hasan Rhaif Al-Sahlanee, Mayyadah; Maizan Ramli, Ramzun; Abdul Hassan Ali, Miami; Fadhil Tawfiq, Nada; Zahirah Noor Azman, Nurul; Abdul Rahman, Azhar; Shahrim Mustafa, Iskandar; Noor Ashikin Nik Abdul Razak, Nik; Zakiah Yahaya, Nor; Mohammed Al-Marri, Hana; Syuhada Ayob, Nur; Zakaria, Nabela
2017-10-01
Trace elements are essential nutritional components in humans and inconvenient tissue content that have a significant influence on infant size. The aim of this study is to evaluate the effects of concentration of elements (uranium (U), lead (Pb) and iron (Fe)) and absorption of Pb and Fe on maternal and umbilical cord blood samples. The concentration and absorption of Pb and Fe in blood samples were determined by using atomic absorption spectrophotometry device, while the uranium concentration was determined by using CR-39 detector. Fifty women of age 16-44 years are involved in this study. Results show that the maximum and minimum values of both concentration and absorption in the maternal samples were for Pb and Fe, respectively. In addition, for umbilical cord, the maximum values of concentration and absorption were for Fe and the minimum concentration and absorption were for U and Pb, respectively. A significant correlation between maternal and umbilical cord blood samples was found. This indicates that the Pb, U and Fe elements can easily transfer from maternal to the fetal body which impacts the growth of fetus.
Midodrine improves orgasm in spinal cord-injured men: the effects of autonomic stimulation.
Soler, Jean Marc; Previnaire, Jean Gabriel; Plante, Pierre; Denys, Pierre; Chartier-Kastler, Emmanuel
2008-12-01
Orgasm is less frequent in men with spinal cord injury (SCI) than in able-bodied subjects, and is poorly understood. To assess the effect of autonomic stimulation on orgasm in SCI men using midodrine, an alpha1-adrenergic agonist agent. Penile vibratory stimulation (PVS) was performed in 158 SCI men on midodrine as part of a treatment for anejaculation, after they failed a baseline PVS. A maximum of four trials were performed, weekly, with increasing doses of midodrine. The presence and type of ejaculation, orgasm experiences, and cardiovascular data were collected. Ejaculation either antegrade or retrograde was obtained in 102 SCI men (65%). Orgasm without ejaculation was reported by 14 patients (9%) on baseline PVS. Ninety-three patients (59%) experienced orgasm during PVS on midodrine. Orgasm was significantly related to the presence of ejaculation in 86 patients (84%), and more strikingly to antegrade ejaculation (pure or mixed with retrograde), i.e., in 98% of 70 patients. Orgasm was significantly more frequent in patients with upper motor neuron and incomplete lesions who present somatic responses during PVS. There was no effect of the presence of psychogenic erection. There was a significant increase in both systolic and diastolic blood pressure. Sixteen patients, mainly tetraplegics, developed intense autonomic dysreflexia (AD) that required an oral nicardipine chlorhydrate. Orgasm is the brain's cognitive interpretation of genital sensations and somatic responses, AD, and ejaculation. Intact sacral and T10-L2 cord segments are mandatory, allowing coordination between internal and external sphincters. Autonomic stimulation with midodrine enhances orgasm rate, mainly by creating antegrade ejaculation.
Chang, Amy T Y; Hung, Albert W M; Cheung, Fion W K; Lee, Michael C H; Chan, Oscar S H; Philips, Helen; Cheng, Yung-Tang; Ng, Wai-Tong
2016-07-01
Intensity modulated radiation therapy (IMRT) is widely used to achieve a highly conformal dose and improve treatment outcome. However, plan quality and planning time are institute and planner dependent, and no standardized tool exists to recognize an optimal plan. RapidPlan, a knowledge-based algorithm, can generate constraints to assist optimization and produce high-quality IMRT plans. This report evaluated the quality and efficiency of using RapidPlan in nasopharyngeal carcinoma (NPC) IMRT planning. RapidPlan was configured using 79 radical IMRT plans for NPC; 20 consecutive NPC patients indicated for radical radiation therapy between October 2014 and May 2015 were then recruited to assess its performance. The ability of RapidPlan to produce acceptable plans was evaluated. For plans that could not achieve clinical acceptance, manual touch-up was performed. The IMRT plans produced without RapidPlan (manual plans) and with RapidPlan (RP-2 plans, including those with manual touch-up) were compared in terms of dosimetric quality and planning efficiency. RapidPlan by itself could produce clinically acceptable plans for 9 of the 20 patients; manual touch-up increased the number of acceptable plans (RP-2 plans) to 19. The target dose coverage and conformity were very similar. No difference was found in the maximum dose to the brainstem and optic chiasm. RP-2 plans delivered a higher maximum dose to the spinal cord (46.4 Gy vs 43.9 Gy, P=.002) but a lower dose to the parotid (mean dose to right parotid, 37.3 Gy vs 45.4 Gy; left, 34.4 Gy vs 43.1 Gy; P<.001) and the right cochlea (mean dose, 48.6 Gy vs 52.6 Gy; P=.02). The total planning time for RP-2 plans was significantly less than that for manual plans (64 minutes vs 295 minutes, P<.001). This study shows that RapidPlan can significantly improve planning efficiency and produce quality IMRT plans for NPC patients. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plansmore » were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique.« less
Dudley-Javoroski, S; Petrie, M A; McHenry, C L; Amelon, R E; Saha, P K; Shields, R K
2016-03-01
This study examined the effect of a controlled dose of vibration upon bone density and architecture in people with spinal cord injury (who eventually develop severe osteoporosis). Very sensitive computed tomography (CT) imaging revealed no effect of vibration after 12 months, but other doses of vibration may still be useful to test. The purposes of this report were to determine the effect of a controlled dose of vibratory mechanical input upon individual trabecular bone regions in people with chronic spinal cord injury (SCI) and to examine the longitudinal bone architecture changes in both the acute and chronic state of SCI. Participants with SCI received unilateral vibration of the constrained lower limb segment while sitting in a wheelchair (0.6g, 30 Hz, 20 min, three times weekly). The opposite limb served as a control. Bone mineral density (BMD) and trabecular micro-architecture were measured with high-resolution multi-detector CT. For comparison, one participant was studied from the acute (0.14 year) to the chronic state (2.7 years). Twelve months of vibration training did not yield adaptations of BMD or trabecular micro-architecture for the distal tibia or the distal femur. BMD and trabecular network length continued to decline at several distal femur sub-regions, contrary to previous reports suggesting a "steady state" of bone in chronic SCI. In the participant followed from acute to chronic SCI, BMD and architecture decline varied systematically across different anatomical segments of the tibia and femur. This study supports that vibration training, using this study's dose parameters, is not an effective anti-osteoporosis intervention for people with chronic SCI. Using a high-spatial-resolution CT methodology and segmental analysis, we illustrate novel longitudinal changes in bone that occur after spinal cord injury.
Kang, Shufeng; Liu, Shizhao; Li, Hongzhu; Wang, Dapeng; Qi, Xiangbei
2018-06-15
Baicalin had neuroprotective effects on inhibiting neuronal cell apoptosis induced by spinal cord ischemic injury. This study aimed to explore the protective effects of Baicalin on rats with spinal cord injury (SCI) and its mechanism of action. The recovery of spinal cord nerve function in rats was evaluated by the Basso, Beattie, and Bresnahan (BBB) score and the combine behavioral score (CBS). The expressions of cytokines tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and IL-6 were detected by the enzyme-linked immunosorbent assay method. Expressions of inflammation-related proteins were detected by Western blot. Multivariate statistical analysis was performed for serum metabolites. The BBB and CBS score results showed that Baicalin had a certain improvement on rats with SCI. SCI symptoms were significantly improved in low-dose and high-dose groups. The levels of TNF-α, IL-1β, and IL-6 in the SCI group were significantly increased. The expressions of NF-κB p65, NF-κB p50, p-IκBα, and IKKα in the SCI group showed the opposite trend compared with the low-dose and high-dose groups. Compared with the sham group, glutamine, levels of 3-OH-butyrate, N-acetylaspartate, and glutathione were significantly reduced, and the levels of glutamate and betaine were significantly increased in the SCI group. When Baicalin was administered, the contents of glutamine synthase (GS) and glutaminase (GLS) were significantly reduced, indicating that Baicalin had the effect of improving GS and GLS. Baicalin has protective effects on improving SCI and lower extremity motor function, has a significant anti-inflammatory effect, and regulates the serum metabolic disorder caused by SCI in rats. © 2018 Wiley Periodicals, Inc.
Minocycline Effectively Protects the Rabbit's Spinal Cord From Aortic Occlusion-Related Ischemia.
Drenger, Benjamin; Fellig, Yakov; Ben-David, Dror; Mintz, Bella; Idrees, Suhel; Or, Omer; Kaplan, Leon; Ginosar, Yehuda; Barzilay, Yair
2016-04-01
To identify the minocycline anti-inflammatory and antiapoptotic mechanisms through which it is believed to exert spinal cord protection during aortic occlusion in the rabbit model. An animal model of aortic occlusion-related spinal cord ischemia. Randomized study with a control group and pre-ischemia and post-ischemia escalating doses of minocycline to high-dose minocycline in the presence of either hyperglycemia, a pro-apoptotic maneuver, or wortmannin, a specific phosphatidylinositol 3-kinase antagonist. Tertiary medical center and school of medicine laboratory. Laboratory animals-rabbits. Balloon obstruction of infrarenal aorta introduced via femoral artery incision. Severe hindlimb paralysis (mean Tarlov score 0.36±0.81 out of 3) was observed in all the control group animals (9 of 11 with paraplegia and 2 of 11 with paraparesis) compared with 11 of 12 neurologically intact animals (mean Tarlov score 2.58±0.90 [p = 0.001 compared with control]) in the high-dose minocycline group. This protective effect was observed partially during a state of hyperglycemia and was completely abrogated by wortmannin. Minocycline administration resulted in higher neurologic scores (p = 0.003) and a shift to viable neurons and more apoptotic-stained nuclei resulting from reduced necrosis (p = 0.001). In a rabbit model of infrarenal aortic occlusion, minocycline effectively reduced paraplegia by increasing the number of viable neurons in a dose-dependent manner. Its action was completely abrogated by inhibiting the phosphatidylinositol 3-kinase pathway and was inhibited partially by the pro-apoptotic hyperglycemia maneuver, indicating that the activation of cell salvage pathways and mitochondrial sites are possible targets of minocycline action in an ischemic spinal cord. Copyright © 2016. Published by Elsevier Inc.
PHASE II STUDY OF HIGH DOSE PHOTON/PROTON RADIOTHERAPY IN THE MANAGEMENT OF SPINE SARCOMAS
DeLaney, Thomas F.; Liebsch, Norbert J.; Pedlow, Francis X.; Adams, Judith; Dean, Susan; Yeap, Beow Y.; McManus, Patricia; Rosenberg, Andrew E.; Nielsen, G. Petur; Harmon, David C.; Spiro, Ira J.; Raskin, Kevin A.; Suit, Herman D.; Yoon, Sam S.; Hornicek, Francis J.
2009-01-01
Purpose Radiotherapy (XRT) for spine sarcomas is constrained by spinal cord, nerve, and viscera tolerance. Negative surgical margins are uncommon; hence, doses of ≥ 66 Gy are recommended. A Phase II clinical trial evaluated high dose photon/proton XRT for spine sarcomas. Materials/Methods Eligible patients had non-metastatic, thoracic, lumbar, and/or sacral spine/paraspinal sarcomas. Treatment included pre- and/or post-op photon/proton XRT +/- radical resection; patients with osteosarcoma and Ewing's sarcoma received chemotherapy. Shrinking fields delivered 50.4 cobalt Gray equivalent (GyRBE) to subclinical disease, 70.2 GyRBE to microscopic disease in the tumor bed, and 77.4 GyRBE to gross disease at 1.8 GyRBE q.d. Doses were reduced for radiosensitive histologies, concurrent chemoradiation, or when diabetes or autoimmune disease present. Spinal cord dose was limited to 63/54 GyRBE to surface/center. Intra-operative boost doses of 7.5-10 Gy could be given by dural plaque. Results 50 patients (29 chordoma, 14 chondrosarcoma, 7 other) underwent gross total (n=25) or subtotal (n=12) resection or biopsy (n=13). With 48 month median follow-up, five-year actuarial local control, recurrence-free survival, and overall survival are: 78%, 63%, and 87% respectively. Two of 36 (5.6%) patients treated for primary versus 7/14 (50%) for recurrent tumor developed local recurrence, p<0.001. Five patients developed late radiation-associated complications; no myelopathy developed but three sacral neuropathies appeared following 77.12-77.4 GyRBE. Conclusions Local control with this treatment is high in patients radiated at the time of primary presentation. Spinal cord dose constraints appear to be safe. Sacral nerves receiving 77.12-77.4 GyRBE are at risk for late toxicity. PMID:19095372
Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieder, Carsten; Grosu, Anca L.; Andratschke, Nicolaus H.
Purpose: Driven by numerous reports on recovery of occult radiation injury, reirradiation of the spinal cord today is considered a realistic option. In rodents, long-term recovery was observed to start at approximately 8 weeks. However, prospective clinical studies are lacking. Therefore, a combined analysis of all published clinical data might provide a valuable basis for future trials. Methods and materials: We collected data from 40 individual patients published in eight different reports after a comprehensive MEDLINE search. These represent all patients with data available for dose per fraction and total dose of each of both treatment courses. We recalculated themore » biologically effective dose (BED) according to the linear-quadratic model using an {alpha}/{beta} value of 2 Gy for the cervical and thoracic cord and 4 Gy for the lumbar cord. In this model, a dose of 50 Gy given in single daily fractions of 2 Gy is equivalent to a BED of 100 Gy{sub 2} or 75 Gy{sub 4}. For treatment with two daily fractions, a correction term was introduced to take incomplete repair of sublethal damage into account. Results: The cumulative doses ranged from 108 to 205 Gy{sub 2} (median dose, 135 Gy{sub 2}). The median interval between both series was 20 months. Three patients were treated to the lumbar segments only. The median follow-up was 17 months for patients without myelopathy. Eleven patients developed myelopathy after 4-25 months (median, 11 months). Myelopathy was seen only in patients who had received one course to a dose of {>=}102 Gy{sub 2} (n = 9) or were retreated after 2 months (n = 2). In the absence of these two risk factors, no myelopathy developed in 19 patients treated with {<=}135.5 Gy{sub 2} or 7 patients treated with 136-150 Gy{sub 2}. A risk score based on the cumulative BED, the greatest BED for all treatment series in a particular individual, and interval was developed. Low-risk patients remained free of myelopathy and 33% of intermediate-risk patients and 90% of high-risk patients developed myelopathy. Conclusion: On the basis of these literature data (and with due caution), the risk of myelopathy appears small after {<=}135.5 Gy{sub 2} when the interval is not shorter than 6 months and the dose of each course is {<=}98 Gy{sub 2}. We would recommend limiting the dose to this level, whenever technically feasible. However, it appears prudent to propose the collection of prospective data from a greater number of patients receiving doses in the range of 136-150 Gy{sub 2} to assess the safety of higher retreatment doses for those patients in whom limited doses might compromise tumor control.« less
Wilsey, Barth; Marcotte, Thomas D; Deutsch, Reena; Zhao, Holly; Prasad, Hannah; Phan, Amy
2016-09-01
Using 8-hour human laboratory experiments, we evaluated the analgesic efficacy of vaporized cannabis in patients with neuropathic pain related to injury or disease of the spinal cord, most of whom were experiencing pain despite traditional treatment. After obtaining baseline data, 42 participants underwent a standardized procedure for inhaling 4 puffs of vaporized cannabis containing either placebo, 2.9%, or 6.7% delta 9-THC on 3 separate occasions. A second dosing occurred 3 hours later; participants chose to inhale 4 to 8 puffs. This flexible dosing was used to attempt to reduce the placebo effect. Using an 11-point numerical pain intensity rating scale as the primary outcome, a mixed effects linear regression model showed a significant analgesic response for vaporized cannabis. When subjective and psychoactive side effects (eg, good drug effect, feeling high, etc) were added as covariates to the model, the reduction in pain intensity remained significant above and beyond any effect of these measures (all P < .0004). Psychoactive and subjective effects were dose-dependent. Measurement of neuropsychological performance proved challenging because of various disabilities in the population studied. Because the 2 active doses did not significantly differ from each other in terms of analgesic potency, the lower dose appears to offer the best risk-benefit ratio in patients with neuropathic pain associated with injury or disease of the spinal cord. A crossover, randomized, placebo-controlled human laboratory experiment involving administration of vaporized cannabis was performed in patients with neuropathic pain related to spinal cord injury and disease. This study supports consideration of future research that would include longer duration studies over weeks to months to evaluate the efficacy of medicinal cannabis in patients with central neuropathic pain. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Susceptibility of various areas of the nervous system of hens to TOCP-induced delayed neuropathy.
Classen, W; Gretener, P; Rauch, M; Weber, E; Krinke, G J
1996-01-01
Sensitivity of in-life parameters, biochemical endpoints, and susceptibility of various areas of the chicken nervous system to delayed neuropathy induced by tri-orthocresyl phosphate (TOCP) was assessed. Groups of hens were exposed to a single oral dose of TOCP of 0, 50, 200 or 500 mg/kg and the animals observed for 21 days. Perfusion fixed, paraffin embedded tissue sections were stained with Bodian's silver and Luxol blue and semi-thin epoxy sections with toluidine blue. Sciatic and tibial nerves, lumbosacral, midthoracic, and upper cervical spinal cord, medulla oblongata and cerebellum were examined using a semiquantitative scoring system. In pair-dosed hens inhibition of brain and spinal cord neurotoxic esterase (NTE) and cholinesterase and of plasma and erythrocyte cholinesterases was determined 24 hr and 48 hr after administration. At all dose levels NTE in brain and spinal cord and plasma cholinesterase was inhibited markedly. Quantitative inhibition of NTE was seen also in absence of neuropathy. Ataxia and body weight loss occurred in high-dose animals only, while dose-related neuropathy was seen in the distal tibial nerve, medulla oblongata and cerebellum. Ataxia was correlated best with neuropathy in peripheral nerves while degeneration of nerve fibers in the cerebellum, seen best in mid-longitudinal sections, was the most sensitive histological indicator of TOCP-induced delayed neuropathy. The particular susceptibility of spinocerebellar neurons was recognized long ago, but often has been neglected in delayed neurotoxicity studies and respective guidelines. Optimal sensitivity of toxicity tests is a prerequisite for risk assessment, can be cost efficient, and nowadays should be a main interest of animal welfare in order to reduce animals' suffering. Based on these data, determination of NTE inhibition together with histopathological examination of longitudinal sections of distal tibial nerves, mid-longitudinal sections of rostral cerebellum and cross sections of upper cervical spinal cord represents an optimally sensitive and cost efficient test requirement.
Wilsey, Barth; Marcotte, Thomas D.; Deutsch, Reena; Zhao, Holly; Prasad, Hannah; Phan, Amy
2016-01-01
Using eight hour human laboratory experiments, we evaluated the analgesic efficacy of vaporized cannabis in patients with neuropathic pain related to injury or disease of the spinal cord, the majority of whom were experiencing pain despite traditional treatment. After obtaining baseline data, 42 participants underwent a standardized procedure for inhaling 4 puffs of vaporized cannabis containing either placebo, 2.9%, or 6.7% delta-9-tetrahydrocannabinol on three separate occasions. A second dosing occurred 3 hours later; participants chose to inhale 4 to 8 puffs. This flexible dosing was utilized to attempt to reduce the placebo effect. Using an 11-point numerical pain intensity rating scale as the primary outcome, a mixed effects linear regression model demonstrated a significant analgesic response for vaporized cannabis. When subjective and psychoactive side effects (e.g., good drug effect, feeling high, etc.) were added as covariates to the model, the reduction in pain intensity remained significant above and beyond any effect of these measures (all p<0.0004). Psychoactive and subjective effects were dose dependent. Measurement of neuropsychological performance proved challenging because of various disabilities in the population studied. As the two active doses did not significantly differ from each other in terms of analgesic potency, the lower dose appears to offer the best risk-benefit ratio in patients with neuropathic pain associated with injury or disease of the spinal cord. PMID:27286745
Toxicokinetics of lambda-cyhalothrin in rats.
Anadón, A; Martínez, M; Martínez, M A; Díaz, M J; Martínez-Larrañaga, M R
2006-08-01
The toxicokinetics of lambda-cyhalothrin after single 20 mg kg(-1) oral and 3 mg kg(-1) intravenous doses were studied in rats. Serial blood samples were obtained after oral and intravenous administration. Liver, brain, spinal cord, sciatic nerve, vas deferens, anococcygeus and myenteric plexus tissue samples were also collected. Plasma, liver, hypothalamus, cerebellum, medulla oblongata, frontal cortex, striatum, hippocampus, midbrain, spinal cord, vas deferens, anococcygeus, myenteric plexus and sciatic nerve concentrations of lambda-cyhalothrin were determined by HPLC. The plasma and tissue concentration-time data for lambda-cyhalothrin were found to fit a two-compartment open model. For lambda-cyhalothrin, the elimination half-life (T1/2beta) and the mean residence time from plasma were 7.55 and 8.55 h after i.v. and 10.27 and 14.43 h after oral administration. The total plasma clearance was not influenced by dose concentration or route and reached a value of 0.060l h(-1)kg(-1). After i.v. administration, the apparent volume of distribution and at steady state were 0.68 and 0.53l kg(-1), suggesting a diffusion of the pyrethroid into tissue. After oral administration, lambda-cyhalothrin was extensively but slowly absorbed (Tmax, 2.69 h). The oral bioavailability was found to be 67.37%. Significant differences in the kinetic parameters between nervous tissues and plasma was observed. The maximum concentrations in hypothalamus (Cmax, 24.12 microg g(-1)) and myenteric plexus (Cmax, 25.12 microg g(-1)) were about 1.5 times higher than in plasma (Cmax, 15.65 microg ml(-1)) and 1.3 times higher than in liver (Cmax, 18.42 microg ml(-1)). Nervous tissue accumulation of lambda-cyhalothrin was also reflected by the area under the concentration curve ratios of tissue/plasma (liver). The T1/2beta for lambda-cyhalothrin was significantly greater for the nerve tissues, including neuromuscular fibres, (range 12-26 and 15-34 h, after i.v. and oral doses) than for plasma (7.55 and 10.27 h, respectively).
Al-Ward, Shahad M; Kim, Anthony; McCann, Claire; Ruschin, Mark; Cheung, Patrick; Sahgal, Arjun; Keller, Brian M
2018-01-01
Targeting and tracking of central lung tumors may be feasible on the Elekta MRI-linac (MRL) due to the soft-tissue visualization capabilities of MRI. The purpose of this work is to develop a novel treatment planning methodology to simulate tracking of central lung tumors with the MRL and to quantify the benefits in OAR sparing compared with the ITV approach. Full 4D-CT datasets for five central lung cancer patients were selected to simulate the condition of having 4D-pseudo-CTs derived from 4D-MRI data available on the MRL with real-time tracking capabilities. We used the MRL treatment planning system to generate two plans: (a) with a set of MLC-defined apertures around the target at each phase of the breathing ("4D-MRL" method); (b) with a fixed set of fields encompassing the maximum inhale and exhale of the breathing cycle ("ITV" method). For both plans, dose accumulation was performed onto a reference phase. To further study the potential benefits of a 4D-MRL method, the results were stratified by tumor motion amplitude, OAR-to-tumor proximity, and the relative OAR motion (ROM). With the 4D-MRL method, the reduction in mean doses was up to 3.0 Gy and 1.9 Gy for the heart and the lung. Moreover, the lung's V12.5 Gy was spared by a maximum of 300 cc. Maximum doses to serial organs were reduced by up to 6.1 Gy, 1.5 Gy, and 9.0 Gy for the esophagus, spinal cord, and the trachea, respectively. OAR dose reduction with our method depended on the tumor motion amplitude and the ROM. Some OARs with large ROMs and in close proximity to the tumor benefited from tracking despite small tumor amplitudes. We developed a novel 4D tracking methodology for the MRL for central lung tumors and quantified the potential dosimetric benefits compared with our current ITV approach. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Vocal cord mucosal flap for the treatment of acquired anterior laryngeal web.
Xiao, Yang; Wang, Jun; Han, Demin; Ma, Lijing; Ye, Jingying; Xu, Wen
2014-01-01
Anterior glottic web is one type of laryngeal stenosis. Previous surgical methods had some drawbacks, such as large surgical trauma, long postoperative recovery time, and multiple-stage surgery. This study aimed to explore better treatment to repair anterior glottis web. We performed vocal cord mucosal flap procedure on 32 patients with anterior laryngeal webs. All subjects received vocal cord scar releasing and vocal cord mucosal flap repair and suture under general anesthesia with selfretaining laryngoscope. All 32 patients completed surgery in one stage, without postoperative laryngeal edema, difficulty in breathing, or other complications. After the surgery, the anterior commissure of vocal cords recovered to a decent triangle shape in 28 patients; however, in four patients there were 2 to 3 mm adhesion residuals on the anterior ends of the vocal cords, accompanied by scar appearance of bilateral vocal cords. The GRB score, voice handicap index scores, and maximum phonation time score significantly improved in all patients after the surgery. There was no evidence of recurrent laryngeal webbing in the 6-month follow-up. Vocal cords mucosal flap repair surgery has the advantages of less trauma, quick recovery, and significant improvement of the voice in the treatment of laryngeal webs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogson, EM; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW; Ingham Institute for Applied Medical Research, Sydney, NSW
Purpose: To identify the robustness of different treatment techniques in respect to simulated linac errors on the dose distribution to the target volume and organs at risk for step and shoot IMRT (ssIMRT), VMAT and Autoplan generated VMAT nasopharynx plans. Methods: A nasopharynx patient dataset was retrospectively replanned with three different techniques: 7 beam ssIMRT, one arc manual generated VMAT and one arc automatically generated VMAT. Treatment simulated uncertainties: gantry, collimator, MLC field size and MLC shifts, were introduced into these plans at increments of 5,2,1,−1,−2 and −5 (degrees or mm) and recalculated in Pinnacle. The mean and maximum dosesmore » were calculated for the high dose PTV, parotids, brainstem, and spinal cord and then compared to the original baseline plan. Results: Simulated gantry angle errors have <1% effect on the PTV, ssIMRT is most sensitive. The small collimator errors (±1 and ±2 degrees) impacted the mean PTV dose by <2% for all techniques, however for the ±5 degree errors mean target varied by up to 7% for the Autoplan VMAT and 10% for the max dose to the spinal cord and brain stem, seen in all techniques. The simulated MLC shifts introduced the largest errors for the Autoplan VMAT, with the larger MLC modulation presumably being the cause. The most critical error observed, was the MLC field size error, where even small errors of 1 mm, caused significant changes to both the PTV and the OAR. The ssIMRT is the least sensitive and the Autoplan the most sensitive, with target errors of up to 20% over and under dosages observed. Conclusion: For a nasopharynx patient the plan robustness observed is highest for the ssIMRT plan and lowest for the Autoplan generated VMAT plan. This could be caused by the more complex MLC modulation seen for the VMAT plans. This project is supported by a grant from NSW Cancer Council.« less
Ceresoli, Giovanni Luca; Cattaneo, Giovanni Mauro; Castellone, Pietro; Rizzos, Giovanna; Landoni, Claudio; Gregorc, Vanesa; Calandrino, Riccardo; Villa, Eugenio; Messa, Cristina; Santoro, Armando; Fazio, Ferruccio
2007-01-01
Mediastinal elective node irradiation (ENI) in patients with non-small cell lung cancer candidate to radical radiotherapy is controversial. In this study, the impact of co-registered [18F]fluorodeoxyglucose-positron emission tomography (PET) and standard computed tomography (CT) on definition of target volumes and toxicity parameters was evaluated, by comparison with standard CT-based simulation with and without ENI. CT-based gross tumor volume (GTVCT) was first contoured by a single observer without knowledge of PET results. Subsequently, the integrated GTV based on PET/CT coregistered images (GTVPET/CT) was defined. Each patient was planned according to three different treatment techniques: 1) radiotherapy with ENI using the CT data set alone (ENI plan); 2) radiotherapy without ENI using the CT data set alone (no ENI plan); 3) radiotherapy without ENI using PET/CT fusion data set (PET plan). Rival plans were compared for each patient with respect to dose to the normal tissues (spinal cord, healthy lungs, heart and esophagus). The addition of PET-modified TNM staging in 10/21 enrolled patients (48%); 3/21 were shifted to palliative treatment due to detection of metastatic disease or large tumor not amenable to high-dose radiotherapy. In 7/18 (39%) patients treated with radical radiotherapy, a significant (> or =25%) change in volume between GTVCT and GTVPET/CT was observed. For all the organs at risk, ENI plans had dose values significantly greater than no-ENI and PET plans. Comparing no ENI and PET plans, no statistically significant difference was observed, except for maximum point dose to the spinal cord Dmax, which was significantly lower in PET plans. Notably, even in patients in whom PET/CT planning resulted in an increased GTV, toxicity parameters were fairly acceptable, and always more favorable than with ENI plans. Our study suggests that [18F]-fluorodeoxyglucose-PET should be integrated in no-ENI techniques, as it improves target volume delineation without a major increase in predicted toxicity.
Novel Method for Analyzing Locomotor Ability after Spinal Cord Injury in Rats: Technical Note
Shinozaki, Munehisa; Yasuda, Akimasa; Nori, Satoshi; Saito, Nobuhito; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya
2013-01-01
In the research for the treatment of spinal cord injury (SCI), the evaluation of motor function in model rats must be as objective, noninvasive, and ethical as possible. The maximum speed and acceleration of a mouse measured using a SCANET system were previously reported to vary significantly according to severity of SCI. In the present study, the motor performance of SCI model rats was examined with SCANET and assessed for Basso-Beattie-Bresnahan (BBB) score to determine the usefulness of the SCANET system in evaluating functional recovery after SCI. Maximum speed and acceleration within the measurement period correlated significantly with BBB scores. Furthermore, among several phased kinematic factors used in BBB scores, the capability of “plantar stepping” was associated with a drastic increase in maximum speed and acceleration after SCI. Therefore, evaluation of maximum speed and acceleration using a SCANET system is a useful method for rat models of SCI and can complement open field scoring scales. PMID:24097095
Neuroprotection and Acute Spinal Cord Injury: A Reappraisal
Hall, Edward D.; Springer, Joe E.
2004-01-01
Summary: It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by MP therapy alone. The present paper reviews the past development of MP, naloxone, tirilazad, and GM1 for acute SCI, the ongoing MP-SCI controversy, identifies the regulatory complications involved in future SCI drug development, and suggests some promising neuroprotective approaches that could either replace or be used in combination with high-dose MP. PMID:15717009
49 CFR 571.109 - Standard No. 109; New pneumatic and certain specialty tires.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of the tire made of steel wires, wrapped or reinforced by ply cords, that is shaped to fit the rim... pressure; (c) Maximum load rating; (d) The generic name of each cord material used in the plies (both... plies in the tread area if different; (f) The words “tubeless” or “tube type” as applicable; and (g) The...
49 CFR 571.109 - Standard No. 109; New pneumatic and certain specialty tires.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of the tire made of steel wires, wrapped or reinforced by ply cords, that is shaped to fit the rim... pressure; (c) Maximum load rating; (d) The generic name of each cord material used in the plies (both... plies in the tread area if different; (f) The words “tubeless” or “tube type” as applicable; and (g) The...
Zou, Chaoshuang; Kou, Ruirui; Gao, Yuan; Xie, Keqin; Song, Fuyong
2013-06-01
Previous studies suggest that abnormal neurons death has been implicated in organophosphate-induced delayed neuropathy (OPIDN). However, the precise mechanism of neuronal death in OPIDN remains largely unknown. In this study, adult hens were treated with a dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP) by gavage, and then sacrificed on the time-points of 1, 5, 10, and 21 days after dosing TOCP, respectively. The apoptotic change of spinal cord neurons induced by TOCP was examined, and the role of mitochondria-mediated apoptosis of neurons during OPIDN was investigated. TUNEL assays showed that apoptotic neurons in hen spinal cords began to appear on day 5 following TOCP exposure. Immunohistochemistry and western blot analysis revealed a translocation of cytochrome C from mitochondria to cytoplasm after dosing TOCP. Moreover, the level of Bcl-2, Bcl-xl, Pro-caspase3 and Pro-caspase9 in hen spinal cord was significantly decreased, whereas that of Bax and cleaved-PARP was significantly elevated. Taken together, these findings indicate that the administration of TOCP can induce neuron apoptosis in hen spinal cords, which might be mediated by the activation of mitochondrial apoptotic pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.
Synthetic CT for MRI-based liver stereotactic body radiotherapy treatment planning
NASA Astrophysics Data System (ADS)
Bredfeldt, Jeremy S.; Liu, Lianli; Feng, Mary; Cao, Yue; Balter, James M.
2017-04-01
A technique for generating MRI-derived synthetic CT volumes (MRCTs) is demonstrated in support of adaptive liver stereotactic body radiation therapy (SBRT). Under IRB approval, 16 subjects with hepatocellular carcinoma were scanned using a single MR pulse sequence (T1 Dixon). Air-containing voxels were identified by intensity thresholding on T1-weighted, water and fat images. The envelope of the anterior vertebral bodies was segmented from the fat image and fuzzy-C-means (FCM) was used to classify each non-air voxel as mid-density, lower-density, bone, or marrow in the abdomen, with only bone and marrow classified within the vertebral body envelope. MRCT volumes were created by integrating the product of the FCM class probability with its assigned class density for each voxel. MRCTs were deformably aligned with corresponding planning CTs and 2-ARC-SBRT-VMAT plans were optimized on MRCTs. Fluence was copied onto the CT density grids, dose recalculated, and compared. The liver, vertebral bodies, kidneys, spleen and cord had median Hounsfield unit differences of less than 60. Median target dose metrics were all within 0.1 Gy with maximum differences less than 0.5 Gy. OAR dose differences were similarly small (median: 0.03 Gy, std:0.26 Gy). Results demonstrate that MRCTs derived from a single abdominal imaging sequence are promising for use in SBRT dose calculation.
Ishii, Kosuke; Kumada, Masanobu; Ueki, Akira; Yamamoto, Masanori; Hirose, Hajime
2003-12-01
We report a case of involuntary phonation caused by abnormal vocal cord movements during expiration in a patient with Parkinson's disease. A 60-year-old woman had been treated for parkinsonism at the outpatient clinic of the Department of Neurology since August 1999. She began to groan involuntarily in the daytime in September 2001. She could not eat well while groaning. Stridor was not noted during sleep at night. Endoscopic examination of the larynx revealed insufficient abduction of the bilateral vocal cords, although the glottis was not so small as to cause stridor during inspiration. During expiration, however, the vocal cords adducted, resulting in the involuntary production of voice. Electromyography showed an increase in the activity of the thyroarytenoid and lateral cricoarytenoid muscles. This muscle activity was further enhanced during inspiration. The involuntary phonation disappeared when the patient's dose of L-dopa was decreased, although she had a decrease in her systemic mobility as well. When the dose of L-dopa was increased to the therapeutic level, involuntary phonation recurred, and her voluntary systemic activity improved. In the present case, it was considered that excessive dopaminergic denervation occurred in the nerve innervating the laryngeal adductors. Involuntary voice appeared to be produced by hypertonus of the laryngeal adductors because of a lowering in the threshold level for L-dopa, even though the drug was administered at the usual dose.
Liu, Congxiao; Chen, Benny J.; DeOliveira, Divinomar; Sempowski, Gregory D.; Chao, Nelson J.
2010-01-01
Two critical concerns in clinical cord blood transplantation are the initial time to engraftment and the subsequent restoration of immune function. These studies measured the impact of progenitor cell dose on both the pace and strength of hematopoietic reconstitution by transplanting nonobese diabetic/severe combined immunodeficiency/interleukin-2 receptor-gamma–null (NSγ) mice with lineage-depleted aldehyde dehydrogenase-bright CD34+ human cord blood progenitors. The progress of each transplant was monitored over an extended time course by repeatedly analyzing the peripheral blood for human hematopoietic cells. In vivo human hematopoietic development was complete. After long-term transplantation assays (≥ 19 weeks), human T-cell development was documented within multiple tissues in 16 of 32 NSγ mice. Human T-cell differentiation was active within NSγ thymuses, as documented by the presence of CD4+ CD8+ T-cell progenitors as well as T-cell receptor excision circles. It is important to note that although myeloid and B-cell engraftment was detected as early as 4 weeks after transplantation, human T-cell development was exclusively late onset. High progenitor cell doses were associated with a robust human hematopoietic chimerism that accelerated both initial time to engraftment and subsequent T-cell development. At lower progenitor cell doses, the chimerism was weak and the human hematopoietic lineage development was frequently incomplete. PMID:20833978
Antwi, Prince; Grant, Ryan; Kuzmik, Gregory; Abbed, Khalid
2018-05-01
"White cord syndrome" is a very rare condition thought to be due to acute reperfusion of chronically ischemic areas of the spinal cord. Its hallmark is the presence of intramedullary hyperintense signal on T2-weighted magnetic resonance imaging sequences in a patient with unexplained neurologic deficits following spinal cord decompression surgery. The syndrome is rare and has been reported previously in 2 patients following anterior cervical decompression and fusion. We report an additional case of this complication. A 68-year-old man developed acute left-sided hemiparesis after posterior cervical decompression and fusion for cervical spondylotic myelopathy. The patient improved with high-dose steroid therapy. The rare white cord syndrome following either anterior cervical decompression and fusion or posterior cervical decompression and fusion may be due to ischemic-reperfusion injury sustained by chronically compressed parts of the spinal cord. In previous reports, patients have improved following steroid therapy and acute rehabilitation. Copyright © 2018 Elsevier Inc. All rights reserved.
Lovelock, D Michael; Zhang, Zhigang; Jackson, Andrew; Keam, Jennifer; Bekelman, Justin; Bilsky, Mark; Lis, Eric; Yamada, Yoshiya
2010-07-15
In the setting of high-dose single-fraction image-guided radiotherapy of spine metastases, the delivered dose is hypothesized to be a significant factor in local control. We investigated the dependence of local control on measures of dose insufficiency. The minimum doses received by the hottest 100%, 98%, and 95% (D(min), D(98), and D(95)) of the gross target volume (GTV) were computed for 91 consecutively treated lesions observed in 79 patients. Prescribed doses of 18-24 Gy were delivered in a single fraction. The spinal cord and cauda equina were constrained to a maximum dose of 12-14 Gy and 16 Gy, respectively. A rank-sum test was used to assess the differences between radiographic local failure and local control. With a median follow-up of 18 months, seven local failures have occurred. The distributions of GTV D(min), D(98), and D(95) for treatments resulting in local failure were found to be statistically different from the corresponding distributions of the patient group as a whole. Taking no account of histology, p values calculated for D(min), D(98), and D(95) were 0.004, 0.012, and 0.031, respectively. No correlations between local failure and target volume or between local failure and anatomic location were found. The results indicate that D(min), D(98), and D(95) may be important risk factors for local failure. No local failures in any histology were observed when D(min) was >15 Gy, suggesting that this metric may be an important predictor of local control. Copyright 2010 Elsevier Inc. All rights reserved.
Lovelock, D. Michael; Zhang, Zhigang; Jackson, Andrew; Keam, Jennifer; Bekelman, Justin; Bilsky, Mark; Lis, Eric; Yamada, Yoshiya
2011-01-01
Purpose In the setting of high-dose single-fraction image-guided radiotherapy of spine metastases, the delivered dose is hypothesized to be a significant factor in local control. We investigated the dependence of local control on measures of dose insufficiency. Methods and Materials The minimum doses received by the hottest 100%, 98%, and 95% (Dmin, D98, and D95) of the gross target volume (GTV) were computed for 91 consecutively treated lesions observed in 79 patients. Prescribed doses of 18–24 Gy were delivered in a single fraction. The spinal cord and cauda equina were constrained to a maximum dose of 12–14 Gy and 16 Gy, respectively. A rank-sum test was used to assess the differences between radiographic local failure and local control. Results With a median follow-up of 18 months, seven local failures have occurred. The distributions of GTV Dmin, D98, and D95 for treatments resulting in local failure were found to be statistically different from the corresponding distributions of the patient group as a whole. Taking no account of histology, p values calculated for Dmin, D98, and D95 were 0.004, 0.012, and 0.031, respectively. No correlations between local failure and target volume or between local failure and anatomic location were found. Conclusions The results indicate that Dmin, D98, and D95 may be important risk factors for local failure. No local failures in any histology were observed when Dmin was >15 Gy, suggesting that this metric may be an important predictor of local control. PMID:20350795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L., E-mail: dschwartz3@nshs.edu
2013-04-01
To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed asmore » low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.« less
Clinical implementation and evaluation of the Acuros dose calculation algorithm.
Yan, Chenyu; Combine, Anthony G; Bednarz, Greg; Lalonde, Ronald J; Hu, Bin; Dickens, Kathy; Wynn, Raymond; Pavord, Daniel C; Saiful Huq, M
2017-09-01
The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and computation time for other plans will be discussed at the end. Maximum difference between dose calculated by AAA and dose-to-medium by Acuros XB (Acuros_D m,m ) was 4.3% on patient plans at the isocenter, and maximum difference between D 100 calculated by AAA and by Acuros_D m,m was 11.3%. When calculating the maximum dose to spinal cord on patient plans, differences between dose calculated by AAA and Acuros_D m,m were more than 3%. Compared with AAA, Acuros XB improves accuracy in the presence of inhomogeneity, and also significantly reduces computation time for VMAT plans. Dose differences between AAA and Acuros_D w,m were generally less than the dose differences between AAA and Acuros_D m,m . Clinical practitioners should consider making Acuros XB available in clinics, however, further investigation and clarification is needed about which dose reporting mode (dose-to-water or dose-to-medium) should be used in clinics. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Targeting L-Selectin to Improve Neurologic and Urologic Function After Spinal Cord Injury
2014-10-01
doses of DFA, male C57BL/6 mice were subjected to a 2g weight dropped 7.5 cm onto the exposed spinal cord at the thoracic 9 vertebral level (mild...detect the absence of L-selectin on leukocytes 1 day post-SCI. Male C57BL/6 mice were subjected to a 2g weight dropped 7.5 cm onto the exposed spinal...subjected to a 2g weight dropped 7.5 cm onto the exposed spinal cord at the thoracic 9 vertebral level. DFA (40mg/kg) or vehicle was administered
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venencia, C; Pino, M; Caussa, L
Purpose: The purpose of this work was to quantify the dosimetric impact of Monte Carlo (MC) dose calculation algorithm compared to Pencil Beam (PB) on Spine SBRT with HybridARC (HA) and sliding windows IMRT (dMLC) treatment modality. Methods: A 6MV beam (1000MU/min) produced by a Novalis TX (BrainLAB-Varian) equipped with HDMLC was used. HA uses 1 arc plus 8 IMRT beams (arc weight between 60–40%) and dIMRT 15 beams. Plans were calculated using iPlan v.4.5.3 (BrainLAB) and the treatment dose prescription was 27Gy in 3 fractions. Dose calculation was done by PB (4mm spatial resolution) with heterogeneity correction and MCmore » dose to water (4mm spatial resolution and 4% mean variance). PTV and spinal cord dose comparison were done. Study was done on 12 patients. IROC Spine Phantom was used to validate HA and quantify dose variation using PB and MC algorithm. Results: The difference between PB and MC for PTV D98%, D95%, Dmean, D2% were 2.6% [−5.1, 6.8], 0.1% [−4.2, 5.4], 0.9% [−1.5, 3.8] and 2.4% [−0.5, 8.3]. The difference between PB and MC for spinal cord Dmax, D1.2cc and D0.35cc were 5.3% [−6.4, 18.4], 9% [−7.0, 17.0] and 7.6% [−0.6, 14.8] respectively. IROC spine phantom shows PTV TLD dose variation of 0.98% for PB and 1.01% for MC. Axial and sagittal film plane gamma index (5%-3mm) was 95% and 97% for PB and 95% and 99% for MC. Conclusion: PB slightly underestimates the dose for the PTV. For the spinal cord PB underestimates the dose and dose differences could be as high as 18% which could have unexpected clinical impact. CI shows no variation between PB and MC for both treatment modalities Treatment modalities have no impact with the dose calculation algorithms used. Following the IROC pass-fail criteria, treatment acceptance requirement was fulfilled for PB and MC.« less
TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J; Wu, Q.J.; Yin, F
2014-06-15
Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into fivemore » groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, S; Kishan, A; Alexander, S
2015-06-15
Purpose: We have observed improved local control probability (LCP) for adjuvant mesothelioma radiotherapy following pleurectomy/decortication using Tomotherapy compared to the conventional 3D technique (p<0.05). This work assesses the correlation between the improved clinical outcomes against dosimetry quantities. Methods: Thirty-eight mesothelioma cases consecutively treated at our clinic were retrospectively analyzed. Sixteen patients were treated using 3D technique planned on the Eclipse for c-arm accelerators prior to 7/2012; the other 22 cases were treated on Tomotherapy using helical IMRT after 7/2012. Typical 3D plans consisting of 15 MV AP/PA photon fields prescribed to 10 cm depth followed by matching electron fields withmore » energy ranging from 8–16 MeV. Tomotherapy plans were designed using 2.5cm jaw, 0.287 pitch with directional blocking of the contralateral lung. The same prescription of 45 Gy (1.8GyX25) was used for both techniques. The dosimetry metrics for the critical structures: ipsilateral-/contralateral-lung, heart, cord, esophagus, etc were compared between two techniques. Results: Superior LCP is closely associated with improved target coverage. Tomotherapy plans yielded dramatically better target coverage and less dose heterogeneity despite of more advanced/larger disease. The averaged PTV volumes were 2287.3±569.9 (Tomotherapy) vs. 1904.8±312.3cc (3D); V100s were: 91.1±4.0 (%) vs. 47.8±12.7 (%) with heterogeneity indices of 1.20±0.1 vs.1.37±0.38 and for the Tomotherapy and 3D plans, respectively. Compared to the 3D technique, we observed significant lower maximum cord doses (p<0.001), lower mean esophagus doses (p<0.002), and lower heart mean doses when tumor was left-sided (p=0.002). For ipsilateral-/contralateral-lungs, however, the mean doses and V20, V5 of Tomotherapy plans were significantly higher than the 3D plans (p<0.01) regardless which sides of lung were treated. However, rates of radiation pneumonitis were no different. Conclusion: Tomotherapy achieved great improvement of plan quality including target coverage, resulting in significantly better local control over the traditional 3D technique for adjuvant radiotherapy for mesothelioma.« less
NASA Astrophysics Data System (ADS)
Botas, Pablo; Grassberger, Clemens; Sharp, Gregory; Paganetti, Harald
2018-02-01
The purpose of this study was to investigate internal tumor volume density overwrite strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung tumors. Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume (IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b) 50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was performed using deformable image registration. Interplay effect was addressed applying 10 times rescanning. Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target coverage (D99≥slant 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D{{99}WEPL}=69.2+/- 4.0 Gy (RBE)), keeping dose heterogeneity low (D5-D{{95}WEPL}=3.9+/- 2.0 Gy(RBE)). The mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk (OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific. Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it possible to handle long simulations based on 4D data sets to perform studies with high accuracy and efficiency, even prior to individual treatment planning.
SU-E-J-245: Is Off-Line Adaptive Radiotherapy Sufficient for Head and Neck Cancer with IGRT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Z; Cleveland Clinic, Cleveland, OH; Shang, Q
2014-06-01
Purpose: Radiation doses delivered to patients with head and neck cancer (HN) may deviate from the planned doses because of variations in patient setup and anatomy. This study was to evaluate whether off-line Adaptive Radiotherapy (ART) is sufficient. Methods: Ten HN patients, who received IMRT under daily imaging guidance using CT-on-rail/KV-CBCT, were randomly selected for this study. For each patient, the daily treatment setup was corrected with translational only directions. Sixty weekly verification CTs were retrospectively analyzed. On these weekly verification CTs, the tumor volumes and OAR contours were manually delineated by a physician. With the treatment iso-center placed onmore » the verification CTs, according to the recorded clinical shifts, the treatment beams from the original IMRT plans were then applied to these CTs to calculate the delivered doses. The electron density of the planning CTs and weekly CTs were overridden to 1 g/cm3. Results: Among 60 fractions, D99 of the CTVs in 4 fractions decreased more than 5% of the planned doses. The maximum dose of the spinal cord exceeded 10% of the planned values in 2 fractions. A close examination indicated that the dose discrepancy in these 6 fractions was due to patient rotations, especially shoulder rotations. After registering these 6 CTs with the planning CT allowing six degree of freedoms, the maximum rotations around 3 axes were > 1.5° for these fractions. With rotation setup errors removed, 4 out of 10 patients still required off-line ART to accommodate anatomical changes. Conclusion: A significant shoulder rotations were observed in 10% fractions, requiring patient re-setup. Off-line ART alone is not sufficient to correct for random variations of patient position, although ART is effective to adapt to patients' gradual anatomic changes. Re-setup or on-line ART may be considered for patients with large deviations detected early by daily IGRT images. The study is supported in part by Siemens Medical Solutions.« less
Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study.
Jackson, J Benjamin; Crimaldi, Anthony J; Peindl, Richard; Norton, H James; Anderson, William E; Patt, Joshua C
2017-01-01
Cadaveric model. To compare the effect of PEEK versus conventional implants on scatter radiation to a simulated tumor bed in the spine SUMMARY OF BACKGROUND DATA.: Given the highly vasculature nature of the spine, it is the most common place for bony metastases. After surgical treatment of a spinal metastasis, adjuvant radiation therapy is typically administered. Radiation dosing is primarily limited by toxicity to the spinal cord. The scatter effect caused by metallic implants decreases the accuracy of dosing and can unintentionally increase the effective dose seen by the spinal cord. This represents a dose-limiting factor for therapeutic radiation postoperatively. A cadaveric thorax specimen was utilized as a metastatic tumor model with two separate three-level spine constructs (one upper thoracic and one lower thoracic). Each construct was examined independently. All four groups compared included identical posterior instrumentation. The anterior constructs consisted of either: an anterior polyether ether ketone (PEEK) cage, an anterior titanium cage, an anterior bone cement cage (polymethyl methacrylate), or a control group with posterior instrumentation alone. Each construct had six thermoluminescent detectors to measure the radiation dose. The mean dose was similar across all constructs and locations. There was more variability in the upper thoracic spine irrespective of the construct type. The PEEK construct had a more uniform dose distribution with a standard deviation of 9.76. The standard deviation of the others constructs was 14.26 for the control group, 19.31 for the titanium cage, and 21.57 for the cement (polymethyl methacrylate) construct. The PEEK inter-body cage resulted in a significantly more uniform distribution of therapeutic radiation in the spine when compared with the other constructs. This may allow for the application of higher effective dosing to the tumor bed for spinal metastases without increasing spinal cord toxicity with either fractionated or hypofractionated radiotherapy. N/A.
Kisucká, Alexandra; Hricová, Ľudmila; Pavel, Jaroslav; Strosznajder, Joanna B; Chalimoniuk, Malgorzata; Langfort, Jozef; Gálik, Ján; Maršala, Martin; Radoňak, Jozef; Lukáčová, Nadežda
2015-06-01
The loss of descending control after spinal cord injury (SCI) and incessant stimulation of Ia monosynaptic pathway, carrying proprioceptive impulses from the muscles and tendons into the spinal cord, evoke exaggerated α-motoneuron activity leading to increased reflex response. Previous results from our laboratory have shown that Ia monosynaptic pathway is nitrergic. The aim of this study was to find out whether nitric oxide produced by neuronal nitric oxide synthase (nNOS) plays a role in setting the excitability of α-motoneurons after thoracic spinal cord transection. We tested the hypothesis that the inhibition of nNOS in α-motoneurons after SCI could have a neuroprotective effect on reflex response. Rats underwent spinal cord transection at Th10 level followed by 7, 10, and 14 days of survival. The animals were treated with Baclofen (a gamma aminobutyric acid B receptor agonist, 3 μg/two times per day/intrathecally) applied for 3 days from the seventh day after transection; N-nitro-l-arginine (NNLA) (nNOS blocator) applied for the first 3 days after injury (20 mg/kg per day, intramuscularly); NNLA and Baclofen; or NNLA (60 mg/kg/day, single dose) applied on the 10th day after transection. We detected the changes in the level of nNOS protein, nNOS messenger RNA, and nNOS immunoreactivity. To investigate the reflex response to heat-induced stimulus, tail-flick test was monitored in treated animals up to 16 days after SCI. Our data indicate that Baclofen therapy is more effective than the combined treatment with NNLA and Baclofen therapy. The single dose of NNLA (60 mg/kg) applied on the 10th day after SCI or Baclofen therapy reduced nNOS expression in α-motoneurons and suppressed symptoms of increased reflex activity. The results clearly show that increased nNOS expression in α-motoneurons after SCI may be pharmacologically modifiable with Baclofen or bolus dose of nNOS blocker. Copyright © 2015. Published by Elsevier Inc.
Engineering cord blood to improve engraftment after cord blood transplant
Dave, Hema; Bollard, Catherine M.; Shpall, Elizabeth J.
2017-01-01
Umbilical cord blood transplant (CBT) has traditionally been associated with slower engraftment of neutrophils, delayed immune reconstitution and consequently higher risk of infections as compared with peripheral blood progenitor cell (PBPC) or bone marrow (BM) transplants. This is primarily due to low numbers of total nucleated cells (TNCs) and the naive nature of CB immune cells. The use of double unit CB transplant (DCBT) increases the total cell dose in the graft, but it still does not produce as rapid engraftment as seen with PBPC or even BM transplants. Herein, we discuss strategies to improve engraftment after CBT. We describe methods of (I) expansion of CB graft ex vivo to increase the total cell dose; and (II) enhancement of BM homing capability of CB progenitor cells; (III) ex vivo expansion of CB derived T cells for improving T cell function against viruses, tumors and protection from graft versus host disease (GVHD). With these novel approaches, engraftment after CBT is now reaching levels comparable to that of other graft types. PMID:28607915
DiMarco, Anthony F.; Kowalski, Krzysztof E.; Geertman, Robert T.; Hromyak, Dana R.
2009-01-01
Objective Evaluation of the capacity of lower thoracic spinal cord stimulation (SCS) to activate the expiratory muscles and generate large airway pressures and high peak airflows characteristic of cough, in subjects with tetraplegia. Design Clinical trial. Setting In-patient hospital setting for electrode insertion; out-patient setting for measurement of respiratory pressures; home setting for application of SCS. Participants Subjects (N = 9; 8 men, 1 woman) with cervical spinal cord injury and weak cough. Intervention(s) A fully implantable electrical stimulation system was surgically placed in each subject. Partial hemilaminectomies were made to place single-disc electrodes in the epidural space at the T9, T11 and L1 spinal levels. A radiofrequency receiver was placed in the subcutaneous pocket over the anterior portion of the chest wall. Electrode wires were tunneled subcutaneously and connected to the receiver. Stimulation was applied by activating a small portable external stimulus controller box powered by a rechargeable battery to each electrode lead alone and in combination. Main Outcome Measure(s) Airway pressure and peak airflow generation achieved with SCS. Results Supramaximal SCS resulted in large airway pressures and high peak airflow rates during stimulation at each electrode lead. Maximum airway pressures and peak airflow rates were achieved with combined stimulation of any 2 leads. At total lung capacity, mean maximum airway pressure generation and peak airflow rates were 137 ± 30 cmH2O (mean ± SE) and 8.6 ± 1.8 (mean ± SE) L/s, respectively. Conclusions Lower thoracic SCS results in near maximum activation of the expiratory muscles and the generation of high positive airway pressures and peak airflow rates in the range of those observed with maximum cough efforts in normal individuals. PMID:19406289
Intrathecal Baclofen Dosing Regimens: A Retrospective Chart Review.
Clearfield, Jacob S; Nelson, Mary Elizabeth S; McGuire, John; Rein, Lisa E; Tarima, Sergey
2016-08-01
To examine dosing patterns in patients receiving baclofen via intrathecal baclofen pumps to assess for common patterns by diagnosis, ambulation ability, and affected limbs distribution. This trial study included 25 patients with baclofen pumps selected from the 356 patients enrolled in our center's baclofen pump program. Selection was done by splitting all patients into diagnostic categories of stroke, multiple sclerosis, traumatic/anoxic brain injury, cerebral palsy, and spinal cord injury, and then, five patients were randomly selected from each diagnosis.A systematic chart review was then conducted for each patient from Jan 1, 2008, through September 16, 2013, to look at factors including mean daily dose at end of study, and among those implanted during the study mean initial stable dose and time to initial stable dose. Analysis of mean daily dose across diagnoses found significant differences, with brain injury, cerebral palsy, and spinal cord injury patients having higher doses while multiple sclerosis and stroke patients required lower doses. Nonambulatory patients strongly trended to have higher daily doses than ambulatory patients. Similar trends of mean initial stable dose being higher in a similar pattern as that of end mean daily dose were seen according to diagnoses and ambulatory status, although statistical significance could not be achieved with the small sample size. Significant differences in dosing were found between diagnoses and trended to differ by ambulatory status at the end of the study, and similar trends could be observed in achieving initial stable dose. © 2015 International Neuromodulation Society.
Madkaikar, M; Gupta, M; Ghosh, K; Swaminathan, S; Sonawane, L; Mohanty, D
2007-01-01
Human cord blood is now an established source of stem cells for haematopoietic reconstitution. Red blood cell (RBC) depletion is required to reduce the cord blood unit volume for commercial banking. Red cell sedimentation using hydroxy ethyl starch (HES) is a standard procedure in most cord blood banks. However, while standardising the procedure for cord blood banking, a significant loss of nucleated cells (NC) may be encountered during standard HES sedimentation protocols. This study compares four procedures for cord blood processing to obtain optimal yield of nucleated cells. Gelatin, dextran, 6% HES and 6% HES with an equal volume of phosphate-buffered saline (PBS) were compared for RBC depletion and NC recovery. Dilution of the cord blood unit with an equal volume of PBS prior to sedimentation with HES resulted in maximum NC recovery (99% [99.5 +/- 1.3%]). Although standard procedures using 6% HES are well established in Western countries, they may not be applicable in India, as a variety of factors that can affect RBC sedimentation (e.g., iron deficiency, hypoalbuminaemia, thalassaemia trait, etc.) may reduce RBC sedimentation and thus reduce NC recovery. While diluting cord blood with an equal volume of PBS is a simple method to improve the NC recovery, it does involve an additional processing step.
Tajiri, Naoki; Lee, Jea Young; Acosta, Sandra; Sanberg, Paul R; Borlongan, Cesar V
2016-01-01
Blood-brain barrier (BBB) permeabilizers, such as mannitol, can facilitate peripherally delivered stem cells to exert therapeutic benefits on the stroke brain. Although this BBB permeation-aided stem cell therapy has been demonstrated in the acute stage of stroke, such BBB permeation in the chronic stage of the disease remains to be examined. Adult Sprague-Dawley rats initially received sham surgery or experimental stroke via the 1-h middle cerebral artery occlusion (MCAo) model. At 1 month after the MCAo surgery, stroke animals were randomly assigned to receive human umbilical cord stem cells only (2 million viable cells), mannitol only (1.1 mol/L mannitol at 4°C), combined human umbilical cord stem cells (200,000 viable cells) and mannitol (1.1 mol/L mannitol at 4°C), and vehicle (phosphate-buffered saline) only. Stroke animals that received human umbilical cord blood cells alone or combined human umbilical cord stem cells and mannitol exhibited significantly improved motor performance and significantly better brain cell survival in the peri-infarct area compared to stroke animals that received vehicle or mannitol alone, with mannitol treatment reducing the stem cell dose necessary to afford functional outcomes. Enhanced neurogenesis in the subventricular zone accompanied the combined treatment of human umbilical cord stem cells and mannitol. We showed that BBB permeation facilitates the therapeutic effects of a low dose of peripherally transplanted stem cells to effectively cause functional improvement and increase neurogenesis in chronic stroke.
Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.
2015-01-01
The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10, and V20 (lung, heart, trachea, esophagus, and spinal cord) between single-isocenter and multi-isocenter plans. This multi-lesion, single-isocenter lung SABR planning technique demonstrated excellent plan quality and clinical efficiency and is recommended for radiosurgical treatment of two or more lung targets for well-suited patients. PMID:26500888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.
Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on themore » location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Purpose: To evaluate the effects of leaf with or without interdigitation in multiple brain metastasis volumetric modulated arc therapy (VMAT) plans. Methods: Twenty patients with 2 to 6 brain metastases of our hospital were retrospectively studied to be planned with dual arc VMAT using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 60Gy/30 fractions. Two plans with or without leaf interdigitation were designed. The homogeneity index (HI), conformity index (CI), dose volume histograms (DVHs), monitor unit (MU), treatment time (T), the segments, the dose coverage of the target, were all evaluated. Results: Themore » plans with leaf interdigitation could achieve better CI (p<0.05) than without leaf interdigitation, while no significant difference were found in HI (p> 0.05) and the dose coverage of the target (p> 0.05).The MU,T, and the segments of the plan with leaf interdigitation were more than the plan without leaf interdigitation (p<0.05). There was no significant difference found in radiation dose of spinal cord, lenses and parotids, while the maximum dose of brain stem of leaf without interdigitation was higher than leaf with interdigitation (p< 0.05). It was worth noting that the areas of low dose regions with leaf interdigitation plan were much less than the without leaf interdigitation plan in the doublication planes (p< 0.05). Conclusion: This study shows that leaf with interdigitation has some advantages than leaf without interdigitation in multiple brain metastasis VMAT plans although the clinical relevance remains to be proven.« less
Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison
Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying
2012-01-01
AIM: To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage. PMID:23066322
Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison.
Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying
2012-10-07
To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs. 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs. 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs. 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Edward T.
Purpose: To derive a radiobiological model that enables the estimation of brain necrosis and spinal cord myelopathy rates for a variety of fractionation schemes, and to compare repair effects between brain and spinal cord. Methods: Sigmoidal dose response relationships for brain radiation necrosis and spinal cord myelopathy are derived from clinical data using nonlinear regression. Three different repair models are considered and the repair halftimes are included as regression parameters. Results: For radiation necrosis, a repair halftime of 38.1 (range 6.9-76) h is found with monoexponential repair, while for spinal cord myelopathy, a repair halftime of 4.1 (range 0-8) hmore » is found. The best-fit alpha beta ratio is 0.96 (range 0.24-1.73)Conclusions: A radiobiological model that includes repair corrections can describe the clinical data for a variety of fraction sizes, fractionation schedules, and total doses. Modeling suggests a relatively long repair halftime for brain necrosis. This study suggests that the repair halftime for late radiation effects in the brain may be longer than is currently thought. If confirmed in future studies, this may lead to a re-evaluation of radiation fractionation schedules for some CNS diseases, particularly for those diseases where fractionated stereotactic radiation therapy is used.« less
Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer
NASA Astrophysics Data System (ADS)
Grzetic, Shelby Mariah
Head and neck cancer (HNC) IMRT treatment planning is a challenging process that relies heavily on the planner's experience. Previously, we used the single, best match from a library of manually planned cases to semi-automatically generate IMRT plans for a new patient. The current multi-case Knowledge Based Radiation Therapy (MC-KBRT) study utilized different matching cases for each of six individual organs-at-risk (OARs), then combined those six cases to create the new treatment plan. From a database of 103 patient plans created by experienced planners, MC-KBRT plans were created for 40 (17 unilateral and 23 bilateral) HNC "query" patients. For each case, 2D beam's-eye-view images were used to find similar geometric "match" patients separately for each of 6 OARs. Dose distributions for each OAR from the 6 matching cases were combined and then warped to suit the query case's geometry. The dose-volume constraints were used to create the new query treatment plan without the need for human decision-making throughout the IMRT optimization. The optimized MC-KBRT plans were compared against the clinically approved plans and Version 1 (previous KBRT using only one matching case with dose warping) using the dose metrics: mean, median, and maximum (brainstem and cord+5mm) doses. Compared to Version 1, MC-KBRT had no significant reduction of the dose to any of the OARs in either unilateral or bilateral cases. Compared to the manually planned unilateral cases, there was significant reduction of the oral cavity mean/median dose (>2Gy) at the expense of the contralateral parotid. Compared to the manually planned bilateral cases, reduction of dose was significant in the ipsilateral parotid, larynx, and oral cavity (>3Gy mean/median) while maintaining PTV coverage. MC-KBRT planning in head and neck cancer generates IMRT plans with better dose sparing than manually created plans. MC-KBRT using multiple case matches does not show significant dose reduction compared to using a single match case with dose warping.
Stritesky, Gretta; Wadsworth, Kimberly; Duffy, Merry; Buck, Kelly; Dehn, Jason
2018-02-01
Umbilical cord blood units provide an important stem cell source for transplantation, particularly for patients of ethnic diversity who may not have suitably matched available, adult-unrelated donors. However, with the cost of cord blood unit acquisition from public banks significantly higher than that for adult-unrelated donors, attention is focused on decreasing cost yet still providing cord blood units to patients in need. Historical practices of banking units with low total nucleated cell counts, including units with approximately 90 × 10 7 total nucleated cells, indicates that most banked cord blood units have much lower total nucleated cell counts than are required for transplant. The objective of this study was to determine the impact on the ability to identify suitable cord blood units for transplantation if the minimum total nucleated cell count for banking were increased from 90 × 10 7 to 124 or 149 × 10 7 . We analyzed ethnically diverse patients (median age, 3 years) who underwent transplantation of a single cord blood unit in 2005 to 2016. A cord blood unit search was evaluated to identify units with equal or greater human leukocyte antigen matching and a greater total nucleated cell count than that of the transplanted cord blood unit (the replacement cord blood unit). If the minimum total nucleated cell count for banking increased to 124 or 149 × 10 7 , then from 75 to 80% of patients would still have at least 1 replacement cord blood unit in the current (2016) cord blood unit inventory. The best replacement cord blood units were often found among cords with the same ethnic background as the patient. The current data suggest that, if the minimum total nucleated cell count were increased for banking, then it would likely lead to an inventory of more desirable cord blood units while having minimal impact on the identification of suitable cord blood units for transplantation. © 2017 AABB.
Phase II Study of High-Dose Photon/Proton Radiotherapy in the Management of Spine Sarcomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLaney, Thomas F.; Liebsch, Norbert J.; Pedlow, Francis X.
Purpose: Radiotherapy (XRT) for spine sarcomas is constrained by spinal cord, nerve, and viscera tolerance. Negative surgical margins are uncommon; hence, doses of {>=}66 Gy are recommended. A Phase II clinical trial evaluated high-dose photon/proton XRT for spine sarcomas. Methods and Materials: Eligible patients had nonmetastatic, thoracic, lumbar, and/or sacral spine/paraspinal sarcomas. Treatment included pre- and/or postoperative photon/proton XRT with or without radical resection; patients with osteosarcoma and Ewing's sarcoma received chemotherapy. Shrinking fields delivered 50.4 cobalt Gray equivalent (Gy RBE) to subclinical disease, 70.2 Gy RBE to microscopic disease in the tumor bed, and 77.4 Gy RBE to grossmore » disease at 1.8 Gy RBE qd. Doses were reduced for radiosensitive histologies, concurrent chemoradiation, or when diabetes or autoimmune disease present. Spinal cord dose was limited to 63/54 Gy RBE to surface/center. Intraoperative boost doses of 7.5 to 10 Gy could be given by dural plaque. Results: A total of 50 patients (29 chordoma, 14 chondrosarcoma, 7 other) underwent gross total (n = 25) or subtotal (n = 12) resection or biopsy (n = 13). With 48 month median follow-up, 5-year actuarial local control, recurrence-free survival, and overall survival are: 78%, 63%, and 87% respectively. Two of 36 (5.6%) patients treated for primary versus 7/14 (50%) for recurrent tumor developed local recurrence (p < 0.001). Five patients developed late radiation-associated complications; no myelopathy developed but three sacral neuropathies appeared after 77.12 to 77.4 Gy RBE. Conclusions: Local control with this treatment is high in patients radiated at the time of primary presentation. Spinal cord dose constraints appear to be safe. Sacral nerves receiving 77.12-77.4 Gy RBE are at risk for late toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saager, Maria, E-mail: m.saager@dkfz.de; Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg; Glowa, Christin
2014-09-01
Purpose: To measure the relative biological effectiveness (RBE) of carbon ions in the rat spinal cord as a function of linear energy transfer (LET). Methods and Materials: As an extension of a previous study, the cervical spinal cord of rats was irradiated with single doses of carbon ions at 6 positions of a 6-cm spread-out Bragg peak (16-99 keV/μm). The TD{sub 50} values (dose at 50% complication probability) were determined according to dose-response curves for the development of paresis grade 2 within an observation time of 300 days. The RBEs were calculated using TD{sub 50} for photons of our previous study. Results:more » Minimum latency time was found to be dose-dependent, but not significantly LET-dependent. The TD{sub 50} values for the onset of paresis grade 2 within 300 days were 19.5 ± 0.4 Gy (16 keV/μm), 18.4 ± 0.4 Gy (21 keV/μm), 17.7 ± 0.3 Gy (36 keV/μm), 16.1 ± 1.2 Gy (45 keV/μm), 14.6 ± 0.5 Gy (66 keV/μm), and 14.8 ± 0.5 Gy (99 keV/μm). The corresponding RBEs increased from 1.26 ± 0.05 (16 keV/μm) up to 1.68 ± 0.08 at 66 keV/μm. Unexpectedly, the RBE at 99 keV/μm was comparable to that at 66 keV/μm. Conclusions: The data suggest a linear relation between RBE and LET at high doses for late effects in the spinal cord. Together with additional data from ongoing fractionated irradiation experiments, these data will provide an extended database to systematically benchmark RBE models for further improvements of carbon ion treatment planning.« less
Low dose Photofrin PDT for recurrent in-situ squamous cell tumors of the head and neck
NASA Astrophysics Data System (ADS)
Allison, R. R.; Austerlitz, C.; Sheng, C.; Mota, H.; Brodish, B.; Camnitz, P.; Sibata, C. H.
2009-06-01
Multifocal recurrence of in-situ squamous cell cancer of the oral cavity, pharynx and vocal cord following surgical failure can be a therapeutic dilemma. Salvage surgery or radiation may be an option but morbidity can be significant. We evaluated the potential role of low dose Photofrin (1.2mg/Kg) Photodynamic Therapy for this cohort of patients. A total of 25 patients with multifocal recurrent in-situ squamous cell cancer of the oral cavity, pharynx and vocal cord who had failed local resection, and where additional surgery or radiation therapy would likely result in permanent morbidity, were offered Photodynamic Therapy. PDT consisted of off label infusion of Photofrin (1.2mg/kg) followed 48 hours later by illumination at 630nm employing a light diffuser (300J) and/or microlens (150Jcm2). All patients completed their prescribed PDT and no patient has been lost to follow up (minimum 1 year). No photosensitivity reactions were noted. No significant morbidity was seen. All patients were able to maintain oral nutrition. Procedure related pain was well controlled by one week of oral narcotics. At one month post PDT all patients were biopsy negative in the treatment region and no failures within the treatment region have been noted. No fibrosis or permanent PDT morbidity has been seen with follow up to three years. Vocal cord and voice function were excellent. Three patients developed new regions of in-situ disease outside the PDT fields, two underwent additional PDT and one had laser resection. Low dose Photofrin PDT offers excellent palliation and durable local control of recurrent in-situ squamous cell cancers of the oral cavity, pharynx and true cords. This is a well tolerated therapy. Low dose Photofrin appears to improve selectivity and minimize normal tissue injury. It should be tested in a larger patient population.
Dudley-Javoroski, S.; Petrie, M. A.; McHenry, C. L.; Amelon, R. E.; Saha, P. K.
2015-01-01
Summary This study examined the effect of a controlled dose of vibration upon bone density and architecture in people with spinal cord injury (who eventually develop severe osteoporosis). Very sensitive computed tomography (CT) imaging revealed no effect of vibration after 12 months, but other doses of vibration may still be useful to test. Introduction The purposes of this report were to determine the effect of a controlled dose of vibratory mechanical input upon individual trabecular bone regions in people with chronic spinal cord injury (SCI) and to examine the longitudinal bone architecture changes in both the acute and chronic state of SCI. Methods Participants with SCI received unilateral vibration of the constrained lower limb segment while sitting in a wheelchair (0.6g, 30 Hz, 20 min, three times weekly). The opposite limb served as a control. Bone mineral density (BMD) and trabecular micro-architecture were measured with high-resolution multi-detector CT. For comparison, one participant was studied from the acute (0.14 year) to the chronic state (2.7 years). Results Twelve months of vibration training did not yield adaptations of BMD or trabecular micro-architecture for the distal tibia or the distal femur. BMD and trabecular network length continued to decline at several distal femur sub-regions, contrary to previous reports suggesting a “steady state” of bone in chronic SCI. In the participant followed from acute to chronic SCI, BMD and architecture decline varied systematically across different anatomical segments of the tibia and femur. Conclusions This study supports that vibration training, using this study’s dose parameters, is not an effective antiosteoporosis intervention for people with chronic SCI. Using a high-spatial-resolution CT methodology and segmental analysis, we illustrate novel longitudinal changes in bone that occur after spinal cord injury. PMID:26395887
Lu, Shing-Hwa; Groat, William C de; Lin, Alex T L; Chen, Kuang-Kuo; Chang, Luke S
2007-10-01
To investigate the effect of a selective P2X(3-)P2X(2/3) purinergic receptor antagonist (a-317491) on detrusor hyperreflexia in conscious chronic spinal cord-injured female rats. Six chronic spinal cord-transected female Sprague-Dawley rats (290-336 g) were used in this study. Spinal transection at the T8-T9 segmental level was performed using aseptic techniques under halothane anesthesia. Fourteen to 16 weeks after spinal transection, A-317491, a selective P2X(3-)P2X(2/3) purinergic receptor antagonist, was administered intravenously in cystometry studies at increasing doses of 0.03, 0.1, 0.3, 1, 3, 10 and 30 micromol/kg at 40-50 minute intervals. Cystometrograms (CMGs) were performed before and after the administration of each dose of the drug. The continuous filling of CMGs revealed a large number of small-amplitude (> 8 cmH(2)O), non-voiding contractions (NVCs) (average, 9.7 per voiding cycle) preceding voiding contractions (mean amplitude, 31 cmH(2)O; duration, 2.5 minutes), which occurred at an interval of 539 seconds and at a pressure threshold of 5.7 cmH(2)O. When tested in a range of doses (0.03-30 micromol/kg, intravenous), A-317491 in doses between 1 and 30 micromol/kg significantly (p < 0.05) increased the interval between voids by 25%, reduced the number of NVCs by 42-62%, and increased the pressure threshold for voiding by 53-73%, but did not change the amplitude of the duration of the voiding contractions. The effects of the drug were apparent within 10 minutes following administration. These results indicate that purinergic mechanisms, presumably involving P2X(3) or P2X(2/3) receptors on bladder C-fiber afferent nerves, play an important role in the detrusor hyperreflexia that occurs after spinal cord injury in rats.
Dose-mass inverse optimization for minimally moving thoracic lesions
NASA Astrophysics Data System (ADS)
Mihaylov, I. B.; Moros, E. G.
2015-05-01
In the past decade, several different radiotherapy treatment plan evaluation and optimization schemes have been proposed as viable approaches, aiming for dose escalation or an increase of healthy tissue sparing. In particular, it has been argued that dose-mass plan evaluation and treatment plan optimization might be viable alternatives to the standard of care, which is realized through dose-volume evaluation and optimization. The purpose of this investigation is to apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable healthy tissue sparing to that one achievable through dose-volume optimization. Fourteen non-small cell lung cancer (NSCLC) patient plans were studied retrospectively. The range of tumor motion was less than 0.5 cm and motion management in the treatment planning process was not considered. For each case, dose-volume (DV)-based and dose-mass (DM)-based optimization was performed. Nine-field step-and-shoot IMRT was used, with all of the optimization parameters kept the same between DV and DM optimizations. Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% of the esophageal volume, and doses to 20 and 30% of healthy lung volumes were used for cross-comparison. Similarly, mass-based indices (MIs), such as doses to 20 and 30% of healthy lung masses, 1% of spinal cord mass, and 33% of heart mass, were also tallied. Statistical equivalence tests were performed to quantify the findings for the entire patient cohort. Both DV and DM plans for each case were normalized such that 95% of the planning target volume received the prescribed dose. DM optimization resulted in more organs at risk (OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus was 23, 4, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung doses. On average, the doses to 20 and 30% of healthy lung were lower by approximately 3 and 4%, whereas lung volumes receiving 2000 and 3000 cGy were lower by 3 and 2%, respectively. The behavior of MIs was very similar. The statistical analyses of the results again indicated better healthy anatomical structure sparing with DM optimization. The presented findings indicate that dose-mass-based optimization results in statistically significant OAR sparing as compared to dose-volume-based optimization for NSCLC. However, the sparing is case-dependent and it is not observed for all tallied dosimetric endpoints.
Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia
2018-01-01
Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times. CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.
Mi, Wen-Li; Mao-Ying, Qi-Liang; Liu, Qiong; Wang, Xiao-Wei; Wang, Yan-Qing; Wu, Gen-Cheng
2008-09-30
Electroacupuncture (EA) can effectively control the exaggerated pain in humans with inflammatory disease and animals with experimental inflammatory pain. However, there have been few investigations on the effect of co-administration of EA and analgesics and the underlying synergistic mechanism. Using behavioral test, RT-PCR analysis, enzyme immunoassay (EIA) and enzyme-linked immunosorbent assay (ELISA), the present study demonstrated that (1) Unilateral intra-articular injection of complete Freund's adjuvant (CFA) produced a constant hyperalgesia and an up-regulation of the prostaglandin E(2) (PGE(2)) level as well as the tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 levels in the spinal cord; (2) Celecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2), at a dose of 2, 10, and 20 mg/kg (twice daily, p.o.), presented a dose-dependent anti-hyperalgesic effect; (3) Repeated EA stimulation of ipsilateral 'Huan-Tiao' (GB30) and 'Yang-Ling-Quan' (GB34) acupoints significantly suppressed CFA-induced hyperalgesia, and markedly inhibited the CFA-induced increase of the level of PGE(2) as well as IL-1beta, IL-6, and TNF-alpha in the spinal cord; (4) EA combined with low dose of celecoxib (2 mg/kg, twice daily, p.o.) greatly enhanced the anti-hyperalgesic effects of EA, with a synergistic reversing effect on CFA-induced up-regulation of spinal PGE(2), but not on the IL-1beta, IL-6, or TNF-alpha. These data indicated that repeated EA combined with low dose of celecoxib produced synergistic anti-hyperalgesic effect in the CFA-induced monoarthritic rats, which could be made possible by regulating the activity of spinal COX, hence the spinal PGE(2) level. Thus, this combination may provide an effective strategy for pain management.
Liu, Hui-Miao; Dong, Ci; Zhang, Yong-Zhi; Tian, Ya-Yun; Chen, Hong-Xu; Zhang, Sai; Li, Na; Gu, Ping
2017-10-01
To investigate the clinical and MRI characteristics of spinal cord nerve Behçet's disease. One patient with spinal cord nerve Behçet's disease was admitted to our hospital at October 20, 2015. Spinal cord nerve Behçet's disease. Retrospective analysis was performed on such case as well as 16 cases of spinal cord nerve Behçet's disease reported in China or abroad. Seventeen cases of spinal cord type of neuro Behçet's disease include 13 men and 4 women, with an average age of onset of 34.8 years old. The mean time from Behçet's disease symptoms to spinal cord involvement were 10.8 years. The initial symptom in one case was spinal cord injury, and another 4 cases had a recurrence course. The most common performance of spinal cord injury was sensory disturbance (82.4%), following by weakness (76.5%), sphincter or sexual dysfunction (58.8%), and pain in back, backside of neck or lower chest (29.4%). The number of cells was slightly increased or the protein level was increased in cerebrospinal fluid test. And the water channel protein antibody and oligoclonal band of serum levels were all negative. The spinal cord injury involved more than 3 vertebral bodies in 10 cases, and involved more than half of spinal cord in sagittal plane in 8 cases. In acute stage, shock therapy with large dose of glucocorticoid was generally applied both in China and abroad. The clinical features of spinal cord nerve Behçet's disease were various, making it easily misdiagnosed. Longitudinal extensive transverse myelitis performs as a characteristic manifestation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice
The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to themore » hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.« less
Das, Mainak; Bhargava, Neelima; Bhalkikar, Abhijeet; Kang, Jung Fong; Hickman, James J
2008-01-01
The ability to culture functional adult mammalian spinal-cord neurons represents an important step in the understanding and treatment of a spectrum of neurological disorders including spinal cord injury. Previously, the limited functional recovery of these cells, as characterized by a diminished ability to initiate action potentials and to exhibit repetitive firing patterns, has arisen as a major impediment to their physiological relevance. In this report we demonstrate that single temporal doses of the neurotransmitters serotonin, glutamate (N-acetyl-DL-glutamic acid) and acetylcholine-chloride leads to the full electrophysiological functional recovery of adult mammalian spinal-cord neurons, when they are cultured under defined serum-free conditions. Approximately 60% of the neurons treated regained their electrophysiological signature, often firing single, double and, most importantly, multiple action potentials. PMID:18005959
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling
2017-01-01
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Yeap, P L; Noble, D J; Harrison, K; Bates, A M; Burnet, N G; Jena, R; Romanchikova, M; Sutcliffe, M P F; Thomas, S J; Barnett, G C; Benson, R J; Jefferies, S J; Parker, M A
2017-07-12
To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is [Formula: see text], and the median DBC is ([Formula: see text]) mm. An intra-observer comparison for the same scans gives a median CI of [Formula: see text] and a DBC of ([Formula: see text]) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.
NASA Astrophysics Data System (ADS)
Yeap, P. L.; Noble, D. J.; Harrison, K.; Bates, A. M.; Burnet, N. G.; Jena, R.; Romanchikova, M.; Sutcliffe, M. P. F.; Thomas, S. J.; Barnett, G. C.; Benson, R. J.; Jefferies, S. J.; Parker, M. A.
2017-08-01
To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is 0.759 +/- 0.003 , and the median DBC is (0.87 +/- 0.01 ) mm. An intra-observer comparison for the same scans gives a median CI of 0.820 +/- 0.002 and a DBC of (0.64 +/- 0.01 ) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.
Lee, Jee Y; Choi, Hae Y; Yune, Tae Y
2016-10-01
Recently we reported that fluoxetine (10 mg/kg) improves functional recovery by attenuating blood spinal cord barrier (BSCB) disruption after spinal cord injury (SCI). Here we investigated whether a low-dose of fluoxetine (1 mg/kg) and vitamin C (100 mg/kg), separately not possessing any protective effect, prevents BSCB disruption and improves functional recovery when combined. After a moderate contusion injury at T9 in rat, a low-dose of fluoxetine and vitamin C, or the combination of both was administered intraperitoneally immediately after SCI and further treated once a day for 14 d. Co-treatment with fluoxetine and vitamin C significantly attenuated BSCB permeability at 1 d after SCI. When only fluoxetine or vitamin C was treated after injury, however, there was no effect on BSCB disruption. Co-treatment with fluoxetine and vitamin C also significantly inhibited the expression and activation of MMP-9 at 8 h and 1 d after injury, respectively, and the infiltration of neutrophils (at 1 d) and macrophages (at 5 d) and the expression of inflammatory mediators (at 2 h, 6 h, 8 h or 24 h after injury) were significantly inhibited by co-treatment with fluoxetine and vitamin C. Furthermore, the combination of fluoxetine and vitamin C attenuated apoptotic cell death at 1 d and 5 d and improved locomotor function at 5 weeks after SCI. These results demonstrate the synergistic effect combination of low-dose fluoxetine and vitamin C on BSCB disruption after SCI and furthermore support the effectiveness of the combination treatment regimen for the management of acute SCI. Copyright © 2016 Elsevier Ltd. All rights reserved.
ARTERIAL HYPERTENSION AND IRRADIATION DAMAGE TO THE NERVOUS SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asscher, A.W.; Anson, S.G.
1962-12-29
On the basis of previous studies it appeared that irradiation damage to the nervous system might be more severe and more easily produced in hypertensive than in normotensive subjects. This hypothesis was investigated by studying the frequency of neurological complications and vascular lesions in the spinal cord after x irradiation of the cord in hypertensive and normotensive rats. Two weeks before irradiation of the spinal cord, a clip was applied to the right renal artery of the animals to produce hypertension. Single doses of 1500, 2000, or 3000 r were administered to the spinal cord in the cervical and uppermore » thoracic region of hypertensive rats (systolic blood pressure higher than 145 mm Hg) and normotensive rats. After 1500 r to spinal cord, no abnormalities were noted in the normotensive controls during the period of observation. Some hypertensive animaIs showed transient abnormalities of gait, and during the following week died suddenly. Those remaining died unexpectedly 35-259 days after irradiation without apparent preceding neurological manifestations, although acute vascular lesions were found in the irradiated regions of the spinal cord. The normotensive controls of the 2000-r group showed no abnormalities of gait or of tail sensation, but the hypertensive rats died 67-243 days after irradiation, and ntaxic episodes preceding these unexpected deaths in one animal. Ristologically, the irradiated segments of the cords showed multiple focal acute vascular necrosis. The smaller arteries in irradiated segments of the cords showed hyaline thickening; some of the smaller vessels were widely dilated and filled with blood, and their walls were necrotic. The white matter of the irradiated parts of these cords showed numerous holes (status spongiosus) in the lateral and dorsal columns. The anterior-horn cells in the irradiated zones were swollen, their nuclei pyknotic and cytoplasm devoid of Nissl granules. No abnormalities, besides thickening of the meninges in the irradiated areas, were found in the cords of the normotensive controls. After 3000 r the normotensive animals of this group showed no abnormalities of gait and Survived normally; no vascular lesions were found in their spinal cords. The hypentensive animals died suddenly 43-70 days after irradiation of the cord, and in all, death was preceded by ataxic episodes. Postmortem, numerous foci of acute vascular necrosis were found in the irradiated cord. These experiments suggest that moderate arterial hypertension seriously modifies the effect of x irradiation of the spinal cord. The transience of the ataxia in irradiated hypertensive rats suggests a possible origin in reversible vasoconstriction. When such episodes were followed by sudden death, arterial necrosis was invariably present in the irradiated region of the cord. Moreover, in hypertensive animals in which paraplegia developed, there was widespread necrosis of nerve tissue as well as organized vascular necrosis. A search of hospital records revealed three cases in which high blood pressure was recorded along with necrosis of the brain or spinal cord following therapeutic irradiation. In two of these, large doses of irradiation had been administered, and the necrosis might have been due to irradiation alone. In the third case, however, necrosis of the spinal cord occurred artd one factor which may have determined this individual sensitivity was high blood pressure. (BBB)« less
Methylmercury dose estimation from umbilical cord concentrations in patients with Minamata disease.
Akagi, H; Grandjean, P; Takizawa, Y; Weihe, P
1998-05-01
The methylmercury exposure of patients with congenital or infantile Minamata disease is known only from a small number of analyses of umbilical cords. Four laboratories in Japan have analyzed a total of 176 samples of umbilical cord tissue obtained from Minamata. The highest concentrations were seen in cord tissue from children born during 1950-1965, i.e., the peak period of acetaldehyde production in Minamata before installation of waste water treatment. Twenty-four samples from patients diagnosed with Minamata disease showed a median mercury concentration of 1.63 microg/g and differed significantly from levels seen in cord tissue from control children. However, children diagnosed with mental retardation had mercury concentrations in cord that were intermediate between the two other groups. Using regression coefficients obtained at a study conducted at the Faroe Islands, the median cord mercury concentration from the children with Minamata disease is estimated to correspond to about 216 microg/L cord blood and 41 microg/g in maternal hair. Based on correlations reported in the literature, the median daily mercury intake of the women whose children developed Minamata disease can then be estimated at about 225 microg. Although these children had fully developed Minamata disease, the estimates of median mercury levels are only four to five times higher than current mercury exposure limits. Copyright 1998 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Linda X., E-mail: lhong0812@gmail.com; Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY; Shankar, Viswanathan
We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio ofmore » 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.« less
Hamilton, Alexander J; Whitehead, Duncan J; Bull, Matthew D; D'Souza, Richard J
2010-11-30
We report on the case of an established perinuclear antineutrophil cytoplasmic antibody (pANCA) associated renal vasculitis being treated with prednisolone and rituximab, where the patient presented with leg weakness, urinary and faecal incontinence and buttock pain consistent with transverse myelitis. The patient underwent MRI scanning showing patchy cord enhancement from T10 to the conus, which was suggestive of a cord malignancy. Prior to a cord biopsy, he was treated with steroids and a repeat MRI showed resolution of the original lesion with a new similar lesion from C7 to T3. He made a marked recovery after further treatment with high dose steroids and plasma exchange.
Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury.
Kabu, Shushi; Gao, Yue; Kwon, Brian K; Labhasetwar, Vinod
2015-12-10
Spinal cord injury (SCI) results in devastating neurological and pathological consequences, causing major dysfunction to the motor, sensory, and autonomic systems. The primary traumatic injury to the spinal cord triggers a cascade of acute and chronic degenerative events, leading to further secondary injury. Many therapeutic strategies have been developed to potentially intervene in these progressive neurodegenerative events and minimize secondary damage to the spinal cord. Additionally, significant efforts have been directed toward regenerative therapies that may facilitate neuronal repair and establish connectivity across the injury site. Despite the promise that these approaches have shown in preclinical animal models of SCI, challenges with respect to successful clinical translation still remain. The factors that could have contributed to failure include important biologic and physiologic differences between the preclinical models and the human condition, study designs that do not mirror clinical reality, discrepancies in dosing and the timing of therapeutic interventions, and dose-limiting toxicity. With a better understanding of the pathobiology of events following acute SCI, developing integrated approaches aimed at preventing secondary damage and also facilitating neuroregenerative recovery is possible and hopefully will lead to effective treatments for this devastating injury. The focus of this review is to highlight the progress that has been made in drug therapies and delivery systems, and also cell-based and tissue engineering approaches for SCI. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modiri, A; Gu, X; Hagan, A
2015-06-15
Purpose: Patients presenting with large and/or centrally-located lung tumors are currently considered ineligible for highly potent regimens such as SBRT due to concerns of toxicity to normal tissues and organs-at-risk (OARs). We present a particle swarm optimization (PSO)-based 4D planning technique, designed for MLC tracking delivery, that exploits the temporal dimension as an additional degree of freedom to significantly improve OAR-sparing and reduce toxicity to levels clinically considered as acceptable for SBRT administration. Methods: Two early-stage SBRT-ineligible NSCLC patients were considered, presenting with tumors of maximum dimensions of 7.4cm (central-right lobe; 1.5cm motion) and 11.9cm (upper-right lobe; 1cm motion). Inmore » each case, the target and normal structures were manually contoured on each of the ten 4DCT phases. Corresponding ten initial 3D-conformal plans (Pt#1: 7-beams; Pt#2: 9-beams) were generated using the Eclipse planning system. Using 4D-PSO, fluence weights were optimized over all beams and all phases (70 and 90 apertures for Pt1&2, respectively). Doses to normal tissues and OARs were compared with clinicallyestablished lung SBRT guidelines based on RTOG-0236. Results: The PSO-based 4D SBRT plan yielded tumor coverage and dose—sparing for parallel and serial OARs within the SBRT guidelines for both patients. The dose-sparing compared to the clinically-delivered conventionallyfractionated plan for Patient 1 (Patient 2) was: heart Dmean = 11% (33%); lung V20 = 16% (21%); lung Dmean = 7% (20%); spinal cord Dmax = 5% (16%); spinal cord Dmean = 7% (33%); esophagus Dmax = 0% (18%). Conclusion: Truly 4D planning can significantly reduce dose to normal tissues and OARs. Such sparing opens up the possibility of using highly potent and effective regimens such as lung SBRT for patients who were conventionally considered SBRT non-eligible. Given the large, non-convex solution space, PSO represents an attractive, parallelizable tool to successfully achieve a globally optimal solution for this problem. This work was supported through funding from the National Institutes of Health and Varian Medical Systems.« less
The Effects of Ionizing Radiation and Hyperthermia on Mouse Spinal Cord.
NASA Astrophysics Data System (ADS)
Lo, Yeh-Chi
Assays were developed to quantify spinal cord damage in the mouse following radiation (X), hyperthermia (H) and their combination. The spinal cord (T_9-L _5) of C3Hf/Sed//Kam mice was irradiated with single (12-75 Gy) or fractionated doses (2 Gy to 23 Gy per fraction). Four arbitrary scales of neurological change were used. Findings for X were: (1) Radiation induces progressive damage, from mild to severe. (2) The latency to damage depended on the dose and the level of damage. Following doses around the ED50 (20-27 Gy), the onset of paralysis occurred between 6 and 8 months. (3) For the NSD equation, the exponent for N was 0.36-0.33 for mild to severe paralysis (score 1-3). Comparison of ED_{rm 50s} for 2 fractions separated by various intervals showed no time effect until 30-60 days. (4) If the data for higher doses per fraction were excluded (>10 Gy), the alpha/beta ratios were 3.5-5.6 for score 1-3. (5) Histological evidence of demyelination was evident at the time of paralysis. Using a water bath, the spinal cord was heated at 42.0 to 43.0^circC for 10-100 min. The results were: (1) Hyperthermia produces an acute reversible damage in the surviving mice. (2) No detectable late effects were seen up to 1.5 years. (3) A value of 0.48 for R in the thermal dose equation was found. (4) Heat lesions included neuronal and vascular damage, but this was seen only at high thermal dose. Mild thermal doses (42.5^circ C for 20-50 min.) were combined with single radiation doses ranging from 12 to 35 Gy in various sequences and time intervals. Findings were: (1) An acute and reversible potentiated damage (score 1) was found when H was given 5 min. before or 5 min., 7, 30, 60 and 150 days after X, but not in 7 days before or 1 day or 90 days after X. (2) An enhanced late effect was found when H was given 5 min. or 150 days after X. (3) Late effects were reduced when heat was given 5 min. or 1 day before or 1 day after X. (4) It seems that target cells (or targets within cells) for H and X may be different but may partially overlap. (5) Histological examination revealed both demyelination and vascular lesions in paralyzed animals. Comparison of human and the present data for paralysis following X, H and the combined treatment suggested that it may be possible to predict responses of humans using mouse data.
Effects of vitamin D supplementation in pregnancy.
Marya, R K; Rathee, S; Lata, V; Mudgil, S
1981-01-01
Serum calcium, inorganic phosphate and heat-labile alkaline phosphatase (HLAP) have been estimated in maternal and cord sera of 120 pregnant women at labour. 75 women who did not take any vitamin D supplements during pregnancy showed statistically significant hypocalcaemia, hypophosphataemia and elevation of HLAP. Hypocalcaemia and hypophosphataemia were present in cord blood, too. 25 women who had received 1,200 U vitamin D/day throughout the 3rd trimester, showed significantly lower HLAP levels and increased fetal birth weight but there was no other improvement in maternal or cord blood chemistry. Administration of vitamin D in two large doses of 600,000 U each in the 7th and 8th months of pregnancy in 20 women proved more efficacious. Statistically significant improvement was observed in all the three biochemical parameters in maternal as well as cord sera. Fetal birth weight was also significantly greater with this mode of therapy.
Effects of cerebrolysin on motor-neuron-like NSC-34 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keilhoff, Gerburg, E-mail: Gerburg.keilhoff@med.ovgu.de; Lucas, Benjamin; Pinkernelle, Josephine
Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL) – a proteolytic peptide fraction – were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL onmore » motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries. - Highlights: • Cerebrolysin (CL) is anti-proliferative but initially neuroprotective in OGD-stressed NSC-34 cells. • CL amplified neurite reconstruction of NSC-34 cells. • CL affected calpain-1 expression and calpain-mediated spectrin cleavage as function of Src expression. • In organotypic spinal cord cultures, CL hampered motor neuron survival and glia activity. • Findings pose a contraindication for unchallenged use of CL in spinal cord injuries.« less
Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries
Chen, Nan-Fu; Sung, Chun-Sung; Wen, Zhi-Hong; Chen, Chun-Hong; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Tsui, Kuan-Hao; Chen, Wu-Fu
2018-01-01
Platelet-rich plasma (PRP) is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), and epithelial growth factor (EGF). The complex mechanisms underlying spinal cord injury (SCI) diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS) injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t.) PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration) exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an autologous, biocompatible, nontoxic material that does not result in a major immune response. In addition, based on its safety and ease of preparation, we hypothesize that PRP is a promising therapeutic agent for SCI. PMID:29740270
Analysis of esophageal-sparing treatment plans for patients with high-grade esophagitis.
Niedzielski, Joshua; Bluett, Jaques B; Williamson, Ryan T; Liao, Zhongxing; Gomez, Daniel R; Court, Laurence E
2013-07-08
We retrospectively generated IMRT plans for 14 NSCLC patients who had experienced grade 2 or 3 esophagitis (CTCAE version 3.0). We generated 11-beam and reduced esophagus dose plan types to compare changes in the volume and length of esophagus receiving doses of 50, 55, 60, 65, and 70 Gy. Changes in planning target volume (PTV) dose coverage were also compared. If necessary, plans were renormalized to restore 95% PTV coverage. The critical organ doses examined were mean lung dose, mean heart dose, and volume of spinal cord receiving 50 Gy. The effect of interfractional motion was determined by applying a three-dimensional rigid shift to the dose grid. For the esophagus plan, the mean reduction in esophagus V50, V55, V60, V65, and V70 Gy was 2.8, 4.1, 5.9, 7.3, and 9.5 cm(3), respectively, compared with the clinical plan. The mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 2.0, 3.0, 3.8, 4.0, and 4.6 cm, respectively. The mean heart and lung dose decreased 3.0 Gy and 2.4 Gy, respectively. The mean decreases in 90% and 95% PTV coverage were 1.7 Gy and 2.8 Gy, respectively. The normalized plans' mean reduction of esophagus V50, V55, V60, V65, and V70 Gy were 1.6, 2.0, 2.9, 3.9, and 5.5 cm(3), respectively, compared with the clinical plans. The normalized plans' mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 4.9, 5.2, 5.4, 4.9, and 4.8 cm, respectively. The mean reduction in maximum esophagus dose with simulated interfractional motion was 3.0 Gy and 1.4 Gy for the clinical plan type and the esophagus plan type, respectively. In many cases, the esophagus dose can be greatly reduced while maintaining critical structure dose constraints. PTV coverage can be restored by increasing beam output, while still obtaining a dose reduction to the esophagus and maintaining dose constraints.
Analysis of esophageal‐sparing treatment plans for patients with high‐grade esophagitis
Bluett, Jaques B.; Williamson, Ryan T.; Liao, Zhongxing; Gomez, Daniel R.; Court, Laurence E.
2013-01-01
We retrospectively generated IMRT plans for 14 NSCLC patients who had experienced grade 2 or 3 esophagitis (CTCAE version 3.0). We generated 11‐beam and reduced esophagus dose plan types to compare changes in the volume and length of esophagus receiving doses of 50, 55, 60, 65, and 70 Gy. Changes in planning target volume (PTV) dose coverage were also compared. If necessary, plans were renormalized to restore 95% PTV coverage. The critical organ doses examined were mean lung dose, mean heart dose, and volume of spinal cord receiving 50 Gy. The effect of interfractional motion was determined by applying a three‐dimensional rigid shift to the dose grid. For the esophagus plan, the mean reduction in esophagus V50, V55, V60, V65, and V70 Gy was 2.8, 4.1, 5.9, 7.3, and 9.5 cm3, respectively, compared with the clinical plan. The mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 2.0, 3.0, 3.8, 4.0, and 4.6 cm, respectively. The mean heart and lung dose decreased 3.0 Gy and 2.4 Gy, respectively. The mean decreases in 90% and 95% PTV coverage were 1.7 Gy and 2.8 Gy, respectively. The normalized plans’ mean reduction of esophagus V50, V55, V60, V65, and V70 Gy were 1.6, 2.0, 2.9, 3.9, and 5.5 cm3, respectively, compared with the clinical plans. The normalized plans’ mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 4.9, 5.2, 5.4, 4.9, and 4.8 cm, respectively. The mean reduction in maximum esophagus dose with simulated interfractional motion was 3.0 Gy and 1.4 Gy for the clinical plan type and the esophagus plan type, respectively. In many cases, the esophagus dose can be greatly reduced while maintaining critical structure dose constraints. PTV coverage can be restored by increasing beam output, while still obtaining a dose reduction to the esophagus and maintaining dose constraints. PACS number: 87.53 Tf PMID:23835390
Occupational vocal cord dysfunction due to exposure to wood dust and xerographic toner.
Muñoz, Xavier; Roger, Alex; De la Rosa, David; Morell, Ferran; Cruz, Maria J
2007-04-01
Vocal cord dysfunction is a poorly understood entity that is often misdiagnosed as asthma. Both irritant and non-irritant vocal cord dysfunction have been described. This report presents two cases of irritant vocal cord dysfunction secondary to specific environmental exposure, the first to iroko and western red cedar wood (a carpenter) and the second to xerographic printing toner (a secretary). Several tests were performed, including chest radiographs, measurements of total serum immunoglobulin E, skin prick tests with common pneumoallergens (as well as iroko and western red cedar in the first case), pulmonary function studies, methacholine challenge testing, specific inhalation challenge performed with suspected agents in a single-blinded fashion, and peak expiratory flow testing and fiberoptic rhinolaryngoscopy (in case 1). During the specific inhalation challenge, the patients showed dysphonia, chest tightness, inspiratory stridor, and flattening of the inspiratory limb of the maximum flow-volume loop in spirometry, with no significant decreases in the level of forced expiratory volume in 1 second; fiberoptic rhinolaryngoscopy confirmed the diagnosis of vocal cord dysfunction in case 1. It is important to know that agents that can cause occupational asthma can also cause vocal cord dysfunction. The mechanisms by which these agents produce vocal cord dysfunction are unknown. The differences in the clinical presentation of the patients described relative to the reported cases suggest that more than one pathophysiological mechanism may be implicated in the genesis of this entity.
Vidaurre, D.; Rodríguez, E. E.; Bielza, C.; Larrañaga, P.; Rudomin, P.
2012-01-01
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods. PMID:22929924
Vidaurre, D; Rodríguez, E E; Bielza, C; Larrañaga, P; Rudomin, P
2012-10-01
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.
2015-07-01
optimal dosage was examined using a model of rodent SCI and testing several dose levels delivered either subcutaneously (SC) or intravenously (IV...to saline treated controls. ANOVA with Dunett’s post hoc test , pɘ.05. Based on these results, the studies in year 2 compared effects of SC...ventrally and ventral- laterally . The lesion in the Acorda model was characterized by a dorsal-ventral flattening of the cord profile with a highly
Merega, Elisa; Di Prisco, Silvia; Padolecchia, Cristina; Grilli, Massimo; Milanese, Marco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Bonanno, Giambattista; Marchi, Mario
2017-01-01
Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1–0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders. PMID:28125677
Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg
2013-01-01
Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, S; Neylon, J; Chen, A
2014-06-01
Purposes: To systematically monitor anatomic variations and their dosimetric consequences during head-and-neck (H'N) radiation therapy using a GPU-based deformable image registration (DIR) framework. Methods: Eleven H'N IMRT patients comprised the subject population. The daily megavoltage CT and weekly kVCT scans were acquired for each patient. The pre-treatment CTs were automatically registered with their corresponding planning CT through an in-house GPU-based DIR framework. The deformation of each contoured structure was computed to account for non-rigid change in the patient setup. The Jacobian determinant for the PTVs and critical structures was used to quantify anatomical volume changes. Dose accumulation was performed tomore » determine the actual delivered dose and dose accumulation. A landmark tool was developed to determine the uncertainty in the dose distribution due to registration error. Results: Dramatic interfraction anatomic changes leading to dosimetric variations were observed. During the treatment courses of 6–7 weeks, the parotid gland volumes changed up to 34.7%, the center-of-mass displacement of the two parotids varied in the range of 0.9–8.8mm. Mean doses were within 5% and 3% of the planned mean doses for all PTVs and CTVs, respectively. The cumulative minimum/mean/EUD doses were lower than the planned doses by 18%, 2%, and 7%, respectively for the PTV1. The ratio of the averaged cumulative cord maximum doses to the plan was 1.06±0.15. The cumulative mean doses assessed by the weekly kVCTs were significantly higher than the planned dose for the left-parotid (p=0.03) and right-parotid gland (p=0.006). The computation time was nearly real-time (∼ 45 seconds) for registering each pre-treatment CT to the planning CT and dose accumulation with registration accuracy (for kVCT) at sub-voxel level (<1.5mm). Conclusions: Real-time assessment of anatomic and dosimetric variations is feasible using the GPU-based DIR framework. Clinical implementation of this technology may enable timely plan adaption and potentially lead to improved outcome.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2016-06-15
Purpose: To analyze the changes of the volume and dosimetry of target and organs at risk (OARs) by comparing the daily CBCT images and planning CT images of the patients with Non-Small Cell Lung Cancer (NSCLC) and analyze the difference between planned dose and accumulated dose. Methods: This study retrospectively analyzed eight cases of non-small cell lung cancer patients who accepted CRT or IMRT treatment and KV-CBCT. For each patient, the prescription dose was 60Gy and the fraction dose was 2Gy. Deform the daily CBCT images to planning CT images by the mapping of registration to compare the planning dosemore » with cumulative dose of targets and organs at risk in RayStation. Results: The average volume of GTV of 8 patients with CBCT was 88.26% of the original volume. The average plan dose of GTV was 64.49±2.40Gy. The accumulated dose of GTV was 60.13±2.70Gy (P≤0.05). The average volume of PTV to reach the prescription dose was 95.59% for original plan and 81.47% for accumulated plan (P≤0.05). The volume changes of the left and right lung of the original volume was 88.95% and 80.32%, respectively. The average dose of the left and right lung of original plan was 9.31±1.75Gy and 4.33±1.10Gy, respectively(P≥0.05). The average accumulated dose was 9.63±1.96Gy and 4.63±1.36Gy, respectively(P≥0.05). The average plan dose and accumulated dose of heart was 6.88±1.70Gy and 6.38±0.91Gy, respectively (P≥0.05). The average plan maximum dose and accumulated dose for spinal cord was 24.62±5.91Gy and 26.00±5.14Gy, respectively (P≥0.05). Conclusion: The changes of target anatomical structure with NSCLC make difference between the planned dose and cumulative dose. With the dose deformation method, the dose gap can be found between planning dose and delivery dose.« less
Lee, Katrina; Lenards, Nishele; Holson, Janice
2016-01-01
The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luka, S.; Marks, J.E.
2015-01-15
The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total ofmore » 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.« less
Hill, Joshua A; Mayer, Bryan T; Xie, Hu; Leisenring, Wendy M; Huang, Meei-Li; Stevens-Ayers, Terry; Milano, Filippo; Delaney, Colleen; Sorror, Mohamed L; Sandmaier, Brenda M; Nichols, Garrett; Zerr, Danielle M; Jerome, Keith R; Schiffer, Joshua T; Boeckh, Michael
2017-04-20
Strategies to prevent active infection with certain double-stranded DNA (dsDNA) viruses after allogeneic hematopoietic cell transplantation (HCT) are limited by incomplete understanding of their epidemiology and clinical impact. We retrospectively tested weekly plasma samples from allogeneic HCT recipients at our center from 2007 to 2014. We used quantitative PCR to test for cytomegalovirus, BK polyomavirus, human herpesvirus 6B, HHV-6A, adenovirus, and Epstein-Barr virus between days 0 and 100 post-HCT. We evaluated risk factors for detection of multiple viruses and association of viruses with mortality through day 365 post-HCT with Cox models. Among 404 allogeneic HCT recipients, including 125 cord blood, 125 HLA-mismatched, and 154 HLA-matched HCTs, detection of multiple viruses was common through day 100: 90% had ≥1, 62% had ≥2, 28% had ≥3, and 5% had 4 or 5 viruses. Risk factors for detection of multiple viruses included cord blood or HLA-mismatched HCT, myeloablative conditioning, and acute graft-versus-host disease ( P values < .01). Absolute lymphocyte count of <200 cells/mm 3 was associated with greater virus exposure on the basis of the maximum cumulative viral load area under the curve (AUC) ( P = .054). The maximum cumulative viral load AUC was the best predictor of early (days 0-100) and late (days 101-365) overall mortality (adjusted hazard ratio [aHR] = 1.36, 95% confidence interval [CI] [1.25, 1.49], and aHR = 1.04, 95% CI [1.0, 1.08], respectively) after accounting for immune reconstitution and graft-versus-host disease. In conclusion, detection of multiple dsDNA viruses was frequent after allogeneic HCT and had a dose-dependent association with increased mortality. These data suggest opportunities to improve outcomes with better antiviral strategies. © 2017 by The American Society of Hematology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogan, N; Padgett, K; Evans, J
Purpose: Adaptive Radiotherapy (ART) with frequent CT imaging has been used to improve dosimetric accuracy by accounting for anatomical variations, such as primary tumor shrinkage and/or body weight loss, in Head and Neck (H&N) patients. In most ART strategies, the difference between the planned and the delivered dose is estimated by generating new plans on repeated CT scans using dose-volume constraints used with the initial planning CT without considering already delivered dose. The aim of this study was to assess the dosimetric gains achieved by re-planning based on prior dose by comparing them to re-planning not based-on prior dose formore » H&N patients. Methods: Ten locally-advanced H&N cancer patients were selected for this study. For each patient, six weekly CT imaging were acquired during the course of radiotherapy. PTVs, parotids, cord, brainstem, and esophagus were contoured on both planning and six weekly CT images. ART with weekly re-plans were done by two strategies: 1) Generating a new optimized IMRT plan without including prior dose from previous fractions (NoPriorDose) and 2) Generating a new optimized IMRT plan based on the prior dose given from previous fractions (PriorDose). Deformable image registration was used to accumulate the dose distributions between planning and six weekly CT scans. The differences in accumulated doses for both strategies were evaluated using the DVH constraints for all structures. Results: On average, the differences in accumulated doses for PTV1, PTV2 and PTV3 for NoPriorDose and PriorDose strategies were <2%. The differences in Dmean to the cord and brainstem were within 3%. The esophagus Dmean was reduced by 2% using PriorDose. PriorDose strategy, however, reduced the left parotid D50 and Dmean by 15% and 14% respectively. Conclusion: This study demonstrated significant parotid sparing, potentially reducing xerostomia, by using ART with IMRT optimization based on prior dose for weekly re-planning of H&N cancer patients.« less
Zhang, Mingyue; Wang, Kun; Ma, Min; Tian, Songyu; Wei, Na; Wang, Guonian
2016-04-01
Morphine is widely used in patients with moderate and severe cancer pain, whereas the development of drug tolerance remains a major problem associated with opioid use. Previous studies have shown that cannabinoid type 2 (CB2) receptor agonists induce morphine analgesia, attenuate morphine tolerance in normal and neuropathic pain animals, induce transcription of the μ-opioid receptor (MOR) gene in Jurkat T cells, and increase morphine analgesia in cancer pain animals. However, no studies of the effects of CB2 receptor agonists on morphine tolerance in cancer pain have been performed. Therefore, we investigated the effect of repeated intrathecal (IT) injection of the low-dose CB2 receptor agonist AM1241 on the development of morphine tolerance in walker 256 tumor-bearing rats. We also tested the influence of the CB2 receptor agonist AM1241 on MOR protein and messenger ribonucleic acid (mRNA) expression in the rat spinal cord and dorsal root ganglia (DRG). Walker 256 cells were implanted into the plantar region of each rat's right hindpaw. Tumor-bearing rats received IT injection of the CB2 receptor agonist AM1241 or antagonist AM630 with or without morphine subcutaneously twice daily for 8 days. Rats receiving drug vehicle only served as the control group. Mechanical paw withdrawal threshold and thermal paw withdrawal latency were assessed by a von Frey test and hot plate test 30 minutes after drug administration every day. MOR protein and mRNA expression in the spinal cord and DRG were detected after the last day (day 8) of drug administration via Western blot and real-time reverse transcription polymerase chain reaction. The data were analyzed via analysis of variance followed by Student t test with Bonferroni correction for multiple comparisons. Repeated morphine treatments reduced the mechanical withdrawal threshold and thermal latency. Coadministration of a nonanalgetic dose of the CB2 receptor agonist AM1241 with morphine significantly inhibited the development of morphine tolerance and increased the MOR protein expression in the spinal cord and DRG and mRNA expression in the spinal cord in tumor-bearing rats. Our findings indicate that IT injection of a nonanalgetic dose of a CB2 receptor agonist increased the analgesia effect and alleviated tolerance to morphine in tumor-bearing rats, potentially by regulating MOR expression in the spinal cord and DRG. This receptor may be a new target for prevention of the development of opioid tolerance in cancer pain.
Mannheimer, C; Eliasson, T; Andersson, B; Bergh, C H; Augustinsson, L E; Emanuelsson, H; Waagstein, F
1993-01-01
OBJECTIVE--To investigate the effects of spinal cord stimulation on myocardial ischaemia, coronary blood flow, and myocardial oxygen consumption in angina pectoris induced by atrial pacing. DESIGN--The heart was paced to angina during a control phase and treatment with spinal cord stimulation. Blood samples were drawn from a peripheral artery and the coronary sinus. SETTING--Multidisciplinary pain centre, department of medicine, Ostra Hospital, and Wallenberg Research Laboratory, Sahlgrenska Hospital, Gothenburg, Sweden. SUBJECTS--Twenty patients with intractable angina pectoris, all with a spinal cord stimulator implanted before the study. RESULTS--Spinal cord stimulation increased patients' tolerance to pacing (p < 0.001). At the pacing rate comparable to that producing angina during the control recording, myocardial lactate production during control session turned into extraction (p = 0.003) and, on the electrocardiogram, ST segment depression decreased, time to ST depression increased, and time to recovery from ST depression decreased (p = 0.01; p < 0.05, and p < 0.05, respectively). Spinal cord stimulation also reduced coronary sinus blood flow (p = 0.01) and myocardial oxygen consumption (p = 0.02). At the maximum pacing rate during treatment, all patients experienced anginal pain. Myocardial lactate extraction reverted to production (p < 0.01) and the magnitude and duration of ST segment depression increased to the same values as during control pacing, indicating that myocardial ischaemia during treatment with spinal cord stimulation gives rise to anginal pain. CONCLUSIONS--Spinal cord stimulation has an anti-anginal and anti-ischaemic effect in severe coronary artery disease. These effects seem to be secondary to a decrease in myocardial oxygen consumption. Furthermore, myocardial ischemia during treatment gives rise to anginal pain. Thus, spinal cord stimulation does not deprive the patient of a warning signal. PMID:8400930
Suresh Kumar, M. A.; Peluso, Michael; Chaudhary, Pankaj; ...
2015-07-24
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells ’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction ofmore » Apurinic Endonucle- ase-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of pro- tons cause latent damage to spinal cord architecture while fractionation of HZE ( 28Si) induce increase in APE1 with single dose, which then decreased with fractionation. In conclusion, the oligoden- drocyte progenitor cells differentiation was skewed with increase in immature oligodendro- cytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh Kumar, M. A.; Peluso, Michael; Chaudhary, Pankaj
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells ’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction ofmore » Apurinic Endonucle- ase-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of pro- tons cause latent damage to spinal cord architecture while fractionation of HZE ( 28Si) induce increase in APE1 with single dose, which then decreased with fractionation. In conclusion, the oligoden- drocyte progenitor cells differentiation was skewed with increase in immature oligodendro- cytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects« less
SU-E-T-610: Comparison of Treatment Times Between the MLCi and Agility Multileaf Collimators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, C; Bowling, J
2014-06-01
Purpose: The Agility is a new 160-leaf MLC developed by Elekta for use in their Infinity and Versa HD linacs. As compared to the MLCi, the Agility increased the maximum leaf speed from 2 cm/s to 3.5 cm/s, and the maximum primary collimator speed from 1.5 cm/s to 9.0 cm/s. The purpose of this study was to determine if the Agility MLC resulted in improved plan quality and/or shorter treatment times. Methods: An Elekta Infinity that was originally equipped with a 80 leaf MLCi was upgraded to an 160 leaf Agility. Treatment plan quality was evaluated using the Pinnacle planningmore » system with SmartArc. Optimization was performed once for the MLCi and once for the Agility beam models using the same optimization parameters and the same number of iterations. Patient treatment times were measured for all IMRT, VMAT, and SBRT patients treated on the Infinity with the MLCi and Agility MLCs. Treatment times were extracted from the EMR and measured from when the patient first walked into the treatment room until exiting the treatment room. Results: 11,380 delivery times were measured for patients treated with the MLCi, and 1,827 measurements have been made for the Agility MLC. The average treatment times were 19.1 minutes for the MLCi and 20.8 minutes for the Agility. Using a t-test analysis, there was no difference between the two groups (t = 0.22). The dose differences between patients planned with the MLCi and the Agility MLC were minimal. For example, the dose difference for the PTV, GTV, and cord for a head and neck patient planned using Pinnacle were effectively equivalent. However, the dose to the parotid glands was slightly worse with the Agility MLC. Conclusion: There was no statistical difference in treatment time, or any significant dosimetric difference between the Agility MLC and the MLCi.« less
NASA Astrophysics Data System (ADS)
Zeng, C.; Plastaras, J. P.; Tochner, Z. A.; White, B. M.; Hill-Kayser, C. E.; Hahn, S. M.; Both, S.
2015-04-01
The purpose of this study was to assess the feasibility of proton pencil beam scanning (PBS) for the treatment of mediastinal lymphoma. A group of 7 patients of varying tumor size (100-800 cc) were planned using a PBS anterior field. We investigated 17 fractions of 1.8 Gy(RBE) to deliver 30.6 Gy(RBE) to the internal target volume (ITV). Spots with σ ranging from 4 mm to 8 mm were used for all patients, while larger spots (σ = 6-16 mm) were employed for patients with motion perpendicular to the beam (⩾5 mm), based on initial 4-dimensional computed tomography (4D CT) motion evaluation. We considered volumetric repainting such that the same field would be delivered twice in each fraction. The ratio of extreme inhalation amplitude and regular tidal inhalation amplitude (free-breathing variability) was quantified as an indicator of potential irregular breathing during the scanning. Four-dimensional dose was calculated on the 4D CT scans based on the respiratory trace and beam delivery sequence, implemented by partitioning the spots into separate plans on each 4D CT phase. Four starting phases (end of inhalation, end of exhalation, middle of inhalation and middle of exhalation) were sampled for each painting and 4 energy switching times (0.5 s, 1 s, 3 s and 5 s) were tested, which resulted in 896 dose distributions for the analyzed cohort. Plan robustness was measured for the target and critical structures in terms of the percent difference between ‘delivered’ dose (4D-evaluated) and planned dose (calculated on average CT). It was found that none of the patients exhibited highly variable or chaotic breathing patterns. For all patients, the ITV D98% was degraded by <2% (standard deviations ˜ 0.1%) when averaged over the whole treatment course. For six out of seven patients, the average degradation of ITV D98% per fraction was within 5% . For one patient with motion perpendicular to the beam (⩾5 mm), the degradation of ITV D98% per fraction was up to 15%, which was mitigated to 2% by employing larger spots and repainting. Deviation of mean lung dose was at most 0.2 Gy(RBE) (less than 1% of prescribed dose, 30.6 Gy(RBE)), while the deviation of heart maximum dose and cord maximum dose could exceed 5% of the prescribed dose. No significant difference in either target coverage or normal tissue dose was observed for different energy switching times compared via two-sided Wilcoxon signed-rank tests (p < 0.05). This feasibility study demonstrates that, for mediastinal lymphoma, the impact of the interplay effect on the PBS plan robustness is minimal when volumetric repainting and/or larger spots are employed.
Automatic 3D segmentation of spinal cord MRI using propagated deformable models
NASA Astrophysics Data System (ADS)
De Leener, B.; Cohen-Adad, J.; Kadoury, S.
2014-03-01
Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.
Ito, Makoto; Shimizu, Hidetoshi; Aoyama, Takahiro; Tachibana, Hiroyuki; Tomita, Natsuo; Makita, Chiyoko; Koide, Yutaro; Kato, Daiki; Ishiguchi, Tsuneo; Kodaira, Takeshi
2018-04-04
Intensity-modulated radiotherapy is useful for cervical oesophageal carcinoma (CEC); however, increasing low-dose exposure to the lung may lead to radiation pneumonitis. Nevertheless, an irradiation technique that avoids the lungs has never been examined due to the high difficulty of dose optimization. In this study, we examined the efficacy of helical tomotherapy that can restrict beamlets passing virtual blocks during dose optimization computing (block plan) in reducing the lung dose. Fifteen patients with CEC were analysed. The primary/nodal lesion and prophylactic nodal region with adequate margins were defined as the planning target volume (PTV)-60 Gy and PTV-48 Gy, respectively. Nineteen plans per patient were made and compared (total: 285 plans), including non-block and block plans with several shapes and sizes. The most appropriate block model was semi-circular, 8 cm outside of the tracheal bifurcation, with a significantly lower lung dose compared to that of non-block plans; the mean lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and the mean lung dose were 31.3% vs. 48.0% (p < 0.001), 22.4% vs. 39.4% (p < 0.001), 13.2% vs. 16.0% (p = 0.028), and 7.1 Gy vs. 9.6 Gy (p < 0.001), respectively. Both the block and non-block plans were comparable in terms of the homogeneity and conformity indexes of PTV-60 Gy: 0.05 vs. 0.04 (p = 0.100) and 0.82 vs. 0.85 (p = 0.616), respectively. The maximum dose of the spinal cord planning risk volume increased slightly (49.4 Gy vs. 47.9 Gy, p = 0.002). There was no significant difference in the mean doses to the heart and the thyroid gland. Prolongation of the delivery time was less than 1 min (5.6 min vs. 4.9 min, p = 0.010). The block plan for CEC could significantly reduce the lung dose, with acceptable increment in the spinal dose and a slightly prolonged delivery time.
Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won
2013-05-01
The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.
Rojas, Alfredo Cury; Alves, Juliana Gaiotto; Moreira E Lima, Rodrigo; Esther Alencar Marques, Mariângela; Moreira de Barros, Guilherme Antônio; Fukushima, Fernanda Bono; Modolo, Norma Sueli Pinheiro; Ganem, Eliana Marisa
2012-02-01
The N-methyl-d-aspartate receptor antagonist ketamine and its active enantiomer, S(+)-ketamine, have been injected in the epidural and subarachnoid spaces to treat acute postoperative pain and relieve neuropathic pain syndrome. In this study we evaluated the effects of a single dose of preservative-free S(+)-ketamine, in doses usually used in clinical practice, in the spinal cord and meninges of dogs. Under anesthesia (IV etomidate (2 mg/kg) and fentanyl (0.005 mg/kg), 16 dogs (6 to 15 kg) were randomized to receive a lumbar intrathecal injection (L5/6) of saline solution of 0.9% (control group) or S(+)-ketamine 1 mg/kg(-1) (ketamine group). All doses were administered in a volume of 1 mL over a 10-second interval. Accordingly, injection solution ranged from 0.6% to 1.5%. After 21 days of clinical observation, the animals were killed; spinal cord, cauda equina root, and meninges were removed for histological examination with light microscopy. Tissues were examined for demyelination (Masson trichrome), neuronal death (hematoxylin and eosin) and astrocyte activation (glial fibrillary acidic protein). No clinical or histological alterations of spinal tissue or meninges were found in animals from either control or ketamine groups. A single intrathecal injection of preservative-free S(+)-ketamine, at 1 mg/kg(-1) dosage, over a concentration range of 6 to 15 mg/mL injected in the subarachnoid space in a single puncture, did not produce histological alterations in this experimental model.
Kurita, N; Frassoni, F; Chiba, S; Podestà, M
2015-06-01
As the history of the cord blood banking system has lengthened, the number of cord blood units (CBUs) cryopreserved for years has increased. The global expansion of cord blood banking resulted in active international exchange of CBUs. To determine whether long-term cryopreservation and international shipment of CBUs affect the quality of the units and outcome after transplantation, we retrospectively analyzed the quality of 95 CBUs and the hematologic recovery of 127 patients with hematological malignancy following single-unit cord blood transplantation. Of the 127 CBUs used to transplant, 42 units were cryopreserved for long periods (5-11.8 years), and 44 units were shipped from distant countries. We found that length of cryopreservation and origin of CBUs did not affect the ratio of viable total-nucleated cells after thawing. Also, neutrophil engraftment was not affected by long-term cryopreservation (> 5 years) or origin (from distant countries), (hazard ratio, 0.91 and 1.2; P=0.65 and 0.41; respectively). The number of CD34(+) cells before freezing (> 1.4 cells/kg recipient) was the only factor that enhanced neutrophil engraftment (hazard ratio, 1.8; P<0.01). This suggests that length of cryopreservation and origin need not be prioritized over the CD34(+) cell dose when selecting CBUs.
Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release.
Kondo, Ichiro; Marvizon, Juan Carlos G; Song, Bingbing; Salgado, Frances; Codeluppi, Simone; Hua, Xiao-Ying; Yaksh, Tony L
2005-04-06
Opioid mu- and delta-receptors are present on the central terminals of primary afferents, where they are thought to inhibit neurotransmitter release. This mechanism may mediate analgesia produced by spinal opiates; however, when they used neurokinin 1 receptor (NK1R) internalization as an indicator of substance P release, Trafton et al. (1999) noted that this evoked internalization was altered only modestly by morphine delivered intrathecally at spinal cord segment S1-S2. We reexamined this issue by studying the effect of opiates on NK1R internalization in spinal cord slices and in vivo. In slices, NK1R internalization evoked by dorsal root stimulation at C-fiber intensity was abolished by the mu agonist [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO) (1 microM) and decreased by the delta agonist [D-Phe2,5]-enkephalin (DPDPE) (1 microM). In vivo, hindpaw compression induced NK1R internalization in ipsilateral laminas I-II. This evoked internalization was significantly reduced by morphine (60 nmol), DAMGO (1 nmol), and DPDPE (100 nmol), but not by the kappa agonist trans-(1S,2S)-3,4-dichloro-N-mathyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride (200 nmol), delivered at spinal cord segment L2 using intrathecal catheters. These doses of the mu and delta agonists were equi-analgesic as measured by a thermal escape test. Lower doses neither produced analgesia nor inhibited NK1R internalization. In contrast, morphine delivered by percutaneous injections at S1-S2 had only a modest effect on thermal escape, even at higher doses. Morphine decreased NK1R internalization after systemic delivery, but at a dose greater than that necessary to produce equivalent analgesia. All effects were reversed by naloxone. These results indicate that lumbar opiates inhibit noxious stimuli-induced neurotransmitter release from primary afferents at doses that are confirmed behaviorally as analgesic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volpe, T; Margiasso, R; Saleh, Z
2015-06-15
Purpose: As we continuously see more bilateral reconstructed chest wall cases, new challenges are being presented to deliver left-sided breast irradiation. We herein compare three Deep Inspiration Breath Hold (DIBH) planning techniques (tangents, VMAT, and IMRT) and two free breathing techniques (VMAT and IMRT). Methods: Three left-sided chest wall patients with bilateral implants were studied. Tangents, VMAT, and IMRT plans were created for DIBH scans. VMAT and IMRT plans were created for free breathing scans. All plans were normalized so that 95% of the prescription dose was delivered to 95% of the planning target volume (PTV). The maximum point dosemore » was constrained to less than 120% of the prescription dose. Since the success of DIBH delivery largely depends on patient’s ability to perform consistent breath hold during beam on time, smaller number of Monitor Units (MU) is in general desired. For each patient, the following information was collected to compare the planning techniques: heart mean dose, left and right lung V20 Gy, contra-lateral (right) breast mean dose, cord max dose, and MU. Results: The average heart mean dose over all patients are 1561, 692, 985, 1245, and 1121 cGy, for DIBH tangents, VMAT, IMRT, free breathing VMAT and IMRT, respectively. For left lung V20 are 60%, 28%, 26%, 30%, and 29%. For contra-lateral breast mean dose are 244, 687, 616, 783, 438 cGy. MU are 253, 853, 2048, 1035, and 1874 MUs. Conclusion: In the setting of bilateral chest wall reconstruction, opposed tangent beams cannot consistently achieve desired heart and left lung sparing. DIBH consistently achieves better healthy tissue sparing. VMAT appears to be preferential to IMRT for planning and delivering radiation to patients with bilaterally reconstructed chest walls being treated with DIBH.« less
Li, Xiadong; Wang, Lu; Wang, Jiahao; Han, Xu; Xia, Bing; Wu, Shixiu; Hu, Weigang
2017-01-01
This study aimed to design automated volumetric-modulated arc therapy (VMAT) plans in Pinnacle auto-planning and compare it with manual plans for patients with lower thoracic esophageal cancer (EC). Thirty patients with lower thoracic EC were randomly selected for replanning VMAT plans using auto-planning in Pinnacle treatment planning system (TPS) version 9.10. Historical plans of these patients were then compared. Dose-volume histogram (DVH) statistics, dose uniformity, and dose homogeneity were analyzed to evaluate treatment plans. Auto-planning was superior in terms of conformity index (CI) and homogeneity index (HI) for planning target volume (PTV), significantly improving 8.2% (p = 0.013) and 25% (p = 0.007) compared with manual planning, respectively, and decreasing dose of heart and liver irradiated by 20 to 40 Gy and 5 to 30 Gy, respectively (p < 0.05). Meanwhile, auto-planning further reduced the maximum dose (D max ) of spinal cord by 6.9 Gy compared with manual planning (p = 0.000). Additionally, manual planning showed the significantly lower low-dose volume (V 5 ) for the lung (p = 0.005). For auto-planning, the V 5 of the lung was significantly associated with the relative volume index (the volume ratio of PTV to the lung), and the correlation coefficient (R) and p-value were 0.994 and 0.000. Pinnacle auto-planning achieved superior target conformity and homogeneity and similar target coverage compared with historical manual planning. Most of organs at risk (OARs) sparing was significantly improved by auto-planning except for the V 5 of the lung, and the low dose distribution was highly associated with PTV volume and lung volume in auto-planning. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Childhood Obesity Research Demonstration Project: Cross-Site Evaluation Methods
Lee, Rebecca E.; Mehta, Paras; Thompson, Debbe; Bhargava, Alok; Carlson, Coleen; Kao, Dennis; Layne, Charles S.; Ledoux, Tracey; O'Connor, Teresia; Rifai, Hanadi; Gulley, Lauren; Hallett, Allen M.; Kudia, Ousswa; Joseph, Sitara; Modelska, Maria; Ortega, Dana; Parker, Nathan; Stevens, Andria
2015-01-01
Abstract Introduction: The Childhood Obesity Research Demonstration (CORD) project links public health and primary care interventions in three projects described in detail in accompanying articles in this issue of Childhood Obesity. This article describes a comprehensive evaluation plan to determine the extent to which the CORD model is associated with changes in behavior, body weight, BMI, quality of life, and healthcare satisfaction in children 2–12 years of age. Design/Methods: The CORD Evaluation Center (EC-CORD) will analyze the pooled data from three independent demonstration projects that each integrate public health and primary care childhood obesity interventions. An extensive set of common measures at the family, facility, and community levels were defined by consensus among the CORD projects and EC-CORD. Process evaluation will assess reach, dose delivered, and fidelity of intervention components. Impact evaluation will use a mixed linear models approach to account for heterogeneity among project-site populations and interventions. Sustainability evaluation will assess the potential for replicability, continuation of benefits beyond the funding period, institutionalization of the intervention activities, and community capacity to support ongoing program delivery. Finally, cost analyses will assess how much benefit can potentially be gained per dollar invested in programs based on the CORD model. Conclusions: The keys to combining and analyzing data across multiple projects include the CORD model framework and common measures for the behavioral and health outcomes along with important covariates at the individual, setting, and community levels. The overall objective of the comprehensive evaluation will develop evidence-based recommendations for replicating and disseminating community-wide, integrated public health and primary care programs based on the CORD model. PMID:25679060
Chen, Mee-Yew; Kirkwood, Carl D; Bines, Julie; Cowley, Daniel; Pavlic, Daniel; Lee, Katherine J; Orsini, Francesca; Watts, Emma; Barnes, Graeme; Danchin, Margaret
2017-05-04
Maternal antibodies, acquired passively via placenta and/or breast milk, may contribute to the reduced efficacy of oral rotavirus vaccines observed in children in developing countries. This study aimed to investigate the effect of rotavirus specific maternal antibodies on the serum IgA response or stool excretion of vaccine virus after any dose of an oral rotavirus vaccine, RV3-BB, in parallel to a Phase IIa clinical trial conducted at Dunedin Hospital, New Zealand. At the time of the study rotavirus vaccines had not been introduced in New Zealand and the burden of rotavirus disease was evident. Rotavirus specific IgG and serum neutralizing antibody (SNA) levels in cord blood and IgA levels in colostrum and breast milk samples collected ∼4 weeks, ∼20 weeks and ∼28 weeks after birth were measured. Infants were randomized to receive the first dose of vaccine at 0-5 d (neonatal schedule) or 8 weeks (infant schedule). Breast feeding was with-held for 30 minutes before and after vaccine administration. The relationship between rotavirus specific IgG and SNA levels in cord blood and IgA in colostrum and breast milk at the time of first active dose of RV3-BB vaccine and level of IgA response and stool excretion after 3 doses of vaccine was assessed using linear and logistic regression. Forty infants received 3 doses of RV3-BB rotavirus vaccine and were included in the analysis of the neonatal and infant groups. Rotavirus specific IgA in colostrum (neonatal schedule group) and breast milk at 4 weeks (infant schedule group) was identified in 14/21 (67%) and 14/17 (82%) of infants respectively. There was little evidence of an association between IgA in colostrum or breast milk IgA at 4 weeks, or between cord IgG or SNA level, and IgA response or stool excretion after 3 doses of RV3-BB, or after one dose (neonatal schedule) (all p>0.05). The level of IgA in colostrum or breast milk and level of placental IgG and SNA did not impact on the serum IgA response or stool excretion following 3 doses of RV3-BB Rotavirus Vaccine administered using either a neonatal or infant schedule in New Zealand infants.
Das, Monalisa; Chaudhuri, Patralekha Ray; Mondal, Badal C.; Mitra, Sukumar; Bandyopadhyay, Debasmita; Pramanik, Sushobhan
2015-01-01
Objectives: Magnesium historically has been used for treatment and/or prevention of eclampsia. Considering the low body mass index of Indian women, a low-dose magnesium sulfate regime has been introduced by some authors. Increased blood levels of magnesium in neonates is associated with increased still birth, early neonatal death, birth asphyxia, bradycardia, hypotonia, gastrointestinal hypomotility. The objective of this study was to assess safety of low-dose magnesium sulfate regimen in neonates of eclamptic mothers treated with this regimen. Materials and Methods: This was a cross-sectional observational study of 100 eclampsia patients and their neonates. Loading dose and maintenance doses of magnesium sulfate were administered to patients by combination of intravenous and intramuscular routes. Maternal serum and cord blood magnesium levels were estimated. Neonatal outcome was assessed. Results: Bradycardia was observed in 18 (19.15%) of the neonates, 16 (17.02%) of the neonates were diagnosed with hypotonia. Pearson Correlation Coefficient showed Apgar scores decreased with increase in cord blood magnesium levels. Unpaired t-test showed lower Apgar scores with increasing dose of magnesium sulfate. The Chi-square/Fisher's exact test showed significant increase in hypotonia, birth asphyxia, intubation in delivery room, Neonatal Intensive Care Unit (NICU) care requirement, with increasing dose of magnesium sulfate. (P ≤ 0.05). Conclusion: Several neonatal complications are significantly related to increasing serum magnesium levels. Overall, the low-dose magnesium sulfate regimen was safe in the management of eclamptic mothers, without toxicity to their neonates. PMID:26600638
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.
2014-04-01
To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {submore » cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.« less
Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan
2017-01-01
Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT), single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F-IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis I3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. PMID:28612593
Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan
2017-05-01
Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT) , single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F- IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis Ґ3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. Creative Commons Attribution License
The Use of Residual Collagenase for Single Digits With Multiple-Joint Dupuytren Contractures.
Grandizio, Louis C; Akoon, Anil; Heimbach, Janice; Graham, Jove; Klena, Joel C
2017-06-01
Standard 0.58 mg (0.25 mL) collagenase Clostridium histolyticum (CCH) preparations result in unused CCH that is often discarded. Our purpose was to assess the results on Dupuytren contractures affecting both the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints in the same digit utilizing an injection containing the maximum CCH volume that can be withdrawn from a single vial. A consecutive series of patients with MCP and PIP cords in the same digit received a single treatment with 2 injections totaling 0.30 mL distributed between the MCP and the PIP cords and underwent manipulation approximately 24 hours later. Reduction in contracture, clinical success, and complications were assessed 30 days after manipulation. Thirty-one patients (34 digits) had a mean preinjection flexion contracture of 50° at the MCP joint and 53° at the PIP joint. Clinical success (reduction in joint contracture to 0°-5° of full extension 30-days postmanipulation) was noted in 65% of MCP cords and 38% of PIP joint cords. We had a 24% incidence of skin tears, which correlated with the degree of preinjection contracture. For Dupuytren contractures involving the MCP and PIP joints in the same digit, distributing the maximum amount of CCH that can be withdrawn from a single vial provides efficacy at both joints that is similar to that reported in previously published series, with a comparable complication rate. Utilizing excess CCH typically discarded may provide cost savings. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
SU-C-202-05: Pilot Study of Online Treatment Evaluation and Adaptive Re-Planning for Laryngeal SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, W; Henry Ford Health System, Detroit, MI; Liu, C
Purpose: We have instigated a phase I trial of 5-fraction stereotactic body radiotherapy (SBRT) for advanced-stage laryngeal cancer. We conducted this pilot dosimetric study to confirm the potential utility of online adaptive re-planning to preserve treatment quality. Methods: Ten cases of larynx cancer were evaluated. Baseline and daily SBRT treatment plans were generated per trial protocol. Daily volumetric images were acquired prior to every fraction of treatment. Reference simulation CT images were deformably registered to daily volumetric images using Eclipse. Planning contours were then deformably propagated to daily images. Reference SBRT plans were directly copied to calculate delivered dose distributionsmore » on deformed reference CT images. In-house software platform has been developed to calculate cumulative dose over a course of treatment in four steps: 1) deforming delivered dose grid to reference CT images using deformation information exported from Eclipse; 2) generating tetrahedrons using deformed dose grid as vertices; 3) resampling dose to a high resolution within every tetrahedron; 4) calculating dose-volume histograms. Our inhouse software was benchmarked with a commercial software, Mirada. Results: In all ten cases including 49 fractions of treatments, delivered daily doses were completely evaluated and treatment could be re-planned within 10 minutes. Prescription dose coverage of PTV was less than intended in 53% of fractions of treatment (mean: 94%, range: 84%–98%) while minimum coverage of CTV and GTV was 94% and 97%, respectively. Maximum bystander point dose limits to arytenoids, parotids, and spinal cord remained respected in all cases, although variances in carotid artery doses were observed in a minority of cases. Conclusion: Although GTV and CTV coverage is preserved by in-room 3D image guidance of larynx SBRT, PTV coverage can vary significantly from intended plans. Online adaptive treatment evaluation and re-planning is potentially necessary and our procedure is clinically applicable to fully preserve treatment quality. This project is supported by CPRIT Individual Investigator Research Award RP150386.« less
Robust optimization in lung treatment plans accounting for geometric uncertainty.
Zhang, Xin; Rong, Yi; Morrill, Steven; Fang, Jian; Narayanasamy, Ganesh; Galhardo, Edvaldo; Maraboyina, Sanjay; Croft, Christopher; Xia, Fen; Penagaricano, Jose
2018-05-01
Robust optimization generates scenario-based plans by a minimax optimization method to find optimal scenario for the trade-off between target coverage robustness and organ-at-risk (OAR) sparing. In this study, 20 lung cancer patients with tumors located at various anatomical regions within the lungs were selected and robust optimization photon treatment plans including intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were generated. The plan robustness was analyzed using perturbed doses with setup error boundary of ±3 mm in anterior/posterior (AP), ±3 mm in left/right (LR), and ±5 mm in inferior/superior (IS) directions from isocenter. Perturbed doses for D 99 , D 98 , and D 95 were computed from six shifted isocenter plans to evaluate plan robustness. Dosimetric study was performed to compare the internal target volume-based robust optimization plans (ITV-IMRT and ITV-VMAT) and conventional PTV margin-based plans (PTV-IMRT and PTV-VMAT). The dosimetric comparison parameters were: ITV target mean dose (D mean ), R 95 (D 95 /D prescription ), Paddick's conformity index (CI), homogeneity index (HI), monitor unit (MU), and OAR doses including lung (D mean , V 20 Gy and V 15 Gy ), chest wall, heart, esophagus, and maximum cord doses. A comparison of optimization results showed the robust optimization plan had better ITV dose coverage, better CI, worse HI, and lower OAR doses than conventional PTV margin-based plans. Plan robustness evaluation showed that the perturbed doses of D 99 , D 98 , and D 95 were all satisfied at least 99% of the ITV to received 95% of prescription doses. It was also observed that PTV margin-based plans had higher MU than robust optimization plans. The results also showed robust optimization can generate plans that offer increased OAR sparing, especially for normal lungs and OARs near or abutting the target. Weak correlation was found between normal lung dose and target size, and no other correlation was observed in this study. © 2018 University of Arkansas for Medical Sciences. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Haefner, M F; Sterzing, F; Krug, D; Koerber, S A; Jaekel, O; Debus, J; Haertig, M M
2016-11-15
In carbon ion radiotherapy (CIR) for esophageal cancer, organ and target motion is a major challenge for treatment planning due to potential range deviations. This study intends to analyze the impact of intrafractional variations on dosimetric parameters and to identify favourable settings for robust treatment plans. We contoured esophageal boost volumes in different organ localizations for four patients and calculated CIR-plans with 13 different beam geometries on a free-breathing CT. Forward calculation of these plans was performed on 4D-CT datasets representing seven different phases of the breathing cycle. Plan quality was assessed for each patient and beam configuration. Target volume coverage was adequate for all settings in the baseline CIR-plans (V 95 > 98% for two-beam geometries, > 94% for one-beam geometries), but reduced on 4D-CT plans (V 95 range 50-95%). Sparing of the organs at risk (OAR) was adequate, but range deviations during the breathing cycle partly caused critical, maximum doses to spinal cord up to 3.5x higher than expected. There was at least one beam configuration for each patient with appropriate plan quality. Despite intrafractional motion, CIR for esophageal cancer is possible with robust treatment plans when an individually optimized beam setup is selected depending on tumor size and localization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dornfeld, Ken; Simmons, Joel R.; Karnell, Lucy
Purpose: To test the hypothesis that radiation dose to key sites in the upper aerodigestive tract is associated with long-term functional outcome after (chemo)radiotherapy for head-and-neck cancers. Methods and Materials: This study examined the outcome for 27 patients treated with intensity-modulated radiotherapy for definitive management of their head-and-neck cancer who were disease free for at least 1 year after treatment. Head-and-neck cancer-specific quality of life (QoL) was assessed before treatment and at 1 year after treatment. Type of diet tolerated, presence of a feeding tube, and degree of weight loss 1 year after treatment were also used as outcome measures.more » Radiation doses delivered to various points along the upper aerodigestive tract, including base of tongue, lateral pharyngeal walls, and laryngeal structures, were determined from each treatment plan. Radiation doses for each of these points were tested for correlation with outcome measures. Results: Higher doses delivered to the aryepiglottic folds, false vocal cords, and lateral pharyngeal walls near the false cords correlated with a more restrictive diet, and higher doses to the aryepiglottic folds correlated with greater weight loss (p < 0.05) 1 year after therapy. Better posttreatment speech QoL scores were associated with lower doses delivered to structures within and surrounding the larynx. Conclusion: Our data show an inverse relationship between radiation dose delivered to laryngeal structures and speech and diet and QoL outcomes after definitive (chemo)radiation treatment. These findings suggest that efforts to deliver lower doses to laryngeal structures may improve outcomes after definitive (chemo)radiation therapy.« less
Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa
2015-12-01
The present study has examined the influence of the prenatal and early life administration of paracetamol on the level of neurotransmitters in the spinal cord of rat pups. The effect of the drug was evaluated in 2-month old Wistar male rats exposed to paracetamol in doses of 5 (P5, n=9) or 15 mg/kg (P15, n=9) p.o. during the prenatal period and after birth until the completion of the second month of life. A parallel control group received tap water (Con, n=9). In this study we have determined the level of monoamines, their metabolites and amino acids in the spinal cord of rats using high performance liquid chromatography (HPLC) in the second month of life. The present experiment demonstrates the action of paracetamol at the molecular level associated with significant modulation of neurotransmission in the spinal cord related to dopaminergic and noradrenergic systems. Simultaneously, paracetamol administration increases the content of an aspartic and glutamic acids in the spinal cord at a critical time during development. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishio, Y.; Sinatra, R.S.; Kitahata, L.M.
1989-09-01
The distribution of intrathecally administered {sup 3}H-morphine was examined by light microscopic autoradiography in rat spinal cord and temporal changes in silver grain localization were compared with results obtained from simultaneous measurements of analgesia. After tissue processing, radio-activity was found to have penetrated in superficial as well as in deeper layers (Rexed lamina V, VII, and X) of rat spinal cord within minutes after application. Silver grain density reached maximal values at 30 min in every region of cord studied. Radioactivity decreased rapidly between 30 min and 2 hr and then more slowly over the next 24 hr. In ratsmore » tested for responses to a thermal stimulus (tail flick test), intrathecal administration of morphine (5 and 15 micrograms) resulted in significant dose dependent analgesia that peaked at 30 min and lasted up to 5 hr (P less than 0.5). There was a close relationship between analgesia and spinal cord silver grain density during the first 4 hr of the study. It is postulated that the onset of spinal morphine analgesia depends on appearance of molecules at sites of action followed by the activation of anti-nociceptive mechanisms.« less
Cervical Spinal Cord Atrophy Profile in Adult SMN1-Linked SMA
El Mendili, Mohamed-Mounir; Lenglet, Timothée; Stojkovic, Tanya; Behin, Anthony; Guimarães-Costa, Raquel; Salachas, François; Meininger, Vincent; Bruneteau, Gaelle; Le Forestier, Nadine; Laforêt, Pascal; Lehéricy, Stéphane; Benali, Habib; Pradat, Pierre-François
2016-01-01
Purpose The mechanisms underlying the topography of motor deficits in spinal muscular atrophy (SMA) remain unknown. We investigated the profile of spinal cord atrophy (SCA) in SMN1-linked SMA, and its correlation with the topography of muscle weakness. Materials and Methods Eighteen SMN1-linked SMA patients type III/V and 18 age/gender-matched healthy volunteers were included. Patients were scored on manual muscle testing and functional scales. Spinal cord was imaged using 3T MRI system. Radial distance (RD) and cord cross-sectional area (CSA) measurements in SMA patients were compared to those in controls and correlated with strength and disability scores. Results CSA measurements revealed a significant cord atrophy gradient mainly located between C3 and C6 vertebral levels with a SCA rate ranging from 5.4% to 23% in SMA patients compared to controls. RD was significantly lower in SMA patients compared to controls in the anterior-posterior direction with a maximum along C4 and C5 vertebral levels (p-values < 10−5). There were no correlations between atrophy measurements, strength and disability scores. Conclusions Spinal cord atrophy in adult SMN1-linked SMA predominates in the segments innervating the proximal muscles. Additional factors such as neuromuscular junction or intrinsic skeletal muscle defects may play a role in more complex mechanisms underlying weakness in these patients. PMID:27089520
Denton, Travis R; Shields, Lisa B E; Howe, Jonathan N; Shanks, Todd S; Spalding, Aaron C
2017-07-01
Occipital neuralgia generally responds to medical or invasive procedures. Repeated invasive procedures generate increasing complications and are often contraindicated. Stereotactic radiosurgery (SRS) has not been reported as a treatment option largely due to the extracranial nature of the target as opposed to the similar, more established trigeminal neuralgia. A dedicated phantom study was conducted to determine the optimum imaging studies, fusion matrices, and treatment planning parameters to target the C2 dorsal root ganglion which forms the occipital nerve. The conditions created from the phantom were applied to a patient with medically and surgically refractory occipital neuralgia. A dose of 80 Gy in one fraction was prescribed to the C2 occipital dorsal root ganglion. The phantom study resulted in a treatment achieved with an average translational magnitude of correction of 1.35 mm with an acceptable tolerance of 0.5 mm and an average rotational magnitude of correction of 0.4° with an acceptable tolerance of 1.0°. For the patient, the spinal cord was 12.0 mm at its closest distance to the isocenter and received a maximum dose of 3.36 Gy, a dose to 0.35 cc of 1.84 Gy, and a dose to 1.2 cc of 0.79 Gy. The brain maximum dose was 2.20 Gy. Treatment time was 59 min for 18, 323 MUs. Imaging was performed prior to each arc delivery resulting in 21 imaging sessions. The average deviation magnitude requiring a positional or rotational correction was 0.96 ± 0.25 mm, 0.8 ± 0.41°, whereas the average deviation magnitude deemed within tolerance was 0.41 ± 0.12 mm, 0.57 ± 0.28°. Dedicated quality assurance of the treatment planning and delivery is necessary for safe and accurate SRS to the cervical spine dorsal root ganglion. With additional prospective study, linear accelerator-based frameless radiosurgery can provide an accurate, noninvasive alternative for treating occipital neuralgia where an invasive procedure is contraindicated. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Liu, Y-J; Song, G-H; Liu, G T
2016-08-01
According to traditional Chinese medicine, the symptoms of chronic nonbacterial prostatitis/chronic pelvic pain syndrome (CNP/CPPS) may be treated using a cocktail of herbs that stimulate blood circulation ('activating blood circulation formula'). We investigated the effect of three doses of this formula on a rat model of CNP/CPPS. Male Wistar rats were injected with a saline extract of male sex accessory glands on days 0 and 30 to induce prostatitis and then treated daily by gavage between days 32 and 60. Treatment with low, medium and high doses of activating blood circulation formula resulted in an almost total rescue of paw withdrawal threshold at day 60, and treatment with the highest dose also significantly decreased prostate inflammation (assessed histopathologically). We further observed elevated serum prostaglandin E2 levels in the CNP/CPPS model which decreased upon high-dose treatment, and increased Cox-2 expression in the prostate and spinal cord dorsal horn which was rescued in both tissues in the high-dose group and in the prostate in the medium-dose group. These results shed light on a possible mechanism by which activating blood circulation therapy may alleviate pain in a rat model of CNP/CPPS by downregulating Cox-2 expression in the spinal cord, thereby raising the pain threshold. Further research will be needed to fully characterise the mechanism by which activating blood circulation therapy produces this therapeutic effect. © 2016 Blackwell Verlag GmbH.
Oichi, Takeshi; Oshima, Yasushi; Okazaki, Rentaro; Azuma, Seiichi
2016-01-01
The objective of this study is to investigate whether preexisting severe cervical spinal cord compression affects the severity of paralysis once patients develop traumatic cervical spinal cord injury (CSCI) without bone injury. We retrospectively investigated 122 consecutive patients with traumatic CSCI without bone injury. The severity of paralysis on admission was assessed by the American Spinal Injury Association impairment scale (AIS). The degree of preexisting cervical spinal cord compression was evaluated by the maximum spinal cord compression (MSCC) and was divided into three categories: minor compression (MSCC ≤ 20 %), moderate compression (20 % < MSCC ≤ 40 %), and severe compression (40 % < MSCC). We investigated soft-tissue damage on magnetic resonance imaging to estimate the external force applied. Other potential risk factors, including age, sex, fused vertebra, and ossification of longitudinal ligament, were also reviewed. A multivariate logistic regression analysis was performed to investigate the risk factors for developing severe paralysis (AIS A-C) on admission. Our study included 103 males and 19 females with mean age of 65 years. Sixty-one patients showed severe paralysis (AIS A-C) on admission. The average MSCC was 22 %. Moderate compression was observed in 41, and severe in 20. Soft-tissue damage was observed in 91. A multivariate analysis showed that severe cervical spinal cord compression significantly affected the severity of paralysis at the time of injury, whereas both mild and moderate compression did not affect it. Soft-tissue damage was also significantly associated with severe paralysis on admission. Preexisting severe cervical cord compression is an independent risk factor for severe paralysis once patients develop traumatic CSCI without bone injury.
Ogita, Shogo; Endo, Toshiki; Sugiyama, Shinichiro; Saito, Ryuta; Inoue, Tomoo; Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta; Sonoda, Yukihiko; Tominaga, Teiji
2017-05-01
Convection-enhanced delivery (CED) is a technique allowing local infusion of therapeutic agents into the central nervous system, circumventing the blood-brain or spinal cord barrier. To evaluate the utility of nimustine hydrochloride (ACNU) CED in controlling tumor progression in an experimental spinal cord glioma model. Toxicity studies were performed in 42 rats following the administration of 4 μl of ACNU CED into the mid-thoracic spinal cord at concentrations ranging from 0.1 to 10 mg/ml. Behavioral analyses and histological evaluations were performed to assess ACNU toxicity in the spinal cord. A survival study was performed in 32 rats following the implantation of 9 L cells into the T8 spinal cord. Seven days after the implantation, rats were assigned to four groups: ACNU CED (0.25 mg/ml; n = 8); ACNU intravenous (i.v.) (0.4 mg; n = 8); saline CED (n = 8); saline i.v. (n = 8). Hind limb movements were evaluated daily in all rats for 21 days. Tumor sizes were measured histologically. The maximum tolerated ACNU concentration was 0.25 mg/ml. Preservation of hind limb motor function and tumor growth suppression was observed in the ACNU CED (0.25 mg/ml) and ACNU i.v. groups. Antitumor effects were more prominent in the ACNU CED group especially in behavioral analyses (P < 0.05; log-rank test). ACNU CED had efficacy in controlling tumor growth and preserving neurological function in an experimental spinal cord tumor model. ACNU CED can be a viable treatment option for spinal cord high-grade glioma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, N; Maneru, F; Fuentemilla, N
2015-06-15
Purpose: dosimetric comparison of 3DCRT and IMRT in 9 esophageal cancer. The aim of this paper is to know which of these two techniques is dosimetrically more favorable dosimetrically at both the CTV coverage and dose obtained in the relevant organs at risk, in this case, lungs and heart, as the spinal cord received in all cases below 45 Gy. Methods: we chose 9 patients from our center (CHN) with the same type of esophageal cancer and in which the prescribed dose was the same, 54 Gy. For these treatments we have used the same fields and the same anglesmore » (AP (0 °), OPD (225°–240°) and OPI (125°–135°)).All plans have been implemented using Eclipse (version 11.0) with AAA( Analytical Anisotropic Algorithm )(Version 11.0.31). Results: To analyze the coverage of the CTV, we have evaluated the D99% and found that the average dose received by 99% of CTV with IMRT is 53.8 ± 0.4 Gy (99.6% of the prescribed dose) and the mean value obtained with 3DCRT is 52.3 ± 0.6 Gy (96.8% of the prescribed dose).The last data analyzed was the D2% of PTV, a fact that gives us information on the maximum dose received by our PTV. D2% of the PTV for IMRT planning is 55.4 ± 0.4 Gy (102.6% of the prescribed dose) and with 3DCRT is 56.8 ± 0.7 Gy (105.2% of the prescribed dose).All parameters analyzed at risk organs (V30, V40, V45 and V50 for the case of heart and V5, V10, V15 and V20 for the case of the lungs) provide us irradiated volume percentages lower in IMRT than 3DCRT. Conclusion: IMRT provides a considerable improvement in the coverage of the CTV and the doses to organs at risk.« less
Abuodeh, Yazan; Naghavi, Arash O; Echevarria, Michelle; DeMarco, MaryLou; Tonner, Brian; Feygelman, Vladimir; Stevens, Craig W; Perez, Bradford A; Dilling, Thomas J
2018-01-01
A previous meta-analysis (MA) found postoperative radiotherapy (PORT) in lung cancer patients to be detrimental in N0/N1 patients and equivocal in the N2 setting. We hypothesized that treatment plans generated using MA protocols had worse dosimetric outcomes compared to modern plans. We retrieved plans for 13 patients who received PORT with modern planning. A plan was recreated for each patient using the 8 protocols included in MA. Dosimetric values were then compared between the modern and simulated MA plans. A total of 104 MA plans were generated. Median prescribed dose was 50.4 (range, 50-60) Gy in the modern plans and 53.2 (30-60) Gy in the MA protocols. Median planning volume coverage was 96% (93%-100%) in the modern plans, versus 58% (0%-100%) in the MA plans (P < .001). Internal target volume coverage was 100% (99%-100%) versus 65% (0%-100%), respectively (P < .001). Organs at risk received the following doses: spinal cord maximum dose, 36.8 (4.6-50.4) Gy versus 46.8 (2.9-74.0) Gy (P < .001); esophageal mean dose, 22.9 (5.5-35) Gy versus 30.5 (11.1-52.5) Gy (P = .003); heart V30 (percentage of volume of an organ receiving at least a dose of 30 Gy), 16% (0%-45%) versus 35% (0%-79%) (P = .047); mean lung dose, 12.4 (3.4-24.3) Gy versus 14.8 (4.1-27.4) Gy (P = .008); and lung V20, 18% (4%-34%) versus 25% (8%-67%) (P = .023). We quantitatively confirm the inferiority of the techniques used in the PORT MA. Our analysis showed a lower therapeutic ratio in the MA plans, which may explain the poor outcomes in the MA. The findings of the MA are not relevant in the era of modern treatment planning. Copyright © 2017 Elsevier Inc. All rights reserved.
Spinal Anesthesia in Infant Rats: Development of a Model and Assessment of Neurological Outcomes
Yahalom, Barak; Athiraman, Umeshkumar; Soriano, Sulpicio G.; Zurakowski, David; Carpino, Elizabeth; Corfas, Gabriel; Berde, Charles B.
2012-01-01
Background Previous studies in infant rats and case-control studies of human infants undergoing surgery have raised concerns about potential neurodevelopmental toxicities of general anesthesia. Spinal anesthesia is an alternative to general anesthesia for some infant surgeries. To test for potential toxicity, we developed a spinal anesthesia model in infant rats. Methods Rats of postnatal ages 7, 14, and 21 days were assigned to: no treatment; 1% isoflurane for either 1 h or 6 h, or lumbar spinal injection of saline or bupivacaine, at doses of 3.75 mg/kg (low dose) or 7.5 mg/kg (high dose). Subgroups of animals underwent neurobehavioral testing and blood gas analysis. Brain and lumbar spinal cord sections were examined for apoptosis using cleaved caspase-3 immunostaining. Lumbar spinal cord was examined histologically. Rats exposed to spinal or general anesthesia as infants underwent Rotarod testing of motor performance as adults. Data were analyzed using analysis of variance (ANOVA) using general linear models, Friedman Tests, and Mann–Whitney U tests, as appropriate. Results Bupivacaine 3.75 mg/kg was effective for spinal anesthesia in all age groups, and produced sensory and motor function recovered in 40 to 60 min. Blood gases were similar among groups. Brain and spinal cord apoptosis increased in rats receiving 6 h of 1% isoflurane, but not among the other treatments. All groups showed intact motor performance at adulthood. Conclusions Spinal anesthesia is technically feasible in infant rats, and appears benign in terms of neuroapoptotic and neuromotor sequelae. PMID:21555934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, Jean-Baptiste; Trone, Jane-Chloé; Chargari, Cyrus
2014-10-01
Radiotherapy for epithelioid hemangioendothelioma (EHE) using volumetric intensity-modulated arc radiotherapy (VMAT). A 48-year-old woman was referred for curative irradiation of a vertebral EHE after failure of surgery. A comparison between VMAT and conventional conformal tridimensional (3D) dosimetry was performed and potential advantage of VMAT for sparing critical organs from irradiation's side effects was discussed. The total delivered dose on the planning target volume was 54 Gy in 27 fractions. The patient was finally treated with VMAT. The tolerance was excellent. There was no acute toxicity, including no increase in pain. With a follow-up of 18 months, no delayed toxicity wasmore » reported. The clinical response consisted of a decrease in the dorsal pain. The D{sub max} for the spinal cord was reduced from 55 Gy (3D-radiotherapy [RT]) (which would be an unacceptable dose to the spine because of the risk of myelopathy) to 42.8 Gy (VMAT), which remains below the recommended dose threshold (45 Gy). The dose delivered to 20% of organ volume (D{sub 20}) was reduced from 47 Gy (3D-RT) to 3 Gy (VMAT) for the spinal cord. The study shows that VMAT allows the delivery of curative treatment for vertebral EHEs because of critical organ sparing.« less
Woolley, Thomas E; Belmonte-Beitia, Juan; Calvo, Gabriel F; Hopewell, John W; Gaffney, Eamonn A; Jones, Bleddyn
2018-06-01
To estimate, from experimental data, the retreatment radiation 'tolerances' of the spinal cord at different times after initial treatment. A model was developed to show the relationship between the biological effective doses (BEDs) for two separate courses of treatment with the BED of each course being expressed as a percentage of the designated 'retreatment tolerance' BED value, denoted [Formula: see text] and [Formula: see text]. The primate data of Ang et al. ( 2001 ) were used to determine the fitted parameters. However, based on rodent data, recovery was assumed to commence 70 days after the first course was complete, and with a non-linear relationship to the magnitude of the initial BED (BED init ). The model, taking into account the above processes, provides estimates of the retreatment tolerance dose after different times. Extrapolations from the experimental data can provide conservative estimates for the clinic, with a lower acceptable myelopathy incidence. Care must be taken to convert the predicted [Formula: see text] value into a formal BED value and then a practical dose fractionation schedule. Used with caution, the proposed model allows estimations of retreatment doses with elapsed times ranging from 70 days up to three years after the initial course of treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, James K.; Armeson, Kent E.; Richardson, Susan, E-mail: srichardson@radonc.wustl.edu
2012-05-01
Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% ofmore » ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address this issue.« less
Analgesia Induced by Isolated Bovine Chromaffin Cells Implanted in Rat Spinal Cord
NASA Astrophysics Data System (ADS)
Sagen, Jacqueline; Pappas, George D.; Pollard, Harvey B.
1986-10-01
Chromaffin cells synthesize and secrete several neuroactive substances, including catecholamines and opioid peptides, that, when injected into the spinal cord, induce analgesia. Moreover, the release of these substances from the cells can be stimulated by nicotine. Since chromaffin cells from one species have been shown to survive when transplanted to the central nervous system of another species, these cells are ideal candidates for transplantation to alter pain sensitivity. Bovine chromaffin cells were implanted into the subarachnoid space of the lumbar spinal region in adult rats. Pain sensitivity and response to nicotine stimulation was determined at various intervals following cell implantation. Low doses of nicotine were able to induce potent analgesia in implanted animals as early as one day following their introduction into the host spinal cord. This response could be elicited at least through the 4 months the animals were tested. The induction of analgesia by nicotine in implanted animals was dose related. This analgesia was blocked by the opiate antagonist naloxone and partially attenuated by the adrenergic antagonist phentolamine. These results suggest that the analgesia is due to the stimulated release of opioid peptides and catecholamines from the implanted bovine chromaffin cells and may provide a new therapeutic approach for the relief of pain.
Botulinum toxin in spinal cord injury patients with neurogenic detrusor overactivity
Cho, Young Sam; Kim, Khae Hawn
2016-01-01
Evidence for the efficacy and safety of intravesical onabotulinum toxin A (onabotA) injections has led to them being licensed in many countries, including Korea, for the treatment of patients with urinary incontinence due to neurogenic detrusor overactivity (NDO) resulting from spinal cord injury or multiple sclerosis who are refractory or intolerant to anticholinergic medications. OnabotA injections have an inhibitory effect on acetylcholine release for up to 10 months, with a recommended dose of 200 U. OnabotA treatment has a beneficial effect not only on urinary symptoms, but also on quality of life. Several clinical studies have shown onabotA to have better effects than placebo in achieving continence, reducing incontinence episodes, improving urodynamic parameters, and improving health-related quality of life. Urinary tract infections and postvoid residual volume are the most prevalent side effects. In patients with residual volume, clean intermittent catheterization may be necessary. In patients with spinal cord injury or multiple sclerosis, it is recommended to evaluate physical and cognitive function before intravesical onabotA injection to ensure that the patient and caregiver are able to perform catheterization if necessary. Further controlled trials should assess the optimal dose, injection technique, long-term safety of repeated injections, and optimal timing of onabotA treatment in the treatment of NDO. PMID:28119887
Spinal radiosurgery: a neurosurgical perspective
Angelov, Lilyana; Rock, Jack; Weaver, Jason; Sheehan, Jason; Rhines, Laurence; Azeem, Syed; Gerszten, Peter
2011-01-01
Spine stereotactic radiosurgery (SSRS) is proving to be one of the most significant advances in the treatment of both metastatic and primary spine tumors. High-dose hypofractionated and single fraction radiation appear to convey better local tumor control than conventional radiation for tumors considered radioresistant, such as renal cell carcinoma and melanoma. Multiple series have demonstrated control rates greater than 85% which appears to be histology independent. The markedly improved local control rates compared to conventional radiation techniques are beginning to change the treatment paradigms for spine tumors. Recent evidence in the literature reflects the integration of SSRS in the treatment of metastatic and primary malignant and benign spine tumors as the principle treatment or as a neoadjuvant or postoperative adjuvant therapy. For instance, as confidence grows with the use of SSRS as a postoperative adjuvant, surgical resection of metastatic disease has become less aggressive with the expectation that radiation can control residual disease. Despite high dose radiation delivery within millimeters of the spinal cord, toxicity has been limited with rare cases of radiation-induced myelopathy. The establishment of spinal cord and other critical structure tolerances is essential to the continued evolution of SSRS, as radiation oncologists begin to use this modality to treat spinal cord compression. This paper reviews the neurosurgical integration of SRS into spine practice. PMID:29296297
O'Callaghan, Karen M; Hennessy, Áine; Hull, George Lj; Healy, Karina; Ritz, Christian; Kenny, Louise C; Cashman, Kevin D; Kiely, Mairead E
2018-06-06
In the absence of dose-response data, Dietary Reference Values for vitamin D in nonpregnant adults are extended to pregnancy. The aim was to estimate vitamin D intake needed to maintain maternal 25-hydroxyvitamin D [25(OH)D] in late gestation at a concentration sufficient to prevent newborn 25(OH)D <25-30 nmol/L, a threshold indicative of increased risk of nutritional rickets. We conducted a 3-arm, dose-response, double-blind, randomized placebo-controlled trial in Cork, Ireland (51.9oN). A total of 144 white-skinned pregnant women were assigned to receive 0, 10 (400 IU), or 20 (800 IU) µg vitamin D3/d from ≤18 wk of gestation. Vitamin D metabolites at 14, 24, and 36 wk of gestation and in cord sera, including 25(OH)D3, 3-epi-25(OH)D3, 24,25(OH)2D3, and 25(OH)D2 were quantified by liquid chromatography-tandem mass spectrometry. A curvilinear regression model predicted the total vitamin D intake (from diet and antenatal supplements plus treatment dose) that maintained maternal 25(OH)D in late gestation at a concentration sufficient to maintain cord 25(OH)D at ≥25-30 nmol/L. Mean ± SD baseline 25(OH)D was 54.9 ± 10.7 nmol/L. Total vitamin D intakes at the study endpoint (36 wk of gestation) were 12.1 ± 8.0, 21.9 ± 5.3, and 33.7 ± 5.1 µg/d in the placebo and 10-µg and 20-µg vitamin D3 groups, respectively; and 25(OH)D was 24.3 ± 5.8 and 29.2 ± 5.6 nmol/L higher in the 10- and 20-µg groups, respectively, compared with placebo (P < 0.001). For maternal 25(OH)D concentrations ≥50 nmol/L, 95% of cord sera were ≥30 nmol/L and 99% were >25 nmol/L. The estimated vitamin D intake required to maintain serum 25(OH)D at ≥50 nmol/L in 97.5% of women was 28.9 µg/d. Thirty micrograms of vitamin D per day safely maintained serum 25(OH)D concentrations at ≥50 nmol/L in almost all white-skinned women during pregnancy at a northern latitude, which kept 25(OH)D at >25 nmol/L in 99% and ≥30 nmol/L in 95% of umbilical cord sera. This trial was registered at www.clinicaltrials.gov as NCT02506439.
Lam, Cameron J.; Assinck, Peggy; Liu, Jie; Tetzlaff, Wolfram
2014-01-01
Abstract Spinal cord injury (SCI) biomechanics suggest that the mechanical factors of impact depth and speed affect the severity of contusion injury, but their interaction is not well understood. The primary aim of this work was to examine both the individual and combined effects of impact depth and speed in contusion SCI on the cervical spinal cord. Spinal cord contusions between C5 and C6 were produced in anesthetized rats at impact speeds of 8, 80, or 800 mm/s with displacements of 0.9 or 1.5 mm (n=8/group). After 7 days postinjury, rats were assessed for open-field behavior, euthanized, and spinal cords were harvested. Spinal cord tissue sections were stained for demyelination (myelin-based protein) and tissue sparing (Luxol fast blue). In parallel, a finite element model of rat spinal cord was used to examine the resulting maximum principal strain in the spinal cord during impact. Increasing impact depth from 0.9 to 1.5 mm reduced open-field scores (p<0.01) above 80 mm/s, reduced gray (GM) and white matter (WM) sparing (p<0.01), and increased the amount of demyelination (p<0.01). Increasing impact speed showed similar results at the 1.5-mm impact depth, but not the 0.9-mm impact depth. Linear correlation analysis with finite element analysis strain showed correlations (p<0.001) with nerve fiber damage in the ventral (R2=0.86) and lateral (R2=0.74) regions of the spinal cord and with WM (R2=0.90) and GM (R2=0.76) sparing. The results demonstrate that impact depth is more important in determining the severity of SCI and that threshold interactions exist between impact depth and speed. PMID:24945364
29 CFR 1926.407 - Hazardous (classified) locations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... marking requirement for specific equipment: (A) Equipment of the non-heat-producing type (such as junction boxes, conduit, and fitting) and equipment of the heat-producing type having a maximum temperature of... connections, conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches...
29 CFR 1926.407 - Hazardous (classified) locations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... marking requirement for specific equipment: (A) Equipment of the non-heat-producing type (such as junction boxes, conduit, and fitting) and equipment of the heat-producing type having a maximum temperature of... connections, conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches...
29 CFR 1926.407 - Hazardous (classified) locations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... marking requirement for specific equipment: (A) Equipment of the non-heat-producing type (such as junction boxes, conduit, and fitting) and equipment of the heat-producing type having a maximum temperature of... connections, conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches...
Leaf position optimization for step-and-shoot IMRT.
De Gersem, W; Claus, F; De Wagter, C; Van Duyse, B; De Neve, W
2001-12-01
To describe the theoretical basis, the algorithm, and implementation of a tool that optimizes segment shapes and weights for step-and-shoot intensity-modulated radiation therapy delivered by multileaf collimators. The tool, called SOWAT (Segment Outline and Weight Adapting Tool) is applied to a set of segments, segment weights, and corresponding dose distribution, computed by an external dose computation engine. SOWAT evaluates the effects of changing the position of each collimating leaf of each segment on an objective function, as follows. Changing a leaf position causes a change in the segment-specific dose matrix, which is calculated by a fast dose computation algorithm. A weighted sum of all segment-specific dose matrices provides the dose distribution and allows computation of the value of the objective function. Only leaf position changes that comply with the multileaf collimator constraints are evaluated. Leaf position changes that tend to decrease the value of the objective function are retained. After several possible positions have been evaluated for all collimating leaves of all segments, an external dose engine recomputes the dose distribution, based on the adapted leaf positions and weights. The plan is evaluated. If the plan is accepted, a segment sequencer is used to make the prescription files for the treatment machine. Otherwise, the user can restart SOWAT using the new set of segments, segment weights, and corresponding dose distribution. The implementation was illustrated using two example cases. The first example is a T1N0M0 supraglottic cancer case that was distributed as a multicenter planning exercise by investigators from Rotterdam, The Netherlands. The exercise involved a two-phase plan. Phase 1 involved the delivery of 46 Gy to a concave-shaped planning target volume (PTV) consisting of the primary tumor volume and the elective lymph nodal regions II-IV on both sides of the neck. Phase 2 involved a boost of 24 Gy to the primary tumor region only. SOWAT was applied to the Phase 1 plan. Parotid sparing was a planning goal. The second implementation example is an ethmoid sinus cancer case, planned with the intent of bilateral visus sparing. The median PTV prescription dose was 70 Gy with a maximum dose constraint to the optic pathway structures of 60 Gy. The initial set of segments, segment weights, and corresponding dose distribution were obtained, respectively, by an anatomy-based segmentation tool, a segment weight optimization tool, and a differential scatter-air ratio dose computation algorithm as external dose engine. For the supraglottic case, this resulted in a plan that proved to be comparable to the plans obtained at the other institutes by forward or inverse planning techniques. After using SOWAT, the minimum PTV dose and PTV dose homogeneity increased; the maximum dose to the spinal cord decreased from 38 Gy to 32 Gy. The left parotid mean dose decreased from 22 Gy to 19 Gy and the right parotid mean dose from 20 to 18 Gy. For the ethmoid sinus case, the target homogeneity increased by leaf position optimization, together with a better sparing of the optical tracts. By using SOWAT, the plans improved with respect to all plan evaluation end points. Compliance with the multileaf collimator constraints is guaranteed. The treatment delivery time remains almost unchanged, because no additional segments are created.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakai, Nobuhide, E-mail: wakai@naramed-u.ac.jp; Sumida, Iori; Otani, Yuki
Purpose: The authors sought to determine the optimal collimator leaf margins which minimize normal tissue dose while achieving high conformity and to evaluate differences between the use of a flattening filter-free (FFF) beam and a flattening-filtered (FF) beam. Methods: Sixteen lung cancer patients scheduled for stereotactic body radiotherapy underwent treatment planning for a 7 MV FFF and a 6 MV FF beams to the planning target volume (PTV) with a range of leaf margins (−3 to 3 mm). Forty grays per four fractions were prescribed as a PTV D95. For PTV, the heterogeneity index (HI), conformity index, modified gradient indexmore » (GI), defined as the 50% isodose volume divided by target volume, maximum dose (Dmax), and mean dose (Dmean) were calculated. Mean lung dose (MLD), V20 Gy, and V5 Gy for the lung (defined as the volumes of lung receiving at least 20 and 5 Gy), mean heart dose, and Dmax to the spinal cord were measured as doses to organs at risk (OARs). Paired t-tests were used for statistical analysis. Results: HI was inversely related to changes in leaf margin. Conformity index and modified GI initially decreased as leaf margin width increased. After reaching a minimum, the two values then increased as leaf margin increased (“V” shape). The optimal leaf margins for conformity index and modified GI were −1.1 ± 0.3 mm (mean ± 1 SD) and −0.2 ± 0.9 mm, respectively, for 7 MV FFF compared to −1.0 ± 0.4 and −0.3 ± 0.9 mm, respectively, for 6 MV FF. Dmax and Dmean for 7 MV FFF were higher than those for 6 MV FF by 3.6% and 1.7%, respectively. There was a positive correlation between the ratios of HI, Dmax, and Dmean for 7 MV FFF to those for 6 MV FF and PTV size (R = 0.767, 0.809, and 0.643, respectively). The differences in MLD, V20 Gy, and V5 Gy for lung between FFF and FF beams were negligible. The optimal leaf margins for MLD, V20 Gy, and V5 Gy for lung were −0.9 ± 0.6, −1.1 ± 0.8, and −2.1 ± 1.2 mm, respectively, for 7 MV FFF compared to −0.9 ± 0.6, −1.1 ± 0.8, and −2.2 ± 1.3 mm, respectively, for 6 MV FF. With the heart inside the radiation field, the mean heart dose showed a V-shaped relationship with leaf margins. The optimal leaf margins were −1.0 ± 0.6 mm for both beams. Dmax to the spinal cord showed no clear trend for changes in leaf margin. Conclusions: The differences in doses to OARs between FFF and FF beams were negligible. Conformity index, modified GI, MLD, lung V20 Gy, lung V5 Gy, and mean heart dose showed a V-shaped relationship with leaf margins. There were no significant differences in optimal leaf margins to minimize these parameters between both FFF and FF beams. The authors’ results suggest that a leaf margin of −1 mm achieves high conformity and minimizes doses to OARs for both FFF and FF beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Tejani, M; Jiang, X
2016-06-15
Purpose: The purpose of this study is to investigate a volumetric modulated arc therapy (VMAT) treatment planning technique for supine craniospinal irradiation (CSI). Evaluate the suitability of VMAT for CSI with dosimetric measurements and compare it to 3D conformal planning using specific plan metrics such as dose conformity, homogeneity, and dose of organs at risk (OAR). Methods: Ten CSI patients treated with conventional 3D technique were re-planned with VMAT. The PTV was contoured to include the whole contents of the brain and spinal canal with a uniform margin of 5 mm. VMAT plans were generated with two partial arcs coveringmore » the brain, two partial arcs for the superior portion of the spinal cord and two partial arcs covering the remaining inferior portion of the spinal cord. Conformity index (CI), heterogeneity indexes (HI) and max and mean doses of OAR were compared to 3D plans. VMAT plans were delivered onto an anthropomorphic phantom loaded with Gafchromic films and OSLDs placed at specific positions to evaluate the plan dose at the junctions and as well as the plan dose distributions. Results: This VMAT technique was validated with a clinical study of 10 patients. The average CI was 1.03±0.02 for VMAT plans and 1.96±0.32 for conformal plans. And the average HI was 1.15±0.01 for VMAT plans and 1.51±0.21 for conformal plans. The mean and max doses to the all OARs for VMAT plans were significantly lower than conformal plans. The measured dose in phantom for VAMT plans was comparable to the calculated dose in Eclipse and the doses at junctions were verified. Conclusion: VMAT CSI was able to achieve better dose conformity and heterogeneity as well as significantly reducing the dose to Heart, esophagus and larynx. VMAT CSI appears to be a dosimterically advantageous, faster delivery, has better reproducibility CSI treatment.« less
Activation of p38 MAP Kinase is Involved in Central Neuropathic Pain Following Spinal Cord Injury
Crown, Eric D; Gwak, Young Seob; Ye, Zaiming; Johnson, Kathia M; Hulsebosch, Claire E
2008-01-01
Recent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Specifically, Crown and colleagues (2005, 2006) have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury. Using a combination of behavioral, immunocytochemical, and electrophysiological measures we demonstrate that increased activation of p38 MAPK occurs in the spinal cord just rostral to the site of injury in rats that develop at-level mechanical allodynia after moderate SCI. Immunocytochemical analyses indicate that the increases in p38 MAPK activation occurred in astrocytes, microglia, and dorsal horn neurons in the spinal cord rostral to the site of injury. Inhibiting the enzymatic activity of p38 MAPK dose dependently reverses the behavioral expression of at-level mechanical allodynia and also decreases the hyperexcitability seen in thoracic dorsal horn neurons after moderate SCI. Taken together, these novel data are the first to demonstrate causality that increased activation of p38 MAPK in multiple cell types play an important role in the maintenance of at-level CNP following spinal cord injury. PMID:18590729
Tacrolimus placental transfer at delivery and neonatal exposure through breast milk.
Zheng, Songmao; Easterling, Thomas R; Hays, Karen; Umans, Jason G; Miodovnik, Menachem; Clark, Shannon; Calamia, Justina C; Thummel, Kenneth E; Shen, Danny D; Davis, Connie L; Hebert, Mary F
2013-12-01
The current investigation aims to provide new insights into fetal exposure to tacrolimus in utero by evaluating maternal and umbilical cord blood (venous and arterial), plasma and unbound concentrations at delivery. This study also presents a case report of tacrolimus excretion via breast milk. Maternal and umbilical cord (venous and arterial) samples were obtained at delivery from eight solid organ allograft recipients to measure tacrolimus and metabolite bound and unbound concentrations in blood and plasma. Tacrolimus pharmacokinetics in breast milk were assessed in one subject. Mean (±SD) tacrolimus concentrations at the time of delivery in umbilical cord venous blood (6.6 ± 1.8 ng ml(-1)) were 71 ± 18% (range 45-99%) of maternal concentrations (9.0 ± 3.4 ng ml(-1)). The mean umbilical cord venous plasma (0.09 ± 0.04 ng ml(-1)) and unbound drug concentrations (0.003 ± 0.001 ng ml(-1)) were approximately one fifth of the respective maternal concentrations. Arterial umbilical cord blood concentrations of tacrolimus were 100 ± 12% of umbilical venous concentrations. In addition, infant exposure to tacrolimus through the breast milk was less than 0.3% of the mother's weight-adjusted dose. Differences between maternal and umbilical cord tacrolimus concentrations may be explained in part by placental P-gp function, greater red blood cell partitioning and higher haematocrit levels in venous cord blood. The neonatal drug exposure to tacrolimus via breast milk is very low and likely does not represent a health risk to the breastfeeding infant. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X; Yang, Y; Jack, N
Purpose: On-board MRI provides superior soft-tissue contrast, allowing patient alignment using tumor or nearby critical structures. This study aims to study H&N MRI-guided IGRT to analyze inter-fraction patient setup variations using soft-tissue targets and design appropriate CTV-to-PTV margin and clinical implication. Methods: 282 MR images for 10 H&N IMRT patients treated on a ViewRay system were retrospectively analyzed. Patients were immobilized using a thermoplastic mask on a customized headrest fitted in a radiofrequency coil and positioned to soft-tissue targets. The inter-fraction patient displacements were recorded to compute the PTV margins using the recipe: 2.5∑+0.7σ. New IMRT plans optimized on themore » revised PTVs were generated to evaluate the delivered dose distributions. An in-house dose deformation registration tool was used to assess the resulting dosimetric consequences when margin adaption is performed based on weekly MR images. The cumulative doses were compared to the reduced margin plans for targets and critical structures. Results: The inter-fraction displacements (and standard deviations), ∑ and σ were tabulated for MRI and compared to kVCBCT. The computed CTV-to-PTV margin was 3.5mm for soft-tissue based registration. There were minimal differences between the planned and delivered doses when comparing clinical and the PTV reduced margin plans: the paired t-tests yielded p=0.38 and 0.66 between the planned and delivered doses for the adapted margin plans for the maximum cord and mean parotid dose, respectively. Target V95 received comparable doses as planned for the reduced margin plans. Conclusion: The 0.35T MRI offers acceptable soft-tissue contrast and good spatial resolution for patient alignment and target visualization. Better tumor conspicuity from MRI allows soft-tissue based alignments with potentially improved accuracy, suggesting a benefit of margin reduction for H&N radiotherapy. The reduced margin plans (i.e., 2 mm) resulted in improved normal structure sparing and accurate dose delivery to achieve intended treatment goal under MR guidance.« less
Chen, Mee-Yew; Kirkwood, Carl D.; Bines, Julie; Cowley, Daniel; Pavlic, Daniel; Lee, Katherine J.; Orsini, Francesca; Watts, Emma; Barnes, Graeme; Danchin, Margaret
2017-01-01
ABSTRACT Background: Maternal antibodies, acquired passively via placenta and/or breast milk, may contribute to the reduced efficacy of oral rotavirus vaccines observed in children in developing countries. This study aimed to investigate the effect of rotavirus specific maternal antibodies on the serum IgA response or stool excretion of vaccine virus after any dose of an oral rotavirus vaccine, RV3-BB, in parallel to a Phase IIa clinical trial conducted at Dunedin Hospital, New Zealand. At the time of the study rotavirus vaccines had not been introduced in New Zealand and the burden of rotavirus disease was evident. Methods: Rotavirus specific IgG and serum neutralizing antibody (SNA) levels in cord blood and IgA levels in colostrum and breast milk samples collected ∼4 weeks, ∼20 weeks and ∼28 weeks after birth were measured. Infants were randomized to receive the first dose of vaccine at 0–5 d (neonatal schedule) or 8 weeks (infant schedule). Breast feeding was with-held for 30 minutes before and after vaccine administration. The relationship between rotavirus specific IgG and SNA levels in cord blood and IgA in colostrum and breast milk at the time of first active dose of RV3-BB vaccine and level of IgA response and stool excretion after 3 doses of vaccine was assessed using linear and logistic regression. Results: Forty infants received 3 doses of RV3-BB rotavirus vaccine and were included in the analysis of the neonatal and infant groups. Rotavirus specific IgA in colostrum (neonatal schedule group) and breast milk at 4 weeks (infant schedule group) was identified in 14/21 (67%) and 14/17 (82%) of infants respectively. There was little evidence of an association between IgA in colostrum or breast milk IgA at 4 weeks, or between cord IgG or SNA level, and IgA response or stool excretion after 3 doses of RV3-BB, or after one dose (neonatal schedule) (all p>0.05). Conclusions: The level of IgA in colostrum or breast milk and level of placental IgG and SNA did not impact on the serum IgA response or stool excretion following 3 doses of RV3-BB Rotavirus Vaccine administered using either a neonatal or infant schedule in New Zealand infants. PMID:28059609
Vocal cord dysfunction in a child.
Juliá, J C; Martorell, A; Armengot, M A; Lluch, R; Boluda, C F; Cerdá, J C; Alvarez, V
1999-07-01
Vocal cord dysfunction (VCD) involves paradoxical adduction of the vocal cord during the respiratory cycle. This usually occurs during inspiration, but can also be seen in expiration. Vocal cord appositioning produces airflow obstruction sufficient to cause wheezing, shortness of breath, chest tightness, and coughing. These symptoms often imitate the respiratory alterations of asthma, thus leading to inappropriate treatment; intubation or tracheotomy may prove necessary. An 11-year-old girl was admitted with intractable dyspnea. She had been diagnosed with atopic asthma, although she failed to respond to an increase in antiasthma medication, including high-dose oral steroids. Flow-volume loops were abnormal, with evidence of variable extrathoracic airway obstruction, manifested as a flat inspiratory loop. No structural abnormalities were seen with either computed tomography (CT) or magnetic resonance imaging (MRI). Fibroscopy revealed paradoxical adduction of the vocal cords during the respiratory cycle, no obstructive disorder being observed. After the diagnosis of VCD, the clinical manifestations resolved with psychiatric treatment. Adduction was not demonstrable at repeat fibroscopy after treatment. VCD may simulate bronchial asthma; it may also be associated with that disorder, thus masking the diagnosis. It should be suspected in patients with recurrent wheezing who fail to respond to usual asthma treatment. An early diagnosis avoids unnecessary aggressive management. Treatment should consist of respiratory and phonatory exercises; psychotherapy may be useful.
Largent-Milnes, Tally M.; Guo, Wenhong; Wang, Hoau-Yan; Burns, Lindsay H.; Vanderah, Todd W.
2017-01-01
Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in μ-opioid receptor (MOR)–G protein coupling from Gi/o to Gs that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L5/L6 spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to Gs in the damaged (ipsilateral) spinal dorsal horn. This MOR-Gs coupling occurred without changing Gi/o coupling levels and without changing the expression of MOR or Gα proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-Gs coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-Gs coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this Gs coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-Gs coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. PMID:18468954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedicini, Piernicola, E-mail: ppiern@libero.it; Strigari, Lidia; Benassi, Marcello
2014-04-01
To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volumemore » histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.« less
Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.
Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M
2010-04-16
The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone. This research provides further validation for using ultra-low dose opioid receptor antagonists in the treatment of various pain syndromes.
Intrathecal Morphine Attenuates Recovery of Function after a Spinal Cord Injury
Moreno, Georgina; Woller, Sarah; Puga, Denise; Hoy, Kevin; Balden, Robyn; Grau, James W.
2009-01-01
Abstract Prior work has shown that a high dose (20 mg/kg) of systemic morphine, required to produce significant analgesia in the acute phase of a contusion injury, undermines the long-term health of treated subjects and increases lesion size. Moreover, a single dose of systemic morphine in the early stage of injury (24 h post-injury) led to symptoms of neuropathic pain 3 weeks later, in the chronic phase. The present study examines the locus of the effects using intrathecal morphine administration. Subjects were treated with one of three doses (0, 30, or 90 μg) of intrathecal morphine 24 h after a moderate contusion injury. The 90-μg dose produced significant analgesia when subjects were exposed to noxious stimuli (thermal and incremented shock) below the level of injury. Yet, despite analgesic efficacy, intrathecal morphine significantly attenuated the recovery of locomotor function and increased lesion size rostral to the injury site. A single dose of 30 or 90 μg of intrathecal morphine also decreased weight gain, and more than doubled the incidence of mortality and autophagia when compared to vehicle-treated controls. Morphine is one of the most effective pharmacological agents for the treatment of neuropathic pain and, therefore, is indispensable for the spinally injured. Treatment can, however, adversely affect the recovery process. A morphine-induced attenuation of recovery may result from increases in immune cell activation and, subsequently, pro-inflammatory cytokine concentrations in the contused spinal cord. PMID:19388818
Seco, J; Clark, C H; Evans, P M; Webb, S
2006-05-01
This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, T; Dang, J; Dai, C
2015-06-15
Purpose: To evaluate dosimetric impact of spinal SBRT when MLC leaf positions deviate from planning positions for different energies and doserates. Methods and Materials: 18 localized spinal metastases patients were selected for SBRT using IMRT planning with 9 posterior beams delivered at gantry angles ranging between 100°–260°. A modern linear accelerator(Varian Turebeam STX with HDMLC 2.5 mm thick leaf at isocenter) IMRT plans were generated using both 6X and 6X-FFF(Flattening filter free) beams with a nominal prescription dose of 6 Gy/fraction to PTV. Doserates ranging from 200–600 MU/min for 6X and 400–1400 MU/min for 6X-FFF, with 200 increments were examined.more » A fixed amount(0.3, 0.5, 1, and 2 mm) of MLC-leaf position deviation was simulated to each plan under following conditions: 1)only along X1 collimator; 2)with increments at both X1 and X2 collimator directions;3)with reductions at both X1 and X2 collimator directions. Dose was recalculated for each modified plans. Both original and modified plans were delivered using Turebeam STX machine and measured using both portal dosimetry and a 3D dosimeter(Delta4 of ScandiDos). Each field’s Result were compared using following three parameters: the 95% iso-dose level Conformal Index(95%CI), the spinal cord maximum dose(SCDmax), and the planned target volume(PTV) mean dose. Results: Dosimetric impacts on the 95%CI, SCDmax and the PTV mean dose are: 1)negligible if MLC-leaf position deviation only along a single collimator direction ≥1.0 mm,2)substantial if MLC-leaf position increment along both collimator directions ≥0.3 mm(95% CI decreases while SCDmax and PTV mean-dose increase), 3)substantial if MLC-leaf position reduction along both collimator directions ≥0.3 mm(95% CI first increases and then decreases while SCDmax and PTV mean-dose decrease). Different energies and doserates demonstrated comparable dosimetric impacts. Conclusion: Substantial dose deviations could happen for spinal SBRT using IMRT plan with HD-MLC if leaf position deviation ≥0.3 mm. The effects of different energy and doserate are negligible.« less
Ruzicka, Jiri; Urdzikova, Lucia Machova; Svobodova, Barbora; Amin, Anubhav G; Karova, Kristyna; Dubisova, Jana; Zaviskova, Kristyna; Kubinova, Sarka; Schmidt, Meic; Jhanwar-Uniyal, Meena; Jendelova, Pavla
2018-01-01
Systematic inflammatory response after spinal cord injury (SCI) is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG) are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg)] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg)] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB) open-field locomotor test, flat beam test). Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining) and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43). Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES) were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf) related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.
Krohn, Thomas; Hänscheid, Heribert; Müller, Berthold; Behrendt, Florian F; Heinzel, Alexander; Mottaghy, Felix M; Verburg, Frederik A
2014-11-01
The determinants of successful (131)I therapy of Graves' disease (GD) are unclear. To relate dosimetry parameters to outcome of therapy to identify significant determinants eu- and/or hypothyroidism after (131)I therapy in patients with GD. A retrospective study in which 206 Patients with GD treated in University Hospital between November 1999 and January 2011. All received (131)I therapy aiming at a total absorbed dose to the thyroid of 250 Gy based on pre-therapeutic dosimetry. Post-therapy dosimetric thyroid measurements were performed twice daily until discharge. From these measurements, thyroid (131)I half-life, the total thyroid absorbed dose, and the maximum dose rate after (131)I administration were calculated. In all, 48.5% of patients were hypothyroid and 28.6% of patients were euthyroid after (131)I therapy. In univariate analysis, nonhyperthyroid and hyperthyroid patients only differed by sex. A lower thyroid mass, a higher activity per gram thyroid tissue, a shorter effective thyroidal (131)I half-life, and a higher maximum dose rate, but not the total thyroid absorbed dose, were significantly associated with hypothyroidism. In multivariate analysis, the maximum dose rate remained the only significant determinant of hypothyroidism (P < .001). Maximum dose rates of 2.2 Gy/h and higher were associated with a 100% hypothyroidism rate. Not the total thyroid absorbed dose, but the maximum dose rate is a determinant of successfully achieving hypothyroidism in Graves' disease. Dosimetric concepts aiming at a specific total thyroid absorbed dose will therefore require reconsideration if our data are confirmed prospectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwa, Stefan L.S., E-mail: s.kwa@erasmusmc.nl; Al-Mamgani, Abrahim; Osman, Sarah O.S.
2015-09-01
Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and aftermore » dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions: With adequate image guidance and CTV-PTV margins in LR, CC, and AP directions of 3, 5, and 3 mm, respectively, excellent target coverage in SVCI could be ensured.« less
SU-E-T-183: Feasibility of Extreme Dose Escalation for Glioblastoma Multiforme Using 4π Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D; Rwigema, J; Yu, V
Purpose: GBM recurrence primarily occurs inside or near the high-dose radiation field of original tumor site requiring greater than 100 Gy to significantly improve local control. We utilize 4π non-coplanar radiotherapy to test the feasibility of planning target volume (PTV) margin expansions or extreme dose escalations without incurring additional radiation toxicities. Methods: 11 GBM patients treated with VMAT to a prescription dose of 59.4 Gy or 60 Gy were replanned with 4π. Original VMAT plans were created with 2 to 4 coplanar or non-coplanar arcs using 3 mm hi-res MLC. The 4π optimization, using 5 mm MLC, selected and inversemore » optimized 30 beams from a candidate pool of 1162 beams evenly distributed through 4π steradians. 4π plans were first compared to clinical plans using the same prescription dose. Two more studies were then performed to respectively escalate the GTV and PTV doses to 100 Gy, followed by a fourth plan expanding the PTV by 5 mm and maintaining the prescription dose. Results: The standard 4π plan significantly reduced (p<0.01) max and mean doses to critical structures by a range of 47.0–98.4% and 61.0–99.2%, respectively. The high dose PTV/high dose GTV/expanded PTV studies showed a reduction (p<0.05) or unchanged* (p>0.05) maximum dose of 72.1%/86.7%/77.1% (chiasm), 7.2%*/27.7%*/30.7% (brainstem), 39.8%*/84.2%/51.9%* (spinal cord), 69.0%/87.0%/66.9% (L eye), 76.2%/88.1%/84.1% (R eye), 95.0%/98.6%/97.5% (L lens), 93.9%/98.8%/97.6% (R lens), 74.3%/88.5%/72.4% (L optical nerve), 80.4%/91.3%/75.7% (R optical nerve), 64.8%/84.2%/44.9%* (L cochlea), and 85.2%/93.0%/78.0% (R cochlea), respectively. V30 and V36 for both brain and (brain - PTV) were reduced for all cases except the high dose PTV plan. PTV dose coverage increased for all 4π plans. Conclusion: Extreme dose escalation or further margin expansion is achievable using 4π, maintaining or reducing OAR doses. This study indicates that clinical trials employing 4π delivery using prescription doses up to 100 Gy are feasible. Funding support partially contributed by Varian.« less
Cross, Brenda A.; Davey, A.; Guz, A.; Katona, P. G.; Maclean, M.; Murphy, K.; Semple, S. J. G.; Stidwill, R.
1982-01-01
1. The ventilatory response to electrically induced `exercise' was studied in six chloralose-anaesthetized dogs. The on-transient and steady-state responses to `exercise' were compared in the same dogs before and after spinal cord transection at T8/9 (dermatome level T6/7) on fifteen occasions. 2. Phasic hind limb `exercise' was induced for periods of 4 min by passing current (2 Hz modulated 50 Hz sine wave) between two needles inserted through the hamstring muscles. The maximum current used was 30 mA. This was below the level previously found to produce an artifactual stimulation of breathing with the cord intact. 3. Cord transection produced no significant change in either the resting values of ventilation (˙VI) and CO2 production (˙VCO2) or the ventilatory equivalent for CO2 during `exercise' (△ ˙VI/ △ ˙VCO2). 4. During the steady state of exercise Pa, CO2 was on average significantly lower than at rest with the cord intact (mean △Pa, CO2, - 2·1 mmHg; range - 5·7 to + 1), and higher, though not significantly, with the cord cut (mean Pa, CO2, + 1·2 mmHg; range - 1·5 to + 4·3). However, even in the absence of spinal cord transmission, the ventilatory response to exercise could not be accounted for on the basis of CO2 sensitivity; the △ ˙VI/ △Pa,CO2 obtained with exercise (apparent sensitivity) was significantly greater than that obtained with CO2 inhalation (true sensitivity) both before and after cord section. 5. ˙VI and ˙VCO2 increased more slowly with the cord cut than with the cord intact. This was thought to be due to a slower increase in venous return in the absence of sympathetic innervation of the lower half of the body following cord transection. 6. Similar experiments were performed during muscle paralysis (following gallamine triethiodide). Ventilation was maintained with a respirator controlled by phrenic nerve activity. These experiments showed an increase in ventilation, independent of muscle contraction, which was only present when the cord was intact and which was confined to the on-transient. Only in the absence of spinal cord transmission could there be certainty that the dynamics of the ventilatory response to electrically induced `exercise' was free of artifact. 7. It was concluded that spinal cord transmission is not necessary for the steady-state ventilatory response to electrically induced exercise of the hind limbs. 8. The dog with spinal cord transection provides a suitable model for the study of the chemical control of breathing during electrically induced exercise. PMID:6292406
Optimizing drug-dose alerts using commercial software throughout an integrated health care system.
Saiyed, Salim M; Greco, Peter J; Fernandes, Glenn; Kaelber, David C
2017-11-01
All default electronic health record and drug reference database vendor drug-dose alerting recommendations (single dose, daily dose, dose frequency, and dose duration) were silently turned on in inpatient, outpatient, and emergency department areas for pediatric-only and nonpediatric-only populations. Drug-dose alerts were evaluated during a 3-month period. Drug-dose alerts fired on 12% of orders (104 098/834 911). System-level and drug-specific strategies to decrease drug-dose alerts were analyzed. System-level strategies included: (1) turning off all minimum drug-dosing alerts, (2) turning off all incomplete information drug-dosing alerts, (3) increasing the maximum single-dose drug-dose alert threshold to 125%, (4) increasing the daily dose maximum drug-dose alert threshold to 125%, and (5) increasing the dose frequency drug-dose alert threshold to more than 2 doses per day above initial threshold. Drug-specific strategies included changing drug-specific maximum single and maximum daily drug-dose alerting parameters for the top 22 drug categories by alert frequency. System-level approaches decreased alerting to 5% (46 988/834 911) and drug-specific approaches decreased alerts to 3% (25 455/834 911). Drug-dose alerts varied between care settings and patient populations. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of high-dose vocal fold injection of cidofovir and bevacizumab in a porcine model.
Ahmed, Mostafa M; Connor, Matthew P; Palazzolo, Mitzi; Thompson, Michelle E; Lospinoso, Josh; O'Connor, Peter; Howard, N Scott; Maturo, Stephen C
2017-03-01
Perform a follow-up study to investigate the histologic impact of high-dose intralaryngeal cidofovir injections in porcine vocal cords, either alone or in combination with bevacizumab, and compared to saline controls. This was an in vivo study involving 24 pigs with blinded pathologist review of specimens. Six groups were created, with four subjects in each group. Each subject received 10 or 20 mg of either cidofovir or bevacizumab alone, or in combination, injected into the right vocal cord. The left vocal fold was used as a saline control. Three separate injections were made at 2-week intervals. Larynges were harvested at 8 and 12 weeks, stained with hematoxylin and eosin and trichrome stain, and reviewed for histologic changes by two blinded pathologists. Minimal inflammation, edema, and atypia were noted with all treatments. Increased glandular inflammation was noted with 10 mg bevacizumab (P < 0.05), which decreased when combined with 10 mg cidofovir (P < 0.05). No lamina propria or muscle fibrosis was observed. Drug duration had no statistically significant histologic impact. High-dose cidofovir and bevacizumab do not induce detrimental vocal fold changes. Combination cidofovir and bevacizumab do not cause vocal fold scarring. Further work is needed to assess systemic concentration with this high-dose combination in humans. N/A. Laryngoscope, 127:671-675, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
SU-F-T-504: Non-Divergent Planning Method for Craniospinal Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, N; Bogue, J; Parsai, E
2016-06-15
Purpose: Traditional Craniospinal Irradiation (CSI) planning techniques require careful field placement to allow optimal divergence and field overlap at depth, and measurement of skin gap. The result of this is a necessary field overlap resulting in dose heterogeneity in the spinal canal. A novel, nondivergent field matching method has been developed to allow simple treatment planning and delivery without the need to measure skin gap. Methods: The CSI patient was simulated in the prone, and a plan was developed. Bilateral cranial fields were designed with couch and collimator rotation to eliminate divergence with the upper spine field and minimize anteriormore » divergence into the lenses. Spinal posterior-to-anterior fields were designed with the couch rotated to 90 degrees to allow gantry rotation to eliminate divergence at the match line, and the collimator rotated to 90 degrees to allow appropriate field blocking with the MLCs. A match line for the two spinal fields was placed and the gantry rotated to equal angles in opposite directions about the match line. Jaw positions were then defined to allow 1mm overlap at the match line to avoid cold spots. A traditional CSI plan was generated using diverging spinal fields, and a comparison between the two techniques was generated. Results: The non-divergent treatment plan was able to deliver a highly uniform dose to the spinal cord with a cold spot of only 95% and maximum point dose of 115.8%, as compared to traditional plan cold spots of 87% and hot spots of 132% of the prescription dose. Conclusion: A non-divergent method for planning CSI patients has been developed and clinically implemented. Planning requires some geometric manipulation in order to achieve an adequate dose distribution, however, it can help to manage cold spots and simplify the shifts needed between spinal fields.« less
Chen, Hua; Wang, Hao; Gu, Hengle; Shao, Yan; Cai, Xuwei; Fu, Xiaolong; Xu, Zhiyong
2017-10-27
This study aimed to investigate the dosimetric differences and lung sparing between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of upper thoracic esophageal cancer with T3N0M0 for preoperative radiotherapy by auto-planning (AP). Sixteen patient cases diagnosed with upper thoracic esophageal cancer T3N0M0 for preoperative radiotherapy were retrospectively studied, and 3 plans were generated for each patient: full arc VMAT AP plan with double arcs, partial arc VMAT AP plan with 6 partial arcs, and conventional IMRT AP plan. A simultaneous integrated boost with 2 levels was planned in all patients. Target coverage, organ at risk sparing, treatment parameters including monitor units and treatment time (TT) were evaluated. Wilcoxon signed-rank test was used to check for significant differences (p < 0.05) between datasets. VMAT plans (pVMAT and fVMAT) significantly reduced total lung volume treated above 20 Gy (V 20 ), 25 Gy (V 25 ), 30 Gy (V 30 ), 35 Gy (V 35 ), 40 Gy (V 40 ), and without increasing the value of V 10 , V 13 , and V 15 . For V 5 of total lung value, pVMAT was similar to aIMRT, and it was better than fVMAT. Both pVMAT and fVMAT improved the target dose coverage and significantly decreased maximum dose for the spinal cord, monitor unit, and TT. No significant difference was observed with respect to V 10 and V 15 of body. VMAT AP plan was a good option for treating upper thoracic esophageal cancer with T3N0M0, especially partial arc VMAT AP plan. It had the potential to effectively reduce lung dose in a shorter TT and with superior target coverage and dose homogeneity. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R.; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong
2009-01-01
Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, TNF-α transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-α/JNK pathway. MCP-1 upregulation by TNF-α was dose-dependently inhibited by the JNK inhibitors SP600125 and D-JNKI-1. Spinal injection of TNF-α produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Further, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous excitatory synaptic currents (sEPSCs) but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Taken together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes following JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management. PMID:19339605
Kobayashi, Sumitaka; Sata, Fumihiro; Miyashita, Chihiro; Miura, Ryu; Azumi, Kaoru; Kobayashi, Sachiko; Goudarzi, Houman; Araki, Atsuko; Ishizuka, Mayumi; Todaka, Takashi; Kajiwara, Jumboku; Hori, Tsuguhide; Kishi, Reiko
2017-09-01
Associations between prenatal exposure to polychlorinated biphenyls (PCBs) and reduced birth-size, and between DNA methylation of insulin-like growth factor-2 (IGF-2), H19 locus, and long interspersed nuclear element-1 (LINE-1) and reduced birth-size are well established. To date, however, studies on the associations between prenatal exposure to PCBs and alterations in methylation of IGF-2, H19, and LINE-1 are lacking. Thus, in this study, we examined these associations with infant-gender stratification. We performed a prospective birth cohort study using the Sapporo cohort from the previously described Hokkaido Birth Cohort Study on Environment and Children's Health conducted between 2002 and 2005 in Japan. In the final 169 study participants included in this study, we measured the concentrations of various non-dioxin-like PCBs in maternal blood during pregnancy using high-resolution gas chromatography/high-resolution mass spectrometry. IGF-2, H19 and LINE-1 methylation levels in cord blood were measured using the bisulfite pyrosequencing methods Finally, we assessed the associations between prenatal exposure to various PCBs and the gene methylation levels using multiple regression models stratified by infant gender. We observed a 0.017 (95% confidence interval [CI]: 0.003-0.031) increase in the log 10 -transformed H19 methylation levels (%) in cord blood for each ten-fold increase in the levels of decachlorinated biphenyls (decaCBs) in maternal blood among all infants. Similarly, a 0.005 (95% CI: 0.000-0.010) increase in the log 10 -transformed LINE-1 methylation levels (%) in cord blood was associated with each ten-fold increase in heptachlorinated biphenyls (heptaCBs) in maternal blood among all infants. In particular, we observed a dose-dependent association of the decaCB levels in maternal blood with the H19 methylation levels among female infants (P value for trend=0.040); likewise a dose-dependent association of heptaCB levels was observed with LINE-1 methylation levels among female infants (P value for trend=0.015). Moreover, these associations were only observed among infants of primiparous women. Our results suggest that the dose-dependent association between prenatal exposure to specific non-dioxin-like PCBs and increases in the H19 and LINE-1 methylation levels in cord blood might be more predominant in females than in males. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baardwijk, Angela van; Bosmans, Geert; Boersma, Liesbeth
2008-08-01
Purpose: Local recurrence is a major problem after (chemo-)radiation for non-small-cell lung cancer. We hypothesized that for each individual patient, the highest therapeutic ratio could be achieved by increasing total tumor dose (TTD) to the limits of normal tissues, delivered within 5 weeks. We report first results of a prospective feasibility trial. Methods and Materials: Twenty-eight patients with medically inoperable or locally advanced non-small-cell lung cancer, World Health Organization performance score of 0-1, and reasonable lung function (forced expiratory volume in 1 second > 50%) were analyzed. All patients underwent irradiation using an individualized prescribed TTD based on normal tissuemore » dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8-Gy fractions twice daily. No concurrent chemoradiation was administered. Toxicity was scored using the Common Terminology Criteria for Adverse Events criteria. An {sup 18}F-fluoro-2-deoxy-glucose-positron emission tomography-computed tomography scan was performed to evaluate (metabolic) response 3 months after treatment. Results: Mean delivered dose was 63.0 {+-} 9.8 Gy. The TTD was most often limited by the mean lung dose (32.1%) or spinal cord (28.6%). Acute toxicity generally was mild; only 1 patient experienced Grade 3 cough and 1 patient experienced Grade 3 dysphagia. One patient (3.6%) died of pneumonitis. For late toxicity, 2 patients (7.7%) had Grade 3 cough or dyspnea; none had severe dysphagia. Complete metabolic response was obtained in 44% (11 of 26 patients). With a median follow-up of 13 months, median overall survival was 19.6 months, with a 1-year survival rate of 57.1%. Conclusions: Individualized maximal tolerable dose irradiation based on normal tissue dose constraints is feasible, and initial results are promising.« less
Elkomy, Mohammed H.; Sultan, Pervez; Carvalho, Brendan; Peltz, Gary; Wu, Manhong; Clavijo, Claudia; Galinkin, Jeffery L.; Drover, David R.
2014-01-01
Ondansetron is the drug of choice to prevent nausea in women undergoing cesarean surgery and can be used to prevent neonatal abstinence syndrome (NAS). Pharmacokinetics of ondansetron has not been characterized in pregnant women or in newborns. A nonlinear mixed-effects modeling approach was used to analyze plasma samples obtained from 20 non-pregnant and 40 pregnant women following single administration of 4 or 8 mg ondansetron, from umbilical cord blood at delivery, and from neonates after birth. The analysis indicates that: ondansetron disposition is not affected by pregnancy (p>0.05), but influenced by dose (p<0.05), and is characterized by rapid transplacental transfer and longer elimination half-life in neonates compared to their mother. A dosing regimen for prevention of NAS was designed based on the model. The regimen involves IV administration of 4 mg to the mothers shortly before cord clamping, or oral administration of 0.07 mg/kg (or equivalently 0.04 mg/kg IV) to neonates. PMID:25670522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayah, N; Weiss, E; Watkins, W
Purpose: To evaluate the dose-mapping error (DME) inherent to conventional dose-mapping algorithms as a function of dose-matrix resolution. Methods: As DME has been reported to be greatest where dose-gradients overlap tissue-density gradients, non-clinical 66 Gy IMRT plans were generated for 11 lung patients with the target edge defined as the maximum 3D density gradient on the 0% (end of inhale) breathing phase. Post-optimization, Beams were copied to 9 breathing phases. Monte Carlo dose computed (with 2*2*2 mm{sup 3} resolution) on all 10 breathing phases was deformably mapped to phase 0% using the Monte Carlo energy-transfer method with congruent mass-mapping (EMCM);more » an externally implemented tri-linear interpolation method with voxel sub-division; Pinnacle’s internal (tri-linear) method; and a post-processing energy-mass voxel-warping method (dTransform). All methods used the same base displacement-vector-field (or it’s pseudo-inverse as appropriate) for the dose mapping. Mapping was also performed at 4*4*4 mm{sup 3} by merging adjacent dose voxels. Results: Using EMCM as the reference standard, no clinically significant (>1 Gy) DMEs were found for the mean lung dose (MLD), lung V20Gy, or esophagus dose-volume indices, although MLD and V20Gy were statistically different (2*2*2 mm{sup 3}). Pinnacle-to-EMCM target D98% DMEs of 4.4 and 1.2 Gy were observed ( 2*2*2 mm{sup 3}). However dTransform, which like EMCM conserves integral dose, had DME >1 Gy for one case. The root mean square RMS of the DME for the tri-linear-to- EMCM methods was lower for the smaller voxel volume for the tumor 4D-D98%, lung V20Gy, and cord D1%. Conclusion: When tissue gradients overlap with dose gradients, organs-at-risk DME was statistically significant but not clinically significant. Target-D98%-DME was deemed clinically significant for 2/11 patients (2*2*2 mm{sup 3}). Since tri-linear RMS-DME between EMCM and tri-linear was reduced at 2*2*2 mm{sup 3}, use of this resolution is recommended for dose mapping. Interpolative dose methods are sufficiently accurate for the majority of cases. J.V. Siebers receives funding support from Varian Medical Systems.« less
Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer.
Silva, Scott R; Surucu, Murat; Steber, Jennifer; Harkenrider, Matthew M; Choi, Mehee
2017-04-01
Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent chemotherapy and demonstrated advantages for reduction in low-dose lung volumes, esophageal dose, and mean heart dose.
[Estimation of Maximum Entrance Skin Dose during Cerebral Angiography].
Kawauchi, Satoru; Moritake, Takashi; Hayakawa, Mikito; Hamada, Yusuke; Sakuma, Hideyuki; Yoda, Shogo; Satoh, Masayuki; Sun, Lue; Koguchi, Yasuhiro; Akahane, Keiichi; Chida, Koichi; Matsumaru, Yuji
2015-09-01
Using radio-photoluminescence glass dosimeter, we measured the entrance skin dose (ESD) in 46 cases and analyzed the correlations between maximum ESD and angiographic parameters [total fluoroscopic time (TFT); number of digital subtraction angiography (DSA) frames, air kerma at the interventional reference point (AK), and dose-area product (DAP)] to estimate the maximum ESD in real time. Mean (± standard deviation) maximum ESD, dose of the right lens, and dose of the left lens were 431.2 ± 135.8 mGy, 33.6 ± 15.5 mGy, and 58.5 ± 35.0 mGy, respectively. Correlation coefficients (r) between maximum ESD and TFT, number of DSA frames, AK, and DAP were r=0.379 (P<0.01), r=0.702 (P<0.001), r=0.825 (P<0.001), and r=0.709 (P<0.001), respectively. AK was identified as the most useful parameter for real-time prediction of maximum ESD. This study should contribute to the development of new diagnostic reference levels in our country.
Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu
2017-02-01
As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Two cases of sarcoidosis presenting as longitudinally extensive transverse myelitis.
Scott, Amanda Mary; Yinh, Janeth; McAlindon, Timothy; Kalish, Robert
2018-05-17
Neurosarcoidosis is uncommon with an incidence of approximately 5 to 15%. Central nervous system involvement can be divided into brain and spinal cord neurosarcoidosis. Spinal cord sarcoidosis is extremely rare, occurring in less than 1% of all sarcoidosis cases. Its manifestations may include cauda equina syndrome, radiculopathy, syringomyelia, cord atrophy, arachnoiditis, and myelopathy or transverse myelitis. We highlight two cases of spinal cord sarcoidosis, each presenting with longitudinally extensive transverse myelitis, that demonstrate the dilemmas that physicians face with regard to diagnosis and treatment. Given its rarity and the diversity of possible manifestations, establishing the diagnosis of spinal cord sarcoidosis is often very difficult. Extensive evaluation must be conducted to rule out primary neurologic, primary rheumatologic, infectious, and neoplastic diseases. MRI often demonstrates hyperintensity on T2-weighted images and enhancement following gadolinium administration. CSF analysis most consistently shows a lymphocytic pleocytosis and elevated proteins. While these less invasive investigations may be helpful, the gold standard for diagnosis is biopsy of neurologic or non-neurologic tissue confirming the presence of non-caseating granulomas. Evidence-based guidelines for the treatment of transverse myelitis secondary to sarcoidosis are lacking due to its rarity; therefore, therapy is based on expert and anecdotal experience and usually consists of high doses of steroids in combination with various immunosuppressive agents. The use of infliximab in particular appears promising, but there is a need for further investigation into the ideal treatment regimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Cebe, M; Mabhouti, H
Purpose: Stereotactic body radiosurgery (SBRT) for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for spine SBRT in terms of its dosimetric quality and treatment efficiency using Radiation Therapy Oncology Group (RTOG) 0631 guidelines. Methods: 7 fields IMRT, 2 full arcs VMAT and Hybrid VMAT/IMRT were created for ten previously treated patients. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 5 IMRT fields. Hybrid VMAT/IMRT plans were compared with IMRTmore » and VMAT plans in terms of the dose distribution, spinal cord sparing, homogeneity, conformity and gradient indexies, monitor unit (MU) and beam on time (BOT). RTOG 0631 recommendations were applied for treatment planning. All plans were normalized and prescribed to deliver 18.0 Gy in a single fraction to 90% of the target volume. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity and conformity compared with IMRT and VMAT techniques. Providing sharp dose gradient Hybrid VMAT/IMRT plans spare the spinal cord and healthy tissue more effectively. Although, both MU and BOT slightly increased in Hybrid VMAT/IMRT plans there is no statistically meaningful difference between VMAT and Hybrid VMAT/IMRT plans. Conclusion: In IMRT, a smaller volume of healthy tissue can be irradiated in the low dose region, VMAT plans provide better target volume coverage, favorable dose gradient, conformity and better OAR sparing and also they require a much smaller number of MUs and thus a shorter treatment time than IMRT plans. Hybrid plan offers a sinergy through combination of these two techniques with slightly increased number of MU and thus more treatment time.« less
2013-01-01
Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312
Huang, Bao-Tian; Wu, Li-Li; Guo, Long-Jia; Xu, Liang-Yu; Huang, Rui-Hong; Lin, Pei-Xian; Chen, Jian-Zhou; Li, De-Rui; Chen, Chuang-Zhen
2017-01-01
To compare the radiobiological response between simultaneously dose-escalated and non-escalated intensity-modulated radiation therapy (DE-IMRT and NE-IMRT) for patients with upper thoracic esophageal cancer (UTEC) using radiobiological evaluation. Computed tomography simulation data sets for 25 patients pathologically diagnosed with primary UTEC were used in this study. DE-IMRT plan with an escalated dose of 64.8 Gy/28 fractions to the gross tumor volume (GTV) and involved lymph nodes from 25 patients pathologically diagnosed with primary UTEC, was compared to an NE-IMRT plan of 50.4 Gy/28 fractions. Dose-volume metrics, tumor control probability (TCP), and normal tissue complication probability for the lung and spinal cord were compared. In addition, the risk of acute esophageal toxicity (AET) and late esophageal toxicity (LET) were also analyzed. Compared with NE-IMRT plan, we found the DE-IMRT plan resulted in a 14.6 Gy dose escalation to the GTV. The tumor control was predicted to increase by 31.8%, 39.1%, and 40.9% for three independent TCP models. The predicted incidence of radiation pneumonitis was similar (3.9% versus 3.6%), and the estimated risk of radiation-induced spinal cord injury was extremely low (<0.13%) in both groups. Regarding the esophageal toxicities, the estimated grade ≥2 and grade ≥3 AET predicted by the Kwint model were increased by 2.5% and 3.8%. Grade ≥2 AET predicted using the Wijsman model was increased by 14.9%. The predicted incidence of LET was low (<0.51%) in both groups. Radiobiological evaluation reveals that the DE-IMRT dosing strategy is feasible for patients with UTEC, with significant gains in tumor control and minor or clinically acceptable increases in radiation-induced toxicities.
Tsuda, Kazumasa; Shiiya, Norihiko; Takahashi, Daisuke; Ohkura, Kazuhiro; Yamashita, Katsushi; Kando, Yumi
2015-08-01
Specificity of transcranial motor-evoked potentials (MEPs) is low because amplitude fluctuation is common, which seems due to several technical and fundamental reasons including difficulty in electrodes positioning and fixation for transcranial stimulation and susceptibility to anaesthesia. This study aimed to investigate the feasibility, safety and stability of our novel technique of transoesophageal spinal cord stimulation to improve the stability of MEPs. Ten anaesthetized adult beagle dogs were used. Transoesophageal stimulation was performed between the oesophageal luminal surface electrode (cathode) and a subcutaneous needle electrode (anode) at the fourth to fifth thoracic vertebra level. Stimulation was achieved with a train of five pulses delivered at 2.0-ms intervals. Compound muscle action potentials were recorded from four limbs and external anal sphincter muscles. Stability to anaesthetic agents was tested at varying speeds of propofol and remifentanil, and effects of varying concentration of sevoflurane inhalation were also evaluated. Transoesophageal MEPs could be recorded without difficulty in all dogs. Fluoroscopic evaluation showed that electrodes misalignment up to 5 cm cranially or caudally could be tolerated. Stimulus intensity to achieve maximum amplitude of hindlimb muscle potentials on both sides was significantly lower by transoesophageal stimulation than by transcranial stimulation (383 ± 41 vs 533 ± 121 V, P = 0.02) and had less interindividual variability. Latency of transoesophageal MEPs was shorter than that of transcranial MEPs at every recording point. No arrhythmia was provoked during stimulation. Animals that were allowed to recover showed no neurological abnormality. In the two sacrificed animals, the explanted oesophagus showed no mucosal injury. Stability to varying dose of anaesthetic agents was similar between transoesophageal and transcranial stimulation, except for the potentials of forelimbs by transoesophageal stimulation that were resistant to anaesthetic depression. Transoesophageal stimulation for MEPs monitoring was feasible without difficulty and safe. Although its stability to anaesthetic agents was similar to that of transcranial stimulation, its technical ease and small interindividual variability warrants further studies on the response to spinal cord ischaemia. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh.
Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-systemmore » component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose. This work has been supported by the research chancellor of tehran university of medical sciences(tums), school of medicine, Tehran, Iran.« less
Ikpeze, Tochukwu C; Mesfin, Addisu
2017-06-01
Spinal cord injuries (SCIs) are sustained by more than 12 500 patients per year in the United States and more globally. The SCIs disproportionately affect the elderly, especially men. Approximately 60% of these injuries are sustained traumatically through falls, but nontraumatic causes including infections, tumors, and medication-related epidural bleeding have also been documented. Preexisting conditions such as ankylosing spondylitis and diffuse idiopathic skeletal hyperostosis can render the spine stiff and are risk factors as well as cervical spondylosis and ensuing cervical stenosis. Treatment options vary depending on the severity, location, and complexity of the injury. Surgical management has been growing in popularity over the years and remains an option as it helps reduce spinal cord compression and alleviate pain. Elevating mean arterial pressures to prevent spinal cord ischemia and avoiding the second hit of SCI have become more common as opposed to high dose steroids. Ongoing clinical trials with pharmacological agents such as minocycline and riluzole have shown early, promising results in their ability to reduce cellular damage and facilitate recovery. Though SCI can be life changing, the available treatment options have aimed to reduce pain and minimize complications and maintain quality of life alongside rehabilitative services.
Molina, Eric Suero; Stummer, Walter
2017-12-29
Spinal cord and brain stem lesions require a judicious approach with an optimized trajectory due to a clustering of functions on their surfaces. Intraoperative mapping helps locate function. To confidently locate such lesions, neuronavigation alone lacks the desired accuracy and is of limited use in the spinal cord. To evaluate the clinical value of fluoresceins for initial delineation of such critically located lesions. We evaluated fluorescein guidance in the surgical resection of lesions with blood-brain barrier disruption demonstrating contrast enhancement in magnet resonance imaging in the spinal cord and in the brain stem in 3 different patients. Two patients harbored a diffuse cervical and thoracic spinal cord lesion, respectively. Another patient suffered metastatic lesions in the brain stem and at the floor of the fourth ventricle. Low-dose fluorescein (4 mg/kg body weight) was applied after anesthesia induction and visualized using the Zeiss Pentero 900 Yellow560 filter (Carl Zeiss, Oberkochen, Germany). Fluorescein was helpful for locating lesions and for defining the best possible trajectory. During resection, however, we found unspecific propagation of fluorescein within the brain stem up to 6 mm within 3 h after application. As these lesions were otherwise distinguishable from surrounding tissue, monitoring resection was not an issue. Fluorescein guidance is a feasible tool for defining surgical entry zones when aiming for surgical removal of spinal cord and brain stem lesions. Unselective fluorescein extravasation cautions against using such methodology for monitoring completeness of resection. Providing the right timing, a window of pseudoselectivity could increase fluoresceins' clinical value in these cases. © Congress of Neurological Surgeons 2017.
Valproic Acid Increases Expression of Neuronal Stem/Progenitor Cell in Spinal Cord Injury
Bang, Woo-Seok; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung
2013-01-01
Objective This study investigates the effect of valproic acid (VPA) on expression of neural stem/progenitor cells (NSPCs) in a rat spinal cord injury (SCI) model. Methods Adult male rats (n=24) were randomly and blindly allocated into three groups. Laminectomy at T9 was performed in all three groups. In group 1 (sham), only laminectomy was performed. In group 2 (SCI-VPA), the animals received a dose of 200 mg/kg of VPA. In group 3 (SCI-saline), animals received 1.0 mL of the saline vehicle solution. A modified aneurysm clip with a closing force of 30 grams was applied extradurally around the spinal cord at T9, and then rapidly released with cord compression persisting for 2 minutes. The rats were sacrificed and the spinal cord were collected one week after SCI. Immunohistochemistry (IHC) and western blotting sample were obtained from 5 mm rostral region to the lesion and prepared. We analyzed the nestin immunoreactivity from the white matter of ventral cord and the ependyma of central canal. Nestin and SOX2 were used for markers for NSPCs and analyzed by IHC and western blotting, respectively. Results Nestin and SOX2 were expressed significantly in the SCI groups but not in the sham group. Comparing SCI groups, nestin and SOX2 expression were much stronger in SCI-VPA group than in SCI-saline group. Conclusion Nestin and SOX2 as markers for NSPCs showed increased expression in SCI-VPA group in comparison with SCI-saline group. This result suggests VPA increases expression of spinal NSPCs in SCI. PMID:24044073
Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin
Chen, Wenling; Song, Bingbing; Lao, Lijun; Pérez, Orlando A.; Kim, Woojae; Marvizón, Juan Carlos G.
2007-01-01
Summary Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude μ-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or δ-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was ten times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia. PMID:17845806
Testosterone Dose Dependently Prevents Bone and Muscle Loss in Rodents after Spinal Cord Injury
Conover, Christine F.; Beggs, Luke A.; Beck, Darren T.; Otzel, Dana M.; Balaez, Alexander; Combs, Sarah M.; Miller, Julie R.; Ye, Fan; Aguirre, J. Ignacio; Neuville, Kathleen G.; Williams, Alyssa A.; Conrad, Bryan P.; Gregory, Chris M.; Wronski, Thomas J.; Bose, Prodip K.; Borst, Stephen E.
2014-01-01
Abstract Androgen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse. It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis. Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model. Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (2.0 mg/week), or (4) SCI+High-dose TE (7.0 mg/week). Twenty-one days post-injury, SCI animals exhibited a 77–85% reduction in hindlimb cancellous bone volume at the distal femur (measured via μCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13–27% reduction in trabecular thickness, and increased trabecular separation. A 57% reduction in cancellous volumetric bone mineral density (vBMD) at the distal femur and a 20% reduction in vBMD at the femoral neck were also observed. TE dose dependently prevented hindlimb bone loss after SCI, with high-dose TE fully preserving cancellous bone structural characteristics and vBMD at all skeletal sites examined. Animals receiving SCI also exhibited a 35% reduction in hindlimb weight bearing (triceps surae) muscle mass and a 22% reduction in sublesional non-weight bearing (levator ani/bulbocavernosus [LABC]) muscle mass, and reduced prostate mass. Both TE doses fully preserved LABC mass, while only high-dose TE ameliorated hindlimb muscle losses. TE also dose dependently increased prostate mass. Our findings provide the first evidence indicating that high-dose TE fully prevents hindlimb cancellous bone loss and concomitantly ameliorates muscle loss after SCI, while low-dose TE produces much less profound musculoskeletal benefit. Testosterone-induced prostate enlargement, however, represents a potential barrier to the clinical implementation of high-dose TE as a means of preserving musculoskeletal tissue after SCI. PMID:24378197
Simultaneous modulated accelerated radiation therapy for esophageal cancer: a feasibility study.
Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen
2014-10-14
To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN ±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf-IMRT plans, the SMART plans permitted a simultaneous dose escalation (6 Gy) to the primary tumor while demonstrating a significant trend of a lower irradiation dose to all organs at risk except the spinal cord, for which no significant difference was found. SMART offers the potential for a 6 Gy simultaneous escalation in the irradiation dose delivered to the primary tumor of EC and improves the sparing of normal tissues.
Simultaneous modulated accelerated radiation therapy for esophageal cancer: A feasibility study
Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen
2014-01-01
AIM: To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). METHODS: Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. RESULTS: Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf-IMRT plans, the SMART plans permitted a simultaneous dose escalation (6 Gy) to the primary tumor while demonstrating a significant trend of a lower irradiation dose to all organs at risk except the spinal cord, for which no significant difference was found. CONCLUSION: SMART offers the potential for a 6 Gy simultaneous escalation in the irradiation dose delivered to the primary tumor of EC and improves the sparing of normal tissues. PMID:25320535
Factors associated with higher oxytocin requirements in labor.
Frey, Heather A; Tuuli, Methodius G; England, Sarah K; Roehl, Kimberly A; Odibo, Anthony O; Macones, George A; Cahill, Alison G
2015-09-01
To identify clinical characteristics associated with high maximum oxytocin doses in women who achieve complete cervical dilation. A retrospective nested case-control study was performed within a cohort of all term women at a single center between 2004 and 2008 who reached the second stage of labor. Cases were defined as women who had a maximum oxytocin dose during labor >20 mu/min, while women in the control group had a maximum oxytocin dose during labor of ≤20 mu/min. Exclusion criteria included no oxytocin administration during labor, multiple gestations, major fetal anomalies, nonvertex presentation, and prior cesarean delivery. Multiple maternal, fetal, and labor factors were evaluated with univariable analysis and multivariable logistic regression. Maximum oxytocin doses >20 mu/min were administered to 108 women (3.6%), while 2864 women received doses ≤20 mu/min. Factors associated with higher maximum oxytocin dose after adjusting for relevant confounders included maternal diabetes, birthweight >4000 g, intrapartum fever, administration of magnesium, and induction of labor. Few women who achieve complete cervical dilation require high doses of oxytocin. We identified maternal, fetal and labor factors that characterize this group of parturients.
Wood, G Christopher; Boucher, Andrew B; Johnson, Jessica L; Wisniewski, Jennifer N; Magnotti, Louis J; Croce, Martin A; Swanson, Joseph M; Boucher, Bradley A; Fabian, Timothy C
2014-01-01
To evaluate the effectiveness of pseudoephedrine as adjunctive therapy for neurogenic shock in patients with acute spinal cord injury (SCI). Case series. Academic medical center. Thirty-eight patients admitted to the trauma intensive care unit between September 2005 and October 2012 with an acute SCI and who received more than 1 day of pseudoephedrine for one or more of the following: treatment of bradycardia (heart rate ≤ 50 beats/min), treatment of hypotension (systolic blood pressure < 90 mm Hg), or were receiving intravenous vasopressor support. The effect of adjunctive pseudoephedrine (PSE) was categorized as a success if vasopressors were discontinued after the initiation of PSE or improvement in the number of episodes of bradycardia was noted after the initiation of PSE as evidenced by decreased use of atropine. The effect of pseudoephedrine was categorized as a failure if it did not meet one of the criteria for success. The effect of pseudoephedrine was categorized as inconclusive if there were confounding factors such as vasopressors being restarted for another indication after initial discontinuation. Pseudoephedrine was successful in 31/38 (82%) patients, failed in 2/38 (5%) patients, and had inconclusive results in 5/38 (13%) patients. The mean ± SD time to successful weaning of intravenous vasopressors was 7 ± 7 days. Daily maximum pseudoephedrine doses ranged from 60-720 mg. Mean ± SD duration of pseudoephedrine therapy was 32 ± 23 days (range 2-135 days), with 64.5% of surviving patients discharged while receiving pseudoephedrine. These data suggest that pseudoephedrine is an effective adjunctive therapy in facilitating the discontinuation of intravenous vasopressors and/or atropine in patients with acute SCI with neurogenic shock, although patients will typically require long durations of therapy. © 2013 Pharmacotherapy Publications, Inc.
Stem cell transplantation (cord blood transplants).
Chao, Nelson J; Emerson, Stephen G; Weinberg, Kenneth I
2004-01-01
Allogeneic stem cell transplantation is an accepted treatment modality for selected malignant and non-malignant diseases. However, the ability to identify suitably matched related or unrelated donors can be difficult in some patients. Alternative sources of stem cells such as cord blood provide a readily available graft for such patients. Data accumulated over the past several years have demonstrated that the use of cord blood is an accepted source of stem cells for pediatric patients. Since the cell numbers of hematopoietic progenitors in cord blood is limited and the collection can occur only in a single occasion, its use in adult patients can be more problematic. Here, new developments in the use of cord blood for adults and studies aimed at expansion of cord blood cells and immune reconstitution are described. In Section I, Dr. Nelson Chao describes the early data in cord blood transplantation in adult patients. The patient outcomes are reviewed and analyzed for various factors such as cell dose, HLA typing, and patient selection that could have contributed to the final outcome of these adult patients. Myeloablative as well as nonmyeloablative approaches are presented. Discussion of the various benefits and risks are presented. More recent data from multiple single institutions as well as larger registry data comparisons are also provided. Analyses of these studies suggest methods to improve on the outcome. These newer data should lead to a logical progression in the use of cord blood cells in adult patients. In Section II, Dr. Stephen Emerson describes the historical efforts associated with expansion of hematopoietic stem cells, specifically with cord blood cells. These efforts to expand cord blood cells continue with novel methods. Moreover, a better understanding of stem cell biology and signaling is critical if we are to be able to effectively expand these cells for clinical use. An alternative, more direct, approach to expanding stem cells could be achieved by specific genetic pathways known or believed to support primitive HSC proliferation such as Notch-1 receptor activation, Wnt/LEF-1 pathway induction, telomerase or the Homeobox (Hox) gene products. The clinical experience with the use of expanded cord blood cells is also discussed. In Section III, Dr. Kenneth Weinberg describes immune reconstitution or lack thereof following cord blood transplantation. One of the hallmarks of successful hematopoietic stem cell transplantation is the ability to fully reconstitute the immune system of the recipient. Thus, the relationship between stem cell source and the development of T lymphocyte functions required for protection of the recipient from infection will be described, and cord blood recipients will be compared with those receiving other sources of stem cells. T cell development is described in detail, tracking from prethymic to postthymic lymphocytes with specific attention to umbilical cord blood as the source of stem cells. Moreover, a discussion of the placenta as a special microenvironment for umbilical cord blood is presented. Strategies to overcome the immunological defects are presented to improve the outcome of these recipients.
Liusuwan, Rungsinee Amanda; Widman, Lana M; Abresch, Richard Ted; Johnson, Allan J; McDonald, Craig M
2007-01-01
Background/Objective: Determine the effects of a nutrition education and exercise intervention on the health and fitness of adolescents with mobility impairment due to spinal cord dysfunction from myelomeningocele and spinal cord injury. Subjects participated in a 16-week intervention consisting of a behavioral approach to lifestyle change, exercise, and nutrition education to improve fitness (BENEfit) program. Participants were given a schedule of aerobic and strengthening exercises and attended nutrition education and behavior modification sessions every other week along with their parent(s). Subjects: Twenty adolescents (aged 11–18 years, mean 15.4 ± 2.2 years) with spinal cord dysfunction. Methods: Subjects were tested immediately prior to starting and upon completion of the program. Aerobic fitness was measured using a ramp protocol with an arm ergometer. Heart rate and oxygen uptake were measured. Values at anaerobic threshold and maximum oxygen uptake were recorded. Peak isokinetic arm and shoulder strength were determined with a dynamometer. Body composition was estimated with dual-energy x-ray absorptiometry. Serum chemistry included measures of cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides. Results: Fourteen individuals completed all testing sessions. There was no significant overall change in weight, body mass index, body mass index z-scores, or serum chemistry. Overall, there was a significant increase in whole body lean tissue without a concomitant increase in whole body fat. Fitness measures revealed a significant increase in maximum power output, work efficiency as measured by the amount of power output produced aerobically, and resting oxygen uptake. Strength measurements revealed a significant increase in shoulder extension strength and a trend towards increased shoulder flexion strength. There were no significant changes in high-density lipoprotein, low-density lipoprotein, total cholesterol, or triglycerides. Conclusions: The BENEfit program shows promise as a method for improving the health and fitness of adolescents with mobility impairments who are at high risk for obesity and obesity-related health conditions. PMID:17874697
Sundaram, Vijay; Muthukumarappan, Kasiviswanathan
2016-05-01
The effects of AFEX™ pretreatment, feedstock moisture content (5,10, and 15 % wb), particle size (screen sizes of 2, 4, and 8 mm), and extrusion temperature (75, 100, and 125 °C) on pellet bulk density, pellet hardness, and sugar recovery from corn stover, prairie cord grass, and switchgrass were investigated. Pellets were produced from untreated and AFEX™ pretreated feedstocks using a laboratory-scale extruder. AFEX™ pretreatment increased subsequent pellet bulk density from 453.0 to 650.6 kg m(-3) for corn stover from 463.2 to 680.1 kg m(-3) for prairie cord grass, and from 433.9 to 627.7 kg m(-3) for switchgrass. Maximum pellet hardness of 2342.8, 2424.3, and 1298.6 N was recorded for AFEX™ pretreated corn stover, prairie cord grass, and switchgrass, respectively. Glucose yields of AFEX™ corn stover pellets, prairie cord grass, and switchgrass pellets varied from 88.9 to 94.9 %, 90.1 to 94.9 %, and 87.0 to 92.9 %, respectively. Glucose and xylose yields of AFEX™ pellets were not affected by the extruder barrel temperature and the hammer mill screen size. The results obtained showed that low temperature and large particle size during the extrusion pelleting process can be employed for AFEX™-treated biomass without compromising sugar yields.
Yi, Deqing; Yuan, Yue; Jin, Lei; Zhou, Guodong; Zhu, Huiping; Finnell, Richard H; Ren, Aiguo
2015-01-01
Maternal exposure to polycyclic aromatic hydrocarbons (PAHs) has been shown to be associated with an elevated risk for neural tube defects (NTDs). In the human body, PAHs are bioactivated and the resultant reactive epoxides can covalently bind to DNA to form PAH-DNA adducts, which may, in turn, cause transcription errors, changes in gene expression or altered patterns of apoptosis. During critical developmental phases, these changes can result in abnormal morphogenesis. We aimed to examine the relationship between the levels of PAH-DNA adducts in cord blood and cord tissue and the risk of NTDs. From 2010 to 2012, 60 NTD cases and 60 healthy controls were recruited from a population-based birth defects surveillance system in five counties of Shanxi Province in Northern China, where the emission of PAHs remains one of the highest in the country and PAHs exposure is highly prevalent. PAH-DNA adducts in cord blood of 15 NTD cases and 15 control infants, and in cord tissue of 60 NTD cases and 60 control infants were measured using the (32)P-postlabeling method. PAH-DNA adduct levels in cord blood tend to be higher in the NTD group (28.5 per 10(8) nucleotides) compared with controls (19.7 per 10(8) nucleotides), although the difference was not statistically significant (P=0.377). PAH-DNA adducts in cord tissue were significantly higher in the NTD group (24.6 per 10(6) nucleotides) than in the control group (15.3 per 10(6) nucleotides), P=0.010. A positive dose-response relationship was found between levels of PAH-DNA adducts in cord tissue and the risk of NTDs (P=0.009). When the lowest tertile was used as the referent and potential confounding factors were adjusted for, a 1.03-fold (95% CI, 0.37-2.89) and 2.96-fold (95% CI, 1.16-7.58) increase in the risk of NTDs was observed for fetuses whose cord tissue PAH-DNA adduct levels were in the second and highest tertile, respectively. High levels of PAH-DNA adducts in fetal tissues were associated with increased risks of NTDs. Copyright © 2014 Elsevier Inc. All rights reserved.
A Detailed Dosimetric Analysis of Spinal Cord Tolerance in High-Dose Spine Radiosurgery.
Katsoulakis, Evangelia; Jackson, Andrew; Cox, Brett; Lovelock, Michael; Yamada, Yoshiya
2017-11-01
Dose-volume tolerance of the spinal cord (SC) in spinal stereotactic radiosurgery (SRS) is difficult to define because radiation myelitis rates are low, and published reports document cases of myelopathy but do not account for the total number of patients treated at given dose-volume combinations who do not have myelitis. This study reports SC toxicity from single-fraction spinal SRS and presents a comprehensive atlas of the incidence of adverse events to examine dose-volume predictors. A prospective database of all patients undergoing single-fraction spinal SRS at our institution between 2004 and 2011 was reviewed. SC toxicity was defined by clinical myelitis with accompanying magnetic resonance imaging (MRI) signal changes that were not attributable to tumor progression. Dose-volume histogram (DVH) atlases were created for these endpoints. Rates of adverse events with 95% confidence limits and probabilities that rates of adverse events were <2% and <5% for myelitis were determined as functions of dose and absolute volume. Information about DVH and myelitis was available for 228 patients treated at 259 sites. The median follow-up time was 14.6 months (range, 0.1-138.3 months). The median prescribed dose to the planning treatment volume was 24 Gy (range, 18-24 Gy). There were 2 cases of radiation myelitis (rate r=0.7%) with accompanying MRI signal changes. Myelitis occurred in 2 patients, with Dmax >13.33 Gy, and minimum doses to the hottest 0.1, 0.2, 0.5, and 1 cc were >10.66, 10.9, and 8 Gy, respectively; however, both myelitis cases occurred below the 34th percentile for Dmax and there were 194 DVHs in total with Dmax >13.33 Gy. A median SC Dmax of 13.85 Gy is safe and supports that a Dmax limit of 14 Gy carries a low <1% rate of myelopathy. No dose-volume thresholds or relationships between SC dose and myelitis were apparent. This is the largest study examining dosimetric data and radiation-induced myelitis in de novo spine SRS. Copyright © 2017 Elsevier Inc. All rights reserved.
SU-E-J-124: 18F-FDG PET Imaging to Improve RT Treatment Outcome for Locally Advanced Lung Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusharina, N; Khan, F; Sharp, G
2015-06-15
Purpose: To investigate spatial correlation between high uptake regions of pre- and 10-days-post therapy{sup 1} {sup 8}F-FDG PET in recurrent lung cancer and to evaluate the feasibility of dose escalation boosting only regions with high FDG uptake identified on baseline PET. Methods: Nineteen patients with stages II– IV inoperable lung cancer were selected. Volumes of interest (VOI) on pre-therapy FDG-PET were defined using an isocontour at ≥50% of SUVmax. VOI of pre- and post-therapy PET images were correlated for the extent of overlap. A highly optimized IMRT plan to 60 Gy prescribed to PTV defined on the planning CT wasmore » designed using clinical dose constraints for the organs at risk. A boost of 18 Gy was prescribed to the VOI defined on baseline PET. A composite plan of the total 78 Gy was compared with the base 60 Gy plan. Increases in dose to the lungs, spinal cord and heart were evaluated. IMRT boost plan was compared with proton RT and SBRT boost plans. Results: Overlap fraction of baseline PET VOI with the VOI on 10 days-post therapy PET was 0.8 (95% CI: 0.7 – 0.9). Using baseline VOI as a boosting volume, dose could be escalated to 78 Gy for 15 patients without compromising the dose constraints. For 4 patients, the dose limiting factors were V20Gy and Dmean for the total lung, and Dmax for the spinal cord. An increase of the dose to OARs correlated significantly with the relative size of the boost volume. Conclusion: VOI defined on baseline 18F-FDG PET by the SUVmax-≥50% isocontour may be a biological target volume for escalated radiation dose. Dose escalation to this volume may provide improved tumor control without breaching predefined dose constraints for OARs. The best treatment outcome may be achieved with proton RT for large targets and with SBRT for small targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dueck, J; Department of Oncology, Rigshospitalet, Copenhagen; Niels Bohr Institute, University of Copenhagen, Copenhagen
Purpose: The breath-hold (BH) technique has been suggested to mitigate motion and reduce target coverage degradation due to motion effects. The aim of this study was to investigate the effect of inter-BH residual motion on the dose distribution for pencil beam scanned (PBS) proton therapy of locally-advanced lung cancer patients. Methods: A dataset of visually-guided BH CT scans was acquired (10 scans per patient) taken from five lung cancer patients: three intra-fractionally repeated CT scans on treatment days 2,16 and 31, in addition to the day 0 planning CT scan. Three field intensity-modulated proton therapy (IMPT) plans were constructed onmore » the planning CT scan. Dose delivery on fraction 2, 16 and 31 were simulated on the three consecutive CT scans, assuming BH duration of 20s and soft tissue match. The dose was accumulated in the planning CT using deformable image registration, and scaled to simulate the full treatment of 66Gy(RBE) in 33 fractions. Results: The mean dose to the lungs and heart, and maximum dose to the spinal cord and esophagus were within 1% of the planned dose. The CTV V95% decreased and the inhomogeneity (D5%–D95%) increased on average 4.1% (0.4–12.2%) and 5.8% (2.2–13.4%), respectively, over the five patient cases. Conclusion: The results showed that the BH technique seems to spare the OARs in spite of inter-BH residual motion. However, small degradation of target coverage occurred for all patients, with 3/5 patients having a decrease in V95% ≤1%. For the remaining two patients, where V95% decreased up to 12%, the cause could be related to treatment related anatomical changes and, as in photon therapy, plan adaptation may be necessary to ensure target coverage. This study showed that BH could be a potential treatment option to reliably mitigate motion for the treatment of locally-advanced lung cancer using PBS proton therapy.« less
Krityakiarana, Warin; Sompup, Kamonrapat; Jongkamonwiwat, Nopporn; Mukda, Sujira; Pinilla, Fernando Gomez; Govitrapong, Piyarat; Phansuwan-Pujito, Pansiri
2016-12-01
The present work aimed at analyzing the effects of melatonin on scar formation after spinal cord injury (SCI). Upregulation of reactive astrocyte under SCI pathological conditions has been presented in several studies. It has been proved that the crucial factor in triggering this upregulation is proinflammatory cytokines. Moreover, scar formation is an important barrier to axonal regeneration through the lesion area. Melatonin plays an important role in reducing inflammation, but its effects on scar formation in the injured spinal cord remain unknown. Hence, we used the model of severe crush injury in mice to investigate the effects of melatonin on scar formation. Mice were randomly separated into four groups; SCI, SCI+Melatonin 1 (single dose), SCI+Melatonin 14 (14 daily doses), and control. Melatonin was administered by intraperitoneal injection (10 mg/kg) after injury. Immunohistochemical analysis, Western blot, and behavioral evaluation were used to explore the effects of melatonin after SCI for 14 days. The melatonin-treated mice presented higher expression of neuronal markers (P < 0.001). Remarkably, the inflammatory response appeared to be greatly reduced in the SCI+Melatonin 14 group (P < 0.001), which also displayed less scar formation (P < 0.05). These findings suggest that melatonin inhibits scar formation by acting on inflammatory cytokines after SCI. Overall, our results suggest that melatonin is a promising treatment strategy after SCI that deserves further investigation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Taurine reduces inflammatory responses after spinal cord injury.
Nakajima, Yasuhiro; Osuka, Koji; Seki, Yukio; Gupta, Ramesh C; Hara, Masahito; Takayasu, Masakazu; Wakabayashi, Toshihiko
2010-02-01
Taurine has multiple functions in the central nervous system (CNS), serving as an osmoregulator, antioxidant, inhibitory neuromodulator, and regulator of intracellular Ca(2+) flux. Since the role of taurine in traumatic spinal cord injury (SCI) is not fully understood, the present study was conducted with C57 black/6 mice (18-20 g) who underwent severe SCI at the Th-8 level using a weight compression device. Taurine was injected intraperitoneally at doses of 25, 80, 250, and 800 mg/kg within 30 min after SCI. Controls were injected with saline. The contusional cord segments were removed 6 h after SCI, and concentrations of interleukin-6 (IL-6) and myeloperoxidase (MPO) were measured using ELISA kits. Phosphorylation of STAT3, which is activated by IL-6, and expression of inducible cyclooxygenase-2 (COX-2) were also compared between the taurine treatment group (250 mg/kg) and the control group by Western blot analysis. Morphological changes were evaluated with H&E-stained sections. Taurine significantly decreased IL-6 and MPO levels in a dose-dependent manner, significantly reducing the phosphorylation of STAT3 and expression of COX-2 after SCI compared to controls. A reduced accumulation of neutrophils, especially in the subarachnoid spaces, and secondary degenerative changes in gray matter were also noted, and motor disturbances were significantly attenuated with taurine treatment (250 mg/kg). These findings indicate that taurine has anti-inflammatory effects against SCI, and may play a neuroprotective role against secondary damage, and thus it may have therapeutic potential.
Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.
Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua
2014-05-08
This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of radiotherapy techniques for upper esophageal carcinoma.
Schalkwijk, Stein; Buaben, Aaron O; Freriksen, Jolien J M; Colbers, Angela P; Burger, David M; Greupink, Rick; Russel, Frans G M
2017-07-25
Fetal antiretroviral exposure is usually derived from the cord-to-maternal concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship. The aim of this study was to incorporate placental transfer into a pregnancy physiologically based pharmacokinetic model to simulate and evaluate fetal darunavir exposure at term. An existing and validated pregnancy physiologically based pharmacokinetic model of maternal darunavir/ritonavir exposure was extended with a feto-placental unit. To parameterize the model, we determined maternal-to-fetal and fetal-to-maternal darunavir/ritonavir placental clearance with an ex-vivo human cotyledon perfusion model. Simulated maternal and fetal pharmacokinetic profiles were compared with observed clinical data to qualify the model for simulation. Next, population fetal pharmacokinetic profiles were simulated for different maternal darunavir/ritonavir dosing regimens. An average (±standard deviation) maternal-to-fetal cotyledon clearance of 0.91 ± 0.11 mL/min and fetal-to-maternal clearance of 1.6 ± 0.3 mL/min was determined (n = 6 perfusions). Scaled placental transfer was integrated into the pregnancy physiologically based pharmacokinetic model. For darunavir 600/100 mg twice a day, the predicted fetal maximum plasma concentration, trough concentration, time to maximum plasma concentration, and half-life were 1.1, 0.57 mg/L, 3, and 21 h, respectively. This indicates that the fetal population trough concentration is higher or around the half-maximal effective darunavir concentration for a resistant virus (0.55 mg/L). The results indicate that the population fetal exposure after oral maternal darunavir dosing is therapeutic and this may provide benefits to the prevention of mother-to-child transmission of human immunodeficiency virus. Moreover, this integrated approach provides a tool to prevent fetal toxicity or enhance the development of more selectively targeted fetal drug treatments.
Radiosurgery for the treatment of spinal lung metastases.
Gerszten, Peter C; Burton, Steven A; Belani, Chandra P; Ramalingam, Suresh; Friedland, David M; Ozhasoglu, Cihat; Quinn, Annette E; McCue, Kevin J; Welch, William C
2006-12-01
Spinal metastases are a common source of pain as well as neurologic deficit in patients with lung cancer. Metastases from lung cancer traditionally have been believed to be relatively responsive to radiation therapy. However, conventional external beam radiotherapy lacks the precision to allow delivery of large single-fraction doses of radiation and simultaneously limit the dose to radiosensitive structures such as the spinal cord. The current study evaluated the efficacy of single-fraction radiosurgery for the treatment of spinal lung cancer metastases. In the current prospective cohort evaluation, 87 lung cancer metastases to the spine in 77 patients were treated with a single-fraction radiosurgery technique with a follow-up period of 6 to 40 months (median, 12 months). The indication for radiosurgery treatment was pain in 73 cases, as a primary treatment modality in 7 cases, for radiographic tumor progression in 4 cases, and for progressive neurologic deficit in 3 cases. Tumor volume ranged from 0.2 to 264 cm(3) (mean, 25.7 cm(3)). The maximum tumor dose was maintained at 15 to 25 grays (Gy) (mean, 20 Gy; median, 20 Gy). No radiation-induced toxicity occurred during the follow-up period. Long-term axial and radicular pain improvement occurred in 65 of 73 patients (89%) who were treated primarily for pain. Long-term radiographic tumor control was observed in all patients who underwent radiosurgery as their primary treatment modality or for radiographic tumor progression. Spinal radiosurgery was found to be feasible, safe, and clinically effective for the treatment of spinal metastases from lung cancer. The results of the current study indicate the potential of radiosurgery in the treatment of patients with spinal lung metastases, especially those with solitary sites of spine involvement, to improve long-term palliation. (c) 2006 American Cancer Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakjevskii, V; Knill, C; Rakowski, J
2014-06-01
Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Methods: The initial end-to-end test and custom H and N phantom were designed to yield maximum information in anatomical regions significant to H and N plans with respect to: i) geometric accuracy, ii) dosimetric accuracy, and iii) treatment reproducibility. The phantom was designed in collaboration with Integrated Medical Technologies. A CT image was taken with a 1mm slice thickness. The CT was imported into Varian's Eclipse treatment planning system, where OARs and themore » PTV were contoured. A clinical template was used to create an eight field static gantry angle IMRT plan. After optimization, dose was calculated using the Analytic Anisotropic Algorithm with inhomogeneity correction. Plans were delivered with a TrueBeam equipped with a high definition MLC. Preliminary end-to-end results were measured using film and ion chambers. Ion chamber dose measurements were compared to the TPS. Films were analyzed with FilmQAPro using composite gamma index. Results: Film analysis for the initial end-to-end plan with a geometrically simple PTV showed average gamma pass rates >99% with a passing criterion of 3% / 3mm. Film analysis of a plan with a more realistic, ie. complex, PTV yielded pass rates >99% in clinically important regions containing the PTV, spinal cord and parotid glands. Ion chamber measurements were on average within 1.21% of calculated dose for both plans. Conclusion: trials have demonstrated that our end-to-end testing methods provide baseline values for the dosimetric and geometric accuracy of Varian's TrueBeam system.« less
Dougherty, T B; Porche, V H; Thall, P F
2000-04-01
This study investigated the ability of the modified continual reassessment method (MCRM) to determine the maximum tolerated dose of the opioid antagonist nalmefene, which does not reverse analgesia in an acceptable number of postoperative patients receiving epidural fentanyl in 0.075% bupivacaine. In the postanesthetic care unit, patients received a single intravenous dose of 0.25, 0.50, 0.75, or 1.00 microg/kg nalmefene. Reversal of analgesia was defined as an increase in pain score of two or more integers above baseline on a visual analog scale from 0 through 10 after nalmefene administration. Patients were treated in cohorts of one, starting with the lowest dose. The maximum tolerated dose of nalmefene was defined as that dose, among the four studied, with a final mean probability of reversal of anesthesia (PROA) closest to 0.20 (ie., a 20% chance of causing reversal). The modified continual reassessment method is an iterative Bayesian statistical procedure that, in this study, selected the dose for each successive cohort as that having a mean PROA closest to the preselected target PROA of 0.20. The modified continual reassessment method repeatedly updated the PROA of each dose level as successive patients were observed for presence or absence of ROA. After 25 patients, the maximum tolerated dose of nalmefene was selected as 0.50 microg/kg (final mean PROA = 0.18). The 1.00-microg/kg dose was never tried because its projected PROA was far above 0.20. The modified continual reassessment method facilitated determination of the maximum tolerated dose ofnalmefene . Operating characteristics of the modified continual reassessment method suggest it may be an effective statistical tool for dose-finding in trials of selected analgesic or anesthetic agents.
An alternative approach to account for patient organ doses from imaging guidance procedures.
Nelson, Alan P; Ding, George X
2014-07-01
To investigate the feasibility of an alternative method of accounting for additional organ doses resulting from image guidance procedures during patient treatment planning through tabulated values based on scan protocol and scan site. Patient-specific imaging dose to 30 patients resulting from Varian OBI kV-CBCT scans using the Standard Head (17 patients), Low-dose Thorax (8 patients), and Pelvic (5 patients) scan protocols were retrospectively calculated using Monte Carlo methods. Dose dependence on scan location and patient geometry was explored. Patient organ doses were analyzed by using dose-volume histograms and expressed by the mean, minimum dose delivered to 50% of the organ volume, D50. The reported doses are dose-to-medium instead of dose-to-water. The organ doses from all patient-specific calculations show predictable and limited ranges across patients. For brain isocenters using Standard Head Scans: Bone: 0.7-1.1 cGy, Brain: 0.2-0.3 cGy, Brainstem: 0.2-0.3 cGy, Skin: 0.3-0.4 cGy, Eye: 0.03-0.3 cGy. For head and neck patients using the Standard Head Scan: Bone: 0.3-0.6 cGy, Parotids: 0.3-0.4 cGy, Spinal Cord: 0.15-0.25 cGy, Thyroid: 0.1-0.25 cGy, Skin: 0.2-0.3 cGy, Trachea-Esophagus: 0.1-0.2 cGy. For chest using Thorax Scans: Bone: 1.1-1.8 cGy, Soft tissue organs (Bowel, Lung, Heart, Kidney, Esophagus, and Spinal Cord): 0.3-0.6 cGy. For abdominal site using Pelvic Scans: Bone: 3.2-4.2 cGy. Soft tissue organs (Bladder, Bowel, Rectum, Prostate, and Skin) D50s fell between 1.2 and 2.2 cGy. Femoral Heads: 2.5-3.4 cGy. It is adequate to estimate and account for organ dose by using tabulated values based on scan procedure and site because organ doses from imaging procedures are only modestly dependent upon scan location and body size. Considering the dose variation and magnitude of dose from each scan protocol in comparison to therapeutic doses, this approach provides a simple alternative to account for additional imaging guidance doses during patient treatment planning. Clinicians can use these tabulated values to make informed decisions in selecting the appropriate imaging procedures and imaging frequency during radiotherapy treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Tang, Hui; Yang, Chuan-Zhong; Li, Huan; Wen, Wei; Huang, Fang-Fang; Huang, Zhi-Feng; Shi, Yu-Ping; Yu, Yan-Liang; Chen, Li-Lian; Yuan, Rui-Qin; Zhu, Xiao-Yu
2017-06-01
To investigate the fat emulsion tolerance in preterm infants of different gestational ages in the early stage after birth. A total of 98 preterm infants were enrolled and divided into extremely preterm infant group (n=17), early preterm infant group (n=48), and moderate-to-late preterm infant group (n=33). According to the dose of fat emulsion, they were further divided into low- and high-dose subgroups. The umbilical cord blood and dried blood filter papers within 3 days after birth were collected. Tandem mass spectrometry was used to measure the content of short-, medium-, and long-chain acylcarnitines. The extremely preterm infant and early preterm infant groups had a significantly lower content of long-chain acylcarnitines in the umbilical cord blood and dried blood filter papers within 3 days after birth than the moderate-to-late preterm infant group (P<0.05), and the content was positively correlated with gestational age (P<0.01). On the second day after birth, the low-dose fat emulsion subgroup had a significantly higher content of short-, medium-, and long-chain acylcarnitines than the high-dose fat emulsion subgroup among the extremely preterm infants (P<0.05). In the early preterm infant and moderate-to-late preterm infant groups, there were no significant differences in the content of short-, medium-, and long-chain acylcarnitines between the low- and high-dose fat emulsion subgroups within 3 days after birth. Compared with moderate-to-late preterm infants, extremely preterm infants and early preterm infants have a lower capacity to metabolize long-chain fatty acids within 3 days after birth. Early preterm infants and moderate-to-late preterm infants may tolerate high-dose fat emulsion in the early stage after birth, but extremely preterm infants may have an insufficient capacity to metabolize high-dose fat emulsion.
Rager, Julia E; Auerbach, Scott S; Chappell, Grace A; Martin, Elizabeth; Thompson, Chad M; Fry, Rebecca C
2017-10-16
Prenatal inorganic arsenic (iAs) exposure influences the expression of critical genes and proteins associated with adverse outcomes in newborns, in part through epigenetic mediators. The doses at which these genomic and epigenomic changes occur have yet to be evaluated in the context of dose-response modeling. The goal of the present study was to estimate iAs doses that correspond to changes in transcriptomic, proteomic, epigenomic, and integrated multi-omic signatures in human cord blood through benchmark dose (BMD) modeling. Genome-wide DNA methylation, microRNA expression, mRNA expression, and protein expression levels in cord blood were modeled against total urinary arsenic (U-tAs) levels from pregnant women exposed to varying levels of iAs. Dose-response relationships were modeled in BMDExpress, and BMDs representing 10% response levels were estimated. Overall, DNA methylation changes were estimated to occur at lower exposure concentrations in comparison to other molecular endpoints. Multi-omic module eigengenes were derived through weighted gene co-expression network analysis, representing co-modulated signatures across transcriptomic, proteomic, and epigenomic profiles. One module eigengene was associated with decreased gestational age occurring alongside increased iAs exposure. Genes/proteins within this module eigengene showed enrichment for organismal development, including potassium voltage-gated channel subfamily Q member 1 (KCNQ1), an imprinted gene showing differential methylation and expression in response to iAs. Modeling of this prioritized multi-omic module eigengene resulted in a BMD(BMDL) of 58(45) μg/L U-tAs, which was estimated to correspond to drinking water arsenic concentrations of 51(40) μg/L. Results are in line with epidemiological evidence supporting effects of prenatal iAs occurring at levels <100 μg As/L urine. Together, findings present a variety of BMD measures to estimate doses at which prenatal iAs exposure influences neonatal outcome-relevant transcriptomic, proteomic, and epigenomic profiles.
Oliveira, Karen M; Lavor, Mário Sérgio L; Silva, Carla Maria O; Fukushima, Fabíola B; Rosado, Isabel R; Silva, Juneo F; Martins, Bernardo C; Guimarães, Laís B; Gomez, Marcus Vinícius; Melo, Marília M; Melo, Eliane G
2014-01-01
Excessive accumulation of intracellular calcium is the most critical step after spinal cord injury (SCI). Reducing the calcium influx should result in a better recovery from SCI. Calcium channel blockers have been shown a great potential in reducing brain and spinal cord injury. In this study, we first tested the neuroprotective effect of MVIIC on slices of spinal cord subjected to ischemia evaluating cell death and caspase-3 activation. Thereafter, we evaluated the efficacy of MVIIC in ameliorating damage following SCI in rats, for the first time in vivo. The spinal cord slices subjected a pretreatment with MVIIC showed a cell protection with a reduction of dead cells in 24.34% and of caspase-3-specific protease activation. In the in vivo experiment, Wistar rats were subjected to extradural compression of the spinal cord at the T12 vertebral level using a weigh of 70 g/cm, following intralesional treatment with either placebo or MVIIC in different doses (15, 30 and 60 pmol) five minutes after injury. Behavioral testing of hindlimb function was done using the Basso Beattie Bresnahan locomotor rating scale, and revealed significant recovery with 15 pmol (G15) compared to other trauma groups. Also, histological bladder structural revealed significant outcome in G15, with no morphological alterations, and anti-NeuN and TUNEL staining showed that G15 provided neuron preservation and indicated that this group had fewer neuron cell death, similar to sham. These results showed the neuroprotective effects of MVIIC in in vitro and in vivo model of SCI with neuronal integrity, bladder and behavioral improvements. PMID:25120731
Single fraction spine radiosurgery for myeloma epidural spinal cord compression.
Jin, Ryan; Rock, Jack; Jin, Jian-Yue; Janakiraman, Nalini; Kim, Jae Ho; Movsas, Benjamin; Ryu, Samuel
2009-01-01
Radiosurgery delivers highly focused radiation beams to the defined target with high precision and accuracy. It has been demonstrated that spine radiosurgery can be safely used for treatment of spine metastasis with rapid and durable pain control, but without detrimental effects to the spinal cord. This study was carried out to determine the role of single fraction radiosurgery for epidural spinal cord compression due to multiple myeloma. A total of 31 lesions in 24 patients with multiple myeloma, who presented with epidural spinal cord compression, were treated with spine radiosurgery. Single fraction radiation dose of 10-18 Gy (median of 16 Gy) was administered to the involved spine including the epidural or paraspinal tumor. Patients were followed up with clinical exams and imaging studies. Median follow-up was 11.2 months (range 1-55). Primary endpoints of this study were pain control, neurological improvement, and radiographic tumor control. Overall pain control rate was 86%; complete relief in 54%, and partial relief in 32% of the patients. Seven patients presented with neurological deficits. Five patients neurologically improved or became normal after radiosurgery. Complete radiographic response of the epidural tumor was noted in 81% at 3 months after radiosurgery. During the follow-up time, there was no radiographic or neurological progression at the treated spine. The treatment was non-invasive and well tolerated. Single fraction radiosurgery achieved an excellent clinical and radiographic response of myeloma epidural spinal cord compression. Radiosurgery can be a viable treatment option for myeloma epidural compression.
The High Prevalence of Vitamin D Insufficiency in Cord Blood in Calgary, Alberta (APrON-D Study).
Aghajafari, Fariba; Field, Catherine J; Kaplan, Bonnie J; Maggiore, Jack A; O'Beirne, Maeve; Hanley, David A; Eliasziw, Misha; Dewey, Deborah; Ross, Sue; Rabi, Doreen
2017-05-01
Vitamin D is important in promoting healthy pregnancy and fetal development. We undertook this study to measure 25-hydroxyvitamin D in maternal and cord blood and to identify maternal factors related to vitamin D status in Calgary. Blood samples collected at the time of delivery from the Alberta Pregnancy Outcomes and Nutrition study cohort (ApronStudy.ca) participants were processed for plasma and assayed using liquid chromatography mass spectrometry methodology for 25(OH)D 3 . Ninety-two pairs of maternal and cord blood samples were obtained. The prevalence of 25(OH)D 3 insufficiency-25(OH)D 3 <75 nmol/L-was 38% and 80% in women and neonates, respectively. Vitamin D supplementation was the only clinical factor associated with 25(OH)D 3 sufficiency, and the odds of sufficiency were 3.75 (95% CI 1.00 to 14.07) higher for women and 5.27 (95% CI 1.37 to 20.27) when over 2000 IU/day were used. Using liquid chromatography mass spectrometry, we demonstrated a very high prevalence of vitamin D insufficiency in cord blood and that the use of high dose vitamin D was associated with greater odds of sufficiency in pregnant women and cord blood in Alberta. Copyright © 2017 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.
Sakurada, C; Watanabe, C; Sakurada, T
2004-04-01
Substance P (SP), which is known as a pain transmitter or modulator in the spinal cord, was degraded by the synaptic membranes of the mouse spinal cord. The major metabolites of SP were phenylalanine, SP(1-6), SP(1-7), SP(1-9), SP(8-9) and SP(10-11). Degradation of SP was inhibited by a metal chelator, o-phenanthroline, and also by specific inhibitors of endopeptidase-24.11, thiorphan and phosphoramidon. In contrast, captopril (a specific inhibitor of angiotensin-converting enzyme), bestatin (a specific inhibitor of aminopeptidase) and Z-321 (a specific inhibitor of prolylendopeptidase) showed little effect on the degradation of SP. The accumulation of the major cleavage products was strongly inhibited by phosphoramidon and thirophan, as well as the initial cleavage of SP. Thus, endopeptidase-24.11 plays a major role in SP degradation in the mouse spinal cord. Additional in vivo experiments were performed to investigate the antinociceptive effect of SP(1-7), a major product of SP that was detected after incubation with spinal synaptic membranes. In the mouse tail-flick test, the intrathecal administration of SP(1-7) (1.0-4.0 pmol) increased tail-flick latency in a dose-dependent manner. These results suggest that degradation of SP by spinal endopeptidase-24.11 may lead to the formation of SP(1-7), which has an ability to produce antinociceptive effects at the mouse spinal cord level.
A feasibility study of dynamic adaptive radiotherapy for nonsmall cell lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minsun, E-mail: mk688@uw.edu; Phillips, Mark H.
2016-05-15
Purpose: The final state of the tumor at the end of a radiotherapy course is dependent on the doses given in each fraction during the treatment course. This study investigates the feasibility of using dynamic adaptive radiotherapy (DART) in treating lung cancers assuming CBCT is available to observe midtreatment tumor states. DART adapts treatment plans using a dynamic programming technique to consider the expected changes of the tumor in the optimization process. Methods: DART is constructed using a stochastic control formalism framework. It minimizes the total expected number of tumor cells at the end of a treatment course, which ismore » equivalent to maximizing tumor control probability, subject to the uncertainty inherent in the tumor response. This formulation allows for nonstationary dose distributions as well as nonstationary fractional doses as needed to achieve a series of optimal plans that are conformal to the tumor over time, i.e., spatiotemporally optimal plans. Sixteen phantom cases with various sizes and locations of tumors and organs-at-risk (OAR) were generated using in-house software. Each case was planned with DART and conventional IMRT prescribing 60 Gy in 30 fractions. The observations of the change in the tumor volume over a treatment course were simulated using a two-level cell population model. Monte Carlo simulations of the treatment course for each case were run to account for uncertainty in the tumor response. The same OAR dose constraints were applied for both methods. The frequency of replanning was varied between 1, 2, 5 (weekly), and 29 times (daily). The final average tumor dose and OAR doses have been compared to quantify the potential dosimetric benefits of DART. Results: The average tumor max, min, mean, and D95 doses using DART relative to these using conventional IMRT were 124.0%–125.2%, 102.1%–114.7%, 113.7%–123.4%, and 102.0%–115.9% (range dependent on the frequency of replanning). The average relative maximum doses for the cord and esophagus, mean doses for the heart and lungs, and D05 for the unspecified tissue resulting 84%–102.4%, 99.8%–106.9%, 66.9%–85.6%, 58.2%–78.8%, and 85.2%–94.0%, respectively. Conclusions: It is feasible to apply DART to the treatment of NSCLC using CBCT to observe the midtreatment tumor state. Potential increases in the tumor dose and reductions in the OAR dose, particularly for parallel OARs with mean or dose–volume constraints, could be achieved using DART compared to nonadaptive IMRT.« less
Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan
2014-09-01
Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Dickinson, P J; McEntee, M C; Lipsitz, D; Keel, K; LeCouteur, R A
2001-01-01
A 2-year-old neutered female Rottweiler diagnosed with an intradural extramedullary spinal cord tumor at T12-T13 was successfully treated with cytoreductive surgery followed by Cobalt 60 teletherapy. The dog was euthanised 5-and-a-half years later following diagnosis of an osteosarcoma involving the L1 and L2 vertebrae. Evidence of the initial tumor was not present at necropsy. The vertebral neoplasm fulfilled all of the accepted criteria for a radiation induced tumor. It was concluded that adjunctive irradiation should be considered for treatment of intradural extramedullary tumors of young dogs when total surgical resection is not possible. Although tumor induction is a rare late effect of radiation therapy, the risk of this occurrence should be considered when irradiating young animals. Radiation induced tumors in dogs have been associated with coarse fractionation schemes, or when large intraoperative doses have been administered. A lower dose per fraction, e.g., 3 Gy/fraction or less, is advisable when irradiating young dogs or any dog in which the life expectancy is 3-5 or more years after irradiation.
Georgia fishery study: implications for dose calculations. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turcotte, M.D.S.
Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with a site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The datamore » indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average adult fish consumption value of 11.3 kg/yr, and a maximum adult fish consumption value of 34 kg/yr. Consumption values for the teen and child age groups should be increased proportionally: (1) teen average = 8.5; maximum = 25.9 kg/yr; and (2) child average = 3.6; maximum = 11.2 kg/yr. 8 refs.« less
SU-E-CAMPUS-T-04: Statistical Process Control for Patient-Specific QA in Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAH, J; SHIN, D; Kim, G
Purpose: To evaluate and improve the reliability of proton QA process, to provide an optimal customized level using the statistical process control (SPC) methodology. The aim is then to suggest the suitable guidelines for patient-specific QA process. Methods: We investigated the constancy of the dose output and range to see whether it was within the tolerance level of daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to suggest the suitable guidelines for patient-specific QA in proton beam by using process capability indices. In this study, patient QA plans were classifiedmore » into 6 treatment sites: head and neck (41 cases), spinal cord (29 cases), lung (28 cases), liver (30 cases), pancreas (26 cases), and prostate (24 cases). Results: The deviations for the dose output and range of daily QA process were ±0.84% and ±019%, respectively. Our results show that the patient-specific range measurements are capable at a specification limit of ±2% in all treatment sites except spinal cord cases. In spinal cord cases, comparison of process capability indices (Cp, Cpm, Cpk ≥1, but Cpmk ≤1) indicated that the process is capable, but not centered, the process mean deviates from its target value. The UCL (upper control limit), CL (center line) and LCL (lower control limit) for spinal cord cases were 1.37%, −0.27% and −1.89%, respectively. On the other hands, the range differences in prostate cases were good agreement between calculated and measured values. The UCL, CL and LCL for prostate cases were 0.57%, −0.11% and −0.78%, respectively. Conclusion: SPC methodology has potential as a useful tool to customize an optimal tolerance levels and to suggest the suitable guidelines for patient-specific QA in clinical proton beam.« less
Cardiovascular effects of spinal cord substance P: studies with a stable receptor agonist.
Keeler, J R; Charlton, C G; Helke, C J
1985-06-01
The role of spinal cord substance P (SP) in regulating sympathetic outflow to the cardiovascular system was assessed with the stable active analog [pGlu5,MePhE8,MeGly9]-SP(5-11) (DiME-SP). The interaction of DiME-SP with spinal cord SP receptors was evaluated initially in binding studies. Saturable, high-affinity binding of [125I]Bolton-Hunter-SP to rat spinal cord membranes was dose-dependently inhibited by DiME-SP (IC50 = 1.5 microM). Intrathecal (i.t.) injections of DiME-SP (1.0-33 nmol) in anesthetized rats produced dose-dependent increases in blood pressure and heart rate that were accompanied by increases in plasma epinephrine and norepinephrine. Intravenous injections of the ganglionic blocker pentolinium blocked the cardiovascular and plasma catecholamine responses to i.t. injections of DiME-SP. Bulbospinal sympathoexcitatory pathways originating in the ventral medulla and their mediation by SP were also assessed. As demonstrated previously, application of bicuculline, the gamma-aminobutyric acid receptor antagonist, to the ventral surface of the medulla produced sympathetic mediated increases in blood pressure and these effects were blocked by i.t. injection of the SP receptor antagonist [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP. In this study, we studied the specificity of the SP antagonist for SP receptors by attempting to alter the actions of the SP antagonist with a SP agonist. Administration of DiME-SP (33 nmol i.t.) blocked the effects of [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP (3.3 nmol i.t.). Specifically, the SP agonist countered the SP antagonist-mediated 1) hypotensive response and 2) inhibitory effect on bicuculline-induced sympathoexcitatory responses elicited from the ventral surface of the medulla. These data provide further evidence that SP transmits excitatory information to the cardiovascular system via spinal sympathetic pathways.
Xavier, Erick; Cornillon, Jérôme; Ruggeri, Annalisa; Chevallier, Patrice; Cornelissen, Jan J; Andersen, Niels S; Maillard, Natacha; Nguyen, Stephanie; Blaise, Didier; Deconinck, Eric; Veelken, Hendrik; Milpied, Noel; Van Gelder, Michel; Peffault de Latour, Regis; Gluckman, Eliane; Kröger, Nicolaus; Schetelig, Johannes; Rocha, Vanderson
2015-08-01
Outcomes after umbilical cord blood transplantation (UCBT) for chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) are unknown. We analyzed outcomes of 68 patients with poor-risk CLL/SLL who underwent reduced-intensity (RIC) UCBT from 2004 to 2012. The median age was 57 years and median follow-up 36 months; 17 patients had del 17p/p53mutation, 19 patients had fludarabine-refractory disease, 11 relapsed after autologous stem cell transplantation, 8 had diagnosis of prolymphocytic leukemia, 4 had Richter syndrome, and 8 underwent transplantation with progressive or refractory disease. The most common RIC used was cyclophosphamide, fludarabine, and total body irradiation (TBI) in 82%; 15 patients received antithymocyte globulin. Most of the cord blood grafts were HLA mismatched and 76% received a double UCBT. Median total nucleated cells collected was 4.7 × 10(7)/kg. The cumulative incidences (CI) of neutrophil and platelet engraftment were 84% and 72% at 60 and 180 days respectively; day 100 graft-versus-host disease (GVHD) (grade II to IV) was 43% and 3-year chronic GVHD was 32%. The CI of relapse, nonrelapse mortality, overall survival, and progression-free survival (PFS) at 3 years were 16%, 39%, 54%, and 45%, respectively. Fludarabine-sensitive disease at transplantation and use of low-dose TBI regimens were associated with acceptable PFS. In conclusion, use of RIC-UCBT seems to be feasible in patients with poor-risk CLL/SLL and improved outcomes were observed in patients with fludarabine-sensitive disease who received low-dose TBI regimens. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.
2010-01-01
Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246
Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong
2009-04-01
Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.
Fifteen-Year Growth of a Thinned White Spruce Plantation
Robert F. Wambach; John H. Cooley
1969-01-01
Mean annual increment at age 38 in a thinned white spruce plantation was 102 cubic feet or 0.85 cords per acre per year. Periodic annual increment during the 15 years after thinning seemed to be maximum for residual basal areas between 100 and 120 square feet per acre. OXFORD: 562.2:174.7 Picca glauca: (775):242
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, C; Liu, T; Chen, J
Purpose: This study aimed to analyze dosimetry changes during radiotherapy for the mid-thoracic esophageal carcinoma, and investigate dosimetry difference between rigid and deformed registration. Methods: Twelve patients with primary middle thoracic esophageal carcinoma were selected randomly. Based on first CT scanning of each patient, plans-o were generated by experience physicists. After 20 fractions treatment, the corresponding plans-re were created with second CT scanning. And then, these two CT images were rigid and deformed registration respectively, and the dose was accumulated plan-o with plan-re. The dosimetry variation of these plans (plan-o: with 30 fractions, plan-rig: the accumulated dose with rigid registrationmore » and plan-def: the accumulated dose with deformed registration) were evaluated by paired T-test. Results: The V20 value of total lung were 32.68%, 30.3% and 29.71% for plan-o, plan-rig and plan-def respectively. The mean dose of total lung was 17.19 Gy, 16.67 Gy and 16.51 Gy for plan-o plan-rig and plan-def respectively. There were significant differences between plan-o and plan-rig or plan-def for both V20 and mean dose of total lung (with p= 0.003, p= 0.000 for V20 and p=0.008, p= 0.000 for mean dose respectively). There was no significant difference between plan-rig and plan-def (with p=0.118 for V20 and p=0.384 for mean dose). The max dose of spinal-cord was 41.95 Gy, 41.48 Gy and 41.4 Gy for plan-o, plan-rig and plan-def respectively. There were no significant differences for the max dose of spinal-cord between these plans. Conclusion: The target volume changes and anatomic position displacement of mid-thoracic esophageal carcinoma should not be neglected in clinics. These changes would cause overdose in normal tissue. Therefore, it is necessary to have another CT scanning and re-plan during the mid-thoracic esophageal carcinoma radiotherapy. And the dosimetry difference between rigid and deformed fusions was not found in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Badkul, R
Purpose: To compare dose distributions calculated using PB-hete vs. XVMC algorithms for SRT treatments of cavernous sinus tumors. Methods: Using PB-hete SRT, five patients with cavernous sinus tumors received the prescription dose of 25 Gy in 5 fractions for planning target volume PTV(V100%)=95%. Gross tumor volume (GTV) and organs at risk (OARs) were delineated on T1/T2 MRI-CT-fused images. PTV (range 2.1–84.3cc, mean=21.7cc) was generated using a 5mm uniform-margin around GTV. PB-hete SRT plans included a combination of non-coplanar conformal arcs/static beams delivered by Novalis-TX consisting of HD-MLCs and a 6MV-SRS(1000 MU/min) beam. Plans were re-optimized using XVMC algorithm with identicalmore » beam geometry and MLC positions. Comparison of plan specific PTV(V99%), maximal, mean, isocenter doses, and total monitor units(MUs) were evaluated. Maximal dose to OARs such as brainstem, optic-pathway, spinal cord, and lenses as well as normal tissue volume receiving 12Gy(V12) were compared between two algorithms. All analysis was performed using two-tailed paired t-tests of an upper-bound p-value of <0.05. Results: Using either algorithm, no dosimetrically significant differences in PTV coverage (PTVV99%,maximal, mean, isocenter doses) and total number of MUs were observed (all p-values >0.05, mean ratios within 2%). However, maximal doses to optic-chiasm and nerves were significantly under-predicted using PB-hete (p=0.04). Maximal brainstem, spinal cord, lens dose and V12 were all comparable between two algorithms, with exception of one patient with the largest PTV who exhibited 11% higher V12 with XVMC. Conclusion: Unlike lung tumors, XVMC and PB-hete treatment plans provided similar PTV coverage for cavernous sinus tumors. Majority of OARs doses were comparable between two algorithms, except for small structures such as optic chiasm/nerves which could potentially receive higher doses when using XVMC algorithm. Special attention may need to be paid on a case-by-case basis when planning for sinus SRT based on tumor size and location to OARs particularly the optic apparatus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koay, Eugene J.; Lege, David; Mohan, Radhe
Purpose: To analyze dosimetric variables and outcomes after adaptive replanning of radiation therapy during concurrent high-dose protons and chemotherapy for locally advanced non-small cell lung cancer (NSCLC). Methods and Materials: Nine of 44 patients with stage III NSCLC in a prospective phase II trial of concurrent paclitaxel/carboplatin with proton radiation [74 Gy(RBE) in 37 fractions] had modifications to their original treatment plans after re-evaluation revealed changes that would compromise coverage of the target volume or violate dose constraints; plans for the other 35 patients were not changed. We compared patients with adaptive plans with those with nonadaptive plans in termsmore » of dosimetry and outcomes. Results: At a median follow-up of 21.2 months (median overall survival, 29.6 months), no differences were found in local, regional, or distant failure or overall survival between groups. Adaptive planning was used more often for large tumors that shrank to a greater extent (median, 107.1 cm{sup 3} adaptive and 86.4 cm{sup 3} nonadaptive; median changes in volume, 25.3% adaptive and 1.2% nonadaptive; P<.01). The median number of fractions delivered using adaptive planning was 13 (range, 4-22). Adaptive planning generally improved sparing of the esophagus (median absolute decrease in V{sub 70}, 1.8%; range, 0%-22.9%) and spinal cord (median absolute change in maximum dose, 3.7 Gy; range, 0-13.8 Gy). Without adaptive replanning, target coverage would have been compromised in 2 cases (57% and 82% coverage without adaptation vs 100% for both with adaptation); neither patient experienced local failure. Radiation-related grade 3 toxicity rates were similar between groups. Conclusions: Adaptive planning can reduce normal tissue doses and prevent target misses, particularly for patients with large tumors that shrink substantially during therapy. Adaptive plans seem to have acceptable toxicity and achieve similar local, regional, and distant control and overall survival, even in patients with larger tumors, vs nonadaptive plans.« less
Koay, Eugene J; Lege, David; Mohan, Radhe; Komaki, Ritsuko; Cox, James D; Chang, Joe Y
2012-12-01
To analyze dosimetric variables and outcomes after adaptive replanning of radiation therapy during concurrent high-dose protons and chemotherapy for locally advanced non-small cell lung cancer (NSCLC). Nine of 44 patients with stage III NSCLC in a prospective phase II trial of concurrent paclitaxel/carboplatin with proton radiation [74 Gy(RBE) in 37 fractions] had modifications to their original treatment plans after re-evaluation revealed changes that would compromise coverage of the target volume or violate dose constraints; plans for the other 35 patients were not changed. We compared patients with adaptive plans with those with nonadaptive plans in terms of dosimetry and outcomes. At a median follow-up of 21.2 months (median overall survival, 29.6 months), no differences were found in local, regional, or distant failure or overall survival between groups. Adaptive planning was used more often for large tumors that shrank to a greater extent (median, 107.1 cm(3) adaptive and 86.4 cm(3) nonadaptive; median changes in volume, 25.3% adaptive and 1.2% nonadaptive; P<.01). The median number of fractions delivered using adaptive planning was 13 (range, 4-22). Adaptive planning generally improved sparing of the esophagus (median absolute decrease in V(70), 1.8%; range, 0%-22.9%) and spinal cord (median absolute change in maximum dose, 3.7 Gy; range, 0-13.8 Gy). Without adaptive replanning, target coverage would have been compromised in 2 cases (57% and 82% coverage without adaptation vs 100% for both with adaptation); neither patient experienced local failure. Radiation-related grade 3 toxicity rates were similar between groups. Adaptive planning can reduce normal tissue doses and prevent target misses, particularly for patients with large tumors that shrink substantially during therapy. Adaptive plans seem to have acceptable toxicity and achieve similar local, regional, and distant control and overall survival, even in patients with larger tumors, vs nonadaptive plans. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiCostanzo, Dominic; Barney, Christian L.; Bazan, Jose G.
Purpose: Recent clinical studies have shown a correlation between radiation dose to the thoracic vertebral bodies (TVB) and the development of hematologic toxicity (HT) in patients receiving chemoradiation (CRT) for lung cancer (LuCa). The feasibility of a bone-marrow sparing (BMS) approach in this group of patients is unknown. We hypothesized that radiation dose to the TVB can be reduced with an intensity modulated radiation therapy(IMRT)/volumetric modulated arc radiotherapy(VMAT) without affecting plan quality. Methods: We identified LuCa cases treated with curative intent CRT using IMRT/VMAT from 4/2009 to 2/2015. The TVBs from T1–T10 were retrospectively contoured. No constraints were placed onmore » the TVB structure initially. A subset were re-planned with BMS-IMRT/VMAT with an objective or reducing the mean TVB dose to <23 Gy. The following data were collected on the initial and BMS plans: mean dose to planning target volume (PTV), lungs-PTV, esophagus, heart; lung V20; cord max dose. Pairwise comparisons were performed using the signed rank test. Results: 94 cases received CRT with IMRT/VMAT. We selected 11 cases (7 IMRT, 4 VMAT) with a range of initial mean TVB doses (median 35.7 Gy, range 18.9–41.4 Gy). Median prescription dose was 60 Gy. BMS-IMRT/VMAT significantly reduced the mean TVB dose by a median of 10.2 Gy (range, 1.0–16.7 Gy, p=0.001) and reduced the cord max dose by 2.9 Gy (p=0.014). BMS-IMRT/VMAT had no impact on lung mean (median +17 cGy, p=0.700), lung V20 (median +0.5%, p=0.898), esophagus mean (median +13 cGy, p=1.000) or heart mean (median +16 cGy, p=0.365). PTV-mean dose was not affected by BMS-IMRT/VMAT (median +13 cGy, p=0.653). Conclusion: BMS-IMRT/VMAT was able to significantly reduce radiation dose to the TVB without compromising plan quality. Prospective evaluation of BMS-IMRT/VMAT in patients receiving CRT for LuCa is warranted to determine if this approach results in clinically significant reductions in HT.« less
Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo
2016-01-01
Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.
From basics to clinical: a comprehensive review on spinal cord injury.
Silva, Nuno A; Sousa, Nuno; Reis, Rui L; Salgado, António J
2014-03-01
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of umbilical cord blood stem cells on healing factors for diabetic foot injuries.
Çil, N; Oğuz, E O; Mete, E; Çetinkaya, A; Mete, G A
2017-01-01
The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.
Onwuneme, C; Diya, B; Uduma, O; McCarthy, R A; Murphy, N; Kilbane, M T; McKenna, M J; Molloy, E J
2016-08-01
Although the role of vitamin D in the prevention of rickets has long been well established, controversies still exist on the ideal dose of vitamin D supplementation in infants. We assessed serum 25-hydroxyvitamin D (25OHD) status simultaneously in maternal and cord samples and the response to vitamin D3 supplementation in neonates. Serum 25OHD levels were evaluated from maternal, and umbilical cord samples from term normal pregnancies. Repeat 25OHD levels were assessed in neonates with 25OHD below 30 nmol/L following vitamin D3 200 IU daily after 6 weeks. Blood samples were taken including 57 cord samples and 16 follow-up neonatal samples. Maternal and cord serum 25OHD were 43 ± 21 and 29 ± 15 nmol/L, respectively. Infants with 25OHD < 30 nmol/L (19.8 ± 4.7 nmol/L) had a significant increase in serum 25OHD (63.3 ± 14.5 nmol/L) following vitamin D3 200 IU daily after 6 weeks. Healthy Irish infants born at term are at high risk of vitamin D deficiency, but vitamin D3 200 IU daily, rapidly corrects poor vitamin D status.
Druschel, Claudia; Schaser, Klaus-Dieter; Schwab, Jan M
2013-05-15
Written mail-out survey. To determine current practice in high-dose methylprednisolone succinate (MPSS) administration for treatment of acute spinal cord injury (SCI) in Germany. Reanalysis of the National Acute Spinal Cord Injury Studies (NASCIS) resulted in criticism of the use of high-dose MPSS for treatment of acute SCI. Subsequently, SCI treatment guidelines were revised leading to a reduction in MPSS use across North America. The impact of these revisions on SCI treatment in Germany is not known. A questionnaire was sent to all trauma, orthopedic and neurosurgical departments of German university centers, affiliated teaching hospitals, and specialized SCI care centers. Survey included 6 questions about the administration of MPSS after acute SCI. Three hundred seventy-two respondents completed the survey (response rate: 51% overall, 76% university hospitals, 85% specialized SCI care centers). Overall, 55% of departments that treat SCI prescribe MPSS. Among them, 73% are "frequent" users administering MPSS to more than 50% of their patients. Ten percent prescribe according to NASCIS I, 43% NASCIS II, 33% NASCIS III, and 13% "generic protocols." As justification for MPSS treatment, "effectiveness" ranked before "common practice" and "medicolegal reasons." "Specialized" SCI care centers differ in that (1) MPSS is administered less frequently, (2) NASCIS I doses are not used, and (3) during the past several years, practice patterns are more likely to have shifted away from the treatment of SCI with MPSS. About one-half of the institutions continue to prescribe MPSS in the setting of acute SCI. A need for further education in almost one-fourth of German departments treating acute SCI is demonstrated through responses indicating use of the outdated NASCIS I protocol, a "legal need" or "unchanged MPSS application during the last years." "Specialized" SCI centers are more likely to change their practice in accordance with evolving literature. 3.
Miranda, Jason A; Stanley, Phil; Gore, Katrina; Turner, Jamie; Dias, Rebecca; Rees, Huw
2014-01-01
Sensory processing in the spinal cord during disease states can reveal mechanisms for novel treatments, yet very little is known about pain processing at this level in the most commonly used animal models of articular pain. Here we report a test of the prediction that two clinically effective compounds, naproxen (an NSAID) and oxycodone (an opiate), are efficacious in reducing the response of spinal dorsal horn neurons to noxious knee joint rotation in the monosodium iodoacetate (MIA) sensitized rat. The overall objective for these experiments was to develop a high quality in vivo electrophysiology assay to confidently test novel compounds for efficacy against pain. Given the recent calls for improved preclinical experimental quality we also developed and implemented an Assay Capability Tool to determine the quality of our assay and ensure the quality of our results. Spinal dorsal horn neurons receiving input from the hind limb knee joint were recorded in anesthetized rats 14 days after they were sensitized with 1 mg of MIA. Intravenous administered oxycodone and naproxen were each tested separately for their effects on phasic, tonic, ongoing and afterdischarge action potential counts in response to innocuous and noxious knee joint rotation. Oxycodone reduced tonic spike counts more than the other measures, doing so by up to 85%. Tonic counts were therefore designated the primary endpoint when testing naproxen which reduced counts by up to 81%. Both reductions occurred at doses consistent with clinically effective doses for osteoarthritis. These results demonstrate that clinically effective doses of standard treatments for osteoarthritis reduce pain processing measured at the level of the spinal cord for two different mechanisms. The Assay Capability Tool helped to guide experimental design leading to a high quality and robust preclinical assay to use in discovering novel treatments for pain.
Miranda, Jason A.; Stanley, Phil; Gore, Katrina; Turner, Jamie; Dias, Rebecca; Rees, Huw
2014-01-01
Sensory processing in the spinal cord during disease states can reveal mechanisms for novel treatments, yet very little is known about pain processing at this level in the most commonly used animal models of articular pain. Here we report a test of the prediction that two clinically effective compounds, naproxen (an NSAID) and oxycodone (an opiate), are efficacious in reducing the response of spinal dorsal horn neurons to noxious knee joint rotation in the monosodium iodoacetate (MIA) sensitized rat. The overall objective for these experiments was to develop a high quality in vivo electrophysiology assay to confidently test novel compounds for efficacy against pain. Given the recent calls for improved preclinical experimental quality we also developed and implemented an Assay Capability Tool to determine the quality of our assay and ensure the quality of our results. Spinal dorsal horn neurons receiving input from the hind limb knee joint were recorded in anesthetized rats 14 days after they were sensitized with 1 mg of MIA. Intravenous administered oxycodone and naproxen were each tested separately for their effects on phasic, tonic, ongoing and afterdischarge action potential counts in response to innocuous and noxious knee joint rotation. Oxycodone reduced tonic spike counts more than the other measures, doing so by up to 85%. Tonic counts were therefore designated the primary endpoint when testing naproxen which reduced counts by up to 81%. Both reductions occurred at doses consistent with clinically effective doses for osteoarthritis. These results demonstrate that clinically effective doses of standard treatments for osteoarthritis reduce pain processing measured at the level of the spinal cord for two different mechanisms. The Assay Capability Tool helped to guide experimental design leading to a high quality and robust preclinical assay to use in discovering novel treatments for pain. PMID:25157947
Dowdy, John C; Czako, Eugene A; Stepp, Michael E; Schlitt, Steven C; Bender, Gregory R; Khan, Lateef U; Shinneman, Kenneth D; Karos, Manuel G; Shepherd, James G; Sayre, Robert M
2011-09-01
The authors compared calculations of sunlamp maximum exposure times following current USFDA Guidance Policy on the Maximum Timer Interval and Exposure Schedule, with USFDA/CDRH proposals revising these to equivalent erythemal exposures of ISO/CIE Standard Erythema Dose (SED). In 2003, [USFDA/CDRH proposed replacing their unique CDRH/Lytle] erythema action spectrum with the ISO/CIE erythema action spectrum and revising the sunlamp maximum exposure timer to 600 J m(-2) ISO/CIE effective dose, presented as being biologically equivalent. Preliminary analysis failed to confirm said equivalence, indicating instead ∼38% increased exposure when applying these proposed revisions. To confirm and refine this finding, a collaboration of tanning bed and UV lamp manufacturers compiled 89 UV spectra representing a broad sampling of U.S. indoor tanning equipment. USFDA maximum recommended exposure time (Te) per current sunlamp guidance and CIE erythemal effectiveness per ISO/CIE standard were calculated. The CIE effective dose delivered per Te averaged 456 J(CIE) m(-2) (SD = 0.17) or ∼4.5 SED. The authors found that CDRH's proposed 600 J(CIE) m(-2) recommended maximum sunlamp exposure exceeds current Te erythemal dose by ∼33%. The current USFDA 0.75 MED initial exposure was ∼0.9 SED, consistent with 1.0 SED initial dose in existing international sunlamp standards. As no sunlamps analyzed exceeded 5 SED, a revised maximum exposure of 500 J(CIE) m(-2) (∼80% of CDRH's proposal) should be compatible with existing tanning equipment. A tanning acclimatization schedule is proposed beginning at 1 SED thrice-weekly, increasing uniformly stepwise over 4 wk to a 5 SED maximum exposure in conjunction with a tan maintenance schedule of twice-weekly 5 SED sessions, as biologically equivalent to current USFDA sunlamp policy.
The maximum single dose of resistant maltodextrin that does not cause diarrhea in humans.
Kishimoto, Yuka; Kanahori, Sumiko; Sakano, Katsuhisa; Ebihara, Shukuko
2013-01-01
The objective of the present study was to determine the maximum dose of resistant maltodextrin (Fibersol)-2, a non-viscous water-soluble dietary fiber), that does not induce transitory diarrhea. Ten healthy adult subjects (5 men and 5 women) ingested Fibersol-2 at increasing dose levels of 0.7, 0.8, 0.9, 1.0, and 1.1 g/kg body weight (bw). Each administration was separated from the previous dose by an interval of 1 wk. The highest dose level that did not cause diarrhea in any subject was regarded as the maximum non-effective level for a single dose. The results showed that no subject of either sex experienced diarrhea at dose levels of 0.7, 0.8, 0.9, or 1.0 g/kg bw. At the highest dose level of 1.1 g/kg bw, no female subject experienced diarrhea, whereas 1 male subject developed diarrhea with muddy stools 2 h after ingestion of the test substance. Consequently, the maximum non-effective level for a single dose of the resistant maltodextrin Fibersol-2 is 1.0 g/kg bw for men and >1.1 g/kg bw for women. Gastrointestinal symptoms were gurgling sounds in 4 subjects (7 events) and flatus in 5 subjects (9 events), although no association with dose level was observed. These symptoms were mild and transient and resolved without treatment.
Electrically evoked compound action potentials recorded from the sheep spinal cord.
Parker, John L; Karantonis, Dean M; Single, Peter S; Obradovic, Milan; Laird, James; Gorman, Robert B; Ladd, Leigh A; Cousins, Michael J
2013-01-01
The study aims to characterize the electrical response of dorsal column axons to depolarizing stimuli to help understand the mechanisms of spinal cord stimulation (SCS) for the relief of chronic pain. We recorded electrically evoked compound action potentials (ECAPs) during SCS in 10 anesthetized sheep using stimulating and recording electrodes on the same epidural SCS leads. A novel stimulating and recording system allowed artifact contamination of the ECAP to be minimized. The ECAP in the sheep spinal cord demonstrates a triphasic morphology, with P1, N1, and P2 peaks. The amplitude of the ECAP varies along the length of the spinal cord, with minimum amplitudes recorded from electrodes positioned over each intervertebral disc, and maximum amplitudes recorded in the midvertebral positions. This anatomically correlated depression of ECAP also correlates with the areas of the spinal cord with the highest thresholds for stimulation; thus regions of weakest response invariably had least sensitivity to stimulation by as much as a factor of two. The choice of stimulating electrode location can therefore have a profound effect on the power consumption for an implanted stimulator for SCS. There may be optimal positions for stimulation in the sheep, and this observation may translate to humans. Almost no change in conduction velocity (∼100 ms) was observed with increasing currents from threshold to twice threshold, despite increased Aβ fiber recruitment. Amplitude of sheep Aβ fiber potentials during SCS exhibit dependence on electrode location, highlighting potential optimization of Aβ recruitment and power consumption in SCS devices. © 2013 International Neuromodulation Society.
Estimation of eye lens doses received by pediatric interventional cardiologists.
Alejo, L; Koren, C; Ferrer, C; Corredoira, E; Serrada, A
2015-09-01
Maximum Hp(0.07) dose to the eye lens received in a year by the pediatric interventional cardiologists has been estimated. Optically stimulated luminescence dosimeters were placed on the eyes of an anthropomorphic phantom, whose position in the room simulates the most common irradiation conditions. Maximum workload was considered with data collected from procedures performed in the Hospital. None of the maximum values obtained exceed the dose limit of 20 mSv recommended by ICRP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hassett, Maribeth O; Fischer, Mark W F; Sugawara, Zachary T; Stolze-Rybczynski, Jessica; Money, Nicholas P
2013-10-01
The bird's nest fungi (Basidiomycota, Agaricales) package millions of spores into peridioles that are splashed from their basidiomata by the impact of raindrops. In this study we report new information on the discharge mechanism in Crucibulum and Cyathus species revealed with high-speed video. Peridioles were ejected at speeds of 1-5 m per second utilizing less than 2 % of the kinetic energy in falling raindrops. Raindrops that hit the rim of the basidiome were most effective at ejecting peridioles. The mean angle of ejection varied from 67 to 73° and the peridioles travelled over an estimated maximum horizontal distance of 1 m. Each peridiole carried a cord or funiculus that remained in a condensed form during flight. The cord unravelled when its adhesive surface stuck to a surrounding obstacle and acted as a brake that quickly reduced the velocity of the projectile. In nature, this elaborate mechanism tethers peridioles to vegetation in a perfect location for browsing by herbivores. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Knowledge of appropriate acetaminophen doses and potential toxicities in an adult clinic population.
Stumpf, Janice L; Skyles, Amy J; Alaniz, Cesar; Erickson, Steven R
2007-01-01
To evaluate the knowledge of appropriate doses and potential toxicities of acetaminophen and assess the ability to recognize products containing acetaminophen in an adult outpatient setting. Cross-sectional, prospective study. University adult general internal medicine (AGIM) clinic. 104 adult patients presenting to the clinic over consecutive weekdays in December 2003. Three-page, written questionnaire. Ability of patients to identify maximum daily doses and potential toxicities of acetaminophen and recognize products that contain acetaminophen. A large percentage of participants (68.3%) reported pain on a daily or weekly basis, and 78.9% reported use of acetaminophen in the past 6 months. Only 2 patients correctly identified the maximum daily dose of regular acetaminophen, and just 3 correctly identified the maximum dose of extra-strength acetaminophen. Furthermore, 28 patients were unsure of the maximum dose of either product. Approximately 63% of participants either had not received or were unsure whether information on the possible danger of high doses of acetaminophen had been previously provided to them. When asked to identify potential problems associated with high doses of acetaminophen, 43.3% of patients noted the liver would be affected. The majority of the patients (71.2%) recognized Tylenol as containing acetaminophen, but fewer than 15% correctly identified Vicodin, Darvocet, Tylox, Percocet, and Lorcet as containing acetaminophen. Although nearly 80% of this AGIM population reported recent acetaminophen use, their knowledge of the maximum daily acetaminophen doses and potential toxicities associated with higher doses was poor and appeared to be independent of education level, age, and race. This indicates a need for educational efforts to all patients receiving acetaminophen-containing products, especially since the ability to recognize multi-ingredient products containing acetaminophen was likewise poor.
Chong, Julio T; Klausner, Adam P; Petrossian, Albert; Byrne, Michael D; Moore, Jewel R; Goetz, Lance L; Gater, David R; Grob, B Mayer
2015-03-01
The objective of this study was to compare the safety, efficacy, quality-of-life impact, and costs of a single dose or a longer course of pre-procedural antibiotics prior to elective endoscopic urological procedures in individuals with spinal cord injury and disorders (SCI/D) and asymptomatic bacteriuria. A prospective observational study. Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA. Sixty persons with SCI/D and asymptomatic bacteriuria scheduled to undergo elective endoscopic urological procedures. A single pre-procedural dose of antibiotics vs. a 3-5-day course of pre-procedural antibiotics. Objective and subjective measures of health, costs, and quality of life. There were no significant differences in vital signs, leukocytosis, adverse events, and overall satisfaction in individuals who received short-course vs. long-course antibiotics. There was a significant decrease in antibiotic cost (33.1 ± 47.6 vs. 3.6 ± 6.1 US$, P = 0.01) for individuals in the short-course group. In addition, there was greater pre-procedural anxiety (18 vs. 0%, P < 0.05) for individuals who received long-course antibiotics. SCI/D individuals with asymptomatic bacteriuria may be able to safely undergo most endoscopic urological procedures with a single dose of pre-procedural antibiotics. However, further research is required and even appropriate pre-procedural antibiotics may not prevent severe infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mamgani, Abrahim, E-mail: a.almamgani@nki.nl; Kwa, Stefan L.S.; Tans, Lisa
2015-10-01
Purpose: To report, from a retrospective analysis of prospectively collected data, on the feasibility, outcome, toxicity, and voice-handicap index (VHI) of patients with T1a glottic cancer treated by a novel intensity modulated radiation therapy technique developed at our institution to treat only the involved vocal cord: single vocal cord irradiation (SVCI). Methods and Materials: Thirty patients with T1a glottic cancer were treated by means of SVCI. Dose prescription was set to 16 × 3.63 Gy (total dose 58.08 Gy). The clinical target volume was the entire vocal cord. Setup verification was done by means of an online correction protocol using cone beam computed tomography. Datamore » for voice quality assessment were collected prospectively at baseline, end of treatment, and 4, 6, and 12 weeks and 6, 12, and 18 months after treatment using VHI questionnaires. Results: After a median follow-up of 30 months (range, 7-50 months), the 2-year local control and overall survival rates were 100% and 90% because no single local recurrence was reported and 3 patients died because of comorbidity. All patients have completed the intended treatment schedule; no treatment interruptions and no grade 3 acute toxicity were reported. Grade 2 acute dermatitis or dysphagia was reported in only 5 patients (17%). No serious late toxicity was reported; only 1 patient developed temporary grade 2 laryngeal edema, and responded to a short-course of corticosteroid. The VHI improved significantly, from 33.5 at baseline to 9.5 and 10 at 6 weeks and 18 months, respectively (P<.001). The control group, treated to the whole larynx, had comparable local control rates (92.2% vs 100%, P=.24) but more acute toxicity (66% vs 17%, P<.0001) and higher VHI scores (23.8 and 16.7 at 6 weeks and 18 months, respectively, P<.0001). Conclusion: Single vocal cord irradiation is feasible and resulted in maximal local control rate at 2 years. The deterioration in VHI scores was slight and temporary and subsequently improved to normal levels. Long-term follow-up is needed to consolidate these promising results.« less
Kullmann, F. Aura; Katofiasc, M.; Thor, K.B.; Marson, L.
2017-01-01
Purpose To determine feasibility of a novel therapeutic approach to drug-induced voiding after spinal cord injury (SCI) using a well-characterized, peptide, neurokinin 2 receptor (NK2 receptor) agonist, Lys5, MeLeu9, Nle10-NKA(4–10) (LMN-NKA). Methods Cystometry and colorectal pressure measurements were performed in urethane anesthetized, intact and acutely spinalized, female rats. Bladder pressure and voiding were monitored in response to intravenous LMN-NKA given with the bladder filled to 70% capacity. Results LMN-NKA (0.1–300 µg/kg) produced dose dependent, rapid (< 60 s), short duration (< 15 min) increases in bladder pressure. In intact rats, doses above 0.3–1 µg/kg induced urine release (voiding efficiency of ~ 70% at ≥ 1 µg/kg). In spinalized rats, urine release required higher doses (≥ 10 µg/kg) and was less efficient (30–50%). LMN-NKA (0.1–100 µg/kg) also produced dose dependent increases in colorectal pressure. No tachyphylaxis was observed, and the responses were blocked by an NK2 receptor antagonist (GR159897, 1 mg/kg i.v.). No obvious cardiorespiratory effects were noted. Conclusions These results suggest that rapid-onset, short duration, drug-induced voiding is possible in acute spinal and intact rats with intravenous administration of an NK2 receptor agonist. Future challenges remain in regards to finding alternative routes of administration that produce clinically significant voiding, multiple times per day, in animal models of chronic SCI. PMID:27889808
Liabsuetrakul, Tippawan; Chongsuvivatwong, Virasakdi; Lumbiganon, Pisake; Lindmark, Gunilla
2003-11-01
Over 10% of current births in all countries of the world are delivered by caesarean section. Single-dose ampicillin or cefazolin administered after cord clamping has been proven to be effective for the prevention of post-caesarean infections as indicated in many randomised trials and reviews in the Cochrane Library. This study aimed to determine three determinants of behavioural intention using the theory of planned behaviour: attitudes, subjective norms, and perceived controls. Intentions were examined for five aspects of the use of antibiotic prophylaxis, namely whether or not antibiotics were used, used in all caesarean sections, after rather than before cord clamping, whether ampicillin/cefazolin or broader-spectrum antibiotics were used, and whether single or multiple doses were given. Fifty obstetricians selected from university, regional, and general hospitals in southern Thailand, were surveyed using a questionnaire and in-depth interview. Their intentions to use a single dose and to use in all cases were low, and this was related to negative attitudes and reference groups who did not approve of the single dose. The negative attitude was based on scepticism concerning the applicability of well-equipped trials from the developed world and fear of consequences of post-caesarean infections. Norms carried over from residency training had more long-term influence in their practice than newer information from books or journals. Perceived external controls on their practice were less predictive of intentions. Intentions were only partly predictive of behaviour. Changing attitudes, introducing evidence-based information into residency training and strengthening control systems in the hospital are essential to improve intentions.
Surface dose measurements for highly oblique electron beams.
Ostwald, P M; Kron, T
1996-08-01
Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.
Chen, Jiayun; Fu, Guishan; Li, Minghui; Song, Yixin; Dai, Jianrong; Miao, Junjie; Liu, Zhiqiang; Li, Yexiong
2017-12-14
The purpose of this paper was to evaluate the impact of leaf treatment of multileaf collimator (MLC) in plan quality of intensity-modulated radiotherapy (IMRT) of patients with advanced lung cancer. Five MLCs with different leaf transmissions (0.01%, 0.5%, 1.2%, 1.8%, and 3%) were configured for an accelerator in a treatment planning system. Correspondingly, 5 treatment plans with the same optimization setting were created and evaluated quantitatively for each patient (11 patients total) who was diagnosed with advanced lung cancer. All of the 5 plans for each patient met the dose requirement for the planning treatment volumes (PTVs) and had similar target dose homogeneity and conformity. On average, the doses to selected organs were as follows: (1) V 5 , V 20 , and the mean dose of total lung; (2) the maximum and mean dose to spinal cord planning organ-at-risk volume (PRV); and (3) V 30 and V 40 of heart, decreased slightly when MLC transmission was decreased, but with no statistical differences. There is a clear grouping of plans having total quality score (S D ) value, which is used to evaluate plan quality: (1) more than 1 (patient nos. 1 to 3, 5, and 8), and more than 2.5 (patient no. 6); (2) less than 1 (patient nos. 7 and 10); (3) around 1 (patient nos. 4, 9, and 11). As MLC transmission increased, overall S D values increased as well and plan dose requirement was harder to meet. The clinical requirements were violated increasingly as MLC transmission became large. Total S D with and without normal tissue (NT) showed similar results, with no statistically significant differences. Therefore, decrease of MLC transmission did have minimum impact on plan, and it improved target coverage and reduced normal tissue radiation slightly, with no statistical significance. Plan quality could not be significantly improved by MLC transmission reduction. However, lower MLC transmission may have advantages on lung sparing to low- and intermediate-dose exposure. Besides conventional fraction, hyperfraction, or stereotactic body radiotherapy (SBRT), the reduction on lung sparing is still essential because it is highly relevant to radiation pneumonitis (RP). It has potential to diminish incidence of RP and improve patient's quality of life after irradiation with lowered MLC transmission. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
SU-E-J-203: Investigation of 1.5T Magnetic Field Dose Effects On Organs of Different Density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Rubinstein, A; Ibbott, G
2015-06-15
Purpose: For the combined 1.5T/6MV MRI-linac system, the perpendicular magnetic field to the radiation beam results in altered radiation dose distributions. This Monte Carlo study investigates the change in dose at interfaces for common organs neighboring soft tissue. Methods: MCNP6 was used to simulate the effects of a 1.5T magnetic field when irradiating tissues with a 6 MV beam. The geometries used in this study were not necessarily anatomically representative in size in order to directly compare quantitative dose effects for each tissue at the same depths. For this purpose, a 512 cm{sup 3} cubic material was positioned at themore » center of a 2744 cm{sup 3} cubic soft tissue material phantom. The following tissue materials and their densities were used in this study: lung (0.296 g/cm{sup 3}), fat (0.95), spinal cord (1.038), soft tissue (1.04), muscle (1.05), eye (1.076), trabecular bone (1.40), and cortical bone (1.85). Results: The addition of a 1.5T magnetic field caused dose changes of +46.5%, +2.4%, −0.9%, −0.8%, −1.5%, −6.5%, and −8.8% at the entrance interface between soft tissue and lung, fat, spinal cord, muscle, eye, trabecular bone, and cortical bone tissues respectively. Dose changes of −39.4%, −4.1%, −0.8%, −0.8%, +0.5%, +6.7%, and +10.9% were observed at the second interface between the same tissues respectively and soft tissue. On average, the build-up distance was reduced by 0.6 cm, and a dose increase of 62.7% was observed at the exit interface between soft tissue and air of the entire phantom. Conclusion: The greatest changes in dose were observed at interfaces containing lung and bone tissues. Due to the prevalence and proximity of bony anatomy to soft tissues throughout the human body, these results encourage further examination of these tissues with anatomically representative geometries using multiple beam configurations for safe treatment using the MRI-linac system.« less
Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.
Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne
2016-04-01
We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foy, J; Marsh, R; Owen, D
2015-06-15
Purpose: Creating high quality SBRT treatment plans for the spine is often tedious and time consuming. In addition, the quality of treatment plans can vary greatly between treatment facilities due to inconsistencies in planning methods. This study investigates the performance of knowledge-based planning (KBP) for spine SBRT. Methods: Treatment plans were created for 28 spine SBRT patients. Each case was planned to meet strict dose objectives and guidelines. After physician and physicist approval, the plans were added to a custom model in a KBP system (RapidPlan, Varian Eclipse v13.5). The model was then trained to be able to predict estimatedmore » DVHs and provide starting objective functions for future patients based on both generated and manual objectives. To validate the model, ten additional spine SBRT cases were planned manually as well as using the model objectives. Plans were compared based on planning time and quality (ability to meet the plan objectives, including dose metrics and conformity). Results: The average dose to the spinal cord and the cord PRV differed between the validation and control plans by <0.25% demonstrating iso-toxicity. Six out of 10 validation plans met all dose objectives without the need for modifications, and overall, target dose coverage was increased by about 4.8%. If the validation plans did not meet the dose requirements initially, only 1–2 iterations of modifying the planning parameters were required before an acceptable plan was achieved. While manually created plans usually required 30 minutes to 3 hours to create, KBP can be used to create similar quality plans in 15–20 minutes. Conclusion: KBP for spinal tumors has shown to greatly decrease the amount of time required to achieve high quality treatment plans with minimal human intervention and could feasibly be used to standardize plan quality between institutions. Supported by Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strenge, D.L.; Peloquin, R.A.
The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure modemore » are also printed if requested.« less
TU-AB-BRA-01: Abdominal Synthetic CT Generation in Support of Liver SBRT Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredfeldt, JS; Liu, L; Feng, M
2016-06-15
Purpose: To demonstrate and validate a technique for generating MRI-derived synthetic CT volumes (MRCTs) in support of adaptive liver SBRT. Methods: Under IRB approval, ten hepatocellular carcinoma patients were scanned using a single MR sequence (T1 Dixon-VIBE), yielding inherently-registered water, fat, and T1-weighted images. Air-containing voxels were identified by intensity thresholding. The envelope of the anterior vertebral bodies was segmented from the fat image by fitting a shape model to vertebral body candidate voxels, then using level sets to expand the contour outward. Fuzzy-C-Means (FCM) was then used to classify each non-air voxel in the image as fat, water, bone,more » or marrow. Bone and marrow only were classified within the vertebral body envelope. The MRCT was created by integrating the product of the FCM class probability with the assigned class density for each voxel. The resulting MRCTs were deformably aligned with planning CTs and 2-ARC SBRT VMAT plans were optimized on the MRCT density maps. Fluence was copied onto the CT density grids and dose recalculated. Results: The MRCTs faithfully reproduced most of the features visible in the corresponding CT image volumes, with exceptions of ribs and posterior spinous processes. The liver, vertebral bodies, kidneys, spleen and cord all had median HU differences of less than 75 between MRCT and CT images. PTV D99% values had an average 0.2% difference (standard deviation: 0.46%) between calculations on MRCT and CT density grids. The maximum difference in dose to 0.1cc of the PTV was 0.25% (std:0.49%). OAR dose differences were similarly small (mean:0.03Gy, std:0.26Gy). The largest normal tissue complication percentage (NTCP) difference was 1.48% (mean:0.06%, std:0.54%). Conclusions: MRCTs from a single abdominal imaging sequence are promising for use in SBRT dose calculation. Future work will focus on extending models to better define bones in the upper abdomen. Supported by NIHR01EB016079 and NIH1L30CA199594-01.« less
Intrathecal Drug Delivery and Spinal Cord Stimulation for the Treatment of Cancer Pain.
Xing, Fangfang; Yong, R Jason; Kaye, Alan David; Urman, Richard D
2018-02-05
The purpose of the present investigation is to summarize the body and quality of evidence including the most recent studies in support of intrathecal drug delivery systems and spinal cord stimulation for the treatment of cancer-related pain. In the past 3 years, a number of prospective studies have been published supporting intrathecal drug delivery systems for cancer pain. Additional investigation with adjuvants to morphine-based analgesia including dexmedetomidine and ziconotide support drug-induced benefits of patient-controlled intrathecal analgesia. A study has also been recently published regarding cost-savings for intrathecal drug delivery system compared to pharmacologic management, but an analysis in the Ontario, Canada healthcare system projects additional financial costs. Finally, the Polyanalgesic Consensus Committee has updated its recommendations regarding clinical guidelines for intrathecal drug delivery systems to include new information on dosing, trialing, safety, and systemic opioid reduction. There is still a paucity of clinical evidence for spinal cord stimulation in the treatment of cancer pain. There are new intrathecal drugs under investigation including various conopeptides and AYX1. Large, prospective, modern, randomized controlled studies are still needed to support the use of both intrathecal drug delivery systems as well as spinal cord stimulation for cancer pain populations. There are multiple prospective and small randomized controlled studies that highlight a potential promising future for these interventional modalities. Related to the challenge and urgency of cancer pain, the pain practitioner community is moving toward a multimodal approach that includes discussions regarding the role of intrathecal therapies and spinal cord stimulation to the individualized treatment of patients.
Delayed Imatinib Treatment for Acute Spinal Cord Injury: Functional Recovery and Serum Biomarkers
Finn, Anja; Hao, Jingxia; Wellfelt, Katrin; Josephson, Anna; Svensson, Camilla I.; Wiesenfeld-Hallin, Zsuzsanna; Eriksson, Ulf; Abrams, Mathew
2015-01-01
Abstract With no currently available drug treatment for spinal cord injury, there is a need for additional therapeutic candidates. We took the approach of repositioning existing pharmacological agents to serve as acute treatments for spinal cord injury and previously found imatinib to have positive effects on locomotor and bladder function in experimental spinal cord injury when administered immediately after the injury. However, for imatinib to have translational value, it needs to have sustained beneficial effects with delayed initiation of treatment, as well. Here, we show that imatinib improves hind limb locomotion and bladder recovery when initiation of treatment was delayed until 4 h after injury and that bladder function was improved with a delay of up to 24 h. The treatment did not induce hypersensitivity. Instead, imatinib-treated animals were generally less hypersensitive to either thermal or mechanical stimuli, compared with controls. In an effort to provide potential biomarkers, we found serum levels of three cytokines/chemokines—monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-3α, and keratinocyte chemoattractant/growth-regulated oncogene (interleukin 8)—to increase over time with imatinib treatment and to be significantly higher in injured imatinib-treated animals than in controls during the early treatment period. This correlated to macrophage activation and autofluorescence in lymphoid organs. At the site of injury in the spinal cord, macrophage activation was instead reduced by imatinib treatment. Our data strengthen the case for clinical trials of imatinib by showing that initiation of treatment can be delayed and by identifying serum cytokines that may serve as candidate markers of effective imatinib doses. PMID:25914996
Li, Xin; Lees, Jason R
2013-03-01
In region-specific forms of experimental autoimmune encephalomyelitis (EAE), lesion initiation is regulated by T-cell-produced interferon-γ (IFN-γ) resulting in spinal cord disease in the presence of IFN-γ and cerebellar disease in the absence of IFN-γ. Although this role for IFN-γ in regional disease initiation is well defined, little is known about the consequences of previous tissue inflammation on subsequent regional disease, information vital to the development of therapeutics in established disease states. This study addressed the hypothesis that previous establishment of regional EAE would determine subsequent tissue localization of new T-cell invasion and associated symptoms regardless of the presence or absence of IFN-γ production. Serial transfer of optimal or suboptimal doses of encephalitogenic IFN-γ-sufficient or -deficient T-cell lines was used to examine the development of new clinical responses associated with the spinal cord and cerebellum at various times after EAE initiation. Previous inflammation within either cerebellum or spinal cord allowed subsequent T-cell driven inflammation within that tissue regardless of IFN-γ presence. Further, T-cell IFN-γ production after initial lesion formation exacerbated disease within the cerebellum, suggesting that IFN-γ plays different roles at different stages of cerebellar disease. For the spinal cord, IFN-γ-deficient cells (that are ordinarily cerebellum disease initiators) were capable of driving new spinal-cord-associated clinical symptoms more than 60 days after the initial acute EAE resolution. These data suggest that previous inflammation modulates the molecular requirements for new neuroinflammation development. © 2012 Blackwell Publishing Ltd.
A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury.
Curtis, Erik; Martin, Joel R; Gabel, Brandon; Sidhu, Nikki; Rzesiewicz, Teresa K; Mandeville, Ross; Van Gorp, Sebastiaan; Leerink, Marjolein; Tadokoro, Takahiro; Marsala, Silvia; Jamieson, Catriona; Marsala, Martin; Ciacci, Joseph D
2018-06-01
We tested the feasibility and safety of human-spinal-cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury (SCI). In this clinical trial, four subjects with T2-T12 SCI received treatment consisting of removal of spinal instrumentation, laminectomy, and durotomy, followed by six midline bilateral stereotactic injections of NSI-566 cells. All subjects tolerated the procedure well and there have been no serious adverse events to date (18-27 months post-grafting). In two subjects, one to two levels of neurological improvement were detected using ISNCSCI motor and sensory scores. Our results support the safety of NSI-566 transplantation into the SCI site and early signs of potential efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies. Despite these encouraging secondary data, we emphasize that this safety trial lacks statistical power or a control group needed to evaluate functional changes resulting from cell grafting. Copyright © 2018. Published by Elsevier Inc.
Puram, Sidharth V; Chow, Harold; Wu, Che-Wei; Heaton, James T; Kamani, Dipti; Gorti, Gautham; Chiang, Feng Yu; Dionigi, Gianlorenzo; Barczynski, Marcin; Schneider, Rick; Dralle, Henning; Lorenz, Kerstin; Randolph, Gregory W
2016-12-01
Injury to the recurrent laryngeal nerve (RLN) is a dreaded complication of endocrine surgery. Intraoperative neural monitoring (IONM) has been increasingly utilized to assess the functional status of the RLN. Although the posterior cricoarytenoid muscle (PCA) is innervated by the RLN as the abductor of the larynx, PCA electromyography (EMG) is infrequently recorded during IONM and PCA activity after RLN compressive injury remains poorly characterized. Single-subject prospective animal study. We employed a canine model to identify postcricoid EMG correlates of postoperative vocal cord paralysis (VCP). Postcricoid electrode recordings were obtained before and after compressive RLN injury associated with VCP. Normative postcricoid recordings revealed mean amplitude of 1288 microvolt (μV) and latency of 8.2 millisecond (ms) with maximum (1 milliamp [mA]) vagal stimulation, and mean amplitude of 1807 μV and latency of 3.5 ms with maximum (1 mA) RLN stimulation. Following injury that was associated with VCP, there was 62.1% decrement in postcricoid EMG amplitude with maximum vagal stimulation and 80% decrement with maximum RLN stimulation. Threshold stimulation of the vagus increased by 23%, and there was a corresponding 42% decrease in amplitude. For RLN stimulation, latency increased by 17.3% following injury, whereas threshold stimulation increased by 61% with 35.5% decrement in EMG amplitude. Thus, if RLN amplitude decreases by ≥ 80%, with absolute amplitude of ≤ 300 μV or less and latency increase of ≥ 10%, RLN injury is likely associated with VCP. Our results predict postoperative VCP based on postcricoid electromyographic IONM and may guide surgical decision making. NA Laryngoscope, 126:2744-2751, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Influence of intravenous opioid dose on postoperative ileus.
Barletta, Jeffrey F; Asgeirsson, Theodor; Senagore, Anthony J
2011-07-01
Intravenous opioids represent a major component in the pathophysiology of postoperative ileus (POI). However, the most appropriate measure and threshold to quantify the association between opioid dose (eg, average daily, cumulative, maximum daily) and POI remains unknown. To evaluate the relationship between opioid dose, POI, and length of stay (LOS) and identify the opioid measure that was most strongly associated with POI. Consecutive patients admitted to a community teaching hospital who underwent elective colorectal surgery by any technique with an enhanced-recovery protocol postoperatively were retrospectively identified. Patients were excluded if they received epidural analgesia, developed a major intraabdominal complication or medical complication, or had a prolonged workup prior to surgery. Intravenous opioid doses were quantified and converted to hydromorphone equivalents. Classification and regression tree (CART) analysis was used to determine the dosing threshold for the opioid measure most associated with POI and define high versus low use of opioids. Risk factors for POI and prolonged LOS were determined through multivariate analysis. The incidence of POI in 279 patients was 8.6%. CART analysis identified a maximum daily intravenous hydromorphone dose of 2 mg or more as the opioid measure most associated with POI. Multivariate analysis revealed maximum daily hydromorphone dose of 2 mg or more (p = 0.034), open surgical technique (p = 0.045), and days of intravenous narcotic therapy (p = 0.003) as significant risk factors for POI. Variables associated with increased LOS were POI (p < 0.001), maximum daily hydromorphone dose of 2 mg or more (p < 0.001), and age (p = 0.005); laparoscopy (p < 0.001) was associated with a decreased LOS. Intravenous opioid therapy is significantly associated with POI and prolonged LOS, particularly when the maximum hydromorphone dose per day exceeds 2 mg. Clinicians should consider alternative, nonopioid-based pain management options when this occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L; Kang, M; Huang, S
2015-06-15
Purpose: The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties and patient setup variations. Methods: Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4DCT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4DCT phases, using ±3% uncertainty in stopping power, and ±3more » mm uncertainty in patient setup in each direction were used to create 8*12*10=960 PBS plans for the evaluation of ten patients. Plans were normalized to provide identical coverage between DS and PBS. Results: The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus and heart dose were decreased from 37.1 Gy, 71.7 Gy and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04 and 72.1 Gy with PBS. All differences are statistically significant, with p values <0.05, with the exception of the heart V45 (p= 0.146). Conclusion: PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion-related uncertainties is essential This work was supported by the US Army Medical Research and Materiel Command under Contract Agreement No. DAMD17-W81XWH-07-2-0121 and W81XWH-09-2-0174.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S; Kim, D; Kim, T
2016-06-15
Purpose: To propose a simple and effective cost value function to search optimal planning phase (gating window) and demonstrated its feasibility for respiratory correlated radiation therapy. Methods: We acquired 4DCT of 10 phases for 10 lung patients who have tumor located near OARs such as esophagus, heart, and spinal cord (i.e., central lung cancer patients). A simplified mathematical optimization function was established by using overlap volume histogram (OVH) between the target and organ at risk (OAR) at each phase and the tolerance dose of selected OARs to achieve surrounding OARs dose-sparing. For all patients and all phases, delineation of themore » target volume and selected OARs (esophagus, heart, and spinal cord) was performed (by one observer to avoid inter-observer variation), then cost values were calculated for all phases. After the breathing phases were ranked according to cost value function, the relationship between score and dose distribution at highest and lowest cost value phases were evaluated by comparing the mean/max dose. Results: A simplified mathematical cost value function showed noticeable difference from phase to phase, implying it is possible to find optimal phases for gating window. The lowest cost value which may result in lower mean/max dose to OARs was distributed at various phases for all patients. The mean doses of the OARs significantly decreased about 10% with statistical significance for all 3 OARs at the phase with the lowest cost value. Also, the max doses of the OARs were decreased about 2∼5% at the phase with the lowest cost value compared to the phase with the highest cost value. Conclusion: It is demonstrated that optimal phases (in dose distribution perspective) for gating window could exist differently through each patient and the proposed cost value function can be a useful tool for determining such phases without performing dose optimization calculations. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Suzuki, Akira; Matsubara, Kosuke; Sasa, Yuko
2018-04-01
The present study aimed to determine doses delivered to the eye lenses of surgeons while using the inverted-C-arm technique and the protective effect of leaded spectacles during orthopedic surgery. The kerma in air was measured at five positions on leaded glasses positioned near the eye lens and on the neck using small optically stimulated luminescence (OSL) dosemeters. The lens equivalent dose was also measured at the neck using an OSL dosemeter. The maximum equivalent dose to the eye lens and the maximum kerma were 0.8 mSv/month and 0.66 mGy/month, respectively. The leaded glasses reduced the exposure by ~60%. Even if the surgeons are exposed to the maximum dose of X-ray radiation for 5 years, the equivalent doses to the eye lens will not exceed the present limit recommended by the ICRP.
Effects of topical benzocaine and lignocaine on upper airway reflex sensitivity.
Raphael, J H; Stanley, G D; Langton, J A
1996-02-01
We studied the degree and duration of effect on upper airway reflex sensitivity of oral benzocaine lozenges, nebulised lignocaine and lignocaine sprayed onto the vocal cords under direct vision, using low concentrations of ammonia as a stimulus to upper airway receptors. Ten minutes after the administration of oral benzocaine 20 mg the threshold response of the upper airway to ammonia (NH3TR) had risen significantly from baseline mean (SEM) of 680 (95) to 975 (109) ppm of ammonia with a return to baseline values after 25 min (n = 8, p < 0.05, repeated measures of ANOVA; p < 0.001, t-test). A direct spray of lignocaine 100 mg onto the vocal cords resulted in a significant elevation in NH3TR from a baseline mean (SEM) of 665 (81) to a maximum of 1600 (88) ppm of ammonia with a significant elevation in the threshold persisting for 100 min (n = 7, p < 0.001, repeated measures of ANOVA; p < 0.05, t-test). The application of 4% nebulised lignocaine 4 ml significantly increased NH3TR from a baseline mean (SEM) of 770 (56) to a maximum of 1190 (63) ppm of ammonia with a significant elevation in the threshold persisting for 30 min (n = 8, p < 0.001, repeated measures of ANOVA; p < 0.05, t-test). The maximum elevations in NH3TR with the two methods of lignocaine delivery were significantly different (p < 0.01, 2-way ANOVA).
Modulation of hand aperture during reaching in persons with incomplete cervical spinal cord injury.
Stahl, Victoria A; Hayes, Heather B; Buetefisch, Cathrin M; Wolf, Steven L; Trumbower, Randy D
2015-03-01
The intact neuromotor system prepares for object grasp by first opening the hand to an aperture that is scaled according to object size and then closing the hand around the object. After cervical spinal cord injury (SCI), hand function is significantly impaired, but the degree to which object-specific hand aperture scaling is affected remains unknown. Here, we hypothesized that persons with incomplete cervical SCI have a reduced maximum hand opening capacity but exhibit novel neuromuscular coordination strategies that permit object-specific hand aperture scaling during reaching. To test this hypothesis, we measured hand kinematics and surface electromyography from seven muscles of the hand and wrist during attempts at maximum hand opening as well as reaching for four balls of different diameters. Our results showed that persons with SCI exhibited significantly reduced maximum hand aperture compared to able-bodied (AB) controls. However, persons with SCI preserved the ability to scale peak hand aperture with ball size during reaching. Persons with SCI also used distinct muscle coordination patterns that included increased co-activity of flexors and extensors at the wrist and hand compared to AB controls. These results suggest that motor planning for aperture modulation is preserved even though execution is limited by constraints on hand opening capacity and altered muscle co-activity. Thus, persons with incomplete cervical SCI may benefit from rehabilitation aimed at increasing hand opening capacity and reducing flexor-extensor co-activity at the wrist and hand.
Modulation of hand aperture during reaching in persons with incomplete cervical spinal cord injury
Stahl, Victoria; Hayes, Heather B; Buetefisch, Cathrin; Wolf, Steven L; Trumbower, Randy D
2014-01-01
The intact neuromotor system prepares for object grasp by first opening the hand to an aperture that is scaled according to object size and then closing the hand around the object. After cervical spinal cord injury (SCI), hand function is significantly impaired, but the degree to which object-specific hand aperture scaling is affected remains unknown. Here we hypothesized that persons with incomplete cervical SCI have a reduced maximum hand opening capacity but exhibit novel neuromuscular coordination strategies that permit object-specific hand aperture scaling during reaching. To test this hypothesis, we measured hand kinematics and surface electromyography (EMG) from seven muscles of the hand and wrist during attempts at maximum hand opening as well as reaching for four balls of different diameters. Our results showed that persons with SCI exhibited significantly reduced maximum hand aperture compared to able-bodied (AB) controls. However, persons with SCI preserved the ability to scale peak hand aperture with ball size during reaching. Persons with SCI also used distinct muscle coordination patterns that included increased co-activity of flexors and extensors at the wrist and hand compared to AB controls. These results suggest that motor planning for aperture modulation is preserved even though execution is limited by constraints on hand opening capacity and altered muscle co-activity. Thus, persons with incomplete cervical SCI may benefit from rehabilitation aimed at increasing hand opening capacity and reducing flexor-extensor co-activity at the wrist and hand. PMID:25511164
Direct measurement of a patient's entrance skin dose during pediatric cardiac catheterization
Sun, Lue; Mizuno, Yusuke; Iwamoto, Mari; Goto, Takahisa; Koguchi, Yasuhiro; Miyamoto, Yuka; Tsuboi, Koji; Chida, Koichi; Moritake, Takashi
2014-01-01
Children with complex congenital heart diseases often require repeated cardiac catheterization; however, children are more radiosensitive than adults. Therefore, radiation-induced carcinogenesis is an important consideration for children who undergo those procedures. We measured entrance skin doses (ESDs) using radio-photoluminescence dosimeter (RPLD) chips during cardiac catheterization for 15 pediatric patients (median age, 1.92 years; males, n = 9; females, n = 6) with cardiac diseases. Four RPLD chips were placed on the patient's posterior and right side of the chest. Correlations between maximum ESD and dose–area products (DAP), total number of frames, total fluoroscopic time, number of cine runs, cumulative dose at the interventional reference point (IRP), body weight, chest thickness, and height were analyzed. The maximum ESD was 80 ± 59 (mean ± standard deviation) mGy. Maximum ESD closely correlated with both DAP (r = 0.78) and cumulative dose at the IRP (r = 0.82). Maximum ESD for coiling and ballooning tended to be higher than that for ablation, balloon atrial septostomy, and diagnostic procedures. In conclusion, we directly measured ESD using RPLD chips and found that maximum ESD could be estimated in real-time using angiographic parameters, such as DAP and cumulative dose at the IRP. Children requiring repeated catheterizations would be exposed to high radiation levels throughout their lives, although treatment influences radiation dose. Therefore, the radiation dose associated with individual cardiac catheterizations should be analyzed, and the effects of radiation throughout the lives of such patients should be followed. PMID:24968708
Dickie, Colleen I; Parent, Amy L; Griffin, Anthony M; Fung, Sharon; Chung, Peter W M; Catton, Charles N; Ferguson, Peter C; Wunder, Jay S; Bell, Robert S; Sharpe, Michael B; O'Sullivan, Brian
2009-11-15
To examine the relationship between tumor location, bone dose, and irradiated bone length on the development of radiation-induced fractures for lower extremity soft tissue sarcoma (LE-STS) patients treated with limb-sparing surgery and radiotherapy (RT). Of 691 LE-STS patients treated from 1989 to 2005, 31 patients developed radiation-induced fractures. Analysis was limited to 21 fracture patients (24 fractures) who were matched based on tumor size and location, age, beam arrangement, and mean total cumulative RT dose to a random sample of 53 nonfracture patients and compared for fracture risk factors. Mean dose to bone, RT field size (FS), maximum dose to a 2-cc volume of bone, and volume of bone irradiated to >or=40 Gy (V40) were compared. Fracture site dose was determined by comparing radiographic images and surgical reports to fracture location on the dose distribution. For fracture patients, mean dose to bone was 45 +/- 8 Gy (mean dose at fracture site 59 +/- 7 Gy), mean FS was 37 +/- 8 cm, maximum dose was 64 +/- 7 Gy, and V40 was 76 +/- 17%, compared with 37 +/- 11 Gy, 32 +/- 9 cm, 59 +/- 8 Gy, and 64 +/- 22% for nonfracture patients. Differences in mean, maximum dose, and V40 were statistically significant (p = 0.01, p = 0.02, p = 0.01). Leg fractures were more common above the knee joint. The risk of radiation-induced fracture appears to be reduced if V40 <64%. Fracture incidence was lower when the mean dose to bone was <37 Gy or maximum dose anywhere along the length of bone was <59 Gy. There was a trend toward lower mean FS for nonfracture patients.
Jones, Margaret; Zumsteg, Jennifer
2016-01-01
Case Description This case reviews the acute care and rehabilitation course of a 44-year-old right-handed woman after an assault with a pocketknife. She suffered multiple stab wounds including penetrating injury to the left side of her neck. Physical examination revealed left hemiplegia (motor score = 57), impaired pinprick sensation on the right caudal to the C5 dermatome, impaired joint position sense on the left, and left ptosis and miosis. Initially she was unable to stand without maximum assistance. MR imaging revealed transection of the left hemicord at the C5 level without cord hemorrhage. CTA of the neck was negative for vascular injury. She completed 18 days of acute inpatient rehabilitation. She used forearm crutches for ambulation at time of discharge. Prior to discharge the patient provided written permission for a case report. Discussion Stab wounds are the most common cause of traumatic Brown-Séquard syndrome. Horner's syndrome is common in spinal cord lesions occurring in the cervical or thoracic region, however the combination of Horner's and Brown-Séquard syndromes is less commonly reported. In this case report, we review recommendations regarding initial imaging following cervical stab wounds, discuss anatomy and associated neurological findings in Brown-Séquard and Horner's syndromes, and review the expected temporal course of motor recovery. Conclusions Facilitating motor recovery and optimizing function after Brown-Séquard spinal cord injury are important roles for the rehabilitation team. Imaging is necessary to rule out cord hemorrhage or vascular injury and to clinically correlate cord damage with physical examination findings and expected functional impairments. Documenting associated anisocoria and explaining this finding to the patient is an important element of spinal cord injury education. Commonly, patients with Brown-Séquard injuries demonstrate remarkable motor recovery and regain voluntary motor strength and functional ambulation. PMID:25659820
Prenatal exposure to lead in Spain: cord blood levels and associated factors.
Llop, Sabrina; Aguinagalde, Xabier; Vioque, Jesus; Ibarluzea, Jesús; Guxens, Mònica; Casas, Maribel; Murcia, Mario; Ruiz, María; Amurrio, Ascensión; Rebagliato, Marisa; Marina, Loreto Santa; Fernandez-Somoano, Ana; Tardon, Adonina; Ballester, Ferran
2011-05-01
Lead is a known neurotoxic. Fetuses and infants are very vulnerable to lead exposure, since their blood-brain barrier is not completely formed. Hence, there is an importance for monitoring of blood lead levels prenatally and during early infancy. The aim of this study is to evaluate the prenatal exposure to lead and its association with maternal factors in four population based mother-child cohorts in Spain. The present research was carried out within the framework of the INMA project INfancia y Medio Ambiente (Environment and Childhood). A total of 1462 pregnant women were recruited between 2004 and 2008. Lead was analyzed in a sample of cord blood by thermal decomposition, amalgation, and Atomic Absorption Spectrometry. Maternal sociodemographic, lifestyle and dietary factors were obtained by questionnaires during pregnancy. A multivariate logistic regression model was constructed. The dependent variable was a dichotomous lead level variable (detected vs no detected, i.e. ≥ vs < 2μg/dL). A low percentage of cord blood samples with lead levels ≥ 2μg/dL were found (5.9%). Geometric mean and maximum were 1.06μg/dL and 19μg/dL, respectively. Smoking at the beginning of pregnancy, age, social class, weight gain during pregnancy, gravidity, and place of residence were the maternal factors associated with detectable cord blood lead levels. Mother's diet does not appear to be a determining factor of lead exposure. Nevertheless, daily intake of iron and zinc may act as a protective factor against having cord blood lead levels ≥ 2μg/dL. In the different regions of Spain taking part in this study, lead levels to which newborns are exposed are low. Mobilization of lead from bones may be the main contributor to the cord blood levels. Copyright © 2011 Elsevier B.V. All rights reserved.
Modeling adverse event counts in phase I clinical trials of a cytotoxic agent.
Muenz, Daniel G; Braun, Thomas M; Taylor, Jeremy Mg
2018-05-01
Background/Aims The goal of phase I clinical trials for cytotoxic agents is to find the maximum dose with an acceptable risk of severe toxicity. The most common designs for these dose-finding trials use a binary outcome indicating whether a patient had a dose-limiting toxicity. However, a patient may experience multiple toxicities, with each toxicity assigned an ordinal severity score. The binary response is then obtained by dichotomizing a patient's richer set of data. We contribute to the growing literature on new models to exploit this richer toxicity data, with the goal of improving the efficiency in estimating the maximum tolerated dose. Methods We develop three new, related models that make use of the total number of dose-limiting and low-level toxicities a patient experiences. We use these models to estimate the probability of having at least one dose-limiting toxicity as a function of dose. In a simulation study, we evaluate how often our models select the true maximum tolerated dose, and we compare our models with the continual reassessment method, which uses binary data. Results Across a variety of simulation settings, we find that our models compare well against the continual reassessment method in terms of selecting the true optimal dose. In particular, one of our models which uses dose-limiting and low-level toxicity counts beats or ties the other models, including the continual reassessment method, in all scenarios except the one in which the true optimal dose is the highest dose available. We also find that our models, when not selecting the true optimal dose, tend to err by picking lower, safer doses, while the continual reassessment method errs more toward toxic doses. Conclusion Using dose-limiting and low-level toxicity counts, which are easily obtained from data already routinely collected, is a promising way to improve the efficiency in finding the true maximum tolerated dose in phase I trials.
Triolo, Ronald J; Bailey, Stephanie Nogan; Miller, Michael E; Rohde, Loretta M; Anderson, James S; Davis, John A; Abbas, James J; DiPonio, Lisa A; Forrest, George P; Gater, David R; Yang, Lynda J
2012-05-01
To investigate the longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury. Case series. Research or outpatient physical therapy departments of 4 academic hospitals. Subjects (N=15) with thoracic or low cervical level spinal cord injuries who had received the 8-channel neuroprosthesis for exercise and standing. After completing rehabilitation with the device, the subjects were discharged to unrestricted home use of the system. A series of assessments were performed before discharge and at a follow-up appointment approximately 1 year later. Neuroprosthesis usage, maximum standing time, body weight support, knee strength, knee fatigue index, electrode stability, and component survivability. Levels of maximum standing time, body weight support, knee strength, and knee fatigue index were not statistically different from discharge to follow-up (P>.05). Additionally, neuroprosthesis usage was consistent with subjects choosing to use the system on approximately half of the days during each monitoring period. Although the number of hours using the neuroprosthesis remained constant, subjects shifted their usage to more functional standing versus more maintenance exercise, suggesting that the subjects incorporated the neuroprosthesis into their lives. Safety and reliability of the system were demonstrated by electrode stability and a high component survivability rate (>90%). This group of 15 subjects is the largest cohort of implanted lower-extremity neuroprosthetic exercise and standing system users. The safety and efficiency data from this group, and acceptance of the neuroprosthesis as demonstrated by continued usage, indicate that future efforts toward commercialization of a similar device may be warranted. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, J.X.; Xu, X.J.; Aldskogius, H.
1991-08-01
Protection by the NMDA receptor antagonist MK-801 against transient spinal cord ischemia-induced hypersensitivity was studied in rats. The spinal ischemia was initiated by vascular occlusion resulting from the interaction between the photosensitizing dye Erythrosin B and an argon laser beam. The hypersensitivity, termed allodynia, where the animals reacted by vocalization to nonnoxious mechanical stimuli in the flank area, was consistently observed during several days after induction of the ischemia. Pretreatment with MK-801 (0.1-0.5 mg/kg, iv) 10 min before laser irradiation dose dependently prevented the occurrence of allodynia. The neuroprotective effect of MK-801 was not reduced by maintaining normal body temperaturemore » during and after irradiation. There was a significant negative correlation between the delay in the administration of MK-801 after irradiation and the protective effect of the drug. Histological examination revealed slight morphological damage in the spinal cord in 38% of control rats after 1 min of laser irradiation without pretreatment with MK-801. No morphological abnormalities were observed in rats after pretreatment with MK-801 (0.5 mg/kg). The present results provide further evidence for the involvement of excitatory amino acids, through activation of the NMDA receptor, in the development of dysfunction following ischemic trauma to the spinal cord.« less
The PPAR alpha agonist gemfibrozil is an ineffective treatment for spinal cord injured mice
Almad, Akshata; Lash, A. Todd; Wei, Ping; Lovett-Racke, Amy E.; McTigue, Dana M.
2017-01-01
Peroxisome Proliferator Activated Receptor (PPAR)-α is a key regulator of lipid metabolism and recent studies reveal it also regulates inflammation in several different disease models. Gemfibrozil, an agonist of PPAR-α, is a FDA approved drug for hyperlipidemia and has been shown to inhibit clinical signs in a rodent model of multiple sclerosis. Since many studies have shown improved outcome from spinal cord injury (SCI) by anti-inflammatory and neuroprotective agents, we tested the efficacy of oral gemfibrozil given before or after SCI for promoting tissue preservation and behavioral recovery after spinal contusion injury in mice. Unfortunately, the results were contrary to our hypothesis; in our first attempt, gemfibrozil treatment exacerbated locomotor deficits and increased tissue pathology after SCI. In subsequent experiments, the behavioral effects were not replicated but histological outcomes again were worse. We also tested the efficacy of a different PPAR-α agonist, fenofibrate, which also modulates immune responses and is beneficial in several neurodegenerative disease models. Fenofibrate treatment did not improve recovery, although there was a slight trend for a modest increase in histological tissue sparing. Based on our results, we conclude that PPAR-α agonists yield either no effect or worsen recovery from spinal cord injury, at least at the doses and the time points of drug delivery tested here. Further, patients sustaining spinal cord injury while taking gemfibrozil might be prone to exacerbated tissue damage. PMID:21963672
Guillot, Flora; Garcia, Alexandra; Salou, Marion; Brouard, Sophie; Laplaud, David A; Nicot, Arnaud B
2015-07-04
Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35-55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was expressed in WM spinal cord astrocytes. Moreover, its expression was further increased in EAE. Immunohistochemistry on spinal cord tissues confirmed preferential expression of this enzyme in WM astrocytic processes but not in gray matter astrocytes. We described here for the first time the mRNA expression of several genes in WM astrocytes in a mouse model of multiple sclerosis. Besides expected pro-inflammatory chemokines and specific inflammatory mediators increased during EAE, we evidenced relative high astrocytic expression of the cytoplasmic enzyme SULT1A1. As the sulfonation activity of SULT1A1 inactivates estradiol among other phenolic substrates, its high astrocytic expression may account for the relative resistance of this cell population to the anti-neuroinflammatory effects of estradiol. Blocking the activity of this enzyme during neuroinflammation may thus help the injured CNS to maintain the anti-inflammatory activity of endogenous estrogens or limit the dose of estrogen co-regimens for therapeutical purposes.
Young, Anne B.; Snyder, Solomon H.
1974-01-01
The ability of a series of anions to inhibit [3H]strychnine binding to spinal cord synaptic membranes correlates closely with their neurophysiologic capacity to reverse inhibitory postsynaptic potentials in the mammalian spinal cord. Seven neurophysiologically active anions are also effective inhibitors of [3H]strychnine binding with mean effective doses ranging from 160 to 620 mM. Seven other anions that are ineffective neurophysiologically also fail to alter strychnine binding. Chloride inhibits strychnine binding in a noncompetitive fashion. Hill plots of the displacement of [3H]strychnine by chloride give coefficients of 2.3-2.7. The inhibition of strychnine binding by these anions suggests that strychnine binding is closely associated with the ionic conductance mechanism for chloride in the glycine receptor. PMID:4372600
Iskandar, Bermans J; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H; Jarrard, David F; Banerjee, Ruma V; Skene, J H Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D; Hogan, Kirk J
2010-05-01
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.
Iskandar, Bermans J.; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H.; Jarrard, David F.; Banerjee, Ruma V.; Skene, J.H. Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D.; Hogan, Kirk J.
2010-01-01
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries. PMID:20424322
Przewlocka, B; Mika, J; Capone, F; Machelska, H; Pavone, F
1999-03-01
The present research was undertaken to investigate, by behavioral and immunohistochemical methods, the effects of intrathecal (i.th.) injection of the muscarinic agonist oxotremorine on the response to the long-lasting nociceptive stimulus induced by injection of formalin into the rat hind paw. Formalin injection induced a biphasic, pain-induced behavioral response (paw jerks), as well as an increase in the number of nitric oxide (NO) synthase-labeled neurons in laminae I-III, IV, and X, but not in laminae V-VI. Oxotremorine (0.1-10 ng, i.th.) inhibited paw-jerk frequency in both phases of formalin-induced behavior. The immunohistochemical results showed that i.th.-injected oxotremorine differently affected the level of NO synthase in lumbar part of the spinal cord: no change or increase after the dose of 1 ng, and a significant reduction of nitric oxide synthase neurons after the higher dose (10 ng). These results evidenced a role of cholinergic system in the modulation of tonic pain and in nitric oxide synthase expression at the spinal cord level, which further suggests that these two systems could be involved in phenomena induced by long-lasting nociceptive stimulation.
Wang, Qiong; Tan, Yonghong; Zhang, Na; Xu, Yingyi; Wei, Wei; She, Yingjun; Bi, Xiaobao; Zhao, Baisong; Ruan, Xiangcai
2017-07-01
The developing brains of pediatric patients are highly vulnerable to anesthetic regimen (e.g., lidocaine), potentially causing neurological impairment. Recently, dexmedetomidine (DEX) has been used as an adjunct for sedation, and was shown to exert dose-dependent neuroprotective effects during brain injury. However, the maximum safe dose of DEX is unclear, and its protective effects against lidocaine-related neurotoxicity need to be confirmed. In this study, PC12 and NG108-15 cells were used to estimate safe, non-cytotoxic doses of DEX. We found that 100 and 60μM are the maximum safe dose of DEX for PC12 and NG108-15 cells, respectively, with no significant cytotoxicity. Lidocaine was found to remarkably inhibit cell vitality, but could be reversed by different doses of DEX, especially its maximum safe dose. Furthermore, the apoptosis induced by lidocaine was also assessed, and 100 and 60μM DEX showed optimal protective effects in PC12 and NG108-15 cells, respectively. Mechanistically, DEX activated the mitogen-activated protein kinase (MAPK) pathway, impaired caspase-3 expression, and enhanced anti-apoptotic factor Bcl-2 to resist lidocaine-induced apoptosis, indicating that the optimal dose of DEX alleviates lidocaine-induced cytotoxicity and should be considered in clinical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Dosimetric Factors and Toxicity in Highly Conformal Thoracic Reirradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binkley, Michael S.; Hiniker, Susan M.; Chaudhuri, Aadel
Purpose: We determined cumulative dose to critical structures, rates of toxicity, and outcomes following thoracic reirradiation. Methods and Materials: We retrospectively reviewed our institutional database for patients treated between 2008 and 2014, who received thoracic reirradiation with overlap of 25% prescribed isodose lines. Patients received courses of hyperfractionated (n=5), hypofractionated (n=5), conventionally fractionated (n=21), or stereotactic ablative radiation therapy (n=51). Doses to critical structures were converted to biologically effective dose, expressed as 2 Gy per fraction equivalent dose (EQD2; α/β = 2 for spinal cord; α/β = 3 for other critical structures). Results: We identified 82 courses (44 for retreatment) in 38 patients reirradiated atmore » a median 16 months (range: 1-71 months) following initial RT. Median follow-up was 17 months (range: 3-57 months). Twelve- and 24-month overall survival rates were 79.6% and 57.3%, respectively. Eighteen patients received reirradiation for locoregionally recurrent non-small cell lung cancer with 12-month rates of local failure and regional recurrence and distant metastases rates of 13.5%, 8.1%, and 15.6%, respectively. Critical structures receiving ≥75 Gy EQD2 included spinal cord (1 cm{sup 3}; n=1), esophagus (1 cm{sup 3}; n=10), trachea (1 cm{sup 3}; n=11), heart (1 cm{sup 3}; n=9), aorta (1 cm{sup 3}; n=16), superior vena cava (1 cm{sup 3}; n=12), brachial plexus (0.2 cm{sup 3}; n=2), vagus nerve (0.2 cm{sup 3}; n=7), sympathetic trunk (0.2 cm{sup 3}; n=4), chest wall (30 cm{sup 3}; n=12), and proximal bronchial tree (1 cm{sup 3}; n=17). Cumulative dose-volume (D cm{sup 3}) toxicity following reirradiation data included esophagitis grade ≥2 (n=3, D1 cm{sup 3} range: 41.0-100.6 Gy), chest wall grade ≥2 (n=4; D30 cm{sup 3} range: 35.0-117.2 Gy), lung grade 2 (n=7; V20{sub combined-lung} range: 4.7%-21.7%), vocal cord paralysis (n=2; vagus nerve D0.2 cm{sup 3} range: 207.5-302.2 Gy), brachial plexopathy (n=1; D0.2 cm{sup 3} = 242.5 Gy), and Horner's syndrome (n=1; sympathetic trunk D0.2 cm{sup 3} = 130.8 Gy). No grade ≥4 toxicity was observed. Conclusions: Overlapping courses of reirradiation can be safely delivered with acceptable toxicity. Some toxicities occurred acutely at doses considered safe for a single course of therapy (esophagus). We observed rib fracture, brachial plexopathy, and Horner's syndrome for patients receiving high cumulative doses to corresponding critical structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loupot, S; Han, T; Salehpour, M
Purpose: To quantify the difference in dose to PTV-EVAL and OARs (skin and rib) as calculated by (TG43) and heterogeneous calculations (CCC). Methods: 25 patient plans (5 Contura and 20 SAVI) were selected for analysis. Clinical dose distributions were computed with a commercially available treatment planning algorithm (TG43-D-(w,w)) and then recomputed with a pre-clinical collapsed cone convolution algorithm (CCCD-( m,m)). PTV-EVAL coverage (V90%, V95%), and rib and skin maximum dose were compared via percent difference. Differences in dose to normal tissue (V150cc, V200cc of PTV-EVAL) were also compared. Changes in coverage and maximum dose to organs at risk are reportedmore » in percent change, (100*(TG43 − CCC) / TG43)), and changes in maximum dose to normal tissue are absolute change in cc (TG43 − CCC). Results: Mean differences in V90, V95, V150, and V200 for the SAVI cases were −0.2%, −0.4%, −0.03cc, and −0.14cc, respectively, with maximum differences of −0.78%, −1.7%, 1.28cc, and 1.01cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −1.4% and −0.22%, respectively, with maximum differences of −4.5% and 16%, respectively. Mean differences in V90, V95, V150, and V200 for the Contura cases were −1.2%, −2.1%, −1.8cc, and −0.59cc, respectively, with maximum differences of −2.0%, −3.16%, −2.9cc, and −0.76cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −2.6% and −3.9%, respectively, with maximum differences of −3.2% and −5.7%, respectively. Conclusion: The effects of translating clinical knowledge based on D-(w,w) to plans reported in D-(m,m) are minimal (2% or less) on average, but vary based on the type and placement of the device, source, and heterogeneity information.« less
[Clinical study on vocal cords spontaneous rehabilitation after CO2 laser surgery].
Zhang, Qingxiang; Hu, Huiying; Sun, Guoyan; Yu, Zhenkun
2014-10-01
To study the spontaneous rehabilitation and phonation quality of vocal cords after different types of CO2 laser microsurgery. Surgical procedures based on Remacle system Type I, Type II, Type III, Type IV and Type V a respectively. Three hundred and fifteen cases with hoarseness based on strobe laryngoscopy results were prospectively assigned to different group according to vocal lesions apperence,vocal vibration and imaging of larynx CT/MRI. Each group holded 63 cases. The investigation included the vocal cords morphological features,the patients' subjective feelings and objective results of vocal cords. There are no severe complications for all patients in perioperative period. Vocal scar found in Type I ,1 case; Type II, 9 cases ;Type III, 47 cases; Type IV, 61 cases and Type Va 63 cases respectively after surgery. The difference of Vocal scar formation after surgery between surgical procedures are statistical significance (χ2 = 222.24, P < 0.05). Hoarseness improved after the surgery in 59 cases of Type I , 51 cases of Type II, 43 cases of Type III, 21 cases of Type IV and 17 cases of Type Va. There are statistically significance (χ2 = 89.46, P < 0.05) between different surgical procedures. The parameters of strobe laryngoscope: there are statistical significance on jitter between procedures (F 44.51, P < 0.05), but without difference within Type I and Type II (P > 0.05). This happened in shimmer parameter and the maximum phonation time (MPT) as jitter. There are no statistical significance between Type IV and Type Va on MPT (P > 0.05). Morphological and functional rehabilitation of vocal cord will be affected obviously when the body layer is injured. The depth and range of the CO2 laser microsurgery are the key factors affecting the vocal rehabilitation.
Largent-Milnes, Tally M; Guo, Wenhong; Wang, Hoau-Yan; Burns, Lindsay H; Vanderah, Todd W
2008-08-01
Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in mu-opioid receptor (MOR)-G protein coupling from G(i/o) to G(s) that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L(5)/L(6) spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to G(s) in the damaged (ipsilateral) spinal dorsal horn. This MOR-G(s) coupling occurred without changing G(i/o) coupling levels and without changing the expression of MOR or Galpha proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-G(s) coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-G(s) coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this G(s) coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-G(s) coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. The current study investigates whether Oxytrex (oxycodone with an ultra-low dose of naltrexone) alleviates mechanical and thermal hypersensitivities in an animal model of neuropathic pain over a period of 7 days, given locally or systemically. In this report, we first describe an injury-induced shift in mu-opioid receptor coupling from G(i/o) to G(s), suggesting why a mu-opioid agonist may have reduced efficacy in the nerve-injured state. These data present a novel approach to neuropathic pain therapy.
Niedzielski, J; Bluett, J; Williamson, R; Liao, Z; Gomez, D; Court, L
2012-06-01
To analyze the clinical impact of esophageal sparing on treatment plans for patients with grade 3 esophagitis. The treatment plans of 8 patients (project total: 20 patients) who were treated with IMRT and exhibited stage 3 esophagitis were re-planned to give a simulated clinical plan with dose distribution that mirrored our current clinical practice (74Gy to the target, and 5mm margins), and a plan that emphasized esophageal sparing. Doses to the esophagus, heart, cord, lung and PTV were compared. Comparing the esophageal sparing plan to the simulated clinical plan, the mean reduction in esophageal volume receiving 50, 55, 60, 65, and 70Gy were 2.0, 3.2, 5.0, 7.2, and 10.9 cm 3 , respectively. The mean reduction in the continuous length of esophagus receiving 50, 55, 60, 65, and 70Gy were 12, 24, 38, 40, and 47mm, respectively. The associated reduction in dose to 90% and 95% of the PTV was 2.2 and 3.8Gy, respectively. Of the 8 patients examined, 2 showed a significant decrease in PTV coverage (4.6Gy, 12.3Gy for 90% of PTV), 4 showed decreases under 1.1Gy, but 2 showed an increase of 1.4Gy and 0.5Gy for 90% PTV. Cord dose was maintained below 50Gy, and there was a slight increase in mean heart dose and mean lung dose of 2.4Gy, and 2.7Gy, respectively. Data will also be presented comparing these plans with the actual treated plans (for which the patients had grade 3 esophagitis) and plans that emphasize PTV coverage. Treatment planning to emphasize esophageal sparing can reduce the volume and continuous length of the esophagus which receives high doses. There is some associated modest reduction in PTV coverage. In summary, in many cases esophageal sparing can be accomplished for lung cancer cases while maintaining adequate PTV coverage, although there is variability between patients. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusharina, N; Khan, F; Sharp, G
Purpose: To determine the dose level and timing of the boost in locally advanced lung cancer patients with confirmed tumor recurrence by comparing different boosting strategies by an impact of dose escalation in improvement of the therapeutic ratio. Methods: We selected eighteen patients with advanced NSCLC and confirmed recurrence. For each patient, a base IMRT plan to 60 Gy prescribed to PTV was created. Then we compared three dose escalation strategies: a uniform escalation to the original PTV, an escalation to a PET-defined target planned sequentially and concurrently. The PET-defined targets were delineated by biologically-weighed regions on a pre-treatment 18F-FDGmore » PET. The maximal achievable dose, without violating the OAR constraints, was identified for each boosting method. The EUD for the target, spinal cord, combined lung, and esophagus was compared for each plan. Results: The average prescribed dose was 70.4±13.9 Gy for the uniform boost, 88.5±15.9 Gy for the sequential boost and 89.1±16.5 Gy for concurrent boost. The size of the boost planning volume was 12.8% (range: 1.4 – 27.9%) of the PTV. The most prescription-limiting dose constraints was the V70 of the esophagus. The EUD within the target increased by 10.6 Gy for the uniform boost, by 31.4 Gy for the sequential boost and by 38.2 for the concurrent boost. The EUD for OARs increased by the following amounts: spinal cord, 3.1 Gy for uniform boost, 2.8 Gy for sequential boost, 5.8 Gy for concurrent boost; combined lung, 1.6 Gy for uniform, 1.1 Gy for sequential, 2.8 Gy for concurrent; esophagus, 4.2 Gy for uniform, 1.3 Gy for sequential, 5.6 Gy for concurrent. Conclusion: Dose escalation to a biologically-weighed gross tumor volume defined on a pre-treatment 18F-FDG PET may provide improved therapeutic ratio without breaching predefined OAR constraints. Sequential boost provides better sparing of OARs as compared with concurrent boost.« less
One day of motor training with amphetamine impairs motor recovery following spinal cord injury.
Wong, Jamie K; Steward, Oswald
2012-02-01
It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury because early training with amphetamine increases lesion severity. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Matthew, E-mail: matthew.schmidt@varian.com; Grzetic, Shelby; Lo, Joseph Y.
Purpose: Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinicalmore » database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Methods: Knowledge-based radiotherapy (KBRT) plans for each of ten “query” patients were semiautomatically generated by identifying the most similar “match” patient in a database of 103 clinical manually created patient plans. The match patient’s plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human intervention to adjust constraints during plan optimization. Results: KBRT and original clinical plans were dosimetrically equivalent for parotid glands (mean/median doses), spinal cord, and brainstem (maximum doses). KBRT plans significantly reduced larynx median doses (21.5 ± 6.6 Gy to 17.9 ± 3.9 Gy), and oral cavity mean (32.3 ± 6.2 Gy to 28.9 ± 5.4 Gy) and median (28.7 ± 5.7 Gy to 23.2 ± 5.3 Gy) doses. Doses to ipsilateral parotid gland, larynx, oral cavity, and brainstem were lower or equivalent in the KBRT plans for the majority of cases. By contrast, KBRT plans generated without the dose warping and dose scaling steps were not significantly different from the clinical plans. Conclusions: Fast, semiautomatically generated HNC IMRT plans adapted from existing plans in a clinical database can be of equivalent or better quality than manually created plans. The reductions in OAR doses in the semiautomated plans, compared to the clinical plans, indicate that the proposed dose warping and scaling method shows promise in mitigating the impact of suboptimal clinical plans.« less
Russell, K A; Koch, T G
2016-03-01
Multipotent mesenchymal stromal cells (MSC) are often culture-expanded in vitro. Presently, expansion medium (EM) for MSC is supplemented with fetal bovine serum (FBS). However, increasing cost, variable composition and potential risks associated with bovine antigens call for alternatives. Platelet lysate (PL) has shown promise as an alternative supplement. To determine how equine umbilical cord blood (CB) MSC proliferate in EM enriched with PL or FBS at various concentrations. Randomised dose escalation study. Platelet concentrate was generated from 5 equine whole blood samples through a double centrifugation method and standardised to 1 × 10(12) platelets/l prior to a freeze/thaw cycle to produce PL. Pooled PL or pooled FBS was added to EM at concentrations of 5% to 60%. Proliferation of 4 equine CB-MSC cultures was determined after 4 days using a resazurin semiquantitative assay. Cord blood-MSC proliferated with a dose-dependent response with no significant difference found between PL and FBS up to a 30% concentration. Beyond 30%, proliferation fell in the PL-cultured cells, while continued dose-dependent proliferation was noted in the FBS-cultured cells. Despite reduced cell numbers in high PL concentrations, live/dead staining revealed that adherent cells remained viable. Expansion medium enriched with PL can support short-term equine CB-MSC proliferation at conventional culture concentrations. Based on the unexpected suppression of CB-MSC at higher PL concentrations, an in vivo dose study is indicated to investigate if combinational therapies of CB-MSC and platelet-rich plasma are associated with synergistic or antagonistic effect on CB-MSC function. © 2015 EVJ Ltd.
Robarge, Jason D.; Duarte, Djane B.; Shariati, Behzad; Wang, Ruizhong; Flockhart, David A.; Vasko, Michael R.
2016-01-01
Although aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5 mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5 mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5 mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000 nmol of adenosine 5′-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats. PMID:27072527
Lichtner, Gregor; Auksztulewicz, Ryszard; Kirilina, Evgeniya; Velten, Helena; Mavrodis, Dionysios; Scheel, Michael; Blankenburg, Felix; von Dincklage, Falk
2018-05-15
Drug-induced unconsciousness is an essential component of general anesthesia, commonly attributed to attenuation of higher-order processing of external stimuli and a resulting loss of information integration capabilities of the brain. In this study, we investigated how the hypnotic drug propofol at doses comparable to those in clinical practice influences the processing of somatosensory stimuli in the spinal cord and in primary and higher-order cortices. Using nociceptive reflexes, somatosensory evoked potentials and functional magnet resonance imaging (fMRI), we found that propofol abolishes the processing of innocuous and moderate noxious stimuli at low to medium concentration levels, but that intense noxious stimuli evoked spinal and cerebral responses even during deep propofol anesthesia that caused profound electroencephalogram (EEG) burst suppression. While nociceptive reflexes and somatosensory potentials were affected only in a minor way by further increasing doses of propofol after the loss of consciousness, fMRI showed that increasing propofol concentration abolished processing of intense noxious stimuli in the insula and secondary somatosensory cortex and vastly increased processing in the frontal cortex. As the fMRI functional connectivity showed congruent changes with increasing doses of propofol - namely the temporal brain areas decreasing their connectivity with the bilateral pre-/postcentral gyri and the supplementary motor area, while connectivity of the latter with frontal areas is increased - we conclude that the changes in processing of noxious stimuli during propofol anesthesia might be related to changes in functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.
Song, Zhiyang; Meyerson, Björn A; Linderoth, Bengt
2008-05-02
Spinal cord stimulation (SCS) has proven to be a valuable treatment in neuropathic pain. Our previous animal experiments performed on rat models of SCS and ensuing clinical trials have demonstrated that intrathecal (i.t.) administration of subeffective doses of certain drugs may enhance the pain relieving effect of SCS in cases with unsatisfactory SCS outcome. Recently, an augmented release of spinal acetylcholine acting on muscarinic receptors has been shown to be one of the mechanisms involved in SCS. The present study was performed to examine whether cold hypersensitivity and heat hyperalgesia in rats with partial sciatic nerve injuries can be attenuated by SCS in the same way as tactile hypersensitivity and to explore a possibly synergistic effect of SCS and a muscarinic receptor agonist, oxotremorine. Rats with signs of neuropathy were subjected to SCS applied in awake, freely moving condition. Oxotremorine was administered intrathecally. Tactile, cold and heat sensitivities were assessed by using von Frey filaments, cold spray and focused radiant heat, respectively. Oxotremorine i.t. dose-dependently suppressed the tactile hypersensitivity. SCS markedly increased withdrawal thresholds (WTs), withdrawal latencies and cold scores. When combining SCS with a subeffective dose of oxotremorine i.t., the suppressive effect of SCS on the pain-related symptoms was dramatically enhanced in rats failing to obtain a satisfactory effect with SCS alone. In conclusion, the combination of SCS and a drug with selective muscarinic receptor agonistic properties could be an optional therapy, when SCS per se has proven inefficient.
Allaveisi, Farzaneh; Moghadam, Amir Nami
2017-06-01
We evaluated and compared the performance of the field-in-field (FIF) to that of the four-field box (4FB) technique regarding dosimetric and radiobiological parameters for radiotherapy of esophageal carcinoma. Twenty patients with esophageal cancer were selected. For each patient, two treatment plans were created: 4FB and FIF. The parameters compared included the conformity index (CI), homogeneity index (HI), D mean , D max , tumor control probability (TCP), V 20Gy and V 30Gy of the heart and lungs, normal tissue complication probability (NTCP), and monitor units per fraction (MU/fr). A paired t-test analysis did not show any significant differences (p > 0.05) between the two techniques in terms of the CI and TCP. However, the HI significantly improved when the FIF was applied. D max of the PTV, lung, and spinal cord were also significantly better with the FIF. Moreover, the lung V 20Gy as well as the NTCPs of the lung and spinal cord significantly reduced when the FIF was used, and the MU/fr was significantly decreased. The FIF showed evident advantages over 4FB: a more homogeneous dose distribution, lower D max values, and fewer required MUs, while it also retained PTV dose conformality. FIF should be considered as a simple technique to use clinically in cases with esophageal malignancies, especially in clinics with no IMRT.
Brown-Séquard syndrome: a rare manifestation of decompression sickness.
Tseng, W-S; Huang, N-C; Huang, W-S; Lee, H-C
2015-12-01
Neurological decompression sickness (DCS) is a rare condition that commonly leads to spinal cord injury. We report the case of a 30-year-old man who developed left-sided weakness and numbness after diving to a maximum depth of 15 m with a total dive time of 205min (10 repetitive dives). To the best of our knowledge, only six cases diagnosed as Brown-Séquard syndrome caused by DCS have been reported in the literature. Divers should be aware of the risk factors of DCS before diving and clinicians should make the diagnosis of spinal cord DCS based primarily on clinical symptoms, not on magnetic resonance imaging findings. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali
2012-01-01
The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72-18.55 Gy) and 5.17 Gy (range 0.72-15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system.
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali
2012-01-01
Aim The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. Background The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Materials and methods Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. Results The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72–18.55 Gy) and 5.17 Gy (range 0.72–15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. Conclusion In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system. PMID:24377037
Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.
Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-05-01
In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.
Helke, C J; Phillips, E T; O'Neill, J T
1987-07-01
Regional central nervous system and peripheral hemodynamic effects of the intrathecal (i.t.) administration of a substance P (SP) receptor antagonist, [D-Arg1, D-Pro2, D-Trp7,9, Leu11]-substance P ([D-Arg]-SP), were studied in anesthetized rats. It was found that [D-Arg]-SP (3.3 nmol i.t.) reduced mean arterial pressure and cardiac output due to a reduction in stroke volume. Total peripheral resistance was not altered. Whereas most vascular beds showed no alterations in vascular resistance, a renal vasoconstriction was noted. The hypotensive effect of [D-Arg]-SP was blocked by phentolamine (10 mg/kg i.v.) but not by propranolol (1 mg/kg i.v.). In the absence of changes in vascular arterial resistance due to [D-Arg]-SP, it appears that a change in venous return may contribute to the [D-Arg]-SP-induced reduction in stroke volume. These data provide evidence that a spinal cord SP system may tonically affect sympathetic neurons controlling venous, but not arterial, vasomotor tone. [D-Arg]-SP (i.t.) did not alter brain blood flow but significantly decreased blood flow in the thoracolumbar spinal cord 15 to 20 min after administration. The reduction in spinal cord flow did not appear to be responsible for the [D-Arg]-SP-induced hypotension because kainic acid (i.t.), an agent that interacts with glutamate receptors, produced similar pressor responses in the presence and absence of [D-Arg]-SP. In addition, whereas the pressor effect of low doses of a SP agonist [pGlu5, MePhe8, MeGly9]-substance P (5-11) were blocked by [D-Arg]-SP, a higher dose produced the typical pressor effect.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Feng-Ming, E-mail: fengkong@med.umich.edu; Ritter, Timothy; Quint, Douglas J.
2011-12-01
Purpose: To review the dose limits and standardize the three-dimenional (3D) radiographic definition for the organs at risk (OARs) for thoracic radiotherapy (RT), including the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Methods and Materials: The present study was performed by representatives from the Radiation Therapy Oncology Group, European Organization for Research and Treatment of Cancer, and Soutwestern Oncology Group lung cancer committees. The dosimetric constraints of major multicenter trials of 3D-conformal RT and stereotactic body RT were reviewed and the challenges of 3D delineation of these OARs described. Using knowledge of the human anatomy andmore » 3D radiographic correlation, draft atlases were generated by a radiation oncologist, medical physicist, dosimetrist, and radiologist from the United States and reviewed by a radiation oncologist and medical physicist from Europe. The atlases were then critically reviewed, discussed, and edited by another 10 radiation oncologists. Results: Three-dimensional descriptions of the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus are presented. Two computed tomography atlases were developed: one for the middle and lower thoracic OARs (except for the heart) and one focusing on the brachial plexus for a patient positioned supine with their arms up for thoracic RT. The dosimetric limits of the key OARs are discussed. Conclusions: We believe these atlases will allow us to define OARs with less variation and generate dosimetric data in a more consistent manner. This could help us study the effect of radiation on these OARs and guide high-quality clinical trials and individualized practice in 3D-conformal RT and stereotactic body RT.« less
Wang, Xiu-Li; Zhang, Hong-Mei; Li, De-Pei; Chen, Shao-Rui; Pan, Hui-Lin
2006-03-01
Activation of spinal muscarinic acetylcholine receptors (mAChRs) inhibits nociception. However, the cellular mechanisms of this action are not fully known. In this study, we determined the role of mAChR subtypes in regulation of synaptic glycine release in the spinal cord. Whole-cell voltage-clamp recordings were performed on lamina II neurones in the rat spinal cord slices. The mAChR agonist oxotremorine-M significantly increased the frequency of glycinergic sIPSCs but not mIPSCs. Surprisingly, the effect of oxotremorine-M on sIPSCs was largely attenuated at a higher concentration. On the other hand, 1-10 microm oxotremorine-M dose-dependently increased the frequency of sIPSCs in rats pretreated with intrathecal pertussis toxin. Furthermore, oxotremorine-M also dose-dependently increased the frequency of sIPSCs in the presence of himbacine (an M2/M4 mAChR antagonist) or AF-DX116 (an M2 mAChR antagonist). The M3 mAChR antagonist 4-DAMP abolished the stimulatory effect of oxotremorine-M on sIPSCs. Interestingly, the GABA(B) receptor antagonist CGP55845 potentiated the stimulatory effect of oxotremorine-M on sIPSCs. In the presence of CGP55845, both himbacine and AF-DX116 similarly reduced the potentiating effect of oxotremorine-M on sIPSCs. Collectively, these data suggest that the M3 subtype is present on the somatodendritic site of glycinergic neurones and is mainly responsible for muscarinic potentiation of glycinergic input to spinal dorsal horn neurones. Concurrent stimulation of mAChRs on adjacent GABAergic interneurones attenuates synaptic glycine release through presynaptic GABA(B) receptors on glycinergic interneurones. This study illustrates a complex dynamic interaction between GABAergic and glycinergic synapses in the spinal cord dorsal horn.
Antihyperalgesic and antiallodynic effect of sirolimus in rat model of adjuvant arthritis.
Orhan, Cahide Elif; Önal, Aytül; Uyanıkgil, Yiğit; Ülker, Sibel
2013-04-05
Sirolimus is an immunosupressive drug that specifically inhibit the activation of T-lymphocytes. This study was undertaken to investigate whether treatment with sirolimus exert analgesic effect in rat adjuvant-induced arthritis, an animal model of rheumatoid arthritis. Arthritis was induced by a single subcutaneous injection of Freund's complete adjuvant to male Wistar rats that were divided into four groups; control (saline), vehicle (ethanol), sirolimus 0.75 and sirolimus 1.5. Sirolimus (0.75 and 1.5mg/kg/day) was administered intraperitoneally using Monday-Wednesday-Friday dosing schedule for 29 days, this dosing regimen revealed acceptable trough blood concentrations in arthritic rats. Adjuvant inoculation resulted in paw inflammation, hyperalgesia and allodynia as assessed by pletismometer, analgesymeter and dynamic plantar aesthesiometer respectively. Light microscopic evaluation of the arthritic metacarpophalangeal joints revealed synovial hypertrophy with inflammatory cellular infiltration, cartilage destruction and partial subchondral bone resorption. ELISA tests of serum TNF-α, IL-1β or IL-6 did not show any change in arthritic rats, while Western blotting analysis revealed a significant increase in TNF-α (P<0.001), but not IL-1β or IL-6, protein expression in the lumbar spinal cord of arthritic rats. Treatment with sirolimus significantly decreased the arthritic lesions (P<0.001) and paw swelling (P<0.05), alleviated the histological features in the metacarpophalangeal joint, resulted in antihyperalgesic and antiallodynic effects without affecting the locomotor activity and prevented the increased spinal cord TNF-α level (P<0.05). It seems that prevention of the increased TNF-α expression in the spinal cord may partially contribute to the antihyperalgesic effect of sirolimus in adjuvant arthritic rats and sirolimus could be a promising immunosupressive agent in the treatment of arthritic pain. Copyright © 2013 Elsevier B.V. All rights reserved.
Alternative Donor/Unrelated Donor Transplants for the β-Thalassemia and Sickle Cell Disease.
Fitzhugh, Courtney D; Abraham, Allistair; Hsieh, Matthew M
2017-01-01
Considerable progress with respect to donor source has been achieved in allogeneic stem cell transplant for patients with hemoglobin disorders, with matched sibling donors in the 1980s, matched unrelated donors and cord blood sources in the 1990s, and haploidentical donors in the 2000s. Many studies have solidified hematopoietic progenitors from matched sibling marrow, cord blood, or mobilized peripheral blood as the best source-with the lowest graft rejection and graft versus host disease (GvHD), and highest disease-free survival rates. For patients without HLA-matched sibling donors, but who are otherwise eligible for transplant, fully allelic matched unrelated donor (8/8 HLA-A, B, C, DRB1) appears to be the next best option, though an ongoing study in patients with sickle cell disease will provide data that are currently lacking. There are high GvHD rates and low engraftment rates in some of the unrelated cord transplant studies. Haploidentical donors have emerged in the last decade to have less GvHD; however, improvements are needed to increase the engraftment rate. Thus the decision to use unrelated cord blood units or haploidentical donors may depend on the institutional expertise; there is no clear preferred choice over the other. Active research is ongoing in expanding cord blood progenitor cells to overcome the limitation of cell dose, including the options of small molecule inhibitor compounds added to ex vivo culture or co-culture with supportive cell lines. There are inconsistent data from using 7/8 or lower matched unrelated donors. Before routine use of these less matched donor sources, work is needed to improve patient selection, conditioning regimen, GvHD prophylaxis, and/or other strategies.
Baclofen dosage after traumatic spinal cord injury: a multi-decade retrospective analysis.
Veerakumar, Ashan; Cheng, Jennifer J; Sunshine, Abraham; Ye, Xiaobu; Zorowitz, Richard D; Anderson, William S
2015-02-01
To perform an analysis of oral baclofen dosage in patients with traumatic spinal cord injuries over time and to ascertain the clinical determinants of long-term baclofen dosage trends. Retrospective cohort study of patient records from the PM&R units at the Johns Hopkins Bayview Medical Center and the Johns Hopkins Hospital. A total of 115 PM&R patients suffering spinal cord injury due to trauma leading to either complete or incomplete paralysis. The modes of injury included were motor vehicle accidents (MVA) (n=39), gunshot wounds (GSW) (n=55), falls (n=17), diving (n=2), workplace (n=1) and swimming (n=1) accidents. The location of injury in the spinal cord was categorized into either cervical (n=52), thoracic (n=59), lumbar (n=2), or unspecified (n=2). From time of injury, an aggregate of all dosage assignments for each patient demonstrated a significant yearly increase in baclofen dosage (1.26 mg/year, p<0.01). Baclofen dosage for MVA cases were seen to rise at 4.99 mg/year (p<0.0001). Kaplan-Meier analysis revealed that GSW patients received their first baclofen dosage earlier than MVA patients (log-rank p<0.05, unadjusted). We observed a marginal increase in baclofen dosage over nearly 25 years in a single provider's patient database and observed different timings of first dose between two causes of traumatic SCI. These results provide an estimate of baclofen dosage trends over time after spinal cord injury and may be useful for patient counseling or as a method to assess costs of providing SCI patient care. Copyright © 2014 Elsevier B.V. All rights reserved.
Roh, Dae-Hyun; Yoon, Seo-Yeon; Seo, Hyoung-Sig; Kang, Suk-Yun; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern
2010-07-01
The most common type of chronic pain following spinal cord injury (SCI) is central neuropathic pain and SCI patients typically experience mechanical allodynia and thermal hyperalgesia. The present study was designed to examine the potential role of astrocyte gap junction connectivity in the induction and maintenance of "below-level" neuropathic pain in SCI rats. We examined the effect of intrathecal treatment with carbenoxolone (CARB), a gap junction decoupler, on SCI-induced bilateral thermal hyperalgesia and mechanical allodynia during the induction phase (postoperative days 0 to 5) and the maintenance phase (days 15 to 20) following T13 spinal cord hemisection. Immunohistochemistry was performed to determine potential SCI-induced changes in spinal astrocyte activation and phosphorylation of the NMDA receptor NR1 subunit (pNR1). CARB administered during the induction period dose-dependently attenuated the development of bilateral thermal hyperalgesia and mechanical allodynia. Intrathecal CARB also significantly reduced the bilateral SCI-induced increase in GFAP-immunoreactive (ir) staining and the number of pNR1-ir cell profiles in the spinal cord dorsal horn compared to vehicle-treated rats. In contrast, CARB treatment during the maintenance phase had no effect on the established thermal hyperalgesia and mechanical allodynia nor on spinal GFAP expression or the number of pNR1-ir cell profiles. These results indicate that gap junctions play a critical role in the activation of astrocytes distant from the site of SCI and in the subsequent phosphorylation of NMDA receptors in the lumbar spinal cord. Both of these processes appear to contribute to the induction of bilateral below-level pain in SCI rats. Copyright 2010 Elsevier Inc. All rights reserved.
Wu, Xing-Huo; Yang, Shu-Hua; Duan, De-Yu; Cheng, Heng-Hui; Bao, Yu-Ting; Zhang, Yukun
2007-09-01
Recent studies confirmed that the new cell survival signal pathway of Insulin-PI3K-Akt exerted cyto-protective actions involving anti-apoptosis. This study was undertaken to investigate the potential neuroprotective effects of insulin in the pathogenesis of spinal cord injury (SCI) and evaluate its therapeutic effects in adult rats. SCI was produced by extradural compression using modified Allen's stall with damage energy of 40 g-cm force. One group of rats was subjected to SCI in combination with the administration of recombinant human insulin dissolved in 50% glucose solution at the dose of 1 IU/kg day, for 7 days. At the same time, another group of rats was subjected to SCI in combination with the administration of an equal volume of sterile saline solution. Functional recovery was evaluated using open-field walking, inclined plane tests, and motor evoked potentials (MEPs) during the first 14 days post-trauma. Levels of protein for B-cell lymphoma/leukemia-2 gene (Bcl-2), Caspase-3, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified in the injured spinal cord by Western blot analysis. Neuronal apoptosis was detected by TUNEL, and spinal cord blood flow (SCBF) was measured by laser-Doppler flowmetry (LDF). Ultimately, the data established the effectiveness of insulin treatment in improving neurologic recovery, increasing the expression of anti-apoptotic bcl-2 proteins, inhibiting caspase-3 expression decreasing neuronal apoptosis, reducing the expression of proinflammatory cytokines iNOS and COX-2, and ameliorating microcirculation of injured spinal cord after moderate contusive SCI in rats. In sum, this study reported the beneficial effects of insulin in the treatment of SCI, with the suggestion that insulin should be considered as a potential therapeutic agent.
Meyer, Maria; Lara, Agustina; Hunt, Hazel; Belanoff, Joseph; de Kloet, E Ronald; Gonzalez Deniselle, Maria Claudia; De Nicola, Alejandro F
2018-06-08
Wobbler mice are experimental models for amyotrophic lateral sclerosis. As such they show motoneuron degeneration, motor deficits, and astrogliosis and microgliosis of the spinal cord. Additionally, Wobbler mice show increased plasma, spinal cord and brain corticosterone levels and focal adrenocortical hyperplasia, suggesting a pathogenic role for glucocorticoids in this disorder. Considering this endocrine background, we examined whether the glucocorticoid receptor (GR) modulator CORT 113176 prevents spinal cord neuropathology of Wobblers. CORT 113176 shows high affinity for the GR, with low or null affinity for other steroid receptors. We employed five-month-old genotyped Wobbler mice that received s.c. vehicle or 30 mg/kg/day for 4 days of CORT 113176 dissolved in sesame oil. The mice were used on the 4th day, 2 h after the last dose of CORT 113176. Vehicle-treated Wobbler mice presented vacuolated motoneurons, increased glial fibrillary acidic protein (GFAP)+ astrocytes and decreased glutamine synthase (GS)+ cells. There was strong neuroinflammation, shown by increased staining for IBA1+ microglia and CD11b mRNA, enhanced expression of tumor necrosis factor-α, its cognate receptor TNFR1, toll-like receptor 4, the inducible nitric oxide synthase, NFkB and the high-mobility group box 1 protein (HMGB1). Treatment of Wobbler mice with CORT 113176 reversed the abnormalities of motoneurons and down-regulated proinflammatory mediators and glial reactivity. Expression of glutamate transporters GLT1 and GLAST mRNAs and GLT1 protein was significantly enhanced over untreated Wobblers. In summary, antagonism of GR with CORT 113176 prevented neuropathology and showed anti-inflammatory and anti-glutamatergic effects in the spinal cord of Wobbler mice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun
2005-06-01
Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessedmore » by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z; Kennedy, A; Larsen, E
2015-06-15
Purpose: The study aims to develop and validate a knowledge based planning (KBP) model for external beam radiation therapy of locally advanced non-small cell lung cancer (LA-NSCLC). Methods: RapidPlan™ technology was used to develop a lung KBP model. Plans from 65 patients with LA-NSCLC were used to train the model. 25 patients were treated with VMAT, and the other patients were treated with IMRT. Organs-at-risk (OARs) included right lung, left lung, heart, esophagus, and spinal cord. DVH and geometric distribution DVH were extracted from the treated plans. The model was trained using principal component analysis and step-wise multiple regression. Boxmore » plot and regression plot tools were used to identify geometric outliers and dosimetry outliers and help fine-tune the model. The validation was performed by (a) comparing predicted DVH boundaries to actual DVHs of 63 patients and (b) using an independent set of treatment planning data. Results: 63 out of 65 plans were included in the final KBP model with PTV volume ranging from 102.5cc to 1450.2cc. Total treatment dose prescription varied from 50Gy to 70Gy based on institutional guidelines. One patient was excluded due to geometric outlier where 2.18cc of spinal cord was included in PTV. The other patient was excluded due to dosimetric outlier where the dose sparing to spinal cord was heavily enforced in the clinical plan. Target volume, OAR volume, OAR overlap volume percentage to target, and OAR out-of-field volume were included in the trained model. Lungs and heart had two principal component scores of GEDVH, whereas spinal cord and esophagus had three in the final model. Predicted DVH band (mean ±1 standard deviation) represented 66.2±3.6% of all DVHs. Conclusion: A KBP model was developed and validated for radiotherapy of LA-NSCLC in a commercial treatment planning system. The clinical implementation may improve the consistency of IMRT/VMAT planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Lin, M; Chen, L
Purpose: Recent in vitro and in vivo experimental findings provided strong evidence that pulsed low-dose-rate radiotherapy (PLDR) produced equivalent tumor control as conventional radiotherapy with significantly reduced normal tissue toxicities. This work aimed to implement a PLDR clinical protocol for the management of recurrent cancers utilizing IMRT and VMAT. Methods: Our PLDR protocol requires that the daily 2Gy dose be delivered in 0.2Gy×10 pulses with a 3min interval between the pulses. To take advantage of low-dose hyper-radiosensitivity the mean dose to the target is set at 0.2Gy and the maximum dose is limited to 0.4Gy per pulse. Practical planning strategiesmore » were developed for IMRT and VMAT: (1) set 10 ports for IMRT and 10 arcs for VMAT with each angle/arc as a pulse; (2) set the mean dose (0.2Gy) and maximum dose (0.4Gy) to the target per pulse as hard constraints (no constraints to OARs); (3) select optimal port/arc angles to avoid OARs; and (4) use reference structures in or around target/OARs to reduce maximum dose to the target/OARs. IMRT, VMAT and 3DCRT plans were generated for 60 H and N, breast, lung, pancreas and prostate patients and compared. Results: All PLDR treatment plans using IMRT and VMAT met the dosimetry requirements of the PLDR protocol (mean target dose: 0.20Gy±0.01Gy; maximum target dose < 0.4Gy). In comparison with 3DCRT, IMRT and VMAT exhibited improved target dose conformity and OAR dose sparing. A single arc can minimize the difference in the target dose due to multi-angle incidence although the delivery time is longer than 3DCRT and IMRT. Conclusion: IMRT and VMAT are better modalities for PLDR treatment of recurrent cancers with superior target dose conformity and critical structure sparing. The planning strategies/guidelines developed in this work are practical for IMRT/VMAT treatment planning to meet the dosimetry requirements of the PLDR protocol.« less
Survey of Occupational Noise Exposure in CF Personnel in Selected High-Risk Trades
2003-11-01
peak, maximum level , minimum level , average sound level , time weighted average, dose, projected 8-hour dose, and upper limit time were measured for...10 4.4.2 Maximum Sound Level ...11 4.4.3 Minimum Sound Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Badkul, R; Jiang, H
Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beammore » configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with tissue-heterogeneities.The magnitude of variation significantly varies with ‘small-island-tumor’ surrounded by low-density lung tissues -PB algorithms lacks later electron scattering. Dose calculation with XVMC for lung SBRT is routinely performed in our clinic, its performance for head'neck/sinus cases will also be investigated.« less
Electron fluence correction factors for various materials in clinical electron beams.
Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P
2001-08-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.
A Phase I study of bizelesin (NSC 615291) in patients with advanced solid tumors.
Pitot, Henry C; Reid, Joel M; Sloan, Jeff A; Ames, Matthew M; Adjei, Alex A; Rubin, Joseph; Bagniewski, Pamela G; Atherton, Pamela; Rayson, Daniel; Goldberg, Richard M; Erlichman, Charles
2002-03-01
To evaluate the toxicities, characterize the pharmacokinetics, and determine the maximum-tolerated dose of bizelesin administered once every 4 weeks. Patients with advanced solid tumors received escalating doses of bizelesin as an i.v. push every 4 weeks. Pharmacokinetic studies were performed with the first treatment cycle. Nineteen eligible patients received a total of 54 courses of bizelesin at doses ranging from 0.1 to 1 microg/m(2). Dose-limiting toxicity of neutropenia was seen in 2 of 4 patients treated at the 1 microg/m(2) dose level. Nonhematological toxicity was generally mild with maximum toxicity being
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Witztum, A; Kenton, O
2014-06-01
Purpose: Due to the unpredictability of bowel gas movement, the PA beam direction is always favored for robust proton therapy in post-operative pancreatic cancer treatment. We investigate the feasibility of replacing PA beam with a modified AP beam to take the bowel gas uncertainty into account. Methods: Nine post-operative pancreatic cancer patients treated with proton therapy (5040cGy, 28 fractions) in our institution were randomly selected. The original plan uses PA and lateral direction passive-scattering proton beams. Beam weighting is about 1:1. All patients received weekly verification CTs to assess the daily variations(total 17 verification CTs). The PA direction beam wasmore » replaced by two other groups of AP direction beam. Group AP: takes 3.5% range uncertainty into account. Group APmod: compensates the bowel gas uncertainty by expanding the proximal margin to 2cm more. The 2cm margin was acquired from the average bowel diameter in from 100 adult abdominal CT scans near pancreatic region (+/- 5cm superiorly and inferiorly). Dose Volume Histograms(DVHs) of the verification CTs were acquired for robustness study. Results: Without the lateral beam, Group APmod is as robust as Group PA. In Group AP, more than 10% of iCTV D98/D95 were reduced by 4–8%. LT kidney and Liver dose robustness are not affected by the AP/PA beam direction. There is 10% of chance that RT kidney and cord will be hit by AP proton beam due to the bowel gas. Compared to Group PA, APmod plan reduced the dose to kidneys and cord max significantly, while there is no statistical significant increase in bowel mean dose. Conclusion: APmod proton beam for the target coverage could be as robust as the PA direction without sacrificing too much of bowel dose. When the AP direction beam has to be selected, a 2cm proximal margin should be considered.« less
Miller, Timothy; Pestronk, Alan; David, William; Rothstein, Jeffrey; Simpson, Ericka; Appel, Stanley H.; Andres, Patricia L.; Mahoney, Katy; Allred, Peggy; Alexander, Katie; Ostrow, Lyle W.; Schoenfeld, David; Macklin, Eric A.; Norris, Daniel A.; Manousakis, Georgios; Crisp, Matthew; Smith, Richard; Bennett, C.F.; Bishop, Kathie; Cudkowicz, Merit E
2013-01-01
Objective To evaluate the safety, tolerability, and pharmacokinetics of an antisense oligonucleotide designed to inhibit SOD1 expression (ISIS 333611) following intrathecal administration in patients with SOD1-related familial amyotrophic lateral sclerosis (ALS). Background Mutations in SOD1 cause 13% of familial ALS. In animal studies, ISIS 333611 delivered to the cerebrospinal fluid (CSF) distributed to the brain and spinal cord, decreased SOD1 mRNA and protein levels in spinal cord tissue, and prolonged survival in the SOD1G93A rat ALS model. Methods In a randomized, placebo controlled Phase 1 trial, ISIS 333611 was delivered by intrathecal infusion using an external pump over 11.5 hours at increasing doses to four cohorts of eight SOD1 positive ALS subjects (randomized 6 drug: 2 placebo/cohort). Subjects were allowed to re-enroll in subsequent cohorts. Safety and tolerability assessments were made during the infusion and periodically over 28 days following the infusion. CSF and plasma drug levels were measured. Findings No dose-limiting toxicities were identified at doses up to 3.0 mg. No safety or tolerability concerns related to ISIS 333611 were identified. There were no serious adverse events (AEs) in ISIS 333611-treated subjects. Re-enrollment and re-dosing of subjects with ISIS 333611 was also well tolerated. Dose-dependent CSF and plasma concentrations were observed. Interpretation In this first clinical study to report intrathecal delivery of an antisense oligonucleotide, ISIS 333611 was well tolerated when administered as an intrathecal infusion in subjects with SOD1 familial ALS. CSF and plasma drug levels were consistent with levels predicted from preclinical studies. These results suggest that antisense oligonucleotide delivery to the central nervous system may be a feasible therapeutic strategy for neurological disorders. Source of funding ALS Association, Muscular Dystrophy Association, Isis Pharmaceuticals PMID:23541756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, C; Ju, S; Ahn, Y
2015-06-15
Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directionalmore » block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.« less
Role of step size and max dwell time in anatomy based inverse optimization for prostate implants
Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha
2013-01-01
In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323
Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Tong; Chapman, Christopher H.; Tsien, Christina
2016-11-01
Purpose: Previous efforts to decrease neurocognitive effects of radiation focused on sparing isolated cortical structures. We hypothesize that understanding temporal, spatial, and dosimetric patterns of radiation damage to whole-brain white matter (WM) after partial-brain irradiation might also be important. Therefore, we carried out a study to develop the methodology to assess radiation therapy (RT)–induced damage to whole-brain WM bundles. Methods and Materials: An atlas-based, automated WM tractography analysis was implemented to quantify longitudinal changes in indices of diffusion tensor imaging (DTI) of 22 major WM fibers in 33 patients with predominantly low-grade or benign brain tumors treated by RT. Sixmore » DTI scans per patient were performed from before RT to 18 months after RT. The DTI indices and planned doses (maximum and mean doses) were mapped onto profiles of each of 22 WM bundles. A multivariate linear regression was performed to determine the main dose effect as well as the influence of other clinical factors on longitudinal percentage changes in axial diffusivity (AD) and radial diffusivity (RD) from before RT. Results: Among 22 fiber bundles, AD or RD changes in 12 bundles were affected significantly by doses (P<.05), as the effect was progressive over time. In 9 elongated tracts, decreased AD or RD was significantly related to maximum doses received, consistent with a serial structure. In individual bundles, AD changes were up to 11.5% at the maximum dose locations 18 months after RT. The dose effect on WM was greater in older female patients than younger male patients. Conclusions: Our study demonstrates for the first time that the maximum dose to the elongated WM bundles causes post-RT damage in WM. Validation and correlative studies are necessary to determine the ability and impact of sparing these bundles on preserving neurocognitive function after RT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael
A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy inmore » 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.« less
Dynamic Adhesion of Umbilical Cord Blood Endothelial Progenitor Cells under Laminar Shear Stress
Angelos, Mathew G.; Brown, Melissa A.; Satterwhite, Lisa L.; Levering, Vrad W.; Shaked, Natan T.; Truskey, George A.
2010-01-01
Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α5β1 integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α5β1 with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress. PMID:21112278
Barrett, Frederick S.; Schlienz, Nicolas J.; Lembeck, Natalie; Waqas, Muhammad; Vandrey, Ryan
2018-01-01
Abstract Introduction: Cannabis has been historically classified as a hallucinogen. However, subjective cannabis effects do not typically include hallucinogen-like effects. Empirical reports of hallucinogen-like effects produced by cannabis in controlled settings, particularly among healthy research volunteers, are rare and have mostly occurred after administration of purified Δ-9 tetrahydrocannabinol (THC) rather than whole plant cannabis. Methods: The case of a healthy 30-year-old male who experienced auditory and visual hallucinations in a controlled laboratory study after inhaling vaporized cannabis that contained 25 mg THC (case dose) is presented. Ratings on the Hallucinogen Rating Scale (HRS) following the case dose are compared with HRS ratings obtained from the participant after other doses of cannabis and with archival HRS data from laboratory studies involving acute doses of cannabis, psilocybin, dextromethorphan (DXM), and salvinorin A. Results: Scores on the Volition subscale of the HRS were greater for the case dose than for the maximum dose administered in any other comparison study. Scores on the Intensity and Perception subscales were greater for the case dose than for the maximum dose of cannabis, psilocybin, or salvinorin A. Scores on the Somaesthesia subscale were greater for the case dose than for the maximum dose of DXM, salvinorin A, or cannabis. Scores on the Affect and Cognition subscales for the case dose were significantly lower than for the maximum doses of psilocybin and DXM. Conclusion: Acute cannabis exposure in a healthy adult male resulted in self-reported hallucinations that rated high in magnitude on several subscales of the HRS. However, the hallucinatory experience in this case was qualitatively different than that typically experienced by participants receiving classic and atypical hallucinogens, suggesting that the hallucinatory effects of cannabis may have a unique pharmacological mechanism of action. This type of adverse event needs to be considered in the clinical use of cannabis. PMID:29682608
Hoban, B; Larance, B; Gisev, N; Nielsen, S; Cohen, M; Bruno, R; Shand, F; Lintzeris, N; Hall, W; Farrell, M; Degenhardt, L
2015-11-01
The regular use of simple analgesics in addition to opioids such as paracetamol (or acetaminophen) is recommended for persistent pain to enhance analgesia. Few studies have examined the frequency and doses of paracetamol among people with chronic non-cancer pain including use above the recommended maximum daily dose. To assess (i) the prevalence of paracetamol use among people with chronic non-cancer pain prescribed opioids, (ii) assess the prevalence of paracetamol use above the recommended maximum daily dose and (iii) assess correlates of people who used paracetamol above the recommended maximum daily dose including: age, gender, income, education, pain severity and interference, use of paracetamol/opioid combination analgesics, total opioid dose, depression, anxiety, pain self-efficacy or comorbid substance use, among people prescribed opioids for chronic non-cancer pain. This study draws on baseline data collected for the Pain and Opioids IN Treatment (POINT) study and utilises data from 962 interviews and medication diaries. The POINT study is national prospective cohort of people with chronic non-cancer pain prescribed opioids. Participants were recruited from randomly selected pharmacies across Australia. Sixty-three per cent of the participants had used paracetamol in the past week (95% CI = 59.7-65.8). Among the paracetamol users 22% (95% CI = 19.3-24.6) had used paracetamol/opioid combination analgesics and 4.8% (95% CI = 3.6-6.3) had used paracetamol above the recommended maximum daily dose (i.e. > 4000 mg/day). Following binomial logistic regression (χ(2) = 25.98, df = 10, p = 0.004), people who had taken above the recommended maximum daily dose were less likely to have low income (AOR = 0.52, 95% CI = 0.27-0.99), more likely to use paracetamol/opioid combination analgesics (AOR = 2.01, 95% CI = 1.02-3.98) and more likely to take a higher opioid dose (AOR = 1.00, 95% CI = 1.00-1.01). The majority of people with chronic non-cancer pain prescribed opioids report using paracetamol appropriately. High income, use of paracetamol/opioid combination analgesics and higher opioid dose were independently associated with paracetamol use above the recommended maximum daily dose. © 2015 John Wiley & Sons Ltd.