Science.gov

Sample records for cord white matter

  1. Brain White Matter Impairment in Patients with Spinal Cord Injury

    PubMed Central

    Zheng, Weimin; Chen, Qian; Chen, Xin; Wan, Lu; Qin, Wen; Qi, Zhigang; Li, Kuncheng

    2017-01-01

    It remains unknown whether spinal cord injury (SCI) could indirectly impair or reshape the white matter (WM) of human brain and whether these changes are correlated with injury severity, duration, or clinical performance. We choose tract-based spatial statistics (TBSS) to investigate the possible changes in whole-brain white matter integrity and their associations with clinical variables in fifteen patients with SCI. Compared with the healthy controls, the patients exhibited significant decreases in WM fractional anisotropy (FA) in the left angular gyrus (AG), right cerebellum (CB), left precentral gyrus (PreCG), left lateral occipital region (LOC), left superior longitudinal fasciculus (SLF), left supramarginal gyrus (SMG), and left postcentral gyrus (PostCG) (p < 0.01, TFCE corrected). No significant differences were found in all diffusion indices between the complete and incomplete SCI. However, significantly negative correlation was shown between the increased radial diffusivity (RD) of left AG and total motor scores (uncorrected p < 0.05). Our findings provide evidence that SCI can cause not only direct degeneration but also transneuronal degeneration of brain WM, and these changes may be irrespective of the injury severity. The affection of left AG on rehabilitation therapies need to be further researched in the future. PMID:28255458

  2. Cervical spondylosis: Evaluation of microstructural changes in spinal cord white matter and gray matter by diffusional kurtosis imaging.

    PubMed

    Hori, Masaaki; Tsutsumi, Satoshi; Yasumoto, Yukimasa; Ito, Masanori; Suzuki, Michimasa; Tanaka, Fumine S; Kyogoku, Shinsuke; Nakamura, Masanobu; Tabuchi, Takashi; Fukunaga, Issei; Suzuki, Yuriko; Kamagata, Koji; Masutani, Yoshitaka; Aoki, Shigeki

    2014-06-01

    We investigated microstructural changes in the spinal cord, separately for white matter and gray matter, in patients with cervical spondylosis by using diffusional kurtosis imaging (DKI). We studied 13 consecutive patients with cervical myelopathy (15 affected sides and 11 unaffected sides). After conventional magnetic resonance (MR) imaging, DKI data were acquired by using a 3T MR imaging scanner. Values for fractional anisotropy (FA), apparent diffusion coefficient (ADC), and mean diffusional kurtosis (MK) were calculated and compared between unaffected and affected spinal cords, separately for white matter and gray matter. Tract-specific analysis of white matter in the lateral funiculus showed no statistical differences between the affected and unaffected sides. In gray matter, only MK was significantly lower in the affected spinal cords than in unaffected spinal cords (0.60±0.18 vs. 0.73±0.13, P=0.0005, Wilcoxon's signed rank test). MK values in the spinal cord may reflect microstructural changes and gray matter damage and can potentially provide more information beyond that obtained with conventional diffusion metrics. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Fluoro-Jade B staining following zymosan microinjection into the spinal cord white matter.

    PubMed

    Saganová, Kamila; Burda, Jozef; Orendácová, Judita; Cízková, Dása; Vanický, Ivo

    2006-01-01

    1. The fluorescein derivate Fluoro-Jade B (FJB), which primarily labels dead or dying neurons, was used to study the acute focal inflammation in the spinal cord white matter. Inflammation was induced by microinjection of the yeast particulate zymosan to evaluate the biological effects of intraspinal macrophages activation without the confounding effects of physical trauma. 2. A single bolus of zymosan (Sigma, 75 nL) was stereotaxically injected at the thoracic level into the lateral white matter of rat spinal cord. A standard Fluoro-Jade B staining protocol was applied to spinal cord sections at 6, 12, 24 h and 2, 4 days postinjection. Neutral Red, NADPH-diaphorase, Iba1-IR, and DAPI staining protocols accomplished examination of the cells participating in the acute inflammatory response. 3. Zymosan caused formation of clearly delineated inflammation lesions localized in the lateral white matter of the spinal cord. Fluoro-Jade B stained cells in the area of inflammation were not observed at 12 h postinjection while mild FJB staining appeared at 24 h and intense staining was observed at 2 and 4 days postinjection. 4. This study shows that the acute response to zymosan-induced inflammation in the rat spinal cord white matter causes a gradual appearance of phagocytic microglia/macrophages and delayed FJB staining of the inflammatory cells. 5. FJB, a reliable marker of dying neurons, is a more universal agent than formerly believed. One possible explanation for the gradual appearance of FJB-stained cells in the area of inflammation is that specific time is required for sufficient levels of proteins and/or myelin debris of axonal origin to appear in the cytoplasm of phagocytic microglia/macrophages.

  4. Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells.

    PubMed

    Li, Jingang; Yawno, Tamara; Sutherland, Amy; Loose, Jan; Nitsos, Ilias; Bischof, Robert; Castillo-Melendez, Margie; McDonald, Courtney A; Wong, Flora Y; Jenkin, Graham; Miller, Suzanne L

    2016-09-01

    Infants born very preterm are at high risk for neurological deficits including cerebral palsy. In this study we assessed the neuroprotective effects of umbilical cord blood cells (UCBCs) and optimal administration timing in a fetal sheep model of preterm brain injury. 50 million allogeneic UCBCs were intravenously administered to fetal sheep (0.7 gestation) at 12h or 5d after acute hypoxia-ischemia (HI) induced by umbilical cord occlusion. The fetal brains were collected at 10d after HI. HI (n=7) was associated with reduced number of oligodendrocytes (Olig2+) and myelin density (CNPase+), and increased density of activated microglia (Iba-1+) in cerebral white matter compared to control fetuses (P<0.05). UCBCs administered at 12h, but not 5d after HI, significantly protected white matter structures and suppressed cerebral inflammation. Activated microglial density showed a correlation with decreasing oligodendrocyte number (P<0.001). HI caused cell death (TUNEL+) in the internal capsule and cell proliferation (Ki-67+) in the subventricular zone compared to control (P<0.05), while UCBCs at 12h or 5d ameliorated these effects. Additionally, UCBCs at 12h induced a significant systemic increase in interleukin-10 at 10d, and reduced oxidative stress (malondialdehyde) following HI (P<0.05). UCBC administration at 12h after HI reduces preterm white matter injury, via anti-inflammatory and antioxidant actions. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  5. A transversely isotropic constitutive model of excised guinea pig spinal cord white matter.

    PubMed

    Galle, Beth; Ouyang, Hui; Shi, Riyi; Nauman, Eric

    2010-10-19

    Narrowing of the spinal canal generates an amalgamation of stresses within the spinal cord parenchyma. The tissue's stress state cannot be quantified experimentally; it must be described using computational methods, such as finite element analysis. The objective of this research was to propose a compressible, transversely isotropic constitutive model, an augmentation of the isotropic Mooney-Rivlin hyperelastic strain energy function, to describe the guinea pig spinal cord white matter. Model parameters were derived from a combination of inverse finite element analysis on transverse compression experiments and least squared error analysis applied to quasi-static longitudinal tensile tests. A comparison of the residual errors between the predicted response and the experimental measurements indicated that the transversely isotropic constitutive law that incorporates an offset stretch reduced the error by a factor of four when compared to other commonly used models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. The Transverse Isotropy of Spinal Cord White Matter Under Dynamic Load.

    PubMed

    Jannesar, Shervin; Nadler, Ben; Sparrey, Carolyn J

    2016-09-01

    The rostral-caudally aligned fiber-reinforced structure of spinal cord white matter (WM) gives rise to transverse isotropy in the material. Stress and strain patterns generated in the spinal cord parenchyma following spinal cord injury (SCI) are multidirectional and dependent on the mechanism of the injury. Our objective was to develop a WM constitutive model that captures the material transverse isotropy under dynamic loading. The WM mechanical behavior was extracted from the published tensile and compressive experiments. Combinations of isotropic and fiber-reinforcing models were examined in a conditional quasi-linear viscoelastic (QLV) formulation to capture the WM mechanical behavior. The effect of WM transverse isotropy on SCI model outcomes was evaluated by simulating a nonhuman primate (NHP) contusion injury experiment. A second-order reduced polynomial hyperelastic energy potential conditionally combined with a quadratic reinforcing function in a four-term Prony series QLV model best captured the WM mechanical behavior (0.89 < R2 < 0.99). WM isotropic and transversely isotropic material models combined with discrete modeling of the pia mater resulted in peak impact forces that matched the experimental outcomes. The transversely isotropic WM with discrete pia mater resulted in maximum principal strain (MPS) distributions which effectively captured the combination of ipsilateral peripheral WM sparing, ipsilateral injury and contralateral sparing, and the rostral/caudal spread of damage observed in in vivo injuries. The results suggest that the WM transverse isotropy could have an important role in correlating tissue damage with mechanical measures and explaining the directional sensitivity of the spinal cord to injury.

  7. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.

    PubMed

    Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien

    2017-04-15

    The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T2(*)-weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T2*-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T2*-weighted data. Results of automatic segmentation on T2*-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter

  8. White matter atlas of the human spinal cord with estimation of partial volume effect.

    PubMed

    Lévy, S; Benhamou, M; Naaman, C; Rainville, P; Callot, V; Cohen-Adad, J

    2015-10-01

    Template-based analysis has proven to be an efficient, objective and reproducible way of extracting relevant information from multi-parametric MRI data. Using common atlases, it is possible to quantify MRI metrics within specific regions without the need for manual segmentation. This method is therefore free from user-bias and amenable to group studies. While template-based analysis is common procedure for the brain, there is currently no atlas of the white matter (WM) spinal pathways. The goals of this study were: (i) to create an atlas of the white matter tracts compatible with the MNI-Poly-AMU template and (ii) to propose methods to quantify metrics within the atlas that account for partial volume effect. The WM atlas was generated by: (i) digitalizing an existing WM atlas from a well-known source (Gray's Anatomy), (ii) registering this atlas to the MNI-Poly-AMU template at the corresponding slice (C4 vertebral level), (iii) propagating the atlas throughout all slices of the template (C1 to T6) using regularized diffeomorphic transformations and (iv) computing partial volume values for each voxel and each tract. Several approaches were implemented and validated to quantify metrics within the atlas, including weighted-average and Gaussian mixture models. Proof-of-concept application was done in five subjects for quantifying magnetization transfer ratio (MTR) in each tract of the atlas. The resulting WM atlas showed consistent topological organization and smooth transitions along the rostro-caudal axis. The median MTR across tracts was 26.2. Significant differences were detected across tracts, vertebral levels and subjects, but not across laterality (right-left). Among the different tested approaches to extract metrics, the maximum a posteriori showed highest performance with respect to noise, inter-tract variability, tract size and partial volume effect. This new WM atlas of the human spinal cord overcomes the biases associated with manual delineation and partial

  9. Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter.

    PubMed

    Vana, Adam C; Li, Shihe; Ribeiro, Rachel; Tchantchou, Flaubert; Zhang, Yumin

    2011-09-01

    Inhibition of phospholipase A(2) (PLA(2)) has recently been found to attenuate the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of multiple sclerosis (MS). However, the protective mechanisms that underlie PLA(2) inhibition are still not well understood. In this study, we found that cytosolic PLA(2) (cPLA(2)) was highly expressed in infiltrating lymphocytes and macrophages/microglia in mouse spinal cord white matter. Although cPLA(2) is also expressed in spinal cord neurons and oligodendrocytes, there were no differences observed in these cell types between EAE and control animals. Arachidonyl trifluoromethyl ketone (AACOCF3), a cPLA(2) inhibitor, significantly reduced the clinical symptoms and inhibited the body weight loss typically found in EAE mice. AACOCF3 also attenuated the loss of mature, myelin producing, oligodendrocytes, and axonal damage in the spinal cord white matter. Nitrotyrosine immunoreactivity, an indicator of peroxynitrite formation, was dramatically increased in EAE mice and attenuated by treatment with AACOCF3. These protective effects were not evident when AA861, an inhibitor of lipoxygenase, was used. In primary cultures of microglia, lipopolysaccharide (LPS) induced an upregulation of cPLA(2), inducible nitric oxide synthase (iNOS) and components of the NADPH oxidase complex, p47phox and p67phox. AACOCF3 significantly attenuated iNOS induction, nitric oxide production and the generation of reactive oxygen species in reactive microglia. Similar to the decomposition catalyst of peroxynitrite, AACOCF3 also blocked oligodendrocyte toxicity induced by reactive microglia. These results suggest that AACOCF3 may prevent oligodendrocyte loss in EAE by attenuating peroxynitrite formation in the spinal cord white matter.

  10. Diffusion tensor imaging of white and grey matter within the spinal cord of normal Beagle dogs: Sub-regional differences of the various diffusion parameters.

    PubMed

    Yoon, Hakyoung; Park, Noh-Won; Ha, Yun-Mi; Kim, Jaehwan; Moon, Won-Jin; Eom, Kidong

    2016-09-01

    Diffusion tensor imaging (DTI) is an advanced diffusion weighted imaging technique that can identify early stage lesions and Wallerian degeneration within the spinal cord; these changes are difficult to recognise on conventional magnetic resonance imaging (MRI). The only DTI parameters previously investigated in dogs are fractional anisotropy and mean diffusivity (MD). The aim of this study was to evaluate multiple DTI parameters in sub-regional areas of the spinal cord in normal Beagles. All imaging data were obtained from the lumbar spinal cord (L1-L3) of ten normal dogs using a 3 Tesla MRI scanner. Transverse multi-shot echo planar imaging sequences (b values = 0 and 800 s/mm(2); 12 directions) were used for DTI. Regions of interest were selected from sub-regions of the white and grey matter, and from the whole spinal cord, in the transverse plane in all DTI maps. The DTI parameters in spinal cord sub-regions in the transverse plane were significantly different amongst the white matter, grey matter and whole spinal cord (P < 0.05 for all DTI parameters except MD), as well as between white matter sub-regions (P < 0.05 for most DTI parameters except radial diffusivity, MD and planar index). DTI-based sub-regional analysis of white and grey matter may be useful for regional evaluation of the dog spinal cord.

  11. Role of RyRs and IP3 receptors after traumatic injury to spinal cord white matter.

    PubMed

    Thorell, W E; Leibrock, L G; Agrawal, S K

    2002-03-01

    Calcium influx and elevation of intracellular free calcium (Ca2+i), with subsequent activation of degenerative enzymes is hypothesized to cause cell injury and death after trauma. We examined the effects of traumatic compressive injury on (Ca2+)i dynamics in spinal cord white matter. We conducted electrophysiological studies with ryanodine and inositol (1,4,5)-triphosphate (IP3) receptor agonists and antagonists in an in vitro model of spinal cord injury (SCI). A 25-30-mm length of dorsal column was isolated from the spinal cord of adult rats, pinned in an in vitro recording chamber (37 degrees C) and injured with a modified clip (2-g closing force) for 15 sec. The functional integrity of the dorsal column was monitored electrophysiologically by quantitatively measuring the compound action potential (CAP) with glass microelectrodes. The CAP decreased to 55.2+/-6.8% of control (p < 0.05) after spinal cord injury (SCI). Chelation of Ca2+i with BAPTA-AM (a high-affinity calcium chelator) promoted significantly greater recovery of CAP amplitude (83.2+/-4.2% of control; p < 0.05) after injury. Infusion of caffeine (1 and 10 mM) exacerbated CAP amplitude decline (45.1+/-5.9% of control; p < 0.05; 44.6+/-3.1% of control; p < 0.05) postinjury. Blockade of Ca2+i release through ryanodine-sensitive receptors (RyRs) with dantrolene (10 microM) and ryanodine (50 microM), conferred significant (p < 0.05) improvement in CAP amplitude after injury. On the other hand, blockade of Ca2+i with inositol (1,4,5)-triphosphate receptor (IP3Rs) blocker 2APB (10 microM) also conferred significant improvement in CAP amplitude after injury (82.9+/-7.9%; p < 0.05). In conclusion, the injurious effects of Ca2+i in traumatic central nervous system (CNS) white matter injury appear to be mediated both by RyRs and through IP3Rs calcium-induced calcium release receptors (CICRs).

  12. Progesterone Reduces Secondary Damage, Preserves White Matter, and Improves Locomotor Outcome after Spinal Cord Contusion

    PubMed Central

    Garcia-Ovejero, Daniel; González, Susana; Paniagua-Torija, Beatriz; Lima, Analía; Molina-Holgado, Eduardo; De Nicola, Alejandro F.

    2014-01-01

    Abstract Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury. PMID:24460450

  13. The mitochondrial uncoupling agent 2,4-dinitrophenol improves mitochondrial function, attenuates oxidative damage, and increases white matter sparing in the contused spinal cord.

    PubMed

    Jin, Ying; McEwen, Melanie L; Nottingham, Stephanie A; Maragos, William F; Dragicevic, Natasha B; Sullivan, Patrick G; Springer, Joe E

    2004-10-01

    The purpose of this study was to investigate the potential neuroprotective efficacy of the mitochondrial uncoupler 2,4-dinitrophenol (DNP) in rats following a mild to moderate spinal cord contusion injury. Animals received intraperitoneal injections of vehicle (DMSO) or 5 mg/mL of DNP prior to injury. Twenty-four hours following surgery, mitochondrial function was assessed in mitochondria isolated from spinal cord synaptosomes. In addition, synaptosomes were used to measure indicators of reactive oxygen species formation, lipid peroxidation, and protein oxidation. Relative to vehicle-treated animals, pretreatment with DNP maintained mitochondrial bioenergetics and significantly decreased reactive oxygen species levels, lipid peroxidation, and protein carbonyl content following spinal cord injury. Furthermore, pretreatment with DNP significantly increased the amount of remaining white matter at the injury epicenter 6 weeks after injury. These results indicate that treatment with mitochondrial uncoupling agents may provide a novel approach for the treatment of secondary injury following spinal cord contusion.

  14. Systematic analysis of axonal damage and inflammatory response in different white matter tracts of acutely injured rat spinal cord.

    PubMed

    Gomes-Leal, W; Corkill, D J; Picanço-Diniz, C W

    2005-12-20

    The mechanisms of white matter (WM) damage during secondary degeneration are a fundamental issue in the pathophysiology of central nervous system (CNS) diseases. Our main goal was to describe the pattern of an acute inflammatory response and secondary damage to axons in different WM tracts of acutely injured rat spinal cord. Adult rats were deeply anesthetized and injected with 20 nmol of NMDA into the spinal cord ventral horn on T7. Animals were perfused after survival times of 1 day, 3 days and 7 days. Ten micrometer sections were submitted to immunocytochemical analysis for activated macrophages/microglia, neutrophils and damaged axons. There were inflammatory response and progressive tissue destruction of ventral WM (VWM) with formation of microcysts in both VWM and lateral WM (LWM). In the VWM, the number of beta-amyloid precursor protein (beta-APP) end-bulbs increased from 1 day with a peak at 3 days, decreasing by 7 days following the injection. APP end-bulbs were present in the dorsal WM (DWM) at 3 days survival time but were not in the LWM. Electron microscopic analysis revealed different degrees of myelin disruption and axonal pathology in the vacuolated WM up to 14 mm along the rostrocaudal axis. Quantitative analysis revealed a significant loss of medium and large axons (P < 0.05), but not of small axons (P > 0.05). Our results suggest that bystander axonal damage and myelin vacuolation are important secondary component of the pathology of WM tracts following rat SCI. Further studies are needed to understand the mechanisms of these pathological events.

  15. Characterization of spinal cord white matter by suppressing signal from hindered space. A Monte Carlo simulation and an ex vivo ultrahigh-b diffusion-weighted imaging study

    NASA Astrophysics Data System (ADS)

    Sapkota, Nabraj; Yoon, Sook; Thapa, Bijaya; Lee, YouJung; Bisson, Erica F.; Bowman, Beth M.; Miller, Scott C.; Shah, Lubdha M.; Rose, John W.; Jeong, Eun-Kee

    2016-11-01

    Signal measured from white matter in diffusion-weighted imaging is difficult to interpret because of the heterogeneous structure of white matter. Characterization of the white matter will be straightforward if the signal contributed from the hindered space is suppressed and purely restricted signal is analyzed. In this study, a Monte Carlo simulation (MCS) of water diffusion in white matter was performed to understand the behavior of the diffusion-weighted signal in white matter. The signal originating from the hindered space of an excised pig cervical spinal cord white matter was suppressed using the ultrahigh-b radial diffusion-weighted imaging. A light microscopy image of a section of white matter was obtained from the excised pig cervical spinal cord for the MCS. The radial diffusion-weighted signals originating from each of the intra-axonal, extra-axonal, and total spaces were studied using the MCS. The MCS predicted that the radial diffusion-weighted signal remains almost constant in the intra-axonal space and decreases gradually to about 2% of its initial value in the extra-axonal space when the b-value is increased to 30,000 s /mm2 . The MCS also revealed that the diffusion-weighted signal for a b-value greater than 20,000 s /mm2 is mostly from the intra-axonal space. The decaying behavior of the signal-b curve obtained from ultrahigh-b diffusion-weighted imaging (bmax ∼ 30,000 s /mm2) of the excised pig cord was very similar to the decaying behavior of the total signal-b curve synthesized in the MCS. A mono-exponential plus constant fitting of the signal-b curve obtained from a white matter pixel estimated the values of constant fraction and apparent diffusion coefficient of decaying fraction as 0.32 ± 0.05 and (0.16 ± 0.01) × 10-3 mm2/s, respectively, which agreed well with the results of the MCS. The signal measured in the ultrahigh-b region (b > 20,000 s/mm2) is mostly from the restricted (intra-axonal) space. Integrity and intactness of the axons

  16. Characterization of spinal cord white matter by suppressing signal from hindered space. A Monte Carlo simulation and an ex vivo ultrahigh-b diffusion-weighted imaging study.

    PubMed

    Sapkota, Nabraj; Yoon, Sook; Thapa, Bijaya; Lee, YouJung; Bisson, Erica F; Bowman, Beth M; Miller, Scott C; Shah, Lubdha M; Rose, John W; Jeong, Eun-Kee

    2016-11-01

    Signal measured from white matter in diffusion-weighted imaging is difficult to interpret because of the heterogeneous structure of white matter. Characterization of the white matter will be straightforward if the signal contributed from the hindered space is suppressed and purely restricted signal is analyzed. In this study, a Monte Carlo simulation (MCS) of water diffusion in white matter was performed to understand the behavior of the diffusion-weighted signal in white matter. The signal originating from the hindered space of an excised pig cervical spinal cord white matter was suppressed using the ultrahigh-b radial diffusion-weighted imaging. A light microscopy image of a section of white matter was obtained from the excised pig cervical spinal cord for the MCS. The radial diffusion-weighted signals originating from each of the intra-axonal, extra-axonal, and total spaces were studied using the MCS. The MCS predicted that the radial diffusion-weighted signal remains almost constant in the intra-axonal space and decreases gradually to about 2% of its initial value in the extra-axonal space when the b-value is increased to 30,000s/mm(2). The MCS also revealed that the diffusion-weighted signal for a b-value greater than 20,000s/mm(2) is mostly from the intra-axonal space. The decaying behavior of the signal-b curve obtained from ultrahigh-b diffusion-weighted imaging (bmax∼30,000s/mm(2)) of the excised pig cord was very similar to the decaying behavior of the total signal-b curve synthesized in the MCS. A mono-exponential plus constant fitting of the signal-b curve obtained from a white matter pixel estimated the values of constant fraction and apparent diffusion coefficient of decaying fraction as 0.32±0.05 and (0.16±0.01)×10(-3)mm(2)/s, respectively, which agreed well with the results of the MCS. The signal measured in the ultrahigh-b region (b>20,000s/mm(2)) is mostly from the restricted (intra-axonal) space. Integrity and intactness of the axons can be

  17. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats

    PubMed Central

    Nout-Lomas, Yvette S.; Wendland, Michael F.; Mukherjee, Pratik; Huie, J. Russell; Hess, Christopher P.; Mabray, Marc C.; Bresnahan, Jacqueline C.; Beattie, Michael S.

    2016-01-01

    Abstract Alterations in magnetic resonance imaging (MRI)–derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful

  18. Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males

    PubMed Central

    Datto, Jeffrey P.; Bastidas, Johana C.; Miller, Nicole L.; Shah, Anna K.; Arheart, Kristopher L.; Marcillo, Alexander E.; Dietrich, W. Dalton

    2015-01-01

    Abstract The possibility of a gender-related difference in recovery after spinal cord injury (SCI) remains a controversial subject. Current empirical animal research lacks sizable test groups to definitively determine whether significant differences exist. Evaluating locomotor recovery variances between sexes following a precise, clinically relevant spinal cord contusion model can provide valuable insight into a possible gender-related advantage in outcome post-SCI. In the current study, we hypothesized that by employing larger sample sizes in a reproducible contusive SCI paradigm, subtle distinctions in locomotor recovery between sexes, if they exist, would be elucidated through a broad range of behavioral tests. During 13 weeks of functional assessment after a thoracic (T8) contusive SCI in rat, significant differences owing to gender existed for the Basso, Beattie, and Bresnahan score and CatWalk hindlimb swing, support four, and single stance analyses. Significant differences in locomotor performance were noticeable as early as 4 weeks post-SCI. Stereological tissue-volume analysis determined that females, more so than males, also exhibited greater volumes of preserved gray and white matter within the injured cord segment as well as more spared ventral white matter area at the center of the lesion. The stereological tissue analysis differences favoring females directly correlated with the female rats' greater functional improvement observed at endpoint. PMID:25715192

  19. Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males.

    PubMed

    Datto, Jeffrey P; Bastidas, Johana C; Miller, Nicole L; Shah, Anna K; Arheart, Kristopher L; Marcillo, Alexander E; Dietrich, W Dalton; Pearse, Damien D

    2015-08-01

    The possibility of a gender-related difference in recovery after spinal cord injury (SCI) remains a controversial subject. Current empirical animal research lacks sizable test groups to definitively determine whether significant differences exist. Evaluating locomotor recovery variances between sexes following a precise, clinically relevant spinal cord contusion model can provide valuable insight into a possible gender-related advantage in outcome post-SCI. In the current study, we hypothesized that by employing larger sample sizes in a reproducible contusive SCI paradigm, subtle distinctions in locomotor recovery between sexes, if they exist, would be elucidated through a broad range of behavioral tests. During 13 weeks of functional assessment after a thoracic (T8) contusive SCI in rat, significant differences owing to gender existed for the Basso, Beattie, and Bresnahan score and CatWalk hindlimb swing, support four, and single stance analyses. Significant differences in locomotor performance were noticeable as early as 4 weeks post-SCI. Stereological tissue-volume analysis determined that females, more so than males, also exhibited greater volumes of preserved gray and white matter within the injured cord segment as well as more spared ventral white matter area at the center of the lesion. The stereological tissue analysis differences favoring females directly correlated with the female rats' greater functional improvement observed at endpoint.

  20. 2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times.

    PubMed

    Papinutto, Nico; Schlaeger, Regina; Panara, Valentina; Caverzasi, Eduardo; Ahn, Sinyeob; Johnson, Kevin J; Zhu, Alyssa H; Stern, William A; Laub, Gerhard; Hauser, Stephen L; Henry, Roland G

    2015-09-01

    To present and assess a procedure for measurement of spinal cord total cross-sectional areas (TCA) and gray matter (GM) areas based on phase-sensitive inversion recovery imaging (PSIR). In vivo assessment of spinal cord GM and white matter (WM) could become pivotal to study various neurological diseases, but it is challenging because of insufficient GM/WM contrast provided by conventional magnetic resonance imaging (MRI). We acquired 2D PSIR images at 3T at each disc level of the spinal axis in 10 healthy subjects and measured TCA, cord diameters, WM and GM areas, and GM area/TCA ratios. Second, we investigated 32 healthy subjects at four selected levels (C2-C3, C3-C4, T8-T9, T9-T10, total acquisition time <8 min) and generated normative reference values of TCA and GM areas. We assessed test-retest, intra- and interoperator reliability of the acquisition strategy, and measurement steps. The measurement procedure based on 2D PSIR imaging allowed TCA and GM area assessments along the entire spinal cord axis. The tests we performed revealed high test-retest/intraoperator reliability (mean coefficient of variation [COV] at C2-C3: TCA = 0.41%, GM area = 2.75%) and interoperator reliability of the measurements (mean COV on the 4 levels: TCA = 0.44%, GM area = 4.20%; mean intraclass correlation coefficient: TCA = 0.998, GM area = 0.906). 2D PSIR allows reliable in vivo assessment of spinal cord TCA, GM, and WM areas in clinically feasible acquisition times. The area measurements presented here are in agreement with previous MRI and postmortem studies. © 2014 Wiley Periodicals, Inc.

  1. Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter.

    PubMed

    Sun, Wenjing; Smith, Daniel; Fu, Yan; Cheng, Ji-Xin; Bryn, Steven; Borgens, Richard; Shi, Riyi

    2010-01-01

    We have demonstrated that 4-aminopyridine-3-methanol (4-AP-3-MeOH), a 4-aminopyridine derivative, significantly restores axonal conduction in stretched spinal cord white-matter strips and shows no preference in restoring large and small axons. This compound is 10 times more potent when compared with 4-AP and other derivatives in restoring axonal conduction. Unlike 4-AP, 4-AP-3-MeOH can restore axonal conduction without changing axonal electrophysiological properties. In addition, we also have confirmed that 4-AP-3-MeOH is indeed an effective blocker of I(A) based on patch-clamp studies using guinea pig dorsal root ganglia cells. Furthermore, we have also provided the critical evidence to confirm the unmasking of potassium channels following mechanical injury. Taken together, our data further supports and implicates the role of potassium channels in conduction loss and its therapeutic value as an effective target for intervention to restore function in spinal cord trauma. Furthermore, due to its high potency and possible low side effect of impacting electrophysiological properties, 4-AP-3-MeOH is perhaps the optimal choice in reversing conduction block in spinal cord injury compared with other derivatives previously reported from this group.

  2. NG2+ Progenitors Derived From Embryonic Stem Cells Penetrate Glial Scar and Promote Axonal Outgrowth Into White Matter After Spinal Cord Injury

    PubMed Central

    Stewart, Todd J.; Qu, Yun; Horn, Kevin; Liu, Su; Li, Qun; Silver, Jerry; McDonald, John W.

    2015-01-01

    The glial scar resulting from spinal cord injury is rich in chondroitin sulfate proteoglycan (CSPG), a formidable barrier to axonal regeneration. We explored the possibility of breaching that barrier by first examining the scar in a functional in vitro model. We found that embryonic stem cell-derived neural lineage cells (ESNLCs) with prominent expression of nerve glial antigen 2 (NG2) survived, passed through an increasingly inhibitory gradient of CSPG, and expressed matrix metalloproteinase 9 (MMP-9) at the appropriate stage of their development. Outgrowth of axons from ESNLCs followed because the migrating cells sculpted pathways in which CSPG was degraded. The degradative mechanism involved MMP-9 but not MMP-2. To confirm these results in vivo, we transplanted ESNLCs directly into the cavity of a contused spinal cord 9 days after injury. A week later, ESNLCs survived and were expressing both NG2 and MMP-9. Their axons had grown through long distances (>10 mm), although they preferred to traverse white rather than gray matter. These data are consistent with the concept that expression of inhibitory CSPG within the injury scar is an important impediment to regeneration but that NG2+ progenitors derived from ESNLCs can modify the microenvironment to allow axons to grow through the barrier. This beneficial action may be partly due to developmental expression of MMP-9. We conclude that it might eventually be possible to encourage axonal regeneration in the human spinal cord by transplanting ESNLCs or other cells that express NG2. PMID:25713464

  3. Spinal cord grey matter segmentation challenge.

    PubMed

    Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien

    2017-03-07

    An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication.

  4. Cerebral White Matter

    PubMed Central

    Schmahmann, Jeremy D.; Smith, Eric E.; Eichler, Florian S.; Filley, Christopher M.

    2013-01-01

    Lesions of the cerebral white matter (WM) result in focal neurobehavioral syndromes, neuropsychiatric phenomena, and dementia. The cerebral WM contains fiber pathways that convey axons linking cerebral cortical areas with each other and with subcortical structures, facilitating the distributed neural circuits that subserve sensorimotor function, intellect, and emotion. Recent neuroanatomical investigations reveal that these neural circuits are topographically linked by five groupings of fiber tracts emanating from every neocortical area: (1) cortico-cortical association fibers; (2) corticostriatal fibers; (3) commissural fibers; and cortico-subcortical pathways to (4) thalamus and (5) pontocerebellar system, brain stem, and/or spinal cord. Lesions of association fibers prevent communication between cortical areas engaged in different domains of behavior. Lesions of subcortical structures or projection/striatal fibers disrupt the contribution of subcortical nodes to behavior. Disconnection syndromes thus result from lesions of the cerebral cortex, subcortical structures, and WM tracts that link the nodes that make up the distributed circuits. The nature and the severity of the clinical manifestations of WM lesions are determined, in large part, by the location of the pathology: discrete neurological and neuropsychiatric symptoms result from focal WM lesions, whereas cognitive impairment across multiple domains—WM dementia—occurs in the setting of diffuse WM disease. We present a detailed review of the conditions affecting WM that produce these neurobehavioral syndromes, and consider the pathophysiology, clinical effects, and broad significance of the effects of aging and vascular compromise on cerebral WM, in an attempt to help further the understanding, diagnosis, and treatment of these disorders. PMID:18990132

  5. White matter of the brain

    MedlinePlus

    White matter is found in the deeper tissues of the brain (subcortical). It contains nerve fibers (axons), which are ... or covering called myelin. Myelin gives the white matter its color. It also protects the nerve fibers ...

  6. Properties of convective delivery in spinal cord gray matter: laboratory investigation and computational simulations.

    PubMed

    Endo, Toshiki; Fujii, Yushi; Sugiyama, Shin-Ichiro; Zhang, Rong; Ogita, Shogo; Funamoto, Kenichi; Saito, Ryuta; Tominaga, Teiji

    2015-10-30

    OBJECT Convection-enhanced delivery (CED) is a method for distributing small and large molecules locally into the interstitial space of the spinal cord. Delivering these molecules to the spinal cord is otherwise difficult due to the blood-spinal cord barrier. Previous research has proven the efficacy of CED for delivering molecules over long distances along the white matter tracts in the spinal cord. Conversely, the characteristics of CED for delivering molecules to the gray matter of the spinal cord remain unknown. The purpose of this study was to reveal regional distribution of macromolecules in the gray and white matter of the spinal cord with special attention to the differences between the gray and white matter. METHODS Sixteen rats (F344) underwent Evans blue dye CED to either the white matter (dorsal column, 8 rats) or the gray matter (ventral horn, 8 rats) of the spinal cord. The rates and total volumes of infusion were 0.2 μl/min and 2.0 μl, respectively. The infused volume of distribution was visualized and quantified histologically. Computational models of the rat spinal cord were also obtained to perform CED simulations in the white and gray matter. RESULTS The ratio of the volume of distribution to the volume of infusion in the gray matter of the spinal cord was 3.60 ± 0.69, which was comparable to that of the white matter (3.05 ± 0.88). When molecules were injected into the white matter, drugs remained in the white matter tract and rarely infused into the adjacent gray matter. Conversely, when drugs were injected into the gray matter, they infiltrated laterally into the white matter tract and traveled longitudinally and preferably along the white matter. In the infusion center, the areas were larger in the gray matter CED than in the white matter (Mann-Whitney U-test, p < 0.01). In computational simulations, the aforementioned characteristics of CED to the gray and white matter were reaffirmed. CONCLUSIONS In the spinal cord, the gray and white

  7. Modeling white matter microstructure

    PubMed Central

    Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Summary Quantitative magnetic resonance imaging can be combined with advanced biophysical models to measure microstructural features of white matter. Non-invasive microstructural imaging has the potential to revolutionize neuroscience, and acquiring these measures in clinically feasible times would greatly improve patient monitoring and clinical studies of drug efficacy. However, a good understanding of microstructural imaging techniques is essential to set realistic expectations and to prevent over-interpretation of results. This review explains the methodology behind microstructural modeling and imaging, and gives an overview of the breakthroughs and challenges associated with it. PMID:28072382

  8. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age.

    PubMed

    Taso, Manuel; Le Troter, Arnaud; Sdika, Michaël; Cohen-Adad, Julien; Arnoux, Pierre-Jean; Guye, Maxime; Ranjeva, Jean-Philippe; Callot, Virginie

    2015-08-15

    Recently, a T2*-weighted template and probabilistic atlas of the white and gray matter (WM, GM) of the spinal cord (SC) have been reported. Such template can be used as tissue-priors for automated WM/GM segmentation but can also provide a common reference and normalized space for group studies. Here, a new template has been created (AMU40), and accuracy of automatic template-based WM/GM segmentation was quantified. The feasibility of tensor-based morphometry (TBM) for studying voxel-wise morphological differences of SC between young and elderly healthy volunteers was also investigated. Sixty-five healthy subjects were divided into young (n=40, age<40years old, mean age 28±5years old) and elderly (n=25, age>50years old, mean age 57±5years old) groups and scanned at 3T using an axial high-resolution T2*-weighted sequence. Inhomogeneity correction and affine intensity normalization of the SC and cerebrospinal fluid (CSF) signal intensities across slices were performed prior to both construction of the AMU40 template and WM/GM template-based segmentation. The segmentation was achieved using non-linear spatial normalization of T2*-w MR images to the AMU40 template. Validation of WM/GM segmentations was performed with a leave-one-out procedure by calculating DICE similarity coefficients between manual and automated WM/GM masks. SC morphological differences between young and elderly healthy volunteers were assessed using the same non-linear spatial normalization of the subjects' MRI to a common template, derivation of the Jacobian determinant maps from the warping fields, and a TBM analysis. Results demonstrated robust WM/GM automated segmentation, with mean DICE values greater than 0.8. Concerning the TBM analysis, an anterior GM atrophy was highlighted in elderly volunteers, demonstrating thereby, for the first time, the feasibility of studying local structural alterations in the SC using tensor-based morphometry. This holds great promise for studies of morphological

  9. White matter plasticity in adulthood.

    PubMed

    Wang, S; Young, K M

    2014-09-12

    CNS white matter is subject to a novel form of neural plasticity which has been termed "myelin plasticity". It is well established that oligodendrocyte generation and the addition of new myelin internodes continue throughout normal adulthood. These new myelin internodes maybe required for the de novo myelination of previously unmyelinated axons, myelin sheath replacement, or even myelin remodeling. Each process could alter axonal conduction velocity, but to what end? We review the changes that occur within the white matter over the lifetime, the known regulators and mediators of white matter plasticity in the mature CNS, and the physiological role this plasticity may play in CNS function.

  10. Bootstrapping white matter segmentation, Eve++

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew; Hinton, Kendra E.; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M.; Landman, Bennett A.

    2015-03-01

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

  11. Poro-elastic modeling of Syringomyelia - a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord.

    PubMed

    Støverud, Karen H; Alnæs, Martin; Langtangen, Hans Petter; Haughton, Victor; Mardal, Kent-André

    2016-01-01

    Syringomyelia, fluid-filled cavities within the spinal cord, occurs frequently in association with a Chiari I malformation and produces some of its most severe neurological symptoms. The exact mechanism causing syringomyelia remains unknown. Since syringomyelia occurs frequently in association with obstructed cerebrospinal fluid (CSF) flow, it has been hypothesized that syrinx formation is mechanically driven. In this study we model the spinal cord tissue either as a poro-elastic medium or as a solid linear elastic medium, and simulate the propagation of pressure waves through an anatomically plausible 3D geometry, with boundary conditions based on in vivo CSF pressure measurements. Then various anatomic and tissue properties are modified, resulting in a total of 11 variations of the model that are compared. The results show that an open segment of the central canal and a stiff pia (relative to the cord) both increase the radial pressure gradients and enhance interstitial fluid flow in the central canal. The anterior median fissure, anisotropic permeability of the white matter, and Poisson ratio play minor roles.

  12. Spinal cord gray matter atrophy correlates with multiple sclerosis disability

    PubMed Central

    Schlaeger, Regina; Papinutto, Nico; Panara, Valentina; Bevan, Carolyn; Lobach, Iryna V.; Bucci, Monica; Caverzasi, Eduardo; Gelfand, Jeffrey M.; Green, Ari J.; Jordan, Kesshi M.; Stern, William A.; von Büdingen, H.-Christian; Waubant, Emmanuelle; Zhu, Alyssa H.; Goodin, Douglas S.; Cree, Bruce A. C.; Hauser, Stephen L.; Henry, Roland G.

    2015-01-01

    Objective In multiple sclerosis (MS) cerebral gray matter (GM) atrophy correlates more strongly than white matter (WM) atrophy with disability. The corresponding relationships in the spinal cord (SC) are unknown due to technical limitations in assessing SCGM atrophy. Using phase sensitive inversion recovery (PSIR) MRI, we determined the association of the SCGM and SCWM areas with MS disability and disease type. Methods 113 MS patients and 20 healthy controls were examined at 3T with a PSIR sequence acquired at the C2/C3 disc level. Two independent, clinically-masked readers measured the cord WM and GM areas. Correlations between cord areas and Expanded Disability Status Score (EDSS) were determined. Differences in areas between groups were assessed with age and sex as covariates. Results Relapsing (R) MS patients showed smaller SCGM areas than age and sex matched controls (p=0.008) without significant differences in SCWM areas. Progressive MS patients showed smaller SCGM and SCWM areas compared to RMS patients (all p≤0.004). SCGM, SCWM, and whole cord areas inversely correlated with EDSS (rho: −0.60, −0.32, −0.42, respectively; all p≤0.001). SCGM area was the strongest correlate of disability in multivariate models including brain GM and WM volumes, FLAIR lesion load, T1-lesion load, SCWM area, number of spinal cord T2 lesions, age, sex, disease duration. Brain and spinal GM independently contributed to EDSS. Interpretation SCGM atrophy is detectable in-vivo in absence of WM atrophy in RMS. It is more pronounced in progressive than RMS and contributes more to patient disability than spinal cord WM or brain GM atrophy. PMID:25087920

  13. Imaging White Matter in Human Brainstem

    PubMed Central

    Ford, Anastasia A.; Colon-Perez, Luis; Triplett, William T.; Gullett, Joseph M.; Mareci, Thomas H.; FitzGerald, David B.

    2013-01-01

    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI

  14. White matter injury in ischemic stroke.

    PubMed

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2016-06-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.

  15. ADAM-17 and TIMP3 protein and mRNA expression in spinal cord white matter of rats with acute experimental autoimmune encephalomyelitis.

    PubMed

    Plumb, Jonnie; Cross, Alison K; Surr, Jessica; Haddock, Gail; Smith, Terence; Bunning, Rowena A D; Woodroofe, M Nicola

    2005-07-01

    Tumour necrosis factor (TNF) is a major immunomodulatory and proinflammatory cytokine implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). ADAM-17 cleaves membrane-bound TNF into its soluble form. The distribution and level of ADAM-17 expression within spinal cords of Lewis rats with EAE was investigated. ADAM-17 was associated with endothelial cells in the naïve and pre-disease spinal cords. In peak disease astrocytic and inflammatory cells expressed ADAM-17. Upregulation of ADAM-17 mRNA expression was coupled with a decrease in mRNA levels of its inhibitor TIMP3 suggesting a role for ADAM-17 in EAE pathogenesis.

  16. White matter and cognition: making the connection.

    PubMed

    Filley, Christopher M; Fields, R Douglas

    2016-11-01

    Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society.

  17. Microvasculature of the human cerebral white matter: arteries of the deep white matter.

    PubMed

    Nonaka, Hiroko; Akima, Michio; Hatori, Tsutomu; Nagayama, Tadashi; Zhang, Zean; Ihara, Fumie

    2003-06-01

    The vascular architecture of the human cerebral deep white matter was studied using soft X-ray and diaphanized specimens, achieved by intra-arterial injection of barium and vascular stain respectively, and also by electron microscopic examination of the corrosion cast of arteries in normal adult brains. The deep white matter arteries passed through the cerebral cortex with a few branches to the cortex and ran straight through the white matter. The arteries concentrated ventriculopetally to the white matter around the lateral ventricle. Anastomoses were noted around the ventricular wall at the terminals of the deep white matter arteries. No centrifugal branches irrigating the periventricular white matter from the lenticulo-striate arteries were observed in the present study. The presence of anastomoses among the terminal branches of deep white matter arteries protects against ischemic change or infarction in this area from an occlusion of a single deep white matter artery. This may lead to development of terminal zone infarction from ischemia or vascular diseases, affecting multiple deep white matter arteries. The subcortical and deep white matter arteries had thick adventitial sheaths and large adventitial spaces in the white matter but not in the cortex. The presence or absence of the adventitial space is regarded as another characteristic difference between the arteries in the white matter and cortex. This difference may influence pathological changes in vascular lesions in these respective areas.

  18. Spinal cord gray matter atrophy correlates with multiple sclerosis disability.

    PubMed

    Schlaeger, Regina; Papinutto, Nico; Panara, Valentina; Bevan, Carolyn; Lobach, Iryna V; Bucci, Monica; Caverzasi, Eduardo; Gelfand, Jeffrey M; Green, Ari J; Jordan, Kesshi M; Stern, William A; von Büdingen, H-Christian; Waubant, Emmanuelle; Zhu, Alyssa H; Goodin, Douglas S; Cree, Bruce A C; Hauser, Stephen L; Henry, Roland G

    2014-10-01

    In multiple sclerosis (MS), cerebral gray matter (GM) atrophy correlates more strongly than white matter (WM) atrophy with disability. The corresponding relationships in the spinal cord (SC) are unknown due to technical limitations in assessing SC GM atrophy. Using phase-sensitive inversion recovery (PSIR) magnetic resonance imaging, we determined the association of the SC GM and SC WM areas with MS disability and disease type. A total of 113 MS patients and 20 healthy controls were examined at 3T with a PSIR sequence acquired at the C2/C3 disk level. Two independent, clinically masked readers measured the cord WM and GM areas. Correlations between cord areas and Expanded Disability Status Score (EDSS) were determined. Differences in areas between groups were assessed with age and sex as covariates. Relapsing MS (RMS) patients showed smaller SC GM areas than age- and sex-matched controls (p = 0.008) without significant differences in SC WM areas. Progressive MS patients showed smaller SC GM and SC WM areas compared to RMS patients (all p ≤ 0.004). SC GM, SC WM, and whole cord areas inversely correlated with EDSS (rho: -0.60, -0.32, -0.42, respectively; all p ≤ 0.001). The SC GM area was the strongest correlate of disability in multivariate models including brain GM and WM volumes, fluid-attenuated inversion recovery lesion load, T1 lesion load, SC WM area, number of SC T2 lesions, age, sex, and disease duration. Brain and spinal GM independently contributed to EDSS. SC GM atrophy is detectable in vivo in the absence of WM atrophy in RMS. It is more pronounced in progressive MS than RMS and contributes more to patient disability than SC WM or brain GM atrophy. © 2014 American Neurological Association.

  19. Early and extensive spinal white matter involvement in neuromyelitis optica.

    PubMed

    Hayashida, Shotaro; Masaki, Katsuhisa; Yonekawa, Tomomi; Suzuki, Satoshi O; Hiwatashi, Akio; Matsushita, Takuya; Watanabe, Mitsuru; Yamasaki, Ryo; Suenaga, Toshihiko; Iwaki, Toru; Murai, Hiroyuki; Kira, Jun-Ichi

    2017-05-01

    Studies of longitudinally extensive spinal cord lesions (LESCLs) in neuromyelitis optica (NMO) have focused on gray matter, where the relevant antigen, aquaporin-4 (AQP4), is abundant. Because spinal white matter pathology in NMO is not well characterized, we aimed to clarify spinal white matter pathology of LESCLs in NMO. We analyzed 50 spinal cord lesions from eleven autopsied NMO/NMO spectrum disorder (NMOSD) cases. We also evaluated LESCLs with three or fewer spinal cord attacks by 3-tesla MRI in 15 AQP4 antibody-positive NMO/NMOSD patients and in 15 AQP4 antibody-negative multiple sclerosis (MS) patients. Pathological analysis revealed seven cases of AQP4 loss and four predominantly demyelinating cases. Forty-four lesions from AQP4 loss cases involved significantly more frequently posterior columns (PC) and lateral columns (LC) than anterior columns (AC) (59.1%, 63.6%, and 34.1%, respectively). The posterior horn (PH), central portion (CP), and anterior horn (AH) were similarly affected (38.6%, 36.4% and 31.8%, respectively). Isolated perivascular inflammatory lesions with selective loss of astrocyte endfoot proteins, AQP4 and connexin 43, were present only in white matter and were more frequent in PC and LC than in AC (22.7%, 29.5% and 2.3%, P(corr)  = 0.020, and P(corr)  = 0.004, respectively). MRI indicated LESCLs more frequently affected PC and LC than AC in anti-AQP4 antibody-seropositive NMO/NMOSD (86.7%, 60.0% and 20.0%, P(corr)  = 0.005, and P(corr)  = 0.043, respectively) and AQP4 antibody-seronegative MS patients (86.7%, 73.3% and 33.3%, P(corr)  = 0.063, and P(corr)  = 0.043, respectively). PH, CP and AH were involved in 93.3%, 86.7% and 73.3% of seropositive patients, respectively, and in 53.3%, 60.0% and 40.0% of seronegative patients, respectively. NMO frequently and extensively affects spinal white matter in addition to central gray matter, especially in PC and LC, where isolated perivascular lesions with astrocyte

  20. Astrocytes and Developmental White Matter Disorders

    ERIC Educational Resources Information Center

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  1. Astrocytes and Developmental White Matter Disorders

    ERIC Educational Resources Information Center

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  2. Development of white matter and reading skills.

    PubMed

    Yeatman, Jason D; Dougherty, Robert F; Ben-Shachar, Michal; Wandell, Brian A

    2012-10-30

    White matter tissue properties are highly correlated with reading proficiency; we would like to have a model that relates the dynamics of an individual's white matter development to their acquisition of skilled reading. The development of cerebral white matter involves multiple biological processes, and the balance between these processes differs between individuals. Cross-sectional measures of white matter mask the interplay between these processes and their connection to an individual's cognitive development. Hence, we performed a longitudinal study to measure white-matter development (diffusion-weighted imaging) and reading development (behavioral testing) in individual children (age 7-15 y). The pattern of white-matter development differed significantly among children. In the left arcuate and left inferior longitudinal fasciculus, children with above-average reading skills initially had low fractional anisotropy (FA) that increased over the 3-y period, whereas children with below-average reading skills had higher initial FA that declined over time. We describe a dual-process model of white matter development comprising biological processes with opposing effects on FA, such as axonal myelination and pruning, to explain the pattern of results.

  3. White matter injury detection in neonatal MRI

    NASA Astrophysics Data System (ADS)

    Cheng, Irene; Hajari, Nasim; Firouzmanesh, Amirhossein; Shen, Rui; Miller, Steven; Poskitt, Ken; Basu, Anup

    2013-02-01

    Early detection of white matter injury in premature newborns can facilitate timely clinical treatments reducing the potential risk of later developmental deficits. It was reported that there were more than 5% premature newborns in British Columbia, Canada, among which 5-10% exhibited major motor deficits and 25-50% exhibited significant developmental and visual deficits. With the advancement of computer assisted detection systems, it is possible to automatically identify white matter injuries, which are found inside the grey matter region of the brain. Atlas registration has been suggested in the literature to distinguish grey matter from the soft tissues inside the skull. However, our subjects are premature newborns delivered at 24 to 32 weeks of gestation. During this period, the grey matter undergoes rapid changes and differs significantly from one to another. Besides, not all detected white spots represent injuries. Additional neighborhood information and expert input are required for verification. In this paper, we propose a white matter feature identification system for premature newborns, which is composed of several steps: (1) Candidate white matter segmentation; (2) Feature extraction from candidates; (3) Validation with data obtained at a later stage on the children; and (4) Feature confirmation for automated detection. The main challenge of this work lies in segmenting white matter injuries from noisy and low resolution data. Our approach integrates image fusion and contrast enhancement together with a fuzzy segmentation technique to achieve promising results. Other applications, such as brain tumor and intra-ventricular haemorrhage detection can also benefit from our approach.

  4. The superficial white matter in Alzheimer's disease.

    PubMed

    Phillips, Owen R; Joshi, Shantanu H; Piras, Fabrizio; Orfei, Maria Donata; Iorio, Mariangela; Narr, Katherine L; Shattuck, David W; Caltagirone, Carlo; Spalletta, Gianfranco; Di Paola, Margherita

    2016-04-01

    White matter abnormalities have been shown in the large deep fibers of Alzheimer's disease patients. However, the late myelinating superficial white matter comprised of intracortical myelin and short-range association fibers has not received much attention. To investigate this area, we extracted a surface corresponding to the superficial white matter beneath the cortex and then applied a cortical pattern-matching approach which allowed us to register and subsequently sample diffusivity along thousands of points at the interface between the gray matter and white matter in 44 patients with Alzheimer's disease (Age: 71.02 ± 5.84, 16M/28F) and 47 healthy controls (Age 69.23 ± 4.45, 19M/28F). In patients we found an overall increase in the axial and radial diffusivity across most of the superficial white matter (P < 0.001) with increases in diffusivity of more than 20% in the bilateral parahippocampal regions and the temporal and frontal lobes. Furthermore, diffusivity correlated with the cognitive deficits measured by the Mini-Mental State Examination scores (P < 0.001). The superficial white matter has a unique microstructure and is critical for the integration of multimodal information during brain maturation and aging. Here we show that there are major abnormalities in patients and the deterioration of these fibers relates to clinical symptoms in Alzheimer's disease.

  5. White Matter Microstructure and Cognitive Function

    PubMed Central

    Anderson, Elaine J.; Husain, Masud

    2013-01-01

    In recent years, diffusion-weighted magnetic resonance imaging (DW-MRI) has been increasingly used to explore the relationship between white matter structure and cognitive function. This technique uses the passive diffusion of water molecules to infer properties of the surrounding tissue. DW-MRI has been extensively employed to investigate how individual differences in behavior are related to variability in white matter microstructure on a range of different cognitive tasks and also to examine the effect experiential learning might have on brain structural connectivity. Using diffusion tensor tractography, large white matter pathways have been traced in vivo and used to explore patterns of white matter projections between different brain regions. Recent findings suggest that diffusion-weighted imaging might even be used to measure functional differences in water diffusion during task performance. This review describes some research highlights in diffusion-weighted imaging and how this technique can be employed to further our understanding of cognitive function. PMID:22020545

  6. The white matter query language: a novel approach for describing human white matter anatomy.

    PubMed

    Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik

    2016-12-01

    We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist's expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.

  7. Spaceflight Effect on White Matter Structural Integrity

    NASA Technical Reports Server (NTRS)

    Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.

  8. White matter synapses: form, function, and dysfunction.

    PubMed

    Alix, James J P; Domingues, António Miguel de Jesus

    2011-01-25

    Synaptic transmission in the CNS represents the classic mechanism through which neural cells communicate. While vesicular neurotransmitter release has been known to be the preserve of gray matter, it is now known that synaptic-style release of glutamate, the brain's major excitatory neurotransmitter, occurs deep in white matter. Here it permits communication between axons and glial cells, enabling axon activity to couple with high fidelity to glial physiology. As white matter is increasingly well-recognized as a substrate for disease, dysregulation of white matter synaptic transmission will play an important role in the development of pathologies as diverse as stroke, multiple sclerosis, Alzheimer disease, and schizophrenia. This review highlights progress in this new and important field.

  9. The energetics of CNS white matter.

    PubMed

    Harris, Julia J; Attwell, David

    2012-01-04

    The energetics of CNS white matter are poorly understood. We derive a signaling energy budget for the white matter (based on data from the rodent optic nerve and corpus callosum) which can be compared with previous energy budgets for the gray matter regions of the brain, perform a cost-benefit analysis of the energetics of myelination, and assess mechanisms for energy production and glucose supply in myelinated axons. We show that white matter synapses consume ≤0.5% of the energy of gray matter synapses and that this, rather than more energy-efficient action potentials, is the main reason why CNS white matter uses less energy than gray matter. Surprisingly, while the energetic cost of building myelin could be repaid within months by the reduced ATP cost of neuronal action potentials, the energetic cost of maintaining the oligodendrocyte resting potential usually outweighs the saving on action potentials. Thus, although it dramatically speeds action potential propagation, myelination need not save energy. Finally, we show that mitochondria in optic nerve axons could sustain measured firing rates with a plausible density of glucose transporters in the nodal membrane, without the need for energy transfer from oligodendrocytes.

  10. White matter disintegration in cluster headache

    PubMed Central

    2013-01-01

    Background Previous studies in primary headache disorders showed microstructural alterations in the white matter as measured by diffusion imaging. However these investigations are not in full agreement and some of those, especially in cluster headache, restricted the analysis to only a limited number of diffusion parameters. Therefore, in the current study we examined white matter microstructure in cluster headache patients. Methods Diffusion weighted MRI images with 60 directions were acquired from thirteen patients with cluster headache and sixteen age-matched healthy controls. Tract based spatial statistics were used to compare white matter integrity in the core of the fibre bundles. Correlation of the diffusion parameters with cumulative number of headache days was examined. Results There was a significant increment of the mean, axial and perpendicular diffusivity in widespread white matter regions in the frontal, parietal, temporal and occipital lobes. Reduced fractional anisotropy was found in the corpus callosum and some frontal and parietal white matter tracts mainly in the contralateral side of the pain. Axial diffusivity showed negative correlation to the number of the headache attacks. Conclusions The in vivo analysis of microstructural alterations in cluster headache provides important features of the disease, which might offer a deeper insight into the pathomechanism of the disease. PMID:23883140

  11. [Brain function and white matter].

    PubMed

    Wake, Hiroaki; Kato, Daisuke

    2015-04-01

    Accumulated evidence shows that neural information processing takes place in superficial layers of the brain called the gray matter. Synapses, which connect different neurons reside in the gray matter and are considered the major components of information processing and plasticity. On the other hand, myelinated axons lie beneath the gray matter. These bundles of cables connect neurons in the different brain regions to form functional neural circuits. Myelinated axons were of little of interest to neuroscientists and have long been ignored in the formation of functional neuronal circuits. Recent evidence shows that myelin formed by oligodendrocytes shows plastic changes depending on neuronal activity. In this issue, we discuss the plastic changes of myelin and its functional role in learning and training.

  12. Spinal cord grey matter abnormalities are associated with secondary progression and physical disability in multiple sclerosis.

    PubMed

    Kearney, H; Schneider, T; Yiannakas, M C; Altmann, D R; Wheeler-Kingshott, C A M; Ciccarelli, O; Miller, D H

    2015-06-01

    In multiple sclerosis (MS), pathological studies have identified substantial demyelination and neuronal loss in the spinal cord grey matter (GM). However, there has been limited in vivo investigation of cord GM abnormalities and their possible functional effects using MRI combined with clinical evaluation. We recruited healthy controls (HC) and people with a clinically isolated syndrome (CIS), relapsing remitting (RR) and secondary progressive (SP) MS. All subjects had 3 T spinal cord MRI with measurement of cord cross-sectional area and diffusion tensor imaging metrics in the GM and posterior and lateral column white matter tracts using region of interest analysis. Physical disability was assessed using the expanded disability status scale (EDSS) and motor components of the MS functional composite scale. We calculated differences between MS and HC using a ANOVA and associations with disability using linear regression. 113 people were included in this study: 30 controls, 21 CIS, 33 RR and 29 SPMS. Spinal cord radial diffusivity (RD), fractional anisotropy and mean diffusivity in the GM and posterior columns were significantly more abnormal in SPMS than in RRMS. Spinal cord GM RD (β=0.33, p<0.01) and cord area (β=-0.45, p<0.01) were independently associated with EDSS (R(2)=0.77); spinal cord GM RD was also independently associated with a 9-hole peg test (β=-0.33, p<0.01) and timed walk (β=-0.20, p=0.04). The study findings suggest that pathological involvement of the spinal cord GM contributes significantly to physical disability in relapse-onset MS and SPMS in particular. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Effects of white, grey, and pia mater properties on tissue level stresses and strains in the compressed spinal cord.

    PubMed

    Sparrey, Carolyn J; Manley, Geoffrey T; Keaveny, Tony M

    2009-04-01

    Recent demographics demonstrate an increase in the number of elderly spinal cord injury patients, motivating the desire for a better understanding of age effects on injury susceptibility. Knowing that age and disease affect neurological tissue, there is a need to better understand the sensitivity of spinal cord injury mechanics to variations in tissue behavior. To address this issue, a plane-strain, geometrically nonlinear, finite element model of a section of a generic human thoracic spinal cord was constructed to model the response to dorsal compression. The material models and stiffness responses for the grey and white matter and pia mater were varied across a range of reported values to observe the sensitivity of model outcomes to the assigned properties. Outcome measures were evaluated for percent change in magnitude and alterations in spatial distribution. In general, principal stresses (114-244% change) and pressure (75-119% change) were the outcomes most sensitive to material variation. Strain outcome measures were less sensitive (7-27% change) than stresses (74-244% change) to variations in material tangent modulus. The pia mater characteristics had limited (<4% change) effects on outcomes. Using linear elastic models to represent non-linear behavior had variable effects on outcome measures, and resulted in highly concentrated areas of elevated stresses and strains. Pressure measurements in both the grey and white matter were particularly sensitive to white matter properties, suggesting that degenerative changes in white matter may influence perfusion in a compressed spinal cord. Our results suggest that the mechanics of spinal cord compression are likely to be affected by changes in tissue resulting from aging and disease, indicating a need to study the biomechanical aspects of spinal cord injury in these specific populations.

  14. Canavan Disease: A White Matter Disorder

    ERIC Educational Resources Information Center

    Kumar, Shalini; Mattan, Natalia S.; de Vellis, Jean

    2006-01-01

    Breakdown of oligodendrocyte-neuron interactions in white matter (WM), such as the loss of myelin, results in axonal dysfunction and hence a disruption of information processing between brain regions. The major feature of leukodystrophies is the lack of proper myelin formation during early development or the onset of myelin loss late in life.…

  15. Canavan Disease: A White Matter Disorder

    ERIC Educational Resources Information Center

    Kumar, Shalini; Mattan, Natalia S.; de Vellis, Jean

    2006-01-01

    Breakdown of oligodendrocyte-neuron interactions in white matter (WM), such as the loss of myelin, results in axonal dysfunction and hence a disruption of information processing between brain regions. The major feature of leukodystrophies is the lack of proper myelin formation during early development or the onset of myelin loss late in life.…

  16. White Matter Abnormalities and Animal Models Examining a Putative Role of Altered White Matter in Schizophrenia

    PubMed Central

    Xu, Haiyun; Li, Xin-Min

    2011-01-01

    Schizophrenia is a severe mental disorder affecting about 1% of the population worldwide. Although the dopamine (DA) hypothesis is still keeping a dominant position in schizophrenia research, new advances have been emerging in recent years, which suggest the implication of white matter abnormalities in schizophrenia. In this paper, we will briefly review some of recent human studies showing white matter abnormalities in schizophrenic brains and altered oligodendrocyte-(OL-) and myelin-related genes in patients with schizophrenia and will consider abnormal behaviors reported in patients with white matter diseases. Following these, we will selectively introduce some animal models examining a putative role of white matter abnormalities in schizophrenia. The emphasis will be put on the cuprizone (CPZ) model. CPZ-fed mice show demyelination and OLs loss, display schizophrenia-related behaviors, and have higher DA levels in the prefrontal cortex. These features suggest that the CPZ model is a novel animal model of schizophrenia. PMID:22937274

  17. Biofidelic white matter heterogeneity decreases computational model predictions of white matter strains during rapid head rotations.

    PubMed

    Maltese, Matthew R; Margulies, Susan S

    2016-11-01

    The finite element (FE) brain model is used increasingly as a design tool for developing technology to mitigate traumatic brain injury. We developed an ultra high-definition FE brain model (>4 million elements) from CT and MRI scans of a 2-month-old pre-adolescent piglet brain, and simulated rapid head rotations. Strain distributions in the thalamus, coronal radiata, corpus callosum, cerebral cortex gray matter, brainstem and cerebellum were evaluated to determine the influence of employing homogeneous brain moduli, or distinct experimentally derived gray and white matter property representations, where some white matter regions are stiffer and others less stiff than gray matter. We find that constitutive heterogeneity significantly lowers white matter deformations in all regions compared with homogeneous properties, and should be incorporated in FE model injury prediction.

  18. Genetics Home Reference: leukoencephalopathy with vanishing white matter

    MedlinePlus

    ... Leukoencephalopathy with vanishing white matter Other Diagnosis and Management Resources (1 link) GeneReview: Childhood Ataxia with Central Nervous System Hypomelination/Vanishing White Matter General Information from MedlinePlus (5 links) Diagnostic Tests Drug Therapy ...

  19. Fragile X tremor ataxia syndrome and white matter dementia.

    PubMed

    Filley, Christopher M

    2016-08-01

    Fragile X tremor ataxia syndrome (FXTAS) is an inherited neurodegenerative disease in which dementia is common and disabling. The pathogenesis of dementia in FXTAS is poorly understood, but the salience of executive dysfunction and slowed processing speed, the frequent presence of the middle cerebellar peduncle sign on magnetic resonance imaging (MRI), and striking neuropathological alterations of white matter all suggest that myelinated tracts are significantly involved. This paper considers the role of white matter disease in FXTAS dementia, particularly with regard to the concept of white matter dementia (WMD). A focused review of FXTAS in relation to known white matter disorders is provided to propose that the concept of WMD may illuminate the basis of dementia in FXTAS. The putative pathogenetic contribution of white matter involvement in other neurodegenerative diseases is also considered. Considerable evidence supports the importance of white matter disease in the pathogenesis of dementia in FXTAS. Whereas, gray matter regions are also involved, white matter degeneration is prominent, even early in the disease, and correlates with executive dysfunction and slowed processing speed. Evidence for white matter involvement in other neurodegenerative diseases lends additional support to the relevance of white matter in FXTAS. The dementia of FXTAS is closely related to the profile of WMD, and white matter involvement is also supported by MRI and neuropathological observations. White matter pathology is also relevant to the pathogenesis of other neurodegenerative diseases. Further study of white matter promises to clarify the origin of dementia in FXTAS.

  20. Reduced white matter integrity in amateur boxers.

    PubMed

    Herweh, Christian; Hess, Klaus; Meyding-Lamadé, Uta; Bartsch, Andreas J; Stippich, Christoph; Jost, Joachim; Friedmann-Bette, Birgit; Heiland, Sabine; Bendszus, Martin; Hähnel, Stefan

    2016-09-01

    Professional boxing can lead to chronic traumatic encephalopathy, a variant of traumatic brain injury (TBI). Its occurrence in amateur boxers is a matter of debate since amateur boxing is considered to be less harmful due to more strict regulations. However, several studies using different methodological approaches have revealed subtle signs of TBI even in amateurs. Diffusion tensor imaging (DTI) is sensitive to microscopic white matter changes and has been proven useful in TBI when routine MR imaging often is unrevealing. DTI, with tract-based spatial statistics (TBSS) together with neuropsychological examination of executive functions and memory, was used to investigate a collective of 31 male amateur boxers and 31 age-matched controls as well as a subgroup of 19 individuals, respectively, who were additionally matched for intellectual performance (IQ). All participants had normal findings in neurological examination and conventional MR. Amateur boxers did not show deficits in neuropsychological tests when their IQ was taken into account. Fractional anisotropy was significantly reduced, while diffusivity measures were increased along central white matter tracts in the boxers group. These changes were in part associated with the number of fights. TBSS revealed widespread white matter disturbance partially related to the individual fighting history in amateur boxers. These findings closely resemble those in patients with accidental TBI and indicate similar histological changes in amateur boxers.

  1. Correlation Between White Matter Lesions and Intelligence Quotient in Patients With Congenital Cytomegalovirus Infection.

    PubMed

    Inaba, Yuji; Motobayashi, Mitsuo; Nishioka, Makoto; Kaneko, Tomoki; Yamauchi, Shoko; Kawasaki, Yoichiro; Shiba, Naoko; Nishio, Shin-ya; Moteki, Hideaki; Miyagawa, Maiko; Takumi, Yutaka; Usami, Shin-ichi; Koike, Kenichi

    2016-02-01

    It is well known that congenital cytomegalovirus infection exhibits white matter and other types of lesions in magnetic resonance imaging (MRI), but little is known on the clinical significance of white matter lesions because they are also present in asymptomatic congenital cytomegalovirus infection. We investigated for relationships among white matter lesions, intelligence quotient, and other neurodevelopmental features. Nine children (five boys and four girls; mean age: 87.4 months, range: 63-127 months) with sensorineural hearing loss (five bilateral and four unilateral) had been diagnosed as having congenital cytomegalovirus infection by positive polymerase chain reaction findings of dried umbilical cords. They were evaluated for the presence of autistic features, tested using Wechsler Intelligence Scale for Children-Fourth Edition for intelligence quotient, and underwent brain MRI to measure white matter lesion localization and volume. At the time of MRI examination (mean age: 69.4 months, range: 19-92 months), white matter lesions were detected in eight of nine patients. Five subjects were diagnosed as having autism spectrum disorders. We observed increased white matter lesion volume was associated with lower intelligence quotient scores (R(2) = 0.533, P = 0.026) but not with autism spectrum disorders. In individuals with congenital cytomegalovirus, an increased white matter lesion volume is associated with lower intelligence quotient scores but not with an increased likelihood of autistic behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Raymond de Vieussens and his contribution to the study of white matter anatomy: historical vignette.

    PubMed

    Vergani, Francesco; Morris, Christopher M; Mitchell, Patrick; Duffau, Hugues

    2012-12-01

    In recent years, there has been a renewed interest in the study of white matter anatomy, both with the use of postmortem dissections and diffusion tensor imaging tractography. One of the precursors in the study of white matter anatomy was Raymond de Vieussens (1641-1716), a French anatomist born in Le Vigan. He studied medicine at the University of Montpellier in southern France, one of the most ancient and lively schools of medicine in Europe. In 1684 Vieussens published his masterpiece, the Neurographia Universalis, which is still considered one of the most complete and accurate descriptions of the nervous system provided in the 17th century. He described the white matter of the centrum ovale and was the first to demonstrate the continuity of the white matter fibers from the centrum ovale to the brainstem. He also described the dentate nuclei, the pyramids, and the olivary nuclei. According to the theory of Galen, Vieussens considered that the function of the white matter was to convey the "animal spirit" from the centrum ovale to the spinal cord. Although neglected, Vieussens' contribution to the study of white matter is relevant. His pioneering work showed that the white matter is not a homogeneous substance, but rather a complex structure rich in fibers that are interconnected with different parts of the brain. These initial results paved the way to advancements observed in later centuries that eventually led to modern hodology.

  3. White matter involvement in chronic musculoskeletal pain.

    PubMed

    Lieberman, Gregory; Shpaner, Marina; Watts, Richard; Andrews, Trevor; Filippi, Christopher G; Davis, Marcia; Naylor, Magdalena R

    2014-11-01

    There is emerging evidence that chronic musculoskeletal pain is associated with anatomic and functional abnormalities in gray matter. However, little research has investigated the relationship between chronic musculoskeletal pain and white matter. In this study, we used whole-brain tract-based spatial statistics and region-of-interest analyses of diffusion tensor imaging data to demonstrate that patients with chronic musculoskeletal pain exhibit several abnormal metrics of white matter integrity compared with healthy controls. Chronic musculoskeletal pain was associated with lower fractional anisotropy in the splenium of the corpus callosum and the left cingulum adjacent to the hippocampus. Patients also had higher radial diffusivity in the splenium, right anterior and posterior limbs of the internal capsule, external capsule, superior longitudinal fasciculus, and cerebral peduncle. Patterns of axial diffusivity (AD) varied: patients exhibited lower AD in the left cingulum adjacent to the hippocampus and higher AD in the anterior limbs of the internal capsule and in the right cerebral peduncle. Several correlations between diffusion metrics and clinical variables were also significant at a P < .01 level: fractional anisotropy in the left uncinate fasciculus correlated positively with total pain experience and typical levels of pain severity. AD in the left anterior limb of the internal capsule and left uncinate fasciculus was correlated with total pain experience and typical pain level. Positive correlations were also found between AD in the right uncinate and both total pain experience and pain catastrophizing. These results demonstrate that white matter abnormalities play a role in chronic musculoskeletal pain as a cause, a predisposing factor, a consequence, or a compensatory adaptation. Patients with chronic musculoskeletal pain exhibit altered metrics of diffusion in the brain's white matter compared with healthy volunteers, and some of these differences are

  4. Maternal infection and white matter toxicity

    PubMed Central

    Harry, G. Jean; Lawler, Cindy; Brunssen, Susan H.

    2006-01-01

    Studies examining maternal infection as a risk factor for neurological disorders in the offspring have suggested that altered maternal immune status during pregnancy can be considered as an adverse event in prenatal development. Infection occurring in the mother during the gestational period has been implicated in multiple neurological effects. The current manuscript will consider the issue of immune/inflammatory conditions during prenatal development where adverse outcomes have been linked to maternal systemic infection. The discussions will focus primary on white matter and oligodendrocytes as they have been identified as target processes. This white matter damage occurs in very early preterm infants and in various other human diseases currently being examined for a linkage to maternal or early developmental immune status. The intent is to draw attention to the impact of altered immune status during pregnancy on the offspring for the consideration of such contributing factors to the general assessment of developmental neurotoxicology. PMID:16787664

  5. Microglia of prefrontal white matter in suicide.

    PubMed

    Schnieder, Tatiana P; Trencevska, Iskra; Rosoklija, Gorazd; Stankov, Aleksandr; Mann, J John; Smiley, John; Dwork, Andrew J

    2014-09-01

    Immune functions in the brain are associated with psychiatric illness and temporary alteration of mental state. Microglia, the principal brain immunologic cells, respond to changes in the internal brain milieu through a sequence of activated states, each with characteristic function and morphology. To assess a possible association of frontal white matter pathology with suicide, we stained autopsy brain tissue samples from 11 suicide and 25 nonsuicide subjects for ionized calcium-binding adapter molecule 1, cluster of differentiation 68, and myelin. Groups were matched by age, sex, and psychiatric diagnosis. We classified ionized calcium-binding adapter molecule 1-immunoreactive cells based on shape, immunoreactivity to cluster of differentiation 68, and association with blood vessels to obtain stereologic estimates of densities of resting microglia, activated phagocytes, and perivascular cells. We found no effect of psychiatric diagnosis but 2 statistically significant effects of suicide: 1) The dorsal-ventral difference in activated microglial density was reversed such that, with suicide, the density was greater in ventral prefrontal white matter than in dorsal prefrontal white matter, whereas in the absence of suicide, the opposite was true; and 2) with suicide, there was a greater density of ionized calcium-binding adapter molecule 1-immunoreactive cells within or in contact with blood vessel walls in dorsal prefrontal white matter. These observations could reflect a mechanism for the stress/diathesis (state/trait) model of suicide, whereby an acute stress activates a reactive process in the brain, either directly or by compromising the blood-brain barrier, and creates a suicidal state in an individual at risk. They also indicate the theoretical potential of imaging studies in living vulnerable individuals for the assessment of suicide risk. Further studies are needed to investigate specific phenotypes of perivascular cells and blood-brain barrier changes

  6. Gray matter and white matter abnormalities in online game addiction.

    PubMed

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-08-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA.

  7. White matter astrocytes in health and disease.

    PubMed

    Lundgaard, I; Osório, M J; Kress, B T; Sanggaard, S; Nedergaard, M

    2014-09-12

    Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and the oligodendrocytes. Astrocytes have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and gray matter astrocytes, how astrocytes support myelination, how their dysfunction in pathological states contributes to myelin pathologies and how astrocytes may facilitate remyelination. We discuss how astrocytes in the white matter are specialized to promote myelination and myelin maintenance by clearance of extracellular ions and neurotransmitters and by secretion of pro-myelinating factors. Additionally, astrocyte-oligodendrocyte coupling via gap junctions is crucial for both myelin formation and maintenance, due to K(+) buffering and possibly metabolic support for oligodendrocytes via the panglial syncytium. Dysfunctional astrocytes aberrantly affect oligodendrocytes, as exemplified by a number of leukodystrophies in which astrocytic pathology is known as the direct cause of myelin pathology. Conversely, in primary demyelinating diseases, such as multiple sclerosis, astrocytes may facilitate remyelination. We suggest that specific manipulation of astrocytes could help prevent myelin pathologies and successfully restore myelin sheaths after demyelination.

  8. Microglia of Prefrontal White Matter in Suicide

    PubMed Central

    Schnieder, Tatiana P.; Trencevska, Iskra; Rosoklija, Gorazd; Stankov, Aleksandr; Mann, J. John; Smiley, John; Dwork, Andrew J.

    2014-01-01

    Immune functions in the brain are associated with psychiatric illness and with temporary alteration of mental state. Microglia, the principal brain immunological cells, respond to changes in the internal brain milieu through a sequence of activated states, each with characteristic function and morphology. To assess a possible association of frontal white matter pathology with suicide, autopsy brain tissue samples from 11 suicide and 25 non-suicide subjects were stained for ionized calcium-binding adapter molecule 1 (Iba-1), CD68, and myelin. Groups were matched by age, sex, and psychiatric diagnosis. We classified Iba-1-immunoreactive cells on the basis of shape, immunoreactivity for CD68, and association with blood vessels to obtain stereologic estimates of densities of resting microglia, activated phagocytes, and perivascular cells. We found no effect of psychiatric diagnosis but 2 statistically significant effects of suicide: 1) the dorsal-ventral difference in activated microglial density was reversed such that with suicide, the density was greater in ventral than in dorsal prefrontal white matter, whereas in the absence of suicide, the opposite was true; and 2) with suicide there was a greater density of Iba-1-immunoreactive cells within or in contact with blood vessel walls in dorsal prefrontal white matter. These observations could reflect a mechanism for the stress/diathesis (state/trait) model of suicide whereby an acute stress activates a reactive process in the brain, either directly or by compromising the blood-brain barrier, and creates a suicidal state in an individual at risk. They also indicate the theoretical potential of imaging studies in live, vulnerable individuals for the assessment of suicide risk. Further studies are needed to investigate specific phenotypes of perivascular cells and blood-brain barrier changes associated with suicide. PMID:25101704

  9. White matter connectivity and Internet gaming disorder.

    PubMed

    Jeong, Bum Seok; Han, Doug Hyun; Kim, Sun Mi; Lee, Sang Won; Renshaw, Perry F

    2016-05-01

    Internet use and on-line game play stimulate corticostriatal-limbic circuitry in both healthy subjects and subjects with Internet gaming disorder (IGD). We hypothesized that increased fractional anisotropy (FA) with decreased radial diffusivity (RD) would be observed in IGD subjects, compared with healthy control subjects, and that these white matter indices would be associated with clinical variables including duration of illness and executive function. We screened 181 male patients in order to recruit a large number (n = 58) of IGD subjects without psychiatric co-morbidity as well as 26 male healthy comparison subjects. Multiple diffusion-weighted images were acquired using a 3.0 Tesla magnetic resonance imaging scanner. Tract-based spatial statistics was applied to compare group differences in diffusion tensor imaging (DTI) metrics between IGD and healthy comparison subjects. IGD subjects had increased FA values within forceps minor, right anterior thalamic radiation, right corticospinal tract, right inferior longitudinal fasciculus, right cingulum to hippocampus and right inferior fronto-occipital fasciculus (IFOF) as well as parallel decreases in RD value within forceps minor, right anterior thalamic radiation and IFOF relative to healthy control subjects. In addition, the duration of illness in IGD subjects was positively correlated with the FA values (integrity of white matter fibers) and negatively correlated with RD scores (diffusivity of axonal density) of whole brain white matter. In IGD subjects without psychiatric co-morbidity, our DTI results suggest that increased myelination (increased FA and decreased RD values) in right-sided frontal fiber tracts may be the result of extended game play.

  10. Evidence for Functional Networks within the Human Brain's White Matter.

    PubMed

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry.SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human

  11. Axon-glia synapses are highly vulnerable to white matter injury in the developing brain.

    PubMed

    Shen, Yan; Liu, Xiao-Bo; Pleasure, David E; Deng, Wenbin

    2012-01-01

    study of white matter development and injury has general implications for a variety of neurological diseases, including PVL, stroke, spinal cord injury, and multiple sclerosis.

  12. Gender Differences in White Matter Microstructure

    PubMed Central

    Kanaan, Richard A.; Allin, Matthew; Picchioni, Marco; Barker, Gareth J.; Daly, Eileen; Shergill, Sukhwinder S.; Woolley, James; McGuire, Philip K.

    2012-01-01

    Background Sexual dimorphism in human brain structure is well recognised, but little is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore differences in fractional anisotropy (FA), an index of microstructural integrity. Methods A whole brain analysis of 135 matched subjects (90 men and 45 women) using a 1.5 T scanner. A region of interest (ROI) analysis was used to confirm those results where proximity to CSF raised the possibility of partial-volume artefact. Results Men had higher fractional anisotropy (FA) in cerebellar white matter and in the left superior longitudinal fasciculus; women had higher FA in the corpus callosum, confirmed by ROI. Discussion The size of the differences was substantial - of the same order as that attributed to some pathology – suggesting gender may be a potentially significant confound in unbalanced clinical studies. There are several previous reports of difference in the corpus callosum, though they disagree on the direction of difference; our findings in the cerebellum and the superior longitudinal fasciculus have not previously been noted. The higher FA in women may reflect greater efficiency of a smaller corpus callosum. The relatively increased superior longitudinal fasciculus and cerebellar FA in men may reflect their increased language lateralisation and enhanced motor development, respectively. PMID:22701619

  13. Computational Representation of White Matter Fiber Orientations

    PubMed Central

    Ferreira da Silva, Adelino R.

    2013-01-01

    We present a new methodology based on directional data clustering to represent white matter fiber orientations in magnetic resonance analyses for high angular resolution diffusion imaging. A probabilistic methodology is proposed for estimating intravoxel principal fiber directions, based on clustering directional data arising from orientation distribution function (ODF) profiles. ODF reconstructions are used to estimate intravoxel fiber directions using mixtures of von Mises-Fisher distributions. The method focuses on clustering data on the unit sphere, where complexity arises from representing ODF profiles as directional data. The proposed method is validated on synthetic simulations, as well as on a real data experiment. Based on experiments, we show that by clustering profile data using mixtures of von Mises-Fisher distributions it is possible to estimate multiple fiber configurations in a more robust manner than currently used approaches, without recourse to regularization or sharpening procedures. The method holds promise to support robust tractographic methodologies and to build realistic models of white matter tracts in the human brain. PMID:24023538

  14. White matter involvement in sporadic Creutzfeldt-Jakob disease

    PubMed Central

    Mandelli, Maria Luisa; DeArmond, Stephen J.; Hess, Christopher P.; Vitali, Paolo; Papinutto, Nico; Oehler, Abby; Miller, Bruce L.; Lobach, Irina V.; Bastianello, Stefano; Geschwind, Michael D.; Henry, Roland G.

    2014-01-01

    Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P = 0.002), axial (P = 0.0003) and radial (P = 0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P < 0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P = 0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white

  15. White matter involvement in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Caverzasi, Eduardo; Mandelli, Maria Luisa; DeArmond, Stephen J; Hess, Christopher P; Vitali, Paolo; Papinutto, Nico; Oehler, Abby; Miller, Bruce L; Lobach, Irina V; Bastianello, Stefano; Geschwind, Michael D; Henry, Roland G

    2014-12-01

    Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P=0.002), axial (P=0.0003) and radial (P=0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P<0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P=0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter

  16. Migraine with aura and white matter lesions: an MRI study.

    PubMed

    Uggetti, Carla; Squarza, Silvia; Longaretti, Fabio; Galli, Alberto; Di Fiore, Paola; Reganati, Paolo Filippo; Campi, Adriana; Ardemagni, Andreana; Cariati, Maurizio; Frediani, Fabio

    2017-05-01

    Several studies report the presence of white matter lesions on brain magnetic resonance imaging in patients with migraine. The aim of our study was to detect the entity of white matter T2-hyperintensities in 90 high selected patients affected by migraine with aura, compared to a group of 90 healthy controls. We found no significant difference of incidence of white matter alterations comparing these two groups.

  17. Interleukin-2 in the pathogenesis of perinatal white matter damage.

    PubMed

    Kadhim, H; Tabarki, B; De Prez, C; Rona, A-M; Sébire, G

    2002-04-09

    Proinflammatory cytokines were reported to be implicated in the pathogenesis of perinatal white matter lesions. The authors document for the first time the in situ detection of interleukin-2 and interleukin-2 receptor (IL-2R) in these human white matter lesions. These results suggest that interleukin-2, reported to be toxic to oligodendrocytes and myelin, could play a role in the molecular cascade leading to white matter damage in periventricular leukomalacia.

  18. Smoking and white matter hyperintensity progression

    PubMed Central

    Deal, Jennifer A.; Sharrett, A. Richey; Jack, Clifford R.; Knopman, David; Mosley, Thomas H.; Gottesman, Rebecca F.

    2015-01-01

    Objective: Our objective was to examine the link between smoking and smoking history, including smoking intensity and cessation, overall and by race, in a biracial prospective cohort study. Methods: A subset of Atherosclerosis Risk in Communities Study participants (n = 972, 49% black) completed brain MRI scans twice (1993–1995 and 2004–2006). We defined white matter hyperintensity (WMH) progression as an increase of ≥2 points on the 9-point Cardiovascular Health Study scale across scans. Participants reported information on smoking behavior at the baseline MRI and at 2 prior study visits, approximately 3 and 6 years before baseline. We used adjusted logistic regression to evaluate the association between smoking variables and WMH progression in the total sample and separately by race (black and white). Results: We found WMH progression in 23% of participants (30% of black participants, 17% of white participants). Overall, being a current smoker 6 years before baseline was associated with WMH progression. In race-stratified analyses, we found adverse associations with smoking status at multiple time points and persistent smoking in white but not in black participants. However, we found no statistical support for effect modification by race for most of these analyses. Increasing pack-years of smoking was associated with greater risk of WMH progression, while time since quitting and age at smoking initiation were not associated with WMH progression, with little indication of differences in these associations by race. Conclusions: Our findings concur with previous studies suggesting a relationship between smoking and WMH progression, and further demonstrate a dose-dependent association. PMID:25632094

  19. Dark-matter admixed white dwarfs

    NASA Astrophysics Data System (ADS)

    Leung, Shing Chi; Chu, Ming Chung; Lin, Lap Ming; Wong, Ka Wing

    2014-03-01

    We study the equilibrium structures of white dwarfs (WD) with dark matter cores formed by non-self-annihilating dark matter (DM) particles with masses ranging from 1 GeV to 100 GeV, assuming in form of an ideal degenerate Fermi gas inside the stars. For DM particles of mass 10 GeV and 100 GeV, we find that stable stellar models exist only if the mass of the DM core inside the star is less than O and -3)Msun , respectively. The global properties of these stars, and the corresponding Chandrasekhar mass (CM) limits, are essentially the same as those of traditional WD models without DM. Nevertheless, in the 10 GeV case, the gravitational attraction of the DM core is strong enough to squeeze the normal matter in the core region to densities above neutron drip. For the 1 GeV case, the DM core inside the star can be as massive as O and affects the global structure of the star significantly. The radius of a stellar model with DM can be about two times smaller than that of a traditional WD. Furthermore, the CM limit can be decreased by as much as 40%. Our results may have implications on the extent to which type Ia supernovae can be regarded as standard candles. This work is partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. 400910).

  20. White matter abnormalities of microstructure and physiological noise in schizophrenia

    PubMed Central

    Newman, Sharlene D.; Kent, Jerillyn S.; Bolbecker, Amanda; Klaunig, Mallory J.; O'Donnell, Brian F.; Puce, Aina; Hetrick, William P.

    2015-01-01

    White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is based on the hypothesis that signal fluctuation in white matter is associated with white matter functional activity. We examined the variance of the signal in resting state fMRI and found significant differences between individuals with schizophrenia and non-psychiatric controls specifically in white matter tissue. Controls showed higher temporal signal-to-noise ratios clustered in regions including temporal, frontal, and parietal lobes, cerebellum, corpus callosum, superior longitudinal fasciculus, and other major white matter tracts. These regions with higher temporal signal-to-noise ratio agree well with those showing higher metabolic activity reported by studies using PET. The results suggest that individuals with schizophrenia tend to have higher functional activity in white matter in certain brain regions relative to healthy controls. Despite some overlaps, the distinct regions for physiological noise are different from those for FA derived from diffusion tensor imaging, and therefore provide a unique angle to explore potential mechanisms to white matter abnormality. PMID:25560665

  1. White matter abnormalities of microstructure and physiological noise in schizophrenia.

    PubMed

    Cheng, Hu; Newman, Sharlene D; Kent, Jerillyn S; Bolbecker, Amanda; Klaunig, Mallory J; O'Donnell, Brian F; Puce, Aina; Hetrick, William P

    2015-12-01

    White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is based on the hypothesis that signal fluctuation in white matter is associated with white matter functional activity. We examined the variance of the signal in resting state fMRI and found significant differences between individuals with schizophrenia and non-psychiatric controls specifically in white matter tissue. Controls showed higher temporal signal-to-noise ratios clustered in regions including temporal, frontal, and parietal lobes, cerebellum, corpus callosum, superior longitudinal fasciculus, and other major white matter tracts. These regions with higher temporal signal-to-noise ratio agree well with those showing higher metabolic activity reported by studies using PET. The results suggest that individuals with schizophrenia tend to have higher functional activity in white matter in certain brain regions relative to healthy controls. Despite some overlaps, the distinct regions for physiological noise are different from those for FA derived from diffusion tensor imaging, and therefore provide a unique angle to explore potential mechanisms to white matter abnormality.

  2. [Anatomy of the periventricular white matter].

    PubMed

    Peltier, J; Nicot, B; Baroncini, M; Zunon-Kipré, Y; Haidara, A; Havet, E; Foulon, P; Page, C; Lejeune, J-P; Le Gars, D

    2011-01-01

    The lateral ventricle (LV) has a deep position within the cerebral hemisphere. The LV is covered by white matter with important functional role in the dominant hemisphere. Lateral wall of the frontal horn is covered by the inferior occipitofrontal fasciculus (IOFF) and its roof by the corpus callosum (CC). The body of the LV has the same cranial relationship and is covered laterally by fibers of internal capsula and arcuate fasciculus; its lower part is in relationship with the body of the fornix. The atrium of the LV is covered by the arcuate fasciculus and its lower part is covered by the IOFF and optic radiations. The inferior horn or temporal horn is covered by optic radiations in depth of middle temporal gyrus (T2). The auditive radiations crossed the optic radiations at the level of the roof of the inferior horn. Copyright © 2011. Published by Elsevier Masson SAS.

  3. White matter tracts of speech and language.

    PubMed

    Smits, Marion; Jiskoot, Lize C; Papma, Janne M

    2014-10-01

    Diffusion tensor imaging (DTI) has been used to investigate the white matter (WM) tracts underlying the perisylvian cortical regions known to be associated with language function. The arcuate fasciculus is composed of 3 segments (1 long and 2 short) whose separate functions correlate with traditional models of conductive and transcortical motor or sensory aphasia, respectively. DTI mapping of language fibers is useful in presurgical planning for patients with dominant hemisphere tumors, particularly when combined with functional magnetic resonance imaging. DTI has found damage to language networks in stroke patients and has the potential to influence poststroke rehabilitation and treatment. Assessment of the WM tracts involved in the default mode network has been found to correlate with mild cognitive impairment, potentially explaining language deficits in patients with apparently mild small vessel ischemic disease. Different patterns of involvement of language-related WM structures appear to correlate with different clinical subtypes of primary progressive aphasias.

  4. Microinfarct disruption of white matter structure

    PubMed Central

    Auriel, Eitan; Edlow, Brian L.; Reijmer, Yael D.; Fotiadis, Panagiotis; Ramirez-Martinez, Sergi; Ni, Jun; Reed, Anne K.; Vashkevich, Anastasia; Schwab, Kristin; Rosand, Jonathan; Viswanathan, Anand; Wu, Ona; Gurol, M. Edip

    2014-01-01

    Objective: To evaluate the local effect of small asymptomatic infarctions detected by diffusion-weighted imaging (DWI) on white matter microstructure using longitudinal structural and diffusion tensor imaging (DTI). Methods: Nine acute to subacute DWI lesions were identified in 6 subjects with probable cerebral amyloid angiopathy who had undergone high-resolution MRI both before and after DWI lesion detection. Regions of interest (ROIs) corresponding to the site of the DWI lesion (lesion ROI) and corresponding site in the nonlesioned contralateral hemisphere (control ROI) were coregistered to the pre- and postlesional scans. DTI tractography was additionally performed to reconstruct the white matter tracts containing the ROIs. DTI parameters (fractional anisotropy [FA], mean diffusivity [MD]) were quantified within each ROI, the 6-mm lesion-containing tract segments, and the entire lesion-containing tract bundle. Lesion/control FA and MD ratios were compared across time points. Results: The postlesional scans (performed a mean 7.1 ± 4.7 months after DWI lesion detection) demonstrated a decrease in median FA lesion/control ROI ratio (1.08 to 0.93, p = 0.038) and increase in median MD lesion/control ROI ratio (0.97 to 1.17, p = 0.015) relative to the prelesional scans. There were no visible changes on postlesional high-resolution T1-weighted and fluid-attenuated inversion recovery images in 4 of 9 lesion ROIs and small (2–5 mm) T1 hypointensities in the remaining 5. No postlesional changes in FA or MD ratios were detected in the 6-mm lesion-containing tract segments or full tract bundles. Conclusions: Asymptomatic DWI lesions produce chronic local microstructural injury. The cumulative effects of these widely distributed lesions may directly contribute to small-vessel–related vascular cognitive impairment. PMID:24920857

  5. Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis.

    PubMed

    Schlaeger, Regina; Papinutto, Nico; Zhu, Alyssa H; Lobach, Iryna V; Bevan, Carolyn J; Bucci, Monica; Castellano, Antonella; Gelfand, Jeffrey M; Graves, Jennifer S; Green, Ari J; Jordan, Kesshi M; Keshavan, Anisha; Panara, Valentina; Stern, William A; von Büdingen, H-Christian; Waubant, Emmanuelle; Goodin, Douglas S; Cree, Bruce A C; Hauser, Stephen L; Henry, Roland G

    2015-08-01

    In multiple sclerosis (MS), upper cervical cord gray matter (GM) atrophy correlates more strongly with disability than does brain or cord white matter (WM) atrophy. The corresponding relationships in the thoracic cord are unknown owing to technical difficulties in assessing GM and WM compartments by conventional magnetic resonance imaging techniques. To investigate the associations between MS disability and disease type with lower thoracic cord GM and WM areas using phase-sensitive inversion recovery magnetic resonance imaging at 3 T, as well as to compare these relationships with those obtained at upper cervical levels. Between July 2013 and March 2014, a total of 142 patients with MS (aged 25-75 years; 86 women) and 20 healthy control individuals were included in this cross-sectional observational study conducted at an academic university hospital. Total cord areas (TCAs), GM areas, and WM areas at the disc levels C2/C3, C3/C4, T8/9, and T9/10. Area differences between groups were assessed, with age and sex as covariates. Patients with relapsing MS (RMS) had smaller thoracic cord GM areas than did age- and sex-matched control individuals (mean differences [coefficient of variation (COV)]: 0.98 mm2 [9.2%]; P = .003 at T8/T9 and 0.93 mm2 [8.0%]; P = .01 at T9/T10); however, there were no significant differences in either the WM area or TCA. Patients with progressive MS showed smaller GM areas (mean differences [COV]: 1.02 mm2 [10.6%]; P < .001 at T8/T9 and 1.37 mm2 [13.2%]; P < .001 at T9/T10) and TCAs (mean differences [COV]: 3.66 mm2 [9.0%]; P < .001 at T8/T9 and 3.04 mm2 [7.2%]; P = .004 at T9/T10) compared with patients with RMS. All measurements (GM, WM, and TCA) were inversely correlated with Expanded Disability Status Scale score. Thoracic cord GM areas were correlated with lower limb function. In multivariable models (which also included cord WM areas and T2 lesion number, brain WM volumes, brain T1 and fluid-attenuated inversion

  6. White matter hyperintensities and normal-appearing white matter integrity in the aging brain.

    PubMed

    Maniega, Susana Muñoz; Valdés Hernández, Maria C; Clayden, Jonathan D; Royle, Natalie A; Murray, Catherine; Morris, Zoe; Aribisala, Benjamin S; Gow, Alan J; Starr, John M; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M

    2015-02-01

    White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10(-9) m(2)s(-1) (area under curve, 0.982; 95% CI, 0.975-0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe.

  7. A probabilistic atlas of the cerebellar white matter.

    PubMed

    van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M

    2016-01-01

    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders.

  8. Oligodendrocyte Genes, White Matter Tract Integrity, and Cognition in Schizophrenia

    PubMed Central

    Voineskos, Aristotle N.; Felsky, Daniel; Kovacevic, Natasa; Tiwari, Arun K.; Zai, Clement; Chakravarty, M. Mallar; Lobaugh, Nancy J.; Shenton, Martha E.; Rajji, Tarek K.; Miranda, Dielle; Pollock, Bruce G.; Mulsant, Benoit H.; McIntosh, Anthony R.; Kennedy, James L.

    2013-01-01

    Oligodendrocyte genes and white matter tracts have been implicated in the pathophysiology of schizophrenia and may play an important etiopathogenic role in cognitive dysfunction in schizophrenia. The objective of the present study in 60 chronic schizophrenia patients individually matched to 60 healthy controls was to determine whether 1) white matter tract integrity influences cognitive performance, 2) oligodendrocyte gene variants influence white matter tract integrity and cognitive performance, and 3) effects of oligodendrocyte gene variants on cognitive performance are mediated via white matter tract integrity. We used the partial least-squares multivariate approach to ascertain relationships among oligodendrocyte gene variants, integrity of cortico-cortical and subcortico-cortical white matter tracts, and cognitive performance. Robust relationships among oligodendrocyte gene variants, white matter tract integrity, and cognitive performance were found in both patients and controls. We also showed that effects of gene variants on cognitive performance were mediated by the integrity of white matter tracts. Our results were strengthened by bioinformatic analyses of gene variant function. To our knowledge, this is the first study that has brought together these lines of investigation in the same population and highlights the importance of the oligodendrocyte/white matter pathway in schizophrenia, particularly as it pertains to cognitive function. PMID:22772651

  9. White Matter Injury and Recovery after Hypertensive Intracerebral Hemorrhage

    PubMed Central

    Zuo, Shilun; Pan, Pengyu; Li, Qiang

    2017-01-01

    Hypertensive intracerebral hemorrhage (ICH) could very probably trigger white matter injury in patients. Through the continuous study of white matter injury after hypertensive ICH, we achieve a more profound understanding of the pathophysiological mechanism of its occurrence and development. At the same time, we found a series of drugs and treatment methods for the white matter repair. In the current reality, the research paradigm of white matter injury after hypertensive ICH is relatively obsolete or incomplete, and there are still lots of deficiencies in the research. In the face of the profound changes of stroke research perspective, we believe that the combination of the lenticulostriate artery, nerve nuclei of the hypothalamus-thalamus-basal ganglia, and the white matter fibers located within the capsula interna will be beneficial to the research of white matter injury and repair. This paper has classified and analyzed the study of white matter injury and repair after hypertensive ICH and also rethought the shortcomings of the current research. We hope that it could help researchers further explore and study white matter injury and repair after hypertensive ICH. PMID:28680884

  10. Inflammation in White Matter: Clinical and Pathophysiological Aspects

    ERIC Educational Resources Information Center

    Pleasure, David; Soulika, Athena; Singh, Sunit K.; Gallo, Vittorio; Bannerman, Peter

    2006-01-01

    While the central nervous system (CNS) is generally thought of as an immunopriviledged site, immune-mediated CNS white matter damage can occur in both the perinatal period and in adults, and can result in severe and persistent neurological deficits. Periventricular leukomalacia (PVL) is an inflammatory white matter disease of premature infants…

  11. Inflammation in White Matter: Clinical and Pathophysiological Aspects

    ERIC Educational Resources Information Center

    Pleasure, David; Soulika, Athena; Singh, Sunit K.; Gallo, Vittorio; Bannerman, Peter

    2006-01-01

    While the central nervous system (CNS) is generally thought of as an immunopriviledged site, immune-mediated CNS white matter damage can occur in both the perinatal period and in adults, and can result in severe and persistent neurological deficits. Periventricular leukomalacia (PVL) is an inflammatory white matter disease of premature infants…

  12. Influence of anisotropic white matter modeling on EEG source localization.

    PubMed

    Cuartas-Morales, E; Cardenas-Pena, D; Castellanos-Dominguez, G

    2014-01-01

    We study the influence of the anisotropic white matter within the ElectroEncephaloGraphy source localization problem. To this end, we consider three cases of the anisotropic white matter modeled in two concrete cases: by fixed or variable ratio. We extract information about highly anisotropic areas of the white matter from real Diffusion Weighted Imaging data. To validate the compared anisotropic models, we introduce the localization dipole and orientation errors. Obtained results show that the white matter model with a fixed anisotropic ratio leads to values of dipole localization error close to 1cm and may be enough in those cases avoiding localized analysis of neural brain activity. In contrast, modeling based on the anisotropic variable rate assumption becomes important in tasks regarding analysis and localization of deep sources neighboring the white matter tissue.

  13. Cortex Parcellation Associated Whole White Matter Parcellation in Individual Subjects

    PubMed Central

    Schiffler, Patrick; Tenberge, Jan-Gerd; Wiendl, Heinz; Meuth, Sven G.

    2017-01-01

    The investigation of specific white matter areas is a growing field in neurological research and is typically achieved through the use of atlases. However, the definition of anatomically based regions remains challenging for the white matter and thus hinders region-specific analysis in individual subjects. In this article, we focus on creating a whole white matter parcellation method for individual subjects where these areas can be associated to cortex regions. This is done by combining cortex parcellation and fiber tracking data. By tracking fibers out of each cortex region and labeling the fibers according to their origin, we populate a candidate image. We then derive the white matter parcellation by classifying each white matter voxel according to the distribution of labels in the corresponding voxel from the candidate image. The parcellation of the white matter with the presented method is highly reliable and is not as dependent on registration as with white matter atlases. This method allows for the parcellation of the whole white matter into individual cortex region associated areas and, therefore, associates white matter alterations to cortex regions. In addition, we compare the results from the presented method to existing atlases. The areas generated by the presented method are not as sharply defined as the areas in most existing atlases; however, they are computed directly in the DWI space of the subject and, therefore, do not suffer from distortion caused by registration. The presented approach might be a promising tool for clinical and basic research to investigate modalities or system specific micro structural alterations of white matter areas in a quantitative manner. PMID:28729829

  14. Socioeconomic status, white matter, and executive function in children.

    PubMed

    Ursache, Alexandra; Noble, Kimberly G

    2016-10-01

    A growing body of evidence links socioeconomic status (SES) to children's brain structure. Few studies, however, have specifically investigated relations of SES to white matter structure. Further, although several studies have demonstrated that family SES is related to development of brain areas that support executive functions (EF), less is known about the role that white matter structure plays in the relation of SES to EF. One possibility is that white matter differences may partially explain SES disparities in EF (i.e., a mediating relationship). Alternatively, SES may differentially shape brain-behavior relations such that the relation of white matter structure to EF may differ as a function of SES (i.e., a moderating relationship). In a diverse sample of 1082 children and adolescents aged 3-21 years, we examined socioeconomic disparities in white matter macrostructure and microstructure. We further investigated relations between family SES, children's white matter volume and integrity in tracts supporting EF, and performance on EF tasks. Socioeconomic status was associated with fractional anisotropy (FA) and volume in multiple white matter tracts. Additionally, family income moderated the relation between white matter structure and cognitive flexibility. Specifically, across multiple tracts of interest, lower FA or lower volume was associated with reduced cognitive flexibility among children from lower income families. In contrast, children from higher income families showed preserved cognitive flexibility in the face of low white matter FA or volume. SES factors did not mediate or moderate links between white matter and either working memory or inhibitory control. This work adds to a growing body of literature suggesting that the socioeconomic contexts in which children develop not only shape cognitive functioning and its underlying neurobiology, but may also shape the relations between brain and behavior.

  15. Cortex Parcellation Associated Whole White Matter Parcellation in Individual Subjects.

    PubMed

    Schiffler, Patrick; Tenberge, Jan-Gerd; Wiendl, Heinz; Meuth, Sven G

    2017-01-01

    The investigation of specific white matter areas is a growing field in neurological research and is typically achieved through the use of atlases. However, the definition of anatomically based regions remains challenging for the white matter and thus hinders region-specific analysis in individual subjects. In this article, we focus on creating a whole white matter parcellation method for individual subjects where these areas can be associated to cortex regions. This is done by combining cortex parcellation and fiber tracking data. By tracking fibers out of each cortex region and labeling the fibers according to their origin, we populate a candidate image. We then derive the white matter parcellation by classifying each white matter voxel according to the distribution of labels in the corresponding voxel from the candidate image. The parcellation of the white matter with the presented method is highly reliable and is not as dependent on registration as with white matter atlases. This method allows for the parcellation of the whole white matter into individual cortex region associated areas and, therefore, associates white matter alterations to cortex regions. In addition, we compare the results from the presented method to existing atlases. The areas generated by the presented method are not as sharply defined as the areas in most existing atlases; however, they are computed directly in the DWI space of the subject and, therefore, do not suffer from distortion caused by registration. The presented approach might be a promising tool for clinical and basic research to investigate modalities or system specific micro structural alterations of white matter areas in a quantitative manner.

  16. White matter involvement in chronic musculoskeletal pain

    PubMed Central

    Lieberman, Gregory; Shpaner, Marina; Watts, Richard; Andrews, Trevor; Filippi, Christopher G.; Davis, Marcia; Naylor, Magdalena R.

    2014-01-01

    There is emerging evidence that chronic musculoskeletal pain is associated with anatomical and functional abnormalities in gray matter. However, little research has investigated the relationship between chronic musculoskeletal pain and white matter (WM). In this study, we used whole-brain tract-based spatial statistics, and region-of-interest analyses of diffusion tensor imaging (DTI) data to demonstrate that patients with chronic musculoskeletal pain exhibit several abnormal WM integrity as compared to healthy controls. Chronic musculoskeletal pain was associated with lower fractional anisotropy (FA) in the splenium of corpus callosum, and left cingulum adjacent to the hippocampus. Patients also had higher radial diffusivity (RD) in the splenium, right anterior and posterior limbs of internal capsule, external capsule, superior longitudinal fasciculus, and cerebral peduncle. Patterns of axial diffusivity (AD) varied: patients exhibited lower AD in the left cingulum adjacent to the hippocampus and higher AD bilaterally in the anterior limbs of internal capsule, and in the right cerebral peduncle. Several correlations between diffusion metrics and clinical variables were also significant at a p<0.01 level: FA in the left uncinate fasciculus correlated positively with Total Pain Experience and typical levels of pain severity. AD in the left anterior limb of internal capsule and left uncinate fasciculus were correlated with Total Pain Experience and typical pain level. Positive correlations were also found between AD in the right uncinate and both Total Pain Experience and Pain Catastrophizing. These results demonstrate that WM abnormalities play a role in chronic musculoskeletal pain; either as a cause, predisposing factor, consequence, or compensatory adaptation. PMID:25135468

  17. Capture of inelastic dark matter in white dwarves

    SciTech Connect

    McCullough, Matthew; Fairbairn, Malcolm

    2010-04-15

    We consider the capture of inelastic dark matter in white dwarves by inelastic spin-independent scattering on nuclei. We show that if the dark matter annihilates to standard-model particles then, under the assumption of primordial globular cluster formation, the observation of cold white dwarves in the globular cluster M4 appears inconsistent with explanations of the observed DAMA/LIBRA annual modulation signal based on spin-independent inelastic dark matter scattering. Alternatively if the inelastic dark matter scenario were to be confirmed and it was found to annihilate to standard-model particles then this would imply a much lower dark matter density in the core of M4 than would be expected if it were to have formed in a dark matter halo. Finally we argue that cold white dwarves constitute a unique dark matter probe, complementary to other direct and indirect detection searches.

  18. White matter hyperintensities and medication adherence.

    PubMed

    Insel, Kathleen C; Reminger, Sheryl L; Hsiao, Chao-Pin

    2008-10-01

    White matter hyperintensities (WMH) are associated with hypertension, age, and cognitive function, but the association between WMH and medication adherence has not been examined. The intent of this investigation was to consider the potential implications of hypertension-related brain morphological changes on medication adherence and thereby improve understanding of the self-management consequences of hypertension. The associations between WMH, blood pressure, age, cognitive function (specifically assessments of prefrontal function), and medication adherence were examined in 16 middle-aged and older adults self-managing at least one prescribed antihypertensive agent. Magnetic resonance imaging using an axial fluid attenuated inversion recovery (FLAIR) sequence was used to assess the presence of WMH. Cognitive assessments included measures of executive function, working memory, attention, and immediate recall. Adherence was monitored for 8 weeks using electronic medication monitoring. More WMH were associated with poorer adherence (rs = -.25) and with higher systolic blood pressure (rs = .46), although these relationships were not statistically significant. WMH were associated with cognitive assessments in the expected direction including Digit Span Backward (rs = -.53, p < .05). Adherence was associated with immediate memory (rs = .54, p < .05) and inversely associated with failure to maintain set on the Wisconsin Card Sorting Test (WCST; rs = -.61, p < .05). These findings provide preliminary evidence for the association between WMH, assessments of prefrontal function, and medication adherence.

  19. White Matter Hyperintensities and Medication Adherence

    PubMed Central

    Insel, Kathleen C.; Reminger, Sheryl L.; Hsiao, Chao-Pin

    2015-01-01

    White matter hyperintensities (WMH) are associated with hypertension, age, and cognitive function, but the association between WMH and medication adherence has not been examined. The intent of this investigation was to consider the potential implications of hypertension-related brain morphological changes on medication adherence and thereby improve understanding of the self-management consequences of hypertension. The associations between WMH, blood pressure, age, cognitive function (specifically assessments of prefrontal function), and medication adherence were examined in 16 middle-aged and older adults self-managing at least one prescribed antihypertensive agent. Magnetic resonance imaging using an axial fluid attenuated inversion recovery (FLAIR) sequence was used to assess the presence of WMH. Cognitive assessments included measures of executive function, working memory, attention, and immediate recall. Adherence was monitored for 8 weeks using electronic medication monitoring. More WMH were associated with poorer adherence (rs = −.25) and with higher systolic blood pressure (rs = .46), although these relationships were not statistically significant. WMH were associated with cognitive assessments in the expected direction including Digit Span Backward (rs = −.53, p < .05). Adherence was associated with immediate memory (rs = .54, p < .05) and inversely associated with failure to maintain set on the Wisconsin Card Sorting Test (WCST; rs = −.61, p < .05). These findings provide preliminary evidence for the association between WMH, assessments of prefrontal function, and medication adherence. PMID:18829595

  20. Diabetes mellitus and white matter hyperintensity.

    PubMed

    Tamura, Yoshiaki; Araki, Atsushi

    2015-12-01

    White matter hyperintensity (WMH) is a brain lesion detected as a high-intensity area in magnetic resonance imaging T2 and fluid-attenuated inversion recovery images, and it has been suggested that WMH reflects damage to small vessels in periventricular and subcortical areas. Although WMH has been linked to the incidence of stroke, more recently it has been clarified that WMH is also associated with progression of cognitive decline and functional disability, which are components of so-called geriatric syndrome. In addition to hypertension, which is the classical risk factor for WMH, evidence has been accumulating to suggest that diabetes mellitus could also be associated with WMH progression, and some studies have shown that WMH severity is correlated with cognitive decline in patients with diabetes. The factors that accelerate WMH formation in elderly patients with diabetes remain poorly defined. It is considered that insulin resistance is an exacerbating factor, but the effects of hypertension, dyslipidemia or other vascular risk factors have yet be clarified, and further studies are required.

  1. Alcohol Use and Cerebral White Matter Compromise in Adolescence

    PubMed Central

    Elofson, Jonathan; Gongvatana, Win; Carey, Kate B.

    2013-01-01

    Alcohol use is typically initiated during adolescence, a period known to be critical in neurodevelopment. The adolescent brain may be particularly susceptible to the harmful effects of alcohol. While the cognitive deficits associated with alcohol use during adolescence have been well-documented, the neural substrates underlying these effects remain inadequately understood. Cerebral white matter has been suggested as a primary site of alcohol-related damage and diffusion tensor imaging (DTI) allows for the quantification of white matter integrity in vivo. This review summarizes results from both cross-sectional and longitudinal studies employing DTI that indicate that white matter tracts, particularly those thought to be involved in executive functioning, continue to develop throughout adolescence and into adulthood. Numerous DTI studies reveal a positive correlation between white matter integrity and neurocognitive performance and, in adults, the detrimental effects of prolonged alcohol-dependence on white matter integrity. We provide a comprehensive review of the DTI studies exploring the relationship between alcohol use and white matter integrity in adolescents. Results from most of these studies suggest that alcohol use is associated with reduced white matter integrity, particularly in the superior longitudinal fasciculus (SLF), and some evidence suggests that this relationship may be influenced by sex. We conclude by highlighting confounds and limitations of the available research and suggesting directions for future research. PMID:23583835

  2. Cerebral white matter lesions in patients with Crohn's disease.

    PubMed

    Chen, Merry; Lee, Grace; Kwong, Lawrence N; Lamont, Sharon; Chaves, Claudia

    2012-01-01

    To investigate the incidence, characteristics, and predisposing factors for cerebral white matter lesions in patients with Crohn's disease. We retrospectively evaluated the incidence and characteristics of cerebral T2 white matter abnormalities in 54 patients with Crohn's disease and compared to 100 age-matched controls. We also investigated potential co-morbidities known to be associated with white matter abnormalities in Crohn's patients with normal and abnormal Magnetic Resonance Imaging (MRI). Seventy-two percent of patients with Crohn's disease had T2 white matter abnormalities, as compared with 34% of the age-matched controls (P < .001). Lesion severity and size were not significantly different between the two groups; however, periventricular distribution and fulfillment of the Barkhof MRI criteria were overrepresented in Crohn's population. History of hypertension, diabetes, and migraine; gender, duration of disease and prior exposure to anti-tumor necrosis factor were not significantly different between Crohn's patients with and without white matter abnormalities; however, patients with lesions were significantly older than those without. Patients with Crohn's disease have a higher incidence of white matter T2 hyperintensities as compared with controls. Age was the only significant factor for the abnormalities within Crohn's group. White matter T2 hyperintensities are likely another extra-intestinal manifestation of Crohn's disease. Copyright © 2010 by the American Society of Neuroimaging.

  3. Altered Superficial White Matter on Tractography MRI in Alzheimer's Disease

    PubMed Central

    Reginold, William; Luedke, Angela C.; Itorralba, Justine; Fernandez-Ruiz, Juan; Islam, Omar; Garcia, Angeles

    2016-01-01

    Background/Aims Superficial white matter provides extensive cortico-cortical connections. This tractography study aimed to assess the diffusion characteristics of superficial white matter tracts in Alzheimer's disease. Methods Diffusion tensor 3T magnetic resonance imaging scans were acquired in 24 controls and 16 participants with Alzheimer's disease. Neuropsychological test scores were available in some participants. Tractography was performed by the Fiber Assignment by Continuous Tracking (FACT) method. The superficial white matter was manually segmented and divided into frontal, parietal, temporal and occipital lobes. The mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AxD) and fractional anisotropy (FA) of these tracts were compared between controls and participants with Alzheimer's disease and correlated with available cognitive tests while adjusting for age and white matter hyperintensity volume. Results Alzheimer's disease was associated with increased MD (p = 0.0011), increased RD (p = 0.0019) and increased AxD (p = 0.0017) in temporal superficial white matter. In controls, superficial white matter was associated with the performance on the Montreal Cognitive Assessment, Stroop and Trail Making Test B tests, whereas in Alzheimer's disease patients, it was not associated with the performance on cognitive tests. Conclusion Temporal lobe superficial white matter appears to be disrupted in Alzheimer's disease. PMID:27489557

  4. Tryptophan Metabolism and White Matter Integrity in Schizophrenia.

    PubMed

    Chiappelli, Joshua; Postolache, Teodor T; Kochunov, Peter; Rowland, Laura M; Wijtenburg, S Andrea; Shukla, Dinesh K; Tagamets, Malle; Du, Xiaoming; Savransky, Anya; Lowry, Christopher A; Can, Adem; Fuchs, Dietmar; Hong, L Elliot

    2016-09-01

    Schizophrenia is associated with abnormalities in the structure and functioning of white matter, but the underlying neuropathology is unclear. We hypothesized that increased tryptophan degradation in the kynurenine pathway could be associated with white matter microstructure and biochemistry, potentially contributing to white matter abnormalities in schizophrenia. To test this, fasting plasma samples were obtained from 37 schizophrenia patients and 38 healthy controls and levels of total tryptophan and its metabolite kynurenine were assessed. The ratio of kynurenine to tryptophan was used as an index of tryptophan catabolic activity in this pathway. White matter structure and function were assessed by diffusion tensor imaging (DTI) and (1)H magnetic resonance spectroscopy (MRS). Tryptophan levels were significantly lower (p<0.001), and kynurenine/tryptophan ratios were correspondingly higher (p=0.018) in patients compared with controls. In patients, lower plasma tryptophan levels corresponded to lower structural integrity (DTI fractional anisotropy) (r=0.347, p=0.038). In both patients and controls, the kynurenine/tryptophan ratio was inversely correlated with frontal white matter glutamate level (r=-0.391 and -0.350 respectively, p=0.024 and 0.036). These results provide initial evidence implicating abnormal tryptophan/kynurenine pathway activity in changes to white matter integrity and white matter glutamate in schizophrenia.

  5. White matter microstructures underlying mathematical abilities in children.

    PubMed

    van Eimeren, Lucia; Niogi, Sumit N; McCandliss, Bruce D; Holloway, Ian D; Ansari, Daniel

    2008-07-16

    The role of gray matter function and structure in mathematical cognition has been well researched. Comparatively little is known about white matter microstructures associated with mathematical abilities. Diffusion tensor imaging data from 13 children (7-9 years) and two measures of their mathematical competence were collected. Relationships between children's mathematical competence and fractional anisotropy were found in two left hemisphere white matter regions. Although the superior corona radiata was found to be associated with both numerical operations and mathematical reasoning, the inferior longitudinal fasciculus was correlated with numerical operations specifically. These findings suggest a role for microstructure in left white matter tracts for the development of mathematical skills. Moreover, the findings point to the involvement of different white matter tracts for numerical operations and mathematical reasoning.

  6. Abnormal white matter properties in adolescent girls with anorexia nervosa

    PubMed Central

    Travis, Katherine E.; Golden, Neville H.; Feldman, Heidi M.; Solomon, Murray; Nguyen, Jenny; Mezer, Aviv; Yeatman, Jason D.; Dougherty, Robert F.

    2015-01-01

    Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4) were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3). We identified and segmented 9 bilateral cerebral tracts (18) and 8 callosal fiber tracts in each participant's brain (26 total). Tract profiles were generated by computing measures for fractional anisotropy (FA) and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN. PMID:26740918

  7. Abnormal white matter properties in adolescent girls with anorexia nervosa.

    PubMed

    Travis, Katherine E; Golden, Neville H; Feldman, Heidi M; Solomon, Murray; Nguyen, Jenny; Mezer, Aviv; Yeatman, Jason D; Dougherty, Robert F

    2015-01-01

    Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4) were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3). We identified and segmented 9 bilateral cerebral tracts (18) and 8 callosal fiber tracts in each participant's brain (26 total). Tract profiles were generated by computing measures for fractional anisotropy (FA) and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN.

  8. White matter damage and cognitive impairment after traumatic brain injury

    PubMed Central

    Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury and white matter damage is likely to be complex. We applied a flexible technique—tract-based spatial statistics—to explore whether damage to specific white matter tracts is associated with particular patterns of cognitive impairment. The commonly affected domains of memory, executive function and information processing speed were investigated in 28 patients in the post-acute/chronic phase following traumatic brain injury and in 26 age-matched controls. Analysis of fractional anisotropy and diffusivity maps revealed widespread differences in white matter integrity between the groups. Patients showed large areas of reduced fractional anisotropy, as well as increased mean and axial diffusivities, compared with controls, despite the small amounts of cortical and white matter damage visible on standard imaging. A stratified analysis based on the presence or absence of microbleeds (a marker of diffuse axonal injury) revealed diffusion tensor imaging to be more sensitive than gradient-echo imaging to white matter damage. The location of white matter abnormality predicted cognitive function to some extent. The structure of the fornices was correlated with associative learning and memory across both patient and control groups, whilst the structure of frontal lobe connections showed relationships with executive function that differed in the two groups. These results highlight the complexity of the relationships between white matter structure and cognition. Although widespread and, sometimes, chronic abnormalities of white matter are identifiable following traumatic brain injury, the impact of these changes on cognitive function

  9. Medial frontal white and gray matter contributions to general intelligence.

    PubMed

    Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Saito, Yukiko; Hosokawa, Taiga; Kubicki, Marek

    2014-01-01

    The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%-34% of the variance in IQ, in comparison to 11%-16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.

  10. Medial Frontal White and Gray Matter Contributions to General Intelligence

    PubMed Central

    Bouix, Sylvain; Kubicki, Marek

    2014-01-01

    The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%–34% of the variance in IQ, in comparison to 11%–16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence. PMID:25551572

  11. Increased number of white matter lesions in patients with familial cerebral cavernous malformations.

    PubMed

    Golden, M J; Morrison, L A; Kim, H; Hart, B L

    2015-05-01

    Familial cerebral cavernous malformations, an autosomal dominant disorder, result in excess morbidity and mortality in affected patients. The disorder is most prevalent in the Southwest United States, where the affected families are most often carriers of the CCM1-KRIT1 Common Hispanic Mutation. The brain and spinal cord parenchyma in these individuals is usually affected by multiple cavernous malformations. Previous studies have shown abnormalities of endothelial cell junctions and the blood-brain barrier in cerebral cavernous malformations. Endothelial cell abnormalities have also been described in pathologic studies of white matter hyperintensities. We compared the prevalence of white matter hyperintensities in a population with known familial cerebral cavernous malformations. We examined 191 subjects with familial cerebral cavernous malformations who were enrolled into an institutional review board-approved study. All carry the same Common Hispanic Mutation in the CCM1 gene. Each subject underwent 3T MR imaging, including gradient recalled-echo, SWI, and FLAIR sequences. The number of cavernous malformations and the number of nonhemorrhagic white matter hyperintensities were counted. Subjects older than 60 years of age were excluded due to the high prevalence of white matter lesions in this population, and children younger than 6 were excluded due to potential sedation requirements. Logistic regression analysis was performed to determine the prevalence of abnormal white matter hyperintensities in those with familial cerebral cavernous malformations compared with healthy controls or those with sporadic cerebral cavernous malformation within the familial cerebral cavernous malformations group; it was also performed to evaluate the associations between abnormal white matter hyperintensities and age, sex, headaches, thyroid disease, diabetes, hypertension, hyperlipidemia, seizure history, or modified Rankin Scale score. Familial CCM1 carriers have a higher

  12. Major Superficial White Matter Abnormalities in Huntington's Disease.

    PubMed

    Phillips, Owen R; Joshi, Shantanu H; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease.

  13. Major Superficial White Matter Abnormalities in Huntington's Disease

    PubMed Central

    Phillips, Owen R.; Joshi, Shantanu H.; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W.; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease. PMID:27242403

  14. The Superficial White Matter in Alzheimer’s Disease

    PubMed Central

    Phillips, Owen; Joshi, Shantanu H.; Piras, Fabrizio; Orfei, Maria Donata; Iorio, Mariangela; Narr, Katherine L.; Shattuck, David W.; Caltagirone, Carlo; Spalletta, Gianfranco; Paola, Margherita Di

    2016-01-01

    White matter abnormalities have been shown in the large deep fibers of Alzheimer’s disease patients. However, the late myelinating superficial white matter comprised of intracortical myelin and short-range association fibers has not received much attention. In order to investigate this area, we extracted a surface corresponding to the superficial white matter beneath the cortex, and then applied a cortical pattern-matching approach which allowed us to register and subsequently sample diffusivity along thousands of points at the interface between the gray matter and white matter in 44 patients with Alzheimer’s disease (Age: 71.02±5.84, 16M/28F) and 47 healthy controls (Age 69.23±4.45, 19M/28F). In patients we found an overall increase in the axial and radial diffusivity across most of the superficial white matter (p < 0.001) with increases in diffusivity of more than 20% in the bilateral parahippocampal regions and the temporal and frontal lobes. Furthermore, diffusivity correlated with the cognitive deficits measured by the Mini-Mental State Examination scores (p < 0.001). The superficial white matter has a unique microstructure and is critical for the integration of multimodal information and during brain maturation and aging. Here we show that there are major abnormalities in patients and the deterioration of these fibers relates to clinical symptoms in Alzheimer’s disease. PMID:26801955

  15. Menopausal Hot Flashes and White Matter Hyperintensities

    PubMed Central

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.

    2015-01-01

    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  16. Incidental multifocal white matter lesions in pediatric magnetic resonance imaging.

    PubMed

    Fisch, Naama; Konen, Osnat; Halevy, Ayelet; Cohen, Roni; Shuper, Avinoam

    2012-07-01

    This study sought to describe the occurrence and potential significance of white matter abnormalities of unknown cause on pediatric cranial magnetic resonance scans, and to review the literature. We included 16 children in whom white matter abnormalities were incidentally revealed on magnetic resonance scans performed during a 7-year period at a tertiary pediatric medical center. Background data were retrospectively collected from medical files. White matter lesions were classified by size, location, and extent. Indications for imaging included convulsive disorder (n = 5), headache (n = 5), endocrine disorder (n = 4), and others. Patients' abnormalities did not correlate with the locations and patterns of white matter lesions. No changes in lesions were evident over time. Given the absence of evident benefits from repeated imaging studies, we suggest they are not warranted in every patient, and should be tailored according to clinical course. Further investigations of incidental intracranial findings are required in this age group. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Maturation of normal primate white matter: computed tomographic correlation

    SciTech Connect

    Quencer, R.M.

    1982-09-01

    Five infant baboons were examined with computed tomography (CT) during the first year of their lives to determine the rate and degree of normal white matter maturation in frontal, occipital, and parietal areas. The increase in CT numbers with age was correlated with gross and histologic specimens. Two phases of maturation were identified: a rapid phase (first 8-12 weeks) and a gradual phase (after 12 weeks). Frontal white matter was the most immature in the immediate postnatal period but it became equal in attenuation to the other regions by 4 weeks of age. Knowledge of white matter maturation rates may be particularly useful in cases of neonatal hypoxia/ischemia where zones of periventricular hypodensity are identified. The failure of such regions to follow a normal rate of maturation may indicate damage to the white matter and have significant prognostic implications.

  18. Fiber tracking of brain white matter based on graph theory.

    PubMed

    Lu, Meng

    2015-01-01

    Brain white matter tractography is reconstructed via diffusion-weighted magnetic resonance images. Due to the complex structure of brain white matter fiber bundles, fiber crossing and fiber branching are abundant in human brain. And regular methods with diffusion tensor imaging (DTI) can't accurately handle this problem. the biggest problems of the brain tractography. Therefore, this paper presented a novel brain white matter tractography method based on graph theory, so the fiber tracking between two voxels is transformed into locating the shortest path in a graph. Besides, the presented method uses Q-ball imaging (QBI) as the source data instead of DTI, because QBI can provide accurate information about multiple fiber crossing and branching in one voxel using orientation distribution function (ODF). Experiments showed that the presented method can accurately handle the problem of brain white matter fiber crossing and branching, and reconstruct brain tractograhpy both in phantom data and real brain data.

  19. White matter disease and an incomplete circle of Willis.

    PubMed

    Ryan, Daniel James; Byrne, Susan; Dunne, Ruth; Harmon, Mark; Harbison, Joseph

    2015-06-01

    White matter disease occurs as a consequence of small vessel disease; however, hypoperfusion may also play a role. We investigated whether patients with less cerebral vessel anastomosis may develop more white matter disease. Magnetic resonance imaging (1.5t) with intracranial magnetic resonance angiography data was collected on a convenience sample between July 2008 and January 2009. All patients were independently assessed for circle of Willis variants by two researchers and categorized into two groups: those with a complete circle of Willis and those with an incomplete circle of Willis (absent vessels). The complete group was sub-divided into a classical group (entirely normal circle of Willis) and a hypoplastic group (hypoplasia but no absent vessels). White matter disease assessment was conducted for these groups, by two researchers blind to magnetic resonance angiography findings, on all patients over 50 years old. The circle of Willis was characterized in 163 patients, while 90 (>50 years) underwent white matter disease assessment. The kappa inter-rater reliability between both circle of Willis assessors and between both white matter disease assessors was 0.57 and 0.63, respectively. The prevalence of circle of Willis variants strongly correlated with the seminal paper by Riggs and Rupp. Independent of age and gender, those with an incomplete circle of Willis (n = 68) exhibited 58% more white matter disease than those with a complete circle of Willis (n = 22) (white matter disease score 6.52 vs. 4.11, respectively, P = 0.03). Patients with absent anterior vessels exhibited more frontal white matter disease than those with intact anterior vessels (3.7 vs. 1.72, P < 0.001). Patients with absent posterior vessels exhibited more occipital white matter disease than those with intact posterior vessels (2.52 vs. 1.34, P = 0.014). These data suggest that congenital absence of anastomotic capacity correlates with incident white matter disease, thus

  20. Neuroinflammation and white matter pathology in schizophrenia: systematic review.

    PubMed

    Najjar, Souhel; Pearlman, Daniel M

    2015-01-01

    Neuroinflammation and white matter pathology have each been independently associated with schizophrenia, and experimental studies have revealed mechanisms by which the two can interact in vitro, but whether these abnormalities simultaneously co-occur in people with schizophrenia remains unclear. We searched MEDLINE, EMBASE, PsycINFO and Web of Science from inception through 12 January 2014 for studies reporting human data on the relationship between microglial or astroglial activation, or cytokines and white matter pathology in schizophrenia. Fifteen studies totaling 792 subjects (350 with schizophrenia, 346 controls, 49 with bipolar disorder, 37 with major depressive disorder and 10 with Alzheimer's disease) met all eligibility criteria. Five neuropathological and two neuroimaging studies collectively yielded consistent evidence of an association between schizophrenia and microglial activation, particularly in white rather than gray matter regions. Ultrastructural analysis revealed activated microglia near dystrophic and apoptotic oligodendroglia, demyelinating and dysmyelinating axons and swollen and vacuolated astroglia in subjects with schizophrenia but not controls. Two neuroimaging studies found an association between carrier status for a functional single nucleotide polymorphism in the interleukin-1β gene and abnormal white as well as gray matter volumes in schizophrenia but not controls. A neuropathological study found that orbitofrontal white matter neuronal density was increased in schizophrenia cases exhibiting high transcription levels of pro-inflammatory cytokines relative to those exhibiting low transcription levels and to controls. Schizophrenia was associated with decreased astroglial density specifically in subgenual cingulate white matter and anterior corpus callosum, but not other gray or white matter areas. Astrogliosis was consistently absent. Data on astroglial gene expression, mRNA expression and protein concentration were inconsistent

  1. Role of CTGF in White Matter Development in Tuberous Sclerosis

    DTIC Science & Technology

    2015-02-01

    Award Number: W81XWH-13-1-0040 TITLE: Role of CTGF in White Matter Development in Tuberous Sclerosis PRINCIPAL INVESTIGATOR: Mustafa Sahin...2015 4. TITLE AND SUBTITLE Role of CTGF in White Matter Development in Tuberous Sclerosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Development in Tuberous Sclerosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0040 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mustafa Sahin Betty

  2. Profiles of White Matter Tract Pathology in Frontotemporal Dementia

    PubMed Central

    Mahoney, Colin J; Ridgway, Gerard R; Malone, Ian B; Downey, Laura E; Beck, Jonathan; Kinnunen, Kirsi M; Schmitz, Nicole; Golden, Hannah L; Rohrer, Jonathan D; Schott, Jonathan M; Rossor, Martin N; Ourselin, Sebastien; Mead, Simon; Fox, Nick C; Warren, Jason D

    2014-01-01

    Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template-based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co-localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. PMID:24510641

  3. Cortical gray and subcortical white matter associations in Parkinson's disease.

    PubMed

    Sterling, Nicholas W; Du, Guangwei; Lewis, Mechelle M; Swavely, Steven; Kong, Lan; Styner, Martin; Huang, Xuemei

    2017-01-01

    Cortical atrophy has been documented in both Parkinson's disease (PD) and healthy aging, but its relationship to changes in subcortical white matter is unknown. This was investigated by obtaining T1- and diffusion-weighted images from 76 PD and 70 controls at baseline and 18 and 36 months, from which cortical volumes and underlying subcortical white matter axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) were determined. Twelve of 69 cortical subregions had significant group differences, and for these, underlying subcortical white matter was explored. At baseline, higher cortical volumes were significantly correlated with lower underlying subcortical white matter AD, RD, and higher FA (ps ≤ 0.017) in PD. Longitudinally, higher rates of cortical atrophy in PD were associated with increased rates of change in AD RD, and FA values (ps ≤ 0.0013) in 2 subregions explored. The significant gray-white matter associations were not found in controls. Thus, unlike healthy aging, cortical atrophy and subcortical white matter changes may not be independent events in PD.

  4. White matter development in adolescence: a DTI study.

    PubMed

    Asato, M R; Terwilliger, R; Woo, J; Luna, B

    2010-09-01

    Adolescence is a unique period of physical and cognitive development that includes concurrent pubertal changes and sex-based vulnerabilities. While diffusion tensor imaging (DTI) studies show white matter maturation throughout the lifespan, the state of white matter integrity specific to adolescence is not well understood as are the contributions of puberty and sex. We performed whole-brain DTI studies of 114 children, adolescents, and adults to identify age-related changes in white matter integrity that characterize adolescence. A distinct set of regions across the brain were found to have decreasing radial diffusivity across age groups. Region of interest analyses revealed that maturation was attained by adolescence in broadly distributed association and projection fibers, including those supporting cortical and brain stem integration that may underlie known enhancements in reaction time during this period. Maturation after adolescence included association and projection tracts, including prefrontal-striatal connections, known to support top-down executive control of behavior and interhemispheric connectivity. Maturation proceeded in parallel with pubertal changes to the postpubertal stage, suggesting hormonal influences on white matter development. Females showed earlier maturation of white matter integrity compared with males. Together, these findings suggest that white matter connectivity supporting executive control of behavior is still immature in adolescence.

  5. Mapping White Matter Microstructure in the One Month Human Brain.

    PubMed

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  6. Extensive abnormality of brain white matter integrity in pathological gambling.

    PubMed

    Joutsa, Juho; Saunavaara, Jani; Parkkola, Riitta; Niemelä, Solja; Kaasinen, Valtteri

    2011-12-30

    Several magnetic resonance imaging (MRI) studies in substance use disorders have shown brain white matter integrity abnormalities, but there are no studies in pathological gambling, a form of behavioral addiction. Our objective was to investigate possible changes in regional brain gray and white matter volumes, and axonal white matter integrity in pathological gamblers compared to healthy controls. Twenty-four subjects (12 clinically diagnosed male pathological gamblers and 12 age-matched healthy male volunteers) underwent structural and diffusion weighted brain MRI scans, which were analyzed with voxel-based morphometry and tract based spatial statistics. In pathological gamblers, widespread lower white matter integrity (lower fractional anisotropy, higher mean diffusivity) was seen in multiple brain regions including the corpus callosum, the cingulum, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the anterior limb of internal capsule, the anterior thalamic radiation, the inferior longitudinal fascicle and the uncinate/inferior fronto-occipital fascicle. There were no volumetric differences in gray or white matter between pathological gamblers and controls. The results suggest that pathological gambling is associated with extensive lower integrity of several brain white matter tracts. The diffusion abnormality closely resembles previous findings in individuals with substance addictions.

  7. Correlation between white matter damage and gray matter lesions in multiple sclerosis patients

    PubMed Central

    Han, Xue-mei; Tian, Hong-ji; Han, Zheng; Zhang, Ce; Liu, Ying; Gu, Jie-bing; Bakshi, Rohit; Cao, Xia

    2017-01-01

    We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe (postcentral and inferior parietal gyri), right temporal lobe (caudate nucleus), right occipital lobe (middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers. PMID:28616036

  8. Correlation between white matter damage and gray matter lesions in multiple sclerosis patients.

    PubMed

    Han, Xue-Mei; Tian, Hong-Ji; Han, Zheng; Zhang, Ce; Liu, Ying; Gu, Jie-Bing; Bakshi, Rohit; Cao, Xia

    2017-05-01

    We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe (postcentral and inferior parietal gyri), right temporal lobe (caudate nucleus), right occipital lobe (middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.

  9. Decreased T1 contrast between gray matter and normal-appearing white matter in CADASIL.

    PubMed

    De Guio, F; Reyes, S; Duering, M; Pirpamer, L; Chabriat, H; Jouvent, E

    2014-01-01

    CADASIL is the most frequent hereditary small-vessel disease of the brain. The clinical impact of various MR imaging markers has been repeatedly studied in this disorder, but alterations of contrast between gray matter and normal-appearing white matter remain unknown. The aim of this study was to evaluate the contrast alterations between gray matter and normal-appearing white matter on T1-weighted images in patients with CADASIL compared with healthy subjects. Contrast between gray matter and normal-appearing white matter was assessed by using histogram analyses of 3D T1 high-resolution MR imaging in 23 patients with CADASIL at the initial stage of the disease (Mini-Mental State Examination score > 24 and modified Rankin scale score ≤ 1; mean age, 53.5 ± 11.1 years) and 30 age- and sex-matched controls. T1 contrast between gray matter and normal-appearing white matter was significantly reduced in patients compared with age- and sex-matched controls (patients: 1.35 ± 0.08 versus controls: 1.43 ± 0.04, P < 10(-5)). This reduction was mainly driven by a signal decrease in normal-appearing white matter. Contrast loss was strongly related to the volume of white matter hyperintensities. Conventional 3D T1 imaging shows significant loss of contrast between gray matter and normal-appearing white matter in CADASIL. This probably reflects tissue changes in normal-appearing white matter outside signal abnormalities on T2 or FLAIR sequences. These contrast alterations should be taken into account for image interpretation and postprocessing.

  10. Retinal vascular calibers associate differentially with cerebral gray matter and white matter atrophy.

    PubMed

    Ikram, Mohammad K; de Jong, Frank J; Vernooij, Meike W; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Klaver, Caroline C; Ikram, Mohammad A

    2013-01-01

    Cerebral small-vessel disease is thought to contribute to brain atrophy, but it remains unclear whether it affects the gray matter and white matter atrophy differentially. Retinal vessels provide a direct measure to study cerebral small-vessel disease in vivo. In a cohort of 1065 persons (mean age, 67.5 y and 51% women), from the population-based Rotterdam Study, we investigated how retinal vascular calibers relate to brain atrophy and to gray matter and white matter atrophy separately. Retinal arteriolar and venular calibers were semiautomatically measured on digitized fundus transparencies. Using automated quantification of MRI scans, we obtained whole-brain volume and volumes of gray matter and white matter. Both narrower arteriolar and wider venular calibers were associated with smaller brain volume, independent from each other. These associations were primarily driven by smaller white matter volume, whereas no associations were seen for gray matter volume. Adjustments for cardiovascular risk factors attenuated the results, but wider venular caliber remained borderline significantly associated with smaller white matter volume. Our data provide evidence that cerebral small-vessel disease contributes to brain atrophy primarily by affecting the cerebral white matter.

  11. Epigenetic Age Acceleration Assessed with Human White-Matter Images.

    PubMed

    Hodgson, Karen; Carless, Melanie A; Kulkarni, Hemant; Curran, Joanne E; Sprooten, Emma; Knowles, Emma E; Mathias, Samuel; Göring, Harald H H; Yao, Nailin; Olvera, Rene L; Fox, Peter T; Almasy, Laura; Duggirala, Ravi; Blangero, John; Glahn, David C

    2017-05-03

    The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample (n = 628; age = 23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρpheno = -0.119, p = 0.028), with evidence of shared genetic (ρgene = -0.463, p = 0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging.SIGNIFICANCE STATEMENT Epigenetic measures can be used to predict age with a high degree of accuracy and so

  12. Extent of altered white matter in unilateral and bilateral periventricular white matter lesions in children with unilateral cerebral palsy.

    PubMed

    Scheck, Simon M; Fripp, Jurgen; Reid, Lee; Pannek, Kerstin; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2016-08-01

    To investigate the extent of white matter damage in children with unilateral cerebral palsy (UCP) caused by periventricular white matter lesions comparing between unilateral and bilateral lesions; and to investigate a relationship between white matter microstructure and hand function. Diffusion MRI images from 46 children with UCP and 18 children with typical development (CTD) were included. Subjects were grouped by side of hemiparesis and unilateral or bilateral lesions. A voxel-wise white matter analysis was performed to identify regions where fractional anisotropy (FA) was significantly different between UCP groups and CTD; and where FA correlated with either dominant or impaired hand function (using Jebsen Taylor Hand Function Test). Children with unilateral lesions had reduced FA in the corticospinal tract of the affected hemisphere. Children with bilateral lesions had widespread reduced FA extending into all lobes. In children with left hemiparesis, impaired hand function correlated with FA in the contralateral corticospinal tract. Dominant hand function correlated with FA in the posterior thalamic radiations as well as multiple other regions in both left and right hemiparesis groups. Periventricular white matter lesions consist of focal and diffuse components. Focal lesions may cause direct motor fibre insult resulting in motor impairment. Diffuse white matter injury is heterogeneous, and may contribute to more global dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. NG2 cells in white matter but not gray matter proliferate in response to PDGF.

    PubMed

    Hill, Robert A; Patel, Kiran D; Medved, Jelena; Reiss, Alex M; Nishiyama, Akiko

    2013-09-04

    Glial cells that express the NG2 proteoglycan and the α receptor for PDGF (NG2 cells, polydendrocytes) make up the fifth major cell population that serves as oligodendrocyte progenitor cells in the postnatal CNS. Although recent studies have suggested differences in their proliferation and oligodendrocyte differentiation in gray and white matter, the mechanism underlying the observed differences has been unclear. Using organotypic slice cultures from the forebrain and cerebellum of early postnatal NG2creBAC:ZEG mice, we have compared basal and growth factor-induced proliferation of NG2 cells in gray and white matter. NG2 cells in white matter exhibited greater proliferative response to PDGF AA than those in gray matter. Heterotopic slice transplant and explant cultures suggested intrinsic mechanisms for the differential proliferative response of gray and white matter cells. Additionally, younger white matter NG2 cells showed a more robust proliferative response to PDGF. Basal and PDGF-induced proliferation of gray and white matter NG2 cells was largely dependent on Wnt/β-catenin and phosphatidylinositol 3-kinase acting through the mammalian target of rapamycin pathway and not through ERK. These data uncover a previously unrecognized divergence between gray and white matter NG2 cells in the developing brain in their proliferative response to PDGF.

  14. NG2 Cells in White Matter But Not Gray Matter Proliferate in Response to PDGF

    PubMed Central

    Hill, Robert A.; Patel, Kiran D.; Medved, Jelena; Reiss, Alex M.

    2013-01-01

    Glial cells that express the NG2 proteoglycan and the α receptor for PDGF (NG2 cells, polydendrocytes) make up the fifth major cell population that serves as oligodendrocyte progenitor cells in the postnatal CNS. Although recent studies have suggested differences in their proliferation and oligodendrocyte differentiation in gray and white matter, the mechanism underlying the observed differences has been unclear. Using organotypic slice cultures from the forebrain and cerebellum of early postnatal NG2creBAC:ZEG mice, we have compared basal and growth factor-induced proliferation of NG2 cells in gray and white matter. NG2 cells in white matter exhibited greater proliferative response to PDGF AA than those in gray matter. Heterotopic slice transplant and explant cultures suggested intrinsic mechanisms for the differential proliferative response of gray and white matter cells. Additionally, younger white matter NG2 cells showed a more robust proliferative response to PDGF. Basal and PDGF-induced proliferation of gray and white matter NG2 cells was largely dependent on Wnt/β-catenin and phosphatidylinositol 3-kinase acting through the mammalian target of rapamycin pathway and not through ERK. These data uncover a previously unrecognized divergence between gray and white matter NG2 cells in the developing brain in their proliferative response to PDGF. PMID:24005306

  15. Cardiorespiratory fitness and brain volume and white matter integrity

    PubMed Central

    Zhu, Na; Schreiner, Pamela J.; Launer, Lenore J.; Whitmer, Rachel A.; Sidney, Stephen; Demerath, Ellen; Thomas, William; Bouchard, Claude; He, Ka; Erus, Guray; Battapady, Harsha; Bryan, R. Nick

    2015-01-01

    Objective: We hypothesized that greater cardiorespiratory fitness is associated with lower odds of having unfavorable brain MRI findings. Methods: We studied 565 healthy, middle-aged, black and white men and women in the CARDIA (Coronary Artery Risk Development in Young Adults) Study. The fitness measure was symptom-limited maximal treadmill test duration (Maxdur); brain MRI was measured 5 years later. Brain MRI measures were analyzed as means and as proportions below the 15th percentile (above the 85th percentile for white matter abnormal tissue volume). Results: Per 1-minute-higher Maxdur, the odds ratio for having less whole brain volume was 0.85 (p = 0.04) and for having low white matter integrity was 0.80 (p = 0.02), adjusted for age, race, sex, clinic, body mass index, smoking, alcohol, diet, physical activity, education, blood pressure, diabetes, total cholesterol, and lung function (plus intracranial volume for white matter integrity). No significant associations were observed between Maxdur and abnormal tissue volume or blood flow in white matter. Findings were similar for associations with continuous brain MRI measures. Conclusions: Greater physical fitness was associated with more brain volume and greater white matter integrity measured 5 years later in middle-aged adults. PMID:25957331

  16. Evaluation of Atlas-Based White Matter Segmentation with Eve.

    PubMed

    Plassard, Andrew J; Hinton, Kendra E; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M; Landman, Bennett A

    2015-03-20

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

  17. White matter integrity in hair-pulling disorder (trichotillomania).

    PubMed

    Roos, Annerine; Fouche, Jean-Paul; Stein, Dan J; Lochner, Christine

    2013-03-30

    Hair-pulling disorder (trichotillomania, HPD) is a disabling condition that is characterized by repetitive hair-pulling resulting in hair loss. Although there is evidence of structural grey matter abnormalities in HPD, there is a paucity of data on white matter integrity. The aim of this study was to explore white matter integrity using diffusion tensor imaging (DTI) in subjects with HPD and healthy controls. Sixteen adult female subjects with HPD and 13 healthy female controls underwent DTI. Hair-pulling symptom severity, anxiety and depressive symptoms were also assessed. Tract-based spatial statistics were used to analyze data on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). There were no differences in DTI measures between HPD subjects and healthy controls. However, there were significant associations of increased MD in white matter tracts of the fronto-striatal-thalamic pathway with longer HPD duration and increased HPD severity. Our findings suggest that white matter integrity in fronto-striatal-thalamic pathways in HPD is related to symptom duration and severity. The molecular basis of measures of white matter integrity in HPD deserves further exploration.

  18. Evaluation of Atlas-Based White Matter Segmentation with Eve

    PubMed Central

    Plassard, Andrew J.; Hinton, Kendra E.; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M.; Landman, Bennett A.

    2015-01-01

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary. PMID:25914503

  19. Increased Ki-67 immunoreactivity in the white matter in hemimegalencephaly.

    PubMed

    Munakata, Mitsutoshi; Watanabe, Mika; Otsuki, Taisuke; Itoh, Masayuki; Uematsu, Mitsugu; Saito, Yuko; Honda, Ryoko; Kure, Shigeo

    2013-08-26

    Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged unilateral hemisphere with cortical malformation comprising abnormal hypertrophic cells. To address the proliferative status of HMG, Ki-67 immunoreactivity was investigated in HMG specimens obtained during epilepsy surgery. Nine HMG tissues were stained with a Ki-67 antibody and Ki-67 labeling index in the malformed cortex, and the underlying white matter was measured separately and compared with tissues from focal cortical dysplasias and normal brains from autopsy. In HMG tissues, Ki-67-positive cells were scattered in both the gray and white matter, with a significantly higher Ki-67 labeling index in the white matter compared with gray matter. No dysmorphic neuron or balloon cell was stained for Ki-67. As Ki-67 immunoreactivity overlapped with that of ionized calcium-binding adaptor protein-1, Ki-67-positive cells were identified as microglia. In HMG, microglia were activated and entered into a proliferative status with higher distribution in the white matter, implying an ongoing neuroinflammatory process involving the white matter. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. White Matter Degeneration with Aging: Longitudinal Diffusion MR Imaging Analysis.

    PubMed

    de Groot, Marius; Cremers, Lotte G M; Ikram, M Arfan; Hofman, Albert; Krestin, Gabriel P; van der Lugt, Aad; Niessen, Wiro J; Vernooij, Meike W

    2016-05-01

    To determine longitudinally the rate of change in diffusion-tensor imaging (DTI) parameters of white matter microstructure with aging and to investigate whether cardiovascular risk factors influence this longitudinal change. This prospective population-based cohort study was approved by a dedicated ethics committee overseen by the national government, and all participants gave written informed consent. Community-dwelling participants without dementia were examined by using a research-dedicated 1.5-T magnetic resonance (MR) imager on two separate visits that were, on average, 2.0 years apart. Among 810 persons who were eligible for imaging at baseline, longitudinal imaging data were available for 501 persons (mean age, 69.9 years; age range, 64.1-91.1 years). Changes in normal-appearing white matter DTI characteristics in the tract centers were analyzed globally to investigate diffuse patterns of change and then locally by using voxelwise multilinear regression. The influence of cardiovascular risk factors was assessed by treating them as additional determinants in both analyses. Over the 2.0-year follow-up interval, global fractional anisotropy (FA) decreased by 0.0042 (P < .001), while mean diffusivity (MD) increased by 8.1 × 10(-6) mm(2)/sec (P < .001). Voxelwise analysis of the brain white matter skeleton showed an average decrease of 0.0082 (Pmean = .002) in FA in 57% of skeleton voxels. The sensorimotor pathway, however, showed an increase of 0.0078 (Pmean = .009) in FA. MD increased by 10.8 × 10(-6)mm(2)/sec (Pmean < .001) on average in 79% of white matter skeleton voxels. Additionally, white matter degeneration was more pronounced in older persons. Cardiovascular risk factors were generally not associated with longitudinal changes in white matter microstructure. Longitudinal diffusion analysis indicates widespread microstructural deterioration of the normal-appearing white matter in normal aging, with relative sparing of sensorimotor fibers. (©) RSNA

  1. Prolonged Cortisol Reactivity to Stress and White Matter in Schizophrenia

    PubMed Central

    Nugent, Katie L.; Chiappelli, Joshua; Sampath, Hemalatha; Rowland, Laura M.; Thangavelu, Kavita; Davis, Beshaun; Du, Xiaoming; Muellerklein, Florian; Daughters, Stacey; Kochunov, Peter; Hong, L. Elliot

    2015-01-01

    Objective While acute hypothalamic-pituitary-adrenal axis response to stress is often adaptive, prolonged responses may have detrimental effects. Many components of white matter structures are sensitive to prolonged cortisol exposure. We aimed to identify a behavioral laboratory assay for which cortisol response related to brain pathophysiology in schizophrenia. We hypothesized that an abnormally prolonged cortisol response to stress may be linked to abnormal white matter integrity in patients with schizophrenia. Methods Acute and prolonged salivary cortisol response was measured outside the scanner at pre-test and then at 0, 20, and 40 minutes after a psychological stress task in patients with schizophrenia (n=45) and controls (n=53). Tract-averaged white matter was measured by 64-direction diffusion tensor imaging in a subset of patients (n=30) and controls (n=33). Results Patients who did not tolerate and quit the psychological stress task had greater acute (t=2.52, p=0.016; t=3.51, p=0.001 at zero and 20 minutes) and prolonged (t=3.62, p=0.001 at 40 minutes) cortisol reactivity compared with patients who finished the task. Abnormally prolonged cortisol reactivity in patients was significantly associated with reduced white matter integrity (r=−0.468, p=0.009). Regardless of task completion status, acute cortisol response was not related to the white matter measures in patients or controls. Conclusions This paradigm was successful at identifying a subset of patients whose cortisol response was associated with brain pathophysiology. Abnormal cortisol response may adversely affect white matter integrity, partly explaining this pathology observed in schizophrenia. Prolonged stress responses may be targeted for intervention to test for protective effects against white matter damages. PMID:26186431

  2. Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain.

    PubMed

    Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R; Olah, Marta; Mantingh-Otter, Ietje J; Van Dam, Debby; De Deyn, Peter P; den Dunnen, Wilfred; Eggen, Bart J L; Amor, Sandra; Boddeke, Erik

    2017-01-01

    Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [(11)C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.

  3. Chronic Kidney Disease Is Associated With White Matter Hyperintensity Volume

    PubMed Central

    Khatri, Minesh; Wright, Clinton B.; Nickolas, Thomas L.; Yoshita, Mitsuhiro; Paik, Myunghee C.; Kranwinkel, Grace; Sacco, Ralph L.; DeCarli, Charles

    2010-01-01

    Background and Purpose White matter hyperintensities have been associated with increased risk of stroke, cognitive decline, and dementia. Chronic kidney disease is a risk factor for vascular disease and has been associated with inflammation and endothelial dysfunction, which have been implicated in the pathogenesis of white matter hyperintensities. Few studies have explored the relationship between chronic kidney disease and white matter hyperintensities. Methods The Northern Manhattan Study is a prospective, community-based cohort of which a subset of stroke-free participants underwent MRIs. MRIs were analyzed quantitatively for white matter hyperintensities volume, which was log-transformed to yield a normal distribution (log-white matter hyperintensity volume). Kidney function was modeled using serum creatinine, the Cockcroft-Gault formula for creatinine clearance, and the Modification of Diet in Renal Disease formula for estimated glomerular filtration rate. Creatinine clearance and estimated glomerular filtration rate were trichotomized to 15 to 60 mL/min, 60 to 90 mL/min, and >90 mL/min (reference). Linear regression was used to measure the association between kidney function and log-white matter hyperintensity volume adjusting for age, gender, race–ethnicity, education, cardiac disease, diabetes, homocysteine, and hypertension. Results Baseline data were available on 615 subjects (mean age 70 years, 60% women, 18% whites, 21% blacks, 62% Hispanics). In multivariate analysis, creatinine clearance 15 to 60 mL/min was associated with increased log-white matter hyperintensity volume (β 0.322; 95% CI, 0.095 to 0.550) as was estimated glomerular filtration rate 15 to 60 mL/min (β 0.322; 95% CI, 0.080 to 0.564). Serum creatinine, per 1-mg/dL increase, was also positively associated with log-white matter hyperintensity volume (β 1.479; 95% CI, 1.067 to 2.050). Conclusions The association between moderate–severe chronic kidney disease and white matter

  4. The energetics of central nervous system white matter

    PubMed Central

    Harris, Julia J.; Attwell, David

    2012-01-01

    The energetics of CNS white matter are poorly understood. We derive a signalling energy budget for rodent white matter (based on data from the optic nerve and corpus callosum) which can be compared to previous energy budgets for the grey matter regions of the brain, perform a cost-benefit analysis of the energetics of myelination, and assess mechanisms for energy production and glucose supply in myelinated axons. We show that white matter synapses consume ≤0.5% of the energy of grey matter synapses and that this, rather than more energy-efficient action potentials, is the main reason why CNS white matter uses less energy than grey matter. Surprisingly, while the energetic cost of building myelin could be repaid within months by the reduced ATP cost of neuronal action potentials, the energetic cost of maintaining the oligodendrocyte resting potential usually outweighs the saving on action potentials. Thus, although it dramatically speeds action potential propagation, myelination need not save energy. Finally, we show that mitochondria in optic nerve axons could sustain measured firing rates with a plausible density of glucose transporters in the nodal membrane, without the need for energy transfer from oligodendrocytes. PMID:22219296

  5. White matter predicts functional connectivity in premanifest Huntington's disease.

    PubMed

    McColgan, Peter; Gregory, Sarah; Razi, Adeel; Seunarine, Kiran K; Gargouri, Fatma; Durr, Alexandra; Roos, Raymund A C; Leavitt, Blair R; Scahill, Rachael I; Clark, Chris A; Tabrizi, Sarah J; Rees, Geraint; Coleman, A; Decolongon, J; Fan, M; Petkau, T; Jauffret, C; Justo, D; Lehericy, S; Nigaud, K; Valabrègue, R; Choonderbeek, A; Hart, E P T; Hensman Moss, D J; Crawford, H; Johnson, E; Papoutsi, M; Berna, C; Reilmann, R; Weber, N; Stout, J; Labuschagne, I; Landwehrmeyer, B; Orth, M; Johnson, H

    2017-02-01

    The distribution of pathology in neurodegenerative disease can be predicted by the organizational characteristics of white matter in healthy brains. However, we have very little evidence for the impact these pathological changes have on brain function. Understanding any such link between structure and function is critical for understanding how underlying brain pathology influences the progressive behavioral changes associated with neurodegeneration. Here, we demonstrate such a link between structure and function in individuals with premanifest Huntington's. Using diffusion tractography and resting state functional magnetic resonance imaging to characterize white matter organization and functional connectivity, we investigate whether characteristic patterns of white matter organization in the healthy human brain shape the changes in functional coupling between brain regions in premanifest Huntington's disease. We find changes in functional connectivity in premanifest Huntington's disease that link directly to underlying patterns of white matter organization in healthy brains. Specifically, brain areas with strong structural connectivity show decreases in functional connectivity in premanifest Huntington's disease relative to controls, while regions with weak structural connectivity show increases in functional connectivity. Furthermore, we identify a pattern of dissociation in the strongest functional connections between anterior and posterior brain regions such that anterior functional connectivity increases in strength in premanifest Huntington's disease, while posterior functional connectivity decreases. Our findings demonstrate that organizational principles of white matter underlie changes in functional connectivity in premanifest Huntington's disease. Furthermore, we demonstrate functional antero-posterior dissociation that is in keeping with the caudo-rostral gradient of striatal pathology in HD.

  6. Age exacerbates HIV-associated white matter abnormalities.

    PubMed

    Seider, Talia R; Gongvatana, Assawin; Woods, Adam J; Chen, Huaihou; Porges, Eric C; Cummings, Tiffany; Correia, Stephen; Tashima, Karen; Cohen, Ronald A

    2016-04-01

    Both HIV disease and advanced age have been associated with alterations to cerebral white matter, as measured with white matter hyperintensities (WMH) on fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI), and more recently with diffusion tensor imaging (DTI). This study investigates the combined effects of age and HIV serostatus on WMH and DTI measures, as well as the relationships between these white matter measures, in 88 HIV seropositive (HIV+) and 49 seronegative (HIV-) individuals aged 23-79 years. A whole-brain volumetric measure of WMH was quantified from FLAIR images using a semi-automated process, while fractional anisotropy (FA) was calculated for 15 regions of a whole-brain white matter skeleton generated using tract-based spatial statistics (TBSS). An age by HIV interaction was found indicating a significant association between WMH and older age in HIV+ participants only. Similarly, significant age by HIV interactions were found indicating stronger associations between older age and decreased FA in the posterior limbs of the internal capsules, cerebral peduncles, and anterior corona radiata in HIV+ vs. HIV- participants. The interactive effects of HIV and age were stronger with respect to whole-brain WMH than for any of the FA measures. Among HIV+ participants, greater WMH and lower anterior corona radiata FA were associated with active hepatitis C virus infection, a history of AIDS, and higher current CD4 cell count. Results indicate that age exacerbates HIV-associated abnormalities of whole-brain WMH and fronto-subcortical white matter integrity.

  7. White matter development in the early stages of psychosis.

    PubMed

    Peters, Bart D; Karlsgodt, Katherine H

    2015-01-01

    Schizophrenia has been conceptualized as a disorder of both neurodevelopment and a disorder of connectivity. One important aspect of the neurodevelopmental hypothesis is that schizophrenia is no longer thought to have discrete illness time points, but rather a long trajectory of brain changes, spanning many years, across a series of stages of the disease including the prodrome, first episode, and chronic period. As the disease progresses, there is a complex relationship between age related changes and disease related changes. Therefore, neural changes, and specifically white matter based connectivity changes, in schizophrenia may be best conceptualized based on a lifespan trajectory. In this selective review, we discuss healthy changes in white matter integrity that occur with age, as well as changes that occur across illness stages. We further propose a set of models that might explain lifespan changes in white matter integrity in schizophrenia, with the conclusion that the evidence most strongly supports a pattern of disrupted maturation during adolescence, with the potential for later changes that may be a result of disease neurotoxicity, abnormal or excessive aging effects, as well as medication, cohort or other effects. Thus, when considering white matter integrity in psychosis, it is critical to consider age in addition to other contributing factors including disease specific effects. Discovery of the factors driving healthy white matter development across the lifespan and deviations from the normal developmental trajectory may provide insights relevant to the discovery of early treatment interventions.

  8. Radiation effects on cerebral white matter: MR evaluation

    SciTech Connect

    Tsuruda, J.S.; Kortman, K.E.; Bradley, W.G.; Wheeler, D.C.; Van Dalsem, W.; Bradley, T.P.

    1987-07-01

    The purpose of this study was to evaluate the white-matter changes associated with cranial radiation by MR imaging. The MR scans of 95 patients receiving conventional external beam radiation for a wide variety of central nervous system tumors were reviewed. Moderately T2-weighted spin-echo images with a 2000-msec repetition time and 56-msec-echo time were analyzed for white-matter abnormalities without knowledge of the patient's history. These were correlated with radiation dose, port, and time interval since completion of therapy, and then compared with an age-matched control group of 180 patients with nonirradiated, space-occupying, intracranial lesions. Radiation-related lesions were characterized as symmetric, high-signal foci in the periventricular white matter. Relative sparing of the posterior fossa, basal ganglia, and internal capsules was noted. In patients older than 20 years, these changes paralleled those seen in ischemia but were more prevalent (p less than .005). In 25 patients with sequential MR scans, these findings remained stable. In those patients with limited treatment fields, for example, pituitary adenomas, no statistical differences were seen between radiation-treated and nontreated groups. Cerebral white-matter changes that mimic deep white-matter infarction are frequently seen in response to therapeutic radiation. There is a variable incidence of radiation effects, becoming more marked in older patients. MR interpretation must consider the neuropathologic consequences of therapeutic radiation, which include demyelination, microvascular occlusion, and blood-brain barrier breakdown.

  9. White matter development and early cognition in babies and toddlers.

    PubMed

    O'Muircheartaigh, Jonathan; Dean, Douglas C; Ginestet, Cedric E; Walker, Lindsay; Waskiewicz, Nicole; Lehman, Katie; Dirks, Holly; Piryatinsky, Irene; Deoni, Sean C L

    2014-09-01

    The normal myelination of neuronal axons is essential to neurodevelopment, allowing fast inter-neuronal communication. The most dynamic period of myelination occurs in the first few years of life, in concert with a dramatic increase in cognitive abilities. How these processes relate, however, is still unclear. Here we aimed to use a data-driven technique to parcellate developing white matter into regions with consistent white matter growth trajectories and investigate how these regions related to cognitive development. In a large sample of 183 children aged 3 months to 4 years, we calculated whole brain myelin volume fraction (VFM ) maps using quantitative multicomponent relaxometry. We used spatial independent component analysis (ICA) to blindly segment these quantitative VFM images into anatomically meaningful parcels with distinct developmental trajectories. We further investigated the relationship of these trajectories with standardized cognitive scores in the same children. The resulting components represented a mix of unilateral and bilateral white matter regions (e.g., cortico-spinal tract, genu and splenium of the corpus callosum, white matter underlying the inferior frontal gyrus) as well as structured noise (misregistration, image artifact). The trajectories of these regions were associated with individual differences in cognitive abilities. Specifically, components in white matter underlying frontal and temporal cortices showed significant relationships to expressive and receptive language abilities. Many of these relationships had a significant interaction with age, with VFM becoming more strongly associated with language skills with age. These data provide evidence for a changing coupling between developing myelin and cognitive development.

  10. NMDA receptor antibodies associated with distinct white matter syndromes

    PubMed Central

    Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R.; Buckley, Camilla

    2014-01-01

    Objective: To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Method: Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody–positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. Results: Three distinct clinicoradiologic phenotypes were recognized: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Conclusion: Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease. PMID:25340058

  11. Abnormalities in white matter microstructure associated with chronic ketamine use.

    PubMed

    Edward Roberts, R; Curran, H Valerie; Friston, Karl J; Morgan, Celia J A

    2014-01-01

    Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been found to induce schizophrenia-type symptoms in humans and is a potent and fast-acting antidepressant. It is also a relatively widespread drug of abuse, particularly in China and the UK. Acute administration has been well characterized, but the effect of extended periods of ketamine use-on brain structure in humans-remains poorly understood. We measured indices of white matter microstructural integrity and connectivity in the brain of 16 ketamine users and 16 poly-drug-using controls, and we used probabilistic tractography to quantify changes in corticosubcortical connectivity associated with ketamine use. We found a reduction in the axial diffusivity profile of white matter in a right hemisphere network of white matter regions in ketamine users compared with controls. Within the ketamine-user group, we found a significant positive association between the connectivity profile between the caudate nucleus and the lateral prefrontal cortex and dissociative experiences. These findings suggest that chronic ketamine use may be associated with widespread disruption of white matter integrity, and white matter pathways between subcortical and prefrontal cortical areas may in part predict individual differences in dissociative experiences due to ketamine use.

  12. Alterations in diffusion properties of white matter in Williams syndrome

    PubMed Central

    Arlinghaus, Lori R.; Thornton-Wells, Tricia A.; Dykens, Elisabeth M.; Anderson, Adam W.

    2011-01-01

    Diffusion tensor imaging (DTI) was used to investigate the involvement of brain white matter in Williams syndrome (WS), a genetic neurodevelopmental disorder. Whole-brain DTIs were obtained from 16 young adults with WS and 16 normal controls. A voxel-based analysis was performed to compare fractional anisotropy (FA) values between the two groups. A tract-based analysis was also performed to compare FA values between the two groups along two major white matter tracts that pass through the external capsule: the uncinate and inferior fronto-occipital fasciculi. Several regions of both increased and decreased FA were found within major white matter tracts that connect functional regions that have previously been implicated in the cognitive and neurological symptoms of the syndrome. The tract-based analysis provided additional insight into the involvement of specific white matter tracts implicated in the voxel-based analysis within the external capsule. The results from this study support previously reported changes in white matter diffusion properties in WS and demonstrate the potential usefulness for tract-based analysis in future studies of the disorder. PMID:21907520

  13. White matter development during adolescence as shown by diffusion MRI.

    PubMed

    Schmithorst, Vincent J; Yuan, Weihong

    2010-02-01

    Previous volumetric developmental MRI studies of the brain have shown white matter development continuing through adolescence and into adulthood. This review presents current findings regarding white matter development and organization from diffusion MRI studies. The general trend during adolescence (age 12-18 years) is towards increasing fractional anisotropy (FA) with age and decreasing mean diffusivity (MD) with age, findings primarily due to decreasing radial diffusivity with age. However, results of studies vary as to the regional specificity of such age-related changes, likely due in part to methodological issues. Another general trend is for FA to positively correlate and MD to negatively correlate with cognitive function. This trend is however region-specific, task-specific, and population-specific; some studies have in fact found negative correlations of FA and positive correlations of MD in specific regions with specific measures of cognitive performance. There are also published reports of sexual dimorphism in white matter development, indicating differing developmental trajectories between males and females as well as differing relationships developmentally between white matter architecture and cognitive function. There is a need for more research to further elucidate the development of white matter and its relation to cognitive function during this critical developmental period. 2009 Elsevier Inc. All rights reserved.

  14. NMDA receptor antibodies associated with distinct white matter syndromes.

    PubMed

    Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R; Buckley, Camilla; Vincent, Angela; Lim, Ming

    2014-06-01

    To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody-positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. THREE DISTINCT CLINICORADIOLOGIC PHENOTYPES WERE RECOGNIZED: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease.

  15. White matter microstructure integrity in relation to reading proficiency☆.

    PubMed

    Nikki Arrington, C; Kulesz, Paulina A; Juranek, Jenifer; Cirino, Paul T; Fletcher, Jack M

    2017-11-01

    Components of reading proficiency such asaccuracy, fluency, and comprehension require the successful coordination of numerous, yet distinct, cortical regions. Underlying white matter tracts allow for communication among these regions. This study utilized unique residualized tract - based spatial statistics methodology to identify the relations of white matter microstructure integrity to three components of reading proficiency in 49 school - aged children with typically developing phonological decoding skills and 27 readers with poor decoders. Results indicated that measures of white matter integrity were differentially associated with components of reading proficiency. In both typical and poor decoders, reading comprehension correlated with measures of integrity of the right uncinate fasciculus; reading comprehension was also related to the left inferior longitudinal fasciculus in poor decoders. Also in poor decoders, word reading fluency was related to the right uncinate and left inferior fronto - occipital fasciculi. Word reading was unrelated to white matter integrity in either group. These findings expand our knowledge of the association between white matter integrity and different elements of reading proficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology.

    PubMed

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  17. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology

    PubMed Central

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  18. Metabolic maturation of white matter is altered in preterm infants.

    PubMed

    Blüml, Stefan; Wisnowski, Jessica L; Nelson, Marvin D; Paquette, Lisa; Panigrahy, Ashok

    2014-01-01

    Significant physiological switches occur at birth such as the transition from fetal parallel blood flow to a two-circuit serial system with increased arterial oxygenation of blood delivered to all organs including the brain. In addition, the extra-uterine environment exposes premature infants to a host of stimuli. These events could conceivably alter the trajectory of brain development in premature infants. We used in vivo magnetic resonance spectroscopy to measure absolute brain metabolite concentrations in term and premature-born infants without evidence of brain injury at equivalent post-conceptional age. Prematurity altered the developmental time courses of N-acetyl-aspartate, a marker for axonal and neuronal development, creatine, an energy metabolite, and choline, a membrane metabolite, in parietal white matter. Specifically, at term-equivalency, metabolic maturation in preterm infants preceded development in term infants, but then progressed at a slower pace and trajectories merged at ≈340-370 post-conceptional days. In parieto/occipital grey matter similar trends were noticed but statistical significance was not reached. The timing of white matter development and synchronization of white matter and grey matter maturation in premature-born infants is disturbed. This may contribute to the greater risk of long-term neurological problems of premature infants and to their higher risk for white matter injury.

  19. White matter integrity in kleptomania: A pilot study

    PubMed Central

    Grant, Jon E.; Correia, Stephen; Brennan-Krohn, Thea

    2007-01-01

    This study's goal was to examine microstructural organization of frontal white matter in kleptomania. Ten females with DSM-IV kleptomania and 10 female controls underwent diffusion tensor imaging. Inferior frontal white matter was the a priori region of interest. Trace and fractional anisotropy (FA) were also calculated for frontal and posterior cortical regions in both subject groups. Kleptomania subjects had significantly higher mean frontal Trace, and significantly lower mean frontal FA than control subjects. Group differences remained significant when right and left frontal Trace and FA were analyzed. Groups did not differ significantly in posterior Trace or FA. Kleptomania may be associated with decreased white matter microstructural integrity in inferior frontal brain regions. PMID:16956753

  20. White matter morphometric changes uniquely predict children's reading acquisition.

    PubMed

    Myers, Chelsea A; Vandermosten, Maaike; Farris, Emily A; Hancock, Roeland; Gimenez, Paul; Black, Jessica M; Casto, Brandi; Drahos, Miroslav; Tumber, Mandeep; Hendren, Robert L; Hulme, Charles; Hoeft, Fumiko

    2014-10-01

    This study examined whether variations in brain development between kindergarten and Grade 3 predicted individual differences in reading ability at Grade 3. Structural MRI measurements indicated that increases in the volume of two left temporo-parietal white matter clusters are unique predictors of reading outcomes above and beyond family history, socioeconomic status, and cognitive and preliteracy measures at baseline. Using diffusion MRI, we identified the left arcuate fasciculus and superior corona radiata as key fibers within the two clusters. Bias-free regression analyses using regions of interest from prior literature revealed that volume changes in temporo-parietal white matter, together with preliteracy measures, predicted 56% of the variance in reading outcomes. Our findings demonstrate the important contribution of developmental differences in areas of left dorsal white matter, often implicated in phonological processing, as a sensitive early biomarker for later reading abilities, and by extension, reading difficulties. © The Author(s) 2014.

  1. Snake-based brain white matter fiber reconstruction.

    PubMed

    Lu, Meng; Di, Jia

    2014-01-01

    Diffusion tensor imaging (DTI) is a tractography algorithm that provides the only means of mapping white matter fibers. Furthermore, because of its wealth of applications, diffusion MRI tractography is gaining importance in clinical and neuroscience research. This paper presents a novel brain white matter fiber reconstruction method based on the snake model by minimizing the energy function, which is composed of both external energy and internal energy. Internal energy represents the assembly of the interaction potential between connected segments, whereas external energy represents the differences between predicted DTI signals and measured DTI signals. Through comparing the proposed method with other tractography algorithms in the Fiber Cup test, the present method was shown to perform superiorly to the majority of the other methods. In fact, the proposed test performed the third best out of the ten available methods, which demonstrates that present method can accurately formulate the brain white matter fiber reconstruction.

  2. Accelerated Gray and White Matter Deterioration With Age in Schizophrenia.

    PubMed

    Cropley, Vanessa L; Klauser, Paul; Lenroot, Rhoshel K; Bruggemann, Jason; Sundram, Suresh; Bousman, Chad; Pereira, Avril; Di Biase, Maria A; Weickert, Thomas W; Weickert, Cynthia Shannon; Pantelis, Christos; Zalesky, Andrew

    2017-03-01

    Although brain changes in schizophrenia have been proposed to mirror those found with advancing age, the trajectory of gray matter and white matter changes during the disease course remains unclear. The authors sought to measure whether these changes in individuals with schizophrenia remain stable, are accelerated, or are diminished with age. Gray matter volume and fractional anisotropy were mapped in 326 individuals diagnosed with schizophrenia or schizoaffective disorder and in 197 healthy comparison subjects aged 20-65 years. Polynomial regression was used to model the influence of age on gray matter volume and fractional anisotropy at a whole-brain and voxel level. Between-group differences in gray matter volume and fractional anisotropy were regionally localized across the lifespan using permutation testing and cluster-based inference. Significant loss of gray matter volume was evident in schizophrenia, progressively worsening with age to a maximal loss of 8% in the seventh decade of life. The inferred rate of gray matter volume loss was significantly accelerated in schizophrenia up to middle age and plateaued thereafter. In contrast, significant reductions in fractional anisotropy emerged in schizophrenia only after age 35, and the rate of fractional anisotropy deterioration with age was constant and best modeled with a straight line. The slope of this line was 60% steeper in schizophrenia relative to comparison subjects, indicating a significantly faster rate of white matter deterioration with age. The rates of reduction of gray matter volume and fractional anisotropy were significantly faster in males than in females, but an interaction between sex and diagnosis was not evident. The findings suggest that schizophrenia is characterized by an initial, rapid rate of gray matter loss that slows in middle life, followed by the emergence of a deficit in white matter that progressively worsens with age at a constant rate.

  3. MR volume segmentation of gray matter and white matter using manual thresholding: Dependence on image brightness

    SciTech Connect

    Harris, G.J.; Barta, P.E.; Peng, L.W.; Lee, S.; Brettschneider, P.D.; Shah, A.; Henderer, J.D.; Schlaepfer, T.E.; Pearlson, G.D. Tufts Univ. School of Medicine, Boston, MA )

    1994-02-01

    To describe a quantitative MR imaging segmentation method for determination of the volume of cerebrospinal fluid, gray matter, and white matter in living human brain, and to determine the method's reliability. We developed a computer method that allows rapid, user-friendly determination of cerebrospinal fluid, gray matter, and white matter volumes in a reliable manner, both globally and regionally. This method was applied to a large control population (N = 57). Initially, image brightness had a strong correlation with the gray-white ratio (r = .78). Bright images tended to overestimate, dim images to underestimate gray matter volumes. This artifact was corrected for by offsetting each image to an approximately equal brightness. After brightness correction, gray-white ratio was correlated with age (r = -.35). The age-dependent gray-white ratio was similar to that for the same age range in a prior neuropathology report. Interrater reliability was high (.93 intraclass correlation coefficient). The method described here for gray matter, white matter, and cerebrospinal fluid volume calculation is reliable and valid. A correction method for an artifact related to image brightness was developed. 12 refs., 3 figs.

  4. [What matters more in the white matter: thinking inside of the brain].

    PubMed

    Uchihara, Toshiki; Shishido-Hara, Yukiko

    2015-04-01

    The proportion of white matter in the brain has increased during evolution, and white matter comprises approximately half of the human brain. Its macroscopic as well as microscopic structures change during development, aging, and disease progression as well as following physical or mental training. Knowledge about the structural plasticity of the white matter may alter our cortex-oriented view of brain functions and expand our strategies for diagnosis and treatment, including rehabilitation, since the gray and white matter are complementary. Although the presence of white matter lesions is easy to detect with magnetic resonance imaging of the brain, their qualitative differentiation requires vast knowledge about the underlying processes. Examples from multiple ischemic lesions caused by different disease processes affecting the cerebral arteries are presented for comparison. It is worth considering "what matters more in the white matter" by taking into account the basic structures of the brain as well as their plasticity. Such "thinking inside of the brain" may further expand our understanding of the brain to improve our clinical interpretations and treatments.

  5. A Versatile Murine Model of Subcortical White Matter Stroke for the Study of Axonal Degeneration and White Matter Neurobiology.

    PubMed

    Nunez, Stefanie; Doroudchi, M Mehdi; Gleichman, Amy J; Ng, Kwan L; Llorente, Irene L; Sozmen, Elif G; Carmichael, S Thomas; Hinman, Jason D

    2016-03-17

    Stroke affecting white matter accounts for up to 25% of clinical stroke presentations, occurs silently at rates that may be 5-10 fold greater, and contributes significantly to the development of vascular dementia. Few models of focal white matter stroke exist and this lack of appropriate models has hampered understanding of the neurobiologic mechanisms involved in injury response and repair after this type of stroke. The main limitation of other subcortical stroke models is that they do not focally restrict the infarct to the white matter or have primarily been validated in non-murine species. This limits the ability to apply the wide variety of murine research tools to study the neurobiology of white matter stroke. Here we present a methodology for the reliable production of a focal stroke in murine white matter using a local injection of an irreversible eNOS inhibitor. We also present several variations on the general protocol including two unique stereotactic variations, retrograde neuronal tracing, as well as fresh tissue labeling and dissection that greatly expand the potential applications of this technique. These variations allow for multiple approaches to analyze the neurobiologic effects of this common and understudied form of stroke.

  6. Minocycline protects the immature white matter against hyperoxia.

    PubMed

    Schmitz, Thomas; Krabbe, Grietje; Weikert, Georg; Scheuer, Till; Matheus, Friederike; Wang, Yan; Mueller, Susanne; Kettenmann, Helmut; Matyash, Vitali; Bührer, Christoph; Endesfelder, Stefanie

    2014-04-01

    Poor neurological outcome in preterm infants is associated with periventricular white matter damage and hypomyelination, often caused by perinatal inflammation, hypoxia-ischemia, and hyperoxia. Minocycline has been demonstrated in animal models to protect the immature brain against inflammation and hypoxia-ischemia by microglial inhibition. Here we studied the effect of minocycline on white matter damage caused by hyperoxia. To mimic the 3- to 4-fold increase of oxygen tension caused by preterm birth, we have used the hyperoxia model in neonatal rats providing 24h exposure to 4-fold increased oxygen concentration (80% instead of 21% O2) from P6 to P7. We analyzed whether minocycline prevents activation of microglia and damage of oligodendroglial precursor cell development, and whether acute treatment of hyperoxia-exposed rats with minocycline improves long term white matter integrity. Minocycline administration during exposure to hyperoxia resulted in decreased apoptotic cell death and in improved proliferation and maturation of oligodendroglial precursor cells (OPC). Minocycline blocked changes in microglial morphology and IL-1β release induced by hyperoxia. In primary microglial cell cultures, minocycline inhibited cytokine release while in mono-cultures of OPCs, it improved survival and proliferation. Long term impairment of white matter diffusivity in MRI/DTI in P30 and P60 animals after neonatal hyperoxia was attenuated by minocycline. Minocycline protects white matter development against oxygen toxicity through direct protection of oligodendroglia and by microglial inhibition. This study moreover demonstrates long term benefits of minocycline on white matter integrity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Abnormal white matter microstructure in children with sensory processing disorders☆

    PubMed Central

    Owen, Julia P.; Marco, Elysa J.; Desai, Shivani; Fourie, Emily; Harris, Julia; Hill, Susanna S.; Arnett, Anne B.; Mukherjee, Pratik

    2013-01-01

    Sensory processing disorders (SPD) affect 5–16% of school-aged children and can cause long-term deficits in intellectual and social development. Current theories of SPD implicate primary sensory cortical areas and higher-order multisensory integration (MSI) cortical regions. We investigate the role of white matter microstructural abnormalities in SPD using diffusion tensor imaging (DTI). DTI was acquired in 16 boys, 8–11 years old, with SPD and 24 age-, gender-, handedness- and IQ-matched neurotypical controls. Behavior was characterized using a parent report sensory behavior measure, the Sensory Profile. Fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) were calculated. Tract-based spatial statistics were used to detect significant group differences in white matter integrity and to determine if microstructural parameters were significantly correlated with behavioral measures. Significant decreases in FA and increases in MD and RD were found in the SPD cohort compared to controls, primarily involving posterior white matter including the posterior corpus callosum, posterior corona radiata and posterior thalamic radiations. Strong positive correlations were observed between FA of these posterior tracts and auditory, multisensory, and inattention scores (r = 0.51–0.78; p < 0.001) with strong negative correlations between RD and multisensory and inattention scores (r = − 0.61–0.71; p < 0.001). To our knowledge, this is the first study to demonstrate reduced white matter microstructural integrity in children with SPD. We find that the disrupted white matter microstructure predominantly involves posterior cerebral tracts and correlates strongly with atypical unimodal and multisensory integration behavior. These findings suggest abnormal white matter as a biological basis for SPD and may also distinguish SPD from overlapping clinical conditions such as autism and attention deficit hyperactivity disorder. PMID:24179836

  8. Sexually dimorphic white matter geometry abnormalities in adolescent onset schizophrenia.

    PubMed

    Savadjiev, P; Whitford, T J; Hough, M E; Clemm von Hohenberg, C; Bouix, S; Westin, C-F; Shenton, M E; Crow, T J; James, A C; Kubicki, M

    2014-05-01

    The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the "torque", is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449-457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175-3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia.

  9. Brain white matter tracts: functional anatomy and clinical relevance.

    PubMed

    Gerrish, Amy C; Thomas, Adam G; Dineen, Robert A

    2014-10-01

    Diffusion tensor imaging is increasingly available on clinical magnetic resonance scanners and can be acquired in a relatively short time. There has been an explosion of applications in the research field but the use to the practicing radiologist may seem obscure. This paper aims to highlight how diffusion tensor imaging can be used to prompt a dedicated neuroanatomical search for white matter lesions in clinical presentations relating to motor, sensory, language, and visuospatial deficits. The enhanced depiction of white matter tracts in the temporal stem is also highlighted, which is a region of importance in epilepsy surgery planning.

  10. White matter tracts critical for recognition of sarcasm.

    PubMed

    Davis, Cameron L; Oishi, Kenichi; Faria, Andreia V; Hsu, John; Gomez, Yessenia; Mori, Susumu; Hillis, Argye E

    2016-01-01

    Failure to recognize sarcasm can lead to important miscommunications. Few previous studies have identified brain lesions associated with impaired recognition of sarcasm. We tested the hypothesis that percent damage to specific white matter tracts, age, and education together predict accuracy in sarcasm recognition. Using multivariable linear regression, with age, education, and percent damage to each of eight white matter tracts as independent variables, and percent accuracy on sarcasm recognition as the dependent variable, we developed a model for predicting sarcasm recognition. Percent damage to the sagittal stratum had the greatest weight and was the only independent predictor of sarcasm recognition.

  11. Scalable brain network construction on white matter fibers

    NASA Astrophysics Data System (ADS)

    Chung, Moo K.; Adluru, Nagesh; Dalton, Kim M.; Alexander, Andrew L.; Davidson, Richard J.

    2011-03-01

    DTI offers a unique opportunity to characterize the structural connectivity of the human brain non-invasively by tracing white matter fiber tracts. Whole brain tractography studies routinely generate up to half million tracts per brain, which serves as edges in an extremely large 3D graph with up to half million edges. Currently there is no agreed-upon method for constructing the brain structural network graphs out of large number of white matter tracts. In this paper, we present a scalable iterative framework called the ɛ-neighbor method for building a network graph and apply it to testing abnormal connectivity in autism.

  12. Regional White Matter Volumes Correlate with Delay Discounting

    PubMed Central

    Yu, Rongjun

    2012-01-01

    A preference for immediate gratification is a central feature in addictive processes. However, the neural structures underlying reward delay tolerance are still unclear. Healthy participants (n = 121) completed a delay discounting questionnaire assessing the extent to which they prefer smaller immediate rewards to larger delayed reward after undergoing magnetic resonance imaging (MRI) scanning. Whole brain voxel-based morphometric analysis shows that delay discounting severity was negatively correlated with right prefrontal subgyral white matter volume and positively correlated with white matter volume in parahippocampus/hippocampus, after whole brain correction. This study might better our understanding of the neural basis of impulsivity and addiction. PMID:22393420

  13. Tissue plasminogen activator prevents white matter damage following stroke

    PubMed Central

    Correa, Fernando; Gauberti, Maxime; Parcq, Jérôme; Macrez, Richard; Hommet, Yannick; Obiang, Pauline; Hernangómez, Miriam; Montagne, Axel; Liot, Géraldine; Guaza, Carmen; Maubert, Eric; Ali, Carine; Vivien, Denis

    2011-01-01

    Tissue plasminogen activator (tPA) is the only available treatment for acute stroke. In addition to its vascular fibrinolytic action, tPA exerts various effects within the brain, ranging from synaptic plasticity to control of cell fate. To date, the influence of tPA in the ischemic brain has only been investigated on neuronal, microglial, and endothelial fate. We addressed the mechanism of action of tPA on oligodendrocyte (OL) survival and on the extent of white matter lesions in stroke. We also investigated the impact of aging on these processes. We observed that, in parallel to reduced levels of tPA in OLs, white matter gets more susceptible to ischemia in old mice. Interestingly, tPA protects murine and human OLs from apoptosis through an unexpected cytokine-like effect by the virtue of its epidermal growth factor–like domain. When injected into aged animals, tPA, although toxic to the gray matter, rescues white matter from ischemia independently of its proteolytic activity. These studies reveal a novel mechanism of action of tPA and unveil OL as a target cell for cytokine effects of tPA in brain diseases. They show overall that tPA protects white matter from stroke-induced lesions, an effect which may contribute to the global benefit of tPA-based stroke treatment. PMID:21576385

  14. Specific white matter tissue microstructure changes associated with obesity.

    PubMed

    Kullmann, Stephanie; Callaghan, Martina F; Heni, Martin; Weiskopf, Nikolaus; Scheffler, Klaus; Häring, Hans-Ulrich; Fritsche, Andreas; Veit, Ralf; Preissl, Hubert

    2016-01-15

    Obesity-related structural brain alterations point to a consistent reduction in gray matter with increasing body mass index (BMI) but changes in white matter have proven to be more complex and less conclusive. Hence, more recently diffusion tensor imaging (DTI) has been employed to investigate microstructural changes in white matter structure. Altogether, these studies have mostly shown a loss of white matter integrity with obesity-related factors in several brain regions. However, the variety of these obesity-related factors, including inflammation and dyslipidemia, resulted in competing influences on the DTI indices. To increase the specificity of DTI results, we explored specific brain tissue properties by combining DTI with quantitative multi-parameter mapping in lean, overweight and obese young adults. By means of multi-parameter mapping, white matter structures showed differences in MRI parameters consistent with reduced myelin, increased water and altered iron content with increasing BMI in the superior longitudinal fasciculus, anterior thalamic radiation, internal capsule and corpus callosum. BMI-related changes in DTI parameters revealed mainly alterations in mean and axial diffusivity with increasing BMI in the corticospinal tract, anterior thalamic radiation and superior longitudinal fasciculus. These alterations, including mainly fiber tracts linking limbic structures with prefrontal regions, could potentially promote accelerated aging in obese individuals leading to an increased risk for cognitive decline. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Abnormal diffusion of cerebral white matter in early blindness.

    PubMed

    Shu, Ni; Li, Jun; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi

    2009-01-01

    Early visual deprivation may lead to both abnormal and plastic changes in the visual and other systems of the brain. Such secondary changes in the gray matter of the early blind have been well studied, but not so well in the cerebral white matter whose subtle changes may be revealed by diffusion tensor imaging. The first purpose of this study is to explore the possible changed white matter regions of the early blind in whole brain manners, using voxel-based analysis (VBA) and tract-based spatial statistics (TBSS) methods. The second purpose is to investigate the changes of diffusion eigenvalues in the abnormal white matter fiber tracts using tractography based group mapping analysis. From VBA of fractional anisotropy (FA) images, the significant changed white matter regions were the geniculocalcarine tract (GCT) and its adjacent regions. This finding was validated by TBSS method. Then we studied the changes of mean diffusivity (MD), FA, primary (lambda(1)) and transverse diffusivities (lambda(23)) in the GCT using tractography based group mapping analysis. We found the early blind had significantly lower FA (P < 0.0001), higher MD (P = 0.001) and lambda(23) (P < 0.0001) in the GCT. This pattern of diffusion changes is similar to findings seen in immaturity or axonal degeneration. Thus, we suggest that transneuronal degeneration and/or immaturity may account for the abnormal diffusion changes in the GCT of the early blind. (c) 2007 Wiley-Liss, Inc.

  16. Specific white matter tissue microstructure changes associated with obesity

    PubMed Central

    Kullmann, Stephanie; Callaghan, Martina F.; Heni, Martin; Weiskopf, Nikolaus; Scheffler, Klaus; Häring, Hans-Ulrich; Fritsche, Andreas; Veit, Ralf; Preissl, Hubert

    2016-01-01

    Obesity-related structural brain alterations point to a consistent reduction in gray matter with increasing body mass index (BMI) but changes in white matter have proven to be more complex and less conclusive. Hence, more recently diffusion tensor imaging (DTI) has been employed to investigate microstructural changes in white matter structure. Altogether, these studies have mostly shown a loss of white matter integrity with obesity-related factors in several brain regions. However, the variety of these obesity-related factors, including inflammation and dyslipidemia, resulted in competing influences on the DTI indices. To increase the specificity of DTI results, we explored specific brain tissue properties by combining DTI with quantitative multi-parameter mapping in lean, overweight and obese young adults. By means of multi-parameter mapping, white matter structures showed differences in MRI parameters consistent with reduced myelin, increased water and altered iron content with increasing BMI in the superior longitudinal fasciculus, anterior thalamic radiation, internal capsule and corpus callosum. BMI-related changes in DTI parameters revealed mainly alterations in mean and axial diffusivity with increasing BMI in the corticospinal tract, anterior thalamic radiation and superior longitudinal fasciculus. These alterations, including mainly fiber tracts linking limbic structures with prefrontal regions, could potentially promote accelerated aging in obese individuals leading to an increased risk for cognitive decline. PMID:26458514

  17. Linking white matter and deep gray matter alterations in premanifest Huntington disease

    PubMed Central

    Faria, Andreia V.; Ratnanather, J. Tilak; Tward, Daniel J.; Lee, David Soobin; van den Noort, Frieda; Wu, Dan; Brown, Timothy; Johnson, Hans; Paulsen, Jane S.; Ross, Christopher A.; Younes, Laurent; Miller, Michael I.

    2016-01-01

    Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay

  18. Linking white matter and deep gray matter alterations in premanifest Huntington disease.

    PubMed

    Faria, Andreia V; Ratnanather, J Tilak; Tward, Daniel J; Lee, David Soobin; van den Noort, Frieda; Wu, Dan; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Younes, Laurent; Miller, Michael I

    2016-01-01

    Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay

  19. Astrocytes are central in the pathomechanisms of vanishing white matter

    PubMed Central

    Dooves, Stephanie; Bugiani, Marianna; Postma, Nienke L.; Polder, Emiel; Land, Niels; Horan, Stephen T.; van Deijk, Anne-Lieke F.; van de Kreeke, Aleid; Jacobs, Gerbren; Vuong, Caroline; Klooster, Jan; Kamermans, Maarten; Wortel, Joke; Wisse, Lisanne E.; Scheper, Gert C.; Abbink, Truus E.M.; Heine, Vivi M.; van der Knaap, Marjo S.

    2016-01-01

    Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected; however, the mechanisms of VWM development remain unclear. Here, we used VWM mouse models, patients’ tissue, and cell cultures to investigate whether astrocytes or oligodendrocytes are the primary affected cell type. We generated 2 mouse models with mutations (Eif2b5Arg191His/Arg191His and Eif2b4Arg484Trp/Arg484Trp) that cause severe VWM in humans and then crossed these strains to develop mice with various mutation combinations. Phenotypic severity was highly variable and dependent on genotype, reproducing the clinical spectrum of human VWM. In all mutant strains, impaired maturation of white matter astrocytes preceded onset and paralleled disease severity and progression. Bergmann glia and retinal Müller cells, nonforebrain astrocytes that have not been associated with VWM, were also affected, and involvement of these cells was confirmed in VWM patients. In coculture, VWM astrocytes secreted factors that inhibited oligodendrocyte maturation, whereas WT astrocytes allowed normal maturation of VWM oligodendrocytes. These studies demonstrate that astrocytes are central in VWM pathomechanisms and constitute potential therapeutic targets. Importantly, astrocytes should also be considered in the pathophysiology of other white matter disorders. PMID:26974157

  20. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  1. Cognitive correlates of white matter lesion load and brain atrophy

    PubMed Central

    Dong, Chuanhui; Nabizadeh, Nooshin; Caunca, Michelle; Cheung, Ying Kuen; Rundek, Tatjana; Elkind, Mitchell S.V.; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov

    2015-01-01

    Objective: We investigated white matter lesion load and global and regional brain volumes in relation to domain-specific cognitive performance in the stroke-free Northern Manhattan Study (NOMAS) population. Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV), and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM) lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation to domain-specific cognitive performance, adjusting for key covariates. Results: MRI and cognitive data were available for 1,163 participants (mean age 70 ± 9 years; 60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific variability in cognitive performance independent of other measures. Age was an effect modifier, and stratified analysis showed that TCV and WMHV explained variability in some domains above age 70. Smaller hippocampal volume was associated with worse performance across domains, even after adjusting for APOE ε4 and vascular risk factors, whereas smaller frontal lobe volumes were only associated with worse executive function. Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load was inversely associated with cognitive performance, independent of brain atrophy. Lateral ventricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive performance. PMID:26156514

  2. White matter microstructure correlates of mathematical giftedness and intelligence quotient.

    PubMed

    Navas-Sánchez, Francisco J; Alemán-Gómez, Yasser; Sánchez-Gonzalez, Javier; Guzmán-De-Villoria, Juan A; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2014-06-01

    Recent functional neuroimaging studies have shown differences in brain activation between mathematically gifted adolescents and controls. The aim of this study was to investigate the relationship between mathematical giftedness, intelligent quotient (IQ), and the microstructure of white matter tracts in a sample composed of math-gifted adolescents and aged-matched controls. Math-gifted subjects were selected through a national program based on detecting enhanced visuospatial abilities and creative thinking. We used diffusion tensor imaging to assess white matter microstructure in neuroanatomical connectivity. The processing included voxel-wise and region of interest-based analyses of the fractional anisotropy (FA), a parameter which is purportedly related to white matter microstructure. In a whole-sample analysis, IQ showed a significant positive correlation with FA, mainly in the corpus callosum, supporting the idea that efficient information transfer between hemispheres is crucial for higher intellectual capabilities. In addition, math-gifted adolescents showed increased FA (adjusted for IQ) in white matter tracts connecting frontal lobes with basal ganglia and parietal regions. The enhanced anatomical connectivity observed in the forceps minor and splenium may underlie the greater fluid reasoning, visuospatial working memory, and creative capabilities of these children.

  3. White Matter Integrity and Executive Abilities in Individuals with Phenylketonuria

    PubMed Central

    Antenor-Dorsey, Jo Ann V.; Hershey, Tamara; Rutlin, Jerrel; Shimony, Joshua S.; McKinstry, Robert C.; Grange, Dorothy K.; Christ, Shawn E.; White, Desirée A.

    2013-01-01

    Previous studies have revealed white matter abnormalities in the brains of individuals with phenylketonuria (PKU), but the microstructural nature of these abnormalities and their relationship to phenylalanine (Phe) levels and cognitive outcomes is poorly understood. In the current study, the microstructural integrity of white matter in 29 individuals with early-treated PKU and 12 healthy controls was examined using two complementary diffusion tensor imaging (DTI) approaches: region-of-interest (ROI) based analysis and voxel-wise tract based spatial statistics (TBSS) analysis. Relationships among DTI, executive abilities, and Phe level findings were explored. DTI revealed widespread lowering of mean diffusivity (MD) in the white matter of the PKU group in comparison with the control group. Executive abilities were also poorer for individuals with PKU than controls. Within the PKU group, lower MD was associated with higher Phe level and poorer executive abilities. These findings are the first to demonstrate the interplay among microstructural white matter integrity, executive abilities, and Phe control in individuals with PKU. PMID:23608077

  4. Improved Segmentation of White Matter Tracts with Adaptive Riemannian Metrics

    PubMed Central

    Hao, Xiang; Zygmunt, Kristen; Whitaker, Ross T.; Fletcher, P. Thomas

    2014-01-01

    We present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI). Compared to deterministic and stochastic tractography, geodesic approaches treat the geometry of the brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics, which have the desirable property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes such methods more robust to noise, the choice of Riemannian metric in these methods is ad hoc. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. In this paper we propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. We also develop a way to automatically segment the white matter tracts based on the computed geodesics. We show the robustness of our method on simulated data with different noise levels. We also compare our method with tractography methods and geodesic approaches using other Riemannian metrics and demonstrate that the proposed method results in improved geodesics and segmentations using both synthetic and real DTI data. PMID:24211814

  5. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  6. Tract-specific white matter microstructure and gait in humans.

    PubMed

    Verlinden, Vincentius J A; de Groot, Marius; Cremers, Lotte G M; van der Geest, Jos N; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Vernooij, Meike W; Ikram, M Arfan

    2016-07-01

    Gait is a complex sequence of movements, requiring cooperation of many brain areas, such as the motor cortex, somatosensory cortex, and cerebellum. However, it is unclear which connecting white matter tracts are essential for communication across brain areas to facilitate proper gait. Using diffusion tensor imaging, we investigated associations of microstructural organization in 14 brain white matter tracts with gait, among 2330 dementia- and stroke-free community-dwelling individuals. Gait was assessed by electronic walkway and summarized into Global Gait, and 7 gait domains. Higher white matter microstructure associated with higher Global Gait, Phases, Variability, Pace, and Turning. Microstructure in thalamic radiations, followed by association tracts and the forceps major, associated most strongly with gait. Hence, in community-dwelling individuals, higher white matter microstructure associated with better gait, including larger strides, more single support, less stride-to-stride variability, and less turning steps. Our findings suggest that intact thalamocortical communication, cortex-to-cortex communication, and interhemispheric visuospatial integration are most essential in human gait. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Neurocognitive Correlates of White Matter Quality in Adolescent Substance Users

    ERIC Educational Resources Information Center

    Bava, Sunita; Jacobus, Joanna; Mahmood, Omar; Yang, Tony T.; Tapert, Susan F.

    2010-01-01

    Background: Progressive myelination during adolescence implicates an increased vulnerability to neurotoxic substances and enduring neurocognitive consequences. This study examined the cognitive manifestations of altered white matter microstructure in chronic marijuana and alcohol-using (MJ + ALC) adolescents. Methods: Thirty-six MJ + ALC…

  8. Anomalous White Matter Morphology in Adults Who Stutter

    ERIC Educational Resources Information Center

    Cieslak, Matthew; Ingham, Rojer J.; Ingham, Janis C.; Grafton, Scott T.

    2015-01-01

    Aims: Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore,…

  9. Structural white matter differences underlying heterogeneous learning abilities after TBI.

    PubMed

    Chiou, Kathy S; Genova, Helen M; Chiaravalloti, Nancy D

    2016-12-01

    The existence of learning deficits after traumatic brain injury (TBI) is generally accepted; however, our understanding of the structural brain mechanisms underlying learning impairment after TBI is limited. Furthermore, our understanding of learning after TBI is often at risk for overgeneralization, as research often overlooks within sample heterogeneity in learning abilities. The present study examined differences in white matter integrity in a sample of adults with moderate to severe TBI who differed in learning abilities. Adults with moderate to severe TBI were grouped into learners and non-learners based upon achievement of the learning criterion of the open-trial Selective Reminding Test (SRT). Diffusion tensor imaging (DTI) was used to identify white matter differences between the learners and non-learners. Adults with TBI who were able to meet the learning criterion had greater white matter integrity (as indicated by higher fractional anisotropy [FA] values) in the right anterior thalamic radiation, forceps minor, inferior fronto-occipital fasciculus, and forceps minor than non-learners. The results of the study suggest that differences in white matter integrity may explain the observed heterogeneity in learning ability after moderate to severe TBI. This also supports emerging evidence for the involvement of the thalamus in higher order cognition, and the role of thalamo-cortical tracts in connecting functional networks associated with learning.

  10. Anomalous White Matter Morphology in Adults Who Stutter

    ERIC Educational Resources Information Center

    Cieslak, Matthew; Ingham, Rojer J.; Ingham, Janis C.; Grafton, Scott T.

    2015-01-01

    Aims: Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore,…

  11. Maternal adiposity negatively influences infant brain white matter development

    USDA-ARS?s Scientific Manuscript database

    Objective: To study potential effects of maternal body composition on central nervous system (CNS) development of newborn infants. Methods: Diffusion tensor imaging was used to evaluate brain white matter development in 2-week-old, full-term, appropriate for gestational age infants from uncomplicat...

  12. Exploring white matter tracts in band heterotopia using diffusion tractography.

    PubMed

    Eriksson, Sofia H; Symms, Mark R; Rugg-Gunn, Fergus J; Boulby, Philip A; Wheeler-Kingshott, Claudia A M; Barker, Gareth J; Duncan, John S; Parker, Geoffrey J M

    2002-09-01

    Band heterotopia is a malformation of cortical development characterized by bands of gray matter in the white matter parallel to the surface of the neocortex. Histopathological studies have suggested that small white matter tracts pass through the heterotopia, and functional magnetic resonance imaging studies have shown activation in the malformation. We used diffusion tractography to explore the anatomical connectivity of band heterotopia and, in particular, whether in vivo white matter tracts traverse the heterotopic gray matter. Five patients with band heterotopia and five control subjects were scanned with whole brain diffusion tensor imaging. Anisotropy maps were calculated. Using fast marching tractography, we produced maps of connectivity and tract traces from two seed points, in the splenium of the corpus callosum and the right parietal lobe. Eigenvectors were found to pass through the band heterotopia in an aligned fashion. Patterns for maps of connectivity were similar in patients and control subjects. Areas of high connectivity were found in the band heterotopia and in cortical areas on the far side of the malformation from the seed point. The tracts hence appeared to traverse or end within the band heterotopia. The results are in agreement with previous histopathological studies and indicate the structural basis of the functional connectivity and absence of focal deficits in these patients.

  13. Abdominal obesity and white matter microstructure in midlife.

    PubMed

    Birdsill, Alex Cole; Oleson, Stephanie; Kaur, Sonya; Pasha, Evan; Ireton, Adele; Tanaka, Hirofumi; Haley, Andreana

    2017-04-08

    The aging U.S. population and the recent rise in the prevalence of obesity are two phenomena of great importance to public health. In addition, research suggests that midlife body mass index (BMI) is a risk factor for dementia, a particularly costly disease, in later life. BMI could influence brain health by adversely impacting cerebral white matter. Recently, greater BMI has been associated with lower white matter fractional anisotropy (FA), an index of tissue microstructure, as measured by diffusion-tensor imaging in midlife. The aim of this study was to investigate the role of abdominal obesity, the most metabolically active adipose tissue compartment, and white matter microstructure in midlife. Community dwelling participants (N = 168) between the ages of 40-62 underwent MRI scanning at 3T and a general health assessment. Inferences were made on whole brain white matter tracts using full-tensor, high-dimension normalization, and tract-based spatial statistics. Higher waist circumference was associated with higher FA, indicating more directional diffusion in several white matter tracts controlling for age, sex, triglycerides, systolic blood pressure, fasting glucose, and HDL-cholesterol. Post hoc analysis revealed that greater waist circumference was associated with lower axial diffusivity, indicating lower parallel diffusion; lower radial diffusivity, indicating lower perpendicular diffusion; and lower mean diffusivity, indicating restricted diffusion. This is the first study to report a positive relationship between obesity and FA, indicating a more complicated view of this relationship in the aging brain. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. White Matter Integrity Reductions in Intermittent Explosive Disorder.

    PubMed

    Lee, Royce; Arfanakis, Konstantinos; Evia, Arnold M; Fanning, Jennifer; Keedy, Sarah; Coccaro, Emil F

    2016-10-01

    Intermittent explosive disorder (IED), as described in DSM-5, is the categorical expression of pathological impulsive aggression. Previous work has identified neurobiological correlates of the disorder in patterns of frontal-limbic brain activity and dysregulation of serotonergic neurotransmission. Given the importance of short- and-long range white matter connections of the brain in social and emotional behavior, studies of white matter connectivity in impulsive aggression are warranted. Diffusion tensor imaging (DTI) studies in the related conditions of antisocial and borderline personality disorder have produced preliminary evidence of disturbed white matter connectivity in these disorders, but to date there have been no DTI studies in IED. A total of 132 male and female adults between the ages of 18 and 55 years underwent Turboprop-DTI on a 3-Tesla MRI scanner. Of these, 42 subjects had IED, 40 were normal controls, and 50 were clinical psychiatric controls with psychiatric disorders without IED. All subjects were free of alcohol, psychotropic medications, or drugs of abuse. The diffusion tensor was calculated in each voxel and maps of fractional anisotropy (FA) were generated. Tract-based spatial statistics (TBSS) were used to compare FA along the white matter skeleton among the three subject groups. IED was associated with lower FA in two clusters located in the superior longitudinal fasciculus (SLF) when compared with the psychiatric and healthy controls. Impulsive aggression and borderline personality disorder, but not psychopathy or antisocial personality disorder, was associated with lower FA in the two clusters within the SLF. In conclusion, IED was associated with lower white matter integrity in long-range connections between the frontal and temporoparietal regions.

  15. Diminished white matter integrity in patients with systemic lupus erythematosus.

    PubMed

    Schmidt-Wilcke, Tobias; Cagnoli, Patricia; Wang, Page; Schultz, Thomas; Lotz, Anne; Mccune, William J; Sundgren, Pia C

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease that can affect the central nervous system. Neuropsychiatric symptoms are found in 25-70% of patients. Using diffusion tensor imaging (DTI) various studies have reported changes in white matter integrity in SLE patients with neuropsychiatric symptoms (NPSLE patients). The purpose of this study was to investigate, if regional changes in white matter integrity can also be detected in SLE patients without neuropsychiatric symptoms (non-NPSLE patients). Applying DTI and tract based spatial statistics (TBSS) we investigated 19 NPSLE patients, 19 non-NPSLE and 18 healthy controls. Groups were matched for age and sex. Image pre-processing was performed using FSL, following the TBSS pipeline (eddy current correction, estimation of fractional anisotropy (FA), normalization, skeletonization of the group mean FA image). A general linear model with threshold-free cluster enhancement was used to assess significant differences between the three groups. Statistical analyses revealed several regions of decreased prefrontal white matter integrity (decreased FA) in both groups of SLE patients. The changes found in the non-NPSLE patients (as compared to healthy controls) overlapped with those in the NPSLE patients, but were not as pronounced. Our data suggest that changes in regional white matter integrity, in terms of a decrease in FA, are present not only in NPSLE patients, but also in non-NPSLE patients, though to a lesser degree. We also demonstrate that the way statistical maps are corrected for multiple comparisons has a profound influence on whether alterations in white matter integrity in non-NPSLE patients are deemed significant.

  16. White Matter Change Revealed by Diffusion Tensor Imaging in Gliomas

    PubMed Central

    Won, Young Il; Kim, Chi Heon; Park, Chul-Kee; Koo, Bang-Bon; Lee, Jong-Min; Jung, Hee-Won

    2016-01-01

    Background Tumor-related white matter change is detected at late stages with magnetic resonance imaging (MRI), when mass effect or prominent edema is present. We analyzed if diffusion tensor imaging (DTI) white matter change earlier than conventional MRI. Methods Twenty-six patients with gliomas (World Health Organization grade II, 5; grade III, 12; and grade IV, 9) within 2 cm from the posterior limb of the internal capsule (IC) were studied. Fifteen normal adults were enrolled as controls. Fluid attenuation inversion recovery MRI showed a high signal change at the posterior limb of the IC (HSIC) in 9 patients with grade III or IV gliomas. We classified the gliomas as WHO grade II (gliomas II), grade III or IV without HSIC [gliomas III/IV(-)] and grade III or IV with HSIC [gliomas III/IV(+)], as an indicator of the increase in the severity of the white matter changes. Fractional anisotropy (FA) and apparent diffusion coefficients (ADC) were calculated for the pyramidal tract. Tumor progression along pyramidal tract was evaluated by follow-up MRI in 16 patients at 40±18 months. Results FA showed no significant difference between gliomas II and control (p=0.694), but was lower in gliomas III/IV(-) and gliomas III/IV(+) (p<0.001). ADCs were higher in gliomas II, gliomas III/IV(-) and gliomas III/IV(+) than control (p<0.001). Tumor progression was detected in 2/16 patients. Conclusion DTI detected white matter changes that appeared to be normal in MRI. ADC changed even in low grade glioma, indicating ADC may be a better parameter for the early detection of white matter change. PMID:27867919

  17. Associations Between White Matter Microstructure and Infants’ Working Memory

    PubMed Central

    Short, Sarah J.; Elison, Jed T.; Goldman, Barbara Davis; Styner, Martin; Gu, Hongbin; Connelly, Mark; Maltbie, Eric; Woolson, Sandra; Lin, Weili; Gerig, Guido; Reznick, J. Steven; Gilmore, John H.

    2013-01-01

    Working memory emerges in infancy and plays a privileged role in subsequent adaptive cognitive development. The neural networks important for the development of working memory during infancy remain unknown. We used diffusion tensor imaging (DTI) and deterministic fiber tracking to characterize the microstructure of white matter fiber bundles hypothesized to support working memory in 12-month-old infants (n=73). Here we show robust associations between infants’ visuospatial working memory performance and microstructural characteristics of widespread white matter. Significant associations were found for white matter tracts that connect brain regions known to support working memory in older children and adults (genu, anterior and superior thalamic radiations, anterior cingulum, arcuate fasciculus, and the temporal-parietal segment). Better working memory scores were associated with higher FA and lower RD values in these selected white matter tracts. These tract-specific brain-behavior relationships accounted for a significant amount of individual variation above and beyond infants’ gestational age and developmental level, as measured with the Mullen Scales of Early Learning. Working memory was not associated with global measures of brain volume, as expected, and few associations were found between working memory and control white matter tracts. To our knowledge, this study is among the first demonstrations of brain-behavior associations in infants using quantitative tractography. The ability to characterize subtle individual differences in infant brain development associated with complex cognitive functions holds promise for improving our understanding of normative development, biomarkers of risk, experience-dependent learning and neuro-cognitive periods of developmental plasticity. PMID:22989623

  18. Plasticity of white matter connectivity in phonetics experts.

    PubMed

    Vandermosten, Maaike; Price, Cathy J; Golestani, Narly

    2016-09-01

    Phonetics experts are highly trained to analyze and transcribe speech, both with respect to faster changing, phonetic features, and to more slowly changing, prosodic features. Previously we reported that, compared to non-phoneticians, phoneticians had greater local brain volume in bilateral auditory cortices and the left pars opercularis of Broca's area, with training-related differences in the grey-matter volume of the left pars opercularis in the phoneticians group (Golestani et al. 2011). In the present study, we used diffusion MRI to examine white matter microstructure, indexed by fractional anisotropy, in (1) the long segment of arcuate fasciculus (AF_long), which is a well-known language tract that connects Broca's area, including left pars opercularis, to the temporal cortex, and in (2) the fibers arising from the auditory cortices. Most of these auditory fibers belong to three validated language tracts, namely to the AF_long, the posterior segment of the arcuate fasciculus and the middle longitudinal fasciculus. We found training-related differences in phoneticians in left AF_long, as well as group differences relative to non-experts in the auditory fibers (including the auditory fibers belonging to the left AF_long). Taken together, the results of both studies suggest that grey matter structural plasticity arising from phonetic transcription training in Broca's area is accompanied by changes to the white matter fibers connecting this very region to the temporal cortex. Our findings suggest expertise-related changes in white matter fibers connecting fronto-temporal functional hubs that are important for phonetic processing. Further studies can pursue this hypothesis by examining the dynamics of these expertise related grey and white matter changes as they arise during phonetic training.

  19. White spot lesions: Does etching really matter?

    PubMed

    Abufarwa, Moufida; Voorhees, Robert D; Varanasi, Venu G; Campbell, Phillip M; Buschang, Peter H

    2017-08-01

    The clinical significance of acid etching prior to orthodontic bonding is controversial. In the present study, we evaluated the effect of 15 seconds of acid etching on enamel demineralization. Twenty-seven human molars were sectioned and assigned to two groups. Under standardized conditions, the enamel surfaces were imaged using FluoreCam to obtain baseline data. Group 1 was etched using 37% phosphoric acid for 15 seconds, rinsed with water, and then imaged again; group 2 was only rinsed with water. Water rinse was collected for calcium chemical analysis using inductively-coupled plasma auger electron spectrometry. Both groups were subjected to 9 days of pH cycling, after which final FluoreCam images were obtained. Group 1 showed a significant increase in lesion area (P=.012), decrease in light intensity (P=.009), and decrease in impact (P=.007) after acid etching. The amount of calcium that leached out over the 15 seconds was 14 ppm ±2.4 (0.35 mmol/L±0.06). Following pH cycling, there was no statistically-significant between-group difference in overall enamel demineralization. Initial demineralization caused by 15 seconds of acid etching does not increase enamel susceptibility to further demineralization. This suggests that acid etching does not increase the risk of developing white spot lesions during orthodontics. © 2017 John Wiley & Sons Australia, Ltd.

  20. White matter structure changes as adults learn a second language.

    PubMed

    Schlegel, Alexander A; Rudelson, Justin J; Tse, Peter U

    2012-08-01

    Traditional models hold that the plastic reorganization of brain structures occurs mainly during childhood and adolescence, leaving adults with limited means to learn new knowledge and skills. Research within the last decade has begun to overturn this belief, documenting changes in the brain's gray and white matter as healthy adults learn simple motor and cognitive skills [Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48, 3878-3883, 2010; Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer, A., et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30, 11670-11677, 2010; Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neuroscience, 12, 1370-1371, 2009; Draganski, B., Gaser, C., Busch, V., Schuirer, G., Bogdahn, U., & May, A. Changes in grey matter induced by training. Nature, 427, 311-312, 2004]. Although the significance of these changes is not fully understood, they reveal a brain that remains plastic well beyond early developmental periods. Here we investigate the role of adult structural plasticity in the complex, long-term learning process of foreign language acquisition. We collected monthly diffusion tensor imaging scans of 11 English speakers who took a 9-month intensive course in written and spoken Modern Standard Chinese as well as from 16 control participants who did not study a language. We show that white matter reorganizes progressively across multiple sites as adults study a new language. Language learners exhibited progressive changes in white matter tracts associated with traditional left hemisphere language areas and their right hemisphere analogs. Surprisingly, the most significant changes

  1. Structural gray and white matter changes in patients with HIV.

    PubMed

    Küper, Michael; Rabe, K; Esser, S; Gizewski, E R; Husstedt, I W; Maschke, M; Obermann, M

    2011-06-01

    In this cross-sectional study we used magnetic resonance imaging (MRI)-based voxel based morphometry (VBM) in a sample of HIV positive patients to detect structural gray and white matter changes. Forty-eight HIV positive subjects with (n = 28) or without (n = 20) cognitive deficits (mean age 48.5 ± 9.6 years) and 48 age- and sex-matched HIV negative controls underwent MRI for VBM analyses. Clinical testing in HIV patients included the HIV dementia scale (HDS), Unified Parkinson's Disease Rating Scale (UPDRS) and the grooved pegboard test. Comparing controls with HIV positive patients with cognitive dysfunction (n = 28) VBM showed gray matter decrease in the anterior cingulate and temporal cortices along with white matter reduction in the midbrain region. These changes were more prominent with increasing cognitive decline, when assigning HIV patients to three cognitive groups (not impaired, mildly impaired, overtly impaired) based on performance in the HIV dementia scale. Regression analysis including all HIV positive patients with available data revealed that prefrontal gray matter atrophy in HIV was associated with longer disease duration (n = 48), while motor dysfunction (n = 48) was associated with basal ganglia gray matter atrophy. Lower CD4 cell count (n = 47) correlated with decrease of occipital gray matter. Our results provide evidence for atrophy of nigro-striatal and fronto-striatal circuits in HIV. This pattern of atrophy is consistent with motor dysfunction and dysexecutive syndrome found in HIV patients with HIV-associated neurocognitive disorder.

  2. Cerebral white matter integrity during primary HIV infection.

    PubMed

    Wright, Patrick W; Vaida, Florin F; Fernández, Ricardo J; Rutlin, Jerrel; Price, Richard W; Lee, Evelyn; Peterson, Julia; Fuchs, Dietmar; Shimony, Joshua S; Robertson, Kevin R; Walter, Rudolph; Meyerhoff, Dieter J; Spudich, Serena; Ances, Beau M

    2015-02-20

    Inflammation and infection within the central nervous system is initiated during primary HIV infection (PHI), but the association of these processes with the integrity of brain white matter during PHI is unknown. We used diffusion tensor imaging (DTI) in this prospective cross-sectional neuroimaging study to determine the extent of white matter involvement in early HIV infection. Antiretroviral-naive PHI (defined as <1 year after infection, n = 62), chronic HIV infection (CHI, n = 16), and HIV-uninfected (n = 19) participants had DTI, laboratory, and neuropsychometric performance assessments. DTI metrics were examined using region of interest and whole brain voxelwise analyses. Linear mixed-effects models assessed correlations between DTI measures and laboratory and neuropsychometric performance values. PHI participants were assessed at a median 4.1 months after estimated infection, and had median CD4 cell count of 573 cells/μl, and HIV-1 RNA viral load of 4.5 log10 copies/ml in plasma and 2.6 log10 copies/ml in cerebrospinal fluid (CSF). DTI metrics in PHI individuals were similar to HIV- participants and correlated with disruptions in the blood-brain barrier (indicated by CSF/plasma albumin ratio and CSF protein). CHI participants had significant loss of white matter integrity that correlated with biomarkers of infection and inflammation (blood viral load, CD4 T-cell count, and neopterin, and CSF white blood cell). Within the PHI group, DTI metrics inversely correlated with increasing days since infection. In individuals assessed during PHI, group DTI measures suggested relative preservation of white matter microstructural integrity, but were associated with disruption of the blood-brain barrier and estimated duration of infection.

  3. Cerebral white matter integrity during primary HIV infection

    PubMed Central

    Wright, Patrick W.; Vaida, Florin F.; Fernández, Ricardo J.; Rutlin, Jerrel; Price, Richard W.; Lee, Evelyn; Peterson, Julia; Fuchs, Dietmar; Shimony, Joshua S.; Robertson, Kevin R.; Walter, Rudolph; Meyerhoff, Dieter J.; Spudich, Serena; Ances, Beau M.

    2016-01-01

    Objective Inflammation and infection within the central nervous system is initiated during primary HIV infection (PHI), but the association of these processes with the integrity of brain white matter during PHI is unknown. Design We used diffusion tensor imaging (DTI) in this prospective cross-sectional neuroimaging study to determine the extent of white matter involvement in early HIV infection. Methods Antiretroviral-naive PHI (defined as <1 year after infection, n = 62), chronic HIV infection (CHI, n = 16), and HIV-uninfected (n = 19) participants had DTI, laboratory, and neuropsychometric performance assessments. DTI metrics were examined using region of interest and whole brain voxelwise analyses. Linear mixed-effects models assessed correlations between DTI measures and laboratory and neuropsychometric performance values. Results PHI participants were assessed at a median 4.1 months after estimated infection, and had median CD4+ cell count of 573 cells/µl, and HIV-1 RNA viral load of 4.5 log10 copies/ml in plasma and 2.6 log10 copies/ml in cerebrospinal fluid (CSF). DTI metrics in PHI individuals were similar to HIV— participants and correlated with disruptions in the blood-brain barrier (indicated by CSF/plasma albumin ratio and CSF protein). CHI participants had significant loss of white matter integrity that correlated with biomarkers of infection and inflammation (blood viral load, CD4+ T-cell count, and neopterin, and CSF white blood cell). Within the PHI group, DTI metrics inversely correlated with increasing days since infection. Conclusion In individuals assessed during PHI, group DTI measures suggested relative preservation of white matter microstructural integrity, but were associated with disruption of the blood-brain barrier and estimated duration of infection. PMID:25513818

  4. Origins of R2∗ and white matter

    PubMed Central

    Rudko, David A.; Klassen, L. Martyn; de Chickera, Sonali N.; Gati, Joseph S.; Dekaban, Gregory A.; Menon, Ravi S.

    2014-01-01

    Estimates of the apparent transverse relaxation rate () can be used to quantify important properties of biological tissue. Surprisingly, the mechanism of dependence on tissue orientation is not well understood. The primary goal of this paper was to characterize orientation dependence of in gray and white matter and relate it to independent measurements of two other susceptibility based parameters: the local Larmor frequency shift (fL) and quantitative volume magnetic susceptibility (Δχ). Through this comparative analysis we calculated scaling relations quantifying (reversible contribution to the transverse relaxation rate from local field inhomogeneities) in a voxel given measurements of the local Larmor frequency shift. is a measure of both perturber geometry and density and is related to tissue microstructure. Additionally, two methods (the Generalized Lorentzian model and iterative dipole inversion) for calculating Δχ were compared in gray and white matter. The value of Δχ derived from fitting the Generalized Lorentzian model was then connected to the observed orientation dependence using image-registered optical density measurements from histochemical staining. Our results demonstrate that the and fL of white and cortical gray matter are well described by a sinusoidal dependence on the orientation of the tissue and a linear dependence on the volume fraction of myelin in the tissue. In deep brain gray matter structures, where there is no obvious symmetry axis, and fL have no orientation dependence but retain a linear dependence on tissue iron concentration and hence Δχ. PMID:24374633

  5. Abnormal gray and white matter volume in delusional infestation.

    PubMed

    Wolf, Robert Christian; Huber, Markus; Depping, Malte Sebastian; Thomann, Philipp Arthur; Karner, Martin; Lepping, Peter; Freudenmann, Roland W

    2013-10-01

    Little is known about the neural basis of delusional infestation (DI), the delusional belief to be infested with pathogens. Case series and the response to anti-dopaminergic medication indicate disruptions in dopaminergic neurotransmission in the striatum (caudate, putamen), but did not allow for population-based inference. Here, we report the first whole-brain structural neuroimaging study to investigate gray and white matter abnormalities in DI compared to controls. In this study, we used structural magnetic resonance imaging and voxel-based morphometry to investigate gray and white matter volume in 16 DI patients and 16 matched healthy controls. Lower gray matter volume in DI patients compared to controls was found in left medial, lateral and right superior frontal cortices, left anterior cingulate cortex, bilateral insula, left thalamus, right striatal areas and in lateral and medial temporal cortical regions (p<0.05, cluster-corrected). Higher white matter volume in DI patients compared to controls was found in right middle cingulate, left frontal opercular and bilateral striatal regions (p<0.05, cluster-corrected). This study shows that structural changes in prefrontal, temporal, insular, cingulate and striatal brain regions are associated with DI, supporting a neurobiological model of disrupted prefrontal control over somato-sensory representations. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. White matter neuroanatomical differences in young children who stutter

    PubMed Central

    Zhu, David C.; Choo, Ai Leen; Angstadt, Mike

    2015-01-01

    The ability to express thoughts through fluent speech production is a most human faculty, one that is often taken for granted. Stuttering, which disrupts the smooth flow of speech, affects 5% of preschool-age children and 1% of the general population, and can lead to significant communication difficulties and negative psychosocial consequences throughout one’s lifetime. Despite the fact that symptom onset typically occurs during early childhood, few studies have yet examined the possible neural bases of developmental stuttering during childhood. Here we present a diffusion tensor imaging study that examined white matter measures reflecting neuroanatomical connectivity (fractional anisotropy) in 77 children [40 controls (20 females), 37 who stutter (16 females)] between 3 and 10 years of age. We asked whether previously reported anomalous white matter measures in adults and older children who stutter that were found primarily in major left hemisphere tracts (e.g. superior longitudinal fasciculus) are also present in younger children who stutter. All children exhibited normal speech, language, and cognitive development as assessed through a battery of assessments. The two groups were matched in chronological age and socioeconomic status. Voxel-wise whole brain comparisons using tract-based spatial statistics and region of interest analyses of fractional anisotropy were conducted to examine white matter changes associated with stuttering status, age, sex, and stuttering severity. Children who stutter exhibited significantly reduced fractional anisotropy relative to controls in white matter tracts that interconnect auditory and motor structures, corpus callosum, and in tracts interconnecting cortical and subcortical areas. In contrast to control subjects, fractional anisotropy changes with age were either stagnant or showed dissociated development among major perisylvian brain areas in children who stutter. These results provide first glimpses into the

  7. White matter neuroanatomical differences in young children who stutter.

    PubMed

    Chang, Soo-Eun; Zhu, David C; Choo, Ai Leen; Angstadt, Mike

    2015-03-01

    The ability to express thoughts through fluent speech production is a most human faculty, one that is often taken for granted. Stuttering, which disrupts the smooth flow of speech, affects 5% of preschool-age children and 1% of the general population, and can lead to significant communication difficulties and negative psychosocial consequences throughout one's lifetime. Despite the fact that symptom onset typically occurs during early childhood, few studies have yet examined the possible neural bases of developmental stuttering during childhood. Here we present a diffusion tensor imaging study that examined white matter measures reflecting neuroanatomical connectivity (fractional anisotropy) in 77 children [40 controls (20 females), 37 who stutter (16 females)] between 3 and 10 years of age. We asked whether previously reported anomalous white matter measures in adults and older children who stutter that were found primarily in major left hemisphere tracts (e.g. superior longitudinal fasciculus) are also present in younger children who stutter. All children exhibited normal speech, language, and cognitive development as assessed through a battery of assessments. The two groups were matched in chronological age and socioeconomic status. Voxel-wise whole brain comparisons using tract-based spatial statistics and region of interest analyses of fractional anisotropy were conducted to examine white matter changes associated with stuttering status, age, sex, and stuttering severity. Children who stutter exhibited significantly reduced fractional anisotropy relative to controls in white matter tracts that interconnect auditory and motor structures, corpus callosum, and in tracts interconnecting cortical and subcortical areas. In contrast to control subjects, fractional anisotropy changes with age were either stagnant or showed dissociated development among major perisylvian brain areas in children who stutter. These results provide first glimpses into the neuroanatomical

  8. A case of Jacobsen syndrome with multifocal white matter lesions.

    PubMed

    Yu, Fang; Carter, John E; Bazan, Carlos

    2016-01-01

    Jacobsen syndrome is a rare disorder caused by partial deletions of the long arm of chromosome 11. The phenotype is variable with involvement of multiple organ systems, resulting in congenital heart defects, blood dyscrasias, and impaired growth. We describe a case of a 30-year-old man with multiple ophthalmic manifestations and brain magnetic resonance imaging (MRI) that was remarkable for multiple T2-hyperintense subcortical white matter lesions. It is important to be aware that patients with Jacobsen syndrome may have nonspecific white changes seen on MRI.

  9. Widespread white matter but focal gray matter alterations in depressed individuals with thoughts of death.

    PubMed

    Taylor, Warren D; Boyd, Brian; McQuoid, Douglas R; Kudra, Kamil; Saleh, Ayman; MacFall, James R

    2015-10-01

    Past work demonstrates that depressed individuals with suicidal thoughts or behaviors exhibit specific neuroanatomical alterations. This may represent a distinct phenotype characterized by specific findings on neuroimaging, but it is unclear if these findings extend to individuals with milder thoughts of death. We examined this question in outpatients with recurrent Major Depressive Disorder not receiving antidepressant treatment. We examined 165 subjects: 53 depressed without thoughts of death, 21 depressed with thoughts of death, and 91 healthy comparison subjects. Participants completed 3T cranial MRI, including anatomical and diffusion tensor imaging acquisitions. Automated methods measured regional gray matter volumes in addition to cortical thickness. White matter analyses examined diffusion measures within specific fiber tracts and included voxelwise comparisons. After adjustment for multiple comparisons, the depressed group with thoughts of death did not exhibit differences in regional gray matter volume, but did exhibit reduced cortical thickness in frontoparietal regions and the insula. This depressed group with thoughts of death also exhibited widespread white matter differences in fractional anisotropy and radial diffusivity. These differences were observed primarily in posterior parietal white matter regions and central white matter tracts adjacent to the basal ganglia and thalamus. Mild thoughts of death are associated with structural alterations in regions of the salience network, default mode network, and thalamocortical circuits. Further work is needed to understand the pathological basis of these findings. Published by Elsevier Inc.

  10. Vanishing White Matter Disease: A Review with Focus on Its Genetics

    ERIC Educational Resources Information Center

    Pronk, Jan C.; van Kollenburg, Barbara; Scheper, Gert C.; van der Knaap, Marjo S.

    2006-01-01

    Leukoencephalopathy with vanishing white matter (VWM) is an autosomal recessive brain disorder, most often with a childhood onset. Magnetic resonance imaging and spectroscopy indicate that, with time, increasing amounts of cerebral white matter vanish and are replaced by fluid. Autopsy confirms white matter rarefaction and cystic degeneration. The…

  11. Lower Orbital Frontal White Matter Integrity in Adolescents with Bipolar I Disorder

    ERIC Educational Resources Information Center

    Kafantaris, Vivian; Kingsley, Peter; Ardekani, Babak; Saito, Ema; Lencz, Todd; Lim, Kelvin; Szeszko, Philip

    2009-01-01

    Patients with bipolar I disorder demonstrated white matter abnormalities in white matter regions as seen through the use of diffusion tensor imaging. The findings suggest that white matter abnormalities in pediatric bipolar disorder may be useful in constructing neurobiological models of the disorder.

  12. Lower Orbital Frontal White Matter Integrity in Adolescents with Bipolar I Disorder

    ERIC Educational Resources Information Center

    Kafantaris, Vivian; Kingsley, Peter; Ardekani, Babak; Saito, Ema; Lencz, Todd; Lim, Kelvin; Szeszko, Philip

    2009-01-01

    Patients with bipolar I disorder demonstrated white matter abnormalities in white matter regions as seen through the use of diffusion tensor imaging. The findings suggest that white matter abnormalities in pediatric bipolar disorder may be useful in constructing neurobiological models of the disorder.

  13. Vanishing White Matter Disease: A Review with Focus on Its Genetics

    ERIC Educational Resources Information Center

    Pronk, Jan C.; van Kollenburg, Barbara; Scheper, Gert C.; van der Knaap, Marjo S.

    2006-01-01

    Leukoencephalopathy with vanishing white matter (VWM) is an autosomal recessive brain disorder, most often with a childhood onset. Magnetic resonance imaging and spectroscopy indicate that, with time, increasing amounts of cerebral white matter vanish and are replaced by fluid. Autopsy confirms white matter rarefaction and cystic degeneration. The…

  14. White matter abnormalities in dystonia normalize after botulinum toxin treatment

    PubMed Central

    Blood, Anne J.; Tuch, David S.; Makris, Nikos; Makhlouf, Miriam L.; Sudarsky, Lewis R.; Sharma, Nutan

    2011-01-01

    The pathophysiology of dystonia is still poorly understood. We used diffusion tensor imaging to screen for white matter abnormalities in regions between the basal ganglia and the thalamus in cervical and hand dystonia patients. All patients exhibited an abnormal hemispheric asymmetry in a focal region between the pallidum and the thalamus. This asymmetry was absent 4 weeks after the same patients were treated with intramuscular botulinum toxin injections. These findings represent a new systems-level abnormality in dystonia, which may lead to new insights about the pathophysiology of movement disorders. More generally, these findings demonstrate central nervous system changes following peripheral reductions in muscle activity. This raises the possibility that we have observed activity-dependent white matter plasticity in the adult human brain. PMID:16951564

  15. White matter abnormalities in dystonia normalize after botulinum toxin treatment.

    PubMed

    Blood, Anne J; Tuch, David S; Makris, Nikos; Makhlouf, Miriam L; Sudarsky, Lewis R; Sharma, Nutan

    2006-08-21

    The pathophysiology of dystonia is still poorly understood. We used diffusion tensor imaging to screen for white matter abnormalities in regions between the basal ganglia and the thalamus in cervical and hand dystonia patients. All patients exhibited an abnormal hemispheric asymmetry in a focal region between the pallidum and the thalamus. This asymmetry was absent 4 weeks after the same patients were treated with intramuscular botulinum toxin injections. These findings represent a new systems-level abnormality in dystonia, which may lead to new insights about the pathophysiology of movement disorders. More generally, these findings demonstrate central nervous system changes following peripheral reductions in muscle activity. This raises the possibility that we have observed activity-dependent white matter plasticity in the adult human brain.

  16. Multiple Factors Involved in the Pathogenesis of White Matter Lesions

    PubMed Central

    Lin, Jing; Wang, Dilong; Lan, Linfang

    2017-01-01

    White matter lesions (WMLs), also known as leukoaraiosis (LA) or white matter hyperintensities (WMHs), are characterized mainly by hyperintensities on T2-weighted or fluid-attenuated inversion recovery (FLAIR) images. With the aging of the population and the development of imaging technology, the morbidity and diagnostic rates of WMLs are increasing annually. WMLs are not a benign process. They clinically manifest as cognitive decline and the subsequent development of dementia. Although WMLs are important, their pathogenesis is still unclear. This review elaborates on the advances in the understanding of the pathogenesis of WMLs, focusing on anatomy, cerebral blood flow autoregulation, venous collagenosis, blood brain barrier disruption, and genetic factors. In particular, the attribution of WMLs to chronic ischemia secondary to venous collagenosis and cerebral blood flow autoregulation disruption seems reasonable. With the development of gene technology, the effect of genetic factors on the pathogenesis of WMLs is gaining gradual attention. PMID:28316994

  17. Characterizing longitudinal white matter development during early childhood.

    PubMed

    Dean, Douglas C; O'Muircheartaigh, Jonathan; Dirks, Holly; Waskiewicz, Nicole; Walker, Lindsay; Doernberg, Ellen; Piryatinsky, Irene; Deoni, Sean C L

    2015-07-01

    Post-mortem studies have shown the maturation of the brain's myelinated white matter, crucial for efficient and coordinated brain communication, follows a nonlinear spatio-temporal pattern that corresponds with the onset and refinement of cognitive functions and behaviors. Unfortunately, investigation of myelination in vivo is challenging and, thus, little is known about the normative pattern of myelination, or its association with functional development. Using a novel quantitative magnetic resonance imaging technique sensitive to myelin we examined longitudinal white matter development in 108 typically developing children ranging in age from 2.5 months to 5.5 years. Using nonlinear mixed effects modeling, we provide the first in vivo longitudinal description of myelin water fraction development. Moreover, we show distinct male and female developmental patterns, and demonstrate significant relationships between myelin content and measures of cognitive function. These findings advance a new understanding of healthy brain development and provide a foundation from which to assess atypical development.

  18. Patchy white matter hyperintensity in ring chromosome 18 syndrome.

    PubMed

    Anzai, Mai; Arai-Ichinoi, Natsuko; Takezawa, Yusuke; Endo, Wakaba; Inui, Takehiko; Sato, Ryo; Kikuchi, Atsuo; Uematsu, Mitsugu; Kure, Shigeo; Haginoya, Kazuhiro

    2016-09-01

    Ring chromosome 18 syndrome is a chromosomal abnormality in which partial deletions occur at both ends of chromosome 18, that is, distally on the short and long arms. Previously reported brain magnetic resonance imaging (MRI) abnormalities include diffuse hyperintensity in the white matter, which has been regarded as hypomyelination because the gene for myelin basic protein production is located on the long arm of chromosome 18. We report the case of a 14-year-old boy with ring chromosome 18 syndrome, whose MRI showed patchy asymmetrical T2 and fluid-attenuated inversion-recovery hyperintensities in the deep white matter as well as diffuse hypomyelination. These patchy lesions may indicate demyelination or gliosis rather than hypomyelination. This result differs from previous reports. © 2016 Japan Pediatric Society.

  19. Altered white matter microstructure in adolescent substance users

    PubMed Central

    Bava, Sunita; Frank, Lawrence R.; McQueeny, Tim; Schweinsburg, Brian C.; Schweinsburg, Alecia D.; Tapert, Susan F.

    2009-01-01

    Chronic marijuana use during adolescence is frequently comorbid with heavy alcohol consumption and associated with CNS alterations, yet the influence of early cannabis and alcohol use on microstructural white matter integrity is unclear. Building on evidence that cannabinoid receptors are present in myelin precursors and affect glial cell processing, and that excessive ethanol exposure is associated with persistently impaired myelination, we used diffusion tensor imaging (DTI) to characterize white matter integrity in heavy substance using and non-using adolescents. We evaluated 36 marijuana and alcohol-using (MJ+ALC) adolescents (ages 16-19) and 36 demographically similar non-using controls with DTI. Diffusion parameters fractional anisotropy (FA) and mean diffusivity (MD) were subjected to whole-brain voxelwise group comparisons using tract-based spatial statistics (Smith et al., 2006). MJ+ALC teens had significantly lower FA than controls in 10 regions, including left superior longitudinal fasciculus (SLF), left postcentral gyrus, bilateral crus cerebri, and inferior frontal and temporal white matter tracts. These diminutions occurred in the context of increased FA in right occipital, internal capsule, and SLF regions. Changes in MD were less distributed, but increased MD was evident in the right occipital lobe, whereas the left inferior longitudinal fasciculus showed lower MD in MJ+ALC users. Findings suggest that fronto-parietal circuitry may be particularly impacted in adolescent users of the most prevalent intoxicants: marijuana and alcohol. Disruptions to white matter in this young group could indicate aberrant axonal and myelin maturation with resultant compromise of fiber integrity. Findings of increased anisotropic diffusion in alternate brain regions suggests possible neuroadaptive processes and can be examined in future studies of connectivity to determine how aberrancies in specific tracts might influence efficient cognitive processing. PMID:19699064

  20. White matter abnormalities differentiate severe from benign temporal lobe epilepsy.

    PubMed

    Labate, Angelo; Cherubini, Andrea; Tripepi, Giovanni; Mumoli, Laura; Ferlazzo, Edoardo; Aguglia, Umberto; Quattrone, Aldo; Gambardella, Antonio

    2015-07-01

    Temporal and extratemporal white matter abnormalities have been identified frequently in patients with refractory mesial temporal lobe epilepsy (rMTLE). However, the identification of potential water diffusion abnormalities in patients with drug-responsive, benign MTLE (bMTLE) is still missing. The aim of this study was to identify markers of refractoriness in MTLE. The study group included 48 patients with bMTLE (mean age 42.8 + 13.5 years), 38 with rMTLE (mean age 41.7 + 14.1 years) and 54 healthy volunteers. Diffusion tensor imaging (DTI) was performed to measure mean diffusivity (MD) and fractional anisotropy (FA) in a regions-of-interest analysis comprising hippocampi and temporal lobe gray and white matter regions. The presence of hippocampal sclerosis (Hs) was assessed using automated magnetic resonance imaging (MRI) evaluation. For statistics we used chi-square test; two-tailed, two-sample t-test; and stratified linear regression. The significant demographic differences between the two patient groups were sex (p = 0.003), duration of epilepsy (p = 0.003) and complex febrile convulsions (p = 0.0001). In rMTLE, temporal white matter MD was higher and FA lower, as compared to bMTLE. The analysis of diagnostic accuracy (area under the receiver operator characteristic [ROC] curve [AUC]) showed that FA had an AUC for discriminating patients affected from those unaffected by refractory MTLE of 74.0% (p < 0.001), a value that was higher than that of temporal MD (64.0%), hippocampus volume (65.0%), and Hs (66.0%). We performed DTI measurements in MTLE and found a significant reduction of FA along the white matter of the temporal lobes in rMTLE, suggesting it as a valuable measure of refractoriness in MTLE. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  1. White matter correlates of sensory processing in autism spectrum disorders

    PubMed Central

    Pryweller, Jennifer R.; Schauder, Kimberly B.; Anderson, Adam W.; Heacock, Jessica L.; Foss-Feig, Jennifer H.; Newsom, Cassandra R.; Loring, Whitney A.; Cascio, Carissa J.

    2014-01-01

    Autism spectrum disorder (ASD) has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure. PMID:25379451

  2. Memory binding and white matter integrity in familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to

  3. Longitudinal changes in white matter microstructure after heavy cannabis use

    PubMed Central

    Becker, Mary P.; Collins, Paul F.; Lim, Kelvin O.; Muetzel, R.L.; Luciana, M.

    2015-01-01

    Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment. PMID:26602958

  4. White matter connectivity and aerobic fitness in male adolescents.

    PubMed

    Herting, Megan M; Colby, John B; Sowell, Elizabeth R; Nagel, Bonnie J

    2014-01-01

    Exercise has been shown to have positive effects on the brain and behavior throughout various stages of the lifespan. However, little is known about the impact of exercise on neurodevelopment during the adolescent years, particularly with regard to white matter microstructure, as assessed by diffusion tensor imaging (DTI). Both tract-based spatial statistics (TBSS) and tractography-based along-tract statistics were utilized to examine the relationship between white matter microstructure and aerobic exercise in adolescent males, ages 15-18. Furthermore, we examined the data by both (1) grouping individuals based on aerobic fitness self-reports (high fit (HF) vs. low fit (LF)), and (2) using VO2 peak as a continuous variable across the entire sample. Results showed that HF youth had an overall higher number of streamline counts compared to LF peers, which was driven by group differences in corticospinal tract (CST) and anterior corpus callosum (Fminor). In addition, VO2 peak was negatively related to FA in the left CST. Together, these results suggest that aerobic fitness relates to white matter connectivity and microstructure in tracts carrying frontal and motor fibers during adolescence. Furthermore, the current study highlights the importance of considering the environmental factor of aerobic exercise when examining adolescent brain development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Longitudinal changes in white matter microstructure after heavy cannabis use.

    PubMed

    Becker, Mary P; Collins, Paul F; Lim, Kelvin O; Muetzel, R L; Luciana, M

    2015-12-01

    Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.

  6. White Matter and Cognition in Adults Who Were Born Preterm

    PubMed Central

    Allin, Matthew P. G.; Kontis, Dimitris; Walshe, Muriel; Wyatt, John; Barker, Gareth J.; Kanaan, Richard A. A.; McGuire, Philip; Rifkin, Larry; Murray, Robin M.; Nosarti, Chiara

    2011-01-01

    Background and Purpose Individuals born very preterm (before 33 weeks of gestation, VPT) are at risk of damage to developing white matter, which may affect later cognition and behaviour. Methods We used diffusion tensor MRI (DT-MRI) to assess white matter microstructure (fractional anisotropy; FA) in 80 VPT and 41 term-born individuals (mean age 19.1 years, range 17–22, and 18.5 years, range17–22 years, respectively). VPT individuals were part of a 1982–1984 birth cohort which had been followed up since birth; term individuals were recruited by local press advertisement. General intellectual function, executive function and memory were assessed. Results The VPT group had reduced FA in four clusters, and increased FA in four clusters relative to the Term group, involving several association tracts of both hemispheres. Clusters of increased FA were associated with more severe neonatal brain injury in the VPT group. Clusters of reduced FA were associated with lower birth weight and perinatal hypoxia, and with reduced adult cognitive performance in the VPT group only. Conclusions Alterations of white matter microstructure persist into adulthood in VPT individuals and are associated with cognitive function. PMID:22022357

  7. Evaluating the accuracy of diffusion MRI models in white matter.

    PubMed

    Rokem, Ariel; Yeatman, Jason D; Pestilli, Franco; Kay, Kendrick N; Mezer, Aviv; van der Walt, Stefan; Wandell, Brian A

    2015-01-01

    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of commonly used models have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM model-accuracy, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking.

  8. Organising white matter in a brain without corpus callosum fibres.

    PubMed

    Bénézit, Audrey; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine; Monzalvo, Karla; Germanaud, David; Duclap, Delphine; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Moutard, Marie-Laure; Dubois, Jessica

    2015-02-01

    Isolated corpus callosum dysgenesis (CCD) is a congenital malformation which occurs during early development of the brain. In this study, we aimed to identify and describe its consequences beyond the lack of callosal fibres, on the morphology, microstructure and asymmetries of the main white matter bundles with diffusion imaging and fibre tractography. Seven children aged between 9 and 13 years old and seven age- and gender-matched control children were studied. First, we focused on bundles within the mesial region of the cerebral hemispheres: the corpus callosum, Probst bundles and cingulum which were selected using a conventional region-based approach. We demonstrated that the Probst bundles have a wider connectivity than the previously described rostrocaudal direction, and a microstructure rather distinct from the cingulum but relatively close to callosal remnant fibres. A sigmoid bundle was found in two partial ageneses. Second, the corticospinal tract, thalamic radiations and association bundles were extracted automatically via an atlas of adult white matter bundles to overcome bias resulting from a priori knowledge of the bundles' anatomical morphology and trajectory. Despite the lack of callosal fibres and the colpocephaly observed in CCD, all major white matter bundles were identified with a relatively normal morphology, and preserved microstructure (i.e. fractional anisotropy, mean diffusivity) and asymmetries. Consequently the bundles' organisation seems well conserved in brains with CCD. These results await further investigations with functional imaging before apprehending the cognition variability in children with isolated dysgenesis.

  9. Inflammation and white matter damage in vascular cognitive impairment.

    PubMed

    Rosenberg, Gary A

    2009-03-01

    Vascular cognitive impairment is a term used to describe a heterogeneous group of diseases, including large vessel disease with strategic single and multiple strokes and small vessel disease with progressive damage to the deep white matter. Identification of patients with the progressive form of vascular cognitive impairment, referred to by some investigators as Binswanger disease, is important for treatment trials. Pathologically, Binswanger disease is associated with small vessel disease, extensive regions of demyelination, inflammatory cells around damaged blood vessels, and lacunar infarcts. Clinically, patients with Binswanger disease have impairments of gait and balance, focal neurological findings, and executive dysfunction on neuropsychological tests. White matter changes on MRI are thought to be due to hypoxic episodes related to hypoperfusion of the vulnerable deep white matter secondary to hypertension, diabetes, and other vessel diseases. Disruption of the blood-brain barrier suggests an inflammatory response. Matrix metalloproteinases are present in the brain of patients with vascular cognitive impairment and can be measured in the cerebrospinal fluid of some patients. Preliminary studies with quantification of the blood-brain barrier, using the multiple time graphical method (Patlak plots), supports disruption of the blood-brain barrier. Because no single clinical feature or diagnostic test is sufficient to identify patients with the small vessel form of vascular cognitive impairment, we propose that a multimodal approach will be needed to select patients for treatment trials.

  10. Inflammation and White Matter Damage in Vascular Cognitive Impairment

    PubMed Central

    Rosenberg, Gary A.

    2009-01-01

    Vascular cognitive impairment is a term used to describe a heterogeneous group of diseases, including large vessel disease with strategic single and multiple strokes and small vessel disease with progressive damage to the deep white matter. Identification of patients with the progressive form of vascular cognitive impairment, referred to by some investigators as Binswanger disease, is important for treatment trials. Pathologically, Binswanger disease is associated with small vessel disease, extensive regions of demyelination, inflammatory cells around damaged blood vessels, and lacunar infarcts. Clinically, patients with Binswanger disease have impairments of gait and balance, focal neurological findings, and executive dysfunction on neuropsychological tests. White matter changes on MRI are thought to be due to hypoxic episodes related to hypoperfusion of the vulnerable deep white matter secondary to hypertension, diabetes, and other vessel diseases. Disruption of the blood– brain barrier suggests an inflammatory response. Matrix metalloproteinases are present in the brain of patients with vascular cognitive impairment and can be measured in the cerebrospinal fluid of some patients. Preliminary studies with quantification of the blood–brain barrier, using the multiple time graphical method (Patlak plots), supports disruption of the blood–brain barrier. Because no single clinical feature or diagnostic test is sufficient to identify patients with the small vessel form of vascular cognitive impairment, we propose that a multimodal approach will be needed to select patients for treatment trials. PMID:19064797

  11. Shaping of white matter composition by biophysical scaling constraints

    PubMed Central

    Wang, Samuel S.-H.; Shultz, Jennifer R.; Burish, Mark J.; Harrison, Kimberly H.; Hof, Patrick R.; Towns, Lex C.; Wagers, Matthew W.; Wyatt, Krysta D.

    2009-01-01

    The brains of large mammals have lower rates of metabolism than those of small mammals, but the functional consequences of this scaling are not well understood. An attractive target for analysis is axons, whose size, speed and energy consumption are straightforwardly related. Here we show that from shrews to whales, the composition of white matter shifts from compact, slow-conducting, and energetically expensive unmyelinated axons to large, fast-conducting, and energetically inexpensive myelinated axons. The fastest axons have conduction times of 1–5 milliseconds across the neocortex and less than 1 millisecond from the eye to the brain, suggesting that in select sets of communicating fibers, large brains reduce transmission delays and metabolic firing costs at the expense of increased volume. Delays and potential imprecision in cross-brain conduction times are especially great in unmyelinated axons, which may transmit information via firing rate rather than precise spike timing. In neocortex, axon size distributions can account for the scaling of per-volume metabolic rate and suggest a maximum supportable firing rate, averaged across all axons, of 7 ± 2 Hz. Axon size distributions also account for the scaling of white matter volume with respect to brain size. The heterogeneous white matter composition found in large brains thus reflects a metabolically constrained trade-off that reduces both volume and conduction time. PMID:18400904

  12. The generation and validation of white matter connectivity importance maps

    PubMed Central

    Kuceyeski, Amy; Maruta, Jun; Niogi, Sumit N.; Ghajar, Jamshid; Raj, Ashish

    2011-01-01

    Both the size and location of injury in the brain influences the type and severity of cognitive or sensorimotor dysfunction. However, even with advances in MR imaging and analysis, the correspondence between lesion location and clinical deficit remains poorly understood. Here, structural and diffusion images from 14 healthy subjects are used to create spatially unbiased white matter connectivity importance maps that quantify the amount of disruption to the overall brain network that would be incurred if that region were compromised. Some regions in the white matter that were identified as highly important by such maps have been implicated in strategic infarct dementia and linked to various attention tasks in previous studies. Validation of the maps is performed by investigating the correlations of the importance maps’ predicted cognitive deficits in a group of 15 traumatic brain injury patients with their cognitive test scores measuring attention and memory. While no correlation was found between amount of white matter injury and cognitive test scores, significant correlations (r > 0.68, p < 0.006) were found when including location information contained in the importance maps. These tools could be used by physicians to improve surgical planning, diagnosis, and assessment of disease severity in a variety of pathologies like multiple sclerosis, trauma, and stroke. PMID:21722739

  13. The effects of puberty on white matter development in boys.

    PubMed

    Menzies, Lara; Goddings, Anne-Lise; Whitaker, Kirstie J; Blakemore, Sarah-Jayne; Viner, Russell M

    2015-02-01

    Neuroimaging studies demonstrate considerable changes in white matter volume and microstructure during adolescence. Most studies have focused on age-related effects, whilst puberty-related changes are not well understood. Using diffusion tensor imaging and tract-based spatial statistics, we investigated the effects of pubertal status on white matter mean diffusivity (MD) and fractional anisotropy (FA) in 61 males aged 12.7-16.0 years. Participants were grouped into early-mid puberty (≤Tanner Stage 3 in pubic hair and gonadal development; n=22) and late-post puberty (≥Tanner Stage 4 in pubic hair or gonadal development; n=39). Salivary levels of pubertal hormones (testosterone, DHEA and oestradiol) were also measured. Pubertal stage was significantly related to MD in diverse white matter regions. No relationship was observed between pubertal status and FA. Regression modelling of MD in the significant regions demonstrated that an interaction model incorporating puberty, age and puberty×age best explained our findings. In addition, testosterone was correlated with MD in these pubertally significant regions. No relationship was observed between oestradiol or DHEA and MD. In conclusion, pubertal status was significantly related to MD, but not FA, and this relationship cannot be explained by changes in chronological age alone.

  14. EEG functional connectivity, axon delays and white matter disease

    PubMed Central

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  15. White matter fractional anisotropy predicts balance performance in older adults.

    PubMed

    Van Impe, Annouchka; Coxon, James P; Goble, Daniel J; Doumas, Mihail; Swinnen, Stephan P

    2012-09-01

    Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.

  16. The effects of puberty on white matter development in boys

    PubMed Central

    Menzies, Lara; Goddings, Anne-Lise; Whitaker, Kirstie J.; Blakemore, Sarah-Jayne; Viner, Russell M.

    2015-01-01

    Neuroimaging studies demonstrate considerable changes in white matter volume and microstructure during adolescence. Most studies have focused on age-related effects, whilst puberty-related changes are not well understood. Using diffusion tensor imaging and tract-based spatial statistics, we investigated the effects of pubertal status on white matter mean diffusivity (MD) and fractional anisotropy (FA) in 61 males aged 12.7–16.0 years. Participants were grouped into early-mid puberty (≤Tanner Stage 3 in pubic hair and gonadal development; n = 22) and late-post puberty (≥Tanner Stage 4 in pubic hair or gonadal development; n = 39). Salivary levels of pubertal hormones (testosterone, DHEA and oestradiol) were also measured. Pubertal stage was significantly related to MD in diverse white matter regions. No relationship was observed between pubertal status and FA. Regression modelling of MD in the significant regions demonstrated that an interaction model incorporating puberty, age and puberty × age best explained our findings. In addition, testosterone was correlated with MD in these pubertally significant regions. No relationship was observed between oestradiol or DHEA and MD. In conclusion, pubertal status was significantly related to MD, but not FA, and this relationship cannot be explained by changes in chronological age alone. PMID:25454416

  17. Asymmetry of White Matter Pathways in Developing Human Brains.

    PubMed

    Song, Jae W; Mitchell, Paul D; Kolasinski, James; Ellen Grant, P; Galaburda, Albert M; Takahashi, Emi

    2015-09-01

    Little is known about the emergence of structural asymmetry of white matter tracts during early brain development. We examined whether and when asymmetry in diffusion parameters of limbic and association white matter pathways emerged in humans in 23 brains ranging from 15 gestational weeks (GW) up to 3 years of age (11 ex vivo and 12 in vivo cases) using high-angular resolution diffusion imaging tractography. Age-related development of laterality was not observed in a limbic connectional pathway (cingulum bundle or fornix). Among the studied cortico-cortical association pathways (inferior longitudinal fasciculus [ILF], inferior fronto-occipital fasciculus, and arcuate fasciculus), only the ILF showed development of age-related laterality emerging as early as the second trimester. Comparisons of ages older and younger than 40 GW revealed a leftward asymmetry in the cingulum bundle volume and a rightward asymmetry in apparent diffusion coefficient and leftward asymmetry in fractional anisotropy in the ILF in ages older than 40 GW. These results suggest that morphometric asymmetry in cortical areas precedes the emergence of white matter pathway asymmetry. Future correlative studies will investigate whether such asymmetry is anatomically/genetically driven or associated with functional stimulation.

  18. Altered white matter/gray matter proportions in the striatum of patients with schizophrenia: a volumetric MRI study.

    PubMed

    Tamagaki, Chiharu; Sedvall, Göran C; Jönsson, Erik G; Okugawa, Gaku; Hall, Håkan; Pauli, Stefan; Agartz, Ingrid

    2005-12-01

    Anatomical structures of the striatum were studied in 58 patients with schizophrenia and 56 healthy comparison subjects of both genders matched for age and handedness. Magnetic resonance imaging scans were used to measure gray matter, white matter, and CSF volumes of the caudate, putamen, and nucleus accumbens in the left and the right hemispheres. White matter/gray matter ratios of the striatal structures were significantly lower in patients than in healthy subjects. In patients, relative white matter volumes in the caudate and nucleus accumbens were reduced, whereas gray matter in the putamen was increased. The total accumbens volume did not differ by diagnosis, but left side accumbens was larger than right in the healthy subjects. The proportion of white matter was greater in women in both the patient and healthy comparison groups. Total caudate and putamen volumes demonstrated no differences due to diagnosis or laterality, but a negative correlation was found in patients between white matter volumes and increasing age. There were no significant correlations among total striatal volumes, white matter/gray matter ratios, age at onset of illness, or illness duration. An estimate of lifetime neuroleptic consumption was positively correlated with right gray matter volume of the putamen in male schizophrenia patients who received typical neuroleptics. The proportion of white matter to gray matter tissue volumes of the caudate, putamen, and nucleus accumbens is altered in medicated chronic schizophrenia patients, but the total volumes are unchanged.

  19. Degeneration of axons in spinal white matter in G93A mSOD1 mouse characterized by NFL and α-internexin immunoreactivity.

    PubMed

    King, Anna E; Blizzard, Catherine A; Southam, Katherine A; Vickers, James C; Dickson, Tracey C

    2012-07-17

    Axonal degeneration is a prominent feature of amyotrophic lateral sclerosis (ALS) both in lower motor nerves as well as descending white matter axons in the spinal cord of human patients. Although the pathology of lower motor axonal degeneration has been described in both human ALS and related transgenic animal models, few studies have examined the pathological features of descending axon degeneration, particularly in mouse models of ALS. We have examined the degeneration of white matter tracts in the G93A mutant superoxide dismutase-1 (mSOD1+) mouse spinal cord white matter from 12 weeks of age to end-stage disease. In a G93A mSOD1 mouse model where green fluorescent protein was expressed in neurons (mSOD1+/GFP+), degeneration of white matter tracts was present from the ventral to dorsolateral funiculi. This pattern of axonal pathology occurred from 16 weeks of age. However, the dorsal funiculus, the site of the major corticospinal tract in mice, showed relatively less degeneration. Immunohistochemical analysis demonstrated that the neurofilament light chain (NFL) and neuronal intermediate filament protein alpha-internexin accumulated in axon swellings in the spinal white matter. Increased levels of alpha-internexin protein, in mSOD1+ mouse spinal cord tissue, were demonstrated by Western blotting. In contrast, degenerating axons did not show obvious accumulations of neurofilament medium and heavy chain proteins (NFM and NFH). These data suggest that white matter degeneration in this mouse model of ALS is widespread and involves a specific molecular signature, particularly the accumulation of NFL and alpha-internexin proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Fronto-Parietal gray matter and white matter efficiency differentially predict intelligence in males and females.

    PubMed

    Ryman, Sephira G; Yeo, Ronald A; Witkiewitz, Katie; Vakhtin, Andrei A; van den Heuvel, Martijn; de Reus, Marcel; Flores, Ranee A; Wertz, Christopher R; Jung, Rex E

    2016-11-01

    While there are minimal sex differences in overall intelligence, males, on average, have larger total brain volume and corresponding regional brain volumes compared to females, measures that are consistently related to intelligence. Limited research has examined which other brain characteristics may differentially contribute to intelligence in females to facilitate equal performance on intelligence measures. Recent reports of sex differences in the neural characteristics of the brain further highlight the need to differentiate how the structural neural characteristics relate to intellectual ability in males and females. The current study utilized a graph network approach in conjunction with structural equation modeling to examine potential sex differences in the relationship between white matter efficiency, fronto-parietal gray matter volume, and general cognitive ability (GCA). Participants were healthy adults (n = 244) who completed a battery of cognitive testing and underwent structural neuroimaging. Results indicated that in males, a latent factor of fronto-parietal gray matter was significantly related to GCA when controlling for total gray matter volume. In females, white matter efficiency and total gray matter volume were significantly related to GCA, with no specificity of the fronto-parietal gray matter factor over and above total gray matter volume. This work highlights that different neural characteristics across males and females may contribute to performance on intelligence measures. Hum Brain Mapp 37:4006-4016, 2016. © 2016 Wiley Periodicals, Inc.

  1. White Matter Tracts Critical for Recognition of Sarcasm

    PubMed Central

    Davis, Cameron; Oishi, Kenichi; Faria, Andreia; Hsu, John; Gomez, Yessenia; Mori, Susumu; Hillis, Argye E.

    2015-01-01

    Sarcasm is commonly used to express criticism in a non-aggressive or humorous way. Failure to understand that the speaker is being sarcastic can lead to important miscommunications. Although numerous studies have identified impaired sarcasm comprehension in neurological impaired patients, few have attempted to identify lesions that lead to impaired sarcasm. Several gray matter structures seem to be critical for processing sarcasm, including right prefrontal cortex, superior temporal cortex, thalamus, and basal ganglia. In this study we tested the hypothesis that percent damage to specific white matter tracts (including those connect the critical gray matter structures), age, and education together predict accuracy in sarcasm comprehension. Using multivariable linear regression, with age, education, and percent damage to each of 8 white matter tracts as independent variables, and percent accuracy on sarcasm recognition as the dependent variable, we developed a model for predicting sarcasm recognition. Percent damage to the sagittal stratum had the greatest weight, and was the only independent predictor of error rate on sarcasm. Results indicate that: (1) sagittal stratum has an important role in the network underlying sarcasm comprehension; (2) sagittal stratum lesions are likely to cause deficits in understanding sarcasm and may require innovative therapies to address this disability. PMID:25805326

  2. [Lipids from gray and white rat brain matter in autolysis].

    PubMed

    Gribanov, G A; Il'iashenko, D V

    1993-01-01

    A decrease in relative content of phospholipids and cholesterol simultaneously with increase in cholesterol esters and free fatty acids were detected in tissues of rat brain gray and white matters during autolysis at 37 degrees within 6-7 min, 1, 4 and 24 hrs; the most distinct alterations were observed in lipids of the gray matter especially at early (6-7 min) and late (24 hrs) stages of autolysis. In the gray matter, relative content of all the lipid fractions studied was restored to initial level within 4 hrs of incubation. In the white matter, during autolysis the content of cholesterol varied, the content of phospholipids was only slightly increased, while the level of free fatty acids was increased only at 24 hrs of incubation with synchronous decrease in content of triacylglycerols, cholesterol and, partially, phospholipids. These experimental data are of importance in resuscitation. Both common and dissimilar mechanisms of these lipid alterations are discussed. Not only the complex of hydrolase reactions but also that of transacylase and other reactions, involved in the degradation and biotransformation of brain lipids in autolysis, were noted.

  3. Gray and white matter correlates of navigational ability in humans.

    PubMed

    Wegman, Joost; Fonteijn, Hubert M; van Ekert, Janneke; Tyborowska, Anna; Jansen, Clemens; Janzen, Gabriele

    2014-06-01

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy. Copyright © 2013 Wiley Periodicals, Inc.

  4. Characterization of Extensive Microstructural Variations Associated with Punctate White Matter Lesions in Preterm Neonates.

    PubMed

    Li, X; Gao, J; Wang, M; Zheng, J; Li, Y; Hui, E S; Wan, M; Yang, J

    2017-06-01

    Punctate white matter lesions are common in preterm neonates. Neurodevelopmental outcomes of the neonates are related to the degree of extension. This study aimed to characterize the extent of microstructural variations for different punctate white matter lesion grades. Preterm neonates with punctate white matter lesions were divided into 3 grades (from mild to severe: grades I-III). DTI-derived fractional anisotropy, axial diffusivity, and radial diffusivity between patients with punctate white matter lesions and controls were compared with Tract-Based Spatial Statistics and tract-quantification methods. Thirty-three preterm neonates with punctate white matter lesions and 33 matched controls were enrolled. There were 15, 9, and 9 patients, respectively, in grades I, II, and III. Punctate white matter lesions were mainly located in white matter adjacent to the lateral ventricles, especially regions lateral to the trigone, posterior horns, and centrum semiovale and/or corona radiata. Extensive microstructural changes were observed in neonates with grade III punctate white matter lesions, while no significant changes in DTI metrics were found for grades I and II. A pattern of increased axial diffusivity, increased radial diffusivity, and reduced/unchanged fractional anisotropy was found in regions adjacent to punctate white matter lesion sites seen on T1WI and T2WI. Unchanged axial diffusivity, increased radial diffusivity, and reduced/unchanged fractional anisotropy were observed in regions distant from punctate white matter lesion sites. White matter microstructural variations were different across punctate white matter lesion grades. Extensive change patterns varied according to the distance to the lesion sites in neonates with severe punctate white matter lesions. These findings may help in determining the outcomes of punctate white matter lesions and selecting treatment strategies. © 2017 by American Journal of Neuroradiology.

  5. Brain white matter volume abnormalities in Lesch-Nyhan disease and its variants

    PubMed Central

    Varvaris, Mark; Vannorsdall, Tracy D.; Gordon, Barry; Harris, James C.; Jinnah, H.A.

    2015-01-01

    Objective: We sought to examine brain white matter abnormalities based on MRI in adults with Lesch-Nyhan disease (LND) or an attenuated variant (LNV) of this rare, X-linked neurodevelopmental disorder of purine metabolism. Methods: In this observational study, we compared 21 adults with LND, 17 with LNV, and 33 age-, sex-, and race-matched healthy controls using voxel-based morphometry and analysis of covariance to identify white matter volume abnormalities in both patient groups. Results: Patients with classic LND showed larger reductions of white (26%) than gray (17%) matter volume relative to healthy controls. Those with LNV showed comparable reductions of white (14%) and gray (15%) matter volume. Both patient groups demonstrated reduced volume in medial inferior white matter regions. Compared with LNV, the LND group showed larger reductions in inferior frontal white matter adjoining limbic and temporal regions and the motor cortex. These regions likely include such long association fibers as the superior longitudinal and uncinate fasciculi. Conclusions: Despite earlier reports that LND primarily involves the basal ganglia, this study reveals substantial white matter volume abnormalities. Moreover, white matter deficits are more severe than gray matter deficits in classic LND, and also characterize persons with LNV. The brain images acquired for these analyses cannot precisely localize white matter abnormalities or determine whether they involve changes in tract orientation or anisotropy. However, clusters of reduced white matter volume identified here affect regions that are consistent with the neurobehavioral phenotype. PMID:25503620

  6. Brain white matter volume abnormalities in Lesch-Nyhan disease and its variants.

    PubMed

    Schretlen, David J; Varvaris, Mark; Vannorsdall, Tracy D; Gordon, Barry; Harris, James C; Jinnah, H A

    2015-01-13

    We sought to examine brain white matter abnormalities based on MRI in adults with Lesch-Nyhan disease (LND) or an attenuated variant (LNV) of this rare, X-linked neurodevelopmental disorder of purine metabolism. In this observational study, we compared 21 adults with LND, 17 with LNV, and 33 age-, sex-, and race-matched healthy controls using voxel-based morphometry and analysis of covariance to identify white matter volume abnormalities in both patient groups. Patients with classic LND showed larger reductions of white (26%) than gray (17%) matter volume relative to healthy controls. Those with LNV showed comparable reductions of white (14%) and gray (15%) matter volume. Both patient groups demonstrated reduced volume in medial inferior white matter regions. Compared with LNV, the LND group showed larger reductions in inferior frontal white matter adjoining limbic and temporal regions and the motor cortex. These regions likely include such long association fibers as the superior longitudinal and uncinate fasciculi. Despite earlier reports that LND primarily involves the basal ganglia, this study reveals substantial white matter volume abnormalities. Moreover, white matter deficits are more severe than gray matter deficits in classic LND, and also characterize persons with LNV. The brain images acquired for these analyses cannot precisely localize white matter abnormalities or determine whether they involve changes in tract orientation or anisotropy. However, clusters of reduced white matter volume identified here affect regions that are consistent with the neurobehavioral phenotype. © 2014 American Academy of Neurology.

  7. Automated Detection of Lupus White Matter Lesions in MRI

    PubMed Central

    Roura, Eloy; Sarbu, Nicolae; Oliver, Arnau; Valverde, Sergi; González-Villà, Sandra; Cervera, Ricard; Bargalló, Núria; Lladó, Xavier

    2016-01-01

    Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative, and quantitative results in terms of precision and sensitivity of lesion detection [True Positive Rate (62%) and Positive Prediction Value (80%), respectively] as well as segmentation accuracy [Dice Similarity Coefficient (72%)]. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration. PMID:27570507

  8. Anomalous White Matter Morphology in Adults Who Stutter

    PubMed Central

    Cieslak, Matthew; Ingham, Janis C.; Grafton, Scott T.

    2015-01-01

    Aims Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore, diffusion spectrum imaging was used to reconstruct streamlines to examine white matter connections in people who stutter (PWS) and in people who do not stutter (PWNS). Method WM morphology of the entire brain was assayed in 8 right-handed male PWS and 8 similarly aged right-handed male PWNS. WM was exhaustively searched using a deterministic algorithm that identifies missing or largely misshapen tracts. To be abnormal, a tract (defined as all streamlines connecting a pair of gray matter regions) was required to be at least one 3rd missing, in 7 out of 8 subjects in one group and not in the other group. Results Large portions of bilateral arcuate fasciculi, a heavily researched speech pathway, were abnormal in PWS. Conversely, all PWS had a prominent connection in the left temporo-striatal tract connecting frontal and temporal cortex that was not observed in PWNS. Conclusion These previously unseen structural differences of WM morphology in classical speech-language circuits may underlie developmental stuttering. PMID:25635376

  9. Frontoparietal white matter integrity predicts haptic performance in chronic stroke.

    PubMed

    Borstad, Alexandra L; Choi, Seongjin; Schmalbrock, Petra; Nichols-Larsen, Deborah S

    2016-01-01

    Frontoparietal white matter supports information transfer between brain areas involved in complex haptic tasks such as somatosensory discrimination. The purpose of this study was to gain an understanding of the relationship between microstructural integrity of frontoparietal network white matter and haptic performance in persons with chronic stroke and to compare frontoparietal network integrity in participants with stroke and age matched control participants. Nineteen individuals with stroke and 16 controls participated. Haptic performance was quantified using the Hand Active Sensation Test (HASTe), an 18-item match-to-sample test of weight and texture discrimination. Three tesla MRI was used to obtain diffusion-weighted and high-resolution anatomical images of the whole brain. Probabilistic tractography was used to define 10 frontoparietal tracts total; Four intrahemispheric tracts measured bilaterally 1) thalamus to primary somatosensory cortex (T-S1), 2) thalamus to primary motor cortex (T-M1), 3) primary to secondary somatosensory cortex (S1 to SII) and 4) primary somatosensory cortex to middle frontal gyrus (S1 to MFG) and, 2 interhemispheric tracts; S1-S1 and precuneus interhemispheric. A control tract outside the network, the cuneus interhemispheric tract, was also examined. The diffusion metrics fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and radial diffusivity (RD) were quantified for each tract. Diminished FA and elevated MD values are associated with poorer white matter integrity in chronic stroke. Nine of 10 tracts quantified in the frontoparietal network had diminished structural integrity poststroke compared to the controls. The precuneus interhemispheric tract was not significantly different between groups. Principle component analysis across all frontoparietal white matter tract MD values indicated a single factor explained 47% and 57% of the variance in tract mean diffusivity in stroke and control groups respectively. Age

  10. Frontoparietal white matter integrity predicts haptic performance in chronic stroke

    PubMed Central

    Borstad, Alexandra L.; Choi, Seongjin; Schmalbrock, Petra; Nichols-Larsen, Deborah S.

    2015-01-01

    Frontoparietal white matter supports information transfer between brain areas involved in complex haptic tasks such as somatosensory discrimination. The purpose of this study was to gain an understanding of the relationship between microstructural integrity of frontoparietal network white matter and haptic performance in persons with chronic stroke and to compare frontoparietal network integrity in participants with stroke and age matched control participants. Nineteen individuals with stroke and 16 controls participated. Haptic performance was quantified using the Hand Active Sensation Test (HASTe), an 18-item match-to-sample test of weight and texture discrimination. Three tesla MRI was used to obtain diffusion-weighted and high-resolution anatomical images of the whole brain. Probabilistic tractography was used to define 10 frontoparietal tracts total; Four intrahemispheric tracts measured bilaterally 1) thalamus to primary somatosensory cortex (T–S1), 2) thalamus to primary motor cortex (T–M1), 3) primary to secondary somatosensory cortex (S1 to SII) and 4) primary somatosensory cortex to middle frontal gyrus (S1 to MFG) and, 2 interhemispheric tracts; S1–S1 and precuneus interhemispheric. A control tract outside the network, the cuneus interhemispheric tract, was also examined. The diffusion metrics fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and radial diffusivity (RD) were quantified for each tract. Diminished FA and elevated MD values are associated with poorer white matter integrity in chronic stroke. Nine of 10 tracts quantified in the frontoparietal network had diminished structural integrity poststroke compared to the controls. The precuneus interhemispheric tract was not significantly different between groups. Principle component analysis across all frontoparietal white matter tract MD values indicated a single factor explained 47% and 57% of the variance in tract mean diffusivity in stroke and control groups respectively. Age

  11. Temperature dependence of water diffusion pools in brain white matter.

    PubMed

    Dhital, Bibek; Labadie, Christian; Stallmach, Frank; Möller, Harald E; Turner, Robert

    2016-02-15

    Water diffusion in brain tissue can now be easily investigated using magnetic resonance (MR) techniques, providing unique insights into cellular level microstructure such as axonal orientation. The diffusive motion in white matter is known to be non-Gaussian, with increasing evidence for more than one water-containing tissue compartment. In this study, freshly excised porcine brain white matter was measured using a 125-MHz MR spectrometer (3T) equipped with gradient coils providing magnetic field gradients of up to 35,000 mT/m. The sample temperature was varied between -14 and +19 °C. The hypothesis tested was that white matter contains two slowly exchanging pools of water molecules with different diffusion properties. A Stejskal-Tanner diffusion sequence with very short gradient pulses and b-factors up to 18.8 ms/μm(2) was used. The dependence on b-factor of the attenuation due to diffusion was robustly fitted by a biexponential function, with comparable volume fractions for each component. The diffusion coefficient of each component follows Arrhenius behavior, with significantly different activation energies. The measured volume fractions are consistent with the existence of three water-containing compartments, the first comprising relatively free cytoplasmic and extracellular water molecules, the second of water molecules in glial processes, and the third comprising water molecules closely associated with membranes, as for example, in the myelin sheaths and elsewhere. The activation energy of the slow diffusion pool suggests proton hopping at the surface of membranes by a Grotthuss mechanism, mediated by hydrating water molecules.

  12. Alterations in white matter pathways in Angelman syndrome

    PubMed Central

    PETERS, SARIKA U; KAUFMANN, WALTER E; BACINO, CARLOS A; ANDERSON, ADAM W; ADAPA, PAVANI; CHU, ZILI; YALLAMPALLI, RAGINI; TRAIPE, ELFRIDES; HUNTER, JILL V; WILDE, ELISABETH A

    2010-01-01

    Aim Angelman syndrome is a neurogenetic disorder characterized by severe intellectual disability, absent speech, seizures, and outbursts of laughter. The aim of this study was to utilize diffusion tensor imaging (DTI) to examine alterations in white matter pathways in Angelman syndrome, with an emphasis on correlations with clinical severity. Methods DTI was used to examine the arcuate fasciculus (AF), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF), and the corpus callosum (CC). We enrolled 14 children aged 8 to 17 years (mean age 10y 8mo; SD 2y 7mo) with Angelman syndrome (seven male; seven female) and 13 typically developing children, aged 8 to 17 years, for comparison (five male; eight female; mean age 12y; SD 2y 9mo). Individuals with Angelman syndrome were assessed using standardized measures of development, language, and behaviour. Results The children with Angelman syndrome exhibited lower fractional anisotropy and increased radial diffusivity values than the comparison group for the AF, UF, ILF, and CC (p<0.006 corrected for multiple comparisons). They also had lower fractional anisotropy values for the IFOF and higher radial diffusivity values for the left IFOF (p<0.006). Additionally, children with Angelman syndrome had significantly higher apparent diffusion coefficient values in the AF, CC, ILF, and the left IFOF (p<0.006). Significant correlations were noted between DTI parameters and some of the clinical assessment outcomes (e.g. language, socialization, cognition) for three of the temporal pathways (AF, UF, ILF; p<0.05). Interpretation Changes in DTI parameters in individuals with Angelman syndrome suggest decreased/delayed myelination, decreased axonal density or diameter, or aberrant axonal organization. Our findings suggest a generalized white matter alteration throughout the brain in those with Angelman syndrome; however, only the alterations in temporal white matter pathways were

  13. Affective Symptoms and White Matter Changes in Brain Tumor Patients.

    PubMed

    Richter, Andre; Woernle, Cristoph M; Krayenbühl, Niklaus; Kollias, Spyridon; Bellut, David

    2015-10-01

    Affective symptoms are frequent in patients with brain tumors. The origin of such symptoms is unknown; either focal brain injury or reactive emotional distress may be responsible. This cross-sectional pilot study linked depressive symptoms and anxiety to white matter integrity. The objective was to test the hypothesis of a relationship between tissue damage and brain function in patients with brain tumors and to provide a basis for further studies in this field. Diffusion tensor imaging was performed in 39 patients with newly diagnosed supratentorial primary brain tumor. Patients completed the Beck Depression Inventory, and examiners rated them on the Hamilton Depression Rating Scale (HDRS). State and trait anxiety were measured using the State-Trait Anxiety Inventory. Correlations between fractional anisotropy (FA) and psychological measures were assessed on the basis of regions of interest; the defined regions of interest corresponded to clearly specified white matter tracts. Statistical analysis revealed correlations between FA in the left internal capsule and scores on the HDRS, Beck Depression Inventory, and State-Trait Anxiety Inventory (P < 0.05). HDRS scores were also correlated with FA in the right medial uncinate fasciculus, and state anxiety scores were significantly correlated with FA in the left lateral and medial uncinate fasciculus (P < 0.05). Our results suggest that neurobiologic mechanisms related to the integrity of tissue in specific white matter tracts may influence affective symptoms in patients with brain tumors, and these mechanisms can be investigated with diffusion tensor imaging. However, prospective observational studies are needed to investigate further the links between brain structures and the severity of affective symptoms in this patient population. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dose-dependent white matter damage after brain radiotherapy.

    PubMed

    Connor, Michael; Karunamuni, Roshan; McDonald, Carrie; White, Nathan; Pettersson, Niclas; Moiseenko, Vitali; Seibert, Tyler; Marshall, Deborah; Cervino, Laura; Bartsch, Hauke; Kuperman, Joshua; Murzin, Vyacheslav; Krishnan, Anitha; Farid, Nikdokht; Dale, Anders; Hattangadi-Gluth, Jona

    2016-11-01

    Brain radiotherapy is limited in part by damage to white matter, contributing to neurocognitive decline. We utilized diffusion tensor imaging (DTI) with multiple b-values (diffusion weightings) to model the dose-dependency and time course of radiation effects on white matter. Fifteen patients with high-grade gliomas treated with radiotherapy and chemotherapy underwent MRI with DTI prior to radiotherapy, and after months 1, 4-6, and 9-11. Diffusion tensors were calculated using three weightings (high, standard, and low b-values) and maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ∥), and radial diffusivity (λ⊥) were generated. The region of interest was all white matter. MD, λ∥, and λ⊥ increased significantly with time and dose, with corresponding decrease in FA. Greater changes were seen at lower b-values, except for FA. Time-dose interactions were highly significant at 4-6months and beyond (p<.001), and the difference in dose response between high and low b-values reached statistical significance at 9-11months for MD, λ∥, and λ⊥ (p<.001, p<.001, p=.005 respectively) as well as at 4-6months for λ∥ (p=.04). We detected dose-dependent changes across all doses, even <10Gy. Greater changes were observed at low b-values, suggesting prominent extracellular changes possibly due to vascular permeability and neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Pathophysiology of Glia in Perinatal White Matter Injury

    PubMed Central

    Back, Stephen A.; Rosenberg, Paul A.

    2014-01-01

    Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (preOLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible preOLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors responds to WMI with a rapid robust proliferative response that results in a several fold regeneration of preOLs that fail to terminally differentiate along their normal developmental time course. PreOL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field MRI data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants. PMID:24687630

  16. Enhanced white matter tracts integrity in children with abacus training.

    PubMed

    Hu, Yuzheng; Geng, Fengji; Tao, Lixia; Hu, Nantu; Du, Fenglei; Fu, Kuang; Chen, Feiyan

    2011-01-01

    Experts of abacus, who have the skills of abacus-based mental calculation (AMC), are able to manipulate numbers via an imagined abacus in mind and demonstrate extraordinary ability in mental calculation. Behavioral studies indicated that abacus experts utilize visual strategy in solving numerical problems, and fMRI studies confirmed the enhanced involvement of visuospatial-related neural resources in AMC. This study aims to explore the possible changes in brain white matter induced by long-term training of AMC. Two matched groups participated: the abacus group consisting of 25 children with over 3-year training in abacus calculation and AMC, the controls including 25 children without any abacus experience. We found that the abacus group showed higher average fractional anisotropy (FA) in whole-brain fiber tracts, and the regions with increased FA were found in corpus callosum, left occipitotemporal junction and right premotor projection. No regions, however, showed decreased FA in the abacus group. Further analysis revealed that the differences in FA values were mainly driven by the alternation of radial rather than axial diffusivities. Furthermore, in forward digit and letter memory span tests, AMC group showed larger digit/letter memory spans. Interestingly, individual differences in white matter tracts were found positively correlated with the memory spans, indicating that the widespread increase of FA in the abacus group result possibly from the AMC training. In conclusion, our findings suggested that long-term AMC training from an early age may improve the memory capacity and enhance the integrity in white matter tracts related to motor and visuospatial processes.

  17. Altered white matter microstructure in adolescent substance users.

    PubMed

    Bava, Sunita; Frank, Lawrence R; McQueeny, Tim; Schweinsburg, Brian C; Schweinsburg, Alecia D; Tapert, Susan F

    2009-09-30

    Chronic marijuana use during adolescence is frequently comorbid with heavy alcohol consumption and associated with CNS alterations, yet the influence of early cannabis and alcohol use on microstructural white matter integrity is unclear. Building on evidence that cannabinoid receptors are present in myelin precursors and affect glial cell processing, and that excessive ethanol exposure is associated with persistently impaired myelination, we used diffusion tensor imaging (DTI) to characterize white matter integrity in heavy substance using and non-using adolescents. We evaluated 36 marijuana and alcohol-using (MJ+ALC) adolescents (ages 16-19) and 36 demographically similar non-using controls with DTI. The diffusion parameters fractional anisotropy (FA) and mean diffusivity (MD) were subjected to whole-brain voxelwise group comparisons using tract-based spatial statistics (Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E., 2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487-1505). MJ+ALC teens had significantly lower FA than controls in 10 regions, including left superior longitudinal fasciculus (SLF), left postcentral gyrus, bilateral crus cerebri, and inferior frontal and temporal white matter tracts. These diminutions occurred in the context of increased FA in right occipital, internal capsule, and SLF regions. Changes in MD were less distributed, but increased MD was evident in the right occipital lobe, whereas the left inferior longitudinal fasciculus showed lower MD in MJ+ALC users. Findings suggest that fronto-parietal circuitry may be particularly impacted in adolescent users of the most prevalent intoxicants: marijuana and alcohol. Disruptions to white matter in this young group could indicate aberrant axonal and myelin maturation with resultant compromise of fiber integrity. Findings of

  18. Influence of white matter inhomogeneous anisotropy on EEG forward computing.

    PubMed

    Bashar, R; Li, Y; Wen, P

    2008-06-01

    In this paper, we model the human head using the Volume and Wang's constraint methods, and study the inhomogeneous anisotropic conductivity for white matter (WM) using finite element method (FEM). To represent the WM accurately, the conductivity ratio approximation (CRA) and statistical conductivity approximation (SCA) techniques are applied to assign inhomogeneous anisotropic conductivity. This model is evaluated and compared with a homogeneous isotropic model and a homogeneous anisotropic model. The results show that the effects of inhomogeneous anisotropic conductivity ofWM on the scalp EEG are significant.

  19. Imaging Small Vessel-Associated White Matter Changes in Aging

    PubMed Central

    Salat, David H.

    2014-01-01

    Alterations in cerebrovascular structure and function may underlie the most common age-associated cognitive, psychiatric, and neurological conditions presented by older adults. Although much remains to understand, existing research suggests several age-associated detrimental conditions may be mediated through sometimes subtle small vessel-induced damage to the cerebral white matter. Here we review a selected portion of the vast work that demonstrates links between changes in vascular and neural health as a function of advancing age, and how even changes in low-to-moderate risk individuals, potentially beginning early in the adult age-span, may have an important impact on functional status in late life. PMID:24316059

  20. Secondary demyelination disorders and destruction of white matter.

    PubMed

    Ryan, Michael; Ibrahim, Mohannad; Parmar, Hemant A

    2014-03-01

    Demyelinating disorders of the central nervous system are characterized by the breakdown of myelin, with or without preservation of the associated axons. Primary demyelinating diseases typically involve loss of myelin with relative sparing of axons. Secondary demyelinating disorders represent a spectrum of white matter disease characterized by damage to neurons or axons with the resultant breakdown of myelin. The pathologic changes seen in secondary demyelinating disorders are varied, ranging from pure demyelination to necrosis with subsequent demyelination. Secondary demyelinating diseases are associated with a wide variety of conditions, including infections/vaccinations, nutritional/vitamin deficiencies, chemical agents, genetic abnormalities, and vascular insult. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Gray matter segmentation of the spinal cord with active contours in MR images.

    PubMed

    Datta, Esha; Papinutto, Nico; Schlaeger, Regina; Zhu, Alyssa; Carballido-Gamio, Julio; Henry, Roland G

    2017-02-15

    Fully or partially automated spinal cord gray matter segmentation techniques for spinal cord gray matter segmentation will allow for pivotal spinal cord gray matter measurements in the study of various neurological disorders. The objective of this work was multi-fold: (1) to develop a gray matter segmentation technique that uses registration methods with an existing delineation of the cord edge along with Morphological Geodesic Active Contour (MGAC) models; (2) to assess the accuracy and reproducibility of the newly developed technique on 2D PSIR T1 weighted images; (3) to test how the algorithm performs on different resolutions and other contrasts; (4) to demonstrate how the algorithm can be extended to 3D scans; and (5) to show the clinical potential for multiple sclerosis patients. The MGAC algorithm was developed using a publicly available implementation of a morphological geodesic active contour model and the spinal cord segmentation tool of the software Jim (Xinapse Systems) for initial estimate of the cord boundary. The MGAC algorithm was demonstrated on 2D PSIR images of the C2/C3 level with two different resolutions, 2D T2* weighted images of the C2/C3 level, and a 3D PSIR image. These images were acquired from 45 healthy controls and 58 multiple sclerosis patients selected for the absence of evident lesions at the C2/C3 level. Accuracy was assessed though visual assessment, Hausdorff distances, and Dice similarity coefficients. Reproducibility was assessed through interclass correlation coefficients. Validity was assessed through comparison of segmented gray matter areas in images with different resolution for both manual and MGAC segmentations. Between MGAC and manual segmentations in healthy controls, the mean Dice similarity coefficient was 0.88 (0.82-0.93) and the mean Hausdorff distance was 0.61 (0.46-0.76) mm. The interclass correlation coefficient from test and retest scans of healthy controls was 0.88. The percent change between the manual

  2. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains

    PubMed Central

    Ventura-Antunes, Lissa; Mota, Bruno; Herculano-Houzel, Suzana

    2013-01-01

    Expansion of the cortical gray matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the gray matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the gray matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to gray matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern gray and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution. PMID:23576961

  3. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains.

    PubMed

    Ventura-Antunes, Lissa; Mota, Bruno; Herculano-Houzel, Suzana

    2013-01-01

    Expansion of the cortical gray matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the gray matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the gray matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to gray matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern gray and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution.

  4. A combined VBM and DTI study of schizophrenia: bilateral decreased insula volume and cerebral white matter disintegrity corresponding to subinsular white matter projections unlinked to clinical symptomatology.

    PubMed

    Onay, Aslıhan; Yapıcı Eser, Hale; Ulaşoğlu Yıldız, Çiğdem; Aslan, Selçuk; Talı, Erhan Turgut

    2017-01-01

    Grey matter and white matter changes within the brain are well defined in schizophrenia. However, most studies focused on either grey matter changes or white matter integrity separately; only in limited number of studies these changes were interpreted in the same frame. In addition, the relationship of these findings with clinical variables is not clearly established. Here, we aimed to investigate the grey matter and white matter changes in schizophrenia patients and exhibit the relation of these imaging findings with clinical variables. A total of 20 schizophrenia patients and 16 matched healthy controls underwent magnetic resonance imaging to investigate the grey matter and white matter alterations that occur in schizophrenia patients using voxel-based morphometry (VBM) and whole brain voxel-wise analysis of diffusion tensor imaging (DTI) parameters with SPM8, respectively. While the preprocessing steps of VBM were performed with the default parameters of VBM8 toolbox, the preprocessing steps of DTI were carried out using FSL. Additionally, VBM results were correlated with clinical variables. Bilateral insula showed decreased grey matter volume in schizophrenia patients compared with healthy controls (P < 0.01). The opposite contrast did not show a significant difference. Psychiatric scores, duration of illness, and age were not correlated with the decreased grey matter volume of insula in schizophrenia patients. DTI analysis revealed a significant increase in mean, radial, and axial diffusivity, mainly of the fibers of bilateral anterior thalamic radiation and superior longitudinal fasciculus with left predominance, which intersected with bilateral subinsular white matter (P < 0.05). Our findings suggest that insula may be the main affected brain region in schizophrenia, which is also well supported by the literature. Our results were independent of disease duration and schizophrenia symptoms. White matter alterations were observed within bilateral anterior

  5. White matter abnormalities revealed by DTI correlate with interictal grey matter FDG-PET metabolism in focal childhood epilepsies.

    PubMed

    Lippé, Sarah; Poupon, Cyril; Cachia, Arnaud; Archambaud, Frédérique; Rodrigo, Sébastian; Dorfmuller, Georg; Chiron, Catherine; Hertz-Pannier, Lucie

    2012-12-01

    For patients with focal epilepsy scheduled for surgery, including MRI-negative cases, (18)FDG-PET was shown to disclose hypometabolism in the seizure onset zone. However, it is not clear whether grey matter hypometabolism is informative of the integrity of the surrounding white matter cerebral tissue. In order to study the relationship between metabolism of the seizure onset zone grey matter and the integrity of the surrounding white matter measured by diffusion tensor imaging (DTI), we performed a monocentric prospective study (from 2006 to 2009) in 15 children with pharmacoresistant focal epilepsy, suitable for interictal (18)FDG-PET, T1-, T2-, FLAIR sequence MRI and DTI. Children had either positive or negative MRI (eight with symptomatic and seven with cryptogenic epilepsies, respectively). Seven children subsequently underwent surgery. Standardised uptake values of grey matter PET metabolism were compared with DTI indices (fractional anisotropy [FA], apparent diffusion coefficient [ADC], parallel diffusion coefficient [PDC], and transverse diffusion coefficient [TDC]) in grey matter within the seizure onset zone and adjacent white matter, using regions of interest automatically drawn from individual sulcal and gyral parcellation. Hypometabolism correlated positively with white matter ADC, PDC, and TDC, and negatively with white matter FA. In the cryptogenic group of children, hypometabolism correlated positively with white matter ADC. Our results demonstrate a relationship between abnormalities of grey matter metabolism in the seizure onset zone and adjacent white matter structural alterations in childhood focal epilepsies, even in cryptogenic epilepsy. This relationship supports the hypothesis that microstructural alterations of the white matter are related to epileptic networks and has potential implications for the evaluation of children with MRI-negative epilepsy.

  6. Apcdd1 stimulates oligodendrocyte differentiation after white matter injury

    PubMed Central

    Lee, Hyun Kyoung; Laug, Dylan; Zhu, Wenyi; Patel, Jay M; Ung, Kevin; Arenkiel, Benjamin R; Fancy, Stephen PJ; Mohila, Carrie; Deneen, Benjamin

    2015-01-01

    Wnt signaling plays an essential role in developmental and regenerative myelination of the CNS, therefore it is critical to understand how the factors associated with the various regulatory layers of this complex pathway contribute to these processes. Recently, Apcdd1 was identified as a negative regulator of proximal Wnt signaling, however its role in oligodendrodcyte (OL) differentiation and reymelination in the CNS remain undefined. Analysis of Apcdd1 expression revealed dynamic expression during OL development, where its expression is upregulated during differentiation. Functional studies using ex vivo and in vitro OL systems, revealed that Apcdd1 promotes OL differentiation, suppresses Wnt signaling, and associates with β-catenin. Application of these findings to white matter injury (WMI) models revealed that Apcdd1 similarly promotes OL differentiation after gliotoxic injury in vivo and acute hypoxia ex vivo. Examination of Apcdd1 expression in white matter lesions from neonatal WMI and adult Multiple Sclerosis revealed its expression in subsets of oligodendrocyte precursors. These studies describe, for the first time, the role of Apcdd1 in OLs after WMI and reveal that negative regulators of the proximal Wnt pathway can influence regenerative myelination, suggesting a new therapeutic strategy for modulating Wnt signaling and stimulating repair after WMI. PMID:25946682

  7. Neuropsychiatry and White Matter Microstructure in Huntington's Disease.

    PubMed

    Gregory, Sarah; Scahill, Rachael I; Seunarine, Kiran K; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A C; Langbehn, Douglas R; Long, Jeffrey D; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J; Craufurd, David

    2015-01-01

    Neuropsychiatric symptoms in Huntington's disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation.

  8. Aortic hemodynamics and white matter hyperintensities in normotensive postmenopausal women.

    PubMed

    Barnes, Jill N; Harvey, Ronée E; Zuk, Samantha M; Lundt, Emily S; Lesnick, Timothy G; Gunter, Jeffrey L; Senjem, Matthew L; Shuster, Lynne T; Miller, Virginia M; Jack, Clifford R; Joyner, Michael J; Kantarci, Kejal

    2017-04-07

    Hypertension is associated with development of white matter hyperintensities (WMH) in the brain, which are risk factors for mild cognitive impairment. Hormonal shifts at menopause alter vascular function putting women at risk for both hypertension and WMH. Elevations in aortic hemodynamics precede the appearance of clinically defined hypertension but the relationship of aortic hemodynamics to development of WMH in women is not known. Therefore, this study aimed to characterize aortic hemodynamics in relationship to WMH in postmenopausal women. Aortic systolic and diastolic blood pressure (BP), aortic augmentation index (Alx) and aortic round trip travel time (Aortic T R) by tonometry were examined in 53 postmenopausal women (age 60 ± 2 years). WMH was calculated from fluid-attenuated inversion recovery MRI using a semi-automated segmentation algorithm. WMH as a fraction of total white matter volume positively associated with aortic systolic BP (regression coefficient = 0.018; p = 0.04) after adjusting for age. In addition, WMH fraction was positively associated with AIx (0.025; p = 0.04), and inversely associated with Aortic T R (-0.015; p = 0.04) after adjusting for age. Our results suggest that assessing aortic hemodynamics may identify individuals at risk for accelerated development of WMH and guide early treatment to reduce WMH burden and cognitive impairment in the future.

  9. Cerebral white-matter lesions in asymptomatic military divers.

    PubMed

    Erdem, Iclal; Yildiz, Senol; Uzun, Gunalp; Sonmez, Guner; Senol, Mehmet Guney; Mutluoglu, Mesut; Mutlu, Hakan; Oner, Bulent

    2009-01-01

    There is some concern that over a period of years, diving may produce cumulative neurological injury even in divers who have no history of decompression sickness. We evaluated asymptomatic divers and controls for cerebral white-matter lesions using magnetic resonance imaging (MRI). The study enrolled 113 male military divers (34.4 +/- 5.6 yr) and 65 non-diving men (33.1 +/- 9.0 yr) in good health. Exclusion criteria included any condition that might be expected to produce neurological effects. Patent foramen ovale was not assessed. A questionnaire was used to elicit diving history. A 1.5-T MRI device was used to acquire T1, T2-weighted, and fluid attenuated inversion recovery (FLAIR) images of the brain. A lesion was counted if it appeared hyperintense on both T2-weighted and FLAIR images. MRI revealed brain lesions in 26 of 113 divers (23%) and in 7 of 65 (11%) controls, a difference that was statistically significant. There was no significant difference between the groups with respect to blood pressure, smoking history, or alcohol consumption, and no subject reported a history of head trauma or migraine. There was no relationship between MRI findings and age, diving history, or lipid profile in divers. The higher incidence of lesions in the cerebral white matter of divers confirms the possibility that cumulative, subclinical injury to the neurological system may affect the long-term health of military and recreational divers.

  10. Unified Bundling and Registration of Brain White Matter Fibers

    PubMed Central

    Xu, Qing; Anderson, Adam W.; Gore, John C.

    2011-01-01

    Magnetic resonance diffusion tensor imaging is being widely used to reconstruct brain white matter fiber tracts. To characterize structural properties of the tracts, reconstructed fibers are often grouped into bundles that correspond to coherent anatomic structures. For further group analysis of fiber bundles, it is desirable that corresponding bundles from different studies are coregistered. To address these needs simultaneously, a unified fiber bundling and registration (UFIBRE) framework is proposed in this work. The framework is based on maximizing a posteriori Bayesian probabilities using an expectation maximization algorithm. Given a set of segmented template bundles and a whole-brain target fiber set, the UFIBRE algorithm optimally bundles the target fibers and registers them with the template. The bundling component in the UFIBRE algorithm simplifies fiber-based registration into bundle-to-bundle registration, and the registration component in turn guides the bundling process to find bundles consistent with the template. Experiments with in vivo data demonstrate that the estimated bundles have an ∼80% consistency with ground truth and the root mean square error between their bundle medial axes is less than one voxel. The proposed algorithm is highly efficient, offering potential routine use for group analysis of white matter fibers. PMID:19336300

  11. Brain white matter structural properties predict transition to chronic pain.

    PubMed

    Mansour, Ali R; Baliki, Marwan N; Huang, Lejian; Torbey, Souraya; Herrmann, Kristi M; Schnitzer, Thomas J; Apkarian, A Vania

    2013-10-01

    Neural mechanisms mediating the transition from acute to chronic pain remain largely unknown. In a longitudinal brain imaging study, we followed up patients with a single sub-acute back pain (SBP) episode for more than 1 year as their pain recovered (SBPr), or persisted (SBPp) representing a transition to chronic pain. We discovered brain white matter structural abnormalities (n=24 SBP patients; SBPp=12 and SBPr=12), as measured by diffusion tensor imaging (DTI), at entry into the study in SBPp in comparison to SBPr. These white matter fractional anisotropy (FA) differences accurately predicted pain persistence over the next year, which was validated in a second cohort (n=22 SBP patients; SBPp=11 and SBPr=11), and showed no further alterations over a 1-year period. Tractography analysis indicated that abnormal regional FA was linked to differential structural connectivity to medial vs lateral prefrontal cortex. Local FA was correlated with functional connectivity between medial prefrontal cortex and nucleus accumbens in SBPr. As we have earlier shown that the latter functional connectivity accurately predicts transition to chronic pain, we can conclude that brain structural differences, most likely existing before the back pain-inciting event and independent of the back pain, predispose subjects to pain chronification.

  12. Widespread white matter degeneration preceding the onset of dementia.

    PubMed

    Maier-Hein, Klaus H; Westin, Carl-Fredrik; Shenton, Martha E; Weiner, Michael W; Raj, Ashish; Thomann, Philipp; Kikinis, Ron; Stieltjes, Bram; Pasternak, Ofer

    2015-05-01

    Brain atrophy in subjects with mild cognitive impairment (MCI) introduces partial volume effects, limiting the sensitivity of diffusion tensor imaging to white matter microstructural degeneration. Appropriate correction isolates microstructural effects in MCI that might be precursors of Alzheimer's disease (AD). Forty-eight participants (18 MCI, 15 AD, and 15 healthy controls) had magnetic resonance imaging scans and clinical evaluations at baseline and follow-up after 36 months. Ten MCI subjects were diagnosed with AD at follow-up and eight remained MCI. Free-water (FW) corrected measures on the white matter skeleton were compared between groups. FW corrected radial diffusivity, but not uncorrected radial diffusivity, was increased across the brain of the converted group compared with the nonconverted group (P < .05). The extent of increases was similar to that found comparing AD with controls. Partial volume elimination reveals microstructural alterations preceding dementia. These alterations may prove to be an effective and feasible early biomarker of AD. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  13. A Laboratory Manual for Stepwise Cerebral White Matter Fiber Dissection.

    PubMed

    Koutsarnakis, Christos; Liakos, Faidon; Kalyvas, Aristotelis V; Sakas, Damianos E; Stranjalis, George

    2015-08-01

    White matter fiber dissection is an important method in acquiring a thorough neuroanatomic knowledge for surgical practice. Previous studies have definitely improved our understanding of intrinsic brain anatomy and emphasized on the significance of this technique in modern neurosurgery. However, current literature lacks a complete and concentrated laboratory guide about the entire dissection procedure. Hence, our primary objective is to introduce a detailed laboratory manual for cerebral white matter dissection by highlighting consecutive dissection steps, and to stress important technical comments facilitating this complex procedure. Twenty adult, formalin-fixed cerebral hemispheres were included in the study. Ten specimens were dissected in the lateromedial and 10 in the mediolateral direction, respectively, using the fiber dissection technique and the microscope. Eleven and 8 consecutive and distinctive dissection steps are recommended for the lateromedial and mediolateral dissection procedures, respectively. Photographs highlighting various anatomic landmarks accompany every step. Technical recommendations, facilitating the dissection process, are also indicated. The fiber dissection technique, although complex and time consuming, offers a three-dimensional knowledge of intrinsic brain anatomy and architecture, thus improving both the quality of microneurosurgery and the patient's standard of care. The present anatomic study provides a thorough dissection manual to those who study brain anatomy using this technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    PubMed

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  15. A Method for Clustering White Matter Fiber Tracts

    PubMed Central

    O'Donnell, L.J.; Kubicki, M.; Shenton, M.E.; Dreusicke, M.H.; Grimson, W.E.L.; Westin, C.F.

    2009-01-01

    BACKGROUND/PURPOSE Despite its potential for visualizing white matter fiber tracts in vivo, diffusion tensor tractography has found only limited applications in clinical research in which specific anatomic connections between distant regions need to be evaluated. We introduce a robust method for fiber clustering that guides the separation of anatomically distinct fiber tracts and enables further estimation of anatomic connectivity between distant brain regions. METHODS Line scanning diffusion tensor images (LSDTI) were acquired on a 1.5T magnet. Regions of interest for several anatomically distinct fiber tracts were manually drawn; then, white matter tractography was performed by using the Runge-Kutta method to interpolate paths (fiber traces) following the major directions of diffusion, in which traces were seeded only within the defined regions of interest. Next, a fully automatic procedure was applied to fiber traces, grouping them according to a pairwise similarity function that takes into account the shapes of the fibers and their spatial locations. RESULTS We demonstrated the ability of the clustering algorithm to separate several fiber tracts which are otherwise difficult to define (left and right fornix, uncinate fasciculus and inferior occipitofrontal fasciculus, and corpus callosum fibers). CONCLUSION This method successfully delineates fiber tracts that can be further analyzed for clinical research purposes. Hypotheses regarding specific fiber connections and their abnormalities in various neuropsychiatric disorders can now be tested. PMID:16687538

  16. A method for clustering white matter fiber tracts.

    PubMed

    O'Donnell, L J; Kubicki, M; Shenton, M E; Dreusicke, M H; Grimson, W E L; Westin, C F

    2006-05-01

    Despite its potential for visualizing white matter fiber tracts in vivo, diffusion tensor tractography has found only limited applications in clinical research in which specific anatomic connections between distant regions need to be evaluated. We introduce a robust method for fiber clustering that guides the separation of anatomically distinct fiber tracts and enables further estimation of anatomic connectivity between distant brain regions. Line scanning diffusion tensor images (LSDTI) were acquired on a 1.5T magnet. Regions of interest for several anatomically distinct fiber tracts were manually drawn; then, white matter tractography was performed by using the Runge-Kutta method to interpolate paths (fiber traces) following the major directions of diffusion, in which traces were seeded only within the defined regions of interest. Next, a fully automatic procedure was applied to fiber traces, grouping them according to a pairwise similarity function that takes into account the shapes of the fibers and their spatial locations. We demonstrated the ability of the clustering algorithm to separate several fiber tracts which are otherwise difficult to define (left and right fornix, uncinate fasciculus and inferior occipitofrontal fasciculus, and corpus callosum fibers). This method successfully delineates fiber tracts that can be further analyzed for clinical research purposes. Hypotheses regarding specific fiber connections and their abnormalities in various neuropsychiatric disorders can now be tested.

  17. Neuropsychiatry and White Matter Microstructure in Huntington’s Disease

    PubMed Central

    Gregory, Sarah; Scahill, Rachael I.; Seunarine, Kiran K.; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A.C.; Langbehn, Douglas R.; Long, Jeffrey D.; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J.; Craufurd, David

    2015-01-01

    Abstract Background: Neuropsychiatric symptoms in Huntington’s disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. Objective: We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. Methods: DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). Results: For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. Conclusions: We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation. PMID:26443926

  18. Development of white matter pathways in typically developing preadolescent children.

    PubMed

    Muftuler, L Tugan; Davis, Elysia Poggi; Buss, Claudia; Solodkin, Ana; Su, Min Ying; Head, Kevin M; Hasso, Anton N; Sandman, Curt A

    2012-07-23

    The first phase of major neuronal rearrangements in the brain takes place during the prenatal period. While the brain continues maturation throughout childhood, a critical second phase of synaptic overproduction and elimination takes place during the preadolescent period. Despite the importance of this developmental phase, few studies have evaluated neural changes taking place during this period. In this study, MRI diffusion tensor imaging data from a normative sample of 126 preadolescent children (59 girls and 67 boys) between the ages of 6 and 10 years were analyzed in order to characterize age-relationships in the white matter microstructure. Tract Based Spatial Statistics (TBSS) method was used for whole brain analysis of white matter tracts without a priori assumption about the location of age associated differences. Our results demonstrate significant age-associated differences in most of the major fiber tracts bilaterally and along the whole body of the tracts. In contrast, developmental differences in the cingulum at the level of the parahippocampal region were only observed in the right hemisphere. We suggest that these age-relationships with a widespread distribution seen during the preadolescent years maybe relevant for the implementation of cognitive and social behaviors needed for a normal development into adulthood.

  19. Pathological Correlates of White Matter Hyperintensities on MRI

    PubMed Central

    Shim, Yong S.; Yang, Dong-Won; Roe, Catherine M.; Coats, Mary A.; Benzinger, Tammie L.; Xiong, Chengjie; Galvin, James E.; Cairns, Nigel J.; Morris, John C.

    2014-01-01

    Background/Aims We investigated the histopathological correlates of White matter hyperintensities (WMHs) in participants with Alzheimer's disease (AD), cerebrovascular disease, and aged controls. Methods We reviewed 57 participants who had both neuroimaging and neuropathology. In addition to AD pathology, cortical microinfarcts, lacunes, and cerebral hemorrhages were assessed. Small vessel disease included arteriolosclerosis and cerebral amyloid angiopathy. Postmortem brain tissue corresponding to regions of WMHs were investigated in 14 participants; variables included: demyelination of the deep and periventricular WM, atrophy of the ventricular ependyma, and thickness of blood vessels. Partial Spearman rank test and linear regression analysis, adjusted for age at the clinical evaluation and the duration to death, were performed. Results The severity of arteriosclerosis was correlated with the MRI-estimated volume of periventricular hyperintensity (PVH). Deep white matter hyperintensity (DWMH) volume was correlated with the presence of cortical microinfarcts and cerebral hemorrhages. The severity of the breakdown of the ventricular lining was correlated with PVHs and DWMHs correlated with the severity of deep WM demyelination. The diameter of small blood vessels was not associated with WMHs. Conclusion WMHs are consistent with small vessel disease and increased tissue water content. We found no association between WMHs and thickness of small blood vessels. PMID:25401390

  20. SREBF-2 polymorphism influences white matter microstructure in bipolar disorder.

    PubMed

    Poletti, Sara; Aggio, Veronica; Bollettini, Irene; Falini, Andrea; Colombo, Cristina; Benedetti, Francesco

    2016-11-30

    The aim of the study is to investigate if gene polymorphisms in sterol regulatory element binding protein transcriptional factors SREBF-1 and SREBF-2, which regulate lipid and cholesterol metabolism, could affect white matter (WM) microstructure, the most recognized structural biomarker of bipolar disorder (BD). In a sample of 93 patients affected by BD, we investigated the effect of SREBF-1 rs11868035, and SREBF-2 rs1052717, on WM microstructure, using diffusion tensor imaging and tract-based spatial statistics. We observed increased radial diffusivity in the rs1052717 A/A genotype compared to A/G and G/G, and reduced fractional anisotropy (FA) in the rs1052717 A/A genotype compared to G carriers in cingulum, corpus callosum, superior and inferior longitudinal fasciculi, and anterior thalamic radiation. These results seem to suggest an involvement of SREBF-2 in the integrity of white matter tracts in BD and therefore a possible role of SREBP pathway in CNS myelination processes.

  1. White matter changes linked to visual recovery after nerve decompression

    PubMed Central

    Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.

    2015-01-01

    The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884

  2. White Matter Integrity is Reduced in Bulimia Nervosa

    PubMed Central

    Mettler, Lisa N.; Shott, Megan E.; Pryor, Tamara; Yang, Tony T.; Frank, Guido K.W.

    2013-01-01

    Objective To investigate brain white matter (WM) functionality in bulimia nervosa (BN) in relation to anxiety. Method Twenty-one control (CW, mean age 27±7 years) and 20 BN women (mean age 25±5 years) underwent brain diffusion tensor imaging (DTI) to measure fractional anisotropy (FA; an indication of WM axon integrity) and the apparent diffusion coefficient (ADC; reflecting WM cell damage). Results FA was decreased in BN in the bilateral corona radiata extending into the posterior limb of the internal capsule, the corpus callosum, the right sub-insular white matter and right fornix. In CW but not BN trait anxiety correlated negatively with fornix, corpus callosum and left corona radiata FA. ADC was increased in BN compared to CW in the bilateral corona radiata, corpus callosum, inferior fronto-occipital and uncinate fasciculus. Alterations in BN WM functionality were not due to structural brain alterations. Discussion WM integrity is disturbed in BN, especially in the corona radiate, which has been associated with taste and brain reward processing. Whether this is a premorbid condition or an effect from the illness is yet uncertain. The relationships between WM FA and trait anxiety in CW but not BN may suggest that altered WM functionality contributes to high anxious traits in BN. PMID:23354827

  3. Adaptive Riemannian Metrics for Improved Geodesic Tracking of White Matter

    PubMed Central

    Hao, Xiang; Whitaker, Ross T.; Fletcher, P. Thomas

    2011-01-01

    We present a new geodesic approach for studying white matter connectivity from diffusion tensor imaging (DTI). Previous approaches have used the inverse diffusion tensor field as a Riemannian metric and constructed white matter tracts as geodesics on the resulting manifold. These geodesics have the desirable property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes such methods more robust to noise, it also has the serious drawback that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. In this paper we formulate a modification of the Riemannian metric that results in geodesics adapted to follow the principal eigendirection of the tensor even in high-curvature regions. We show that this correction can be formulated as a simple scalar field modulation of the metric and that the appropriate variational problem results in a Poisson’s equation on the Riemannian manifold. We demonstrate that the proposed method results in improved geodesics using both synthetic and real DTI data. PMID:21761642

  4. Social network diversity and white matter microstructural integrity in humans.

    PubMed

    Molesworth, Tara; Sheu, Lei K; Cohen, Sheldon; Gianaros, Peter J; Verstynen, Timothy D

    2015-09-01

    Diverse aspects of physical, affective and cognitive health relate to social integration, reflecting engagement in social activities and identification with diverse roles within a social network. However, the mechanisms by which social integration interacts with the brain are unclear. In healthy adults (N = 155), we tested the links between social integration and measures of white matter microstructure using diffusion tensor imaging. Across the brain, there was a predominantly positive association between a measure of white matter integrity, fractional anisotropy (FA), and social network diversity. This association was particularly strong in a region near the anterior corpus callosum and driven by a negative association with the radial component of the diffusion signal. This callosal region contained projections between bilateral prefrontal cortices, as well as cingulum and corticostriatal pathways. FA within this region was weakly associated with circulating levels of the inflammatory cytokine interleukin-6 (IL-6), but IL-6 did not mediate the social network and FA relationship. Finally, variation in FA indirectly mediated the relationship between social network diversity and intrinsic functional connectivity of medial corticostriatal pathways. These findings suggest that social integration relates to myelin integrity in humans, which may help explain the diverse aspects of health affected by social networks. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Social network diversity and white matter microstructural integrity in humans

    PubMed Central

    Molesworth, Tara; Sheu, Lei K.; Cohen, Sheldon; Gianaros, Peter J.

    2015-01-01

    Diverse aspects of physical, affective and cognitive health relate to social integration, reflecting engagement in social activities and identification with diverse roles within a social network. However, the mechanisms by which social integration interacts with the brain are unclear. In healthy adults (N = 155), we tested the links between social integration and measures of white matter microstructure using diffusion tensor imaging. Across the brain, there was a predominantly positive association between a measure of white matter integrity, fractional anisotropy (FA), and social network diversity. This association was particularly strong in a region near the anterior corpus callosum and driven by a negative association with the radial component of the diffusion signal. This callosal region contained projections between bilateral prefrontal cortices, as well as cingulum and corticostriatal pathways. FA within this region was weakly associated with circulating levels of the inflammatory cytokine interleukin-6 (IL-6), but IL-6 did not mediate the social network and FA relationship. Finally, variation in FA indirectly mediated the relationship between social network diversity and intrinsic functional connectivity of medial corticostriatal pathways. These findings suggest that social integration relates to myelin integrity in humans, which may help explain the diverse aspects of health affected by social networks. PMID:25605966

  6. White Matter Alterations in Infants at Risk for Developmental Dyslexia.

    PubMed

    Langer, Nicolas; Peysakhovich, Barbara; Zuk, Jennifer; Drottar, Marie; Sliva, Danielle D; Smith, Sara; Becker, Bryce L C; Grant, P Ellen; Gaab, Nadine

    2017-02-01

    Developmental dyslexia (DD) is a heritable condition characterized by persistent difficulties in learning to read. White matter alterations in left-lateralized language areas, particularly in the arcuate fasciculus (AF), have been observed in DD, and diffusion properties within the AF correlate with (pre-)reading skills as early as kindergarten. However, it is unclear how early these alterations can be observed. We investigated white matter structure in 14 infants with (FHD+; ages 6.6-17.6 months) and 18 without (FHD-; ages 5.1-17.6 months) familial risk for DD. Diffusion scans were acquired during natural sleep, and early language skills were assessed. Tractography for bilateral AF was reconstructed using manual and automated methods, allowing for independent validation of results. Fractional anisotropy (FA) was calculated at multiple nodes along the tracts for more precise localization of group differences. The analyses revealed significantly lower FA in the left AF for FHD+ compared with FHD- infants, particularly in the central portion of the tract. Moreover, expressive language positively correlated with FA across groups. Our results demonstrate that atypical brain development associated with DD is already present within the first 18 months of life, suggesting that the deficits associated with DD may result from altered structural connectivity in left-hemispheric regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Widespread effects of alcohol on white matter microstructure

    PubMed Central

    Fortier, Catherine Brawn; Leritz, Elizabeth C.; Salat, David H.; Lindemer, Emily; Maksimovskiy, Arkadiy L.; Shepel, Juli; Williams, Victoria; Venne, Jonathan R.; Milberg, William P.; McGlinchey, Regina E.

    2014-01-01

    Background Evidence suggests that chronic misuse of alcohol may preferentially affect the integrity of frontal white matter tracts, which can impact executive functions important to achieve and maintain abstinence. Methods Global and regional white matter (WM) microstructure was assessed using diffusion magnetic resonance (MR) measures of fractional anisotropy (FA) for 31 abstinent alcoholics with an average of 25 years of abuse and approximately 5 years of sobriety and 20 nonalcoholic control participants. Data processing was conducted with FreeSurfer and FSL processing streams. Voxelwise processing of the FA data was carried out using TBSS (Tract-Based Spatial Statistics). Clusters of significance were created to provide a quantitative summary of highly significant regions within the voxel wise analysis. Results Widespread, bilateral reductions in FA were observed in abstinent alcoholics as compared to nonalcoholic control participants in multiple frontal, temporal, parietal, and cerebellar WM tracts. FA in the left inferior frontal gyrus was associated with drinking severity. Conclusions The present study found widespread reductions in WM integrity in a group of abstinent alcoholics compared to nonalcoholic control participants, with most pronounced effects in frontal and superior tracts. Decreased FA throughout the frontostriatal circuits that mediate inhibitory control may result in impulsive behavior and inability to maintain sobriety. PMID:25406797

  8. Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age.

    PubMed

    Padilla, Nelly; Junqué, Carme; Figueras, Francesc; Sanz-Cortes, Magdalena; Bargalló, Núria; Arranz, Angela; Donaire, Antonio; Figueras, Josep; Gratacos, Eduard

    2014-01-30

    Intrauterine growth restriction (IUGR) is associated with a high risk of abnormal neurodevelopment. Underlying neuroanatomical substrates are partially documented. We hypothesized that at 12 months preterm infants would evidence specific white-matter microstructure alterations and gray-matter differences induced by severe IUGR. Twenty preterm infants with IUGR (26-34 weeks of gestation) were compared with 20 term-born infants and 20 appropriate for gestational age preterm infants of similar gestational age. Preterm groups showed no evidence of brain abnormalities. At 12 months, infants were scanned sleeping naturally. Gray-matter volumes were studied with voxel-based morphometry. White-matter microstructure was examined using tract-based spatial statistics. The relationship between diffusivity indices in white matter, gray matter volumes, and perinatal data was also investigated. Gray-matter decrements attributable to IUGR comprised amygdala, basal ganglia, thalamus and insula bilaterally, left occipital and parietal lobes, and right perirolandic area. Gray-matter volumes positively correlated with birth weight exclusively. Preterm infants had reduced FA in the corpus callosum, and increased FA in the anterior corona radiata. Additionally, IUGR infants had increased FA in the forceps minor, internal and external capsules, uncinate and fronto-occipital white matter tracts. Increased axial diffusivity was observed in several white matter tracts. Fractional anisotropy positively correlated with birth weight and gestational age at birth. These data suggest that IUGR differentially affects gray and white matter development preferentially affecting gray matter. At 12 months IUGR is associated with a specific set of structural gray-matter decrements. White matter follows an unusual developmental pattern, and is apparently affected by IUGR and prematurity combined. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. White Matter Neurons in Young Adult and Aged Rhesus Monkey

    PubMed Central

    Mortazavi, Farzad; Wang, Xiyue; Rosene, Douglas L.; Rockland, Kathleen S.

    2016-01-01

    In humans and non-human primates (NHP), white matter neurons (WMNs) persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR), temporal (TE), and parietal (Par) association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30 μm thickness), and neuronal density was assessed by systematic random sampling. Per 0.16 mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of putative

  10. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging.

    PubMed

    Gong, Nan-Jie; Wong, Chun-Sing; Chan, Chun-Chung; Leung, Lam-Ming; Chu, Yiu-Ching

    2014-10-01

    Diffusion tensor imaging has already been extensively used to probe microstructural alterations in white matter tracts, and scarcely, in deep gray matter. However, results in literature regarding age-related degenerative mechanisms in white matter tracts and parametric changes in the putamen are inconsistent. Diffusional kurtosis imaging is a mathematical extension of diffusion tensor imaging, which could more comprehensively mirror microstructure, particularly in isotropic tissues such as gray matter. In this study, we used the diffusional kurtosis imaging method and a white-matter model that provided metrics of explicit neurobiological interpretations in healthy participants (58 in total, aged from 25 to 84 years). Tract-based whole-brain analyses and regions-of-interest (anterior and posterior limbs of the internal capsule, cerebral peduncle, fornix, genu and splenium of corpus callosum, globus pallidus, substantia nigra, red nucleus, putamen, caudate nucleus, and thalamus) analyses were performed to examine parametric differences across regions and correlations with age. In white matter tracts, evidence was found supportive for anterior-posterior gradient and not completely supportive for retrogenesis theory. Age-related degenerations appeared to be broadly driven by axonal loss. Demyelination may also be a major driving mechanism, although confined to the anterior brain. In terms of deep gray matter, higher mean kurtosis and fractional anisotropy in the globus pallidus, substantia nigra, and red nucleus reflected higher microstructural complexity and directionality compared with the putamen, caudate nucleus, and thalamus. In particular, the unique age-related positive correlations for fractional anisotropy, mean kurtosis, and radial kurtosis in the putamen opposite to those in other regions call for further investigation of exact underlying mechanisms. In summary, the results suggested that diffusional kurtosis can provide measurements in a new dimension that

  11. White matter pathology isolates the hippocampal formation in Alzheimer's disease.

    PubMed

    Salat, D H; Tuch, D S; van der Kouwe, A J W; Greve, D N; Pappu, V; Lee, S Y; Hevelone, N D; Zaleta, A K; Growdon, J H; Corkin, S; Fischl, B; Rosas, H D

    2010-02-01

    Prior work has demonstrated that the memory dysfunction of Alzheimer's disease (AD) is accompanied by marked cortical pathology in medial temporal lobe (MTL) gray matter. In contrast, changes in white matter (WM) of pathways associated with the MTL have rarely been studied. We used diffusion tensor imaging (DTI) to examine regional patterns of WM tissue changes in individuals with AD. Alterations of diffusion properties with AD were found in several regions including parahippocampal WM, and in regions with direct and secondary connections to the MTL. A portion of the changes measured, including effects in the parahippocampal WM, were independent of gray matter degeneration as measured by hippocampal volume. Examination of regional changes in unique diffusion parameters including anisotropy and axial and radial diffusivity demonstrated distinct zones of alterations, potentially stemming from differences in underlying pathology, with a potential myelin specific pathology in the parahippocampal WM. These results demonstrate that deterioration of neocortical connections to the hippocampal formation results in part from the degeneration of critical MTL and associated fiber pathways.

  12. Reduced cerebral gray matter and altered white matter in boys with Duchenne muscular dystrophy.

    PubMed

    Doorenweerd, Nathalie; Straathof, Chiara S; Dumas, Eve M; Spitali, Pietro; Ginjaar, Ieke B; Wokke, Beatrijs H; Schrans, Debby G; van den Bergen, Janneke C; van Zwet, Erik W; Webb, Andrew; van Buchem, Mark A; Verschuuren, Jan J; Hendriksen, Jos G; Niks, Erik H; Kan, Hermien E

    2014-09-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive muscle weakness caused by DMD gene mutations leading to absence of the full-length dystrophin protein in muscle. Multiple dystrophin isoforms are expressed in brain, but little is known about their function. DMD is associated with specific learning and behavioral disabilities that are more prominent in patients with mutations in the distal part of the DMD gene, predicted to affect expression of shorter protein isoforms. We used quantitative magnetic resonance (MR) imaging to study brain microstructure in DMD. T1-weighted and diffusion tensor images were obtained on a 3T MR scanner from 30 patients and 22 age-matched controls (age = 8-18 years). All subjects underwent neuropsychological examination. Group comparisons on tissue volume and diffusion tensor imaging parameters were made between DMD patients and controls, and between 2 DMD subgroups that were classified according to predicted Dp140 isoform expression (DMD_Dp140(+) and DMD_Dp140(-) ). DMD patients had smaller total brain volume, smaller gray matter volume, lower white matter fractional anisotropy, and higher white matter mean and radial diffusivity than healthy controls. DMD patients also performed worse on neuropsychological examination. Subgroup analyses showed that DMD_Dp140(-) subjects contributed most to the gray matter volume differences and performed worse on information processing. Both gray and white matter is affected in boys with DMD at a whole brain level. Differences between the DMD_Dp140(-) subgroup and controls indicate an important role for the Dp140 dystrophin isoform in cerebral development. © 2014 American Neurological Association.

  13. The spinal cord development in guinea pig: a morphometric study on an image analysis system.

    PubMed

    Marroni, P; Coli, A

    1999-01-01

    Using an image analysis system, the Authors carried out a morphometric study on guinea pig spinal cord in order to determine volumetric changes of white and gray matter during development. White and gray matter volumes were determined by measuring the area occupied by these matters in 10 micrograms sections of spinal cord in 1 day and 90 days old subjects. Several topographic correspondences in the localisation of the lowest and highest volumetric values were observed in the two groups of subjects. Such correspondences were more marked for white than gray matter. Moreover, during growth white matter volume showed an increase double that observed in gray matter.

  14. A multivariate pattern analysis study of the HIV-related white matter anatomical structural connections alterations

    NASA Astrophysics Data System (ADS)

    Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie

    2017-03-01

    It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.

  15. Lipocalin 2 and Blood-Brain Barrier Disruption in White Matter after Experimental Subarachnoid Hemorrhage.

    PubMed

    Egashira, Yusuke; Hua, Ya; Keep, Richard F; Iwama, Toru; Xi, Guohua

    2016-01-01

    We reported previously that subarachnoid hemorrhage (SAH) causes acute white matter injury in mice. In this study, we investigated lipocalin 2 (LCN2) mediated blood-brain barrier (BBB) disruption in white matter, which may lead to subsequent injury. SAH was induced by endovascular perforation in wild-type (WT) and LCN2-knockout (LCN2(-/-)) mice. Sham mice underwent the same procedure without perforation. Mice underwent magnetic resonance imaging (MRI) 24 h after SAH to confirm the development of T2-hyperintensity in white matter. Western blotting and immunohistochemistry were performed to elucidate the mechanisms of LCN2-mediated white matter injury and BBB disruption. It was confirmed that LCN2 expression was significantly increased in white matter of WT mice after SAH by Western blotting (versus sham; p < 0.05). Immunohistochemistry showed that LCN2 receptor 24p3R was expressed in oligodendrocytes, astrocytes, endothelial cells, and pericytes in the white matter. In WT mice with SAH, albumin leakage along the white matter was prominently observed and was consistent with T2-hyperintensity on MRI. As with our previous report, LCN2(-/-) mice scarcely developed T2-hyperintensity on MRI or albumin leakage in white matter. Our results suggest that BBB leakage occurs in white matter after SAH and that LCN2 contributes to SAH-induced BBB disruption.

  16. The axon-glia unit in white matter stroke: mechanisms of damage and recovery.

    PubMed

    Rosenzweig, Shira; Carmichael, S Thomas

    2015-10-14

    Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.

  17. Abnormal gray matter and white matter volume in 'Internet gaming addicts'.

    PubMed

    Lin, Xiao; Dong, Guangheng; Wang, Qiandong; Du, Xiaoxia

    2015-01-01

    Internet gaming addiction (IGA) is usually defined as the inability of an individual to control his/her use of the Internet with serious negative consequences. It is becoming a prevalent mental health concern around the world. To understand whether Internet gaming addiction contributes to cerebral structural changes, the present study examined the brain gray matter density and white matter density changes in participants suffering IGA using voxel-based morphometric analysis. Compared with the healthy controls (N=36, 22.2 ± 3.13 years), IGA participants (N=35, 22.28 ± 2.54 years) showed significant lower gray matter density in the bilateral inferior frontal gyrus, left cingulate gyrus, insula, right precuneus, and right hippocampus (all p<0.05). IGA participants also showed significant lower white matter density in the inferior frontal gyrus, insula, amygdala, and anterior cingulate than healthy controls (all p<0.05). Previous studies suggest that these brain regions are involved in decision-making, behavioral inhibition and emotional regulation. Current findings might provide insight in understanding the biological underpinnings of IGA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Military blast exposure, ageing and white matter integrity.

    PubMed

    Trotter, Benjamin B; Robinson, Meghan E; Milberg, William P; McGlinchey, Regina E; Salat, David H

    2015-08-01

    Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure-one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan-is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a 'dose-response' relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast-exposed group

  19. Military blast exposure, ageing and white matter integrity

    PubMed Central

    Trotter, Benjamin B.; Robinson, Meghan E.; Milberg, William P.; McGlinchey, Regina E.

    2015-01-01

    Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure—one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan—is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a ‘dose-response’ relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast

  20. Connectivity-driven white matter scaling and folding in primate cerebral cortex

    PubMed Central

    Herculano-Houzel, Suzana; Mota, Bruno; Kaas, Jon H.

    2010-01-01

    Larger brains have an increasingly folded cerebral cortex whose white matter scales up faster than the gray matter. Here we analyze the cellular composition of the subcortical white matter in 11 primate species, including humans, and one Scandentia, and show that the mass of the white matter scales linearly across species with its number of nonneuronal cells, which is expected to be proportional to the total length of myelinated axons in the white matter. This result implies that the average axonal cross-section area in the white matter, a, does not scale significantly with the number of neurons in the gray matter, N. The surface area of the white matter increases with N0.87, not N1.0. Because this surface can be defined as the product of N, a, and the fraction n of cortical neurons connected through the white matter, we deduce that connectivity decreases in larger cerebral cortices as a slowly diminishing fraction of neurons, which varies with N−0.16, sends myelinated axons into the white matter. Decreased connectivity is compatible with previous suggestions that neurons in the cerebral cortex are connected as a small-world network and should slow down the increase in global conduction delay in cortices with larger numbers of neurons. Further, a simple model shows that connectivity and cortical folding are directly related across species. We offer a white matter-based mechanism to account for increased cortical folding across species, which we propose to be driven by connectivity-related tension in the white matter, pulling down on the gray matter. PMID:20956290

  1. Modeling the relationship among gray matter atrophy, abnormalities in connecting white matter, and cognitive performance in early multiple sclerosis.

    PubMed

    Kuceyeski, A F; Vargas, W; Dayan, M; Monohan, E; Blackwell, C; Raj, A; Fujimoto, K; Gauthier, S A

    2015-04-01

    Quantitative assessment of clinical and pathologic consequences of white matter abnormalities in multiple sclerosis is critical in understanding the pathways of disease. This study aimed to test whether gray matter atrophy was related to abnormalities in connecting white matter and to identify patterns of imaging biomarker abnormalities that were related to patient processing speed. Image data and Symbol Digit Modalities Test scores were collected from a cohort of patients with early multiple sclerosis. The Network Modification Tool was used to estimate connectivity irregularities by projecting white matter abnormalities onto connecting gray matter regions. Partial least-squares regression quantified the relationship between imaging biomarkers and processing speed as measured by the Symbol Digit Modalities Test. Atrophy in deep gray matter structures of the thalami and putamen had moderate and significant correlations with abnormalities in connecting white matter (r = 0.39-0.41, P < .05 corrected). The 2 models of processing speed, 1 for each of the WM imaging biomarkers, had goodness-of-fit (R(2)) values of 0.42 and 0.30. A measure of the impact of white matter lesions on the connectivity of occipital and parietal areas had significant nonzero regression coefficients. We concluded that deep gray matter regions may be susceptible to inflammation and/or demyelination in white matter, possibly having a higher sensitivity to remote degeneration, and that lesions affecting visual processing pathways were related to processing speed. The Network Modification Tool may be used to quantify the impact of early white matter abnormalities on both connecting gray matter structures and processing speed. © 2015 by American Journal of Neuroradiology.

  2. Modeling the Relationship among Gray Matter Atrophy, Abnormalities in Connecting White Matter, and Cognitive Performance in Early Multiple Sclerosis

    PubMed Central

    Kuceyeski, A.F.; Vargas, W.; Dayan, M.; Monohan, E.; Blackwell, C.; Raj, A.; Fujimoto, K.; Gauthier, S.A.

    2016-01-01

    Background and Purpose Quantitative assessment of clinical and pathologic consequences of white matter abnormalities in multiple sclerosis is critical in understanding the pathways of disease. This study aimed to test whether gray matter atrophy was related to abnormalities in connecting white matter and to identify patterns of imaging biomarker abnormalities that were related to patient processing speed. Materials and Methods Image data and Symbol Digit Modalities Test scores were collected from a cohort of patients with early multiple sclerosis. The Network Modification Tool was used to estimate connectivity irregularities by projecting white matter abnormalities onto connecting gray matter regions. Partial least-squares regression quantified the relationship between imaging biomarkers and processing speed as measured by the Symbol Digit Modalities Test. Results Atrophy in deep gray matter structures of the thalami and putamen had moderate and significant correlations with abnormalities in connecting white matter (r = 0.39–0.41, P < .05 corrected). The 2 models of processing speed, 1 for each of the WM imaging biomarkers, had goodness-of-fit (R2) values of 0.42 and 0.30. A measure of the impact of white matter lesions on the connectivity of occipital and parietal areas had significant nonzero regression coefficients. Conclusions We concluded that deep gray matter regions may be susceptible to inflammation and/or demyelination in white matter, possibly having a higher sensitivity to remote degeneration, and that lesions affecting visual processing pathways were related to processing speed. The Network Modification Tool may be used to quantify the impact of early white matter abnormalities on both connecting gray matter structures and processing speed. PMID:25414004

  3. Processing speed impairment in schizophrenia is mediated by white matter integrity

    PubMed Central

    Karbasforoushan, Haleh; Duffy, Brittney; Blackford, Jennifer Urbano; Woodward, Neil D.

    2017-01-01

    Background Processing speed predicts functional outcome and is a potential endophenotype for schizophrenia. Establishing the neural basis of processing speed impairment may inform the treatment and etiology of schizophrenia. Neuroimaging investigations in healthy subjects have linked processing speed to brain anatomical connectivity. However, the relationship between processing speed impairment and white matter integrity in schizophrenia is unclear. Methods Individuals with schizophrenia and healthy subjects underwent diffusion tensor imaging (DTI) and completed a brief neuropsychological assessment that included measures of processing speed, verbal learning, working memory, and executive functioning. Group differences in white matter integrity, inferred from fractional anisotropy (FA), were examined throughout the brain and the hypothesis that processing speed impairment in schizophrenia is mediated by diminished white matter integrity was tested. Results White matter integrity of the corpus callosum, cingulum, superior and inferior frontal gyri, and precuneus was reduced in schizophrenia. Average FA in these regions mediated group differences in processing speed, but not other cognitive domains. Diminished white matter integrity in schizophrenia was accounted for, in large part, by individual differences in processing speed. Conclusions Cognitive impairment in schizophrenia mediated by reduced white matter integrity. This relationship was strongest for processing speed as deficits in working memory, verbal learning, and executive functioning were not mediated by white integrity. Larger sample sizes may be required to detect more subtle mediation effects in these domains. Interventions that preserve white matter integrity or ameliorate white matter disruption may enhance processing speed and functional outcome in schizophrenia. PMID:25066842

  4. NEURONAL WHITE MATTER PARCELLATION USING SPATIALLY COHERENT NORMALIZED CUTS.

    PubMed

    Bloy, Luke; Ingalhalikar, Madhura; Verma, Ragini

    2011-01-01

    This work presents an automated method for partitioning neuronal white matter (WM) into regions of interest with uniform WM architecture. These regions can then be used to replace atlas-derived regions for any subsequent statistical analysis. The fiber orientation distribution function is used as a model of WM architecture resulting in a voxel similarity function sensitive to both fiber orientations and configurations. The method utilizes the normalized cuts algorithm to partition WM voxels based on this similarity function along with a connected component labeling algorithm to ensure spatial compactness. We illustrate the algorithms ability to discern regions based on both orientation and complexity through its application to a simulated fiber crossing and an in-vivo dataset.

  5. Roles of white matter in central nervous system pathophysiologies

    PubMed Central

    Matute, Carlos; Ransom, Bruce R

    2012-01-01

    The phylogenetic enlargement of cerebral cortex culminating in the human brain imposed greater communication needs that have been met by the massive expansion of WM (white matter). Damage to WM alters brain function, and numerous neurological diseases feature WM involvement. In the current review, we discuss the major features of WM, the contributions of WM compromise to brain pathophysiology, and some of the mechanisms mediating WM injury. We will emphasize the newly appreciated importance of neurotransmitter signalling in WM, particularly glutamate and ATP signalling, to understanding both normal and abnormal brain functions. A deeper understanding of the mechanisms leading to WM damage will generate much-needed insights for developing therapies for acute and chronic diseases with WM involvement. PMID:22313331

  6. [White matter lesions leading to the diagnosis of pseudoxanthoma elasticum].

    PubMed

    Dalloz, M-A; Debs, R; Bensa, C; Alamowitch, S

    2010-10-01

    Pseudoxanthoma elasticum (PXE) is an inherited connective tissue disease characterized by skin, eye, cardiovascular, and, less often, cerebrovascular manifestations. We report the case of a 32-year-old woman who presented with fortuitously discovered cerebral white matter lesions. The pattern of the lesions was compatible with vascular leucopathy. Neurological examination, CSF and biological assessment were normal. Physical examination demonstrated cutaneous lesions characterized by yellowish papules in the neck and axilla with calcification of elastic fibres showed on the skin biopsy and retinal angioid streaks, which made PXE a plausible diagnosis. Sequencing of the ABCC6 gene confirmed PXE. Thus, PXE must be considered when confronted with cerebral microangiopathy of undetermined origin. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Periventricular White Matter Is a Nexus for Network Connectivity in the Human Brain.

    PubMed

    Owen, Julia P; Wang, Maxwell B; Mukherjee, Pratik

    2016-09-01

    The edges of the structural connectome traverse the white matter to connect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Characterization of the geometry of the structural connectome could provide an improved understanding of the relative importance of various white matter regions to the network architecture of the human brain in normal development and aging, as well as in white matter diseases with regionally specific patterns of vulnerability. Edge density imaging (EDI) has previously been used to show that the posterior periventricular white matter contains a disproportionately large number of connectome edges. In this study, the regional distribution of connectome edges within cerebral white matter, including the importance of posterior periventricular white matter, is further investigated and demonstrated to be invariant to different gray matter parcellations and different diffusion MRI acquisition and postprocessing/tractography methods. An examination of the highest k-core edges and a virtual lesion analysis illuminate hemispheric asymmetries (left>right) in the embedding of connectome edges. Therefore, EDI reveals specific areas of vulnerability within the white matter connectivity of the human brain, especially in the periventricular white matter. The idea of a periventricular nexus fits with the known neurobiology of brain development and may result from simple geometrical considerations in minimizing wiring cost in structural brain connectivity.

  8. White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging.

    PubMed

    Hansen, Brian; Khan, Ahmad R; Shemesh, Noam; Lund, Torben E; Sangill, Ryan; Eskildsen, Simon F; Østergaard, Leif; Jespersen, Sune N

    2017-09-01

    White matter tract integrity (WMTI) can characterize brain microstructure in areas with highly aligned fiber bundles. Several WMTI biomarkers have now been validated against microscopy and provided promising results in studies of brain development and aging, as well as in a number of brain disorders. Currently, WMTI is mostly used in dedicated animal studies and clinical studies of slowly progressing diseases, and has not yet emerged as a routine clinical tool. To this end, a less data intensive experimental method would be beneficial by enabling high resolution validation studies, and ease clinical applications by speeding up data acquisition compared with typical diffusion kurtosis imaging (DKI) protocols utilized as part of WMTI imaging. Here, we evaluate WMTI based on recently introduced axially symmetric DKI, which has lower data demand than conventional DKI. We compare WMTI parameters derived from conventional DKI with those calculated analytically from axially symmetric DKI. We employ numerical simulations, as well as data from fixed rat spinal cord (one sample) and in vivo human (three subjects) and rat brain (four animals). Our analysis shows that analytical WMTI based on axially symmetric DKI with sparse data sets (19 images) produces WMTI metrics that correlate strongly with estimates based on traditional DKI data sets (60 images or more). We demonstrate the preclinical potential of the proposed WMTI technique in in vivo rat brain (300 μm isotropic resolution with whole brain coverage in a 1 h acquisition). WMTI parameter estimates are subject to a duality leading to two solution branches dependent on a sign choice, which is currently debated. Results from both of these branches are presented and discussed throughout our analysis. The proposed fast WMTI approach may be useful for preclinical research and e.g. clinical evaluation of patients with traumatic white matter injuries or symptoms of neurovascular or neuroinflammatory disorders. Copyright

  9. Differential effects on white-matter systems in high-functioning autism and Asperger's syndrome.

    PubMed

    McAlonan, G M; Cheung, C; Cheung, V; Wong, N; Suckling, J; Chua, S E

    2009-11-01

    Whether autism spectrum maps onto a spectrum of brain abnormalities and whether Asperger's syndrome (ASP) is distinct from high-functioning autism (HFA) are debated. White-matter maldevelopment is associated with autism and disconnectivity theories of autism are compelling. However, it is unknown whether children with ASP and HFA have distinct white-matter abnormalities. Voxel-based morphometry mapped white-matter volumes across the whole brain in 91 children. Thirty-six had autism spectrum disorder. A history of delay in phrase speech defined half with HFA; those without delay formed the ASP group. The rest were typically developing children, balanced for age, IQ, gender, maternal language and ethnicity. White-matter volumes in HFA and ASP were compared and each contrasted with controls. White-matter volumes around the basal ganglia were higher in the HFA group than ASP and higher in both autism groups than controls. Compared with controls, children with HFA had less frontal and corpus callosal white matter in the left hemisphere; those with ASP had less frontal and corpus callosal white matter in the right hemisphere with more white matter in the left parietal lobe. HFA involved mainly left hemisphere white-matter systems; ASP affected predominantly right hemisphere white-matter systems. The impact of HFA on basal ganglia white matter was greater than ASP. This implies that aetiological factors and management options for autism spectrum disorders may be distinct. History of language acquisition is a potentially valuable marker to refine our search for causes and treatments in autism spectrum.

  10. Thrombogenic microvesicles and white matter hyperintensities in postmenopausal women.

    PubMed

    Raz, Limor; Jayachandran, M; Tosakulwong, Nirubol; Lesnick, Timothy G; Wille, Samantha M; Murphy, Matthew C; Senjem, Matthew L; Gunter, Jeffrey L; Vemuri, Prashanthi; Jack, Clifford R; Miller, Virginia M; Kantarci, Kejal

    2013-03-05

    To determine the association of conventional cardiovascular risk factors, markers of platelet activation, and thrombogenic blood-borne microvesicles with white matter hyperintensity (WMH) load and progression in recently menopausal women. Women (n = 95) enrolled in the Mayo Clinic Kronos Early Estrogen Prevention Study underwent MRI at baseline and at 18, 36, and 48 months after randomization to hormone treatments. Conventional cardiovascular risk factors, carotid intima-medial thickness, coronary arterial calcification, plasma lipids, markers of platelet activation, and thrombogenic microvesicles were measured at baseline. WMH volumes were calculated using a semiautomated segmentation algorithm based on fluid-attenuated inversion recovery MRI. Correlations of those parameters with baseline WMH and longitudinal change in WMH were adjusted for age, months past menopause, and APOE ε4 status in linear regression analysis. At baseline, WMH were present in all women. The WMH to white matter volume fraction at baseline was 0.88% (0.69%, 1.16%). WMH volume increased by 122.1 mm(3) (95% confidence interval: -164.3, 539.5) at 36 months (p = 0.003) and 155.4 mm(3) (95% confidence interval: -92.13, 599.4) at 48 months (p < 0.001). These increases correlated with numbers of platelet-derived and total thrombogenic microvesicles at baseline (p = 0.03). Associations of platelet-derived, thrombogenic microvesicles at baseline and increases in WMH suggest that in vivo platelet activation may contribute to a cascade of events leading to development of WMH in recently menopausal women.

  11. Thrombogenic microvesicles and white matter hyperintensities in postmenopausal women

    PubMed Central

    Raz, Limor; Jayachandran, M.; Tosakulwong, Nirubol; Lesnick, Timothy G.; Wille, Samantha M.; Murphy, Matthew C.; Senjem, Matthew L.; Gunter, Jeffrey L.; Vemuri, Prashanthi; Jack, Clifford R.; Miller, Virginia M.

    2013-01-01

    Objective: To determine the association of conventional cardiovascular risk factors, markers of platelet activation, and thrombogenic blood-borne microvesicles with white matter hyperintensity (WMH) load and progression in recently menopausal women. Methods: Women (n = 95) enrolled in the Mayo Clinic Kronos Early Estrogen Prevention Study underwent MRI at baseline and at 18, 36, and 48 months after randomization to hormone treatments. Conventional cardiovascular risk factors, carotid intima-medial thickness, coronary arterial calcification, plasma lipids, markers of platelet activation, and thrombogenic microvesicles were measured at baseline. WMH volumes were calculated using a semiautomated segmentation algorithm based on fluid-attenuated inversion recovery MRI. Correlations of those parameters with baseline WMH and longitudinal change in WMH were adjusted for age, months past menopause, and APOE ε4 status in linear regression analysis. Results: At baseline, WMH were present in all women. The WMH to white matter volume fraction at baseline was 0.88% (0.69%, 1.16%). WMH volume increased by 122.1 mm3 (95% confidence interval: −164.3, 539.5) at 36 months (p = 0.003) and 155.4 mm3 (95% confidence interval: −92.13, 599.4) at 48 months (p < 0.001). These increases correlated with numbers of platelet-derived and total thrombogenic microvesicles at baseline (p = 0.03). Conclusion: Associations of platelet-derived, thrombogenic microvesicles at baseline and increases in WMH suggest that in vivo platelet activation may contribute to a cascade of events leading to development of WMH in recently menopausal women. PMID:23408873

  12. Superficial white matter: effects of age, sex, and hemisphere.

    PubMed

    Phillips, Owen R; Clark, Kristi A; Luders, Eileen; Azhir, Ramin; Joshi, Shantanu H; Woods, Roger P; Mazziotta, John C; Toga, Arthur W; Narr, Katherine L

    2013-01-01

    Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies.

  13. Hemodynamic and Metabolic Correlates of Perinatal White Matter Injury Severity

    PubMed Central

    Riddle, Art; Maire, Jennifer; Cai, Victor; Nguyen, Thuan; Gong, Xi; Hansen, Kelly; Grafe, Marjorie R.; Hohimer, A. Roger; Back, Stephen A.

    2013-01-01

    Background and Purpose Although the spectrum of perinatal white matter injury (WMI) in preterm infants is shifting from cystic encephalomalacia to milder forms of WMI, the factors that contribute to this changing spectrum are unclear. We hypothesized that the variability in WMI quantified by immunohistochemical markers of inflammation could be correlated with the severity of impaired blood oxygen, glucose and lactate. Methods We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. Since there is small but measurable residual brain blood flow during occlusion, we sought to determine if the metabolic state of the residual arterial blood was associated with severity of WMI. Near the conclusion of hypoxia-ischemia, we recorded cephalic arterial blood pressure, blood oxygen, glucose and lactate levels. To define the spectrum of WMI, an ordinal WMI rating scale was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microgliosis derived from the entire white matter. Results A spectrum of WMI was observed that ranged from diffuse non-necrotic lesions to more severe injury that comprised discrete foci of microscopic or macroscopic necrosis. Residual arterial pressure, oxygen content and blood glucose displayed a significant inverse association with WMI and lactate concentrations were directly related. Elevated glucose levels were the most significantly associated with less severe WMI. Conclusions Our results suggest that under conditions of hypoxemia and severe cephalic hypotension, WMI severity measured using unbiased immunohistochemical measurements correlated with several physiologic parameters, including glucose, which may be a useful marker of fetal response to hypoxia or provide protection against energy failure and more severe WMI. PMID:24416093

  14. Assessing prenatal white matter connectivity in commissural agenesis.

    PubMed

    Kasprian, Gregor; Brugger, Peter C; Schöpf, Veronika; Mitter, Christian; Weber, Michael; Hainfellner, Johannes A; Prayer, Daniela

    2013-01-01

    Complete or partial agenesis of the corpus callosum are rather common developmental abnormalities, resulting in a wide spectrum of clinical neurodevelopmental deficits. Currently, a significant number of these cases are detected by prenatal sonography during second trimester screening examinations. However, major uncertainties about a detailed morphological diagnosis and the clinical significance do not allow accurate prenatal counselling. Here, we were able to demonstrate the 3D connectivity of aberrant commissural tracts in 16 cases with complete and four cases with partial callosal agenesis using the foetal magnetic resonance imaging techniques of diffusion tensor imaging and tractography in utero and in vivo between gestational weeks 20 and 37. The 'misguided' pre-myelinated callosal axons that represent the bundle of Probst were non-invasively visualized, and they showed a degree of structural integrity similar to that of the callosal pathways of age-matched foetuses without cerebral pathologies. In two foetuses, we were able to prove, by post-mortem histology, that diffusion tensor imaging allows the depiction of the bundle of Probst, even during early stages of pre-myelination at 20 and 22 gestational weeks. In cases with partial callosal agenesis, an aberrant sigmoid-shaped bundle was prenatally depicted, confirming the findings of heterotopic interhemispheric connectivity in adults with partial callosal agenesis. In addition to the corpus callosum, other white matter pathways were also involved, including somatosensory and motor pathways that showed significantly higher fractional anisotropy values in cases with callosal agenesis compared with control subjects. A detailed prenatal assessment of abnormal white matter connectivity in cases of midline anomalies will help to explain and understand the clinical heterogeneity in these cases, taking future foetal neurological counselling strategies to a new level.

  15. Superficial White Matter: Effects of Age, Sex, and Hemisphere

    PubMed Central

    Phillips, Owen R.; Clark, Kristi A.; Luders, Eileen; Azhir, Ramin; Joshi, Shantanu H.; Woods, Roger P.; Mazziotta, John C.; Toga, Arthur W.

    2013-01-01

    Abstract Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18–74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies. PMID:23461767

  16. Detection of white matter lesions in cerebral small vessel disease

    NASA Astrophysics Data System (ADS)

    Riad, Medhat M.; Platel, Bram; de Leeuw, Frank-Erik; Karssemeijer, Nico

    2013-02-01

    White matter lesions (WML) are diffuse white matter abnormalities commonly found in older subjects and are important indicators of stroke, multiple sclerosis, dementia and other disorders. We present an automated WML detection method and evaluate it on a dataset of small vessel disease (SVD) patients. In early SVD, small WMLs are expected to be of importance for the prediction of disease progression. Commonly used WML segmentation methods tend to ignore small WMLs and are mostly validated on the basis of total lesion load or a Dice coefficient for all detected WMLs. Therefore, in this paper, we present a method that is designed to detect individual lesions, large or small, and we validate the detection performance of our system with FROC (free-response ROC) analysis. For the automated detection, we use supervised classification making use of multimodal voxel based features from different magnetic resonance imaging (MRI) sequences, including intensities, tissue probabilities, voxel locations and distances, neighborhood textures and others. After preprocessing, including co-registration, brain extraction, bias correction, intensity normalization, and nonlinear registration, ventricle segmentation is performed and features are calculated for each brain voxel. A gentle-boost classifier is trained using these features from 50 manually annotated subjects to give each voxel a probability of being a lesion voxel. We perform ROC analysis to illustrate the benefits of using additional features to the commonly used voxel intensities; significantly increasing the area under the curve (Az) from 0.81 to 0.96 (p<0.05). We perform the FROC analysis by testing our classifier on 50 previously unseen subjects and compare the results with manual annotations performed by two experts. Using the first annotator results as our reference, the second annotator performs at a sensitivity of 0.90 with an average of 41 false positives per subject while our automated method reached the same

  17. Magnetic stimulation influences injury-induced migration of white matter astrocytes.

    PubMed

    Fang, Zheng-Yu; Li, Zhe; Xiong, Liang; Huang, Jie; Huang, Xiao-Lin

    2010-08-01

    This study investigates the effects and underlying mechanism of magnetic stimulation on injury-induced migration of white matter astrocytes. Twenty-four adult healthy SD rats were selected to inject 0.5 ml of 1% ethidium bromide (EB) in PBS into the dorsal spinal cord funiculus on the left side at the T10-11 level to make located spinal cord injury models. Then they were randomly divided into four groups (A, B, C, and D). Groups A, B, C, and D were exposed to 1 Hz pulsed magnetic stimulation underwent 5-min sessions on 14 consecutive days at the following levels: 0T (Group A) 1.9x40% T (Group B); 1.9x80% T (Group C); 1.9x100% T (Group D). On day 14 after stimulation, the rats were killed and the expression of glial fibrillary acidic protein (GFAP), microtubule associated protein-2 (MAP-2), extracellular signal-regulated kinase1/2 (ERK1/2), and the volume of holes were detected with immunohistochemistry. Quantitative analysis of the expression of GFAP, MAP-2, and ERK1/2 were performed with the image analysis system. With the increase of magnetic stimulation intensity, the volume of hole decreased at day 14 (P<0.05). In lesion areas, the expression of GFAP and ERK1/2 could be seen, while that of MAP-2 did not change before and after magnetic stimulation. Significant difference was revealed in the expression of GFAP, ERK1/2 among the four groups. It was significantly higher in the magnetic stimulation groups than that in the control group (P<0.05). After magnetic stimulation, astrocytes migrated into the hole. U0126, a potent and selective MEK1/2 inhibitor, inhibited up-regulation of pERK1/2 which was stimulated by magnetic stimulation. These data indicate that magnetic stimulation increases the migratory capacity of reactive white matter astrocytes in the injured center nervous system, which may be associated with activation of MEK1,2/ERK mitogenic pathway.

  18. White matter plasticity in the cerebellum of elite basketball athletes

    PubMed Central

    Park, In Sung; Lee, Ye Na; Kwon, Soonwook; Lee, Nam Joon

    2015-01-01

    Recent neuroimaging studies indicate that learning a novel motor skill induces plastic changes in the brain structures of both gray matter (GM) and white matter (WM) that are associated with a specific practice. We previously reported an increased volume of vermian lobules VI-VII (declive, folium, and tuber) in elite basketball athletes who require coordination for dribbling and shooting a ball, which awakened the central role of the cerebellum in motor coordination. However, the precise factor contributing to the increased volume was not determined. In the present study, we compared the volumes of the GM and WM in the sub-regions of the cerebellar vermis based on manual voxel analysis with the ImageJ program. We found significantly larger WM volumes of vermian lobules VI-VII (declive, folium, and tuber) in elite basketball athletes in response to long-term intensive motor learning. We suggest that the larger WM volumes of this region in elite basketball athletes represent a motor learning-induced plastic change, and that the WM of this region likely plays a critical role in coordination. This finding will contribute to gaining a deeper understanding of motor learning-evoked WM plasticity. PMID:26770877

  19. Gray- and white-matter anatomy of absolute pitch possessors.

    PubMed

    Dohn, Anders; Garza-Villarreal, Eduardo A; Chakravarty, M Mallar; Hansen, Mads; Lerch, Jason P; Vuust, Peter

    2015-05-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate structural differences in brains of musicians with and without AP, by means of whole-brain vertex-wise cortical thickness (CT) analysis and tract-based spatial statistics (TBSS) analysis. APs displayed increased CT in a number of areas including the bilateral superior temporal gyrus (STG), the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found higher fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the inferior longitudinal fasciculus. The findings in gray matter support previous studies indicating an increased left lateralized posterior STG in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a relation between the white-matter results and the CT in the right parahippocampal gyrus. In this study, we present novel findings in AP research that may have implications for the understanding of the neuroanatomical underpinnings of AP ability.

  20. Pathological differences between white and grey matter multiple sclerosis lesions.

    PubMed

    Prins, Marloes; Schul, Emma; Geurts, Jeroen; van der Valk, Paul; Drukarch, Benjamin; van Dam, Anne-Marie

    2015-09-01

    Multiple sclerosis (MS) is a debilitating disease characterized by demyelination of the central nervous system (CNS), resulting in widespread formation of white matter lesions (WMLs) and grey matter lesions (GMLs). WMLs are pathologically characterized by the presence of immune cells that infiltrate the CNS, whereas these immune cells are barely present in GMLs. This striking pathological difference between WMLs and GMLs raises questions about the underlying mechanism. It is known that infiltrating leukocytes contribute to the generation of WMLs; however, since GMLs show a paucity of infiltrating immune cells, their importance in GML formation remains to be determined. Here, we review pathological characteristics of WMLs and GMLs, and suggest some possible explanations for the observed pathological differences. In our view, cellular and molecular characteristics of WM and GM, and local differences within WMLs and GMLs (in particular, in glial cell populations and the molecules they express), determine the pathway to demyelination. Further understanding of GML pathogenesis, considered to contribute to chronic MS, may have a direct impact on the development of novel therapeutic targets to counteract this progressive neurological disorder.

  1. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    PubMed Central

    Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416

  2. MR signal intensity of gray matter/white matter contrast and intracranial fat: effects of age and sex.

    PubMed

    Kim, Dennis M; Xanthakos, Stavra A; Tupler, Larry A; Barboriak, Daniel P; Charles, H Cecil; MacFall, James R; Krishnan, K Ranga Rama

    2002-07-01

    Signal intensity (SI) values of gray- and white-matter brain regions of interest (ROIs) were obtained from T(2)- and proton density-weighted magnetic resonance (MR) images of 58 normal subjects aged 22-82 years (31 females, 52.3+/-18.8 years; 27 males, 54.1+/-18.1 years). Sampled ROIs included the caudate, putamen, thalamus, orbitofrontal gyrus, gyrus rectus, uncus, frontal white matter, anterior and posterior corpus callosum, cranial-cervical junction fat, and retroorbital fat. Effects of age and sex on SI were examined using repeated-measures analysis of covariance. For both T(2)- and proton density-weighted acquisitions, a significant inverse relationship between age and SI was observed for the ratio of all summed gray-matter ROIs divided by summed white-matter ROIs. This relationship was additionally observed for ratios of both subcortical gray/white matter and cortical gray/white matter. Females compared with males had significantly lower cortical gray/white matter ratios on T(2)-weighted scans. Differences in SI were observed between cranial-cervical junction fat and retroorbital fat on both acquisitions, with females showing significantly higher values for cranial-cervical junction fat and males showing higher values for retroorbital fat. Implications for brain morphometry, the use of fat as a reference standard, and other issues in neuroimaging are discussed.

  3. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults.

    PubMed

    Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I

    2016-05-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood.

  4. Understanding Neuronal Architecture in Obesity through Analysis of White Matter Connection Strength.

    PubMed

    Riederer, Justin W; Shott, Megan E; Deguzman, Marisa; Pryor, Tamara L; Frank, Guido K W

    2016-01-01

    Despite the prevalence of obesity, our understanding of its neurobiological underpinnings is insufficient. Diffusion weighted imaging and calculation of white matter connection strength are methods to describe the architecture of anatomical white matter tracts. This study is aimed to characterize white matter architecture within taste-reward circuitry in a population of obese individuals. Obese (n = 18, age = 28.7 ± 8.3 years) and healthy control (n = 24, age = 27.4 ± 6.3 years) women underwent diffusion weighted imaging. Using probabilistic fiber tractography (FSL PROBTRACKX2 toolbox) we calculated connection strength within 138 anatomical white matter tracts. Obese women (OB) displayed lower and greater connectivity within taste-reward circuitry compared to controls (Wilks' λ < 0.001; p < 0.001). Connectivity was lower in white matter tracts connecting insula, amygdala, prefrontal cortex (PFC), orbitofrontal cortex (OFC) and striatum. Connectivity was greater between the amygdala and anterior cingulate cortex (ACC). This study indicates that lower white matter connectivity within white matter tracts of insula-fronto-striatal taste-reward circuitry are associated with obesity as well as greater connectivity within white matter tracts connecting the amygdala and ACC. The specificity of regions suggests sensory integration and reward processing are key associations that are altered in and might contribute to obesity.

  5. White Matter Maturation Supports the Development of Reasoning Ability through Its Influence on Processing Speed

    ERIC Educational Resources Information Center

    Ferrer, Emilio; Whitaker, Kirstie J.; Steele, Joel S.; Green, Chloe T.; Wendelken, Carter; Bunge, Silvia A.

    2013-01-01

    The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes…

  6. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    ERIC Educational Resources Information Center

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  7. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    ERIC Educational Resources Information Center

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  8. The Impact of Sex, Puberty, and Hormones on White Matter Microstructure in Adolescents

    PubMed Central

    Herting, Megan M.; Maxwell, Emily C.; Irvine, Christy

    2012-01-01

    Background: During adolescence, numerous factors influence the organization of the brain. It is unclear what influence sex and puberty have on white matter microstructure, as well as the role that rapidly increasing sex steroids play. Methods: White matter microstructure was examined in 77 adolescents (ages 10–16) using diffusion tensor imaging. Multiple regression analyses were performed to examine the relationships between fractional anisotropy (FA) and mean diffusivity (MD) and sex, puberty, and their interaction, controlling for age. Follow-up analyses determined if sex steroids predicted microstructural characteristics in sexually dimorphic and pubertal-related white matter regions, as well as in whole brain. Results: Boys had higher FA in white matter carrying corticospinal, long-range association, and cortico-subcortical fibers, and lower MD in frontal and temporal white matter compared with girls. Pubertal development was related to higher FA in the insula, while a significant sex-by-puberty interaction was seen in superior frontal white matter. In boys, testosterone predicted white matter integrity in sexually dimorphic regions as well as whole brain FA, whereas estradiol showed a negative relationship with FA in girls. Conclusions: Sex differences and puberty uniquely relate to white matter microstructure in adolescents, which can partially be explained by sex steroids. PMID:22002939

  9. Altered White Matter Microstructure in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Nagel, Bonnie J.; Bathula, Deepti; Herting, Megan; Schmitt, Colleen; Kroenke, Christopher D.; Fair, Damien; Nigg, Joel T.

    2011-01-01

    Objective: Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences…

  10. Perinatal White Matter Injury: The Changing Spectrum of Pathology and Emerging Insights into Pathogenetic Mechanisms

    ERIC Educational Resources Information Center

    Back, Stephen A.

    2006-01-01

    Perinatal brain injury in survivors of premature birth has a unique and unexplained predilection for periventricular cerebral white matter. Periventricular white-matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal…

  11. Microstructural Abnormalities of Short-Distance White Matter Tracts in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Smylie, Daren M.; Muller, Ralph-Axel

    2011-01-01

    Recent functional connectivity magnetic resonance imaging and diffusion tensor imaging (DTI) studies have suggested atypical functional connectivity and reduced integrity of long-distance white matter fibers in autism spectrum disorder (ASD). However, evidence for short-distance white matter fibers is still limited, despite some speculation of…

  12. Gestational age at birth and brain white matter development in term-born infants and children

    USDA-ARS?s Scientific Manuscript database

    Studies on infants/children born preterm have shown that adequate gestational length is critical for brain white matter development. Less is known regarding how variations in gestational age at birth in term infants/children affect white matter development, which was evaluated in this study. Using d...

  13. Disrupted white matter in language and motor tracts in developmental stuttering.

    PubMed

    Connally, Emily L; Ward, David; Howell, Peter; Watkins, Kate E

    2014-04-01

    White matter tracts connecting areas involved in speech and motor control were examined using diffusion-tensor imaging in a sample of people who stutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend our knowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotor cortex, cerebral peduncles and posterior corpus callosum in people who stutter relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within the left corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people who stutter in the three pairs of cerebellar peduncles that carry the afferent and efferent fibers of the cerebellum. Within the group of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the left angular gyrus, but the greater the white matter connectivity in the left corticobulbar tract. Also, in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity.

  14. Understanding Neuronal Architecture in Obesity through Analysis of White Matter Connection Strength

    PubMed Central

    Riederer, Justin W.; Shott, Megan E.; Deguzman, Marisa; Pryor, Tamara L.; Frank, Guido K. W.

    2016-01-01

    Despite the prevalence of obesity, our understanding of its neurobiological underpinnings is insufficient. Diffusion weighted imaging and calculation of white matter connection strength are methods to describe the architecture of anatomical white matter tracts. This study is aimed to characterize white matter architecture within taste-reward circuitry in a population of obese individuals. Obese (n = 18, age = 28.7 ± 8.3 years) and healthy control (n = 24, age = 27.4 ± 6.3 years) women underwent diffusion weighted imaging. Using probabilistic fiber tractography (FSL PROBTRACKX2 toolbox) we calculated connection strength within 138 anatomical white matter tracts. Obese women (OB) displayed lower and greater connectivity within taste-reward circuitry compared to controls (Wilks’ λ < 0.001; p < 0.001). Connectivity was lower in white matter tracts connecting insula, amygdala, prefrontal cortex (PFC), orbitofrontal cortex (OFC) and striatum. Connectivity was greater between the amygdala and anterior cingulate cortex (ACC). This study indicates that lower white matter connectivity within white matter tracts of insula-fronto-striatal taste-reward circuitry are associated with obesity as well as greater connectivity within white matter tracts connecting the amygdala and ACC. The specificity of regions suggests sensory integration and reward processing are key associations that are altered in and might contribute to obesity. PMID:27375463

  15. White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism

    ERIC Educational Resources Information Center

    Sahyoun, Cherif P.; Belliveau, John W.; Mody, Maria

    2010-01-01

    The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups' response…

  16. Altered White Matter Microstructure in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Nagel, Bonnie J.; Bathula, Deepti; Herting, Megan; Schmitt, Colleen; Kroenke, Christopher D.; Fair, Damien; Nigg, Joel T.

    2011-01-01

    Objective: Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences…

  17. Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders.

    PubMed

    Cecil, Kim M; Kos, Radmila Savcic

    2006-08-01

    This review provides the reader with an overview of the magnetic resonance spectroscopy technique and the clinical, pathological, imaging, and metabolic features for select white matter disorders of interest. With this composite summary, the reader should find it easier to implement and interpret spectroscopy in the clinical setting for the diagnosis and monitoring of patients with white matter disorders.

  18. White Matter Maturation Supports the Development of Reasoning Ability through Its Influence on Processing Speed

    ERIC Educational Resources Information Center

    Ferrer, Emilio; Whitaker, Kirstie J.; Steele, Joel S.; Green, Chloe T.; Wendelken, Carter; Bunge, Silvia A.

    2013-01-01

    The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes…

  19. White matter maturation in visual and motor areas predicts the latency of visual activation in children.

    PubMed

    Dockstader, Colleen; Gaetz, William; Rockel, Conrad; Mabbott, Donald J

    2012-01-01

    In humans, white matter maturation is important for the improvement of cognitive function and performance with age. Across studies the variables of white matter maturity and age are highly correlated; however, the unique contributions of white matter to information processing speed remain relatively unknown. We investigated the relations between the speed of the visually-evoked P100m response and the biophysical properties of white matter in 11 healthy children performing a simple, visually-cued finger movement. We found that: (1) the latency of the early, visually-evoked response was related to the integrity of white matter in both visual and motor association areas and (2) white matter maturation in these areas accounted for the variations in visual processing speed, independent of age. Our study is a novel investigation of spatial-temporal dynamics in the developing brain and provides evidence that white matter maturation accounts for age-related decreases in the speed of visual response. Developmental models of cortical specialization should incorporate the unique role of white matter maturation in mediating changes in performance during tasks involving visual processing.

  20. Perinatal White Matter Injury: The Changing Spectrum of Pathology and Emerging Insights into Pathogenetic Mechanisms

    ERIC Educational Resources Information Center

    Back, Stephen A.

    2006-01-01

    Perinatal brain injury in survivors of premature birth has a unique and unexplained predilection for periventricular cerebral white matter. Periventricular white-matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal…

  1. Microstructural Abnormalities of Short-Distance White Matter Tracts in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Smylie, Daren M.; Muller, Ralph-Axel

    2011-01-01

    Recent functional connectivity magnetic resonance imaging and diffusion tensor imaging (DTI) studies have suggested atypical functional connectivity and reduced integrity of long-distance white matter fibers in autism spectrum disorder (ASD). However, evidence for short-distance white matter fibers is still limited, despite some speculation of…

  2. White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism

    ERIC Educational Resources Information Center

    Sahyoun, Cherif P.; Belliveau, John W.; Mody, Maria

    2010-01-01

    The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups' response…

  3. Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance

    ERIC Educational Resources Information Center

    Madden, David J.; Spaniol, Julia; Costello, Matthew C.; Bucur, Barbara; White, Leonard E.; Cabeza, Roberto; Davis, Simon W.; Dennis, Nancy A.; Provenzale, James M.; Huettel, Scott A.

    2009-01-01

    Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white…

  4. Depressive Symptoms in Adolescents: Associations with White Matter Volume and Marijuana Use

    ERIC Educational Resources Information Center

    Medina, Krista Lisdahl; Nagel, Bonnie J.; Park, Ann; McQueeny, Tim; Tapert, Susan F.

    2007-01-01

    Background: Depressed mood has been associated with decreased white matter and reduced hippocampal volumes. However, the relationship between brain structure and mood may be unique among adolescents who use marijuana heavily. The goal of this study was to examine the relationship between white matter and hippocampal volumes and depressive symptoms…

  5. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly

    USDA-ARS?s Scientific Manuscript database

    Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...

  6. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions

    PubMed Central

    Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709

  7. Effects of anesthesia on resting state BOLD signals in white matter of non-human primates.

    PubMed

    Wu, Tung-Lin; Wang, Feng; Anderson, Adam W; Chen, Li Min; Ding, Zhaohua; Gore, John C

    2016-11-01

    Resting state functional magnetic resonance imaging (rsfMRI) has been widely used to measure functional connectivity between cortical regions of the brain. However, there have been minimal reports of bold oxygenation level dependent (BOLD) signals in white matter, and even fewer attempts to detect resting state connectivity. Recently, there has been growing evidence that suggests that reliable detection of white matter BOLD signals may be possible. We have previously shown that nearest neighbor inter-voxel correlations of resting state BOLD signal fluctuations in white matter are anisotropic and can be represented by a functional correlation tensor, but the biophysical origins of these signal variations are not clear. We aimed to assess whether MRI signal fluctuations in white matter vary for different baseline levels of neural activity. We performed imaging studies on live squirrel monkeys under different levels of isoflurane anesthesia at 9.4T. We found 1) the fractional power (0.01-0.08Hz) in white matter was between 60 to 75% of the level in gray matter; 2) the power in both gray and white matter low frequencies decreased monotonically in similar manner with increasing levels of anesthesia; 3) the distribution of fractional anisotropy values of the functional tensors in white matter were significantly higher than those in gray matter; and 4) the functional tensor eigenvalues decreased with increasing level of anesthesia. Our results suggest that as anesthesia level changes baseline neural activity, white matter signal fluctuations behave similarly to those in gray matter, and functional tensors in white matter are affected in parallel.

  8. Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging

    PubMed Central

    Madden, David J.; Bennett, Ilana J.; Song, Allen W.

    2009-01-01

    The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application. PMID:19705281

  9. Cognitive Deficits Correlate with White Matter Deterioration in Spinocerebellar Ataxia Type 2.

    PubMed

    Hernandez-Castillo, Carlos R; Vaca-Palomares, Israel; Galvez, Víctor; Campos-Romo, Aurelio; Diaz, Rosalinda; Fernandez-Ruiz, Juan

    2016-04-01

    The aim of this study was to explore the relationship between cognitive and white matter deterioration in a group of participants with spinocerebellar ataxia type 2 (SCA2). Fourteen genetically confirmed participants with SCA2 and 14 aged-matched controls participated in the study. Diffusion tensor imaging tract-based spatial statistics were performed to analyze structural white matter integrity. Significant group differences in the mean diffusivity were correlated with SCA2 cognitive deficits. Our analysis revealed higher mean diffusivity in the SCA2 group in cerebellar white matter, medial lemniscus, and middle cerebellar peduncle, among other regions. Cognitive scores correlated with white matter mean diffusivity in the parahippocampal area, inferior frontal and supramarginal gyri and the stria terminalis. Our findings show significant correlations between white matter microstructural damage in key areas affected in SCA2 and cognitive deficits. These findings result in a more comprehensive understanding of the effect of the neurodegenerative process in people with SCA2.

  10. Metabolic, inflammatory, and microvascular determinants of white matter disease and cognitive decline

    PubMed Central

    Wang, Maggie; Norman, Jennifer E; Srinivasan, Vivek J; Rutledge, John C

    2016-01-01

    White Matter Disease is increasingly being recognized as an important cause of cognitive decline and dementia. Various investigations have linked chronic diet-related conditions to the development of white matter lesions, which appear as white matter hyperintensities on T2-weighted magnetic resonance imaging (MRI) scans of the brain. Thus, it can be postulated that the metabolic, inflammatory, and microvascular changes accompanying a western diet, hyperlipidemia, hypertension, and diabetes mellitus type II (DMII) are potential mediators in the development and progression of white matter disease, which in turn contributes to the development and progression of cognitive decline. This review will examine evidence for potential metabolic, inflammatory, and microvascular determinants of white matter disease and cognitive decline. Specifically, we will focus on the effects of altered insulin signaling in diabetes, obesity-induced oxidative stress, neuroinflammation, arterial stiffness due to hypertension, ischemia secondary to cerebral small vessel disease, and blood brain barrier disturbances. PMID:28078193

  11. Physical activity is related to the structural integrity of cerebral white matter.

    PubMed

    Gons, Rob A R; Tuladhar, Anil M; de Laat, Karlijn F; van Norden, Anouk G W; van Dijk, Ewoud J; Norris, David G; Zwiers, Marcel P; de Leeuw, Frank-Erik

    2013-09-10

    To investigate the relation between physical exercise and the microstructural integrity of cerebral white matter. Four hundred forty individuals with cerebral small-vessel disease, aged between 50 and 85 years, without dementia, were included and underwent MRI scanning. Physical exercise was assessed with a structured questionnaire. The cross-sectional relation between physical exercise and the microstructural integrity of the white matter was assessed by applying Tract-Based Spatial Statistics to diffusion tensor imaging parameters. Being more physically active was negatively related to the mean, axial, and radial diffusivity in numerous regions of the white matter, indicative of higher white matter integrity. These data indicate an association between physical activity and the integrity of the cerebral white matter's microstructure. Prospective studies are required to investigate a possible causal association between physical activity and cognitive decline.

  12. Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning.

    PubMed

    Samanez-Larkin, Gregory R; Levens, Sara M; Perry, Lee M; Dougherty, Robert F; Knutson, Brian

    2012-04-11

    Frontostriatal circuits have been implicated in reward learning, and emerging findings suggest that frontal white matter structural integrity and probabilistic reward learning are reduced in older age. This cross-sectional study examined whether age differences in frontostriatal white matter integrity could account for age differences in reward learning in a community life span sample of human adults. By combining diffusion tensor imaging with a probabilistic reward learning task, we found that older age was associated with decreased reward learning and decreased white matter integrity in specific pathways running from the thalamus to the medial prefrontal cortex and from the medial prefrontal cortex to the ventral striatum. Further, white matter integrity in these thalamocorticostriatal paths could statistically account for age differences in learning. These findings suggest that the integrity of frontostriatal white matter pathways critically supports reward learning. The findings also raise the possibility that interventions that bolster frontostriatal integrity might improve reward learning and decision making.

  13. An advanced white matter tract analysis in frontotemporal dementia and early-onset Alzheimer's disease.

    PubMed

    Daianu, Madelaine; Mendez, Mario F; Baboyan, Vatche G; Jin, Yan; Melrose, Rebecca J; Jimenez, Elvira E; Thompson, Paul M

    2016-12-01

    Cortical and subcortical nuclei degenerate in the dementias, but less is known about changes in the white matter tracts that connect them. To better understand white matter changes in behavioral variant frontotemporal dementia (bvFTD) and early-onset Alzheimer's disease (EOAD), we used a novel approach to extract full 3D profiles of fiber bundles from diffusion-weighted MRI (DWI) and map white matter abnormalities onto detailed models of each pathway. The result is a spatially complex picture of tract-by-tract microstructural changes. Our atlas of tracts for each disease consists of 21 anatomically clustered and recognizable white matter tracts generated from whole-brain tractography in 20 patients with bvFTD, 23 with age-matched EOAD, and 33 healthy elderly controls. To analyze the landscape of white matter abnormalities, we used a point-wise tract correspondence method along the 3D profiles of the tracts and quantified the pathway disruptions using common diffusion metrics - fractional anisotropy, mean, radial, and axial diffusivity. We tested the hypothesis that bvFTD and EOAD are associated with preferential degeneration in specific neural networks. We mapped axonal tract damage that was best detected with mean and radial diffusivity metrics, supporting our network hypothesis, highly statistically significant and more sensitive than widely studied fractional anisotropy reductions. From white matter diffusivity, we identified abnormalities in bvFTD in all 21 tracts of interest but especially in the bilateral uncinate fasciculus, frontal callosum, anterior thalamic radiations, cingulum bundles and left superior longitudinal fasciculus. This network of white matter alterations extends beyond the most commonly studied tracts, showing greater white matter abnormalities in bvFTD versus controls and EOAD patients. In EOAD, network alterations involved more posterior white matter - the parietal sector of the corpus callosum and parahipoccampal cingulum bilaterally

  14. Drinking history associations with regional white matter volumes in alcoholic men and women.

    PubMed

    Ruiz, Susan Mosher; Oscar-Berman, Marlene; Sawyer, Kayle S; Valmas, Mary M; Urban, Trinity; Harris, Gordon J

    2013-01-01

    Alcoholism has been repeatedly associated with gray and white matter pathology. Although neuroimaging has shown alcoholism-related brain volume reductions and axonal compromise, the integrity of white matter volumes in chronic alcoholism has been challenging to measure on a regional level. We first examined the effects of alcoholism on cerebral white matter volumes by lobar and gyral subdivisions in 42 abstinent alcoholics and 42 control participants (split evenly by gender). We also examined cerebellar white matter and regions of the corpus callosum, as well as ventricular volumes. Next, relationships between white matter and ventricular volumes with measures of drinking patterns were assessed. Finally, an examination of early versus late abstinence was conducted. Within each examination, gender effects were explored. Differences in regional white matter volumes between alcoholics and controls were observed primarily in the corpus callosum, with a stronger group difference among men than women. Years of heavy drinking had a strong negative impact on frontal and temporal white matter among alcoholic women, and on the corpus callosum among alcoholic men. Quantity of alcohol consumption was associated with smaller corpus callosum and larger ventricular volumes among alcoholic women, whereas abstinence duration was associated with larger corpus callosum volume among alcoholic men. Preliminary data indicated that alcoholic women showed stronger positive associations between sobriety duration and white matter volume than men within the first year of abstinence, whereas men showed this association more so than women after 1 year of abstinence. Effects of drinking history on white matter and ventricular volumes vary by gender, with alcoholic women showing greatest sensitivity in frontal, temporal, ventricular, and corpus callosum regions, and alcoholic men showing effects mainly in the corpus callosum. Preliminary results indicate that recovery of white matter volume may

  15. Long-term white matter tract reorganization following prolonged febrile seizures.

    PubMed

    Pujar, Suresh S; Seunarine, Kiran K; Martinos, Marina M; Neville, Brian G R; Scott, Rod C; Chin, Richard F M; Clark, Chris A

    2017-05-01

    Diffusion magnetic resonance imaging (MRI) studies have demonstrated acute white matter changes following prolonged febrile seizures (PFS), but their longer-term evolution is unknown. We investigated a population-based cohort to determine white matter diffusion properties 8 years after PFS. We used diffusion tensor imaging (DTI) and applied Tract-Based Spatial Statistics for voxel-wise comparison of white matter microstructure between 26 children with PFS and 27 age-matched healthy controls. Age, gender, handedness, and hippocampal volumes were entered as covariates for voxel-wise analysis. Mean duration between the episode of PFS and follow-up was 8.2 years (range 6.7-9.6). All children were neurologically normal, and had normal conventional neuroimaging. On voxel-wise analysis, compared to controls, the PFS group had (1) increased fractional anisotropy in early maturing central white matter tracts, (2) increased mean and axial diffusivity in several peripheral white matter tracts and late-maturing central white matter tracts, and (3) increased radial diffusivity in peripheral white matter tracts. None of the tracts had reduced fractional anisotropy or diffusivity indices in the PFS group. In this homogeneous, population-based sample, we found increased fractional anisotropy in early maturing central white matter tracts and increased mean and axial diffusivity with/without increased radial diffusivity in several late-maturing peripheral white matter tracts 8 years post-PFS. We propose disruption in white matter maturation secondary to seizure-induced axonal injury, with subsequent neuroplasticity and microstructural reorganization as a plausible explanation. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  16. Drinking History Associations with Regional White Matter Volumes in Alcoholic Men and Women

    PubMed Central

    Ruiz, Susan Mosher; Oscar-Berman, Marlene; Sawyer, Kayle S.; Valmas, Mary; Urban, Trinity; Harris, Gordon J.

    2012-01-01

    Background Alcoholism has been repeatedly associated with gray and white matter pathology. Although neuroimaging has shown alcoholism-related brain volume reductions and axonal compromise, the integrity of white matter volumes in chronic alcoholism has been challenging to measure on a regional level. Methods We first examined effects of alcoholism on cerebral white matter volumes by lobar and gyral subdivisions in 42 abstinent alcoholics and 42 control participants (split evenly by gender). We also examined cerebellar white matter and regions of the corpus callosum, as well as ventricular volumes. Next, relationships between white matter and ventricular volumes with measures of drinking patterns were assessed. Finally, an examination of early versus late abstinence was conducted. Within each examination, gender effects were explored. Results Differences in regional white matter volumes between alcoholics and controls were observed primarily in the corpus callosum, with a stronger group difference among men than among women. Years of heavy drinking had a strong negative impact on frontal and temporal white matter among alcoholic women, and on the corpus callosum among alcoholic men. Quantity of alcohol consumption was associated with smaller corpus callosum and larger ventricular volumes among alcoholic women, while abstinence duration was associated with larger corpus callosum volume among alcoholic men. Preliminary data indicated that alcoholic women showed stronger positive associations between sobriety duration and white matter volume than men within the first year of abstinence, while men showed this association more so than women after one year of abstinence. Conclusions Effects of drinking history on white matter and ventricular volumes vary by gender, with alcoholic women showing greatest sensitivity in frontal, temporal, ventricular, and corpus callosum regions, and alcoholic men showing effects mainly in the corpus callosum. Preliminary results indicate

  17. White matter changes in chronic alcoholic liver disease: Hypothesized association and putative biochemical mechanisms.

    PubMed

    Hathout, Leith; Huang, Jimmy; Zamani, Amir; Morioka, Craig; El-Saden, Suzie

    2015-12-01

    Advanced liver disease has long been associated with cerebral abnormalities. These abnormalities, termed acquired hepatocerebral degeneration, are typically visualized as T1 weighted hyperintensity on MRI in the deep gray matter of the basal ganglia. Recent reports, however, have demonstrated that a subset of patients with chronic alcoholic liver disease may also develop white matter abnormalities. Thus far, the morphology of these changes is not well characterized. Previous studies have described these changes as patchy, sporadic white matter abnormalities but have not posited localization of these changes to any particular white matter tracts. This paper hypothesizes that the white matter findings associated with advanced alcoholic liver disease localize to the corticocerebellar tracts. As an initial investigation of this hypothesis, 78 patients with a diagnosis of liver cirrhosis and an MRI showing clearly abnormal T1 weighted hyperintensity in the bilateral globus pallidus, characteristic of chronic liver disease, were examined for white matter signal abnormalities in the corticocerebellar tracts using FLAIR and T2 weighted images. The corticocerebellar tracts were subdivided into two regions: periventricular white matter (consisting of the sum of the centrum-semiovale and corona radiata), and lower white matter (consisting of the corona radiata, internal capsules, middle cerebral peduncles, middle cerebellar peduncles and cerebellum). As compared to matched controls, significantly greater signal abnormalities in both the periventricular white matter and lower white matter regions of the corticocerebellar tracts were observed in patients with known liver cirrhosis and abnormal T1 W hyperintensity in the globi pallidi. This difference was most pronounced in the lower white matter region of the corticocerebellar tract, with statistical significance of p<0.0005. Furthermore, the pathophysiologic mechanism underlying these changes remains unknown. This paper

  18. Coronary heart disease and cortical thickness, gray matter and white matter lesion volumes on MRI.

    PubMed

    Vuorinen, Miika; Damangir, Soheil; Niskanen, Eini; Miralbell, Julia; Rusanen, Minna; Spulber, Gabriela; Soininen, Hilkka; Kivipelto, Miia; Solomon, Alina

    2014-01-01

    Coronary heart disease (CHD) has been linked with cognitive decline and dementia in several studies. CHD is strongly associated with blood pressure, but it is not clear how blood pressure levels or changes in blood pressure over time affect the relation between CHD and dementia-related pathology. The aim of this study was to investigate relations between CHD and cortical thickness, gray matter volume and white matter lesion (WML) volume on MRI, considering CHD duration and blood pressure levels from midlife to three decades later. The study population included 69 elderly at risk of dementia who participated in the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study. CAIDE participants were examined in midlife, re-examined 21 years later, and then after additionally 7 years (in total up to 30 years follow-up). MRIs from the second re-examination were used to calculate cortical thickness, gray matter and WML volume. CHD diagnoses were obtained from the Finnish Hospital Discharge Register. Linear regression analyses were adjusted for age, sex, follow-up time and scanner type, and additionally total intracranial volume in GM volume analyses. Adding diabetes, cholesterol or smoking to the models did not influence the results. CHD was associated with lower thickness in multiple regions, and lower total gray matter volume, particularly in people with longer disease duration (>10 years). Associations between CHD, cortical thickness and gray matter volume were strongest in people with CHD and hypertension in midlife, and those with CHD and declining blood pressure after midlife. No association was found between CHD and WML volumes. Based on these results, long-term CHD seems to have detrimental effects on brain gray matter tissue, and these effects are influenced by blood pressure levels and their changes over time.

  19. Sleep Duration and White Matter Quality in Middle-Aged Adults.

    PubMed

    Yaffe, Kristine; Nasrallah, Ilya; Hoang, Tina D; Lauderdale, Diane S; Knutson, Kristen L; Carnethon, Mercedes R; Launer, Lenore J; Lewis, Cora E; Sidney, Stephen

    2016-09-01

    Sleep duration has been associated with risk of dementia and stroke, but few studies have investigated the relationship between sleep duration and brain MRI measures, particularly in middle age. In a prospective cohort of 613 black and white adults (mean age = 45.4 years) enrolled in the Coronary Artery Risk Development in Young Adults (CARDIA) study, participants reported typical sleep duration, dichotomized into moderate sleep duration (> 6 to ≤ 8 h) and short sleep duration (≤ 6 h) at baseline (2005-2006). Five years later, we obtained brain MRI markers of white matter including fractional anisotropy, mean diffusivity, and white matter hyperintensities. Compared to moderate sleepers, short sleepers had an elevated ratio of white matter hyperintensities to normal tissue in the parietal region (OR = 2.31, 95% CI: 1.47, 3.61) adjusted for age, race/sex, education, hypertension, stroke/TIA, depression, smoking status, and physical activity. White matter diffusivity was also higher, approximately a 0.2 standard deviation difference, in frontal, parietal, and temporal white matter regions, among those reporting shorter sleep duration in (P < 0.05 for all). Short sleep duration was associated with worse markers of white matter integrity in midlife. These mid-life differences in white matter may underlie the link between poor sleep and risk of dementia and stroke. © 2016 Associated Professional Sleep Societies, LLC.

  20. Cognitive correlates of white matter growth and stress hormones in female squirrel monkey adults.

    PubMed

    Lyons, David M; Yang, Chou; Eliez, Stephan; Reiss, Allan L; Schatzberg, Alan F

    2004-04-07

    Neurobiological studies of stress and cognitive aging seldom consider white matter despite indications that complex brain processes depend on networks and white matter interconnections. Frontal and temporal lobe white matter volumes increase throughout midlife adulthood in humans, and this aspect of aging is thought to enhance distributed brain functions. Here, we examine spatial learning and memory, neuroendocrine responses to psychological stress, and regional volumes of gray and white matter determined by magnetic resonance imaging in 31 female squirrel monkeys between the ages of 5 and 17 years. This period of lifespan development corresponds to the years 18-60 in humans. Older adults responded to stress with greater increases in plasma levels of adrenocorticotropic hormone and modest reductions in glucocorticoid feedback sensitivity relative to young adults. Learning and memory did not differ with age during the initial cognitive test sessions, but older adults more often failed to inhibit the initial learned response after subsequent spatial reversals. Impaired cognitive response inhibition correlated with the expansion of white matter volume statistically controlling for age, stress hormones, gray matter, and CSF volumes. These results indicate that instead of enhancing cognitive control during midlife adulthood, white matter volume expansion contributes to aspects of cognitive decline. Cellular and molecular research combined with brain imaging is needed to determine the basis of white matter growth in adults, elucidate its functions during lifespan development, and provide potential new targets for therapies aimed at maintaining in humans cognitive vitality with aging.

  1. Comparison of the Relationship between Cerebral White Matter and Grey Matter in Normal Dogs and Dogs with Lateral Ventricular Enlargement

    PubMed Central

    Schmidt, Martin J.; Laubner, Steffi; Kolecka, Malgorzata; Failing, Klaus; Moritz, Andreas; Kramer, Martin; Ondreka, Nele

    2015-01-01

    Large cerebral ventricles are a frequent finding in brains of dogs with brachycephalic skull conformation, in comparison with mesaticephalic dogs. It remains unclear whether oversized ventricles represent a normal variant or a pathological condition in brachycephalic dogs. There is a distinct relationship between white matter and grey matter in the cerebrum of all eutherian mammals. The aim of this study was to determine if this physiological proportion between white matter and grey matter of the forebrain still exists in brachycephalic dogs with oversized ventricles. The relative cerebral grey matter, white matter and cerebrospinal fluid volume in dogs were determined based on magnetic-resonance-imaging datasets using graphical software. In an analysis of covariance (ANCOVA) using body mass as the covariate, the adjusted means of the brain tissue volumes of two groups of dogs were compared. Group 1 included 37 mesaticephalic dogs of different sizes with no apparent changes in brain morphology, and subjectively normal ventricle size. Group 2 included 35 brachycephalic dogs in which subjectively enlarged cerebral ventricles were noted as an incidental finding in their magnetic-resonance-imaging examination. Whereas no significant different adjusted means of the grey matter could be determined, the group of brachycephalic dogs had significantly larger adjusted means of lateral cerebral ventricles and significantly less adjusted means of relative white matter volume. This indicates that brachycephalic dogs with subjective ventriculomegaly have less white matter, as expected based on their body weight and cerebral volume. Our study suggests that ventriculomegaly in brachycephalic dogs is not a normal variant of ventricular volume. Based on the changes in the relative proportion of WM and CSF volume, and the unchanged GM proportions in dogs with ventriculomegaly, we rather suggest that distension of the lateral ventricles might be the underlying cause of pressure

  2. Comparison of the Relationship between Cerebral White Matter and Grey Matter in Normal Dogs and Dogs with Lateral Ventricular Enlargement.

    PubMed

    Schmidt, Martin J; Laubner, Steffi; Kolecka, Malgorzata; Failing, Klaus; Moritz, Andreas; Kramer, Martin; Ondreka, Nele

    2015-01-01

    Large cerebral ventricles are a frequent finding in brains of dogs with brachycephalic skull conformation, in comparison with mesaticephalic dogs. It remains unclear whether oversized ventricles represent a normal variant or a pathological condition in brachycephalic dogs. There is a distinct relationship between white matter and grey matter in the cerebrum of all eutherian mammals. The aim of this study was to determine if this physiological proportion between white matter and grey matter of the forebrain still exists in brachycephalic dogs with oversized ventricles. The relative cerebral grey matter, white matter and cerebrospinal fluid volume in dogs were determined based on magnetic-resonance-imaging datasets using graphical software. In an analysis of covariance (ANCOVA) using body mass as the covariate, the adjusted means of the brain tissue volumes of two groups of dogs were compared. Group 1 included 37 mesaticephalic dogs of different sizes with no apparent changes in brain morphology, and subjectively normal ventricle size. Group 2 included 35 brachycephalic dogs in which subjectively enlarged cerebral ventricles were noted as an incidental finding in their magnetic-resonance-imaging examination. Whereas no significant different adjusted means of the grey matter could be determined, the group of brachycephalic dogs had significantly larger adjusted means of lateral cerebral ventricles and significantly less adjusted means of relative white matter volume. This indicates that brachycephalic dogs with subjective ventriculomegaly have less white matter, as expected based on their body weight and cerebral volume. Our study suggests that ventriculomegaly in brachycephalic dogs is not a normal variant of ventricular volume. Based on the changes in the relative proportion of WM and CSF volume, and the unchanged GM proportions in dogs with ventriculomegaly, we rather suggest that distension of the lateral ventricles might be the underlying cause of pressure

  3. Asymptomatic carotid stenosis is associated with gray and white matter damage.

    PubMed

    Avelar, Wagner M; D'Abreu, Anelyssa; Coan, Ana C; Lima, Fabrício Oliveira; Guimarães, Rachel; Yassuda, Clarissa L; Oliveira, Germano P; Guillaumon, Ana T; Filho, Augusto A; Min, Li L; Cendes, Fernando

    2015-12-01

    Cognitive deficits in patients with asymptomatic carotid stenosis have been reported. The ultimate mechanism of cognitive deficits remains unclear and might be related to subtle structural brain damage. The aim of the present study was to evaluate the presence of subtle white and grey matter abnormalities associated with asymptomatic carotid stenosis. Twenty-five patients with asymptomatic ≥70%/occlusion carotid stenosis and 25 healthy controls, matched for gender and age, underwent 3 Tesla brain magnetic resonance imaging. Gray and white matter macrostructural abnormalities were evaluated with voxel-based morphometry using spm8 software. White matter microstructural abnormalities were evaluated with diffusion tensor images with the Diffusion Toolbox package and tract-based spatial statistics from FMRIB Software Library. We observed significant macro- and microstructural white matter abnormalities, and these findings were diffuse and symmetrical in both hemispheres. In contrast, gray matter atrophy was observed in the areas corresponding to the anterior circulation of the hemisphere ipsilateral to the carotid stenosis. Patients with asymptomatic carotid stenosis have different patterns of gray and white matter abnormalities. While the white matter damage is diffuse, the gray matter atrophy is localized in the territory of anterior circulation ipsilateral to the stenosis. The role of asymptomatic carotid stenosis in the gray matter damage must be further investigated with longitudinal studies and comparison with neuropsychological evaluation. © 2015 World Stroke Organization.

  4. A Torque Balance Measurement of Anisotropy of the Magnetic Susceptibility in White Matter

    PubMed Central

    van Gelderen, Peter; Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2014-01-01

    Purpose Recent MRI studies have suggested that the magnetic susceptibility of white matter (WM) in the human brain is anisotropic, providing a new contrast mechanism for the visualization of fiber bundles and allowing the extraction of cellular compartment-specific information. This study provides an independent confirmation and quantification of this anisotropy. Methods Anisotropic magnetic susceptibility results in a torque exerted on WM when placed in a uniform magnetic field, tending to align the WM fibers with the field. To quantify the effect, excised spinal cord samples were placed in a torque balance inside the magnet of a 7 T MRI system and the magnetic torque was measured as function of orientation. Results All tissue samples (n=5) showed orienting effects, confirming the presence of anisotropic susceptibility. Analysis of the magnetic torque resulted in reproducible values for the WM volume anisotropy that ranged from 13.6 to 19.2 ppb. Conclusion The independently determined anisotropy values confirm estimates inferred from MRI experiments and validate the use of anisotropy to extract novel information about brain fiber structure and myelination. PMID:25399830

  5. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy

    PubMed Central

    Manning, Emily N.; Bartlett, Jonathan W.; Cash, David M.; Malone, Ian B.; Ridgway, Gerard R.; Lehmann, Manja; Leung, Kelvin K.; Sudre, Carole H.; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T.; Fox, Nick C.; Cardoso, M. Jorge; Barnes, Josephine

    2017-01-01

    ABSTRACT This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5‐T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27933676

  6. Are white matter abnormalities associated with “unexplained dizziness”?

    PubMed Central

    Ahmad, Hena; Cerchiai, Niccolò; Mancuso, Michelangelo; Casani, Augusto P.; Bronstein, Adolfo M.

    2015-01-01

    Introduction Although cerebral small vessel disease is a significant contributor to the development of imbalance and falls in the elderly, whether it causes dizziness is not known. Methods A retrospective case analysis was conducted for 122 dizzy patients referred to two neuro-otology tertiary centres in London and Pisa. Patients were divided into ‘explained’ causes of dizziness (e.g. benign positional vertigo, vestibular neuritis, orthostatic hypotension, cerebellar ataxias) and ‘unexplained’ dizziness. White matter hyperintensities (WMH) in MRI (T2 weighted and FLAIR sequences) were blindly rated according to the Fazekas scale. Results 122 patients; 58 (mean age = 72, SD = 7.95 years) in the ‘unexplained’ group and 64 (mean age = 72.01, SD = 8.28 years) in the ‘explained’ group were recruited. The overall frequency of lesions (Fazekas 1–3) significantly differed between groups (p = 0.011). The frequency of severe lesions (Fazekas 3) was significantly higher in the ‘unexplained’ group (22%) than in the ‘explained’ group (5%; p = 0.003). Conclusion Increased severity of WMH in cases of unexplained dizziness suggests that such abnormalities are likely contributory to the development of dizziness. WM lesions may induce dizziness either because patients perceive a degree of objective unsteadiness or by a disconnection syndrome involving vestibular or locomotor areas of the brain. PMID:26412160

  7. White matter degeneration in schizophrenia: a comparative diffusion tensor analysis

    NASA Astrophysics Data System (ADS)

    Ingalhalikar, Madhura A.; Andreasen, Nancy C.; Kim, Jinsuh; Alexander, Andrew L.; Magnotta, Vincent A.

    2010-03-01

    Schizophrenia is a serious and disabling mental disorder. Diffusion tensor imaging (DTI) studies performed on schizophrenia have demonstrated white matter degeneration either due to loss of myelination or deterioration of fiber tracts although the areas where the changes occur are variable across studies. Most of the population based studies analyze the changes in schizophrenia using scalar indices computed from the diffusion tensor such as fractional anisotropy (FA) and relative anisotropy (RA). The scalar measures may not capture the complete information from the diffusion tensor. In this paper we have applied the RADTI method on a group of 9 controls and 9 patients with schizophrenia. The RADTI method converts the tensors to log-Euclidean space where a linear regression model is applied and hypothesis testing is performed between the control and patient groups. Results show that there is a significant difference in the anisotropy between patients and controls especially in the parts of forceps minor, superior corona radiata, anterior limb of internal capsule and genu of corpus callosum. To check if the tensor analysis gives a better idea of the changes in anisotropy, we compared the results with voxelwise FA analysis as well as voxelwise geodesic anisotropy (GA) analysis.

  8. White Matter Hyperintensities and Dynamics of Postural Control

    PubMed Central

    Novak, Vera; Haertle, Mareile; Zhao, Peng; Hu, Kun; Munshi, Medha; Novak, Peter; Abduljalil, Amir; Alsop, David

    2009-01-01

    Background White matter hyperintensities (WMHs) on MRI have been associated with age, cardiovascular risk factors, and falls in the elderly. This study evaluated the relationship between WMHs and dynamics of postural control in older adults without history of falls. Methods We studied 76 community living subjects without history of falls (age 64.5±7.3 yrs). Brain and WMHs volume calculations and clinical rating were done on FLAIR and MP-RAGE MR images on 3 Tesla. Balance was assessed from the center of pressure displacement using the force platform during 3 minutes of quiet standing using traditional and dynamic measures (using stabilogram-diffusion analysis). Gait speed was measured from 12 minute walk. Results Age-adjusted periventricular and focal WMHs were associated with changes in certain dynamic balance measures, including reduced range of postural sway in anteroposterior direction (fronto-temporal WMHs, p=0.045; parieto-occipital WMHs, p=0.009) and more irregular longterm mediolateral fluctuations (p=0.046). Normal walking speed was not affected by WMHs. Conclusions Periventricul and focal WMHs affect long-term dynamics of postural control, which requires engagement of feedback mechanisms, and may contribute to mobility decline in the elderly. PMID:19250785

  9. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy.

    PubMed

    Fiford, Cassidy M; Manning, Emily N; Bartlett, Jonathan W; Cash, David M; Malone, Ian B; Ridgway, Gerard R; Lehmann, Manja; Leung, Kelvin K; Sudre, Carole H; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T; Fox, Nick C; Cardoso, M Jorge; Barnes, Josephine

    2017-03-01

    This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5-T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  10. Myelin vs Axon Abnormalities in White Matter in Bipolar Disorder

    PubMed Central

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-01-01

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ. PMID:25409595

  11. Altered White Matter Architecture in BDNF Met Carriers

    PubMed Central

    Ziegler, Erik; Foret, Ariane; Mascetti, Laura; Muto, Vincenzo; Le Bourdiec-Shaffii, Anahita; Stender, Johan; Balteau, Evelyne; Dideberg, Vinciane; Bours, Vincent; Maquet, Pierre; Phillips, Christophe

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) modulates the pruning of synaptically silent axonal arbors. The Met allele of the BDNF gene is associated with a reduction in the neurotrophin's activity-dependent release. We used diffusion-weighted imaging to construct structural brain networks for 36 healthy subjects with known BDNF genotypes. Through permutation testing we discovered clear differences in connection strength between subjects carrying the Met allele and those homozygotic for the Val allele. We trained a Gaussian process classifier capable of identifying the subjects' allelic group with 86% accuracy and high predictive value. In Met carriers structural connectivity was greatly increased throughout the forebrain, particularly in connections corresponding to the anterior and superior corona radiata as well as corticothalamic and corticospinal projections from the sensorimotor, premotor, and prefrontal portions of the internal capsule. Interhemispheric connectivity was also increased via the corpus callosum and anterior commissure, and extremely high connectivity values were found between inferior medial frontal polar regions via the anterior forceps. We propose that the decreased availability of BDNF leads to deficits in axonal maintenance in carriers of the Met allele, and that this produces mesoscale changes in white matter architecture. PMID:23935975

  12. Fronto-temporal white matter connectivity predicts reversal learning errors.

    PubMed

    Alm, Kylie H; Rolheiser, Tyler; Mohamed, Feroze B; Olson, Ingrid R

    2015-01-01

    Each day, we make hundreds of decisions. In some instances, these decisions are guided by our innate needs; in other instances they are guided by memory. Probabilistic reversal learning tasks exemplify the close relationship between decision making and memory, as subjects are exposed to repeated pairings of a stimulus choice with a reward or punishment outcome. After stimulus-outcome associations have been learned, the associated reward contingencies are reversed, and participants are not immediately aware of this reversal. Individual differences in the tendency to choose the previously rewarded stimulus reveal differences in the tendency to make poorly considered, inflexible choices. Lesion studies have strongly linked reversal learning performance to the functioning of the orbitofrontal cortex, the hippocampus, and in some instances, the amygdala. Here, we asked whether individual differences in the microstructure of the uncinate fasciculus, a white matter tract that connects anterior and medial temporal lobe regions to the orbitofrontal cortex, predict reversal learning performance. Diffusion tensor imaging and behavioral paradigms were used to examine this relationship in 33 healthy young adults. The results of tractography revealed a significant negative relationship between reversal learning performance and uncinate axial diffusivity, but no such relationship was demonstrated in a control tract, the inferior longitudinal fasciculus. Our findings suggest that the uncinate might serve to integrate associations stored in the anterior and medial temporal lobes with expectations about expected value based on feedback history, computed in the orbitofrontal cortex.

  13. Lifelong bilingualism maintains white matter integrity in older adults.

    PubMed

    Luk, Gigi; Bialystok, Ellen; Craik, Fergus I M; Grady, Cheryl L

    2011-11-16

    Previous research has shown that bilingual speakers have higher levels of cognitive control than comparable monolinguals, especially at older ages. The present study investigates a possible neural correlate of this behavioral effect. Given that white matter (WM) integrity decreases with age in adulthood, we tested the hypothesis that bilingualism is associated with maintenance of WM in older people. Using diffusion tensor imaging, we found higher WM integrity in older people who were lifelong bilinguals than in monolinguals. This maintained integrity was measured by fractional anisotropy (FA) and was found in the corpus callosum extending to the superior and inferior longitudinal fasciculi. We also hypothesized that stronger WM connections would be associated with more widely distributed patterns of functional connectivity in bilinguals. We tested this by assessing the resting-state functional connectivity of frontal lobe regions adjacent to WM areas with group differences in FA. Bilinguals showed stronger anterior to posterior functional connectivity compared to monolinguals. These results are the first evidence that maintained WM integrity is related to lifelong naturally occurring experience; the resulting enhanced structural and functional connectivity may provide a neural basis for "brain reserve."

  14. White matter abnormalities in schizophrenia and schizotypal personality disorder.

    PubMed

    Lener, Marc S; Wong, Edmund; Tang, Cheuk Y; Byne, William; Goldstein, Kim E; Blair, Nicholas J; Haznedar, M Mehmet; New, Antonia S; Chemerinski, Eran; Chu, King-Wai; Rimsky, Liza S; Siever, Larry J; Koenigsberg, Harold W; Hazlett, Erin A

    2015-01-01

    Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis.

  15. Cognitive Intraindividual Variability and White Matter Integrity in Aging

    PubMed Central

    2013-01-01

    The intraindividual variability (IIV) of cognitive performance has been shown to increase with aging. While brain research has generally focused on mean performance, little is known about neural correlates of cognitive IIV. Nevertheless, some studies suggest that IIV relates more strongly than mean level of performance to the quality of white matter (WM). Our study aims to explore the relation between WM integrity and cognitive IIV by combining functional (fMRI) and structural (diffusion tensor imaging, DTI) imaging. Twelve young adults (aged 18–30 years) and thirteen older adults (61–82 years) underwent a battery of neuropsychological tasks, along with fMRI and DTI imaging. Their behavioral data were analyzed and correlated with the imaging data at WM regions of interest defined on the basis of (1) the fMRI-activated areas and (2) the Johns Hopkins University (JHU) WM tractography atlas. For both methods, fractional anisotropy, along with the mean, radial, and axial diffusivity parameters, was computed. In accord with previous studies, our results showed that the DTI parameters were more related to IIV than to mean performance. Results also indicated that age differences in the DTI parameters were more pronounced in the regions activated primarily by young adults during a choice reaction-time task than in those also activated in older adults. PMID:24174913

  16. White matter structures associated with loneliness in young adults.

    PubMed

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-11-20

    Lonely individuals may exhibit dysfunction, particularly with respect to social empathy and self-efficacy. White matter (WM) structures related to loneliness have not yet been identified. We investigated the association between regional WM density (rWMD) using the UCLA Loneliness Scale in 776 healthy young students aged 18-27 years old. Loneliness scores were negatively correlated with rWMD in eight clusters: the bilateral inferior parietal lobule (IPL), right anterior insula (AI), posterior temporoparietal junction (pTPJ), left posterior superior temporal sulcus (pSTS), dorsomedial prefrontal cortex (dmPFC), and rostrolateral prefrontal cortex (RLPFC). The bilateral IPL, right AI, left pSTS, pTPJ, and RLPFC were strongly associated with Empathy Quotient (EQ), whereas the bilateral IPL, right AI, left pTPJ, and dmPFC were associated with General Self-Efficacy Scale (GSES) score. The neural correlates of loneliness comprise widespread reduction in WMD in areas related to self- and social cognition as well as areas associated with empathy and self-efficacy.

  17. White matter structures associated with loneliness in young adults

    PubMed Central

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-01-01

    Lonely individuals may exhibit dysfunction, particularly with respect to social empathy and self-efficacy. White matter (WM) structures related to loneliness have not yet been identified. We investigated the association between regional WM density (rWMD) using the UCLA Loneliness Scale in 776 healthy young students aged 18–27 years old. Loneliness scores were negatively correlated with rWMD in eight clusters: the bilateral inferior parietal lobule (IPL), right anterior insula (AI), posterior temporoparietal junction (pTPJ), left posterior superior temporal sulcus (pSTS), dorsomedial prefrontal cortex (dmPFC), and rostrolateral prefrontal cortex (RLPFC). The bilateral IPL, right AI, left pSTS, pTPJ, and RLPFC were strongly associated with Empathy Quotient (EQ), whereas the bilateral IPL, right AI, left pTPJ, and dmPFC were associated with General Self-Efficacy Scale (GSES) score. The neural correlates of loneliness comprise widespread reduction in WMD in areas related to self- and social cognition as well as areas associated with empathy and self-efficacy. PMID:26585372

  18. Fiberfox: facilitating the creation of realistic white matter software phantoms.

    PubMed

    Neher, Peter F; Laun, Frederik B; Stieltjes, Bram; Maier-Hein, Klaus H

    2014-11-01

    Phantom-based validation of diffusion-weighted image processing techniques is an important key to innovation in the field and is widely used. Openly available and user friendly tools for the flexible generation of tailor-made datasets for the specific tasks at hand can greatly facilitate the work of researchers around the world. We present an open-source framework, Fiberfox, that enables (1) the intuitive definition of arbitrary artificial white matter fiber tracts, (2) signal generation from those fibers by means of the most recent multi-compartment modeling techniques, and (3) simulation of the actual MR acquisition that allows for the introduction of realistic MRI-related effects into the final image. We show that real acquisitions can be closely approximated by simulating the acquisition of the well-known FiberCup phantom. We further demonstrate the advantages of our framework by evaluating the effects of imaging artifacts and acquisition settings on the outcome of 12 tractography algorithms. Our findings suggest that experiments on a realistic software phantom might change the conclusions drawn from earlier hardware phantom experiments. Fiberfox may find application in validating and further developing methods such as tractography, super-resolution, diffusion modeling or artifact correction. Copyright © 2013 Wiley Periodicals, Inc.

  19. Fronto-temporal white matter connectivity predicts reversal learning errors

    PubMed Central

    Alm, Kylie H.; Rolheiser, Tyler; Mohamed, Feroze B.; Olson, Ingrid R.

    2015-01-01

    Each day, we make hundreds of decisions. In some instances, these decisions are guided by our innate needs; in other instances they are guided by memory. Probabilistic reversal learning tasks exemplify the close relationship between decision making and memory, as subjects are exposed to repeated pairings of a stimulus choice with a reward or punishment outcome. After stimulus–outcome associations have been learned, the associated reward contingencies are reversed, and participants are not immediately aware of this reversal. Individual differences in the tendency to choose the previously rewarded stimulus reveal differences in the tendency to make poorly considered, inflexible choices. Lesion studies have strongly linked reversal learning performance to the functioning of the orbitofrontal cortex, the hippocampus, and in some instances, the amygdala. Here, we asked whether individual differences in the microstructure of the uncinate fasciculus, a white matter tract that connects anterior and medial temporal lobe regions to the orbitofrontal cortex, predict reversal learning performance. Diffusion tensor imaging and behavioral paradigms were used to examine this relationship in 33 healthy young adults. The results of tractography revealed a significant negative relationship between reversal learning performance and uncinate axial diffusivity, but no such relationship was demonstrated in a control tract, the inferior longitudinal fasciculus. Our findings suggest that the uncinate might serve to integrate associations stored in the anterior and medial temporal lobes with expectations about expected value based on feedback history, computed in the orbitofrontal cortex. PMID:26150776

  20. White matter compromise in veterans exposed to primary blast forces.

    PubMed

    Taber, Katherine H; Hurley, Robin A; Haswell, Courtney C; Rowland, Jared A; Hurt, Susan D; Lamar, Cory D; Morey, Rajendra A

    2015-01-01

    Use diffusion tensor imaging to investigate white matter alterations associated with blast exposure with or without acute symptoms of traumatic brain injury (TBI). Forty-five veterans of the recent military conflicts included 23 exposed to primary blast without TBI symptoms, 6 having primary blast with mild TBI, and 16 unexposed to blast. Cross-sectional case-control study. Neuropsychological testing and diffusion tensor imaging metrics that quantified the number of voxel clusters with altered fractional anisotropy (FA) radial diffusivity, and axial diffusivity, regardless of their spatial location. Significantly lower FA and higher radial diffusivity were observed in veterans exposed to primary blast with and without mild TBI relative to blast-unexposed veterans. Voxel clusters of lower FA were spatially dispersed and heterogeneous across affected individuals. These results suggest that lack of clear TBI symptoms following primary blast exposure may not accurately reflect the extent of brain injury. If confirmed, our findings would argue for supplementing the established approach of making diagnoses based purely on clinical history and observable acute symptoms with novel neuroimaging-based diagnostic criteria that "look below the surface" for pathology.

  1. Individual differences in white matter microstructure predict semantic control.

    PubMed

    Nugiel, Tehila; Alm, Kylie H; Olson, Ingrid R

    2016-12-01

    In everyday conversation, we make many rapid choices between competing concepts and words in order to convey our intent. This process is termed semantic control, and it is thought to rely on information transmission between a distributed semantic store in the temporal lobes and a more discrete region, optimized for retrieval and selection, in the left inferior frontal gyrus. Here, we used diffusion tensor imaging in a group of neurologically normal young adults to investigate the relationship between semantic control and white matter tracts that have been implicated in semantic memory retrieval. Participants completed a verb generation task that taps semantic control (Snyder & Munakata, 2008; Snyder et al., 2010) and underwent a diffusion imaging scan. Deterministic tractography was performed to compute indices representing the microstructural properties of the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Microstructural measures of the UF failed to predict semantic control performance. However, there was a significant relationship between microstructure of the left IFOF and ILF and individual differences in semantic control. Our findings support the view put forth by Duffau (2013) that the IFOF is a key structural pathway in semantic retrieval.

  2. Microsurgical anatomy of the white matter tracts in hemispherotomy.

    PubMed

    Kucukyuruk, Baris; Yagmurlu, Kaan; Tanriover, Necmettin; Uzan, Mustafa; Rhoton, Albert L

    2014-06-01

    Hemispherotomy is a surgical procedure performed for refractory epileptic seizures due to wide hemispheric damage. To describe the microanatomy of the white matter tracts transected in a hemispherotomy and the relationship of the surgical landmarks used during the intraventricular callosotomy. The cortical and subcortical structures were examined in 32 hemispheres. Incision of the temporal stem along the inferior limiting sulcus crosses the insulo-opercular fibers, uncinate, inferior occipitofrontal and middle longitudinal fasciculi, anterior commissure, and optic and auditory radiations. The incision along the superior limiting sulcus transects insulo-opercular fibers and the genu and posterior limb of internal capsule. The incision along the anterior limiting sulcus crosses the insulo-opercular fibers, anterior limb of the internal capsule, anterior commissure, and the anterior thalamic bundle. The disconnection of the posterior part of the corpus callosum may be incomplete if the point at which the last cortical branch of the anterior cerebral artery (ACA) turns upward and disappears from the view through the intraventricular exposure is used as the landmark for estimating the posterior extent of the callosotomy. This ACA branch turns upward before reaching the posterior edge of the splenium in 85% of hemispheres. The falx, followed to the posterior edge of the splenium, is a more reliable landmark for completing the posterior part of an intraventricular callosotomy. The fiber tracts disconnected in hemispherotomy were reviewed. The falx is a more reliable guide than the ACA in completing the posterior part of the intraventricular callosotomy.

  3. Kynurenine pathway and white matter microstructure in bipolar disorder.

    PubMed

    Poletti, Sara; Myint, Aye Mu; Schüetze, Gregor; Bollettini, Irene; Mazza, Elena; Grillitsch, Doris; Locatelli, Clara; Schwarz, Markus; Colombo, Cristina; Benedetti, Francesco

    2016-09-12

    Decreased availability of serotonin in the central nervous system has been suggested to be a central factor in the pathogenesis of depression. Activation of indoleamine 2-3 dioxygenase following a pro-inflammatory state could reduce the amount of tryptophan converted to serotonin and increase the production of tryptophan catabolites such as kynurenic acid, an antagonist of ionotropic excitatory aminoacid receptors, whose levels are reduced in bipolar disorder. Abnormalities in white matter (WM) integrity have been widely reported in BD. We then hypothesized that metabolites involved in serotoninergic turnover in BD could influence DTI measures of WM microstructure. Peripheral levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxy-kynurenine, and 5-HIAA were analysed in 22 patients affected by BD and 15 healthy controls. WM microstructure was evaluated using diffusion tensor imaging and tract-based spatial statistics with threshold-free cluster enhancement only in bipolar patients. We observed that kynurenic acid and 5-HIAA were reduced in BD and associated with DTI measures of WM integrity in several association fibres: inferior and superior longitudinal fasciculus, cingulum bundle, corpus callosum, uncus, anterior thalamic radiation and corona radiata. Our results seem to suggest that higher levels of 5-HIAA, a measure of serotonin levels, and higher levels of kynurenic acid, which protects from glutamate excitotoxicity, could exert a protective effect on WM microstructure. Reduced levels of these metabolites in BD thus seem to confirm a crucial role of serotonin turnover in BD pathophysiology.

  4. Social reward dependence and brain white matter microstructure.

    PubMed

    Bjørnebekk, Astrid; Westlye, Lars T; Fjell, Anders M; Grydeland, Håkon; Walhovd, Kristine B

    2012-11-01

    People show consistent differences in their cognitive and emotional responses to environmental cues, manifesting, for example, as variability in social reward processing and novelty-seeking behavior. However, the neurobiological foundation of human temperament and personality is poorly understood. A likely hypothesis is that personality traits rely on the integrity and function of distributed neurocircuitry. In this diffusion tensor imaging (DTI) study, this hypothesis was tested by examining the associations between reward dependence (RD) and novelty seeking (NS), as measured by Cloninger's Temperament and Character Inventory, and fractional anisotropy (FA) and mean diffusivity (MD) as DTI-derived indices of white matter (WM) microstructure across the brain. The results supported the hypothesis. RD was associated with WM architecture coherence as indicated by a negative correlation between RD and FA in frontally distributed areas including pathways connecting important constituents of reward-related neurocircuitry. The associations between RD and FA could not be explained by age, sex, alcohol consumption, or trait anxiety. In contrast, no effects were observed for NS. These findings support the theory that WM fiber tract properties modulate individual differences in social reward processing.

  5. Myelin vs axon abnormalities in white matter in bipolar disorder.

    PubMed

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-03-13

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ.

  6. Brain asymmetry in the white matter making and globularity

    PubMed Central

    Theofanopoulou, Constantina

    2015-01-01

    Recent studies from the field of language genetics and evolutionary anthropology have put forward the hypothesis that the emergence of our species-specific brain is to be understood not in terms of size, but in light of developmental changes that gave rise to a more globular braincase configuration after the split from Neanderthals-Denisovans. On the grounds that (i) white matter myelination is delayed relative to other brain structures and, in humans, is protracted compared with other primates and that (ii) neural connectivity is linked genetically to our brain/skull morphology and language-ready brain, I argue that one significant evolutionary change in Homo sapiens’ lineage is the interhemispheric connectivity mediated by the Corpus Callosum. The size, myelination and fiber caliber of the Corpus Callosum present an anterior-to-posterior increase, in a way that inter-hemispheric connectivity is more prominent in the sensory motor areas, whereas “high- order” areas are more intra-hemispherically connected. Building on evidence from language-processing studies that account for this asymmetry (‘lateralization’) in terms of brain rhythms, I present an evo-devo hypothesis according to which the myelination of the Corpus Callosum, Brain Asymmetry, and Globularity are conjectured to make up the angles of a co-evolutionary triangle that gave rise to our language-ready brain. PMID:26441731

  7. Regional differences in cerebral asymmetries of human cortical white matter.

    PubMed

    Iwabuchi, Sarina J; Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Patston, Lucy L M; Waldie, Karen E; Tippett, Lynette J; Corballis, Michael C; Kirk, Ian J

    2011-11-01

    The form of the structural asymmetries across the cerebral hemispheres, that support well-established functional asymmetries, are not well understood. Although, many previous studies have investigated structural differences in areas associated with strong functional asymmetries, such as language processes, regions of the brain with less well established functional laterality have received less attention. The current study aims to address this by exploring global white matter asymmetries of the healthy human brain using diffusion tensor imaging (DTI) and tractography. DTI was conducted on twenty-nine healthy right-handed males, and pathways from the four major lobes were reconstructed using probabilistic tractography. Mean FA, parallel and perpendicular diffusion values were calculated and compared across hemispheres for each pathway generated. Significant asymmetries in the parietal (rightward asymmetry) and occipital (leftward asymmetry) pathways were found in FA measures. However, asymmetric patterns in parallel and/or perpendicular diffusion were observed in all four lobes, even in pathways with symmetrical FA. For instance, significant rightward asymmetry in parallel diffusion was found in the parietal and frontal lobes, whereas significant leftward asymmetry was found in the temporal and occipital lobes. We suggest that these different patterns of diffusion asymmetry reflect differences in microanatomy that support the known patterns of differential functional asymmetry. The different directions of anatomical asymmetry support the notion that there may be a number of different lateralising influences operating in the brain.

  8. Brain asymmetry in the white matter making and globularity.

    PubMed

    Theofanopoulou, Constantina

    2015-01-01

    Recent studies from the field of language genetics and evolutionary anthropology have put forward the hypothesis that the emergence of our species-specific brain is to be understood not in terms of size, but in light of developmental changes that gave rise to a more globular braincase configuration after the split from Neanderthals-Denisovans. On the grounds that (i) white matter myelination is delayed relative to other brain structures and, in humans, is protracted compared with other primates and that (ii) neural connectivity is linked genetically to our brain/skull morphology and language-ready brain, I argue that one significant evolutionary change in Homo sapiens' lineage is the interhemispheric connectivity mediated by the Corpus Callosum. The size, myelination and fiber caliber of the Corpus Callosum present an anterior-to-posterior increase, in a way that inter-hemispheric connectivity is more prominent in the sensory motor areas, whereas "high- order" areas are more intra-hemispherically connected. Building on evidence from language-processing studies that account for this asymmetry ('lateralization') in terms of brain rhythms, I present an evo-devo hypothesis according to which the myelination of the Corpus Callosum, Brain Asymmetry, and Globularity are conjectured to make up the angles of a co-evolutionary triangle that gave rise to our language-ready brain.

  9. Small white matter lesion detection in cerebral small vessel disease

    NASA Astrophysics Data System (ADS)

    Ghafoorian, Mohsen; Karssemeijer, Nico; van Uden, Inge; de Leeuw, Frank E.; Heskes, Tom; Marchiori, Elena; Platel, Bram

    2015-03-01

    Cerebral small vessel disease (SVD) is a common finding on magnetic resonance images of elderly people. White matter lesions (WML) are important markers for not only the small vessel disease, but also neuro-degenerative diseases including multiple sclerosis, Alzheimer's disease and vascular dementia. Volumetric measurements such as the "total lesion load", have been studied and related to these diseases. With respect to SVD we conjecture that small lesions are important, as they have been observed to grow over time and they form the majority of lesions in number. To study these small lesions they need to be annotated, which is a complex and time-consuming task. Existing (semi) automatic methods have been aimed at volumetric measurements and large lesions, and are not suitable for the detection of small lesions. In this research we established a supervised voxel classification CAD system, optimized and trained to exclusively detect small WMLs. To achieve this, several preprocessing steps were taken, which included a robust standardization of subject intensities to reduce inter-subject intensity variability as much as possible. A number of features that were found to be well identifying small lesions were calculated including multimodal intensities, tissue probabilities, several features for accurate location description, a number of second order derivative features as well as multi-scale annular filter for blobness detection. Only small lesions were used to learn the target concept via Adaboost using random forests as its basic classifiers. Finally the results were evaluated using Free-response receiver operating characteristic.

  10. White Matter Hyperintensity Burden and Susceptibility to Cerebral Ischemia

    PubMed Central

    Rost, Natalia S; Fitzpatrick, Kaitlin; Biffi, Alessandro; Kanakis, Allison; Devan, William; Anderson, Christopher D.; Cortellini, Lynelle; Furie, Karen L; Rosand, Jonathan

    2010-01-01

    Background and Purpose White matter hyperintensity (WMH) burden increases risk of ischemic stroke; furthermore, it predicts infarct growth in acute cerebral ischemia. We hypothesized that WMH would be less severe in patients with transient ischemic attack (TIA), as compared to those with acute ischemic stroke (AIS) and completed infarct. Methods Cases (TIA, n=30) and controls (AIS, n=120) were selected from an ongoing longitudinal cohort study of patients with stroke and matched for age, gender, and race/ethnicity. All subjects had brain MRI within 48 hours of presentation to evaluate for acute cerebral ischemia. WMH burden on MRI was quantified using a validated computer-assisted program with high inter-rater reliability. Results Median WMH in individuals with TIA was 3.7 cm3 (IQR 1.5 - 8.33cm3) compared to 6.9 cm3 (IQR 3.1 - 11.9 cm3) in AIS (p<0.04). In multivariable analysis, the odds of completed infarct were higher (OR 2.19, 95% CI 1.27 - 3.77, p<0.005) in subjects with larger volumes of WMH. Conclusions WMH burden was significantly less in subjects with TIA as opposed to ischemic stroke. These data provide further evidence to support a detrimental role of WMH burden on the capacity of cerebral tissue to survive acute ischemia. PMID:20947843

  11. Lifelong Bilingualism Maintains White Matter Integrity in Older Adults

    PubMed Central

    Luk, Gigi; Bialystok, Ellen; Craik, Fergus I. M.; Grady, Cheryl L.

    2012-01-01

    Previous research has shown that bilingual speakers have higher levels of cognitive control than comparable monolinguals, especially at older ages. The present study investigates a possible neural correlate of this behavioral effect. Given that white matter (WM) integrity decreases with age in adulthood, we tested the hypothesis that bilingualism is associated with maintenance of WM in older people. Using diffusion tensor imaging, we found higher WM integrity in older people who were lifelong bilinguals than in monolinguals. This maintained integrity was measured by fractional anisotropy (FA) and was found in the corpus callosum extending to the superior and inferior longitudinal fasciculi. We also hypothesized that stronger WM connections would be associated with more widely distributed patterns of functional connectivity in bilinguals. We tested this by assessing the resting-state functional connectivity of frontal lobe regions adjacent to WM areas with group differences in FA. Bilinguals showed stronger anterior to posterior functional connectivity compared to monolinguals. These results are the first evidence that maintained WM integrity is related to lifelong naturally occurring experience; the resulting enhanced structural and functional connectivity may provide a neural basis for “brain reserve.” PMID:22090506

  12. White matter atrophy and myelinated fiber disruption in a rat model of depression.

    PubMed

    Gao, Yuan; Ma, Jing; Tang, Jing; Liang, Xin; Huang, Chun-Xia; Wang, San-Rong; Chen, Lin-Mu; Wang, Fei-Fei; Tan, Chuan-Xue; Chao, Feng-Lei; Zhang, Lei; Qiu, Xuan; Luo, Yan-Min; Xiao, Qian; Du, Lian; Xiao, Qian; Tang, Yong

    2017-06-01

    Brain imaging and postmortem studies have indicated that white matter abnormalities may contribute to the pathology and pathogenesis of depression. However, until now, no study has quantitatively investigated white matter changes in depression in rats. The current study used the chronic unpredictable stress (CUS) model of depression. Body weight and sucrose preference test (SPT) scores were assessed weekly. Upon successfully establishing the CUS animal model, all animals were tested using the SPT and the open field test (OFT). Then, transmission electron microscopy and unbiased stereological methods were used to investigate white matter changes in the rats. Compared with the control group, the body weight and sucrose preference of the CUS rats were significantly decreased (p < .001, p < .001, respectively). In the OFT, the total time spent and the total distance traveled in the inner area by the CUS rats were significantly lower than those of the control group (p = .002, p = .001, respectively). The stereological results revealed that white matter volume, the total volume, and the total length and mean diameter of myelinated fibers in the white matter of the CUS rats were significantly decreased compared to the control rats (p = .042, p = .038, p = .035, p = .019, respectively). The results of this study suggested that white matter atrophy and disruption of myelinated fibers in the white matter may contribute to the pathophysiology underlying depression, which might provide new targets for the development of novel therapeutic interventions for depression.

  13. Altered tract-specific white matter microstructure is related to poorer cognitive performance: The Rotterdam Study.

    PubMed

    Cremers, Lotte G M; de Groot, Marius; Hofman, Albert; Krestin, Gabriel P; van der Lugt, Aad; Niessen, Wiro J; Vernooij, Meike W; Ikram, M Arfan

    2016-03-01

    White matter microstructural integrity has been related to cognition. Yet, the potential role of specific white matter tracts on top of a global white matter effect remains unclear, especially when considering specific cognitive domains. Therefore, we determined the tract-specific effect of white matter microstructure on global cognition and specific cognitive domains. In 4400 nondemented and stroke-free participants (mean age 63.7 years, 55.5% women), we obtained diffusion magnetic resonance imaging parameters (fractional anisotropy and mean diffusivity) in 14 white matter tracts using probabilistic tractography and assessed cognitive performance with a cognitive test battery. Tract-specific white matter microstructure in all supratentorial tracts was associated with poorer global cognition. Lower fractional anisotropy in association tracts, primarily the inferior fronto-occipital fasciculus, and higher mean diffusivity in projection tracts, in particular the posterior thalamic radiation, most strongly related to poorer cognition. Altered white matter microstructure related to poorer information processing speed, executive functioning, and motor speed, but not to memory. Tract-specific microstructural changes may aid in better understanding the mechanism of cognitive impairment and neurodegenerative diseases.

  14. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.

    PubMed

    Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L

    2016-06-01

    White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.

  15. Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations.

    PubMed

    Wu, Xi; Yang, Zhipeng; Bailey, Stephen K; Zhou, Jiliu; Cutting, Laurie E; Gore, John C; Ding, Zhaohua

    2017-03-08

    Functional MRI has proven to be effective in detecting neural activity in brain cortices on the basis of blood oxygenation level dependent (BOLD) contrast, but has relatively poor sensitivity for detecting neural activity in white matter. To demonstrate that BOLD signals in white matter are detectable and contain information on neural activity, we stimulated the somatosensory system and examined distributions of BOLD signals in related white matter pathways. The temporal correlation profiles and frequency contents of BOLD signals were compared between stimulation and resting conditions, and between relevant white matter fibers and background regions, as well as between left and right side stimulations. Quantitative analyses show that, overall, MR signals from white matter fiber bundles in the somatosensory system exhibited significantly greater temporal correlations with the primary sensory cortex and greater signal power during tactile stimulations than in a resting state, and were stronger than corresponding measurements for background white matter both during stimulations and in a resting state. The temporal correlation and signal power under stimulation were found to be twice those observed from the same bundle in a resting state, and bore clear relations with the side of stimuli. These indicate that BOLD signals in white matter fibers encode neural activity related to their functional roles connecting cortical volumes, which are detectable with appropriate methods.

  16. Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling.

    PubMed

    Feng, Yuan; Lee, Chung-Hao; Sun, Lining; Ji, Songbai; Zhao, Xuefeng

    2017-01-01

    Characterizing the mechanical properties of white matter is important to understand and model brain development and injury. With embedded aligned axonal fibers, white matter is typically modeled as a transversely isotropic material. However, most studies characterize the white matter tissue using models with a single anisotropic invariant or in a small-strain regime. In this study, we combined a single experimental procedure - asymmetric indentation - with inverse finite element (FE) modeling to estimate the nearly incompressible transversely isotropic material parameters of white matter. A minimal form comprising three parameters was employed to simulate indentation responses in the large-strain regime. The parameters were estimated using a global optimization procedure based on a genetic algorithm (GA). Experimental data from two indentation configurations of porcine white matter, parallel and perpendicular to the axonal fiber direction, were utilized to estimate model parameters. Results in this study confirmed a strong mechanical anisotropy of white matter in large strain. Further, our results suggested that both indentation configurations are needed to estimate the parameters with sufficient accuracy, and that the indenter-sample friction is important. Finally, we also showed that the estimated parameters were consistent with those previously obtained via a trial-and-error forward FE method in the small-strain regime. These findings are useful in modeling and parameterization of white matter, especially under large deformation, and demonstrate the potential of the proposed asymmetric indentation technique to characterize other soft biological tissues with transversely isotropic properties.

  17. Examining the relationships between cortical maturation and white matter myelination throughout early childhood.

    PubMed

    Croteau-Chonka, Elise C; Dean, Douglas C; Remer, Justin; Dirks, Holly; O'Muircheartaigh, Jonathan; Deoni, Sean C L

    2016-01-15

    Cortical development and white matter myelination are hallmark processes of infant and child neurodevelopment, and play a central role in the evolution of cognitive and behavioral functioning. Non-invasive magnetic resonance imaging (MRI) has been used to independently track these microstructural and morphological changes in vivo, however few studies have investigated the relationship between them despite their concurrency in the developing brain. Further, because measures of cortical morphology rely on underlying gray-white matter tissue contrast, which itself is a function of white matter myelination, it is unclear if contrast-based measures of cortical development accurately reflect cortical architecture, or if they merely represent adjacent white matter maturation. This may be particularly true in young children, in whom brain structure is rapidly maturing. Here for the first time, we investigate the dynamic relationship between cortical and white matter development across early childhood, from 1 to 6years. We present measurements of cortical thickness with respect to cortical and adjacent myelin water fraction (MWF) in 33 bilateral cortical regions. Significant results in only 14 of 66 (21%) cortical regions suggest that cortical thickness measures are not heavily driven by changes in adjacent white matter, and that brain imaging studies of cortical and white matter maturation reflect distinct, but complimentary, neurodevelopmental processes.

  18. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats.

    PubMed

    Ni, Wei; Okauchi, Masanobu; Hatakeyama, Tetsuhiro; Gu, Yuxiang; Keep, Richard F; Xi, Guohua; Hua, Ya

    2015-10-01

    Iron contributes to c-Jun N-terminal kinases (JNK) activation in young rats and white matter injury in piglets after intracerebral hemorrhage (ICH). In the present study, we examined the effect of deferoxamine on ICH-induced white matter injury and JNK activation and in aged rats. Male Fischer 344 rats (18months old) had either an intracaudate injection of 100μl of autologous blood or a needle insertion (sham). The rats were treated with deferoxamine or vehicle with different regimen (dosage, duration and time window). White matter injury and activation of JNK were examined. We found that a dose of DFX should be at more than 10mg/kg for a therapeutic duration more than 2days with a therapeutic time window of 12h to reduce ICH-induced white matter loss at 2months. ICH-induced white matter injury was associated with JNK activation. The protein levels of phosphorylated-JNK (P-JNK) were upregulated at day-1 after ICH and then gradually decreased. P-JNK immunoreactivity was mostly located in white matter bundles. ICH-induced JNK activation was reduced by DFX treatment. This study demonstrated that DFX can reduce ICH-induced JNK activation and white matter damage.

  19. Extensive White Matter Alterations and Its Correlations with Ataxia Severity in SCA 2 Patients.

    PubMed

    Hernandez-Castillo, Carlos R; Galvez, Victor; Mercadillo, Roberto; Diaz, Rosalinda; Campos-Romo, Aurelio; Fernandez-Ruiz, Juan

    2015-01-01

    Previous studies of SCA2 have revealed significant degeneration of white matter tracts in cerebellar and cerebral regions. The motor deficit in these patients may be attributable to the degradation of projection fibers associated with the underlying neurodegenerative process. However, this relationship remains unclear. Statistical analysis of diffusion tensor imaging enables an unbiased whole-brain quantitative comparison of the diffusion proprieties of white matter tracts in vivo. Fourteen genetically confirmed SCA2 patients and aged-matched healthy controls participated in the study. Tract-based spatial statistics were performed to analyze structural white matter damage using two different measurements: fractional anisotropy (FA) and mean diffusivity (MD). Significant diffusion differences were correlated with the patient's ataxia impairment. Our analysis revealed decreased FA mainly in the inferior/middle/superior cerebellar peduncles, the bilateral posterior limb of the internal capsule and the bilateral superior corona radiata. Increases in MD were found mainly in cerebellar white matter, medial lemniscus, and middle cerebellar peduncle, among other regions. Clinical impairment measured with the SARA score correlated with FA in superior parietal white matter and bilateral anterior corona radiata. Correlations with MD were found in cerebellar white matter and the middle cerebellar peduncle. Our findings show significant correlations between diffusion measurements in key areas affected in SCA2 and measures of motor impairment, suggesting a disruption of information flow between motor and sensory-integration areas. These findings result in a more comprehensive view of the clinical impact of the white matter degeneration in SCA2.

  20. Frontal White Matter Volume Is Associated with Brain Enlargement and Higher Structural Connectivity in Anthropoid Primates

    PubMed Central

    Smaers, Jeroen Bert; Schleicher, Axel; Zilles, Karl; Vinicius, Lucio

    2010-01-01

    Previous research has indicated the importance of the frontal lobe and its ‘executive’ connections to other brain structures as crucial in explaining primate neocortical adaptations. However, a representative sample of volumetric measurements of frontal connective tissue (white matter) has not been available. In this study, we present new volumetric measurements of white and grey matter in the frontal and non-frontal neocortical lobes from 18 anthropoid species. We analyze this data in the context of existing theories of neocortex, frontal lobe and white versus grey matter hyperscaling. Results indicate that the ‘universal scaling law’ of neocortical white to grey matter applies separately for frontal and non-frontal lobes; that hyperscaling of both neocortex and frontal lobe to rest of brain is mainly due to frontal white matter; and that changes in frontal (but not non-frontal) white matter volume are associated with changes in rest of brain and basal ganglia, a group of subcortical nuclei functionally linked to ‘executive control’. Results suggest a central role for frontal white matter in explaining neocortex and frontal lobe hyperscaling, brain size variation and higher neural structural connectivity in anthropoids. PMID:20161758

  1. Financial Literacy is Associated with White Matter Integrity in Old Age

    PubMed Central

    Han, S. Duke; Boyle, Patricia A.; Arfanakis, Konstantinos; Fleischman, Debra; Yu, Lei; James, Bryan D.; Bennett, David A.

    2016-01-01

    Financial literacy, the ability to understand, access, and utilize information in ways that contribute to optimal financial outcomes, is important for independence and wellbeing in old age. We previously reported that financial literacy is associated with greater functional connectivity between brain regions in old age. Here, we tested the hypothesis that higher financial literacy would be associated with greater white matter integrity in old age. Participants included 346 persons without dementia (mean age=81.36, mean education=15.39, male/female=79/267, mean MMSE=28.52) from the Rush Memory and Aging Project. Financial literacy was assessed using a series of questions imbedded as part of an ongoing decision making study. White matter integrity was assessed with diffusion anisotropy measured with diffusion tensor magnetic resonance imaging (DTI). We tested the hypothesis that higher financial literacy is associated with higher diffusion anisotropy in white matter, adjusting for the effects of age, education, sex, and white matter hyperintense lesions. We then repeated the analysis also adjusting for cognitive function. Analyses revealed regions with significant positive associations between financial literacy and diffusion anisotropy, and many remained significant after accounting for cognitive function. White matter tracts connecting right hemisphere temporal-parietal brain regions were particularly implicated. Greater financial literacy is associated with higher diffusion anisotropy in white matter of nondemented older adults after adjusting for important covariates. These results suggest that financial literacy is positively associated with white matter integrity in old age. PMID:26899784

  2. The effects of white matter hyperintensities and amyloid deposition on Alzheimer dementia

    PubMed Central

    Gordon, Brian A.; Najmi, Safa; Hsu, Phillip; Roe, Catherine M.; Morris, John C.; Benzinger, Tammie L.S.

    2015-01-01

    Background and purpose Elevated levels of amyloid deposition as well as white matter damage are thought to be risk factors for Alzheimer Disease (AD). Here we examined whether qualitative ratings of white matter damage predicted cognitive impairment beyond measures of amyloid. Materials and methods The study examined 397 cognitively normal, 51 very mildly demented, and 11 mildly demented individuals aged 42–90 (mean 68.5). Participants obtained a T2-weighted scan as well as a positron emission tomography scan using 11[C] Pittsburgh Compound B. Periventricular white matter hyperintensities (PVWMHs) and deep white matter hyperintensities (DWMHs) were measured on each T2 scan using the Fazekas rating scale. The effects of amyloid deposition and white matter damage were assessed using logistic regressions. Results Levels of amyloid deposition (ps < 0.01), as well as ratings of PVWMH (p < 0.01) and DWMH (p < 0.05) discriminated between cognitively normal and demented individuals. Conclusions The amount of amyloid deposition and white matter damage independently predicts cognitive impairment. This suggests a diagnostic utility of qualitative white matter scales in addition to measuring amyloid levels. PMID:26106548

  3. Infection and white matter injury in infants with congenital cardiac disease.

    PubMed

    Glass, Hannah C; Bowman, Chelsea; Chau, Vann; Moosa, Alisha; Hersh, Adam L; Campbell, Andrew; Poskitt, Kenneth; Azakie, Anthony; Barkovich, A James; Miller, Steven P; McQuillen, Patrick S

    2011-10-01

    More than 60% of newborns with severe congenital cardiac disease develop perioperative brain injuries. Known risk factors include: pre-operative hypoxemia, cardiopulmonary bypass characteristics, and post-operative hypotension. Infection is an established risk factor for white matter injury in premature newborns. In this study, we examined term infants with congenital cardiac disease requiring surgical repair to determine whether infection is associated with white matter injury. Acquired infection was specified by site - bloodstream, pneumonia, or surgical site infection - according to strict definitions. Infection was present in 23 of 127 infants. Pre- and post-operative imaging was evaluated for acquired injury by a paediatric neuroradiologist. Overall, there was no difference in newly acquired post-operative white matter injury in infants with infection (30%), compared to those without (31%). When stratified by anatomy, infants with transposition of the great arteries, and bloodstream infection had an estimated doubling of risk of white matter injury that was not significant, whereas those with single ventricle anatomy had no apparent added risk. When considering only infants without stroke, the estimated association was higher, and became significant after adjusting for duration of inotrope therapy. In this study, nosocomial infection was not associated with white matter injury. Nonetheless, when controlling for risk factors, there was an association between bloodstream infection and white matter injury in selected sub-populations. Infection prevention may have the potential to mitigate long-term neurologic impairment as a consequence of white matter injury, which underscores the importance of attention to infection control for these patients.

  4. Disconnected Aging: Cerebral White Matter Integrity and Age-Related Differences in Cognition

    PubMed Central

    Bennett, Ilana J.; Madden, David J.

    2013-01-01

    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. PMID:24280637

  5. Maturational differences in thalamocortical white matter microstructure and auditory evoked response latencies in autism spectrum disorders.

    PubMed

    Roberts, Timothy P L; Lanza, Matthew R; Dell, John; Qasmieh, Saba; Hines, Katherine; Blaskey, Lisa; Zarnow, Deborah M; Levy, Susan E; Edgar, J Christopher; Berman, Jeffrey I

    2013-11-06

    White matter diffusion anisotropy in the acoustic radiations was characterized as a function of development in autistic and typically developing children. Auditory-evoked neuromagnetic fields were also recorded from the same individuals and the latency of the left and right middle latency superior temporal gyrus auditory ~50ms response (M50)(1) was measured. Group differences in structural and functional auditory measures were examined, as were group differences in associations between white matter pathways, M50 latency, and age. Acoustic radiation white matter fractional anisotropy did not differ between groups. Individuals with autism displayed a significant M50 latency delay. Only in typically developing controls, white matter fractional anisotropy increased with age and increased white matter anisotropy was associated with earlier M50 responses. M50 latency, however, decreased with age in both groups. Present findings thus indicate that although there is loss of a relationship between white matter structure and auditory cortex function in autism spectrum disorders, and although there are delayed auditory responses in individuals with autism than compared with age-matched controls, M50 latency nevertheless decreases as a function of age in autism, parallel to the observation in typically developing controls (although with an overall latency delay). To understand auditory latency delays in autism and changes in auditory responses as a function of age in controls and autism, studies examining white matter as well as other factors that influence auditory latency, such as synaptic transmission, are of interest. © 2013 Published by Elsevier B.V.

  6. Maturational differences in thalamocortical white matter microstructure and auditory evoked response latencies in autism spectrum disorders

    PubMed Central

    Roberts, Timothy P.L.; Lanza, Matthew R.; Dell, John; Qasmieh, Saba; Hines, Katherine; Blaskey, Lisa; Zarnow, Deborah M.; Levy, Susan E.; Edgar, J. Christopher; Berman, Jeffrey I.

    2014-01-01

    White matter diffusion anisotropy in the acoustic radiations was characterized as a function of development in autistic and typically developing children. Auditory-evoked neuromagnetic fields were also recorded from the same individuals and the latency of the left and right middle latency superior temporal gyrus auditory ~50ms response (M50)1 was measured. Group differences in structural and functional auditory measures were examined, as were group differences in associations between white matter pathways, M50 latency, and age. Acoustic radiation white matter fractional anisotropy did not differ between groups. Individuals with autism displayed a significant M50 latency delay. Only in typically developing controls, white matter fractional anisotropy increased with age and increased white matter anisotropy was associated with earlier M50 responses. M50 latency, however, decreased with age in both groups. Present findings thus indicate that although there is loss of a relationship between white matter structure and auditory cortex function in autism spectrum disorders, and although there are delayed auditory responses in individuals with autism than compared with age-matched controls, M50 latency nevertheless decreases as a function of age in autism, parallel to the observation in typically developing controls (although with an overall latency delay). To understand auditory latency delays in autism and changes in auditory responses as a function of age in controls and autism, studies examining white matter as well as other factors that influence auditory latency, such as synaptic transmission, are of interest. PMID:24055954

  7. White Matter Changes in Tinnitus: Is It All Age and Hearing Loss?

    PubMed

    Yoo, Hye Bin; De Ridder, Dirk; Vanneste, Sven

    2016-02-01

    Tinnitus is a condition characterized by the perception of auditory phantom sounds. It is known as the result of complex interactions between auditory and nonauditory regions. However, previous structural imaging studies on tinnitus patients showed evidence of significant white matter changes caused by hearing loss that are positively correlated with aging. Current study focused on which aspects of tinnitus pathologies affect the white matter integrity the most. We used the diffusion tensor imaging technique to acquire images that have higher contrast in brain white matter to analyze how white matter is influenced by tinnitus-related factors using voxel-based methods, region of interest analysis, and deterministic tractography. As a result, white matter integrity in chronic tinnitus patients was both directly affected by age and also mediated by the hearing loss. The most important changes in white matter regions were found bilaterally in the anterior corona radiata, anterior corpus callosum, and bilateral sagittal strata. In the tractography analysis, the white matter integrity values in tracts of right parahippocampus were correlated with the subjective tinnitus loudness.

  8. The Classical Pathways of Occipital Lobe Epileptic Propagation Revised in the Light of White Matter Dissection

    PubMed Central

    Latini, Francesco; Hjortberg, Mats; Aldskogius, Håkan; Ryttlefors, Mats

    2015-01-01

    The clinical evidences of variable epileptic propagation in occipital lobe epilepsy (OLE) have been demonstrated by several studies. However the exact localization of the epileptic focus sometimes represents a problem because of the rapid propagation to frontal, parietal, or temporal regions. Each white matter pathway close to the supposed initial focus can lead the propagation towards a specific direction, explaining the variable semiology of these rare epilepsy syndromes. Some new insights in occipital white matter anatomy are herein described by means of white matter dissection and compared to the classical epileptic patterns, mostly based on the central position of the primary visual cortex. The dissections showed a complex white matter architecture composed by vertical and longitudinal bundles, which are closely interconnected and segregated and are able to support specific high order functions with parallel bidirectional propagation of the electric signal. The same sublobar lesions may hyperactivate different white matter bundles reemphasizing the importance of the ictal semiology as a specific clinical demonstration of the subcortical networks recruited. Merging semiology, white matter anatomy, and electrophysiology may lead us to a better understanding of these complex syndromes and tailored therapeutic options based on individual white matter connectivity. PMID:26063964

  9. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury.

    PubMed

    Liu, Xiao-Bo; Shen, Yan; Plane, Jennifer M; Deng, Wenbin

    2013-04-01

    Premature birth is a significant economic and public health burden, and its incidence is rising. Periventricular leukomalacia (PVL) is the predominant form of brain injury in premature infants and the leading cause of cerebral palsy. PVL is characterized by selective white-matter damage with prominent oligodendroglial injury. The maturation-dependent vulnerability of developing and premyelinating oligodendrocytes to excitotoxic, oxidative, and inflammatory forms of injury is a major factor in the pathogenesis of PVL. Recent studies using mouse models of PVL reveal that synapses between axons and developing oligodendrocytes are quickly and profoundly damaged in immature white matter. Axon-glia synapses are highly vulnerable to white-matter injury in the developing brain, and the loss of synapses between axons and premyelinating oligodendrocytes occurs before any cellular loss in the immature white matter. Microglial activation and astrogliosis play important roles in triggering white-matter injury. Impairment of white-matter development and function in the neonatal period contributes critically to functional and behavioral deficits. Preservation of the integrity of the white matter is likely key in the treatment of PVL and subsequent neurological consequences and disabilities.

  10. The effects of white matter hyperintensities and amyloid deposition on Alzheimer dementia.

    PubMed

    Gordon, Brian A; Najmi, Safa; Hsu, Phillip; Roe, Catherine M; Morris, John C; Benzinger, Tammie L S

    2015-01-01

    Elevated levels of amyloid deposition as well as white matter damage are thought to be risk factors for Alzheimer Disease (AD). Here we examined whether qualitative ratings of white matter damage predicted cognitive impairment beyond measures of amyloid. The study examined 397 cognitively normal, 51 very mildly demented, and 11 mildly demented individuals aged 42-90 (mean 68.5). Participants obtained a T2-weighted scan as well as a positron emission tomography scan using (11)[C] Pittsburgh Compound B. Periventricular white matter hyperintensities (PVWMHs) and deep white matter hyperintensities (DWMHs) were measured on each T2 scan using the Fazekas rating scale. The effects of amyloid deposition and white matter damage were assessed using logistic regressions. Levels of amyloid deposition (ps < 0.01), as well as ratings of PVWMH (p < 0.01) and DWMH (p < 0.05) discriminated between cognitively normal and demented individuals. The amount of amyloid deposition and white matter damage independently predicts cognitive impairment. This suggests a diagnostic utility of qualitative white matter scales in addition to measuring amyloid levels.

  11. White matter and visuospatial processing in autism: a constrained spherical deconvolution tractography study.

    PubMed

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Gallagher, Louise; Leemans, Alexander

    2013-10-01

    Autism spectrum disorders (ASDs) are associated with a marked disturbance of neural functional connectivity, which may arise from disrupted organization of white matter. The aim of this study was to use constrained spherical deconvolution (CSD)-based tractography to isolate and characterize major intrahemispheric white matter tracts that are important in visuospatial processing. CSD-based tractography avoids a number of critical confounds that are associated with diffusion tensor tractography, and to our knowledge, this is the first time that this advanced diffusion tractography method has been used in autism research. Twenty-five participants with ASD and aged 25, intelligence quotient-matched controls completed a high angular resolution diffusion imaging scan. The inferior fronto-occipital fasciculus (IFOF) and arcuate fasciculus were isolated using CSD-based tractography. Quantitative diffusion measures of white matter microstructural organization were compared between groups and associated with visuospatial processing performance. Significant alteration of white matter organization was present in the right IFOF in individuals with ASD. In addition, poorer visuospatial processing was associated in individuals with ASD with disrupted white matter in the right IFOF. Using a novel, advanced tractography method to isolate major intrahemispheric white matter tracts in autism, this research has demonstrated that there are significant alterations in the microstructural organization of white matter in the right IFOF in ASD. This alteration was associated with poorer visuospatial processing performance in the ASD group. This study provides an insight into structural brain abnormalities that may influence atypical visuospatial processing in autism.

  12. Financial literacy is associated with white matter integrity in old age.

    PubMed

    Han, S Duke; Boyle, Patricia A; Arfanakis, Konstantinos; Fleischman, Debra; Yu, Lei; James, Bryan D; Bennett, David A

    2016-04-15

    Financial literacy, the ability to understand, access, and utilize information in ways that contribute to optimal financial outcomes, is important for independence and wellbeing in old age. We previously reported that financial literacy is associated with greater functional connectivity between brain regions in old age. Here, we tested the hypothesis that higher financial literacy would be associated with greater white matter integrity in old age. Participants included 346 persons without dementia (mean age=81.36, mean education=15.39, male/female=79/267, mean MMSE=28.52) from the Rush Memory and Aging Project. Financial literacy was assessed using a series of questions imbedded as part of an ongoing decision making study. White matter integrity was assessed with diffusion anisotropy measured with diffusion tensor magnetic resonance imaging (DTI). We tested the hypothesis that higher financial literacy is associated with higher diffusion anisotropy in white matter, adjusting for the effects of age, education, sex, and white matter hyperintense lesions. We then repeated the analysis also adjusting for cognitive function. Analyses revealed regions with significant positive associations between financial literacy and diffusion anisotropy, and many remained significant after accounting for cognitive function. White matter tracts connecting right hemisphere temporal-parietal brain regions were particularly implicated. Greater financial literacy is associated with higher diffusion anisotropy in white matter of nondemented older adults after adjusting for important covariates. These results suggest that financial literacy is positively associated with white matter integrity in old age.

  13. White matter microstructure asymmetry: effects of volume asymmetry on fractional anisotropy asymmetry.

    PubMed

    Takao, H; Hayashi, N; Ohtomo, K

    2013-02-12

    Diffusion tensor imaging (DTI) provides information regarding white matter microstructure; however, macroscopic fiber architectures can affect DTI measures. A larger brain (fiber tract) has a 'relatively' smaller voxel size, and the voxels are less likely to contain more than one fiber orientation and more likely to have higher fractional anisotropy (FA). Previous DTI studies report left-to-right differences in the white matter; however, these may reflect true microscopic differences or be caused purely by volume differences. Using tract-based spatial statistics, we investigated left-to-right differences in white matter microstructure across the whole brain. Voxel-wise analysis revealed a large number of white matter volume asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. In many white matter regions, FA asymmetry was positively correlated with volume asymmetry. Voxel-wise analysis with adjustment for volume asymmetry revealed many white matter FA asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. The voxel-wise analysis showed a reduced number of regions with significant FA asymmetry compared with analysis performed without adjustment for volume asymmetry; however, the overall trend of the results was unchanged. The results of the present study suggest that these FA asymmetries are not caused by volume differences and reflect microscopic differences in the white matter.

  14. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome.

    PubMed

    Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja

    2015-09-01

    We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS.

  15. Age-related differences in autism: The case of white matter microstructure.

    PubMed

    Koolschijn, P Cédric M P; Caan, Matthan W A; Teeuw, Jalmar; Olabarriaga, Sílvia D; Geurts, Hilde M

    2017-01-01

    Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, Inc.

  16. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke.

    PubMed

    Griffis, Joseph C; Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2017-01-01

    Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  17. White matter alterations in narcolepsy patients with cataplexy: tract-based spatial statistics.

    PubMed

    Park, Yun K; Kwon, Oh-Hun; Joo, Eun Yeon; Kim, Jae-Hun; Lee, Jong M; Kim, Sung T; Hong, Seung B

    2016-04-01

    Functional imaging studies and voxel-based morphometry analysis of brain magnetic resonance imaging showed abnormalities in the hypothalamus-thalamus-orbitofrontal pathway, demonstrating altered hypocretin pathway in narcolepsy. Those distinct morphometric changes account for problems in wake-sleep control, attention and memory. It also raised the necessity to evaluate white matter changes. To investigate brain white matter alterations in drug-naïve narcolepsy patients with cataplexy and to explore relationships between white matter changes and patient clinical characteristics, drug-naïve narcolepsy patients with cataplexy (n = 22) and healthy age- and gender-matched controls (n = 26) were studied. Fractional anisotropy and mean diffusivity images were obtained from whole-brain diffusion tensor imaging, and tract-based spatial statistics were used to localize white matter abnormalities. Compared with controls, patients showed significant decreases in fractional anisotropy of white matter of the bilateral anterior cingulate, fronto-orbital area, frontal lobe, anterior limb of the internal capsule and corpus callosum, as well as the left anterior and medial thalamus. Patients and controls showed no differences in mean diffusivity. Among patients, mean diffusivity values of white matter in the bilateral superior frontal gyri, bilateral fronto-orbital gyri and right superior parietal gyrus were positively correlated with depressive mood. This tract-based spatial statistics study demonstrated that drug-naïve patients with narcolepsy had reduced fractional anisotropy of white matter in multiple brain areas and significant relationship between increased mean diffusivity of white matter in frontal/cingulate and depression. It suggests the widespread disruption of white matter integrity and prevalent brain degeneration of frontal lobes according to a depressive symptom in narcolepsy. © 2015 European Sleep Research Society.

  18. White matter hyperintensities in migraine: Clinical significance and central pulsatile hemodynamic correlates.

    PubMed

    Cheng, Chun-Yu; Cheng, Hao-Min; Chen, Shih-Pin; Chung, Chih-Ping; Lin, Yung-Yang; Hu, Han-Hwa; Chen, Chen-Huan; Wang, Shuu-Jiun

    2017-01-01

    Background The role of central pulsatile hemodynamics in the pathogenesis of white matter hyperintensities in migraine patients has not been clarified. Methods Sixty patients with migraine (20-50 years old; women, 68%) without overt vascular risk factors and 30 demographically-matched healthy controls were recruited prospectively. Cerebral white matter hyperintensities volume was determined by T1-weighted magnetic resonance imaging with CUBE-fluid-attenuated-inversion-recovery sequences. Central systolic blood pressure, carotid-femoral pulse wave velocity, and carotid augmentation index were measured by applanation tonometry. Carotid pulsatility index was derived from Doppler ultrasound carotid artery flow analysis. Results Compared to the controls, the migraine patients had higher white matter hyperintensities frequency (odds ratio, 2.75; p = 0.04) and greater mean white matter hyperintensities volume (0.174 vs. 0.049, cm(3), p = 0.04). Multivariable regression analysis showed that white matter hyperintensities volume in